Pseudogymnoascus destructans growth in wood, soil and guano substrates
1.
Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
2.
Fisher, M. C., Gow, N. A. R. & Gurr, S. J. Tackling emerging fungal threats to animal health, food security and ecosystem resilience. Philos. Trans. R. Soc. B Biol. Sci. 371, 20160332 (2016).
Article Google Scholar
3.
Ghosh, P. N., Fisher, M. C. & Bates, K. A. Diagnosing emerging fungal threats: A one health perspective. Front. Genet. 9, 376 (2018).
PubMed PubMed Central Article CAS Google Scholar
4.
Seyedmousavi, S. et al. Aspergillus and aspergilloses in wild and domestic animals: A global health concern with parallels to human disease. Med. Mycol. 53, 765–797 (2015).
PubMed Article Google Scholar
5.
Stephen, C., Lester, S., Black, W., Fyfe, M. & Raverty, S. Multispecies outbreak of cryptococcosis on southern Vancouver Island, British Columbia. Can. Vet. J. 43, 792–794 (2002).
PubMed PubMed Central Google Scholar
6.
Speare, R., Thomas, A. D., O’Shea, P. & Shipton, W. A. Mucor amphibiorum in the toad, Bufo marinus Australia. J. Wildl. Dis. 30, 399–407 (1994).
CAS PubMed Article Google Scholar
7.
Connolly, J. H. A review of mucormycosis in the platypus (Ornithorhynchus anatinus). Aust. J. Zool. 57, 235–244 (2009).
Article Google Scholar
8.
Gust, N. & Griffiths, J. Platypus mucormycosis and its conservation implications. Austral. Mycol. 28, 1–8 (2009).
Google Scholar
9.
Thiel, R. P., Mech, L. D., Ruth, G. R., Archer, J. R. & Kaufman, L. Blastomycosis in wild wolves. J. Wildl. Dis. 23, 321–323 (1987).
CAS PubMed Article Google Scholar
10.
Storms, T. N., Victoria L. Clyde, Linda Munson & Edward C. Ramsay. Blastomycosis in nondomestic felids. J. Zool. Wildl. Med. 34, 231–238 (2003).
11.
Guillot, J., Guérin, C. & Chermette, R. Histoplasmosis in Animals. in Emerging and Epizootic Fungal Infections in Animals (eds. Seyedmousavi, S., de Hoog, G. S., Guillot, J. & Verweij, P. E.) 115–128 (Springer International Publishing, 2018). doi:https://doi.org/10.1007/978-3-319-72093-7_5.
12.
Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459 (2019).
ADS CAS PubMed Article Google Scholar
13.
Martel, A. et al. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc. Natl. Acad. Sci. USA 110, 15325 (2013).
14.
Riley, S. Large-scale spatial-transmission models of infectious disease. Science 316, 1298 (2007).
ADS CAS PubMed PubMed Central Article Google Scholar
15.
Johnson, P. T. J., de Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology. Science 349, 1259504 (2015).
PubMed PubMed Central Article CAS Google Scholar
16.
Engering, A., Hogerwerf, L. & Slingenbergh, J. Pathogen–host–environment interplay and disease emergence. Emerg. Microbes Infect. 2, 1–7 (2013).
Article CAS Google Scholar
17.
Shikano, I. & Cory, J. S. Impact of environmental variation on host performance differs with pathogen identity: Implications for host-pathogen interactions in a changing climate. Sci. Rep. 5, 15351 (2015).
ADS CAS PubMed PubMed Central Article Google Scholar
18.
Kraay, A. N. M. et al. Fomite-mediated transmission as a sufficient pathway: A comparative analysis across three viral pathogens. BMC Infect. Dis. 18, 540 (2018).
PubMed PubMed Central Article Google Scholar
19.
Stephens, B. et al. Microbial exchange via fomites and implications for human health. Curr. Pollut. Rep. 5, 198–213 (2019).
CAS Article Google Scholar
20.
Langwig, K. E. et al. Host and pathogen ecology drive the seasonal dynamics of a fungal disease, white-nose syndrome. Proc. Biol. Sci. 282, (2015).
21.
Huebschman, J. J. et al. Detection of Pseudogymnoascus destructans during Summer on Wisconsin Bats. J. Wildl. Dis. https://doi.org/10.7589/2018-06-146 (2019).
Article PubMed Google Scholar
22.
Hoyt, J. R. et al. Environmental reservoir dynamics predict global infection patterns and population impacts for the fungal disease white-nose syndrome. Proc. Natl. Acad. Sci. USA 117, 7255 (2020).
ADS CAS PubMed Article Google Scholar
23.
Foley, J., Clifford, D., Castle, K., Cryan, P. & Osfeld, R. S. Investigating and managing the rapid emergence of white nose syndrome, a novel, fatal, infectious disease of hibernating bats. Conserv. Biol. 25, 223–231 (2011).
PubMed Google Scholar
24.
Blanco, C. M. & Garrie, J. Species specific effects of prescribed burns on bat occupancy in northwest Arkansas. For. Ecol. Manage. 460, 117890 (2020).
Article Google Scholar
25.
Gargas, A., Trest, M., Christensen, M., Volk, T. J. & Blehert, D. Geomyces destructans sp. nov. associated with bat white-nose syndrome. Mycotaxon 108, 147–154 (2009).
26.
Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323, 227 (2009).
CAS PubMed Article Google Scholar
27.
Cryan, P. M. et al. Electrolyte depletion in white-nose syndrome bats. J. Wildl. Dis. 49, 398–402 (2013).
CAS PubMed Article Google Scholar
28.
Warnecke, L. et al. Pathophysiology of white-nose syndrome in bats: A mechanistic model linking wing damage to mortality. Biol. Lett. 9, 20130177 (2013).
PubMed PubMed Central Article Google Scholar
29.
Verant, M. L. et al. White-nose syndrome initiates a cascade of physiologic disturbances in the hibernating bat host. BMC Physiol. 14, 10 (2014).
PubMed PubMed Central Article CAS Google Scholar
30.
Frick, W. F. et al. An emerging disease causes regional population collapse of a common North American bat species. Science 329, 679 (2010).
ADS CAS PubMed Article Google Scholar
31.
Turner, G. G., Reeder, D. M. & Coleman, J. T. H. A Five-year assessment of mortality and geographic spread of white-nose syndrome in North American Bats, with a Look at the Future. Update of white-nose syndrome in bats. Bat Res. News 52, 13–27 (2011).
32.
Langwig, K. E. et al. Sociality, density-dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, white-nose syndrome. Ecol. Lett. 15, 1050–1057 (2012).
PubMed Article Google Scholar
33.
Langwig, K. E. et al. Invasion dynamics of white-nose syndrome fungus, midwestern United States. Emerg. Infect. Dis. 21, 1023–1026 (2015).
CAS PubMed PubMed Central Article Google Scholar
34.
USFW. U.S. Fish and Wildlife Service. 2019. White-nose syndrome: The devastating disease of hibernating bats in North America. Accessed 1 May 2020. https://www.whitenosesyndrome.org/mmedia-education/white-nose-syndrome-fact-sheet-june-2018. (2019).
35.
Lorch, J. M. et al. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480, 376 (2011).
ADS CAS PubMed Article Google Scholar
36.
Lorch, J. M. et al. Distribution and environmental persistence of the causative agent of white-nose syndrome, geomyces destructans, in bat hibernacula of the Eastern United States. Appl. Environ. Microbiol. 79, 1293–1301 (2013).
CAS PubMed PubMed Central Article Google Scholar
37.
Hoyt, J. R. et al. Long-term persistence of Pseudogymnoascus destructans, the Causative Agent of white-nose syndrome, in the absence of bats. EcoHealth 12, 330–333 (2015).
PubMed Article Google Scholar
38.
Campbell, L. J., Walsh, D., Blehert, D. S. & Lorch, J. M. Long-term survival of Pseudogymnoascus destructans at elevated temperatures. J. Wildl. Dis. 56, 278–287 (2020).
PubMed Article Google Scholar
39.
Urbina, J., Chestnut, T., Schwalm, D., Allen, J. & Levi, T. Experimental evaluation of genomic DNA degradation rates for the pathogen Pseudogymnoascus destructans (Pd) in bat guano. PeerJ 8, e8141 (2020).
PubMed PubMed Central Article Google Scholar
40.
Lorch, J. M. et al. A culture-based survey of fungi in soil from bat hibernacula in the eastern United States and its implications for detection of Geomyces destructans, the causal agent of bat white-nose syndrome. Mycologia 105, 237–252 (2013).
CAS PubMed Article Google Scholar
41.
Reynolds, H. T., Ingersoll, T. & Barton, H. A. Modeling the environmental growth of Pseudogymnoascus destructans and its impact on the White-nose syndrome epidemic. J. Wildl. Dis. 51, 318–331 (2015).
PubMed Article Google Scholar
42.
Warnecke, L. et al. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proc. Natl. Acad. Sci. USA 109, 6999 (2012).
ADS CAS PubMed Article Google Scholar
43.
WNS Multiagency decontamination team. https://www.whitenosesyndrome.org/mmedia-education/united-states-national-white-nose-syndrome-decontamination-protocol-april-2016-2. (2018).
44.
Verant, M., Bohuski, E., Lorch, J. & Blehert, D. Optimized methods for total nucleic acid extraction and quantification of the bat white-nose syndrome fungus, Pseudogymnoascus destructans, from swab and environmental samples. J. VET Diagn. Invest. 28, 110–118 (2016).
CAS PubMed Article Google Scholar
45.
Rocke, T. E. et al. Virally-vectored vaccine candidates against white-nose syndrome induce anti-fungal immune response in little brown bats (Myotis lucifugus). Sci. Rep. 9, 6788 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
46.
Zhelyazkova, V. L. et al. Screening and biosecurity for white-nose Fungus Pseudogymnoascus destructans (Ascomycota: Pseudeurotiaceae) in Hawai‘i. Pac. Sci. 73, 357–365 (2019).
Article Google Scholar
47.
Muller, L. K. et al. Bat white-nose syndrome: A real-time TaqMan polymerase chain reaction test targeting the intergenic spacer region of Geomyces destructans. Mycologia 105, 253–259 (2013).
CAS PubMed Article Google Scholar
48.
Vanderwolf, K. J., Malloch, D. & McAlpine, D. F. Detecting viable Pseudogymnoascus destructans (Ascomycota: Pseudeurotiaceae) from walls of bat hibernacula: Effect of culture media. J. Cave Karst Stud. 78, 158 (2016).
CAS Article Google Scholar
49.
Cheng, T. L. et al. Efficacy of a probiotic bacterium to treat bats affected by the disease white-nose syndrome. J. Appl. Ecol. 54, 701–708 (2017).
Article Google Scholar
50.
Micalizzi, E. W., Mack, J. N., White, G. P., Avis, T. J. & Smith, M. L. Microbial inhibitors of the fungus Pseudogymnoascus destructans, the causal agent of white-nose syndrome in bats. PLoS ONE 12, e0179770 (2017).
PubMed PubMed Central Article CAS Google Scholar
51.
Singh, A., Lasek-Nesselquist, E., Chaturvedi, V. & Chaturvedi, S. Trichoderma polysporum selectively inhibits white-nose syndrome fungal pathogen Pseudogymnoascus destructans amidst soil microbes. Microbiome 6, 139 (2018).
CAS PubMed PubMed Central Article Google Scholar
52.
De Mandal, S., Zothansanga, Panda, A. K., Bisht, S. S. & Senthil Kumar, N. First report of bacterial community from a Bat Guano using Illumina next-generation sequencing. Genom. Data 4, 99–101. (2015).
53.
Banskar, S., Bhute, S. S., Suryavanshi, M. V., Punekar, S. & Shouche, Y. S. Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano. Sci. Rep. 6, 36948 (2016).
ADS CAS PubMed PubMed Central Article Google Scholar
54.
Newman, M. M., Kloepper, L. N., Duncan, M., McInroy, J. A. & Kloepper, J. W. Variation in bat guano bacterial community composition with depth. Front. Microbiol. 9, 914 (2018).
PubMed PubMed Central Article Google Scholar
55.
Cruz, M. R., Graham, C. E., Gagliano, B. C., Lorenz, M. C. & Garsin, D. A. Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. Infect. Immun. 81, 189 (2013).
CAS PubMed PubMed Central Article Google Scholar
56.
Graham, C. E., Cruz, M. R., Garsin, D. A. & Lorenz, M. C. Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans. Proc. Natl. Acad. Sci. USA 114, 4507 (2017).
CAS PubMed Article Google Scholar
57.
Khan, N. et al. Antifungal activity of bacillus species against fusarium and analysis of the potential mechanisms used in biocontrol. Front. Microbiol. 9, 2363 (2018).
PubMed PubMed Central Article Google Scholar
58.
Kerr, J. R. Bacterial inhibition of fungal growth and pathogenicity. Microb. Ecol. Health Dis. 11, 129–142 (1999).
Google Scholar
59.
Wheatley, R. E. The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81, 357–364 (2002).
CAS PubMed Article Google Scholar
60.
Cornelison, C. T., Gabriel, K. T., Barlament, C. & Crow, S. A. Inhibition of pseudogymnoascus destructans growth from conidia and mycelial extension by bacterially produced volatile organic compounds. Mycopathologia 177, 1–10 (2014).
CAS PubMed Article Google Scholar
61.
Sussman, A. & Douthit, H. Dormancy in microbial spores. Annu. Rev. Plant Physiol. 24, 311–352 (1973).
CAS Article Google Scholar
62.
Feofilova, E. P., Ivashechkin, A. A., Alekhin, A. I. & Sergeeva, Ya. E. Fungal spores: Dormancy, germination, chemical composition, and role in biotechnology (review). Appl. Biochem. Microbiol. 48, 1–11 (2012).
63.
Gasch, A. P. Comparative genomics of the environmental stress response in ascomycete fungi. Yeast 24, 961–976 (2007).
CAS PubMed Article Google Scholar
64.
Marroquin, C. M., Lavine, J. O. & Windstam, S. T. Effect of humidity on development of pseudogymnoascus destructans, the causal agent of bat white-nose syndrome. Northeastern Nat. 24, 54–64 (2017).
Article Google Scholar
65.
Raudabaugh, D. B. & Miller, A. N. Nutritional capability of and substrate suitability for pseudogymnoascus destructans, the causal agent of bat white-nose syndrome. PLoS ONE 8, e78300 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
66.
Gabriel, K. T., Kartforosh, L., Crow, S. A. & Cornelison, C. T. Antimicrobial activity of essential oils against the fungal pathogens ascosphaera apis and pseudogymnoascus destructans. Mycopathologia 183, 921–934 (2018).
CAS PubMed Article Google Scholar
67.
Boire, N. et al. Potent inhibition of pseudogymnoascus destructans, the causative agent of white-nose syndrome in bats, by cold-pressed, terpeneless valencia orange oil. PLoS ONE 11, e0148473 (2016).
PubMed PubMed Central Article CAS Google Scholar
68.
Turbill, C. & Welbergen, J. A. Anticipating white-nose syndrome in the Southern Hemisphere: Widespread conditions favourable to Pseudogymnoascus destructans pose a serious risk to Australia’s bat fauna. Austral. Ecol. 45, 89–96 (2020).
Article Google Scholar More
