More stories

  • in

    Contribution to unravel variability in bowhead whale songs and better understand its ecological significance

    1.
    Würsig, B. & Clark, C. W. Behavior. in The bowhead whale (eds. Burns, J. J., Montague, J. & Cowles, C. J.) 157–199 (the Society for Marine Mammalogy, 1993).
    2.
    Stafford, K. M., Moore, S. E., Laidre, K. L. & Heide-Jørgensen, M. P. Bowhead whale springtime song off West Greenland. J. Acoust. Soc. Am. 124, 3315–3323 (2008).
    PubMed  Article  ADS  Google Scholar 

    3.
    Delarue, J., Laurinolli, M. & Martin, B. Bowhead whale (Balaena mysticetus) songs in the Chukchi Sea between October 2007 and May 2008. J. Acoust. Soc. Am. 126, 3319–3328 (2009).
    PubMed  Article  ADS  Google Scholar 

    4.
    Tervo, O. M., Christoffersen, M. F., Parks, S. E., Kristensen, R. M. & Madsen, P. T. Evidence for simultaneous sound production in the bowhead whale (Balaena mysticetus). J. Acoust. Soc. Am. 130, 2257–2262 (2011).
    PubMed  Article  ADS  Google Scholar 

    5.
    Tervo, O. M., Parks, S. E., Christoffersen, M. F., Miller, L. A. & Kristensen, R. M. Annual changes in the winter song of bowhead whales (Balaena mysticetus) in Disko Bay, Western Greenland . Mar. Mammal Sci. 27, E241–E252 (2011).
    Article  Google Scholar 

    6.
    Payne, R. S. & McVay, S. Songs of humpback whales. Science 173, 585–597 (1971).
    CAS  PubMed  Article  ADS  Google Scholar 

    7.
    Collins, S. Vocal fighting and flirting: the functions of birdsong. in Nature’s Music 39–79 (Elsevier, Amsterdam, 2004).

    8.
    Johnson, H. D., Stafford, K. M., George, J. C., Ambrose, W. G. & Clark, C. W. Song sharing and diversity in the Bering-Chukchi-Beaufort population of bowhead whales (Balaena mysticetus), spring 2011. Mar. Mammal Sci. 31, 902–922 (2015).
    Article  Google Scholar 

    9.
    Cholewiak, D. M., Cerchio, S., Jacobsen, J. K., Urbán-R, J. & Clark, C. W. Songbird dynamics under the sea: acoustic interactions between humpback whales suggest song mediates male interactions. R. Soc. Open Sci. 5, 171298 (2018).
    PubMed  PubMed Central  Article  ADS  Google Scholar 

    10.
    Murray, A., Dunlop, R. A., Noad, M. J. & Goldizen, A. W. Stereotypic and complex phrase types provide structural evidence for a multi-message display in humpback whales (Megaptera novaeangliae). J. Acoust. Soc. Am. 143, 980–994 (2018).
    PubMed  Article  ADS  Google Scholar 

    11.
    Garland, E. C. et al. Humpback whale song on the Southern Ocean feeding grounds: Implications for cultural transmission. PLoS ONE 8, e79422 (2013).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    12.
    Rekdahl, M. L. et al. Culturally transmitted song exchange between humpback whales (Megaptera novaeangliae) in the southeast Atlantic and southwest Indian Ocean basins. 15 (2018).

    13.
    Darling, J. D., Acebes, J. M. V., Frey, O., Jorge Urbán, R. & Yamaguchi, M. Convergence and divergence of songs suggests ongoing, but annually variable, mixing of humpback whale populations throughout the North Pacific. Sci. Rep. 9, 7002 (2019).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    14.
    Garland, E. C. et al. Quantifying humpback whale song sequences to understand the dynamics of song exchange at the ocean basin scale. J. Acoust. Soc. Am. 133, 560–569 (2013).
    PubMed  Article  ADS  Google Scholar 

    15.
    Garland, E. C. et al. The devil is in the detail: Quantifying vocal variation in a complex, multi-levelled, and rapidly evolving display. J. Acoust. Soc. Am. 142, 460–472 (2017).
    PubMed  Article  ADS  Google Scholar 

    16.
    Allen, J. A., Garland, E. C., Dunlop, R. A. & Noad, M. J. Cultural revolutions reduce complexity in the songs of humpback whales. Proc. R. Soc. B Biol. Sci. 285, 20182088 (2018).
    Article  Google Scholar 

    17.
    Tervo, O. M., Parks, S. E. & Miller, L. A. Seasonal changes in the vocal behavior of bowhead whales (Balaena mysticetus) in Disko Bay, Western-Greenland. J. Acoust. Soc. Am. 126, 1570–1580 (2009).
    PubMed  Article  ADS  Google Scholar 

    18.
    Payne, K. & Payne, R. Large scale changes over 19 years in songs of humpback whales in Bermuda. Ethology 68, 89–114 (1985).
    Google Scholar 

    19.
    Cholewiak, D. M., Sousa-Lima, R. S. & Cerchio, S. Humpback whale song hierarchical structure: historical context and discussion of current classification issues. Mar. Mammal Sci. 29, E312–E332 (2013).
    Article  Google Scholar 

    20.
    Kowarski, K., Moors-Murphy, H., Maxner, E. & Cerchio, S. Western North Atlantic humpback whale fall and spring acoustic repertoire: Insight into onset and cessation of singing behavior. J. Acoust. Soc. Am. 145, 2305–2316 (2019).
    PubMed  Article  ADS  PubMed Central  Google Scholar 

    21.
    Stafford, K. M. et al. Spitsbergen’s endangered bowhead whales sing through the polar night. Endanger. Spec. Res. 18, 95–103 (2012).
    Article  Google Scholar 

    22.
    Stafford, K. M., Lydersen, C., Wiig, Ø. & Kovacs, K. M. Extreme diversity in the songs of Spitsbergen’s bowhead whales. Biol. Lett. 14, 20180056 (2018).

    23.
    Boertmann, D., Kyhn, L. A., Witting, L. & Heide-Jørgensen, M. P. A hidden getaway for bowhead whales in the Greenland Sea. Polar Biol. 38, 1315–1319 (2015).
    Article  Google Scholar 

    24.
    André, M. et al. Listening to the deep: live monitoring of ocean noise and cetacean acoustic signals. Mar. Pollut. Bull. 63, 18–26 (2011).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    25.
    Bioacoustics Research Program. Raven Pro: Interactive sound analysis software (Version 1.5). (The Cornell Lab of Ornithology, 2014).

    26.
    Wilden, I., Herzel, H., Peters, G. & Tembrock, G. Subharmonics, biphonation, and deterministic chaos in mammal vocalization. Bioacoustics 9, 171–196 (1998).
    Article  Google Scholar 

    27.
    Bonett, D. G. Confidence interval for a coefficient of quartile variation. Comput. Stat. Data Anal. 50, 2953–2957 (2006).
    MathSciNet  MATH  Article  Google Scholar 

    28.
    Demšar, J. et al. Orange: data mining toolbox in python. J. Mach. Learn. Res. 14, 2349–2353 (2013).
    MATH  Google Scholar 

    29.
    Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–27 (1964).
    MathSciNet  MATH  Article  Google Scholar 

    30.
    Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E. & Tatham, R. L. Multidimensional scaling. in Multivariate data analysis: A global perspective 539–582 (Upper Saddle River, NJ: Pearson, 2010).

    31.
    Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).
    MATH  Article  Google Scholar 

    32.
    Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M. & Perona, I. An extensive comparative study of cluster validity indices. Pattern Recognit. 46, 243–256 (2013).
    Article  Google Scholar 

    33.
    Ahonen, H. et al. The underwater soundscape in western Fram Strait: breeding ground of Spitsbergen’s endangered bowhead whales. Mar. Pollut. Bull. 123, 97–112 (2017).
    CAS  PubMed  Article  Google Scholar 

    34.
    Ljungblad, D. K., Thompson, P. O. & Moore, S. E. Underwater sounds recorded from migrating bowhead whales, Balaena mysticetus, in 1979. J. Acoust. Soc. Am. 71, 477–482 (1982).
    Article  ADS  Google Scholar 

    35.
    Kroodsma, D. E. Reproductive development in a female songbird: differential stimulation by quality of male song. Science 192, 574–575 (1976).
    CAS  PubMed  Article  ADS  Google Scholar 

    36.
    Byers, B. E. & Kroodsma, D. E. Female mate choice and songbird song repertoires. Anim. Behav. 77, 13–22 (2009).
    Article  Google Scholar 

    37.
    Payne, K. The progressively changing songs of humpback whales: A window on the creative process in a wild animal. in The origins of music 135–150 (2000).

    38.
    Parsons, E. C. M., Wright, A. J. & Gore, M. A. The nature of humpback whale (Megaptera novaeangliae) song. J. Mar. Anim. Their Ecol. 1, 22–31 (2008).
    Google Scholar 

    39.
    Van Parijs, S. M., Lydersen, C. & Kovacs, K. M. Vocalizations and movements suggest alternative mating tactics in male bearded seals. Anim. Behav. 65, 273–283 (2003).
    Article  Google Scholar 

    40.
    Ballentine, B., Hyman, J. & Nowicki, S. Vocal performance influences female response to male bird song: an experimental test. Behav. Ecol. 15, 163–168 (2004).
    Article  Google Scholar 

    41.
    Podos, J., Huber, S. K. & Taft, B. Bird song: the interface of evolution and mechanism. Annu. Rev. Ecol. Evol. Syst. 35, 55–87 (2004).
    Article  Google Scholar 

    42.
    Podos, J. A performance constraint on the evolution of trilled vocalizations in a songbird family (Passeriformes: Emberizidae). Evolution 51, 537–551 (1997).
    PubMed  Article  Google Scholar 

    43.
    Moseley, D. L., Lahti, D. C. & Podos, J. Responses to song playback vary with the vocal performance of both signal senders and receivers. Proc. R. Soc. B Biol. Sci. 280, 20131401 (2013).
    Article  Google Scholar 

    44.
    Reby, D. et al. Evidence of biphonation and source–filter interactions in the bugles of male North American wapiti (Cervus canadensis). J. Exp. Biol. 219, 1224–1236 (2016).
    CAS  PubMed  Article  Google Scholar 

    45.
    Aubin, T., Jouventin, P. & Hildebrand, C. Penguins use the two-voice system to recognize each other. Proc. R. Soc. B Biol. Sci. 267, 1081–1087 (2000).
    CAS  Article  Google Scholar 

    46.
    Fitch, W. T., Neubauer, J. & Herzel, H. Calls out of chaos: the adaptive significance of nonlinear phenomena in mammalian vocal production. Anim. Behav. 63, 407–418 (2002).
    Article  Google Scholar 

    47.
    Volodina, E. V., Volodin, I. A., Isaeva, I. V. & Unck, C. Biphonation may function to enhance individual recognition in the dhole, Cuon alpinus. Ethology 112, 815–825 (2006).
    Article  Google Scholar 

    48.
    Volodin, I. A. & Nagaylik, M. M. Cues to orientation of a caller to a listener in biphonic and non-biphonic close range contact calls in the dhole (Cuon alpinus). 11 (2006).

    49.
    Miller, P. J. O., Samarra, F. I. P. & Perthuison, A. D. Caller sex and orientation influence spectral characteristics of “two-voice” stereotyped calls produced by free-ranging killer whales. J. Acoust. Soc. Am. 121, 3932 (2007).
    PubMed  Article  ADS  Google Scholar 

    50.
    Schoenfuss, H. L. et al. The anatomy of the larynx of the bowhead whale, Balaena mysticetus, and its sound-producing functions. Anat. Rec. 297, 1316–1330 (2014).
    Article  Google Scholar 

    51.
    Root-Gutteridge, H. et al. A lifetime of changing calls: North Atlantic right whales, Eubalaena glacialis, refine call production as they age. Anim. Behav. 137, 21–34 (2018).
    Article  Google Scholar 

    52.
    Mercado, E., Herman, L. M. & Pack, A. A. Song copying by humpback whales: themes and variations. Anim. Cogn. 8, 93–102 (2005).
    PubMed  Article  Google Scholar 

    53.
    Zoloth, S. & Green, S. Monkey vocalizations and human speech: Parallels in perception?. Brain. Behav. Evol. 16, 430–442 (1979).
    CAS  PubMed  Article  Google Scholar 

    54.
    Soltis, J., Leong, K. & Savage, A. African elephant vocal communication II: rumble variation reflects the individual identity and emotional state of callers. Anim. Behav. 70, 589–599 (2005).
    Article  Google Scholar 

    55.
    Brady, B., Hedwig, D., Trygonis, V. & Gerstein, E. Classification of Florida manatee (Trichechus manatus latirostris ) vocalizations. J. Acoust. Soc. Am. 147, 1597–1606 (2020).
    PubMed  Article  ADS  Google Scholar 

    56.
    Murray, S. O., Mercado, E. & Roitblat, H. L. Characterizing the graded structure of false killer whale (Pseudorca crassidens ) vocalizations. J. Acoust. Soc. Am. 104, 1679–1688 (1998).
    CAS  PubMed  Article  ADS  Google Scholar 

    57.
    Karlsen, J. D., Bisther, A., Lydersen, C., Haug, T. & Kovacs, K. M. Summer vocalisations of adult male white whales (Delphinapterus leucas) in Svalbard, Norway. 10 (2002).

    58.
    Nemiroff, L. & Whitehead, H. Structural characteristics of pulsed calls of long-finned pilot whales Globicephala melas. Bioacoustics 19, 67–92 (2009).
    Article  Google Scholar 

    59.
    Dunlop, R. A., Noad, M. J., Cato, D. H. & Stokes, D. The social vocalization repertoire of east Australian migrating humpback whales (Megaptera novaeangliae). J. Acoust. Soc. Am. 122, 2893 (2007).
    PubMed  Article  ADS  Google Scholar 

    60.
    Clark, C. W. The acoustic repertoire of the Southern right whale, a quantitative analysis. Anim. Behav. 30, 1060–1071 (1982).
    Article  Google Scholar 

    61.
    Trygonis, V., Gerstein, E., Moir, J. & McCulloch, S. Vocalization characteristics of North Atlantic right whale surface active groups in the calving habitat, southeastern United States. J. Acoust. Soc. Am. 134, 4518–4531 (2013).
    PubMed  Article  ADS  PubMed Central  Google Scholar 

    62.
    Janik, V. M. Pitfalls in the categorization of behaviour: a comparison of dolphin whistle classification methods. Anim. Behav. 57, 133–143 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Tougaard, J. & Eriksen, N. Analysing differences among animal songs quantitatively by means of the Levenshtein distance measure. Behaviour 143, 239–252 (2006).
    Article  Google Scholar 

    64.
    Garland, E. C. et al. Improved versions of the Levenshtein distance method for comparing sequence information in animals’ vocalisations: tests using humpback whale song. Behaviour 149, 1413–1441 (2012).
    Article  Google Scholar 

    65.
    Garland, E. C. et al. Population structure of humpback whales in the western and central South Pacific Ocean as determined by vocal exchange among populations. Conserv. Biol. 29, 1198–1207 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    66.
    Koski, W. R., Davis, R. A., Miller, G. W. & Withrow, D. E. Reproduction. in The bowhead whale (eds. Burns, J. J., Montague, J. J. & Cowles, C. J.) 239–274 (The Society for Marine Mammalogy, 1993).

    67.
    Heide-Jørgensen, M. P., Laidre, K. L., Quakenbush, L. T. & Citta, J. J. The Northwest Passage opens for bowhead whales. Biol. Lett. 8, 270–273 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    68.
    Laxon, S. W. et al. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett. 40, 732–737 (2013).
    Article  ADS  Google Scholar 

    69.
    Stafford, K. M., Lydersen, C., Wiig, ø. & Kovacs, K. M. Data from: Extreme diversity in the songs of Spitsbergen’s bowhead whales. Dryad, Dataset. https://doi.org/https://doi.org/10.5061/dryad.1ck400f (2018). More

  • in

    Establish axenic cultures of armored and unarmored marine dinoflagellate species using density separation, antibacterial treatments and stepwise dilution selection

    Percoll density gradient centrifugation
    The removal of the associated bacteria from KMHK cells against four Percoll density gradients, 90%, 90–50%, 90–50–30% and 90–50–30–10% were shown in Fig. 2. There was no significant difference of the remaining total bacterial counts (with an initial total bacterial count of 6.36 ± 0.04 log10 CFU/mL) between algal samples centrifuged with 90% and 90%–50% Percoll gradients, but decreased significantly from 5.02 ± 0.2 log10 CFU/mL to 4.38 ± 0.05 log10 CFU/mL when dinoflagellate samples were centrifuged with 90–50–30% Percoll gradient with no further increase on adding another layer of 10% density to the gradient (i.e., 90–50–30–10%). These suggested that the highest bacterial removal capacity was achieved by centrifugation of the KMHK cells with the three-layer discontinuous (90–50–30%) gradient. This gradient was adopted in subsequent experiments in the present study, but it was different from Cho et al. who centrifuged the small Haptphyta, Isochrysis galbana (6–12 μm) with the five-layer discontinuous gradient (50%–40%–30%–20%–10%) and harvested the algal cell in between 40 and 30% Percoll5,27. As far as we know, this is the only previous study employing discontinuous gradient for algal culture, and it is obvious the optimized gradient composition varies among algal species, probably because of the diverse algal size and morphology. Vu et al. (2018) suggested that cells with a swimming ability may swim away from the concentrated zone after centrifugation, resulting in low cell recovery efficiency11. In this study, however, the swimming ability of KMHK cells was lost only temporarily for several minutes after centrifugation. This indicated that KMHK cell recovery would not be affected if the supernatant were removed immediately after centrifugation.
    Figure 2

    Total bacterial count in the algal sample after centrifugation with different Percoll density gradients. All data are presented as means ± standard deviations of three independent experiments (n = 3). Different letters on the top of the bar indicate that the means were significantly different among gradients at p ≤ 0.05 according to one-way analysis of variance followed by Tukey multiple comparison tests.

    Full size image

    Density gradient centrifugation provides an excellent alternative to filtration and micro-pipetting to physically separate bacterial cells from the algal cells, especially for fragile cell separation11. The density medium provides padding and thus protects the algal cells from the shearing force and enhance the separation efficiency17. Although filtration is one of the commonly adopted separating techniques because of its convenience, inexpensive and easy to use11, it is infeasible for use with dinoflagellate samples. However, membrane filters can be easily clogged by the algal cells and thus prolong the processing time of the filtration. Our previous experience found that more than 1 h was required to filter 10 mL of a dinoflagellate sample with 1 L of sterile medium for washing. More, algal cell recovery becomes extremely difficult when the cells are stuck firmly to the filter, and the algal cells may be easily damaged during cell harvest. This is a very important consideration for fragile cells of the unarmored dinoflagellates as they are vulnerable to the shear force generated during filtration. Micropipetting method applied in Coscinodiscus wailesii was laborious, and a skilled operator was required to pipette the algal cells from a culture droplet and sequential wash in droplets19.
    In the gradient centrifugation, the commonly used density media include Ficoll, Ludox and Percoll. Of these, Ficoll is not suitable for marine samples because it is a polysaccharide-based medium that is non-isotonic at high medium concentrations and becomes viscous liquid when dissolved in seawater28,29. Ludox and Percoll are both silicon-based density media compatible with seawater. Percoll is preferred for cell separation because it is less cytotoxic to the algal cells than is Ludox30. Few studies have demonstrated the feasibility of using Percoll density gradient centrifugation for microalgal samples17,31. Two fragile dinoflagellate species, Heterosigma carterae and Cochlodinium polykrikoides, have been efficiently harvested and recovered through centrifugation using 90% Percoll17,31.
    Bacterial removal by basic and extended protocols
    In the present study, Percoll density gradient centrifugation was coupled with antibiotic treatment. It is because the use of antibiotics is one of the most common bacterial killing methods but antibiotics alone rarely achieve complete bacterial elimination from the algal culture11. Antibiotic susceptibility testing results in this study reveal that the bacteria associated with KMHK culture were sensitive to the antibiotic cocktail used, that is, a combination of 100 U of penicillin, 100 µg/mL streptomycin, 100 µg/mL gentamicin and 1 µg/mL tetracycline. Similarly, Ki and Han also reported that the combination of 100 mg/L streptomycin, 150 mg/L ampicillin, 150 mg/L penicillin G and 200 mg/L gentamicin effectively killed bacteria without having detrimental effects on the dinoflagellates Peridinium bipes and A. tamarense12. Guillard demonstrated that most algal species tolerated 100 mg/L penicillin, 25 mg/L streptomycin and 25 mg/L gentamicin reasonably well32. However, many red colonies, identified as those of Rhodopirellula baltica through 16 s rDNA sequencing analysis, were observed on the antibiotic susceptibility testing plate of KMHK cells containing only penicillin, streptomycin and gentamicin in our study. Tetracycline was therefore included in the present antibiotic treatment based on previous report that Rhodopirellula sp. was highly susceptible to 0.5 ppm of tetracycline33. It is common to modify the antibiotic cocktail for different algal cultures since the antibiotics depends on the microbiome. For instance, Su et al. treated Alexandrium cultures with a combination of gentamycin, streptomycin, cephalothin and rifampicin for 7 days to obtain axenic cultures13.
    The effectiveness of the basic and extended protocols to remove bacteria in the algal samples is summarized in Fig. 3. The total bacterial count significantly reduced from initial 5.79 ± 0.22 log10 CFU/mL to 4.88 ± 0.05 log10 CFU/mL (p ≤ 0.05) after centrifuged with 90% Percoll (Step 1), even though the primary aim of this step was to condense the algal cells. This is probably due to the removal of numerous free-living bacteria in the supernatant, which was discarded. In the subsequent two gradient centrifugation using 90–50–30% density layers (Steps 2 and 3), approximately 12% of bacteria were further removed at p ≤ 0.05. The bacterial count did not show any additional reduction even when a step of a 90–50–30% density gradient centrifugation was added between Steps 3 and 4 (data not shown). After Step 4 with 48-h antibiotic treatment, the bacterial count was significantly reduced by 31% (Fig. 3a). These results indicated that numerous algae-associated bacteria could be effectively inhibited using the antibiotics but these steps could not completely eradicate the bacteria. No further decline in the bacterial count was found after Step 5 but decreased significant after Step 6, although both steps employed the same gradient centrifugation (90–50–30%). This could probably be the killing effect of the extended incubation of the bacteria with the remaining antibiotics, and/or the bacterial count significantly reduced by the gradient centrifugation in Step 5 was offset by the intracellular bacteria released from algal cell lysis during the antibiotic treatment. The effect of antibiotic exposure time on bacterial removal efficiency was shown in Table 1 below, while the existence of intracellular bacteria inside the dinoflagellate cells remains controversial6 and deserves more in-depth studies. The residue antibiotics, bacteria and algal cell debris were reported to suppress the algal cell growth17,31, these suppressions could be effectively removed in the present study as shown by algal regrowth (Fig. 3).
    Figure 3

    Bacterial removal in the KMHK sample using the basic and extended protocols. (a) Total bacterial count after different steps in the basic protocol. Initial: the initial bacterial count in KMHK samples at the beginning; Supplementary Fig. 1 illustrate the Step 1 to 6 of basic protocol. (b) Total bacterial count after the basic and extended protocols. Extended protocol refers to the descriptions in material and method. (c) Total bacterial count in the treated KMHK cultures at different days of cultivation. (d) Algal cell concentration during the regrowth of the treated KMHK cultures. All data are presented as mean ± standard deviations of three independent experiments (n = 3). Different letters on the top of the bar indicate that means were significantly different among samples at p ≤ 0.05 according to one-way analysis of variance followed by Tukey multiple comparison tests.

    Full size image

    After all six steps of the present protocol, the total bacterial count remaining in the KMHK culture was 1.13 ± 0.07 log10 CFU/mL (equivalent to approximately 13 CFU/mL), indicating that  > 99.9% of the bacteria were removed. Nevertheless, the bacterial count increased significantly to 5.75 ± 0.14 log10 CFU/mL (equivalent to approximately 5.86 × 105 CFU/mL) in day 7 KMHK regrow culture after the protocol (Fig. 3c). We used the extended protocol to remove the remaining bacteria by repeating the 48-h antibiotic incubation and Steps 4–6 after the basic protocol (Fig. 3b). However, the total bacterial count did not have any significant change between the basic and extended protocols (Fig. 3b), demonstrating that the additional steps, that is, repeating the 48-h antibiotic incubation and Steps 4–6, in the extended protocol failed to eliminate the few remaining bacteria in the KMHK culture. Similar to the basic protocol, the remaining bacteria regrew significantly in day 3 and day 7 KMHK cultures after the extended one (Fig. 3c). More, the additional steps of antibiotic treatment and centrifugation even damaged the algal cells, as reflected by the regrowth of KMHK cells was strongly inhibited by the extended protocol (Fig. 3d). After the extended protocol, the KMHK cell density at day 7 was only half of that after the basic protocol that regrew normally and reached the cell density of approximately 10,000 cells/mL after 7 days, comparable to that of a routine culture. The algal growth rates (µ) after the basic and extended protocols were 1.29 and 1.14, respectively. This implied that the additional steps of antibiotic treatment in the extended protocol damaged the algal cells. It has been reported that antibiotics treatment could interfere the peptidoglycan biosynthesis and eventually inhibited chloroplast division34. The extended protocol was also ineffective in removing bacteria, probably due to limited bacterial removal capacity and/or insufficient dose and exposure time of antibiotics.
    Effect of initial algal cell density and antibiotic exposure times on bacterial removal
    Bacterial cell concentration, antibiotic dose and antibiotic exposure time are critical factors affecting the efficiency of bacterial removal in algal samples. We hypothesized that the incomplete bacterial removal after the basic protocol was attributable to (1) the bacterial concentration in the algal culture exceeded the treatment capacity and (2) the dose and exposure time used in the antibiotic treatment were insufficient. To test insufficient dosing, a double antibiotic dose was used but there was no significant difference in the amount of bacterial removal between the normal and double doses of antibiotics used in the treatments (data not shown). Our observations also showed that the cell density of the 7-day KMHK culture treated with a double dose of antibiotics decreased from 10,000 to 489 cells/mL, clearly indicating a high antibiotic dose severely damaged the algal cells.
    Both the amount and percentage of bacterial removal were independent of the initial algal cell density (Table 1). At least 94.49% of bacteria were removed in all treatments. With a 48-h antibiotic exposure time, the percentage of bacterial removal did not have any significant changes with increases of initial algal cell density, and were 94.49%, 99.84% and 99.93% at high, moderate and low densities, respectively. Similarly, no significant difference in the amount of bacterial removal (in terms of Log10 CFU/mL) was observed between low and moderate initial algal cell densities but were significantly higher than that at high initial algal cell density. With 96-h of antibiotic exposure, bacterial removal percentage was 100% at both high and low algal densities and 98.53% at moderate algal density. Similarly, bacterial removal of low and moderate initial algal cell densities were significantly higher than that at high initial algal cell density. These results indicated that the bacterial removal ability was independent of the initial algal cell density.
    Table 1 Bacterial removal in the algal cultures with different initial algal cell densities and antibiotic exposure times in the basic protocol.
    Full size table

    When compare the antibiotic exposure time, bacterial removal with 48-h antibiotic treatment was significantly higher than that with other exposure times, regardless of the initial algal density (Table 1). A complete bacterial removal (100%) was detected under three conditions, that is, high and low initial densities with 96-h exposure time and moderate initial algal density with 72-h exposure time. The antibiotic exposure times ranging from several hours to 1 week have been reported in pervious researches, depending on the method used, and the bacterial cell count and composition in the algal sample13,32. The exposure time should be considered and controlled carefully because prolonged exposure to antibiotics may damage the algal cells and suppress their growth. However, the present study reveals antibiotic exposure time was not a critical factor for achieving 100% bacterial removal. On the other hand, the bacterial removal might be related to the bacterial cell count and composition present in the algal culture at the beginning. The microbiome can also change frequently during the routine cultivation of the algal cultures35.
    Algal cells obtained from different protocols were then cultured for 7 days and then subjected to bacterial counting. A substantial number of bacteria was found in all treatments at the end of the algal regrow cultures, including the 72-h exposure achieving 100% bacterial removal, except two 96-h antibiotic exposure treatments (Table 1). Even in these two 96-h exposure treatments with 100% bacteria-free algal cultures, bacteria were detected after several generations of the algal culture (data not shown). These indicated that the axenicity of algal culture may not be guaranteed even when no bacteria are detected after treating the algal samples with our developed protocol.
    The reappearance of bacterial growth may be due to the existence of a very small proportion of bacteria attached onto the algal cells after the protocol which was too little to be detected. Dinoflagellates are covered with complex and irregular cell surface structures36. Steric hindrance from parts of these algal surface areas may protect the firmly attached bacteria, making their detachment from the algal cells during gradient centrifugation difficult and decreasing antibiotic accessibility. Another possible explanation is that a few bacteria may have developed antibiotic resistance11, but this is unlikely in the present study as antibiotic resistance usually develops when the bacteria are continuously exposed to a nonlethal dose of an antibiotic37. Although why a few bacteria remained on the algal cells and regrew rapidly along with algal cell growth are poorly understood, it is necessary to have additional treatments such as serial dilution selection to ensure a true axenic algal culture is obtained.
    Selection of axenic algal cells through serial dilution
    After 7 days of cultivation, KMHK cells from all dilutions described in Fig. 1 survived. No bacterial growth was observed in 42 KMHK cultures (out of total 45 cultures), although bacterial colonies were observed in one of the day 7 KMHK cultures (one culture in the 100 dilution) and in another two of the day 21 KMHK cultures (one in 100 dilution and one in 10–1 dilution) in the first trial (Supplementary Table 1). The results reiterate that a high proportion of the KMHK cells in the population is in fact axenic and the ratio of axenic to non-axenic clones in the algal cell population is high after the basic protocol, it is therefore highly feasible to obtain the axenic clones from the population through such serial dilution approach. Similar approaches have been reported in previous studies5,12,38. For instance, Ki and Han dispersed the algal cells in a 96-well plate after filtration and antibiotic treatment12. Sena et al. also serially diluted the cyanobacterial sample, Arthrospira spp., after antibiotics treatment38. Although the axenic clone could be obtained by plating the algal cells on agar5, this approach was not feasible for marine dinoflagellates because the cells were unable to grow on a solid medium.
    Verification of axenicity of algal cultures
    It has been reported that some marine bacteria grow very slowly on agar, something like 50 days, and some of them are unculturable39,40. Therefore, confirming the axenic state of the algal cultures is paramount. The axenic state of the two selected KMHK cultures was tested and results of DAPI epifluorescence microscopy show that no bacteria were observed in the treated KMHK cells (Fig. 4b) while bacteria were found in the untreated cells (Fig. 4a). For the rDNA sequencing analysis, a 1500-bp PCR product was obtained after bacterial 16S rDNA amplification (Fig. 5a). The BLAST of the sequence reveal that it shared 99.59% similarity with 16 s rDNA sequence in the plastid gene of K. mikimotoi (accession no. AB027236). Similarly, the 600-bp amplicon observed in the amplification of fungal ITS shared 99.67% similarity with the ITS sequence of K. mikimotoi (accession no. KT733616; Fig. 5c). These results confirm the absence of both culturable and unculturable bacteria and fungi in the treated KMHK cultures. It has been reported that the algal cultures must continually be treated with antibiotics in order to maintain their axenic status15, but algal cells may die after several sub-cultures because of prolonged antibiotic exposure. When this happens, it is usually too late to recover the cultures. In the present study, regular monitoring of the axenicity of the cultures was performed through bacterial colony counting, DAPI epifluorescence microscopy and rDNA sequence analysis. The established axenic cultures were maintained generations after generations without adding any antibiotics, and no bacteria were found in any of the sub-cultures being tested even after 30 generations (data not shown). The axenic cultures of KMHK were established successfully and maintained sustainably, indicating this methodology was a promising approach applicable to other unarmored dinoflagellates. To the best of our knowledge, this is the first successful establishment of an axenic culture for the unarmored dinoflagellate K. mikimotoi.
    Figure 4

    DAPI epifluorescence microscopic images of KMHK and AT6 samples under ×1000 magnification: (a) untreated (control) and (b) treated KMHK samples; (c) untreated (control) and (d) treated AT6 samples.

    Full size image

    Figure 5

    PCR amplification of bacterial 16 s rDNA for (a) KMHK and (b) AT6 samples and that of fungal ITS region for (c) KMHK and (d) AT6 samples obtained from basic protocol and serial dilution. +ve: positive control, -ve: negative control.

    Full size image

    Development of axenic culture of A. tamarense using our established methodology
    The established method was applied to obtain the axenic cultures of another dinoflagellate species, A. tamarense (AT6), a well-known paralytic shellfish toxin–producing agent which has been extensively studied in the past decades41,42,43,44. The AT6 culture with an initial bacterial count of 7.9 ± 0.08 log10 CFU/mL was subjected to the basic protocol and the total bacterial counts recorded after Steps 3, 4 and 6 were shown in Fig. 6a. The result was generally similar to that of KMHK culture using the basic protocol (Fig. 3a), except no bacteria were detected in the AT6 culture after Step 6. Even though 100% bacterial removal was achieved, bacterial regrowth was observed on days 3 and 7 of the treated AT6 culture (Fig. 6b). The bacterial count regrew significantly to 6.71 ± 0.08 log10 CFU/mL after 7 days of cultivation (Fig. 6c). The regrowth of bacteria from the treated AT6 culture achieving 100% bacterial removal confirmed that few bacteria attached at some points onto the algal surface were shielded. Biegala et al. reported that associated bacteria were attached onto the cell surface within the sulci and cingula of A. tamarense6.
    Figure 6

    Bacterial removal in the Alexandrium tamarense (AT6) samples using the basic protocol. (a) Total bacterial count against different steps. Initial: the initial bacterial count present in AT6 at the beginning. (b) Total bacterial count in the AT6 culture obtained after the protocol at different days of cultivation. (c) Algal cell concentration during the regrowth of the AT6 culture obtained after the protocol. All data are presented as means ± standard deviations of three independent experiments (n = 3). N.D.: not detected. Different letters on the top of the bar indicate that means were significantly different among different samples at p ≤ 0.05 according to one-way analysis of variance followed by Tukey multiple comparison tests.

    Full size image

    For the serial dilution selection of AT6 cells after the basic protocol, culturable bacteria were observed in 11 of the 15 cultures in 100 dilution (5/5 in trial 1; 4/5 in trial 2 and 2/5 in trial 3) after 7 days of algal cultivation. All these 15 cultures showed bacterial regrowth after 21 days of algal cultivation, but the number of cultures with bacterial regrowth decreased to 1 and 4 of the 15 cultures in 10–1 dilutions after 7 and 21 days of algal cultivation, respectively. In 10−2 dilutions, no culturable bacteria were observed in all the cultures after both 7 and 21 days of algal cultivation (Supplementary Table 1). These results further demonstrate the feasibility of using the stepwise serial dilution method to select axenic algae, and 10–2 dilutions offer the highest probability in acquiring the axenic clones. The bacterial status of two of these potential axenic AT6 cultures was further assessed through DAPI epifluorescence microscopy and bacterial rDNA and fungal ITS sequencing analysis. No bacteria were observed in the DAPI epifluorescence image of the treated AT6 cultures compared to the untreated control cultures (Figs. 4c,d). Neither bacterial 16 s rDNA band (Fig. 5b) nor fungal ITS region (Fig. 5d) was amplified in the treated AT6 samples. These results confirmed the axenic status of the AT6 cultures.
    Our established methodology
    The present results demonstrate the potential of our methodology to be used in the establishment of axenic cultures for both armored and unarmored dinoflagellates. Figure 7 summarizes the workflow and procedures of our methodology. This promising approach combines three techniques, Percoll density gradient centrifugation, antibiotic treatment and serial dilution. Density gradient centrifugation considerably reduces the bacterial population by the physical separation between the associated bacteria, mainly the free-living and loosely attached bacteria, and the dinoflagellate cells on the basis of cell size. Percoll density layers not only provide a matrix for separating the two types of cells effectively but also cushion the dinoflagellate cells against the impact of the mechanical force. The Percoll density layers together with the bactericidal action of the antibiotic treatment typically eradicate  > 99% of the associated bacteria from the dinoflagellate culture. Our strategies not target at removing the remaining  More

  • in

    Metal concentrations in coastal sharks from The Bahamas with a focus on the Caribbean Reef shark

    1.
    Mendil, D. et al. Determination of trace metal levels in seven fish species in lakes in Tokat, Turkey. Food Chem. 90, 175–179 (2005).
    CAS  Article  Google Scholar 
    2.
    Kennish, M. J. Pollution in estuaries and coastal marine waters. J. Coast. Res. 12, 27–49 (1994).
    Google Scholar 

    3.
    de Souza Machado, A. A., Spencer, K., Kloas, W., Toffolon, M. & Zarfl, C. Metal fate and effects in estuaries: A review and conceptual model for better understanding of toxicity. Sci. Total Environ. 541, 268–281 (2016).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    4.
    Mamtani, R., Stern, P., Dawood, I. & Cheema, S. Metals and disease: A global primary health care perspective. J. Toxicol. 2011, 1–11 (2011).
    Article  CAS  Google Scholar 

    5.
    van Dam, J. W., Negri, A. P., Uthicke, S. & Mueller, J. F. Chemical pollution on coral reefs: Exposure and ecological effects. In Ecological Impacts of Toxic Chemicals (eds Sanchez-Bayo, F. et al.) 187–211 (Bentham Science Publishers, Oak Park, 2011).
    Google Scholar 

    6.
    Dong, W. et al. Developmental toxicity from exposure to various forms of mercury compounds in medaka fish (Oryzias latipes) embryos. PeerJ 4, e2282 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Morcillo, P., Esteban, M. A. & Cuesta, A. Mercury and its toxic effects on fish. AIMS Environ. Sci. 4, 386 (2017).
    CAS  Article  Google Scholar 

    8.
    Bosch, A. C., O’Neill, B., Sigge, G. O., Kerwath, S. E. & Hoffman, L. C. Heavy metal accumulation and toxicity in smoothhound (Mustelus mustelus) shark from Langebaan Lagoon, South Africa. Food Chem. 190, 871–878 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Fisher, N. S. & Reinfelder, J. R. The trophic transfer of metals in marine systems. In Metal Speciation and Bioavailability in Aquatic Systems, Vol. 3 (eds. Tessier, A. & Turner, D. R.) 407–411, 363–406 (Wiley, Chichester, 1995).

    10.
    Ali, H. & Khan, E. Bioaccumulation of non-essential hazardous heavy metals and metalloids in freshwater fish. Risk to human health. Environ. Chem. Lett. 16, 903–917 (2018).
    CAS  Article  Google Scholar 

    11.
    Domi, N., Bouquegneau, J. M. & Das, K. Feeding ecology of five commercial shark species of the Celtic Sea through stable isotope and trace metal analysis. Mar. Environ. Res. 60, 551–569 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Rumbold, D., Wasno, B., Hammerschlag, N. & Volety, A. Mercury accumulation in sharks from the coastal waters of Southwest Florida. Arch. Environ. Contam. Toxicol. 67, 402–412 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Lee, C. S. et al. Declining mercury concentrations in bluefin tuna reflect reduced emissions to the North Atlantic Ocean. Environ. Sci. Technol. 50, 12825–12830 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Merly, L. et al. Blood plasma levels of heavy metals and trace elements in white sharks (Carcharodon carcharias) and potential health consequences. Mar. Pollut. Bull. 142, 85–92 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Fisk, A. T., Tittlemier, S. A., Pranschke, J. L. & Norstrom, R. J. Using anthropogenic contaminants and stable isotopes to assess the feeding ecology of Greenland sharks. Ecology 83, 2162–2172 (2002).
    Article  Google Scholar 

    16.
    Buck, D. G. et al. A global-scale assessment of fish mercury concentrations and the identification of biological hotspots. Sci. Total Environ. 687, 956–966 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Tiktak, G. P. et al. Are concentrations of pollutants in sharks, rays and skates (Elasmobranchii) a cause for concern? A systematic review. Mar. Pollut. Bull. 160, 111701 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Boening, D. W. Ecological effects, transport, and fate of mercury: A general review. Chemosphere 40, 1335–1351 (2000).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Sevcikova, M., Modra, H., Slaninova, A. & Svobodova, Z. Metals as a cause of oxidative stress in fish: A review. Vet. Med. 56, 537–546 (2011).
    CAS  Article  Google Scholar 

    20.
    Bezerra, M. F., Lacerda, L. D. & Lai, C. T. Trace metals and persistent organic pollutants contamination in batoids (Chondrichthyes: Batoidea): A systematic review. Environ. Pollut. 248, 684–695 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Cortés, E. Standardized diet compositions and trophic levels of sharks. ICES J. Mar. Sci. 56, 707–717 (1999).
    Article  Google Scholar 

    22.
    Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. 17, 239–250 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    23.
    Shipley, O. N., Gallagher, A. J., Shiffman, D. S., Kaufman, L. & Hammerschlag, N. Diverse resource-use strategies in a large-bodied marine predator guild: Evidence from differential use of resource subsidies and intraspecific isotopic variation. Mar. Ecol. Prog. Ser. 623, 71–83 (2019).
    ADS  Article  Google Scholar 

    24.
    Roff, G. et al. The ecological role of sharks on coral reefs. Trends Ecol. Evol. 31, 395–407 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    25.
    Hammerschlag, N. et al. Ecosystem function and services of aquatic predators in the Anthropocene. Trends Ecol. Evol. 34, 369–383 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    Dent, F. & Clarke, S. State of the global market for shark products. FAO Fisheries and Aquaculture Technical Paper, 590 (2015).

    27.
    Buchan, K. C. The Bahamas. Mar. Pollut. Bull. 41, 94–111 (2000).
    CAS  Article  Google Scholar 

    28.
    Brooks, E. J., Sloman, K. A., Sims, D. W. & Danylchuk, A. J. Validating the use of baited remote underwater video surveys for assessing the diversity, distribution and abundance of sharks in the Bahamas. Endanger. Spec. Res. 13, 231–243 (2011).
    Article  Google Scholar 

    29.
    Zhu, Y., Newman, S. P., Reid, W. D. & Polunin, N. V. Fish stable isotope community structure of a Bahamian coral reef. Mar. Biol. 166, 160 (2019).
    Article  Google Scholar 

    30.
    Burgess, G. H. & Fordham, S. V. Regional overviews. In Sharks, Rays & Chimaeras: The Status of Chondrichthyan Fishes (eds. Fowler, S. L. et al.) 461 (IUCN/SSG Shark Specialist Group, Gland, 2005).

    31.
    Sherman, K. D. et al. Contemporary and emerging fisheries in The Bahamas—Conservation and management challenges, achievements and future directions. Fish. Manag. Ecol. 25, 319–331 (2018).
    Article  Google Scholar 

    32.
    Ward-Paige, C. A. A global overview of shark sanctuary regulations and their impact on shark fisheries. Mar. Policy 82, 87–97 (2017).
    Article  Google Scholar 

    33.
    Hammerschlag, N., Gallagher, A. J., Wester, J., Luo, J. & Ault, J. S. Don’t bite the hand that feeds: Assessing ecological impacts of provisioning ecotourism on an apex marine predator. Funct. Ecol. 26, 567–576 (2012).
    Article  Google Scholar 

    34.
    Graham, F. et al. Use of marine protected areas and exclusive economic zones in the subtropical western North Atlantic Ocean by large highly mobile sharks. Divers. Distrib. 22, 534–546 (2016).
    Article  Google Scholar 

    35.
    Chapman, D. D., Pikitch, E. K., Babcock, E. A. & Shivji, M. S. Deep-diving and diel changes in vertical habitat use by Caribbean reef sharks Carcharhinus perezi. Mar. Ecol. Prog. Ser. 344, 271–275 (2007).
    ADS  Article  Google Scholar 

    36.
    Shipley, O. N. et al. Horizontal and vertical movements of Caribbean reef sharks (Carcharhinus perezi): Conservation implications of limited migration in a marine sanctuary. R. Soc. Open Sci. 4, 160611 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Shipley, O. N. et al. Fine-scale movement and activity patterns of Caribbean reef sharks (Carcharhinus perezi) in the Bahamas. Environ. Biol. Fish. 101, 1097–1104 (2018).
    Article  Google Scholar 

    38.
    Rosa, R.S., Mancini, P., Caldas, J.P., Graham, R.T. Carcharhinus perezi. The IUCN Red List of Threatened Species 2006: e.T60217A12323052. https://doi.org/10.2305/IUCN.UK.2006.RLTS.T60217A12323052.en (2006). Accessed 23 Aug 19.

    39.
    Wei, T. & Simko, V. R package “corrplot”: Visualization of a Correlation Matrix (Version 0.84) (2017).

    40.
    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall/CRC Press, Boca Raton, 2017).
    Google Scholar 

    41.
    Adams, D. H. & McMichael, R. H. Jr. Mercury levels in four species of sharks from the Atlantic coast of Florida. Fish. Bull. 97, 372–379 (1999).
    Google Scholar 

    42.
    Matulik, A. G. et al. Bioaccumulation and biomagnification of mercury and methylmercury in four sympatric coastal sharks in a protected subtropical lagoon. Mar. Polllut. Bull. 116, 357–364 (2017).
    CAS  Article  Google Scholar 

    43.
    Gelsleichter, J., Sparkman, G., Howey, L. A., Brooks, E. J. & Shipley, O. N. Elevated accumulation of the toxic metal mercury in the Critically Endangered oceanic whitetip shark Carcharhinus longimanus from the northwestern Atlantic Ocean. Endanger. Spec. Res. 43, 267–279 (2020).
    Article  Google Scholar 

    44.
    Hammerschlag, N., Skubel, R. A., Sulikowski, J., Irschick, D. J. & Gallagher, A. J. A comparison of reproductive and energetic states in a marine apex predator (the tiger shark, Galeocerdo cuvier). Physiol. Biochem. Zool. 91, 933–942 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Froese, R., & Pauly, D. FishBase, version (06/2017). World Wide Web Electronic Publication (2017). Accessed 23 Aug 19.

    46.
    Pikitch, E. K., Chapman, D. D., Babcock, E. A. & Shivji, M. S. Habitat use and demographic population structure of elasmobranchs at a Caribbean atoll (Glover’s Reef, Belize). Mar. Ecol. Prog. Ser. 302, 187–197 (2005).
    ADS  Article  Google Scholar 

    47.
    Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. Elife 3, e00590 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Castro-González, M. I. & Méndez-Armenta, M. Heavy metals: Implications associated to fish consumption. Environ. Toxicol. Pharmacol. 26, 263–271 (2008).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    49.
    Amirah, M. N., Afiza, A. S., Faizal, W. I. W., Nurliyana, M. H. & Laili, S. Human health risk assessment of metal contamination through consumption of fish. J. Environ. Pollut. Hum. Health 1, 1–5 (2013).
    Google Scholar 

    50.
    Lyons, K. et al. Species-specific characteristics influence contaminant accumulation trajectories and signatures across ontogeny in three pelagic shark species. Environ. Sci. Technol. 53, 6997–7006 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Rejomon, G., Nair, M. & Joseph, T. Trace metal dynamics in fishes from the southwest coast of India. Environ. Monit. Assess. 167, 243–255 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Shipley, O. N. et al. Trophodynamics and mercury bioaccumulation in reef and open-ocean fishes from The Bahamas with a focus on two teleost predators. Mar. Ecol. Prog Ser. 608, 221–232 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Karimi, R., Fisher, N. S. & Folt, C. L. Multielement stoichiometry in aquatic invertebrates: When growth dilution matters. Am. Nat. 176, 699–709 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Choy, C. A., Popp, B. N., Kaneko, J. J. & Drazen, J. C. The influence of depth on mercury levels in pelagic fishes and their prey. Proc. Natl. Acad. Sci. U. S. A. 106, 13865–13869 (2009).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Lacerda, L. D., Goyanna, F., Bezerra, M. F. & Silva, G. B. Mercury concentrations in tuna (Thunnus albacares and Thunnus obesus) from the Brazilian Equatorial Atlantic Ocean. B Eniviron. Contam. Toxicol. 98, 49–155 (2017).
    Google Scholar 

    56.
    Lee, C. S. & Fisher, N. S. Methylmercury uptake by diverse marine phytoplankton. Limnol. Oceanogr. 61, 1626–1639 (2016).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Mohammed, A. & Mohammed, T. Mercury, arsenic, cadmium and lead in two commercial shark species (Sphyrna lewini and Caraharinus porosus) in Trinidad and Tobago. Mar. Pollut. Bull. 119, 214–218 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Burger, J. et al. Metal levels in fish from the Savannah River: potential hazards to fish and other receptors. Environ Res 89, 85–97 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Kim, S. W. et al. Heavy metal accumulation in and food safety of shark meat from Jeju island, Republic of Korea. PLoS ONE 14, e0212410 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Roesijadi, G. Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat. Toxicol. 22, 81–113 (1992).
    CAS  Article  Google Scholar 

    61.
    Palmiter, R. D. The elusive function of metallothioneins. Proc. Natl. Acad. Sci. U. S. A. 95, 8428–8430 (1998).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Pagenkopf, G. K. Gill surface interaction model for trace-metal toxicity to fishes: Role of complexation, pH, and water hardness. Environ. Sci. Technol. 17, 342–347 (1983).
    ADS  CAS  Article  Google Scholar 

    63.
    Playle, R. C. Modelling metal interactions at fish gills. Sci. Total Environ. 219, 147–163 (1998).
    ADS  CAS  Article  Google Scholar 

    64.
    Barrera-García, A. et al. Trace elements and oxidative stress indicators in the liver and kidney of the blue shark (Prionace glauca). Comp. Biochem. Physiol. A 165, 483–490 (2013).
    Article  CAS  Google Scholar 

    65.
    Dhanakumar, S., Solaraj, G. & Mohanraj, R. Heavy metal partitioning in sediments and bioaccumulation in commercial fish species of three major reservoirs of river Cauvery delta region, India. Ecotox. Environ. Safe 113, 145–151 (2015).
    CAS  Article  Google Scholar 

    66.
    Buchanan, K. et al. Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. 83, 301–309 (2012).
    Article  Google Scholar 

    67.
    Bergés-Tiznado, M. E. et al. Mercury and selenium in muscle and target organs of Scalloped Hammerhead Sharks Sphyrna lewini of the SE Gulf of California: Dietary intake, molar ratios, loads, and human health risks. Arch. Environ. Contam. Toxicol. 69, 440–452 (2015).
    PubMed  Article  CAS  PubMed Central  Google Scholar  More

  • in

    Evaluation of the chemical defense fluids of Macrotermes carbonarius and Globitermes sulphureus as possible household repellents and insecticides

    1.
    Batalha, L. S., Silva Filho, D. F. & Martius, C. Using termite nests as a source of organic matter in agrosilvicultural production systems in Amazonia. Scientia Agricola 52, 318–325 (1995).
    Article  Google Scholar 
    2.
    Ayuke, F. O. et al. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Appl. Soil. Ecol. 48, 53–62 (2011).
    Article  Google Scholar 

    3.
    Jouquet, P., Chaudhary, E. & Kumar, A. R. V. Sustainable use of termite activity in agro-ecosystems with reference to earthworms A review. Agron. Sustain. Dev. 38, 3 (2018).
    Article  Google Scholar 

    4.
    Deligne, J., Quennedey, A. & Blum, M. S. The enemies and defense mechanisms of termites. In Social Insects (ed. Hermann, H. R.) 1–76 (Academic Press, Cambridge, 1981).
    Google Scholar 

    5.
    Grasse, P. P. Termitologia, Tome III (Masson, Paris, 1986).
    Google Scholar 

    6.
    Prestwich, G. D. Defense mechanisms of termites. Annu. Rev. Entomol. 29(1), 201–232 (1984).
    CAS  Article  Google Scholar 

    7.
    Chuah, C. H. Chemical Weapons and Defense Mechanism of Malaysian Termites. In Chemistry in Malaysia 4–11 (Institut Kimia Malaysia, 2010).

    8.
    Iida, M. & Akino, T. Defensive effect of soldier-specific secretion by Reticulitermes speratus (Isoptera: Rhinotermitidae) on the facultative termitophagous ponerine ant, Brachyponera chinensis (Hymenoptera: Ponerinae). Appl. Entomol. Zool. 51, 111–116 (2016).
    Article  Google Scholar 

    9.
    Kori, N. S. M. & Arumugam, N. Termites of Agropark, Universiti Malaysia Kelantan, Jeli Campus: Diversity and pest composition. J. Trop. Resour. Sustain. Sci. 5, 104–108 (2017).
    Google Scholar 

    10.
    Alia-Diyana, M. H., Appalasamy, S. & Arumugam, N. Termite species and structural pest identification in selected rural areas of Kelantan, Malaysia. IOP Conf. Ser. Earth and Environ. Sci. https://doi.org/10.1088/1755-1315/549/1/012053 (2020).
    Article  Google Scholar 

    11.
    Sillam-Dussès, D. et al. Comparative Study of the Labial Gland Secretion in Termites (Isoptera). PLoS ONE 7(10), e46431 (2012).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    12.
    Wyatt, T. D. Pheromones and other chemical communication in animals. In Encyclopedia of Neuroscience (ed. Squire, L. R.) 611–616 (Academic Press, Oxford, 2017).
    Google Scholar 

    13.
    Ahmad, N. & Kamarudin, N. Pheromone Trapping in Controlling Key Insect Pests: Progress and Prospects (Malaysia Palm Oil Board, Kajang, 2016).
    Google Scholar 

    14.
    Matthews, G. Pesticides: Health, Safety and the Environment (Wiley Blackwell, Chichester, 2015).
    Google Scholar 

    15.
    Desneux, N., Decourtye, A. & Delpuech, J.-M. The sublethal effects of pesticides on beneficial arthropods. Ann. Rev. Entomol. 52(1), 81–106 (2007).
    CAS  Article  Google Scholar 

    16.
    Rattan, R. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 29(9), 913–920 (2010).
    CAS  Article  Google Scholar 

    17.
    Regnault-Roger, C., Vincent, C. & Arnason, J. T. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 57, 405–424 (2012).
    CAS  PubMed  Article  Google Scholar 

    18.
    Pavela, R. & Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 21(12), 1000–1007 (2016).
    CAS  PubMed  Article  Google Scholar 

    19.
    Chouvenc, T., Su, N. & Kenneth, G. J. Fifty years of attempted biological control of termites—Analysis of a failure. Biol. Control 59(2), 69–82 (2011).
    Article  Google Scholar 

    20.
    Meikle, W. G. et al. Evaluation of an entomopathogenic fungus, Paecilomyces fumosoroseus (Wize) Brown and Smith (Deuteromycota: Hyphomycetes) obtained from Formosan subterranean termites (Isop, Rhinotermitidae). J. Appl. Entomol. 129(6), 315–322 (2005).
    Article  Google Scholar 

    21.
    Tho, Y. P. Termites of Peninsular Malaysia (Forest Research Institute Malaysia, Selangor, 1992).
    Google Scholar 

    22.
    Krasulova, J. et al. Chemistry and anatomy of the frontal gland in soldiers of the sand termite Psammotermes hybostoma. J. Chem. Ecol. 38(5), 557–565 (2012).
    CAS  PubMed  Article  Google Scholar 

    23.
    Bakaruddin, N. H., Dieng, H., Sulaiman, S. F. & Ab Majid, A. H. Evaluation of the toxicity and repellency of tropical plant extract against subterranean termites, Globitermes sulphureus and Coptotermes gestroi. Inf. Process. Agric. 5(3), 298–307 (2018).
    Google Scholar 

    24.
    Lee, C. C. & Lee, C. Y. A laboratory maintenance regime for a fungus-growing termite Macrotermes gilvus (Blattodea: Termitidae). J. Econ. Entomol. 108(3), 1243–1250 (2015).
    CAS  PubMed  Article  Google Scholar 

    25.
    Zibaee, I. & Pooya, B. K. Evaluation of repellent activity of two essential oils and their mixed formulation against cockroaches (Dictyoptera: Blattidae, Blattellidae) in Iran. J. Entomol. Zool. Stud. 4, 106 (2016).
    Google Scholar 

    26.
    OECD. Guidance Document on Assays for Testing the Efficacy of Baits Against Cockroaches Health and Safety Publications (OECD Environment, Paris, 2013).
    Google Scholar 

    27.
    Syed, R., Manzoor, F., Adalat, R., Abdul-Sattar, A. & Syed, A. Laboratory evaluation of toxicity of insecticide formulations from different classes against American cockroach (Dictyoptera: Blattidae). J. Arthropod-Borne Dis. 8(1), 21–34 (2014).
    PubMed  Google Scholar 

    28.
    Ohta, M., Matsuura, F., Henderson, G. & Laine, R. A. Novel free ceramides as components of the soldier defense gland of the Formosan subterranean termite (Coptotermes formosanus). J. Lipid Res. 48(3), 656–664 (2007).
    CAS  PubMed  Article  Google Scholar 

    29.
    McDonald, L. L., Guy, R. H. & Speirs, R. D. Preliminary evaluation of new candidate materials as toxicants, repellents, and attractants against stored-product insects-1 (Agriculture Research Service, 1970).

    30.
    Johnson, R. A., Thomas, R. J., Wood, T. G. & Swift, M. J. The inoculation of the fungus comb in newly founded colonies of some species of the Macrotermitinae (Isoptera) from Nigeria. J. Nat. Hist. 15(5), 751–756 (2007).
    Article  Google Scholar 

    31.
    de Mello, A. P., Azevedo, N. R., da Silva, A. M. B. & Gusmão, M. A. B. Chemical composition and variability of the defensive secretion in Nasutitermes corniger (Motschulsky, 1885) in urban area in the Brazilian semiarid region. Entomotropica 31, 82–90 (2016).
    Google Scholar 

    32.
    Bordereau, C., Robert, A., Van Tuyen, V. & Peppuy, A. Suicidal defensive behaviour by frontal gland dehiscence in Globitermes sulphureus Haviland soldiers (Isoptera). Insectes Soc. 44(3), 289–297 (1997).
    Article  Google Scholar 

    33.
    Touchard, A., Dejean, A., Escoubas, P. & Orivel, J. Intraspecific variations in the venom peptidome of the ant Odontomachus haematodus (Formicidae: Ponerinae) from French Guiana. J. Hymenoptera Res. 47, 87–101 (2015).
    Article  Google Scholar 

    34.
    Aguilera-Olivares, D., Burgos-Lefimil, C., Melendez, W., Flores-Prado, L. & Niemeyer, H. M. Chemical basis of nestmate recognition in a defense context in a one-piece nesting termite. Chemoecology 26(5), 163–172 (2016).
    Article  Google Scholar 

    35.
    Kuswanto, E., Ahmad, I., Putra, R. E. & Harahap, I. S. Two novel volatile compounds as the key for intraspecific colony recognition in Macrotermes gilvus (Isoptera: Termitidae). J. Entomol. 12(2), 87–94 (2015).
    CAS  Article  Google Scholar 

    36.
    Ismanto, A. & Baedowi, A. Efikasi ekstrak akar tuba dalam mengendalikan rayap tanah Macrotermes gilvus hagen pada pertanaman kayu putih. Jurnal Ecogreen. 5(1), 57–62 (2019).
    Google Scholar 

    37.
    Jones, T. H. et al. The chemistry of exploding ants, Camponotus spp. (cylindricus complex). J. Chem. Ecol. 30(8), 1479–1492 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Laciny, A. et al. Colobopsis explodens sp. n., model species for studies on “exploding ants” (Hymenoptera, Formicidae), with biological notes and first illustrations of males of the Colobopsis cylindrica group. ZooKeys 751, 1–40 (2018).
    Article  Google Scholar 

    39.
    Kuwahara, Y. Chemical Ecology of Astigmatid Mites (Cambridge University Press, Cambridge, 2004).
    Google Scholar 

    40.
    Iqbal, N. & Saeed, S. Toxicity of six new chemical insecticides against the termite, Microtermes mycophagus D. (Isoptera: Termitidae: Macrotermitinae). Pak. J. Zool. 45(3), 709–713 (2013).
    CAS  Google Scholar 

    41.
    Lihoreau, M. & Rivault, C. Kin recognition via cuticular hydrocarbons shapes cockroach social life. Behav. Ecol. 20, 46–53 (2009).
    Article  Google Scholar 

    42.
    Emanuel, S. & Libersat, F. Nociceptive Pathway in the cockroach Periplaneta americana. Front. Physiol. https://doi.org/10.3389/fphys.2019.01100 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    43.
    Deisig, N., Dupuy, F., Anton, S. & Renou, M. Responses to pheromones in a complex odor world: Sensory processing and behavior. Insects. 5(2), 399–422 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    44.
    Nishino, H. et al. Spatial receptive fields for odor localization. Curr. Biol. 28(4), 600–608 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Sandoz, J. C., Pham, D. M., Renou, M. & Wadhams, L. Asymmetrical generalisation between pheromonal and floral odours in appetitive olfactory conditioning of the honey bee (Apis mellifera L.). J. Comp. Physiol. 187, 559–568 (2001).
    CAS  Article  Google Scholar 

    46.
    Kreher, S. A., Kwon, J. Y. & Carlson, J. R. The molecular basis of odor coding in the Drosophila larva. Neuron 46(3), 445–456 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Grosjean, Y. et al. An olfactory receptor for food-derived odours promotes male courtship in Drosophila. Nature 478(7368), 236 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Vosshall, L. B. & Hansson, B. S. A unified nomenclature system for the insect olfactory coreceptor. Chem. Senses 36(6), 497–498 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    49.
    Peschke, K. & Eisner, T. Defensive secretion of the tenebrionid beetle, Blaps mucronata: Physical and chemical determinants of effectiveness. J. Comp. Physiol. 161(3), 377–388 (1987).
    CAS  Article  Google Scholar 

    50.
    Dettner, K. Solvent-dependent variablity of effectiveness of quinone-defensive systems of Oxytelinae beetles (Coleoptera: Staphylinidae). Entomologia Generalis. 15, 275–292 (1991).
    Article  Google Scholar 

    51.
    Roth, L. & Eisner, T. Chemical defenses of arthropods. Ann. Rev. Entomol. 7, 107–136 (2003).
    Article  Google Scholar 

    52.
    Li, J. et al. Odoriferous defensive stink gland transcriptome to identify novel genes necessary for quinone synthesis in the red flour beetle Tribolium castaneum. PLoS Genet. 9(7), 1003596–1003596 (2013).
    Article  CAS  Google Scholar 

    53.
    Delattre, O. et al. Complex alarm strategy in the most basal termite species. Behav. Ecol. Sociobiol. 69(12), 1945–1955 (2015).
    Article  Google Scholar 

    54.
    Prestwich, G. D. & Chen, D. Soldier defense secretions of Trinervitermes bettonianus (Isoptera, Nasutitermitinae): Chemical variation in allopatric populations. J. Chem. Ecol. 7(1), 147–157 (1981).
    CAS  PubMed  Article  Google Scholar 

    55.
    Piper, R. Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals (Greenwood Publishing Group, Westport, 2007).
    Google Scholar 

    56.
    Costa-Leonardo, A. A new interpretation of the defense glands of neotropical Ruptitermes (Isoptera, Termitidae, Apicotermitinae). Sociobiology 44, 391–402 (2004).
    Google Scholar 

    57.
    Reinhard, J., Lacey, M. & Lenz, M. Application of the natural phagostimulant hydroquinone in bait systems for termite management (Isoptera). Sociobiology 39(2), 213–230 (2002).
    Google Scholar 

    58.
    Hasyim, A., Istianto, M. & de Kogel, W. Male fruit fly, Bactrocera tau (Diptera; Tephritidae) attractants from Elsholtzia pubescens Bth. Asian J. Plant Sci. 6(1), 181–183 (2007).
    Article  Google Scholar 

    59.
    Chen, Z. Y. et al. Insecticidal and repellent activity of essential oil from Amomum villosum Lour. and its main compounds against two stored-product insects. Int. J. Food Prop. 21(1), 2265–2275 (2018).
    CAS  Article  Google Scholar 

    60.
    Reisenman, C. E., Lei, H. & Guerenstein, P. G. Neuroethology of olfactory-guided behavior and its potential application in the control of harmful insects. Front. Physiol. 7, 271–271 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    61.
    Raina, A. K., Bland, J. M. & Osbrink, W. Hydroquinone is not a phagostimulant for the Formosan subterranean termite. J. Chem. Ecol. 31(3), 509–517 (2005).
    CAS  PubMed  Article  Google Scholar 

    62.
    Bagnères, A.-G. & Hanus, R. Communication and social regulation in termites. In Social Recognition in Invertebrates: The Knowns and the Unknowns (eds Aquiloni, L. & Tricarico, E.) 193–248 (Springer, Cham, 2015).
    Google Scholar 

    63.
    Alia Diyana, M. H., Appalasamy, S., Arumugam, N. & Boon, J. G. A study of a termite chemical defense fluid compound of Macrotermes carbonarius. IOP Conf. Ser. Earth Environ. Sci. https://doi.org/10.1088/1755-1315/269/1/012009 (2019).
    Article  Google Scholar 

    64.
    Environmental Protection Agency. Furanone. Prevention P A T S (National Center for Environmental Publications and Information, 1993).

    65.
    Igwe, O. U. & Udofia, D. E. Secondary metabolites of the cuticular abdominal glands of variegated grasshopper (Zonocerus variegatus L.). Int. J. Spectrosc. 2015, 1–6 (2015).
    Article  CAS  Google Scholar 

    66.
    Neoh, K. B., Yeap, B.-K., Tsunoda, K., Yoshimura, T. & Lee, C.-Y. Do termites avoid carcasses? Behavioral responses depend on the nature of the carcasses. PLoS ONE 7(4), 36375 (2012).
    ADS  Article  CAS  Google Scholar 

    67.
    Blassioli-Moraes, M. C., Laumann, R. A., Michereff, M. F. F. & Borges, M. Semiochemicals for integrated pest management. In Sustainable Agrochemistry: A Compendium of Technologies (ed. Vaz, S., Jr.) 85–112 (Springer, Cham, 2019).
    Google Scholar 

    68.
    de Melo, A. R. et al. Toxicity of different fatty acids and methyl esters on Culex quinquefasciatus larvae. Ecotoxicol. Environ. Saf. 154, 1–5 (2018).
    ADS  PubMed  Article  CAS  Google Scholar 

    69.
    Xie, Y., Wang, K., Huang, Q. & Lei, C. Evaluation toxicity of monoterpenes to subterranean termite, Reticulitermes chinensis Snyder. Ind. Crops Prod. 53, 163–166 (2014).
    CAS  Article  Google Scholar 

    70.
    Xie, Y. et al. Antitermitic and antifungal activities of eugenol and its congeners from the flower buds of Syzgium aromaticum (clove). Ind. Crops Prod. 77, 780–786 (2015).
    CAS  Article  Google Scholar 

    71.
    Zhang, Z., Yang, T., Zhang, Y., Wang, L. & Xie, Y. Fumigant toxicity of monoterpenes against fruitfly, Drosophila melanogaster. Ind. Crops Prod. 81, 147–151 (2016).
    CAS  Article  Google Scholar 

    72.
    Silva, L. N. D. et al. The influence of fatty acid methyl esters (FAMEs) in the biochemistry and the Na+/K+-ATPase activity of Culex quinquefasciatus Larvae. J. Membr. Biol. 249(4), 459–467 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Increase maize productivity and water use efficiency through application of potassium silicate under water stress

    1.
    Faostat, F. Available online, http://www.fao.org/faostat/en/#data.QC. Accessed Jan 2018.
    2.
    MAL, R. Ministry of Agricultural and Land Reclamation. Economic Affairs Sector, study of statistics for animal, poultry and fish wealth. Egypt. Minist. Agric. Land Reclam., 18, 145–159 (2008).

    3.
    Al-Keraby, F. Egypt country report. Global Agenda for, 73 (2000).

    4.
    El-Beltagy, A. & Abo-Hadeed, A. The Main Pillars of the National Program for maximizing the Water-Use Efficiency in the Old Land (The Research and Development Council, Ministry of Agriculture and Land Reclamation (MOALR), Giza, Egypt, 2008).
    Google Scholar 

    5.
    Kandil, E. E., Abdelsalam, N. R., Mansour, M. A., Ali, H. M. & Siddiqui, M. H. Potentials of organic manure and potassium forms on maize (Zea mays L.) growth and production. Sci. Rep. 10, 1–11 (2020).
    Article  CAS  Google Scholar 

    6.
    Mohamed, A. E. & Makki, E. K. Wheat response to irrigation scheduling. Univ. Khartoum J. Agric. Sci. (Sudan) 13(1) (2019).

    7.
    Change, I. P. O. C. Climate change 2007: impacts, adaptation and vulnerability. Genebra, Suíça (2001).

    8.
    Lobell, D. B. & Field, C. B. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2, 014002 (2007).
    ADS  Article  Google Scholar 

    9.
    Tezara, W., Mitchell, V., Driscoll, S. & Lawlor, D. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401, 914–917 (1999).
    ADS  CAS  Article  Google Scholar 

    10.
    Du, N., Guo, W., Zhang, X. & Wang, R. Morphological and physiological responses of Vitex negundo L. var. heterophylla (Franch.) Rehd. to drought stress. Acta Physiol. Plant. 32, 839–848 (2010).
    Article  Google Scholar 

    11.
    Gholami, R. & Zahedi, S. M. Identifying superior drought-tolerant olive genotypes and their biochemical and some physiological responses to various irrigation levels. J. Plant Nutr. 42, 2057–2069 (2019).
    CAS  Article  Google Scholar 

    12.
    Zahedi, S. M., Moharrami, F., Sarikhani, S. & Padervand, M. Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Sci. Rep. 10, 1–18 (2020).
    Article  CAS  Google Scholar 

    13.
    Cakir, R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Res. 89, 1–16 (2004).
    Article  Google Scholar 

    14.
    Igbadun, H. E., Tarimo, A. K., Salim, B. A. & Mahoo, H. F. Evaluation of selected crop water production functions for an irrigated maize crop. Agric. Water Manag. 94, 1–10 (2007).
    Article  Google Scholar 

    15.
    Tariq, J. & Usman, K. Regulated deficit irrigation scheduling of maize crop. 2009. Sarhad J. Agric. 25, 441–450 (2009).
    Google Scholar 

    16.
    Singh, L. et al. Efficient techniques to increase water use efficiency under rainfed eco-systems. J. AgriSearch 1, 193–200 (2014).
    Google Scholar 

    17.
    Al-Mansor, A., El-Gindy, A., Hegazi, M., El-Bagoury, K. & Abd El-Hady, S. Effect of surface and subsurface trickle irrigation on yield and water use efficiency of tomato crop under deficit irrigation conditions. Misr J. Agric. Eng. 32, 1021–1040 (2015).
    Article  Google Scholar 

    18.
    Schmidt, R., Zhang, X. & Chalmers, D. Response of photosynthesis and superoxide dismutase to silica applied to creeping bentgrass grown under two fertility levels. J. Plant Nutr. 22, 1763–1773 (1999).
    CAS  Article  Google Scholar 

    19.
    Kandil, E. E., Abdelsalam, N. R., Aziz, A. A. A. E., Ali, H. M. & Siddiqui, M. H. Efficacy of nanofertilizer, fulvic acid and boron fertilizer on sugar beet (Beta vulgaris L.) yield and quality. SUGAR TECH 22, 782–791 (2020).
    CAS  Article  Google Scholar 

    20.
    Liang, Y., Sun, W., Si, J. & Römheld, V. Effects of foliar-and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant. Pathol. 54, 678–685 (2005).
    CAS  Article  Google Scholar 

    21.
    Hattori, T. et al. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol. Plant. 123, 459–466 (2005).
    CAS  Article  Google Scholar 

    22.
    Liang, Y., Sun, W., Zhu, Y.-G. & Christie, P. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ. Pollut. 147, 422–428 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Maghsoudi, K., Emam, Y. & Ashraf, M. Influence of foliar application of silicon on chlorophyll fluorescence, photosynthetic pigments, and growth in water-stressed wheat cultivars differing in drought tolerance. Turk. J. Bot. 39, 625–634 (2015).
    CAS  Google Scholar 

    24.
    Ibrahim, H. I., Sallam, A. M. & Shaban, K. A. Impact of irrigation rates and potassium silicate fertilizer on seed production and quality of Fahl Egyptian clover and soil properties under saline conditions. Am.-Eurasian J. Agric. Environ. Sci. 15, 1245–1255 (2015).
    Google Scholar 

    25.
    El-Naggar, M. E. et al. Soil application of nano silica on maize yield and its insecticidal activity against some stored insects after the post-harvest. Nanomaterials 10, 739 (2020).
    CAS  PubMed Central  Article  Google Scholar 

    26.
    Romero-Aranda, M. R., Jurado, O. & Cuartero, J. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J. Plant Physiol. 163, 847–855 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Eneji, A. E. et al. Growth and nutrient use in four grasses under drought stress as mediated by silicon fertilizers. J. Plant Nutr. 31, 355–365 (2008).
    CAS  Article  Google Scholar 

    28.
    Liu, J., Han, C., Sheng, X., Liu, S. & Qi, X. in Oral Presentation at 5th International Conference on Si Agriculature. 13–18.

    29.
    Ali, A. M., Ibrahim, S. M. & Abou-Amer, I. Water deficit stress mitigation by foliar application of potassium silicate for sugar beet grown in a saline calcareous soil. Egypt. J. Soil Sci. 59, 15–23 (2019).
    Google Scholar 

    30.
    Mosa, W. F., Ali, H. M. & Abdelsalam, N. R. The utilization of tryptophan and glycine amino acids as safe alternatives to chemical fertilizers in apple orchards. Environ. Sci. Pollut. Res., 1–9. https://doi.org/10.1007/s11356-020-10658-7 (2020).

    31.
    Fouda, M. M. et al. Impact of high throughput green synthesized silver nanoparticles on agronomic traits of onion. Int. J. Biol. Macromol. 149, 1304–1317 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Abdelsalam, N. R. et al. Assessment of silver nanoparticles decorated starch and commercial zinc nanoparticles with respect to their genotoxicity on onion. Int. J. Biol. Macromol. 133, 1008–1018 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Janislampi, K. W. Effect of silicon on plant growth and drought stress tolerance (2012).

    34.
    Balakhnina, T. & Borkowska, A. Effects of silicon on plant resistance to environmental stresses. Int. Agrophys. 27, 225–232 (2013).
    CAS  Article  Google Scholar 

    35.
    Gao, L. et al. Nitrogen fertilizer management and maize straw return modulate yield and nitrogen balance in sweet corn. Agronomy 10, 362 (2020).
    CAS  Article  Google Scholar 

    36.
    Page, A., Miller, R. & Keeney, D. Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties (American Society of Agronomy, Soil Science Society of America, Madison, 1982).
    Google Scholar 

    37.
    Israelsen, D. & Hansen, V. Flow of water into and through soils. In Irrigation Principles and Practices 3rd edn (Willey, New York, 1962). https://doi.org/10.2136/sssaj1963.03615995002700020010x

    38.
    Kjeldahl, C. A new method for the determination of nitrogen in organic matter. Z. Anal. Chem. 22, 366 (1883).
    Article  Google Scholar 

    39.
    AOAC. Official Methods of Analysis (Association of Official Analytical Chemists, Rockville, 1990).
    Google Scholar 

    40.
    Steel, R. G. Pinciples and procedures of statistics a biometrical approach. Report No. 0070610282 (1997).

    41.
    CoStat, V. Cohort software798 light house Ave. PMB320, Monterey, CA93940, and USA. email: info@ cohort. com and Website: http://www.cohort.com. DownloadCoStatPart2. html (2005).

    42.
    Elgamaal, A. A. & Maswada, H. F. Response of three yellow maize hybrids to exogenous salicylic acid under two irrigation intervals. Asian J. Crop Sci. 5, 264–274 (2013).
    Article  Google Scholar 

    43.
    Shi, Q., Zeng, X., Li, M., Tan, X. & Xu, F. Effects of different water management practices on rice growth. Water-Wise Rice Prod. 1, 3–14 (2002).
    Google Scholar 

    44.
    Comas, L. H., Trout, T. J., DeJonge, K. C., Zhang, H. & Gleason, S. M. Water productivity under strategic growth stage-based deficit irrigation in maize. Agric. Water Manag. 212, 433–440 (2019).
    Article  Google Scholar 

    45.
    Song, L., Jin, J. & He, J. Effects of severe water stress on maize growth processes in the field. Sustainability 11, 5086 (2019).
    Article  Google Scholar 

    46.
    Zhang, H. et al. Response of maize yield components to growth stage-based deficit irrigation. Agron. J. 111, 3244–3252 (2019).
    Article  Google Scholar 

    47.
    Shedeed, S. I. Assessing effect of potassium silicate consecutive application on forage maize plants (Zea mays L.). J. Innov. Pharm. Biol. Sci. 5, 119–127 (2018).
    CAS  Article  Google Scholar 

    48.
    Mikhael, B., Awad-Allah, M. & Gewaily, E. Effect of irrigation intervals and silicon sources on the productivity of broadcast-seeded Sakha 107 rice cultivar. J. Plant Prod. 9, 1055–1062 (2018).
    Article  Google Scholar 

    49.
    Ren, J., Guo, J., Xing, X., Qi, G. & Yuan, Z. Preliminary study on yield increase effects and yield increase mechanism of silicate fertilizer on maize. J. Maize Sci. 10, 86–87 (2002).
    Google Scholar 

    50.
    Ahmad, A., Afzal, M., Ahmad, A. & Tahir, M. Effect of foliar application of silicon on yield and quality of rice (Oryza Sativa L). Cercet. Agron. Mold. 46, 21–28 (2013).
    Article  Google Scholar 

    51.
    Pilon, C., Soratto, R. P. & Moreno, L. A. Effects of soil and foliar application of soluble silicon on mineral nutrition, gas exchange, and growth of potato plants. Crop Sci. 53, 1605–1614 (2013).
    Article  Google Scholar 

    52.
    Abdeen, S. & Mancy, A. A melioration of water stress effect on sorghum plant growth and water use efficiency by application of potassium silicate and salicylic acid. Bull. Fac. Agric. Cairo Univ. 69, 43–52 (2018)
    Google Scholar 

    53.
    Sepaskhah, A. R. & Khajehabdollahi, M. H. Alternate furrow irrigation with different irrigation intervals for maize (Zea mays L.). Plant Prod. Sci. 8, 592–600 (2005).
    Article  Google Scholar 

    54.
    Artyszak, A. Effect of silicon fertilization on crop yield quantity and quality—a literature review in Europe. Plants 7, 54 (2018).
    CAS  PubMed Central  Article  Google Scholar 

    55.
    Zahedi, S. M., Karimi, M. & Teixeira da Silva, J. A. The use of nanotechnology to increase quality and yield of fruit crops. J. Sci. Food Agric. 100, 25–31 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Hasanuzzaman, M., Alam, M. M., Nahar, K., Ahamed, K. U. & Fujita, M. Exogenous salicylic acid alleviates salt stress-induced oxidative damage in Brassica napus by enhancing the antioxidant defense and glyoxalase systems. Aust. J. Crop Sci. 8, 631 (2014).
    CAS  Google Scholar  More

  • in

    Advanced characterization of biomineralization at plaque layer and inside rice roots amended with iron- and silica-enhanced biochar

    1.
    Normile, D. Reinventing rice to feed the world. Science 321, 330–333 (2008).
    MathSciNet  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Marschner, P. Marschner’s Mineral Nutrition of Higher Plants (Academic Press, London, 2012).
    Google Scholar 

    3.
    Vigani, G., Tarantino, D. & Murgia, I. Mitochondrial ferritin is a functional iron-storage protein in cucumber (Cucumis sativus) roots. Front. Plant Sci. 4, 316 (2013).
    PubMed  PubMed Central  Google Scholar 

    4.
    Violante, A., Barberis, E., Pigna, M. & Boero, V. Factors affecting the formation, nature, and properties of iron precipitation products at the soil-root interface. J. Plant Nutr. 26, 1889–1908 (2003).
    CAS  Article  Google Scholar 

    5.
    Pradhan, S. K. et al. Genetic regulation of homeostasis, uptake, bio-fortification and efficiency enhancement of iron in rice. Environ. Exp. Bot. 177, 104066 (2020).
    CAS  Article  Google Scholar 

    6.
    Kilcoyne, S. H., Bentley, P. M., Thongbai, P., Gordon, D. C. & Goodman, B. A. The application of 57Fe Mössbauer spectroscopy in the investigation of iron uptake and translocation in plants. Nucl. Instrum. Meth B 160, 157–166 (2000).
    ADS  CAS  Article  Google Scholar 

    7.
    Zhang, A. et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric. Ecosyst. Environ. 139, 469–475 (2010).
    CAS  Article  Google Scholar 

    8.
    Huang, M., Yang, L., Qin, H., Jiang, L. & Zou, Y. Quantifying the effect of biochar amendment on soil quality and crop productivity in Chinese rice paddies. Field Crops Res. 154, 172–177 (2013).
    Article  Google Scholar 

    9.
    Zhang, A. et al. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Res. 127, 153–160 (2012).
    Article  Google Scholar 

    10.
    Kim, S. & Dale, B. E. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg. 26, 361–375 (2004).
    Article  Google Scholar 

    11.
    Wang, Y., Xiao, X., Xu, Y. & Chen, B. Environmental effects of silicon within Biochar (Sichar) and carbon–silicon coupling mechanisms: A critical review. Environ. Sci. Technol. 53, 13570–13582 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A. & Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Soil Res. 45, 629 (2007).
    CAS  Article  Google Scholar 

    13.
    Van Zwieten, L. et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327, 235–246 (2009).
    Article  CAS  Google Scholar 

    14.
    Joseph, S. et al. Shifting paradigms: Development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Manag. 4, 323–343 (2013).
    CAS  Article  Google Scholar 

    15.
    Chew, J. et al. Biochar-based fertilizer: Supercharging root membrane potential and biomass yield of rice. Sci. Total Environ. 713, 136431 (2020).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Irshad, M. K. et al. Goethite-modified biochar ameliorates the growth of rice (Oryza sativa L.) plants by suppressing Cd and As-induced oxidative stress in Cd and As co-contaminated paddy soil. Sci. Total Environ. 717, 137086 (2020).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Zhang, J.-Y. et al. Effects of nano-Fe3O4-modified biochar on iron plaque formation and Cd accumulation in rice (Oryza sativa L.). Environ. Pollut. 260, 113970 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Chen, Z. et al. Mitigation of Cd accumulation in paddy rice (Oryza sativa L.) by Fe fertilization. Environ. Pollut. 231, 549–559 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Küpper, H., Zhao, F. J. & McGrath, S. P. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 119, 305–312 (1999).
    PubMed Central  Article  Google Scholar 

    20.
    Blackwell, P. et al. Influences of biochar and biochar-mineral complex on mycorrhizal colonisation and nutrition of wheat and sorghum. Pedosphere 25, 686–695 (2015).
    CAS  Article  Google Scholar 

    21.
    Rodriguez, N., Menendez, N., Tornero, J., Amils, R. & de la Fuente, V. Internal iron biomineralization in Imperata cylindrica, a perennial grass: Chemical composition, speciation and plant localization. New Phytol. 165, 781–789 (2005).
    CAS  PubMed  Article  Google Scholar 

    22.
    Neumann, D., Nieden, U. Z., Lichtenberger, O. & Leopold, I. How does Armeria maritima tolerate high heavy metal concentrations?. J. Plant Physiol. 146, 704–717 (1995).
    CAS  Article  Google Scholar 

    23.
    Liu, D. H., Adler, K. & Stephan, U. W. Iron-containing particles accumulate in organelles and vacuoles of leaf and root cells in the nicotianamine-free tomato mutantchloronerva. Protoplasma 201, 213–220 (1998).
    CAS  Article  Google Scholar 

    24.
    Alkhatib, R., Alkhatib, B., Abdo, N., Al-Eitan, L. & Creamer, R. Physio-biochemical and ultrastructural impact of (Fe3O4) nanoparticles on tobacco. BMC Plant Biol. 19, 253 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Fuente, V. et al. Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv. J. Struct. Biol. 193, 23–32 (2016).
    CAS  PubMed  Article  Google Scholar 

    26.
    Graham, U. M. et al. Tissue specific fate of nanomaterials by advanced analytical imaging techniques—A review. Chem. Res. Toxicol. 33, 1145–1162 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Aoki, D. et al. Distribution of coniferin in freeze-fixed stem of Ginkgo biloba L. by cryo-TOF-SIMS/SEM. Sci. Rep. 6, 31525 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Martin, R. R. et al. Time of flight secondary ion mass spectrometry studies of the distribution of metals between the soil, rhizosphere and roots of Populus tremuloides Minchx growing in forest soil. Chemosphere 54, 1121–1125 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    29.
    Saito, K. et al. Aluminum localization in the cell walls of the mature xylem of maple tree detected by elemental imaging using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Holzforschung 68, 85–92 (2014).
    CAS  Article  Google Scholar 

    30.
    Hanć, A., Piechalak, A., Tomaszewska, B. & Barałkiewicz, D. Laser ablation inductively coupled plasma mass spectrometry in quantitative analysis and imaging of plant’s thin sections. Int. J. Mass spectrom. 363, 16–22 (2014).
    Article  CAS  Google Scholar 

    31.
    Shi, J., Gras, M. A. & Silk, W. K. Laser ablation ICP-MS reveals patterns of copper differing from zinc in growth zones of cucumber roots. Planta 229, 945–954 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Guizani, C., Haddad, K., Limousy, L. & Jeguirim, M. New insights on the structural evolution of biomass char upon pyrolysis as revealed by the Raman spectroscopy and elemental analysis. Carbon 119, 519–521 (2017).
    CAS  Article  Google Scholar 

    33.
    Joseph, S. et al. An investigation into the reactions of biochar in soil. Soil Res. 48, 501–515 (2010).
    CAS  Article  Google Scholar 

    34.
    Prendergast-Miller, M. T., Duvall, M. & Sohi, S. P. Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. Eur. J. Soil Sci. 65, 173–185 (2014).
    CAS  Article  Google Scholar 

    35.
    Nielsen, S. et al. Comparative analysis of the microbial communities in agricultural soil amended with enhanced biochars or traditional fertilisers. Agric. Ecosyst. Environ. 191, 73–82 (2014).
    Article  Google Scholar 

    36.
    Hansel, C. M., Fendorf, S., Sutton, S. & Newville, M. Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environ. Sci. Technol. 35, 3863–3868 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    37.
    Gloter, A., Zbinden, M., Guyot, F., Gaill, F. & Colliex, C. TEM-EELS study of natural ferrihydrite from geological–biological interactions in hydrothermal systems. Earth Planet. Sci. Lett. 222, 947–957 (2004).
    ADS  CAS  Article  Google Scholar 

    38.
    Rajendran, M. et al. Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil-rice system. Chemosphere 222, 314–322 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    39.
    Wu, C. et al. The effect of silicon on iron plaque formation and arsenic accumulation in rice genotypes with different radial oxygen loss (ROL). Environ. Pollut. 212, 27–33 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Linke, R., Schreiner, M., Demortier, G. & Alram, M. Determination of the provenance of medieval silver coins: potential and limitations of X-ray analysis using photons, electrons or protons. X-ray Spectrom. 32, 373–380 (2003).
    ADS  CAS  Article  Google Scholar 

    41.
    Haynes, R. J. A contemporary overview of silicon availability in agricultural soils. J. Plant Nutr. Soil Sci. 177, 831–844 (2014).
    CAS  Article  Google Scholar 

    42.
    Kostic, L. et al. Liming of anthropogenically acidified soil promotes phosphorus acquisition in the rhizosphere of wheat. Biol. Fertility Soils 51, 289–298 (2014).
    Article  CAS  Google Scholar 

    43.
    Acosta-Martinez, V. & Tabatabai, M. Enzyme activities in a limed agricultural soil. Biol. Fertility Soils 31, 85–91 (2000).
    CAS  Article  Google Scholar 

    44.
    Chan, K., Van Zwieten, L., Meszaros, I., Downie, A. & Joseph, S. Using poultry litter biochars as soil amendments. Soil Res. 46, 437–444 (2008).
    Article  Google Scholar 

    45.
    Khan, N. et al. Root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants. Adv. Agron. 138, 1–96 (2016).
    Article  Google Scholar 

    46.
    Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: Concept and review. Soil Biol. Biochem. 83, 184–199 (2015).
    CAS  Article  Google Scholar 

    47.
    Ma, J., Cai, H., He, C., Zhang, W. & Wang, L. A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytol. 206, 1063–1074 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Wang, Y., Stass, A. & Horst, W. J. Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiol. 136, 3762–3770 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Wang, P., Lombi, E., Zhao, F.-J. & Kopittke, P. M. Nanotechnology: A new opportunity in plant sciences. Trends Plant Sci. 21, 699–712 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Garvie, L. A. & Buseck, P. R. Ratios of ferrous to ferric iron from nanometre-sized areas in minerals. Nature 396, 667–670 (1998).
    ADS  CAS  Article  Google Scholar 

    51.
    Goya, G. F., Berquó, T. S., Fonseca, F. C. & Morales, M. P. Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94, 3520–3528 (2003).
    ADS  CAS  Article  Google Scholar 

    52.
    Yao, C. et al. Developing more effective enhanced biochar fertilisers for improvement of pepper yield and quality. Pedosphere 25, 703–712 (2015).
    CAS  Article  Google Scholar 

    53.
    Rawal, A. et al. Mineral-biochar composites: Molecular structure and porosity. Environ. Sci. Technol. 50, 7706–7714 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    54.
    Mitchell, D. R. Contamination mitigation strategies for scanning transmission electron microscopy. Micron 73, 36–46 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Phenol-rich fulvic acid as a water additive enhances growth, reduces stress, and stimulates the immune system of fish in aquaculture

    1.
    FAO. The State of World Fisheries and Aquaculture 2018. (Food and Agriculture Organization of the United Nations, 2018).
    2.
    Zuo, Z.-H., Shang, B.-J., Shao, Y.-C., Li, W.-Y. & Sun, J.-S. Screening of intestinal probiotics and the effects of feeding probiotics on the growth, immune, digestive enzyme activity and intestinal flora of Litopenaeus vannamei. Fish Shellfish Immunol. 86, 160–168. https://doi.org/10.1016/j.fsi.2018.11.003 (2019).
    CAS  Article  PubMed  Google Scholar 

    3.
    Hoseinifar, S. H., Sun, Y., Wang, A. & Zhou, Z. Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front. Microbiol. 9, 2429. https://doi.org/10.3389/fmicb.2018.02429 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    4.
    Reverter, M., Bontemps, N., Lecchini, D., Banaigs, B. & Sasal, P. Use of plant extracts in fish aquaculture as an alternative to chemotherapy: Current status and future perspectives. Aquaculture 433, 50–61. https://doi.org/10.1016/j.aquaculture.2014.05.048 (2014).
    Article  Google Scholar 

    5.
    Lieke, T. et al. Sustainable aquaculture requires environmental-friendly treatment strategies for fish diseases. Rev. Aquac. 12, 943–965. https://doi.org/10.1111/raq.12365 (2019).
    Article  Google Scholar 

    6.
    Noga, E. J. Fish Disease: Diagnosis and Treatment. Vol. 2nd Edn 143–148 (Wiley, 2011).

    7.
    Haugarvoll, E., Bjerkås, I., Nowak, B. F., Hordvik, I. & Koppang, E. O. Identification and characterization of a novel intraepithelial lymphoid tissue in the gills of Atlantic salmon. J. Anat. 213, 202–209. https://doi.org/10.1111/j.1469-7580.2008.00943.x (2008).
    Article  PubMed  PubMed Central  Google Scholar 

    8.
    Zhang, Z., Swain, T., Bøgwald, J., Dalmo, R. A. & Kumari, J. Bath immunostimulation of rainbow trout (Oncorhynchus mykiss) fry induces enhancement of inflammatory cytokine transcripts, while repeated bath induce no changes. Fish Shellfish Immunol. 26, 677–684. https://doi.org/10.1016/j.fsi.2009.02.014 (2009).
    CAS  Article  PubMed  Google Scholar 

    9.
    Jeney, G. & Anderson, D. P. Enhanced immune response and protection in rainbow trout to Aeromonas salmonicida bacterin following prior immersion in immunostimulants. Fish Shellfish Immunol. 3, 51–58. https://doi.org/10.1006/fsim.1993.1005 (1993).
    Article  Google Scholar 

    10.
    Steinberg, C. E. W. Ecology of Humic Substances in Freshwaters: Determinants from Geochemistry to Ecological Niches. Vol. 1 (Springer, 2003).

    11.
    Haitzer, M., Höss, S., Traunspurger, W. & Steinberg, C. E. W. Effects of dissolved organic matter (DOM) on the bioconcentration of organic chemicals in aquatic organisms—A review. Chemosphere 37, 1335–1362. https://doi.org/10.1016/S0045-6535(98)00117-9 (1998).
    ADS  CAS  Article  PubMed  Google Scholar 

    12.
    Thurman, E. M. Organic Geochemistry of Natural Waters. Vol. 1 (Nijhoff, M./Junk, W. Publishers, 1985).

    13.
    IHSS. What are Humic Substances? http://humic-substances.org .

    14.
    Meinelt, T. et al. Reduction in vegetative growth of the water mold Saprolegnia parasitica (Coker) by humic substance of different qualities. Aquat. Toxicol. 83, 93–103. https://doi.org/10.1016/j.aquatox.2007.03.013 (2007).
    CAS  Article  PubMed  Google Scholar 

    15.
    Yamin, G. et al. The protective effect of humic substances and water and sludge from a recirculating aquaculture system on Aeromonas salmonicida infection in common carp (Cyprinus carpio). J. Fish Dis. 40, 1783–1790. https://doi.org/10.1111/jfd.12645 (2017).
    CAS  Article  PubMed  Google Scholar 

    16.
    Kodama, H., Denso & Nakagawa, T. Protection against atypical Aeromonas salmonicida infection in carp (Cyprinus carpio L.) by oral administration of humus extract. J. Vet. Med. Sci. 69, 405–408, https://doi.org/10.1292/jvms.69.405 (2007).

    17.
    Fierro-Coronado, J. A. et al. Dietary fulvic acid effects on survival and expression of immune-related genes in Litopenaeus vannamei challenged with Vibrio parahaemolyticus. Aquac. Res. 49, 3218–3227. https://doi.org/10.1111/are.13789 (2018).
    CAS  Article  Google Scholar 

    18.
    Gao, Y. et al. Effects of fulvic acid on growth performance and intestinal health of juvenile loach Paramisgurnus dabryanus (Sauvage). Fish Shellfish Immunol. 62, 47–56. https://doi.org/10.1016/j.fsi.2017.01.008 (2017).
    CAS  Article  PubMed  Google Scholar 

    19.
    Saebelfeld, M., Minguez, L., Griebel, J., Gessner, M. O. & Wolinska, J. Humic dissolved organic carbon drives oxidative stress and severe fitness impairments in Daphnia. Aquat. Toxicol. 182, 31–38. https://doi.org/10.1016/j.aquatox.2016.11.006 (2017).
    CAS  Article  PubMed  Google Scholar 

    20.
    Steinberg, C. E. W. et al. Stress by poor food quality and exposure to humic substances: Daphnia magna responds with oxidative stress, lifespan extension, but reduced offspring numbers. Hydrobiologia 652, 223–236 (2010).
    CAS  Article  Google Scholar 

    21.
    Hseu, Y.-C. et al. Humic acid induced genotoxicity in human peripheral blood lymphocytes using comet and sister chromatid exchange assay. J. Hazard. Mater. 153, 784–791. https://doi.org/10.1016/j.jhazmat.2007.09.024 (2008).
    CAS  Article  PubMed  Google Scholar 

    22.
    Savy, D. et al. Quantitative structure-activity relationship of humic-like biostimulants derived from agro-industrial by products and energy crops. Front. Plant Sci. 11, 581. https://doi.org/10.3389/fpls.2020.00581 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    23.
    Pörs, Y. & Steinberg, C. E. Humic substances delay aging of the photosynthetic apparatus of Chara hispida. J. Phycol. 48, 1522–1529. https://doi.org/10.1111/jpy.12012 (2012).
    CAS  Article  PubMed  Google Scholar 

    24.
    Muscolo, A., Sidari, M., Francioso, O., Tugnoli, V. & Nardi, S. The auxin-like activity of humic substances is related to membrane interactions in carrot cell cultures. J. Chem. Ecol. 33, 115–129. https://doi.org/10.1007/s10886-006-9206-9 (2007).
    CAS  Article  PubMed  Google Scholar 

    25.
    Gilbert, M., Bährs, H., Steinberg, C. E. W. & Wilhelm, C. The artificial humic substance HS1500 does not inhibit photosynthesis of the green alga Desmodesmus armatus in vivo but interacts with the photosynthetic apparatus of isolated spinach thylakoids in vitro. Photosynth. Res. https://doi.org/10.1007/s11120-018-0513-0 (2018).
    Article  PubMed  Google Scholar 

    26.
    Perdue, E. M. in Encyclopedia of Inland Waters (ed Gene E. Likens) 806–819 (Academic Press, 2009).

    27.
    Chen, J., Gu, B., LeBoeuf, E. J., Pan, H. & Dai, S. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere 48, 59–68. https://doi.org/10.1016/S0045-6535(02)00041-3 (2002).
    ADS  CAS  Article  PubMed  Google Scholar 

    28.
    Lieke, T., Zhang, X., Steinberg, C. E. & Pan, B. Overlooked risks of biochars: Persistent free radicals trigger neurotoxicity in Caenorhabditis elegans. Environ. Sci. Technol. 52, 7981–7987. https://doi.org/10.1021/acs.est.8b01338 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    29.
    Liao, S., Pan, B., Li, H., Zhang, D. & Xing, B. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings. Environ. Sci. Technol. 48, 8581–8587. https://doi.org/10.1021/es404250a (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    30.
    Yuan, Y. et al. Electron transfer capacity as a rapid and simple maturity index for compost. Biores. Technol. 116, 428–434. https://doi.org/10.1016/j.biortech.2012.03.114 (2012).
    CAS  Article  Google Scholar 

    31.
    Scott, D. T., McKnight, D. M., Blunt-Harris, E. L., Kolesar, S. E. & Lovley, D. R. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ. Sci. Technol. 32, 2984–2989. https://doi.org/10.1021/es980272q (1998).
    ADS  CAS  Article  Google Scholar 

    32.
    Abdel-Tawwab, M., Abdel-Rahman, A. M. & Ismael, N. E. M. Evaluation of commercial live bakers’ yeast, Saccharomyces cerevisiae as a growth and immunity promoter for Fry Nile tilapia, Oreochromis niloticus (L.) challenged in situ with Aeromonas hydrophila. Aquaculture 280, 185–189, https://doi.org/10.1016/j.aquaculture.2008.03.055 (2008).

    33.
    Sanmanee, N. & Areekijseree, M. The effects of fulvic acid on copper bioavailability to porcine oviductal epithelial cells. Biol. Trace Elem. Res. 135, 162–173. https://doi.org/10.1007/s12011-009-8508-5 (2010).
    CAS  Article  PubMed  Google Scholar 

    34.
    Hasan, M. & Soto, D. Improving Feed Conversion Ratio and Its Impact on Reducing Greenhouse Gas Emissions in Aquaculture. (FAO, 2017).

    35.
    Besson, M. et al. Environmental impacts of genetic improvement of growth rate and feed conversion ratio in fish farming under rearing density and nitrogen output limitations. J. Clean. Prod. 116, 100–109 (2016).
    Article  Google Scholar 

    36.
    Tort, L. Stress and immune modulation in fish. Dev. Comp. Immunol. 35, 1366–1375. https://doi.org/10.1016/j.dci.2011.07.002 (2011).
    CAS  Article  PubMed  Google Scholar 

    37.
    Mommsen, T. P., Vijayan, M. M. & Moon, T. W. Cortisol in teleosts: Dynamics, mechanisms of action, and metabolic regulation. Rev. Fish Biol. Fisheries 9, 211–268. https://doi.org/10.1023/A:1008924418720 (1999).
    Article  Google Scholar 

    38.
    Meinelt, T. et al. Humic substances affect physiological condition and sex ratio of swordtail (Xiphophorus helleri Heckel). Aquat. Sci. 66, 239–245. https://doi.org/10.1007/s00027-004-0706-9 (2004).
    Article  Google Scholar 

    39.
    Bly, J. E., Quiniou, S. M. & Clem, L. W. Environmental effects on fish immune mechanisms. Dev. Biol. Stand. 90, 33–43 (1997).
    CAS  PubMed  Google Scholar 

    40.
    Conde-Sieira, M., Chivite, M., Míguez, J. M. & Soengas, J. L. Stress effects on the mechanisms regulating appetite in teleost fish. Front. Endocrinol. 9, https://doi.org/10.3389/fendo.2018.00631 (2018).

    41.
    Kalamarz-Kubiak, H. in Corticosteroids (ed Ali Gamal Al-Kaf) Chap. 7, 183–155 (InTechOpen, 2018).

    42.
    Timofeyev, M. A. et al. Natural organic matter (NOM) induces oxidative stress in freshwater amphipods Gammarus lacustris Sars and Gammarus tigrinus (Sexton). Sci. Total Environ. 366, 673–681. https://doi.org/10.1016/j.scitotenv.2006.02.003 (2006).
    ADS  CAS  Article  PubMed  Google Scholar 

    43.
    Xin, Z. et al. Species sensitivity analysis of heavy metals to freshwater organisms. Ecotoxicology 24, 1621–1631. https://doi.org/10.1007/s10646-015-1500-2 (2015).
    CAS  Article  PubMed  Google Scholar 

    44.
    Demers, N. E. & Bayne, C. J. The immediate effects of stress on hormones and plasma lysozyme in rainbow trout. Dev. Comp. Immunol. 21, 363–373. https://doi.org/10.1016/S0145-305X(97)00009-8 (1997).
    CAS  Article  PubMed  Google Scholar 

    45.
    Dupré-Crochet, S., Erard, M. & Nüβe, O. ROS production in phagocytes: why, when, and where?. J. Leukoc. Biol. 94, 657–670. https://doi.org/10.1189/jlb.1012544 (2013).
    CAS  Article  PubMed  Google Scholar 

    46.
    Geng, X. et al. Effects of dietary chitosan and Bacillus subtilis on the growth performance, non-specific immunity and disease resistance of cobia, Rachycentron canadum. Fish Shellfish Immunol. 31, 400–406. https://doi.org/10.1016/j.fsi.2011.06.006 (2011).
    CAS  Article  PubMed  Google Scholar 

    47.
    Fries, C. & Tripp, M. Depression of phagocytosis in Mercenaria following chemical stress. Dev. Comp. Immunol. 4, 233–244. https://doi.org/10.1016/S0145-305X(80)80027-9 (1980).
    CAS  Article  PubMed  Google Scholar 

    48.
    Sesti-Costa, R., Baccan, G. C., Chedraoui-Silva, S. & Mantovani, B. Effects of acute cold stress on phagocytosis of apoptotic cells: The role of corticosterone. NeuroImmunoModulation 17, 79–87. https://doi.org/10.1159/000258690 (2010).
    CAS  Article  PubMed  Google Scholar 

    49.
    Narnaware, Y. K., Baker, B. I. & Tomlinson, M. G. The effect of various stresses, corticosteroids and adrenergic agents on phagocytosis in the rainbow trout Oncorhynchus mykiss. Fish Physiol. Biochem. 13, 31–40. https://doi.org/10.1007/BF00004117 (1994).
    CAS  Article  PubMed  Google Scholar 

    50.
    Dhabhar, F. S. & McEwen, B. S. Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: A potential role for leukocyte trafficking. Brain Behav. Immun. 11, 286–306 (1997).
    CAS  Article  Google Scholar 

    51.
    Adel, M., Abedian Amiri, A., Zorriehzahra, J., Nematolahi, A. & Esteban, M. Á. Effects of dietary peppermint (Mentha piperita) on growth performance, chemical body composition and hematological and immune parameters of fry Caspian white fish (Rutilus frisii kutum). Fish Shellfish Immunol. 45, 841–847, https://doi.org/10.1016/j.fsi.2015.06.010 (2015).

    52.
    Christybapita, D., Divyagnaneswari, M. & Michael, R. D. Oral administration of Eclipta alba leaf aqueous extract enhances the non-specific immune responses and disease resistance of Oreochromis mossambicus. Fish Shellfish Immunol. 23, 840–852. https://doi.org/10.1016/j.fsi.2007.03.010 (2007).
    CAS  Article  PubMed  Google Scholar 

    53.
    Ragland, S. A. & Criss, A. K. From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS Pathog. 13, https://doi.org/10.1371/journal.ppat.1006512 (2017).

    54.
    Ansorg, R. & Rochus, W. Studies on the antimicrobial effect of natural and synthetic humic acids (author’s transl). Arzneimittelforschung 28, 2195–2198 (1978).
    CAS  PubMed  Google Scholar 

    55.
    Hertkorn, N. et al. Comparative analysis of partial structures of a peat humic and fulvic acid using one-and two-dimensional nuclear magnetic resonance spectroscopy. J. Environ. Qual. 31, 375–387. https://doi.org/10.2134/jeq2002.3750 (2002).
    CAS  Article  PubMed  Google Scholar 

    56.
    Zheng, X. et al. Comparing electron donating/accepting capacities (EDC/EAC) between crop residue-derived dissolved black carbon and standard humic substances. Sci. Total Environ. 673, 29–35. https://doi.org/10.1016/j.scitotenv.2019.04.022 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    57.
    Weil, J. A. & Bolton, J. R. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications. Vol. 2 (Wiley, 2007).

    58.
    Hopkins, K. D. Reporting fish growth: A review of the basics 1. J. World Aquac. Soc. 23, 173–179. https://doi.org/10.1111/j.1749-7345.1992.tb00766.x (1992).
    Article  Google Scholar 

    59.
    Fulton, T. W. The Rate of Growth of Fishes. 141–241 (Scotland, 1904).

    60.
    Barnham, C. A. & Baxter, A. F. Condition Factor, K, for Salmonid Fish. (Department of Primary Industries, 2003).

    61.
    Secombes, C. J. in Techniques in Fish Immunology Vol. 1 (eds J. S. Stolen et al.) 137–154 (SOS Publications, 1990).

    62.
    Chettri, J. K., Holten-Andersen, L. & Buchmann, K. Factors influencing in vitro respiratory burst assays with head kidney leucocytes from rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis. 33, 593–602. https://doi.org/10.1111/j.1365-2761.2010.01160.x (2010).
    CAS  Article  PubMed  Google Scholar 

    63.
    Crampe, M., Farley, S. R., Langston, A. & Pulsford, A. L. in Methodology in Fish Diseases Research (eds A.C. Barnes, G.A. Davidson, M. P. Hiney, & D. McIntosh) 81–91 (Fisheries Research Services, 1998).

    64.
    Begemann, H. & Rastetter, J. Atlas of Clinical Haematology 9–21 (Springer, Berlin, 1972).
    Google Scholar 

    65.
    Sitja-Bobadilla, A., Palenzuela, O. & Alvarez-Pellitero, P. Immune response of turbot, Psetta maxima (L.) (Pisces: Teleostei), to formalin-killed scuticociliates (Ciliophora) and adjuvanted formulations. Fish Shellfish Immunol. 24, 1–10, https://doi.org/10.1016/j.fsi.2007.06.007 (2008).

    66.
    Siwicki, A. in Fish Diseases Diagnosis and Preventions Methods Vol. 1 (eds A.K. Siwicki, D.P. Anderson, & J. Waluga) 105–111 (Wydawnictwo Instytutu Rybactwa Strodladowego, 1993).

    67.
    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3 (1976).
    CAS  Article  Google Scholar 

    68.
    Amado, L. L. et al. A method to measure total antioxidant capacity against peroxyl radicals in aquatic organisms: Application to evaluate microcystins toxicity. Sci. Total Environ. 407, 2115–2123. https://doi.org/10.1016/j.scitotenv.2008.11.038 (2009).
    ADS  CAS  Article  PubMed  Google Scholar 

    69.
    Hollander, M. & Wolfe, D. A. Nonparametric Statistical Methods. Vol. 3 115–120 (Wiley, 2015).

    70.
    Dunn, O. J. Multiple comparisons using rank sums. Technometrics 6, 241–252. https://doi.org/10.2307/1266041 (1964).
    Article  Google Scholar 

    71.
    Siegal, S. & Castellan Jr., N. J. Nonparametric Statistics for the Behavioral Sciences. (McGraw-Hill, 1988).

    72.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodological) 57, 289–300 (1995). More

  • in

    Geological and Pleistocene glaciations explain the demography and disjunct distribution of red panda (A. fulgens) in eastern Himalayas

    1.
    Dong, F. et al. Ice age unfrozen: severe effect of the last interglacial, not glacial, climate change on East Asian avifauna. BMC Evol. Biol. 17, 244 (2017).
    PubMed  PubMed Central  Article  Google Scholar 
    2.
    Hewitt, G. M. Genetic consequences of climatic oscillations in the quaternary. Philo. Trans. R. Soc. Lond. Ser. B Biol. Sci. 359, 183–195 (2004).
    CAS  Article  Google Scholar 

    3.
    Zheng, B., Xu, Q. & Shen, Y. The relationship between climate change and quaternary glacial cycles on the Qinghai-Tibetan Plateau: review and speculation. Quat. Int. 97, 93–101 (2002).
    Article  Google Scholar 

    4.
    Wei, Z., Zhijiu, C. & Yonghua, L. Review of the timing and extent of glaciers during the last glacial cycle in the bordering mountains of Tibet and in East Asia. Quat. Int. 154, 32–43 (2006).
    Article  Google Scholar 

    5.
    Zhou, S., Wang, X., Wang, J. & Xu, L. A preliminary study on timing of the oldest Pleistocene glaciation in Qinghai-Tibetan Plateau. Quat. Int. 154, 44–51 (2006).
    Article  Google Scholar 

    6.
    Ma, J., Wang, Y., Jin, C., Hu, Y. & Bocherens, H. Ecological flexibility and differential survival of Pleistocene Stegodon orientalis and Elephas maximus in mainland southeast Asia revealed by stable isotope (C, O) analysis. Quat. Sci. Rev. 212, 33–44 (2019).
    ADS  Article  Google Scholar 

    7.
    Avise, J. C. Phylogeography: The History and Formation of Species (Harvard University Press, Cambridge, 2000).
    Google Scholar 

    8.
    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Wiens, J. J. Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58, 193–197 (2004).
    PubMed  Article  Google Scholar 

    10.
    Srinivasan, U., Tamma, K. & Ramakrishnan, U. Past climate and species ecology drive nested species richness patterns along an east-west axis in the Himalaya. Glob. Ecol. Biogeogr. 23, 52–60 (2014).
    Article  Google Scholar 

    11.
    Carstens, B. C. & Knowles, L. L. Shifting distributions and speciation: species divergence during rapid climate change. Mol. Ecol. 16, 619–627 (2007).
    PubMed  Article  Google Scholar 

    12.
    Yang, S., Dong, H. & Lei, F. Phylogeography of regional fauna on the Tibetan Plateau: a review. Prog. Nat. Sci. 19, 789–799 (2009).
    CAS  Article  Google Scholar 

    13.
    Qu, Y., Lei, F., Zhang, R. & Lu, X. Comparative phylogeography of five avian species: implications for Pleistocene evolutionary history in the Qinghai-Tibetan plateau. Mol. Ecol. 19, 338–351 (2010).
    CAS  PubMed  Article  Google Scholar 

    14.
    Zhao, N. et al. Pleistocene climate changes shaped the divergence and demography of Asian populations of the great tit Parus major: evidence from phylogeographic analysis and ecological niche models. J. Avian Biol. 43, 297–310 (2012).
    Article  Google Scholar 

    15.
    Lei, F., Qu, Y. & Song, G. Species diversification and phylogeographical patterns of birds in response to the uplift of the Qinghai-Tibet Plateau and Quaternary glaciations. Curr. Zool. 60, 149–161 (2014).
    Article  Google Scholar 

    16.
    McKinney, M. L. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu. Rev. Ecol. System. 28, 495–516 (1997).
    Article  Google Scholar 

    17.
    Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    18.
    Colles, A., Liow, L. H. & Prinzing, A. Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol. Lett. 12, 849–863 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Glatston, A., Wei, F., Zaw, T. & Sherpa, A. Ailurus fulgens. The IUCN Red. List of Threatened Species. (2015).

    20.
    Choudhury, A. An overview of the status and conservation of the red panda Ailurus fulgens in India, with reference to its global status. Oryx 35, 250–259 (2001).
    Article  Google Scholar 

    21.
    Thapa, A. et al. Predicting the potential distribution of the endangered red panda across its entire range using MaxEnt modeling. Ecol. Evol. 8, 10542–10554 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Wei, F., Feng, Z., Wang, Z., Zhou, A. & Hu, J. Use of the nutrients in bamboo by the red panda (Ailurus fulgens). J. Zool. 248, 535–541 (1999).
    Article  Google Scholar 

    23.
    Roberts, M. S. & Gittleman, J. L. Ailurus fulgens repository.si.edu. Mamm. Species Acc. 222, 1–8 (1984).
    Google Scholar 

    24.
    Su, B., Fu, Y., Wang, Y., Jin, L. & Chakraborty, R. Genetic diversity and population history of the red panda (Ailurus fulgens) as inferred from mitochondrial DNA sequence variations. Mol. Biol. Evol. 18, 1070–1076 (2001).
    CAS  PubMed  Article  Google Scholar 

    25.
    Li, M. et al. Mitochondrial phylogeography and subspecific variation in the red panda (Ailurus fulgens): implications for conservation. Mol. Phylogenet. Evol. 36, 78–89 (2005).
    CAS  PubMed  Article  Google Scholar 

    26.
    Hu, Y. et al. Genetic structuring and recent demographic history of red pandas (Ailurus fulgens) inferred from microsatellite and mitochondrial DNA. Mol. Ecol. 20, 2662–2675 (2011).
    PubMed  Article  Google Scholar 

    27.
    Hu, Y. et al. Genomic evidence for two phylogenetic species and long-term population bottlenecks in red pandas. Sci. Adv. 6, eaax5751 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Dalui, S. et al. Fine-scale landscape genetics unveiling contemporary asymmetric movement of red panda (Ailurus fulgens) in Kangchenjunga landscape, India. Sci. Rep. 10, 1–12 (2020).
    Article  Google Scholar 

    29.
    Liu, Z. F. et al. Variations ofδ18O in precipitation of the Yarlung Zangbo River Basin. Acta Geograph. Sin. (Chin.) 17, 317–326 (2007).
    Google Scholar 

    30.
    Wang, X. D. et al. Regional assessment of environmental vulnerability in the Tibetan Plateau: development and application of a new method. J. Arid Environ. 721, 929–939 (2008).
    Google Scholar 

    31.
    Zeng, C. et al. Improving sediment load estimations: The case of the Yarlung Zangbo River (the upper Brahmaputra, Tibet Plateau). CATENA 160, 210–211 (2018).
    Article  Google Scholar 

    32.
    Du, Z. et al. Mountain Geoecology and Sustainable Development of the Tibetan Plateau 312 (Kluwer, Riverwoods, 2000).
    Google Scholar 

    33.
    Choudhury, A. Primates in northeast India: an overview of their distribution and conservation status. ENVIS Bull. Wildl. Prot. Areas 1, 92–101 (2001).
    Google Scholar 

    34.
    Meijaard, E. & Groves, C. P. The geography of mammals and rivers in mainland Southeast Asia. In Primate Biogeography (eds Lehman, S. M. & Fleagle, J. G.) 305–329 (Springer, Boston, 2006).
    Google Scholar 

    35.
    Fordham, G., Shanee, S. & Peck, M. Effect of river size on Amazonian primate community structure: a biogeographic analysis using updated taxonomic assessments. Am. J. Primatol. 82, e23136 (2020).
    PubMed  Article  Google Scholar 

    36.
    Bazin, E. et al. Population size does not influence mitochondrial genetic diversity in animals. Science 312, 570 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    37.
    Heller, R., Chikhi, L. & Siegismund, H. R. The confounding effect of population structure on Bayesian skyline plot inferences of demographic history. PLoS ONE 8(5), e62992 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Hu, Y., Qi, D., Wang, H. & Wei, F. Genetic evidence of recent population contraction in the southernmost population of giant pandas. Genetica 138, 1297–1306 (2010).
    PubMed  Article  Google Scholar 

    39.
    Chung, S.-L. et al. Diachronous uplift of the Tibetan plateau starting 40? Myr ago. Nature 394, 769–773 (1998).
    ADS  CAS  Article  Google Scholar 

    40.
    Tapponnier, P. et al. Oblique stepwise rise and growth of the Tibet Plateau. Science 294, 1671–1677 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    41.
    Royden, L. H., Burchfiel, B. C. & van der Hilst, R. D. The geological evolution of the Tibetan Plateau. Science 321, 1054–1058 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    42.
    Kapp, P., DeCelles, P. G., Gehrels, G. E., Heizler, M. & Ding, L. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geol. Soc. Am. Bull. 119, 917–933 (2007).
    ADS  Article  Google Scholar 

    43.
    Schmidt, F., Franke, F. A., Shirley, M. H., Vliet, K. A. & Villanova, V. L. The importance of genetic research in zoo breeding programmes for threatened species: the African dwarf crocodiles (genus Osteolaemus) as a case study. Int. Zoo Yearb. 49, 125–136 (2015).
    Article  Google Scholar 

    44.
    Gippoliti, S., Cotterill, F. P., Zinner, D. & Groves, C. P. Impacts of taxonomic inertia for the conservation of African ungulate diversity: an overview. Biol. Rev. 93, 115–130 (2018).
    PubMed  Article  Google Scholar 

    45.
    McClenachan, L., Ferretti, F. & Baum, J. K. From archives to conservation: why historical data are needed to set baselines for marine animals and ecosystems. Conserv. Lett. 5, 349–359 (2012).
    Article  Google Scholar 

    46.
    Grace, M. et al. Using historical and palaeoecological data to inform ambitious species recovery targets. Philos. Trans. R. Soc. Lond. B 374, 20190297 (2019).
    Article  Google Scholar 

    47.
    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).
    CAS  Article  Google Scholar 

    48.
    Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Nylander, J. A. A. MrModeltest ver. 2. 2004: Evolutionary Biology Centre (Uppsala University, Sweden, 2004).
    Google Scholar 

    50.
    Sato, J. J. et al. Deciphering and dating the red panda’s ancestry and early adaptive radiation of Musteloidea. Mol. Phylogenet. Evol. 53, 907–922 (2009).
    CAS  PubMed  Article  Google Scholar 

    51.
    Rambaut, A. & Drummond, A. J. Tracer version 1.5 [computer program]. (2009).

    52.
    Rambaut, A. FigTree version 1.4. 0. Available at http://tree.bio.ed.ac.uk/software/figtree. Accessed October (2016).

    53.
    Bandelt, H.-J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).
    CAS  PubMed  Article  Google Scholar 

    54.
    Corander, J. & Marttinen, P. Bayesian identification of admixture events using multilocus molecular markers. Mol. Ecol. 15, 2833–2843 (2006).
    PubMed  Article  Google Scholar 

    55.
    Corander, J., Marttinen, P., Sirén, J. & Tang, J. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinform. 9, 539 (2008).
    Article  Google Scholar 

    56.
    Dupanloup, I., Schneider, S. & Excoffier, L. A simulated annealing approach to define the genetic structure of populations. Mol. Ecol. 11, 2571–2581 (2002).
    CAS  PubMed  Article  Google Scholar 

    57.
    Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992).
    CAS  PubMed  Google Scholar 

    58.
    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).
    CAS  PubMed  PubMed Central  Google Scholar 

    59.
    Fu, Y.-X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).
    CAS  PubMed  PubMed Central  Google Scholar 

    60.
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
    PubMed  Article  Google Scholar  More