More stories

  • in

    Important contributions of non-fossil fuel nitrogen oxides emissions

    Global δ15Nw-NO3− observations
    Publications of δ15Nw-NO3− studies were obtained through the databases of the Web of Science (http://isiknowledge.com), Google Scholar (http://scholar.google.com.hk), and Baidu Scholar (http://xueshu.baidu.com) by searching keywords of “nitrogen isotope”, “nitrate”, “rainfall”, and “precipitation”. By the end of December 2018, a total of 128 publications were available (Supplementary Text 1), spanning the sampling time of 1956–2017 (Supplementary Fig. 11). We extracted δ15Nw-NO3− values of individual precipitation samples by using the software of Web Plot Digitizer37.
    There are totally 3483 individual δ15Nw-NO3− data and 222 sampling sites when multiple observations in different sampling years at the same site were counted once only (Fig. 1). There are 56 urban sites, 158 non-urban sites, and eight arctic sites (Fig. 1), in which non-urban sites are mainly situated in rural, mountain, forest, and lake areas. Due to the sparsity of available data before 2000 (Supplementary Fig. 11), we analyzed δ15Nw-NO3− data at major urban and non-urban sites in East Asia, Europe, and North America during 2000–2017 to ensure a better site representation and to reduce the uncertainty caused by inconsistency in sampling time (Fig. 1). To describe spatial differences in δ15Nw-NO3− values between urban and non-urban sites among three regions (totally 214 sites), only site-based mean values during the period of 2000–2017 (totally 169 sites) were used (detailed in Fig. 2). To describe temporal variations of δ15Nw-NO3− values in urban and non-urban areas of each region, respectively (Fig. 3), we counted observation sites by different sampling years, given that δ15Nw-NO3− observations at few sites have been conducted in different sampling years. In this way, there were a total of 206 sites during 2000–2017 (detailed in Fig. 3). In addition, 35%, 29%, and 36% of the δ15Nw-NO3− observations were conducted in warmer, cooler, and the whole year, respectively. The seasonal effects of NOx emissions may not substantially influence the patterns of regional δ15Nw-NO3− variations.
    Differences between δ15Nw-NO3− and δ15Ni-NOx values
    NO is normally insoluble in water, and w-NO3− is scavenged only from the ambient NO2 and the oxidized NOx (i.e., HNO3 and p-NO3−) (Supplementary Fig. 1)32,38,39. Moreover, isotopic effects during the NOx cycles lead to differences between δ15NNOx and δ15NNO2. Therefore, substantial differences exist between the δ15Nw-NO3− and δ15Ni-NOx values in the atmosphere (hereafter denoted as 15∆i-NOx→w-NO3−). In this study, we calculated 15∆i-NOx→w-NO3− values by using the following equation (Eq. (2)):

    $${,}^{15}{Delta}_{{mathrm{i}} – {mathrm{NO}x} to {mathrm{w}} – {mathrm{NO3}} – } = delta ^{15}{mathrm{N}}_{{mathrm{w}} – {mathrm{NO3}} – } – delta ^{15}{mathrm{N}}_{{mathrm{i}} – {mathrm{NO}x}}.$$
    (2)

    Combined Eq. (1) with Eq. (2), we get Eq. (3) to calculate the 15∆i-NOx→w-NO3− values.

    $$ {,}^{15}{Delta}_{{mathrm{i}} – {mathrm{NO}x} to {mathrm{w}} – {mathrm{NO3}}} = delta ^{15}{mathrm{N}}_{{mathrm{w}} – {mathrm{NO3}} – }\ quad- left({delta}^{15}{mathrm{N}}_{{mathrm{NO}x}} times {mathrm{C}}_{{mathrm{NO2}}}/f_{{mathrm{NO2}}} + delta ^{15}{mathrm{N}}_{{mathrm{HNO3}}} times {mathrm{C}}_{{mathrm{HNO3}}} + delta ^{15}{mathrm{N}}_{{mathrm{p}} – {mathrm{NO3}} – } times {mathrm{C}}_{{mathrm{p}} – {mathrm{NO3}}}right)/\ quad left({mathrm{C}}_{{mathrm{NO2}}}/f_{{mathrm{NO2}}} + {mathrm{C}}_{{mathrm{HNO3}}} + {mathrm{C}}_{{mathrm{p}} – {mathrm{NO3}} – }right).$$
    (3)

    To obtain more accurate 15∆i-NOx→w-NO3− values, we estimated the 15∆i-NOx→w-NO3− values in two independent scenarios. In Scenario 1, mean values of global δ15NNOx and fNO2 values, simultaneously observed values of ambient CNO2, CHNO3, Cp-NO3−, δ15NHNO3, δ15Np-NO3−, and δ15Nw-NO3− were used for the calculation in Eq. (3). In Scenario 2, non-synchronously observed values of ambient fNO2, CNO2, CHNO3, Cp-NO3−, δ15NNOx, δ15NHNO3, δ15Np-NO3−, and δ15Nw-NO3− were used for the calculation in Eq. (3). The values and data sources of parameters used for estimating ambient 15∆i-NOx→w-NO3− values are included in Supplementary Table 1. Because data of fNO2 and δ15NNOx are very sparse globally, we used global mean values and considered their SD values into the uncertainty analysis by the Monte Carlo method. Furthermore, because of no significant difference between 15∆i-NOx→w-NO3− values obtained in Scenario 1 (2.1 ± 1.7‰) and Scenario 2 (5.7 ± 3.2‰) (Supplementary Fig. 2), we used a mean value of them (3.9 ± 1.8‰; Supplementary Fig. 2) in the calculations of source contributions (Eqs. (4) and (5)).
    Contributions of dominant fossil fuel and non-fossil fuel NOx sources
    Based on δ15Nw-NO3−, 15∆i-NOx→w-NO3−, and δ15N values of NOx sources, we estimated relative contributions of dominant fossil fuel and non-fossil fuel NOx sources to total NOx emissions by using the isotope mass-balance method. We considered coal combustion (denoted as S1) and vehicle exhausts (S2) as dominant fossil fuel NOx sources, and biomass burning (S3), and microbial N cycles (S4) as dominant non-fossil fuel NOx sources. The major reasons include: (1) these four sources have been considered as dominant sources of total NOx emissions in studies of both emission inventory and deposition modeling2,9,11,13,14,15,19,20,21; (2) they are also the dominant sources influencing δ15N variations of NOx and NO3− in the atmosphere;26,27 (3) their mean δ15N values of NOx emission sources differ significantly (P  More

  • in

    Long rDNA amplicon sequencing of insect-infecting nephridiophagids reveals their affiliation to the Chytridiomycota and a potential to switch between hosts

    1.
    Stork, N. E. How many species of insects and other terrestrial arthropods are there on Earth?. Annu. Rev. Entomol. 63, 31–45 (2018).
    CAS  PubMed  Article  Google Scholar 
    2.
    Stork, N. E., McBroom, J., Gely, C. & Hamilton, A. J. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proc. Natl. Acad. Sci. U. S. A. 112, 7519–7523 (2015).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    3.
    Lange, C. E. & Lord, J. C. Protistan entomopathogens. In Insect Pathology (eds. Vega, F. E. & Kaya, H. K.) 367–394 (Academic Press, 2012). https://doi.org/10.1016/B978-0-12-384984-7.00010-5.

    4.
    Fabel, P., Radek, R. & Storch, V. A new spore-forming protist, Nephridiophaga blaberi sp. nov., in the Death’s head cockroach Blaberus craniifer. Eur. J. Protistol. 36, 387–395 (2000).
    Article  Google Scholar 

    5.
    Ivanić, M. Die Entwicklungsgeschichte und die parasitäre Zerstörungsarbeit einer in den Zellen der Malpighischen Gefäße der Honigbiene (Apis mellifera) schmarotzenden Haplosporidie Nephridiophaga apis n. g. n. sp.. Cellule 45, 291–324 (1937).
    Google Scholar 

    6.
    Ormières, R. & Manier, J.-F. Observations sur Nephridiophaga forficulae (Léger, 1909). Ann. Parasitol. Hum. Comparée 48, 1–10 (1973).
    Article  Google Scholar 

    7.
    Radek, R., Wellmanns, D. & Wolf, A. Two new species of Nephridiophaga (Zygomycota) in the Malpighian tubules of cockroaches. Parasitol. Res. 109, 473–482 (2011).
    PubMed  Article  Google Scholar 

    8.
    Radek, R. & Herth, W. Ultrastructural investigation of the spore-forming protist Nephridiophaga blattellae in the Malpighian tubules of the German cockroach Blattella germanica. Parasitol. Res. 85, 216–231 (1999).
    CAS  PubMed  Article  Google Scholar 

    9.
    Woolever, P. Life history and electron microscopy of a haplosporidian, Nephridiophaga blattellae (Crawley) n. comb, in the Malphigian tubules of the German Cockroach, Blattella germanica (L.). J. Protozool. 13, 622–642 (1966).
    Article  Google Scholar 

    10.
    Radek, R., Klein, G. & Storch, V. The spore of the unicellular organism Nephridiophaga blattellae: ultrastructure and substances of the spore wall. Acta Protozool. 41, 169–181 (2002).
    Google Scholar 

    11.
    Purrini, K. & Weiser, J. Light and electron microscope studies on a protozoan, Oryctospora alata n. gen., n. sp. (Protista, Coelosporidiidae), parasitizing a natural population of the rhinoceros beetle, Oryctes monoceros Oliv. (Coleoptera, Scarabaeidae). Zool. Beitraege 332, 209–220 (1990).
    Google Scholar 

    12.
    Purrini, K. & Rohde, M. Light and electron microscope studies on two new protists, Coelosporidium schalleri n. sp. and Coelosporidium meloidorum n. sp. (Protista) infecting natural populations of the flea beetle, Podagrica fuscicornis, and flower beetle, Mylabris maculiventris. Zool. Anz. 220, 323–333 (1988).
    Google Scholar 

    13.
    Lange, C. E. Unclassified protists of arthropods: the ultrastructure of Nephridiophaga periplanetae (Lutz & Splendore, 1903) n. comb., and the affinities of the Nephridiophagidae to other protists. J. Eukaryot. Microbiol. 40, 689–700 (1993).
    Article  Google Scholar 

    14.
    Perrin, W. S. Observations on the structure and life-history of Pleistophora periplanetæ, Lutz and Splendore. J. Cell Sci. 49, 615–633 (1906).
    Google Scholar 

    15.
    Sprague, V. Recent problems of taxonomy and morphology of Haplosporidia. J. Parasitol. 56, 327–328 (1970).
    Google Scholar 

    16.
    Wylezich, C., Radek, R. & Schlegel, M. Phylogenetische Analyse der 18S rRNA identifiziert den parasitischen Protisten Nephridiophaga blattellae (Nephridiophagidae) als Vertreter der Zygomycota (Fungi). Denisia 13, 435–442 (2004).
    Google Scholar 

    17.
    Radek, R. et al. Morphologic and molecular data help adopting the insect-pathogenic nephridiophagids (Nephridiophagidae) among the early diverging fungal lineages, close to the Chytridiomycota. MycoKeys 25, 31–50 (2017).
    Article  Google Scholar 

    18.
    Evangelista, D. A. et al. An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). Proc. R. Soc. B Biol. Sci. 286, 20182076 (2019).
    Article  Google Scholar 

    19.
    Baumann, P., Moran, N. A. & Baumann, L. The evolution and genetics of aphid endosymbionts. Bioscience 47, 12–20 (1997).
    Article  Google Scholar 

    20.
    Peek, A. S., Feldman, R. A., Lutz, R. A. & Vrijenhoek, R. C. Cospeciation of chemoautotrophic bacteria and deep sea clams. Proc. Natl. Acad. Sci. U. S. A. 95, 9962–9966 (1998).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    21.
    Hosokawa, T., Kikuchi, Y., Nikoh, N., Shimada, M. & Fukatsu, T. Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLOS Biol. 4, e337 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Hughes, J., Kennedy, M., Johnson, K. P., Palma, R. L. & Page, R. D. M. Multiple cophylogenetic analyses reveal frequent cospeciation between pelecaniform birds and Pectinopygus lice. Syst. Biol. 56, 232–251 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Desai, M. S. et al. Strict cospeciation of devescovinid flagellates and Bacteroidales ectosymbionts in the gut of dry-wood termites (Kalotermitidae). Environ. Microbiol. 12, 2120–2132 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Wijayawardene, N. et al. Outline of fungi and fungus-like taxa. Mycosphere 11, 1060–1456 (2020).
    Article  Google Scholar 

    25.
    Tedersoo, L., Anslan, S., Bahram, M., Kõljalg, U. & Abarenkov, K. Identifying the ‘unidentified’ fungi: a global-scale long-read third-generation sequencing approach. Fungal Divers. 103, 273–293 (2020).
    Article  Google Scholar 

    26.
    Crawley, H. Interrelationships of the Sporozoa. Am. Nat. 39, 607–624 (1905).
    Article  Google Scholar 

    27.
    White, M. M. et al. Phylogeny of the Zygomycota based on nuclear ribosomal sequence data. Mycologia 98, 872–884 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    28.
    Letcher, P. M., Powell, M. J., Churchill, P. F. & Chambers, J. G. Ultrastructural and molecular phylogenetic delineation of a new order, the Rhizophydiales (Chytridiomycota). Mycol. Res. 110, 898–915 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Van den Wyngaert, S., Rojas-Jimenez, K., Seto, K., Kagami, M. & Grossart, H.-P. Diversity and hidden host specificity of chytrids infecting colonial volvocacean algae. J. Eukaryot. Microbiol. 65, 870–881 (2018).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    30.
    James, T. Y. et al. A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98, 860–871 (2006).
    PubMed  Article  Google Scholar 

    31.
    Powell, M. J., Letcher, P. M., Chambers, J. G. & Roychoudhury, S. A new genus and family for the misclassified chytrid, Rhizophlyctis harderi. Mycologia 107, 419–431 (2015).
    PubMed  Article  Google Scholar 

    32.
    Letcher, P. M., Powell, M. J., Lopez, S., Lee, P. A. & McBride, R. C. A new isolate of Amoeboaphelidium protococcarum, and Amoeboaphelidium occidentale, a new species in phylum Aphelida (Opisthosporidia). Mycologia 107, 522–531 (2015).
    PubMed  Article  Google Scholar 

    33.
    Strassert, J. F. H. et al. Single cell genomics of uncultured marine alveolates shows paraphyly of basal dinoflagellates. ISME J. 12, 304–308 (2018).
    CAS  PubMed  Article  Google Scholar 

    34.
    Jamy, M. et al. Long-read metabarcoding of the eukaryotic rDNA operon to phylogenetically and taxonomically resolve environmental diversity. Mol. Ecol. Resour. 20, 429–443 (2020).
    CAS  PubMed  Article  Google Scholar 

    35.
    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
    CAS  PubMed  Article  Google Scholar 

    36.
    Lartillot, N., Rodrigue, N., Stubbs, D. & Richer, J. Phylobayes mpi: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 62, 611–615 (2013).
    CAS  PubMed  Article  Google Scholar 

    37.
    Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).
    CAS  PubMed  Article  Google Scholar 

    38.
    Lloyd, D. & Harris, J. C. Giardia: highly evolved parasite or early branching eukaryote?. Trends Microbiol. 10, 122–127 (2002).
    CAS  PubMed  Article  Google Scholar 

    39.
    Burki, F. et al. Phylogenomics of the intracellular parasite Mikrocytos mackini reveals evidence for a mitosome in Rhizaria. Curr. Biol. 23, 1541–1547 (2013).
    CAS  PubMed  Article  Google Scholar 

    40.
    Abbott, C. L. Evolution: hidden at the end of a very long branch. Curr. Biol. 27, R271–R273 (2014).
    Article  CAS  Google Scholar 

    41.
    Keeling, P. J. & Fast, N. M. Microsporidia: biology and evolution of highly reduced intracellular parasites. Annu. Rev. Microbiol. 56, 93–116 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Mozley-Standridge, S. E., Letcher, P. M., Longcore, J. E., Porter, D. & Simmons, D. R. Cladochytriales—a new order in Chytridiomycota. Mycol. Res. 113, 498–507 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Jerônimo, G. H., Jesus, A. L., Simmons, D. R., James, T. Y. & Pires-Zottarelli, C. L. A. Novel taxa in Cladochytriales (Chytridiomycota): Karlingiella (gen. nov.) and Nowakowskiella crenulata (sp. nov.). Mycologia 111, 506–516 (2019).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    44.
    Gutiérrez, M. H., Jara, A. M. & Pantoja, S. Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile. Environ. Microbiol. 18, 1646–1653 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Lepelletier, F. et al. Dinomyces arenysensis gen. et sp. nov. (Rhizophydiales, Dinomycetaceae fam. Nov.), a chytrid infecting marine dinoflagellates. Protist 165, 230–244 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Hassett, B. T. & Gradinger, R. Chytrids dominate arctic marine fungal communities. Environ. Microbiol. 18, 2001–2009 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Comeau, A. M., Vincent, W. F., Bernier, L. & Lovejoy, C. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats. Sci. Rep. 6, 30120 (2016).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    48.
    Lefèvre, E., Roussel, B., Amblard, C. & Sime-Ngando, T. The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. PLoS ONE 3, e2324 (2008).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    49.
    Fisher, M. C., Garner, T. W. J. & Walker, S. F. Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu. Rev. Microbiol. 63, 291–310 (2009).
    CAS  PubMed  Article  Google Scholar 

    50.
    Powell, M. J. & Letcher, P. M. Chytridiomycota, Monoblepharidomycota, and Neocallimastigomycota. In Systematics and Evolution: The Mycota VII Part A (eds. McLaughlin, D. J. & Spatafora, J. W.) 141–175 (Springer, 2014). https://doi.org/10.1007/978-3-642-55318-9.

    51.
    Cali, A., Becnel, J. J. & Takvorian, P. M. Microsporidia. In Handbook of the Protists: Second Edition (eds. Archibald, J. M. et al.) 1559–1618 (Springer, 2017). https://doi.org/10.1007/978-3-319-28149-0_27.

    52.
    Powell, M. J. Chytridiomycota. In Handbook of the Protists: Second Edition (eds. Archibald, J. M. et al.) 1523–1558 (Springer, 2017). https://doi.org/10.1007/978-3-319-28149-0_18.

    53.
    Schulte, R. D., Makus, C., Hasert, B., Michiels, N. K. & Schulenburg, H. Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasite. Proc. Natl. Acad. Sci. U. S. A. 107, 7359–7364 (2010).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    54.
    Ebert, D. Host-parasite coevolution: insights from the Daphnia-parasite model system. Curr. Opin. Microbiol. 11, 290–301 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Spurr, A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrasructure Res. 26, 31–43 (1969).
    CAS  Article  Google Scholar 

    56.
    Reynolds, E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Wurzbacher, C. et al. Introducing ribosomal tandem repeat barcoding for fungi. Mol. Ecol. Resour. 19, 118–127 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Roehr, J. T., Dieterich, C. & Reinert, K. Flexbar 3.0—SIMD and multicore parallelization. Bioinformatics 33, 2941–2942 (2017).
    CAS  PubMed  Article  Google Scholar 

    61.
    Nakamura, T., Yamada, K. D., Tomii, K. & Katoh, K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 34, 2490–2492 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).
    CAS  PubMed  Article  Google Scholar 

    63.
    Liu, H. & Beckenbach, A. T. Evolution of the mitochondrial cytochrome oxidase II gene among 10 orders of insects. Mol. Phylogenet. Evol. 1, 41–52 (1992).
    CAS  PubMed  Article  Google Scholar 

    64.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    67.
    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
    CAS  Article  Google Scholar 

    68.
    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51, 492–508 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    70.
    Madeira, F. et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47, W636–W641 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    71.
    Le, V. S., Dang, C. C. & Le, Q. S. Improved mitochondrial amino acid substitution models for metazoan evolutionary studies. BMC Evol. Biol. 17, 136 (2017).
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Aerial drone observations identified a multilevel society in feral horses

    1.
    Grueter, C. C., Qi, X., Li, B. & Li, M. Multilevel societies. Curr. Biol. 27, 984–986 (2017).
    Article  CAS  Google Scholar 
    2.
    Grueter, C. C., Matsuda, I., Zhang, P. & Zinner, D. Multilevel societies in primates and other mammals: Introduction to the special issue. Int. J. Primatol. 33, 993–1001 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    3.
    Matsuda, I. et al. Comparisons of intraunit relationships in nonhuman primates living in multilevel social systems. Int. J. Primatol. 33, 1038–1053 (2012).
    Article  Google Scholar 

    4.
    Papageorgiou, D. et al. The multilevel society of a small-brained bird. Curr. Biol. 29, R1120–R1121 (2019).
    CAS  PubMed  Article  Google Scholar 

    5.
    Grueter, C. C. et al. Multilevel Organisation of Animal Sociality. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2020.05.003 (2020).
    Article  PubMed  Google Scholar 

    6.
    Schreier, A. L. & Swedell, L. The fourth level of social structure in a multi-level society: ecological and social functions of clans in Hamadryas Baboons. Am. J. Primatol. 71, 948–955 (2009).
    PubMed  Article  Google Scholar 

    7.
    Snyder-Mackler, N., Beehner, J. C. & Bergman, T. J. Defining higher levels in the multilevel societies of Geladas (Theropithecus gelada). Int. J. Primatol. 33, 1054–1068 (2012).
    Article  Google Scholar 

    8.
    Whitehead, H. et al. Multilevel societies of female sperm whales (Physeter macrocephalus) in the Atlantic and Pacific: Why are they so different?. Int. J. Primatol. 33, 1142–1164 (2012).
    Article  Google Scholar 

    9.
    Tong, W., Shapiro, B. & Rubenstein, D. I. Genetic relatedness in two-tiered plains zebra societies suggests that females choose to associate with kin. Behaviour 152, 2059–2078 (2015).
    Article  Google Scholar 

    10.
    Rubenstein, D. I. & Hack, M. Ecology and social structure of the Gobi khulan Equus hemionus subsp. in the Gobi B National Park, Mongolia. In Sexual Selection in Primates: New and Comparative Perspectives 266–279 (2004). https://doi.org/10.1017/CBO9780511542459.017.

    11.
    Ozogany, K. & Vicsek, T. Modeling leadership hierarchy in multilevel animal societies. Cornell Univ. Libr. Phys. arXiv:1403.0260 (2014).

    12.
    Swedell, L. & Plummer, T. A papionin multilevel society as a model for hominin social evolution. Int. J. Primatol. 33, 1165–1193 (2012).
    Article  Google Scholar 

    13.
    Linklater, W. L. Adaptive explanation in socio-ecology: Lessons from the equidae. Biol. Rev. 75, 1–20 (2000).
    CAS  PubMed  Article  Google Scholar 

    14.
    Forcina, G. et al. From groups to communities in western lowland gorillas. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2018.2019 (2019).
    Article  Google Scholar 

    15.
    Zhang, P., Li, B., Qi, X., MacIntosh, A. J. J. & Watanabe, K. A proximity-based social network of a group of Sichuan snub-nosed monkeys (Rhinopithecus roxellana). Int. J. Primatol. 33, 1081–1095 (2012).
    CAS  Article  Google Scholar 

    16.
    de Silva, S., Schmid, V. & Wittemyer, G. Fission–fusion processes weaken dominance networks of female Asian elephants in a productive habitat. Behav. Ecol. 28, 243–252 (2016).
    Article  Google Scholar 

    17.
    Wittemyer, G., Douglas-Hamilton, I. & Getz, W. M. The socioecology of elephants: Analysis of the processes creating multitiered social structures. Anim. Behav. 69, 1357–1371 (2005).
    Article  Google Scholar 

    18.
    Qi, X. G. et al. Satellite telemetry and social modeling offer new insights into the origin of primate multilevel societies. Nat. Commun. https://doi.org/10.1038/ncomms6296 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    19.
    Stead, S. M. & Teichroeb, J. A. A multi-level society comprised of one-male and multi-male core units in an African colobine (Colobus angolensis ruwenzorii). PLoS ONE 14, e0217666 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Ward, A. & Webster, M. Attraction, Alignment and repulsion: how groups form and how they function. In Sociality: The Behaviour of Group-Living Animals 29–54 (Springer, Cham, 2016). https://doi.org/10.1007/978-3-319-28585-6_3.

    21.
    Aureli, F., Schaffner, C. M., Asensio, N. & Lusseau, D. What is a subgroup? How socioecological factors influence interindividual distance. Behav. Ecol. 23, 1308–1315 (2012).
    Article  Google Scholar 

    22.
    Maciej, P., Patzelt, A., Ndao, I., Hammerschmidt, K. & Fischer, J. Social monitoring in a multilevel society: A playback study with male Guinea baboons. Behav. Ecol. Sociobiol. 67, 61–68 (2013).
    PubMed  Article  Google Scholar 

    23.
    Bergman, T. J. Experimental evidence for limited vocal recognition in a wild primate: Implications for the social complexity hypothesis. In Proceedings of the Royal Society B: Biological Sciences 277, 3045–3053 (Royal Society, London, 2010).

    24.
    Bowler, M., Knogge, C., Heymann, E. W. & Zinner, D. Multilevel societies in new world primates? Flexibility may characterize the organization of Peruvian red uakaris (Cacajao calvus ucayalii). Int. J. Primatol. 33, 1110–1124 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Farine, D. R. & Whitehead, H. Constructing, conducting and interpreting animal social network analysis. J. Anim. Ecol. 84, 1144–1163 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Hemelrijk, C. K. Towards the integration of social dominance and spatial structure. Anim. Behav. 59, 1035–1048 (2000).
    CAS  PubMed  Article  Google Scholar 

    27.
    Miller, R. Seasonal movements and home ranges of feral horse bands in Wyoming’s Red Desert. J. Range Manag. 36, 199 (1983).
    Article  Google Scholar 

    28.
    Miller, R. & Dennisto, R. H. I. Interband dominance in feral horses. Z. Tierpsychol. 51, 41–47 (1979).
    Article  Google Scholar 

    29.
    Feh, C. Relationships and communication in socially natural horse herds. In The Domestic Horse: The Origins, Development and Management of its Behaviour (eds Mills, D. S. & McDonnell, S. M.) 83–93 (Cambridge University Press, Cambridge, 2005).
    Google Scholar 

    30.
    Boyd, L., Scorolli, A., Nowzari, H. & Bouskila, A. Social organization of wild equids. In Wild Equids: Ecology, Management, and Conservation (eds Ransom, J. I. & Kaczensky, P.) 7–22 (Johns Hopkins University Press, Baltimore, 2016).
    Google Scholar 

    31.
    Ringhofer, M. et al. Comparison of the social systems of primates and feral horses: Data from a newly established horse research site on Serra D’Arga, northern Portugal. Primates 58, 479–484 (2017).
    PubMed  Article  Google Scholar 

    32.
    Inoue, S. et al. Spatial positioning of individuals in a group of feral horses: A case study using drone technology. Mammal Res. 64, 249–259 (2019).
    Article  Google Scholar 

    33.
    Inoue, S., Yamamoto, S., Ringhofer, M., Mendonça, R. S. & Hirata, S. Lateral position preference in grazing feral horses. Ethology 00, 1–9 (2019).
    Google Scholar 

    34.
    Ringhofer, M. et al. Herding mechanisms to maintain the cohesion of a harem group: two interaction phases during herding. J. Ethol. 38, 71–77. https://doi.org/10.1007/s10164-019-00622-5 (2019).
    Article  Google Scholar 

    35.
    Go, C. K. et al. A mathematical model of herding in horse-harem group. J. Ethol. https://doi.org/10.1007/s10164-020-00656-0 (2020).
    Article  Google Scholar 

    36.
    Young, D. et al. Package ‘Mixtools’ Title Tools for Analyzing Finite Mixture Models. J Stat Software. 32(6), 1–29. https://doi.org/10.18637/jss.v032.i06 (2009).

    37.
    Fieberg, J. & Kochanny, C. O. Quantifying home-range overlap: The importance of the utilization distribution. J. Wildl. Manag. 69, 1346–1359 (2005).
    Article  Google Scholar 

    38.
    Torney, C. J. et al. Inferring the rules of social interaction in migrating caribou. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170385 (2018).
    Article  Google Scholar 

    39.
    Pun, A., Birch, S. A. J. & Baron, A. S. Infants use relative numerical group size to infer social dominance. Proc. Natl. Acad. Sci. 113, 2376–2381 (2016).
    CAS  PubMed  Article  ADS  Google Scholar 

    40.
    Berger, J. Organizational systems and dominance in feral horses in the Grand Canyon. Behav. Ecol. Sociobiol. 2, 131–146 (1977).
    Article  Google Scholar 

    41.
    de Silva, S. & Wittemyer, G. A comparison of social organization in Asian elephants and African savannah elephants. Int. J. Primatol. 33, 1125–1141 (2012).
    Article  Google Scholar 

    42.
    Zhang, P., Watanabe, K., Li, B. & Qi, X. Dominance relationships among one-male units in a provisioned free-ranging band of the Sichuan snub-nosed monkeys (Rhinopithecus roxellana) in the Qinling Mountains, China. Am. J. Primatol. 70, 634–641 (2008).
    PubMed  Article  Google Scholar 

    43.
    Grueter, C. & Zinner, D. Nested societies. Convergent adaptations of baboons and snub-nosed monkeys? Primate Rep. 70, 1–98 (2004).

    44.
    Rubenstein, D. I. & Hack, M. Natural and sexual selection and the evolution of multi-level societies: Insights from zebras with comparisons to primates. In Sexual Selection in Primates: New and Comparative Perspectives 266–279 (2004). https://doi.org/10.1017/CBO9780511542459.017.

    45.
    Grueter, C. C. & Van Schaik, C. P. Evolutionary determinants of modular societies in colobines. Behav. Ecol. 21, 63–71 (2010).
    Article  Google Scholar 

    46.
    Gray, M. E. An infanticide attempt by a free-roaming feral stallion (Equus caballus). Biol. Lett. 5, 23–25 (2009).
    PubMed  Article  Google Scholar 

    47.
    Boyd, L. & Keiper, R. Behavioural ecology of feral horses. In The Domestic Horse: The Origins, Development and Management of its Behaviour (eds Mills, D. S. & McDonnell, S. M.) 55–82 (Cambridge University Press, Cambridge, 2005).
    Google Scholar 

    48.
    Christensen, J. W., Ladewig, J., Søndergaard, E. & Malmkvist, J. Effects of individual versus group stabling on social behaviour in domestic stallions. Appl. Anim. Behav. Sci. 75, 233–248 (2002).
    Article  Google Scholar 

    49.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2019).
    Google Scholar 

    50.
    Hoppitt, W. J. E. & Farine, D. R. Association indices for quantifying social relationships: How to deal with missing observations of individuals or groups. Anim. Behav. 136, 227–238 (2018).
    Article  Google Scholar 

    51.
    Calenge, C. & Fortmann-Roe, S. Package ‘ adehabitatHR ’ v0.4.18. R CRAN Repos. (2020).

    52.
    Couzin, I. D., Krause, J., James, R., Ruxton, G. D. & Franks, N. R. Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11 (2002).
    MathSciNet  PubMed  Article  Google Scholar 

    53.
    Hinde, R. A. Interactions, relationships and social structure. Man New Ser. 11, 1–17 (1976).
    Google Scholar 

    54.
    King, A. J., Sueur, C., Huchard, E. & Cowlishaw, G. A rule-of-thumb based on social affiliation explains collective movements in desert baboons. Anim. Behav. 82, 1337–1345 (2011).
    Article  Google Scholar 

    55.
    Cairns, S. J. & Schwager, S. J. A comparison of association indices. Anim. Behav. 35, 1454–1469 (1987).
    Article  Google Scholar 

    56.
    Dray, S. & Dufour, A. B. The ade4 package: Implementing the duality diagram for ecologists. J Stat Software https://doi.org/10.18637/jss.v022.i0 (2007).
    Article  Google Scholar 

    57.
    Croft, D. P., Madden, J. R., Franks, D. W. & James, R. Hypothesis testing in animal social networks. Trends Ecol. Evol. 26, 502–507 (2011).
    PubMed  Article  Google Scholar 

    58.
    Franks, D. W., Weiss, M. N., Silk, M. J., Perryman, R. J. Y. & Croft, D. P. Calculating effect sizes in animal social network analysis. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13429 (2020).
    Article  Google Scholar 

    59.
    Weiss, M. N. et al. Common permutations of animal social network data are not appropriate for hypothesis testing using linear models. bioRxiv 1–26 (2020). https://doi.org/10.1101/2020.04.29.068056.

    60.
    Sosa, S. et al. A multilevel statistical toolkit to study animal social networks: Animal Network Toolkit ( ANT ) R package. bioRxiv 347005 (2018). https://doi.org/10.1101/347005

    61.
    Sosa, S. Social network analysis. In International Encyclopedia of the Social & Behavioral Sciences 2nd Edn, 1–18 (eds Vonk, J. & Shackleford, T. K.) (Springer, Berlin, 2018). https://doi.org/10.1016/B978-0-08-097086-8.10563-X.
    Google Scholar 

    62.
    Damien Farine. Animal Social Network Inference and Permutations for Ecologists in R using asnipe. Methods in Ecology and Evolution. 4(12), 1187–1194. https://doi.org/10.1111/2041-210X.12121 (2014).

    63.
    Bastian, M., Heymann, S. & Jacomy, M. Gephi: An open source software for exploring and manipulating networks. In International AAAI Conference on Weblogs and Social Media 361–362 (2009). More

  • in

    Phosphorus deficiencies invoke optimal allocation of exoenzymes by ectomycorrhizas

    1.
    Vitousek PM, Porder S, Houlton BZ, Oliver A, Vitousek PM, Porder S, et al. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol Appl. 2010;20:5–15.
    PubMed  Article  Google Scholar 
    2.
    Lundstrom US, Van Breemen N, Bain D. The podzolization process. A review. Geoderma. 2000;94:91–107.
    CAS  Article  Google Scholar 

    3.
    Crowley KF, Mcneil BE, Lovett GM, Canham CD, Driscoll CT, Rustad LE, et al. Do nutrient limitation patterns shift from nitrogen toward phosphorus with increasing nitrogen deposition across the northeastern United States? Ecosystems. 2012;15:940–57.
    CAS  Article  Google Scholar 

    4.
    Jonard M, Fürst A, Verstraeten A, Thimonier A, Timmermann V, Potočić N, et al. Tree mineral nutrition is deteriorating in Europe. Glob Change Biol. 2015;21:418–30.
    Article  Google Scholar 

    5.
    Hayward J, Horton TR, Nu MA. Ectomycorrhizal fungal communities coinvading with Pinaceae host plants in Argentina: Gringos bajo el bosque. N Phytol. 2015;208:497–506.
    Article  Google Scholar 

    6.
    Köhler J, Yang N, Pena R, Raghavan V, Polle A, Meier IC. Ectomycorrhizal fungal diversity increases phosphorus uptake efficiency of European beech. N Phytol. 2018;220:1200–10.
    Article  Google Scholar 

    7.
    Kranabetter JM, Harman-Denhoed R, Hawkins BJ. Saprotrophic and ectomycorrhizal fungal sporocarp stoichiometry (C: N: P) across temperate rainforests as evidence of shared nutrient constraints among symbionts. N Phytol. 2019;221:482–92.
    CAS  Article  Google Scholar 

    8.
    Ning C, Xiang W, Mueller GM. Differences in ectomycorrhizal community assembly between native and exotic pines are reflected in their enzymatic functional capacities. Plant Soil. 2019;446:179–93.
    Article  CAS  Google Scholar 

    9.
    Courty PE, Buée M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, et al. The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem. 2010;42:679–98.
    CAS  Article  Google Scholar 

    10.
    Cairney JWG. Ectomycorrhizal fungi: the symbiotic route to the root for phosphorus in forest soils. Plant Soil. 2011;344:51–71.
    CAS  Article  Google Scholar 

    11.
    Hodge A. Accessibility of inorganic and organic nutrients for mycorrhizas. In: Johnson NC, Gehring CA, Jansa J, editors. Mycorrhizal mediation of soil: fertility, structure, and carbon storage. Amsterdam: Elsevier; 2017. p. 129–48.

    12.
    Plassard C, Louche J, Ali MA, Duchemin M, Legname E, Cloutier-Hurteau B. Diversity in phosphorus mobilisation and uptake in ectomycorrhizal fungi. Ann Sci. 2011;68:33–43.
    Article  Google Scholar 

    13.
    Becquer A, Trap J, Irshad U, Ali MA, Claude P. From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association. Front Plant Sci. 2014;5:1–7.
    Article  Google Scholar 

    14.
    Tunlid A, Floudas D, Koide RT, Rineau F. Soil organic matter decomposition mechanisms in ectomycorrhizal fungi. In: Martin FM, editor. Molecular mycorrhizal symbiosis. 1st ed. Hoboken, New Jersey, USA: John Wiley & Sons, Inc; 2017. p. 257–75.

    15.
    Nannipieri P, Giagnoni L, Landi L, Renella G. Role of phosphatase enzymes in soil. In: Bunemann et al., editors. Phosphorus in action. Berlin, Heidelberg: Springer Verlag; 2011. p. 215–43.

    16.
    Jarosch KA, Kandeler E, Frossard E, Bünemann EK. Is the enzymatic hydrolysis of soil organic phosphorus compounds limited by enzyme or substrate availability? Soil Biol Biochem. 2019;139:1–11.
    Article  CAS  Google Scholar 

    17.
    Bending GD, Read DJ. The structure and function of the vegetative mycelium of ectomycorrhizal plants: VI. Activities of nutrient mobilizing enzymes in birch litter colonized by Paxillus involutus (Fr.) Fr. N Phytol. 1995;130:411–7.
    CAS  Article  Google Scholar 

    18.
    Liu X, Feng F, He X, Song F. The effect of ectomycorrhizal fungi on litter decomposition and phosphorus availability to Pinus koraiensis. Int J Agric Biol. 2017;19:1019–24.
    CAS  Article  Google Scholar 

    19.
    Read DJ, Perez-Moreno J. Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance? N Phytol. 2003;157:475–92.
    Article  Google Scholar 

    20.
    Jones MD, Twieg BD, Ward V, Barker JS, Durall DM, Simard SW. Functional complementarity of Douglas-fir ectomycorrhizas for extracellular enzyme activity after wildfire or clearcut logging. Funct Ecol. 2010;24:1139–51.
    Article  Google Scholar 

    21.
    Alvarez M, Huygens D, Díaz LM, Villanueva CA, Heyser W, Boeckx P. The spatial distribution of acid phosphatase activity in ectomycorrhizal tissues depends on soil fertility and morphotype, and relates to host plant phosphorus uptake. Plant, Cell Environ. 2012;35:126–35.
    CAS  Article  Google Scholar 

    22.
    Walker JKM, Cohen H, Higgins LM, Kennedy PG. Testing the link between community structure and function for ectomycorrhizal fungi involved in a global tripartite symbiosis. N Phytol. 2014;202:287–96.
    CAS  Article  Google Scholar 

    23.
    Zavišić A, Nassal P, Yang N, Heuck C, Spohn M, Marhan S, et al. Phosphorus availabilities in beech (Fagus sylvatica L.) forests impose habitat filtering on ectomycorrhizal communities and impact tree nutrition. Soil Biol Biochem. 2016;98:127–37.
    Article  CAS  Google Scholar 

    24.
    Patterson A, Flores-renter L, Whipple A, Whitham T, Gehring C. Common garden experiments disentangle plant genetic and environmental contributions to ectomycorrhizal fungal community structure. N Phytol. 2019;221:493–502.
    CAS  Article  Google Scholar 

    25.
    Koide RT, Fernandez C, Petprakob K. General principles in the community ecology of ectomycorrhizal fungi. Ann Sci. 2011;68:45–55.
    Article  Google Scholar 

    26.
    Bahram M, Kohout P, Anslan S, Harend H, Abarenkov K. Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. ISME J. 2016;10:885–96.
    PubMed  Article  Google Scholar 

    27.
    Courty P-E, Munoz F, Selosse M-A, Duchemin M, Criquet S, Ziarelli F, et al. Into the functional ecology of ectomycorrhizal communities: environmental filtering of enzymatic activities. J Ecol. 2016;104:1585–98.
    Article  Google Scholar 

    28.
    Walker JKM, Ward V, Jones MD. Ectomycorrhizal fungal exoenzyme activity differs on spruce seedlings planted in forests versus clearcuts. Trees – Struct Funct. 2016;30:497–508.
    CAS  Article  Google Scholar 

    29.
    Kyaschenko J, Clemmensen KE, Karltun E, Lindahl BD. Below-ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities. Ecol Lett. 2017;20:1546–55.
    PubMed  Article  Google Scholar 

    30.
    Kranabetter JM, Hawkins BJ, Jones MD, Robbins S, Dyer T, Li T. Species turnover (beta-diversity) in ectomycorrhizal fungi linked to NH4 (+) uptake capacity. Mol Ecol. 2015;24:5992–6005.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Johnson NC, Wilson GWT, Bowker MA, Wilson JA, Miller RM. Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc Natl Acad Sci. 2010;107:2093–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Pickles BJ, Twieg BD, Neill GAO, Mohn WW, Simard SW. Local adaptation in migrated interior Douglas-fir seedlings is mediated by ectomycorrhizas and other soil factors. N Phytol. 2015;207:858–71.
    Article  Google Scholar 

    33.
    Kranabetter JM, Stoehr M, O’Neill GA. Ectomycorrhizal fungal maladaptation and growth reductions associated with assisted migration of Douglas-fir. N Phytol. 2015;206:1135–44.
    CAS  Article  Google Scholar 

    34.
    Mooshammer M, Wanek W, Zechmeister-boltenstern S, Richter A. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Front Microbiol. 2014;5:1–11.
    Article  Google Scholar 

    35.
    Treseder KK, Vitousek PM. Effects of soil nutrient availablity on investment in acquisition of N and P in Hawaiian rain forests. Ecology. 2001;82:946–54.
    Article  Google Scholar 

    36.
    Revillini D, Gehring CA, Johnson NC. The role of locally adapted mycorrhizas and rhizobacteria in plant–soil feedback systems. Funct Ecol. 2016;30:1086–98.
    Article  Google Scholar 

    37.
    Marklein AR, Houlton BZ. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. N Phytol. 2011;193:696–704.
    Article  CAS  Google Scholar 

    38.
    Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Peñuelas J, Richter A, Sardans J, et al. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecol Monogr. 2015;85:133–55.
    Article  Google Scholar 

    39.
    Carter MR, Gregorich E. Soil sampling and methods of analysis. 2nd ed. Boca Raton, Florida: CRC Press; 2008. p. 823.

    40.
    Green RN, Trowbridge RL, Klinka K. Towards a taxonomic classification of humus forms. Sci Monogr. 1993;29:1–48.
    Google Scholar 

    41.
    Cade-Menun BJ. Improved peak identification in 31 P-NMR spectra of environmental samples with a standardized method and peak library. Geoderma. 2015;257–258:102–14.
    Article  CAS  Google Scholar 

    42.
    Pritsch K, Courty PE, Churin JL, Cloutier-Hurteau B, Ali MA, Damon C, et al. Optimized assay and storage conditions for enzyme activity profiling of ectomycorrhizae. Mycorrhiza. 2011;21:589–600.
    CAS  PubMed  Article  Google Scholar 

    43.
    Eivazi F, Tabatabai M. Phosphatases in soils. Soil Biol Biochem. 1977;9:167–72.
    CAS  Article  Google Scholar 

    44.
    Pritsch K, Garbaye J. Enzyme secretion by ECM fungi and exploitation of mineral nutrients from soil organic matter. Ann Sci. 2011;68:25–32.
    Article  Google Scholar 

    45.
    Courty PE, Pritsch K, Schloter M, Hartmann A, Garbaye J. Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. N Phytol. 2005;167:309–19.
    CAS  Article  Google Scholar 

    46.
    Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, et al. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2013;22:5271–7.
    Article  CAS  PubMed  Google Scholar 

    47.
    Team RC. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2017.
    Google Scholar 

    48.
    Gerz M, Guillermo Bueno C, Ozinga WA, Zobel M, Moora M. Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis. J Ecol. 2018;106:254–64.
    CAS  Article  Google Scholar 

    49.
    Carrara JE, Walter CA, William JSH, Brzostek ER, Averill TPC. Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under long-term N fertilization. Glob Change Biol. 2018;24:2721–34.
    Article  Google Scholar 

    50.
    Bartlett EM, Lewis DH. Surface phosphatase activity of mycorrhizal roots of Beech. Soil Biol Biochem. 1973;5:249–57.
    CAS  Article  Google Scholar 

    51.
    Allison SD, Vitousek PM. Responses of extracell enzymes to simple and complex nutrient inputs. Soil Biol Biochem. 2005;37:937–44.

    52.
    Alexander IJ, Hardy K. Surface phosphatase activity of Sitka spruce mycorrhizas from a serpentine site. Soil Biol Biochem. 1981;13:301–5.
    CAS  Article  Google Scholar 

    53.
    Ali MA, Louche J, Legname E, Duchemin M, Plassard C. Pinus pinaster seedlings and their fungal symbionts show high plasticity in phosphorus acquisition in acidic soils. Tree Physiol. 2009;29:1587–97.
    CAS  PubMed  Article  Google Scholar 

    54.
    Antibus RK, Sinsabaugh RL, Linkins AE. Phosphatase activities and phosphorus uptake from inositol phosphate by ectomycorrhizal fungi. Can J Bot. 1992;70:794–801.
    CAS  Article  Google Scholar 

    55.
    Tibbett M, Sanders FE, Cairney JWG. The effect of temperature and inorganic phosphorus supply on growth and acid phosphatase production in arctic and temperate strains of ectomycorrhizal Hebeloma spp. in axenic culture. Mycol Res. 1998;102:129–35.
    CAS  Article  Google Scholar 

    56.
    van Aarle IM, Plassard C. Spatial distribution of phosphatase activity associated with ectomycorrhizal plants is related to soil type. Soil Biol Biochem. 2010;42:324–30.
    Article  CAS  Google Scholar 

    57.
    Kroehler J, Linkins E. The effects of organic and inorganic phosphorus concentration on the acid phosphatase activity of ectomycorrhizal fungi. Can J Bot. 1987;66:750–6.
    Article  Google Scholar 

    58.
    Horsman GP, Zechel DL. Phosphonate biochemistry. Chem Rev. 2017;117:5704–83.
    CAS  PubMed  Article  Google Scholar 

    59.
    Turner BL. Inositol phosphates in soil: amounts, forms and significance of the phosphorylated inositol stereoisomers. In: Turner BL, Richardson AE, Mullaney EJ, editors. Inositol phosphates: linking agriculture and the environment. Wallingford, UK: CAB International; 2007. p. 186–207.

    60.
    Colpaert JV, Van Laere A, Van Tichelen KK, Van, Assche JA. The use of inositol hexaphosphate as a phosphorus as a phosphorus source by mycorrhizal and non-mycorrhizal Scots Pine (Pinus sylvestris). Funct Ecol. 1997;11:407–15.
    Article  Google Scholar 

    61.
    Leake JR, Miles W. Phosphodiesters as mycorrhizal P sources I. Phosphodiesterase production and the utilization of DNA as a phosphorus source by the ericoid mycorrhizal fungus Hymenoseyphus ericae. N Phytol. 1996;132:435–43.
    CAS  Article  Google Scholar 

    62.
    Lang F, Krüger J, Amelung W, Willbold S, Frossard E, Bünemann EK, et al. Soil phosphorus supply controls P nutrition strategies of beech forest ecosystems in Central Europe. Biogeochemistry. 2017;136:5–29.
    CAS  Article  Google Scholar 

    63.
    Criquet S, Ferre E, Farnet AM, Le Petit J. Annual dynamics of phosphatase activities in an evergreen oak litter: Influence of biotic and abiotic factors. Soil Biol Biochem. 2004;36:1111–8.
    CAS  Article  Google Scholar 

    64.
    Antibus RK, Bower D, Dighton J. Root surface phosphatase activities and uptake of 32P-labelled inositol phosphate in field-collected gray birch and red maple roots. Mycorrhiza. 1997;7:39–46.
    CAS  Article  Google Scholar 

    65.
    Steidinger BS, Turner BL, Corrales A, Dalling JW. Variability in potential to exploit different soil organic phosphorus compounds among tropical montane tree species. Funct Ecol. 2015;29:121–30.
    Article  Google Scholar 

    66.
    Tate KR, Newman RH. Phosphorus fractions of a climosequence of soils in New Zealand tussock grasslands. Soil Biol Biochem. 1981;191:191–6.
    Google Scholar 

    67.
    Stewart JWB, Tiessen H. Dynamics of soil organic phosphorus. Biogeochemistry. 1987;4:41–60.
    CAS  Article  Google Scholar 

    68.
    Turner BL, Haygarth PM. Phosphatase activity in temperate pasture soils: potential regulation of labile organic phosphorus turnover by phosphodiesterase activity. Sci Total Environ. 2005;344:27–36.
    CAS  PubMed  Article  Google Scholar 

    69.
    Reich PB, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. PNAS. 2004;101:11001–6.
    CAS  PubMed  Article  Google Scholar 

    70.
    Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A. The importance of the microbiome of the plant holobiont. N Phytol. 2015;206:1196–206.
    Article  Google Scholar 

    71.
    Zhang H, Wang J, Wang J, Guo Z, Geo G, Zeng D. Tree stoichiometry and nutrient resorption along a chronosequence of Metasequoia glyptostroboides forests in coastal China. Ecol Manag. 2018;430:445–50.
    Article  Google Scholar 

    72.
    Duquesnay A, Dupouey JL, Clement A, Ulrich E, Tacon FLE. Spatial and temporal variability of foliar mineral concentration in beech (Fagus sylvatica) stands in northeastern France. Tree Physiol. 2000;20:13–22.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Kranabetter JM, Berch S, MacKinnon J, Ceska O, Dunn D, Ott P. Species–area curve and distance–decay relationships indicate habitat thresholds of ectomycorrhizal fungi in an old-growth Pseudotsuga menziesii landscape. Divers Distrib. 2018;24:755–64.
    Article  Google Scholar 

    74.
    Zavisic A, Yang N, Marhan S, Kandeler E, Polle A. Forest soil phosphorus resources and fertilization affect ectomycorrhizal community composition, Beech P uptake efficiency, and photosynthesis. Front Plant Sci. 2018;9:1–13.
    Article  Google Scholar 

    75.
    Bogar L, Peay KG, Kornfeld A, Huggins J, Hortal S, Anderson I, et al. Plant-mediated partner discrimination in ectomycorrhizal mutualisms. Mycorrhiza. 2019;29:97–111.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    76.
    Hortal S, Plett KL, Plett JM, Cresswell T, Johansen M, Pendall E, et al. Role of plant–fungal nutrient trading and host control in determining the competitive success of ectomycorrhizal fungi. ISME J. 2017;11:2666–76.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    Vellend M. Conceptual synthesis in community ecology. Q Rev Biol. 2010;85:183–206.
    PubMed  Article  PubMed Central  Google Scholar 

    78.
    Nicholson BA, Jones MD. Early-successional ectomycorrhizal fungi effectively support extracellular enzyme activities and seedling nitrogen accumulation in mature forests. Mycorrhiza. 2017;27:247–60.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    79.
    Marupakula S, Mahmood S, Jernberg J, Nallanchakravarthula S, Fahad ZA, Finlay RD. Bacterial microbiomes of individual ectomycorrhizal Pinus sylvestris roots are shaped by soil horizon and differentially sensitive to nitrogen addition. Environ Microbiol. 2017;19:4736–53.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    80.
    Cullings K, Ishkhanova G, Henson J. Defoliation effects on enzyme activities of the ectomycorrhizal fungus Suillus granulatus in a Pinus contorta (lodgepole pine) stand in Yellowstone National Park. Oecologia. 2008;158:77–83.
    PubMed  Article  Google Scholar 

    81.
    Jones MD, Phillips LA, Treu R, Ward V, Berch SM. Functional responses of ectomycorrhizal fungal communities to long-term fertilization of lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) stands in central British Columbia. Appl Soil Ecol. 2012;60:29–40.
    Article  Google Scholar  More

  • in

    Elevated temperatures diminish the effects of a highly resistant rice variety on the brown planthopper

    1.
    Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382. https://doi.org/10.1038/nature06949 (2008).
    CAS  Article  PubMed  ADS  Google Scholar 
    2.
    NASA. Global Vital Signs: Vital Signs of the Planet https://climate.nasa.gov/ (2019).

    3.
    Pachauri, R. K. et al. Climate Change 2014: synthesis report. Fifth Assessment Report on the Intergovernmental Panel on Climate Change 151. Geneva, Switzerland. (2014)

    4.
    Bale, J. S. et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16. https://doi.org/10.1046/j.1365-2486.2002.00451.x (2002).
    Article  ADS  Google Scholar 

    5.
    Forrest, J. R. K. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 17, 49–54. https://doi.org/10.1016/j.cois.2016.07.002 (2016).
    Article  PubMed  Google Scholar 

    6.
    Food and Agriculture Organisation of the United Nations. FAOSTAT Crops http://www.fao.org/faostat/en/#home (2019).

    7.
    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620. https://doi.org/10.1126/science.1204531 (2011).
    CAS  Article  PubMed  ADS  Google Scholar 

    8.
    Ray, D. K. et al. Climate change has likely already affected global food production. PLoS ONE 14, e0217148. https://doi.org/10.1371/journal.pone.0217148 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    9.
    Ali, M. P. et al. Will climate change affect outbreak patterns of planthoppers in Bangladesh?. PLoS ONE https://doi.org/10.1371/journal.pone.0091678 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    10.
    Ali, M. P. et al. Increased temperature induces leaffolder outbreak in rice field. J. Appl. Entomol. 143, 867–874. https://doi.org/10.1111/jen.12652 (2019).
    Article  Google Scholar 

    11.
    Hu, G. et al. Outbreaks of the brown planthopper Nilaparvata lugens (Stål) in the Yangtze River Delta: immigration or local reproduction? PLoS ONE 9, e88973 (2014).

    12.
    Yukawa, J. et al. Northward range expansion by Nezara viridula (Hemiptera: Pentatomidae) in Shikoku and Chugoku Districts, Japan, possibly due to global warming. Appl. Entomol. Zool. 44, 429–437 (2009).
    Article  Google Scholar 

    13.
    Horgan, F. G. Integrating gene deployment and crop management for improved rice resistance to Asian planthoppers. Crop Prot. 110, 21–33 (2018).
    CAS  Article  Google Scholar 

    14.
    Ali, M. P. et al. Establishing next-generation pest control services in rice fields: eco-agriculture. Sci. Rep. 9, 1–9 (2019).
    Article  Google Scholar 

    15.
    Horgan, F. G. et al. Effects of vegetation strips, fertilizer levels and varietal resistance on the integrated management of arthropod biodiversity in a tropical rice ecosystem. Insects 10, 328 (2019).
    Article  Google Scholar 

    16.
    Horgan, F. G. Potential for an impact of global climate change on insect herbivory in cereal crops. In Crop Protection Under Climate Change (eds Jabran, K. et al.) 101–144 (Springer, Berlin, 2020).
    Google Scholar 

    17.
    Fujita, D., Kohli, A. & Horgan, F. G. Rice resistance to planthoppers and leafhoppers. Crit. Rev. Plant Sci. 32, 162–191 (2013).
    CAS  Article  Google Scholar 

    18.
    Horgan, F. G. et al. Virulence of brown planthopper (Nilaparvata lugens) populations from South and South East Asia against resistant rice varieties. Crop Prot. 78, 222–231 (2015).
    Article  Google Scholar 

    19.
    Khush, G. S. & Virk, P. S. IR Varieties and Their Impact (International Rice Research Institute, Los Baños, Philippines, 2005).
    Google Scholar 

    20.
    Ren, J. et al. Bph32, a novel gene encoding an unknown SCR domain-containing protein, confers resistance against the brown planthopper in rice. Sci. Rep. 6, 37645 (2016).
    CAS  Article  ADS  Google Scholar 

    21.
    Horgan, F. G. & Ferrater, J. B. Benefits and potential trade-offs associated with yeast-like symbionts during virulence adaptation in a phloem-feeding planthopper. Entomol. Exp. Appl. 163, 112–125 (2017).
    Article  Google Scholar 

    22.
    Horgan, F. G., Garcia, C. P. F., Haverkort, F., de Jong, P. W. & Ferrater, J. B. Changes in insecticide resistance and host range performance of planthoppers artificially selected to feed on resistant rice. Crop Prot. 127, 104963. https://doi.org/10.1016/j.cropro.2019.104963 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    Ferreter, J. B. et al. Varied responses by yeast-like symbionts during virulence adaptation in a monophagous phloem-feeding insect. Arthropod-Plant Interact. 9, 215–224 (2015).
    Article  Google Scholar 

    24.
    Ferrater, J. B., de Jong, P. W., Dicke, M., Chen, Y. H. & Horgan, F. G. Symbiont-mediated adaptation by planthoppers and leafhoppers to resistant rice varieties. Arthropod-Plant Interact. 7, 591–605. https://doi.org/10.1007/s11829-013-9277-9 (2013).
    Article  Google Scholar 

    25.
    Lee, Y. H. & Hou, R. F. Physiological roles of a yeast-like symbiote in reproduction and embryonic development of the brown planthopper, Nilaparvata lugensStål. J. Insect Physiol. 33, 851–860 (1987).
    Article  Google Scholar 

    26.
    Hongoh, Y. & Ishikawa, H. Uric acid as a nitrogen resource for the brown planthopper, Nilaparvata lugens: studies with synthetic diets and aposymbiotic insects. Zool. Sci. 14, 581–586 (1997).
    CAS  Article  Google Scholar 

    27.
    Pan, Y. et al. Identification of brown planthopper resistance gene Bph32 in the progeny of a rice dominant genic male sterile recurrent population using genome-wide association study and RNA-seq analysis. Mol. Breed. 39, 72 (2019).
    Article  Google Scholar 

    28.
    Stevenson, P. C., Kimmins, F. M., Grayer, R. J. & Raveendranath, S. Schaftosides from rice phloem as feeding inhibitors and resistance factors to brown planthopper, Nilaparvata lugens. Entomol. Exp. Appl. 80, 246–249 (1996).
    Article  Google Scholar 

    29.
    Uawisetwathana, U. et al. Global metabolite profiles of rice brown planthopper-resistant traits reveal potential secondary metabolites for both constitutive and inducible defenses. Metabolomics 15, 151. https://doi.org/10.1007/s11306-019-1616-0 (2019).
    CAS  Article  PubMed  Google Scholar 

    30.
    Saxena, R. C. & Okech, S. H. Role of plant volatiles in resistance of selected rice varieties to brown planthopper, Nilaparvata lugens (Stål)(Homoptera; Delphacidae). J. Chem. Ecol. 11, 1601–1616 (1985).
    CAS  Article  Google Scholar 

    31.
    Kamolsukyeunyong, W. et al. Identification of spontaneous mutation for broad-spectrum brown planthopper resistance in a large, long-term fast neutron mutagenized rice population. Rice 12, 16 (2019).
    Article  Google Scholar 

    32
    Nguyen, C. D. et al. The development and characterization of near-isogenic and pyramided lines carrying resistance genes to brown planthopper with the genetic background of japonica rice (Oryza sativa L.). Plants 8, 498 (2019).
    CAS  Article  Google Scholar 

    33.
    Salim, M. & Saxena, R. C. Temperature stress and varietal resistance in rice: effects on whitebackedplanthopper. Crop Sci. 31, 1620–1625. https://doi.org/10.2135/cropsci1991.0011183X003100060048x (1991).
    Article  Google Scholar 

    34.
    Wang, B.-J., Xu, H.-X., Zheng, X.-S., Fu, Q. & Lu, Z.-X. High temperature modifies resistance performances of rice varieties to brown planthopper, Nilaparvata lugens (Stål). Rice Sci. 17, 334–338. https://doi.org/10.1016/S1672-6308(09)60036-6 (2010).
    CAS  Article  Google Scholar 

    35.
    Havko, N. E., Kapali, G., Das, M. R. & Howe, G. A. Stimulation of insect herbivory by elevated temperature outweighs protection by the jasmonate pathway. Plants 9, 172 (2020).
    Article  Google Scholar 

    36.
    Yuan, J. S., Himanen, S. J., Holopainen, J. K., Chen, F. & Stewart, C. N. Jr. Smelling global climate change: mitigation of function from plant volatile organic compounds. Trends Ecol. Evol. 24, 323–331 (2009).
    Article  Google Scholar 

    37.
    Horgan, F. G., Arida, A., Ardestani, G. & Almazan, M. L. P. Temperature-dependent oviposition and nymph performance reveal distinct thermal niches of coexisting planthoppers with similar thresholds for development. PLoS ONE 15, e0235506 (2020).
    CAS  Article  Google Scholar 

    38.
    Srinivas, M., Devi, R. S., Varmaand, N. R. G. & Jagadeeshwar, R. Interactive effect of temperature and CO2 on resistance of rice genotypes to brown planthopper, Nilaparvata lugens (Stål.). J. Entomol. Zool. Stud. 8, 600–602 (2020).
    Google Scholar 

    39.
    Zhang, L., Wu, J. & Chen, B. Influence of temperature and light on expression of resistance in rice to the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae). J. South China Agric. Univ. 11, 64–70 (1990).
    Google Scholar 

    40.
    Romena, S. & Saxena, R. Screening for resistance to whitebacked planthopper, Sogatella furcifera (Horvath): effect of temperature on seedling damage (Pest Control Council of the Philippines, Cebu City (Philippines), 1988).
    Google Scholar 

    41.
    Horgan, F. G. et al. Resistance and tolerance to the brown planthopper, Nilaparvata lugens (Stål), in rice infested at different growth stages across a gradient of nitrogen applications. Field Crops Res. 217, 53–65. https://doi.org/10.1016/j.fcr.2017.12.008 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    42.
    Neven, L. G. Physiological responses of insects to heat. Postharvest Biol. Technol. 21, 103–111 (2000).
    CAS  Article  Google Scholar 

    43.
    Bühler, A., Lanzrein, B. & Wille, H. Influence of temperature and carbon dioxide concentration on juvenile hormone titre and dependent parameters of adult worker honey bees (Apis mellifera L). J. Insect Physiol. 29, 885–893 (1983).
    Article  Google Scholar 

    44.
    Foissac, X., Edwards, M., Du, J., Gatehouse, A. & Gatehouse, J. Putative protein digestion in a sap-sucking homopteran plant pest (rice brown plant hopper; Nilaparvata lugens: Delphacidae)—identification of trypsin-like and cathepsin B-like proteases. Insect Biochem. Mol. Biol. 32, 967–978 (2002).
    CAS  Article  Google Scholar 

    45.
    MacMillan, H. A. & Sinclair, B. J. Mechanisms underlying insect chill-coma. J. Insect Physiol. 57, 12–20 (2011).
    CAS  Article  Google Scholar 

    46.
    Vailla, S., Muthusamy, S., Konijeti, C., Shanker, C. & Vattikuti, J. L. Effects of elevated carbon dioxide and temperature on rice brown planthopper, Nilaparvata lugens (Stål) populations in India. Curr. Sci. 116, 988 (2019).
    CAS  Article  Google Scholar 

    47.
    Wang, B., Xu, H., Zheng, X., Fu, Q. & Lu, X. Effect of temperature on resistance of rice to brown planthopper, Nilaparvata lugens. Chin. J. Rice Sci. 24, 443–446 (2010).
    Google Scholar 

    48.
    Ji, R. et al. A salivary endo-β-1, 4-glucanase acts as an effector that enables the brown planthopper to feed on rice. Plant Physiol. 173, 1920–1932 (2017).
    CAS  Article  Google Scholar 

    49.
    Venkatesh, J. & Kang, B.-C. Current views on temperature-modulated R gene-mediated plant defense responses and tradeoffs between plant growth and immunity. Curr. Opin. Plant Biol. 50, 9–17 (2019).
    CAS  Article  Google Scholar 

    50.
    Murai, M. & Kiritani, K. Influence of parental age upon the offspring in the green rice leafhopper, Nephotettix cincticeps Uhler (Hemiptera: Deltocephalidae). Appl. Entomol. Zool. 5, 189–201 (1970).
    Article  Google Scholar 

    51.
    Lu, K. et al. Nutritional signaling regulates vitellogenin synthesis and egg development through juvenile hormone in Nilaparvata lugens (Stål). Int. J. Mol. Sci. 17, 269 (2016).
    Article  Google Scholar 

    52.
    Thoeun, H. C. Observed and projected changes in temperature and rainfall in Cambodia. Weather Clim. Extremes 7, 61–71 (2015).
    Article  Google Scholar 

    53.
    PAGASA. Observed Climate Trends and Projected Climate Change in the Philippines. (Philippine Athmospheric, Geophysical and Astronomical Services Administration (PAGASA), Philippines, (2018).

    54.
    Yu Media Group. Weather Atlas: weather around the world – list of countries. http://www.weather-atlas.com/en/countries (2020).

    55
    You, L. L. et al. Driving pest insect populations: agricultural chemicals lead to an adaptive syndrome in Nilaparvata Lugens Stål (Hemiptera: Delphacidae). Sci. Rep. https://doi.org/10.1038/srep37430 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    56.
    Ge, L. Q. et al. Molecular basis for insecticide-enhanced thermotolerance in the brown planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae). Mol. Ecol. 22, 5624–5634. https://doi.org/10.1111/mec.12502 (2013).
    CAS  Article  PubMed  Google Scholar  More

  • in

    Repeated surveying over 6 years reveals that fine-scale habitat variables are key to tropical mountain ant assemblage composition and functional diversity

    1.
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science (80-). 333, 1024–1026 (2011).
    ADS  CAS  Article  Google Scholar 
    2.
    Beniston, M. Climatic change in mountain regions: A review of possible impacts. Clim. Chang. 5, 5–31 (2003).
    Article  Google Scholar 

    3.
    Bishop, T. R., Robertson, M. P., van Rensburg, B. J. & Parr, C. L. Coping with the cold: Minimum temperatures and thermal tolerances dominate the ecology of mountain ants. Ecol. Entomol. 42, 105–114 (2017).
    Article  Google Scholar 

    4.
    Bentley, L. K., Robertson, M. P. & Barker, N. P. Range contraction to a higher elevation: The likely future of the montane vegetation in South Africa and Lesotho. Biodivers. Conserv. 28, 131–153 (2019).
    Article  Google Scholar 

    5.
    Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 5, 424–430 (2015).
    ADS  Article  Google Scholar 

    6.
    Peters, R. L. & Darling, J. D. S. The greenhouse effect and nature reserves. Bioscience 35, 707–717 (1985).
    Article  Google Scholar 

    7.
    MacArthur, R. & Wilson, E. The Theory of Island Biogeography (Princeton University Press, Princeton, 1967).
    Google Scholar 

    8.
    Soliveres, S., DeSoto, L., Maestre, F. T. & Olano, J. M. Spatio-temporal heterogeneity in abiotic factors modulate multiple ontogenetic shifts between competition and facilitation. Perspect. Plant Ecol. Evol. Syst. 12, 227–234 (2010).
    Article  Google Scholar 

    9.
    Suggitt, A. J. et al. Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 120, 1–8 (2011).
    Article  Google Scholar 

    10.
    Thomas, J. A., Rose, R. J., Clarke, R. T., Thomas, C. D. & Webb, N. R. Intraspecific variation in habitat availability among ectothermic animals near their climatic limits and their centres of range. Funct. Ecol. 13, 55–64 (1999).
    CAS  Article  Google Scholar 

    11.
    Porter, W. P. & Gates, D. M. Thermodynamic equilibria of animals with environment. Ecol. Monogr. 39, 227–244 (1969).
    Article  Google Scholar 

    12.
    Del Toro, I., Ribbons, R. R. & Pelini, S. L. The little things that run the world revisited: A review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecol. News 17, 133–146 (2012).
    Google Scholar 

    13.
    Wilson, E. The little things that run the world (the importance and conservation of invertebrates). Conserv. Biol. 1, 344–346 (1987).
    Article  Google Scholar 

    14.
    Folgarait, P. J. Ant biodiversity and its relationship to ecosystem functioning: A review. Biodivers. Conserv. 7, 1221–1244 (1998).
    Article  Google Scholar 

    15.
    Seymour, C. & Joseph, G. Ecology of Smaller Animals Associated with Savanna Woody Plants. in Savanna Woody Plants And Large Herbivores (eds. Scogings, P. & Sankaran, M.) 183–212 (2019).

    16.
    Palmer, T. M. et al. Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African savanna. Science (80-). 319, 192–195 (2008).
    ADS  CAS  Article  Google Scholar 

    17.
    Hölldobler, B. & Wilson, E. The Ants (Harvard University Press, Cambridge, 1990).
    Google Scholar 

    18.
    Munyai, T. C. & Foord, S. H. Temporal patterns of ant diversity across a mountain with climatically contrasting aspects in the tropics of Africa. PLoS ONE 10, 1–16 (2015).
    Article  CAS  Google Scholar 

    19.
    Dunn, R. R., Parker, C. R. & Sanders, N. J. Temporal patterns of diversity: Assessing the biotic and abiotic controls on ant assemblages. Biol. J. Linn. Soc. 91, 191–201 (2007).
    Article  Google Scholar 

    20.
    Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: Competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B Biol. Sci. 279, 2072–2080 (2012).
    Article  Google Scholar 

    21.
    Warren, R. J. & Chick, L. Upward ant distribution shift corresponds with minimum, not maximum, temperature tolerance. Glob. Chang. Biol. 19, 2082–2088 (2013).
    ADS  PubMed  Article  Google Scholar 

    22.
    Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 2 (2018).
    Article  Google Scholar 

    23.
    Joseph, G. S. et al. Microclimates mitigate against hot temperatures in dryland ecosystems: termite mounds as an example. Ecosphere Article e01509 (2016).

    24.
    Baudier, K. M., Mudd, A. E., Erickson, S. C. & O’Donnell, S. Microhabitat and body size effects on heat tolerance: Implications for responses to climate change (army ants: Formicidae, Ecitoninae). J. Anim. Ecol. 84, 1322–1330 (2015).
    PubMed  Article  Google Scholar 

    25.
    Zellweger, F., Roth, T., Bugmann, H. & Bollmann, K. Beta diversity of plants, birds and butterflies is closely associated with climate and habitat structure. Glob. Ecol. Biogeogr. 26, 898–906 (2017).
    Article  Google Scholar 

    26.
    Mauda, E. V., Joseph, G. S., Seymour, C. L., Munyai, T. C. & Foord, S. H. Changes in landuse alter ant diversity, assemblage composition and dominant functional groups in African savannas. Biodivers. Conserv. 27, 947–965 (2018).
    Article  Google Scholar 

    27.
    Andrew, N. R., Miller, C., Hall, G., Hemmings, Z. & Oliver, I. Aridity and land use negatively influence a dominant species’ upper critical thermal limits. PeerJ 2019, 1–20 (2019).
    Google Scholar 

    28.
    Oliver, I., Dorrough, J., Doherty, H. & Andrew, N. R. Additive and synergistic effects of land cover, land use and climate on insect biodiversity. Landsc. Ecol. 31, 2415–2431 (2016).
    Article  Google Scholar 

    29.
    Hahn, N. Floristic diversity of the Soutpansberg, Limpopo Province, South Africa (University of Pretoria, Pretoria, 2006).
    Google Scholar 

    30.
    Davis, C. & Vincent, K. Climate Risk and Vulnerability: A Handbook for Southern Africa. (2017).

    31.
    Joseph, G. S. et al. Stability of Afromontane ant diversity decreases across an elevation gradient. Glob. Ecol. Conserv. 17, e00596 (2019).
    Article  Google Scholar 

    32.
    Longino, J. T. & Colwell, R. K. Density compensation, species composition, and richness of ants on a neotropical elevational gradient. Ecosphere 2, 1–20 (2011).
    Article  Google Scholar 

    33.
    Bishop, T. R., Robertson, M. P., van Rensburg, B. J. & Parr, C. L. Contrasting species and functional beta diversity in montane ant assemblages. J. Biogeogr. 42, 1776–1786 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Tilman, D. Functional Diversity. In Encyclopedia of Biodiversity Vol. 3 (ed. Levin, S. A.) 109–121 (Academic Press, New York, 2001).
    Google Scholar 

    35.
    Díaz, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).
    Article  Google Scholar 

    36.
    Seymour, C. L., Simmons, R. E., Joseph, G. S. & Slingsby, J. A. On bird functional diversity: Species richness and functional differentiation show contrasting responses to rainfall and vegetation structure in an arid landscape. Ecosystems 18, 971–984 (2015).
    Article  Google Scholar 

    37.
    Joseph, G. S. et al. Termite mounds mitigate against 50 years of herbivore-induced reduction of functional diversity of savanna woody plants. Landsc. Ecol. 30, 2161–2174 (2015).
    Article  Google Scholar 

    38.
    Díaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9, 113–122 (1998).
    Article  Google Scholar 

    39.
    Modiba, R. V., Joseph, G. S., Seymour, C. L., Fouché, P. & Foord, S. H. Restoration of riparian systems through clearing of invasive plant species improves functional diversity of Odonate assemblages. Biol. Conserv. 214, 46–54 (2017).
    Article  Google Scholar 

    40.
    Van Wyk, A. & Smith, G. Regions of Floristic Endemism in Southern Africa: A Review with Emphasis on Succulents (Umdaus press, Umdaus, 2001).
    Google Scholar 

    41.
    Mostert, T., Bredenkamp, G., Klopper, H. & Al, E. Major vegetation types of the Soutpansberg conservancy and the Blouberg nature reserve, South Africa. Koedoe 50, 32–48 (2008).
    Article  Google Scholar 

    42.
    Mucina, L. & Rutherford, M. C. The vegetation of South Africa, Lesotho and Swaziland. (2011).

    43.
    McKillup, S. Statistics Explained: An Introductory Guide for Life Scientists (Cambridge University Press, Cambridge, 2011).
    Google Scholar 

    44.
    Yates, M., Andrew, N., Binns, M. & Gibb, H. Morphological traits: predictable responses to macrohabitats across a 300 km scale. PeerJ 2, e271 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Schofield, S. F., Bishop, T. R. & Parr, C. L. Morphological characteristics of ant assemblages (Hymenoptera: Formicidae) differ among contrasting biomes. Myrmecol. News 23, 129–137 (2016).
    Google Scholar 

    46.
    Colwell, R. K. EstimateS: Statistical estimation of species richness and shared species from samples. (2006).

    47.
    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).
    Article  Google Scholar 

    48.
    Baselga, A. & Orme, C. D. L. Betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).
    Article  Google Scholar 

    49.
    Wang, Y., Naumann, U., Eddelbuettel, D. & Warton, D. mvabund: statistical methods for analysing multivariate abundance data. R package version 3.13.1. (2018).

    50.
    Warton, D. I., Foster, S. D., Death, G., Stoklosa, J. & Dunstan, P. K. Model-based thinking for community ecology. Plant Ecol. 216, 669–682 (2015).
    Article  Google Scholar 

    51.
    Warton, D. I., Thibaut, L. & Wang, Y. A. The PIT-trap—A “model-free” bootstrap procedure for inference about regression models with discrete, multivariate responses. PLoS ONE 12, 1–19 (2017).
    Article  CAS  Google Scholar 

    52.
    Hui, F. boral: Bayesian Ordination and Regression AnaLysis. R package version 1.6.1. (2018).

    53.
    Petchey, O. L. & Gaston, K. J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).
    PubMed  Article  Google Scholar 

    54.
    Weber, N. The biology of the fungus-growing ants. Part IV. Additional new forms. Rev. Entomol. 9, 154–206 (1938).
    Google Scholar 

    55.
    Laliberté, E. & Shipley, B. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package 1.0–11. (2011).

    56.
    Petchey, O. L. & Gaston, K. J. Extinction and the loss of functional diversity. Proc. Biol. Sci. 269, 1721–1727 (2002).
    PubMed  PubMed Central  Article  Google Scholar 

    57.
    Kembel, S. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
    CAS  Google Scholar 

    58.
    Gotelli, N. J. & Rohde, K. Co-occurrence of ectoparasites of marine fishes: a null model analysis. Ecol. Lett. 5, 86–94 (2002).
    Article  Google Scholar 

    59.
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team, . nlme: Linear and Nonlinear Mixed Effects Models. (2016).

    60.
    Kamil Barton. MuMIn: Multi-Model Inference. R package version 1.43.17. (2020).

    61.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed). Ecological Modelling vol. 172 (2002).

    62.
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Article  Google Scholar 

    63.
    Didham, R., Kapos, V. & Ewers, R. Rethinking the conceptual foundations of habitat fragmentation research. Oikos 121, 161–170 (2012).
    Article  Google Scholar 

    64.
    Niu, K. et al. Fertilization decreases species diversity but increases functional diversity: A three-year experiment in a Tibetan alpine meadow. Agric. Ecosyst. Environ. 182, 106–112 (2014).
    Article  Google Scholar 

    65.
    Joseph, G. S. et al. Elephants, termites and mound thermoregulation in a progressively warmer world. Landsc. Ecol. 33, 731–742 (2018).
    Article  Google Scholar 

    66.
    Bishop, T. R. et al. Thermoregulatory traits combine with range shifts to alter the future of montane ant assemblages. Glob. Chang. Biol. 25, 2162–2173 (2019).
    ADS  PubMed  Article  Google Scholar 

    67.
    Prentice, I. C. et al. Dynamic global vegetation modeling: Quantifying terrestrial ecosystem responses to large-scale environmental change. Terrest. Ecosyst. Chang. World https://doi.org/10.1007/978-3-540-32730-1_15 (2007).
    Article  Google Scholar 

    68.
    Pfeiffer, M., Kumar, D., Martens, C. & Scheiter, S. Climate change will cause non-analogue vegetation states in Africa and commit vegetation to long-term change. Biogeosci. Discuss. https://doi.org/10.5194/bg-2020-179 (2020).
    Article  Google Scholar 

    69.
    Potter, K. A., Woods, H. A. & Pincebourde, S. Microclimatic challenges in global change biology. Glob. Chang. Biol. 19, 2932–2939 (2013).
    ADS  PubMed  Article  Google Scholar 

    70.
    Scheffers, B. R., Edwards, D. P., Diesmos, A., Williams, S. E. & Evans, T. A. Microhabitats reduce animal’s exposure to climate extremes. Glob. Chang. Biol. 20, 495–503 (2014).
    ADS  PubMed  Article  Google Scholar 

    71.
    Bonachela, J. A. et al. Termite mounds can increase the robustness of dryland ecosystems to climatic change. Science (80-). 347, 651–655 (2015).
    ADS  CAS  Article  Google Scholar 

    72.
    Joseph, G. S. et al. Landuse change in savannas disproportionately reduces functional diversity of invertebrate predators at the highest trophic levels: Spiders as an example. Ecosystems 21, 930–942 (2018).
    Article  Google Scholar 

    73.
    Hoerling, M. & Kumar, A. The perfect ocean for drought. Science (80-). 299, 691–694 (2003).
    ADS  CAS  Article  Google Scholar 

    74.
    Diffenbaugh, N. S. & Field, B. S. Changes in ecologically critical terrestrial climate conditions. Science (80-). 341, 486–493 (2013).
    ADS  CAS  Article  Google Scholar 

    75.
    Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science (80-). 322, 258–261 (2008).
    ADS  CAS  Article  Google Scholar 

    76.
    Fowler, H., Forti, L., Brandão, C. & et al. Ecologia nutricional de formigas. in Ecologia Nutricional de Insetos E Suas Implicações No Manejo de Pragas 131–223 (1991).

    77.
    Davidson, D., Cook, S. & Snelling, R. Liquid-feeding performances of ants (Formicidae): Ecological and evolutionary implications. Oecologia 139, 255–266 (2004).
    ADS  PubMed  Article  Google Scholar 

    78.
    Sarty, M., Abbott, K. & Lester, P. Habitat complexity facilitates coexistence in a tropical ant community. Oecologia 149, 465–473 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    79.
    Kaspari, M. Body size and microclimate use in Neotropical granivorous ants. Oecologia 96, 500–507 (1993).
    ADS  PubMed  Article  Google Scholar 

    80.
    Weiser, M. & Kaspari, M. Ecological morphospace of New World ants. Ecol. Entomol. 31, 131–142 (2006).
    Article  Google Scholar 

    81.
    Gibb, H. et al. Does morphology predict trophic position and habitat use of ant species and assemblages?. Oecologia 177, 519–531 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    82.
    Gibb, H. & Cl, P. Does structural complexity determine the morphology of assemblages? An experimental test on three continents. PLoS ONE 8, e64005 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Automated spectroscopic modelling with optimised convolutional neural networks

    1.
    Ben-Dor, E., Irons, J. & Epema, G. Soil reflectance. Remote Sens. Earth Sci. Man. Remote Sens. 3, 111–188 (1999).
    Google Scholar 
    2.
    Soriano-Disla, J. M., Janik, L. J., Viscarra Rossel, R. A., Macdonald, L. M. & McLaughlin, M. J. The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Appl. Spectrosc. Rev. 49, 139–186 (2014).
    ADS  CAS  Article  Google Scholar 

    3.
    Viscarra Rossel, R. A. et al. A global spectral library to characterize the world’s soil. Earth-Sci. Rev. 155, 198–230 (2016).
    Article  Google Scholar 

    4.
    Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A. & Fernández-Ugalde, O. Lucas soil, the largest expandable soil dataset for europe: a review. Eur. J. Soil Sci. 69, 140–153 (2018).
    Article  Google Scholar 

    5.
    Viscarra Rossel, R. A. & Webster, R. Predicting soil properties from the australian soil visible-near infrared spectroscopic database. Eur. J. Soil Sci. 63, 848–860 (2012).
    Article  Google Scholar 

    6.
    Shi, Z., Ji, W., Viscarra Rossel, R. A., Chen, S. & Zhou, Y. Prediction of soil organic matter using a spatially constrained local partial least squares regression and the c hinese vis-nir spectral library. Eur. J. Soil Sci. 66, 679–687 (2015).
    CAS  Article  Google Scholar 

    7.
    Wijewardane, N. K., Ge, Y., Wills, S. & Loecke, T. Prediction of soil carbon in the conterminous united states: visible and near infrared reflectance spectroscopy analysis of the rapid carbon assessment project. Soil Sci. Soc. Am. J. 80, 973–982 (2016).
    ADS  CAS  Article  Google Scholar 

    8.
    Peng, Y. et al. Predicting soil organic carbon at field scale using a national soil spectral library. J. Near Infrared Spectrosc. 21, 213–222 (2013).
    ADS  CAS  Article  Google Scholar 

    9.
    Terra, F. . S. ., Demattê, J. . A. . & Viscarra Rossel, R. . A. . Spectral libraries for quantitative analyses of tropical brazilian soils: comparing vis-nir and mid-ir reflectance data. Geoderma 255, 81–93 (2015).
    ADS  Article  Google Scholar 

    10.
    Clairotte, M. et al. National calibration of soil organic carbon concentration using diffuse infrared reflectance spectroscopy. Geoderma 276, 41–52 (2016).
    ADS  CAS  Article  Google Scholar 

    11.
    Tziolas, N., Tsakiridis, N., Ben-Dor, E., Theocharis, J. & Zalidis, G. A memory-based learning approach utilizing combined spectral sources and geographical proximity for improved vis-nir-swir soil properties estimation. Geoderma 340, 11–24 (2019).
    ADS  CAS  Article  Google Scholar 

    12.
    Wold, Svante, Harold Martens, and Herman Wold. The multivariate calibration problem in chemistry solved by the pls method. Matrix Pencils. Springer. 286–293 (1983).

    13.
    Viscarra Rossel, R. A. & Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 158, 46–54 (2010).
    ADS  Article  Google Scholar 

    14.
    Lee, S., Choi, H., Cha, K. & Chung, H. Random forest as a potential multivariate method for near-infrared (nir) spectroscopic analysis of complex mixture samples: Gasoline and naphtha. Microchem. J. 110, 739–748 (2013).
    CAS  Article  Google Scholar 

    15.
    Devos, O., Ruckebusch, C., Durand, A., Duponchel, L. & Huvenne, J.-P. Support vector machines (svm) in near infrared (nir) spectroscopy: focus on parameters optimization and model interpretation. Chemom. Intell. Lab. Syst. 96, 27–33 (2009).
    CAS  Article  Google Scholar 

    16.
    Daniel, K., Tripathi, N. & Honda, K. Artificial neural network analysis of laboratory and in situ spectra for the estimation of macronutrients in soils of lop buri (thailand). Soil Res. 41, 47–59 (2003).
    CAS  Article  Google Scholar 

    17.
    Rawat, W. & Wang, Z. Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 29, 2352–2449 (2017).
    MathSciNet  Article  Google Scholar 

    18.
    Ji, S., Xu, W., Yang, M. & Yu, K. 3d convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35, 221–231 (2012).
    Article  Google Scholar 

    19.
    Wallach, I., Dzamba, M. & Heifets, A. Atomnet: A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-Based Drug Discovery. arXiv:1510.02855 (2015).

    20.
    LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
    ADS  CAS  Article  Google Scholar 

    21.
    Veres, M., Lacey, G. & Taylor, G. W. Deep learning architectures for soil property prediction. In 2015 12th Conference on Computer and Robot Vision, 8–15 (IEEE, 2015).

    22.
    Liu, L., Ji, M. & Buchroithner, M. Transfer learning for soil spectroscopy based on convolutional neural networks and its application in soil clay content mapping using hyperspectral imagery. Sensors 18, 3169 (2018).
    Article  Google Scholar 

    23.
    Tsakiridis, N. L., Keramaris, K. D., Theocharis, J. B. & Zalidis, G. C. Simultaneous prediction of soil properties from vnir-swir spectra using a localized multi-channel 1-d convolutional neural network. Geoderma 367, 114208 (2020).
    ADS  CAS  Article  Google Scholar 

    24.
    Padarian, J., Minasny, B. & McBratney, A. Using deep learning to predict soil properties from regional spectral data. Geoderma Reg. 16, e00198 (2019).
    Article  Google Scholar 

    25.
    Padarian, J., Minasny, B. & McBratney, A. Transfer learning to localise a continental soil vis-nir calibration model. Geoderma 340, 279–288 (2019).
    ADS  CAS  Article  Google Scholar 

    26.
    Ng, W. et al. Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra. Geoderma 352, 251–267 (2019).
    ADS  CAS  Article  Google Scholar 

    27.
    Hutter, F., Kotthoff, L. & Vanschoren, J. Automated Machine Learning: Methods, Systems, Challenges (Springer, Berlin, 2019).
    Google Scholar 

    28.
    Ioffe, S. & Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv:1502.03167 (2015).

    29.
    Santurkar, S., Tsipras, D., Ilyas, A. & Madry, A. How does batch normalization help optimization? In Advances in Neural Information Processing Systems 31 (eds Bengio, S. et al.) 2483–2493 (Curran Associates, Inc., Red Hook, 2018).
    Google Scholar 

    30.
    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).
    MathSciNet  MATH  Google Scholar 

    31.
    Hahnloser, R. H., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J. & Seung, H. S. Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 405, 947–951 (2000).
    ADS  CAS  Article  Google Scholar 

    32.
    Nair, V. & Hinton, G. E. Rectified linear units improve restricted boltzmann machines. In ICML (2010).

    33.
    Maas, A. L., Hannun, A. Y. & Ng, A. Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of ICML 30, 3 (2013).

    34.
    Clevert, D.-A., Unterthiner, T. & Hochreiter, S. Fast and Accurate Deep Network Learning by Exponential Linear Units (elus). arXiv:1511.07289 (2015).

    35.
    Klambauer, G., Unterthiner, T., Mayr, A. & Hochreiter, S. Self-normalizing neural networks. Adv. Neural Inf. Process. Syst. 30, 971–980 (2017).
    Google Scholar 

    36.
    Ramachandran, P., Zoph, B. & Le, Q. V. Searching for Activation Functions. arXiv:1710.05941 (2017).

    37.
    Ruder, S. An Overview of Gradient Descent Optimization Algorithms. arXiv:1609.04747 (2016).

    38.
    Simonyan, K. & Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.1556 (2014).

    39.
    Pascanu, R., Mikolov, T. & Bengio, Y. On the difficulty of training recurrent neural networks. In International Conference on Machine Learning 1310–1318 (2013).

    40.
    Mnih, V. et al. Playing Atari with Deep Reinforcement Learning. arXiv:1312.5602 (2013).

    41.
    Duchi, J., Hazan, E. & Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12.7 (2011).

    42.
    Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. arXiv:1412.6980 (2014).

    43.
    Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M. & Tang, P. T. P. On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima. arXiv:1609.04836 (2016).

    44.
    Hsu, C.-W., Chang, C.-C., Lin, C.-J. et al. A practical guide to support vector classification. 1396–1400 (2003).

    45.
    Lerman, P. Fitting segmented regression models by grid search. J. R. Stat. Soc. Ser. C (Appl. Stat.) 29, 77–84 (1980).
    Google Scholar 

    46.
    Bergstra, J. & Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012).
    MathSciNet  MATH  Google Scholar 

    47.
    Franceschi, L., Donini, M., Frasconi, P. & Pontil, M. Forward and Reverse Gradient-Based Hyperparameter Optimization. arXiv:1703.01785 (2017).

    48.
    Luketina, J., Berglund, M., Greff, K. & Raiko, T. Scalable gradient-based tuning of continuous regularization hyperparameters. In International Conference on Machine Learning 2952–2960 (2016).

    49.
    Maclaurin, D., Duvenaud, D. & Adams, R. Gradient-based hyperparameter optimization through reversible learning. In International Conference on Machine Learning 2113–2122 (2015).

    50.
    Bengio, Y. Gradient-based optimization of hyperparameters. Neural Comput. 12, 1889–1900 (2000).
    CAS  Article  Google Scholar 

    51.
    Domke, J. Generic methods for optimization-based modeling. In Artificial Intelligence and Statistics 318–326 (2012).

    52.
    Bergstra, J. S., Bardenet, R., Bengio, Y. & Kégl, B. Algorithms for hyper-parameter optimization. Adv. Neural Inf. Process. Syst. 24, 2546–2554 (2011).

    53.
    Hutter, F., Hoos, H. H. & Leyton-Brown, K. Sequential model-based optimization for general algorithm configuration. In International Conference on Learning and Intelligent Optimization, 507–523 (Springer, 2011).

    54.
    Snoek, J., Larochelle, H. & Adams, R. P. Practical bayesian optimization of machine learning algorithms. Adv. Neural Inf. Process. Syst. 25, 2951–2959 (2012).
    Google Scholar 

    55.
    Jamieson, K. & Talwalkar, A. Non-stochastic best arm identification and hyperparameter optimization. In Artificial Intelligence and Statistics 240–248 (2016).

    56.
    Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A. & Talwalkar, A. Hyperband: a novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 18, 6765–6816 (2017).
    MathSciNet  MATH  Google Scholar 

    57.
    Loshchilov, I. & Hutter, F. Cma-es for Hyperparameter Optimization of Deep Neural Networks. arXiv:1604.07269 (2016).

    58.
    Jaderberg, M. et al. Population Based Training of Neural Networks. arXiv:1711.09846 (2017).

    59.
    Eggensperger, K. et al. Towards an empirical foundation for assessing bayesian optimization of hyperparameters. In NIPS Workshop on Bayesian Optimization in Theory and Practice 10, 3 (2013).

    60.
    Hutter, F., Hoos, H. & Leyton-Brown, K. An efficient approach for assessing hyperparameter importance. In International Conference on Machine Learning 754–762 (2014).

    61.
    Prechelt, L. Early Stopping-but When? In Neural Networks: Tricks of the Trade 55–69 (Springer, Berlin, 1998).
    Google Scholar  More

  • in

    Reconstructing hotspots of genetic diversity from glacial refugia and subsequent dispersal in Italian common toads (Bufo bufo)

    1.
    Alberto, F. J. et al. Potential for evolutionary responses to climate change – evidence from tree populations. Glob. Change Biol. 19, 1645–1661 (2013).
    ADS  Article  Google Scholar 
    2.
    Hoffmann, A. A. & Sgró, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Ørsted, M., Hoffmann, A. A., Rohde, P. D., Sørensen, P. & Kristensen, T. N. Strong impact of thermal environment on the quantitative genetic basis of a key stress tolerance trait. Heredity 122, 315–325 (2019).
    PubMed  Article  Google Scholar 

    4.
    Flight, P. A. Phylogenetic comparative methods strengthen evidence for reduced genetic diversity among endangered tetrapods. Conserv. Biol. 24, 1307–1315 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    5.
    Hamabata, T. et al. Endangered island endemic plants have vulnerable genomes. Commun. Biol. 2, 1–10 (2019).
    Article  Google Scholar 

    6.
    Raffard, A., Santoul, F., Cucherousset, J. & Blanchet, S. The community and ecosystem consequences of intraspecific diversity: a meta-analysis. Biol. Rev. 94, 648–661 (2019).
    PubMed  Article  Google Scholar 

    7.
    Whitlock, R. Relationships between adaptive and neutral genetic diversity and ecological structure and functioning: a meta-analysis. J. Ecol. 102, 857–872 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    8.
    Koricheva, J. & Hayes, D. The relative importance of plant intraspecific diversity in structuring arthropod communities: a meta-analysis. Funct. Ecol. 32, 1704–1717 (2018).
    Article  Google Scholar 

    9.
    Kettenring, K. M., Mercer, K. L., Reinhardt Adams, C. & Hines, J. Application of genetic diversity-ecosystem function research to ecological restoration. J. Appl. Ecol. 51, 339–348 (2014).
    Article  Google Scholar 

    10.
    Hewitt, G. M. The structure of biodiversity—insights from molecular phylogeography. Front. Zool. 1, 4 (2004).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Petit, R. J. et al. Glacial refugia: Hotspots but not melting pots of genetic diversity. Science 300, 1563–1565 (2003).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Hewitt, G. M. Mediterranean Peninsulas—the evolution of hotspots. In Biodiversity Hotspots (eds Zachos, F. E. & Habel, J. C.) 123–148 (Springer, Amsterdam, 2011).
    Google Scholar 

    13.
    Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: The rear edge matters. Ecol. Lett. 8, 461–467 (2005).
    Article  Google Scholar 

    14.
    Zampiglia, M. et al. Drilling down hotspots of intraspecific diversity to bring them into on-ground conservation of threatened species. Front. Ecol. Evol. 7, 205 (2019).
    Article  Google Scholar 

    15.
    Cheng, E., Hodges, K. E., Melo-Ferreira, J., Alves, P. C. & Mills, L. S. Conservation implications of the evolutionary history and genetic diversity hotspots of the snowshoe hare. Mol. Ecol. 23, 2929–2942 (2014).
    CAS  PubMed  Article  Google Scholar 

    16.
    Brown, S. C., Wigley, T. M. L., Otto-Bliesner, B. L., Rahbek, C. & Fordham, D. A. Persistent Quaternary climate refugia are hospices for biodiversity in the Anthropocene. Nat. Clim. Change 10, 244–248 (2020).
    ADS  Article  Google Scholar 

    17.
    Hewitt, G. M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58, 247–276 (1996).
    Article  Google Scholar 

    18.
    Canestrelli, D., Aloise, G., Cecchetti, S. & Nascetti, G. Birth of a hotspot of intraspecific genetic diversity: notes from the underground. Mol. Ecol. 19, 5432–5451 (2010).
    PubMed  Article  Google Scholar 

    19.
    Dufresnes, C. et al. Evolutionary melting pots: a biodiversity hotspot shaped by ring diversifications around the Black Sea in the Eastern tree frog (Hyla orientalis). Mol. Ecol. 25, 4285–4300 (2016).
    PubMed  Article  Google Scholar 

    20.
    Canestrelli, D., Bisconti, R., Sacco, F. & Nascetti, G. What triggers the rising of an intraspecific biodiversity hotspot? Hints from the agile frog. Sci. Rep. https://doi.org/10.1038/srep05042 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    21.
    Carnaval, A. C., Hickerson, M. J., Haddad, C. F. B., Rodrigues, M. T. & Moritz, C. Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323, 785–789 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    22.
    Hu, J., Huang, Y., Jiang, J. & Guisan, A. Genetic diversity in frogs linked to past and future climate changes on the roof of the world. J. Anim. Ecol. 88, 953–963 (2019).
    PubMed  Google Scholar 

    23.
    Gutiérrez-Rodríguez, J., Barbosa, A. M. & Martínez-Solano, Í. Integrative inference of population history in the Ibero-Maghrebian endemic Pleurodeles waltl (Salamandridae). Mol. Phylogenet. Evol. 112, 122–137 (2017).
    PubMed  Article  Google Scholar 

    24.
    Gutiérrez-Rodríguez, J., Barbosa, A. M. & Martínez-Solano, Í. Present and past climatic effects on the current distribution and genetic diversity of the Iberian Spadefoot toad (Pelobates cultripes): an integrative approach. J. Biogeogr. 44, 245–258 (2017).
    Article  Google Scholar 

    25.
    Garcia-Porta, J. et al. Molecular phylogenetics and historical biogeography of the west-palearctic common toads (Bufo bufo species complex). Mol. Phylogenet. Evol. 63, 113–130 (2012).
    CAS  PubMed  Article  Google Scholar 

    26.
    Recuero, E. et al. Multilocus species tree analyses resolve the radiation of the widespread Bufo bufo species group (Anura, Bufonidae). Mol. Phylogenet. Evol. 62, 71–86 (2012).
    CAS  PubMed  Article  Google Scholar 

    27.
    Arntzen, J. W., de Vries, W., Canestrelli, D. & Martínez-Solano, I. Hybrid zone formation and contrasting outcomes of secondary contact over transects in common toads. Mol. Ecol. 26, 5663–5675 (2017).
    CAS  PubMed  Article  Google Scholar 

    28
    Arntzen, J. W., de Vries, W., Canestrelli, D. & Martínez-Solano, I. Genetic and morphological differentiation of common toads in the Alps and the Apennines. In Evolutionary Biology: A Transdisciplinary Approach (ed. Pontarotti, P.) 1–14 (Springer, Switzerland, 2020).
    Google Scholar 

    29.
    Lanza, B., Andreone, F., Bologna, M. A., Corti, C. & Razzetti, E. Fauna d’Italia–Amphibia XLII (Calderini, Bologna, 2007).
    Google Scholar 

    30.
    Barbanera, F. et al. Molecular phylogeography of the asp viper Vipera aspis (Linnaeus, 1758) in Italy: evidence for introgressive hybridization and mitochondrial DNA capture. Mol. Phylogenet. Evol. 52, 103–114 (2009).
    CAS  PubMed  Article  Google Scholar 

    31
    Bisconti, R., Porretta, D., Arduino, P., Nascetti, G. & Canestrelli, D. Hybridization and extensive mitochondrial introgression among fire salamanders in peninsular Italy. Sci. Rep. https://doi.org/10.1038/s41598-018-31535-x (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    32.
    Canestrelli, D., Zangari, F. & Nascetti, G. Genetic evidence for two distinct species within the Italian endemic Salamandrina terdigitata Bonnaterre, 1789 (Amphibia: Urodela: Salamandridae). Herpetol. J. 16, 221–227 (2006).
    Google Scholar 

    33
    Salvi, D., Pinho, C. & Harris, D. J. Digging up the roots of an insular hotspot of genetic diversity: Decoupled mito-nuclear histories in the evolution of the Corsican-Sardinian endemic lizard Podarcis tiliguerta. BMC Evol. Biol. https://doi.org/10.1186/s12862-017-0899-x (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    34.
    Schultze, N. et al. Mitochondrial ghost lineages blur phylogeography and taxonomy of Natrix helvetica and N. natrix in Italy and Corsica. Zool. Scr. 49, 395–411 (2020).
    Article  Google Scholar 

    35.
    Canestrelli, D., Salvi, D., Maura, M., Bologna, M. A. & Nascetti, G. One species, three Pleistocene evolutionary histories: phylogeography of the Italian crested newt Triturus carnifex. PLoS ONE https://doi.org/10.1371/journal.pone.0041754 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    36.
    Canestrelli, D., Cimmaruta, R. & Nascetti, G. Phylogeography and historical demography of the Italian treefrog, Hyla intermedia, reveals multiple refugia, population expansions and secondary contacts within peninsular Italy. Mol. Ecol. 16, 4808–4821 (2007).
    CAS  PubMed  Article  Google Scholar 

    37.
    Canestrelli, D., Sacco, F. & Nascetti, G. On glacial refugia, genetic diversity, and microevolutionary processes: Deep phylogeographical structure in the endemic newt Lissotriton italicus. Biol. J. Linn. Soc. 105, 42–55 (2012).
    Article  Google Scholar 

    38.
    Canestrelli, D., Cimmaruta, R., Costantini, V. & Nascetti, G. Genetic diversity and phylogeography of the Apennine yellow-bellied toad Bombina pachypus, with implications for conservation. Mol. Ecol. 15, 3741–3754 (2006).
    CAS  PubMed  Article  Google Scholar 

    39.
    Canestrelli, D., Cimmaruta, R. & Nascetti, G. Population genetic structure and diversity of the Apennine endemic stream frog, Rana italica – Insights on the Pleistocene evolutionary history of the Italian peninsular biota. Mol. Ecol. 17, 3856–3872 (2008).
    PubMed  Article  Google Scholar 

    40.
    Chiocchio, A. et al. Population genetic structure of the bank vole Myodes glareolus within its glacial refugium in peninsular Italy. J. Zool. Syst. Evol. Res. 57, 959–969 (2019).
    Article  Google Scholar 

    41.
    Podnar, M., Mayer, W. & Tvrtković, N. Phylogeography of the Italian wall lizard, Podarcis sicula, as revealed by mitochondrial DNA sequences. Mol. Ecol. 14, 575–588 (2005).
    CAS  PubMed  Article  Google Scholar 

    42.
    Vai, F. & Martini, I. P. Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins (Springer, Berlin, 2013).
    Google Scholar 

    43.
    Canestrelli, D., Verardi, A. & Nascetti, G. Genetic differentiation and history of populations of the Italian treefrog Hyla intermedia: Lack of concordance between mitochondrial and nuclear markers. Genetica 130, 241–255 (2007).
    PubMed  Article  Google Scholar 

    44.
    Stefani, F., Galli, P., Crosa, G., Zaccara, S. & Calamari, D. Alpine and Apennine barriers determining the differentiation of the rudd (Scardinius erythrophthalmus L.) in the Italian peninsula. E. Freshw. Fish 13, 168–175 (2004).
    Article  Google Scholar 

    45.
    Dynesius, M. & Jansson, R. Persistence of within-species lineages: a neglected control of speciation rates. Evolution 68, 923–934 (2014).
    PubMed  Article  Google Scholar 

    46.
    Endler, J. A. Geographic Variation, Speciation, and Clines (Princeton University Press, Princeton, 1977).
    Google Scholar 

    47
    Recuero, E. & García-París, M. Evolutionary history of Lissotriton helveticus: Multilocus assessment of ancestral vs. recent colonization of the Iberian Peninsula. Mol. Phylogenet. Evol. 60, 170–182 (2011).
    PubMed  Article  Google Scholar 

    48.
    Bisconti, R., Canestrelli, D., Colangelo, P. & Nascetti, G. Multiple lines of evidence for demographic and range expansion of a temperate species (Hyla sarda) during the last glaciation. Mol. Ecol. 20, 5313–5327 (2011).
    PubMed  Article  Google Scholar 

    49.
    Salvi, D., Schembri, P. J., Sciberras, A. & Harris, D. J. Evolutionary history of the Maltese wall lizard Podarcis filfolensis: Insights on the “Expansion-Contraction” model of Pleistocene biogeography. Mol. Ecol. 23, 1167–1187 (2014).
    PubMed  Article  Google Scholar 

    50.
    Senczuk, G. et al. Evolutionary and demographic correlates of Pleistocene coastline changes in the Sicilian wall lizard Podarcis wagleriana. J. Biogeogr. 46, 224–237 (2019).
    Article  Google Scholar 

    51.
    Canestrelli, D. & Nascetti, G. Phylogeography of the pool frog Rana (Pelophylax) lessonae in the Italian peninsula and Sicily: Multiple refugia, glacial expansions and nuclear-mitochondrial discordance. J. Biogeogr. 35, 1923–1936 (2008).
    Article  Google Scholar 

    52.
    Porretta, D. et al. Southern crossroads of the Western Palaearctic during the Late Pleistocene and their imprints on current patterns of genetic diversity: Insights from the mosquito Aedes caspius. J. Biogeogr. 38, 20–30 (2011).
    Article  Google Scholar 

    53.
    Amorosi, A. et al. The Holocene evolution of the Volturno River coastal plain (southern Italy). J. Mediterr. Earth Sci. 7, 11 (2013).
    Google Scholar 

    54.
    Lucchi, M. R. Vegetation dynamics during the Last Interglacial-Glacial cycle in the Arno coastal plain (Tuscany, western Italy): location of a new tree refuge. Quat. Sci. Rev. 27, 2456–2466 (2008).
    ADS  Article  Google Scholar 

    55.
    Trujillo, T., Gutiérrez-Rodríguez, J., Arntzen, J. W. & Martínez-Solano, I. Morphological and molecular data to describe a hybrid population of the Common toad (Bufo bufo) and the Spined toad (Bufo spinosus) in western France. Contrib. Zool. 8, 1–10 (2017).
    Article  Google Scholar 

    56.
    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
    CAS  Article  Google Scholar 

    57.
    Lefort, V., Longueville, J.-E. & Gascuel, O. SMS: Smart Model Selection in PhyML. Mol. Biol. Evol. 34, 2422–2424 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Salzburger, W., Ewing, G. B. & Von Haeseler, A. The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Mol. Ecol. 20, 1952–1963 (2011).
    PubMed  Article  Google Scholar 

    59.
    Lemey, P., Rambaut, A., Welch, J. J. & Suchard, M. A. Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol. 27, 1877–1885 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Heller, R., Chikhi, L. & Siegismund, H. R. The confounding effect of population structure on bayesian skyline plot inferences of demographic history. PLoS ONE 8(5), e62992. https://doi.org/10.1371/journal.pone.0062992 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    61.
    Drummond, A. J., Rambaut, A., Shapiro, B. & Pybus, O. G. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22, 1185–1192 (2005).
    CAS  PubMed  Article  Google Scholar 

    62.
    Paradis, E., Baillie, S. R. & Sutherland, W. J. Modeling large-scale dispersal distances. Ecol. Model. 151, 279–292 (2002).
    Article  Google Scholar 

    63.
    Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. (2014). Tracer v1.6. Available at: http://beast.bio.ed.ac.uk/Tracer.

    64.
    Bielejec, F., Rambaut, A., Suchard, M. A. & Lemey, P. SPREAD: spatial phylogenetic reconstruction of evolutionary dynamics. Bioinformatics 27, 2910–2912 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes. 4, 535–538 (2004).
    Article  CAS  Google Scholar 

    66.
    Keenan, K., Mcginnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. DiveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods. Ecol. Evol. 4, 782–788 (2013).
    Article  Google Scholar 

    67.
    Chen, C., Durand, E., Forbes, F. & François, O. Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol. Ecol. Notes 7, 747–756 (2007).
    Article  Google Scholar 

    68.
    Jakobsson, M. & Rosenberg, N. A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).
    CAS  PubMed  Article  Google Scholar 

    69.
    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
    PubMed  Article  Google Scholar 

    70.
    Lecocq, T., Harpke, A., Rasmont, P. & Schweiger, O. Integrating intraspecific differentiation in species distribution models: consequences on projections of current and future climatically suitable areas of species. Divers. Distrib. 25, 1088–1100 (2019).
    Article  Google Scholar 

    71.
    Hällfors, M. H. et al. Addressing potential local adaptation in species distribution models: implications for conservation under climate change. Ecol. Appl. 26, 1154–1169 (2016).
    PubMed  Article  Google Scholar 

    72.
    Pearman, P. B., D’Amen, M., Graham, C. H., Thuiller, W. & Zimmermann, N. E. Within-taxon niche structure: niche conservatism, divergence and predicted effects of climate change. Ecography 33, 990–1003 (2010).
    Article  Google Scholar 

    73.
    Stoch, F. CKmap 5.3.8, http://www.faunaitalia.it/documents/CKmap_54.zip. Ministero dell’Ambiente e della Tutela del Territorio, Direzione Protezione della Natura (2000–2005)

    74
    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5(1), eaat4858. https://doi.org/10.1126/sciadv.aat4858 (2019).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    75.
    Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).
    Article  Google Scholar 

    76.
    Ranc, N. et al. Performance tradeoffs in target-group bias correction for species distribution models. Ecography 40(9), 1076–1087 (2017).
    Article  Google Scholar 

    77.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Article  Google Scholar 

    78.
    Freeman, E. A. & Moisen, G. G. A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecol. Model. 217, 48–58 (2008).
    Article  Google Scholar 

    79.
    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).
    ADS  MathSciNet  CAS  PubMed  MATH  Article  Google Scholar 

    80.
    Simpson, E. H. Measurement of diversity. Nature 163, 688 (1949).
    ADS  MATH  Article  Google Scholar  More