Small mammal glucocorticoid concentrations vary with forest fragment size, trap type, and mammal taxa in the Interior Atlantic Forest
1.
Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).
ADS PubMed PubMed Central Article Google Scholar
2.
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
ADS CAS PubMed Article PubMed Central Google Scholar
3.
Ellis, E. C. & Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008).
Article Google Scholar
4.
Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).
ADS CAS PubMed Article PubMed Central Google Scholar
5.
Debinski, D. M. & Holt, R. D. A survey and overview of habitat fragmentation experiments. Conserv. Biol. 14, 342–355 (2000).
Article Google Scholar
6.
Laurance, W. F. et al. The fate of Amazonian forest fragments: A 32-year investigation. Biol. Conserv. 144, 56–67 (2011).
Article Google Scholar
7.
Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81, 117 (2006).
PubMed Article PubMed Central Google Scholar
8.
Hagen, M. et al. Biodiversity, species interactions and ecological networks in a fragmented world. Adv. Ecol. Res. 46, 89–210 (2012).
9.
Acevedo-Whitehouse, K. & Duffus, A. L. J. Effects of environmental change on wildlife health. Philos. Trans. R. Soc. B 364, 3429–3438 (2009).
Article Google Scholar
10.
Jonsson, C. B., Figueiredo, L. T. M. & Vapalahti, O. A global perspective on hantavirus ecology, epidemiology, and disease. CMR 23, 412–441 (2010).
CAS Article Google Scholar
11.
Ellis, R. D., McWhorter, T. J. & Maron, M. Integrating landscape ecology and conservation physiology. Landsc. Ecol. 27, 1–12 (2012).
Article Google Scholar
12.
Chapman, C. A. et al. Do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments?. Am. J. Phys. Anthropol. 131, 525–534 (2006).
PubMed Article PubMed Central Google Scholar
13.
Johnstone, C. P., Reina, R. D. & Lill, A. Interpreting indices of physiological stress in free-living vertebrates. J. Comp. Physiol. B 182, 861–879 (2012).
PubMed Article PubMed Central Google Scholar
14.
Ordóñez-Gómez, J. D. et al. Proximal and distal predictors of the spider monkey’s stress levels in fragmented landscapes. PLoS ONE 11, e0149671 (2016).
PubMed PubMed Central Article CAS Google Scholar
15.
Rimbach, R. et al. Effects of logging, hunting, and forest fragment size on physiological stress levels of two sympatric ateline primates in Colombia. Conserv. Physiol. 1, cot031 (2013).
PubMed PubMed Central Article CAS Google Scholar
16.
Angelier, F. & Wingfield, J. C. Importance of the glucocorticoid stress response in a changing world: Theory, hypotheses and perspectives. Gen. Comp. Endocrinol. 190, 118–128 (2013).
CAS PubMed Article PubMed Central Google Scholar
17.
Bonier, F., Martin, P. R., Moore, I. T. & Wingfield, J. C. Do baseline glucocorticoids predict fitness?. Trends Ecol. Evol. 24, 634–642 (2009).
PubMed Article PubMed Central Google Scholar
18.
Busch, D. S. & Hayward, L. S. Stress in a conservation context: A discussion of glucocorticoid actions and how levels change with conservation-relevant variables. Biol. Conserv. 142, 2844–2853 (2009).
Article Google Scholar
19.
Wikelski, M. & Cooke, S. J. Conservation physiology. Trends Ecol. Evol. 21, 38–46 (2006).
PubMed Article PubMed Central Google Scholar
20.
Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89 (2000).
CAS PubMed PubMed Central Google Scholar
21.
Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R. & Boonstra, R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia 166, 869–887 (2011).
ADS PubMed Article PubMed Central Google Scholar
22.
Heimbürge, S., Kanitz, E., Tuchscherer, A. & Otten, W. Within a hair’s breadth—Factors influencing hair cortisol levels in pigs and cattle. Gen. Comp. Endocrinol. 288, 113359 (2020).
PubMed Article CAS PubMed Central Google Scholar
23.
Kalliokoski, O., Jellestad, F. K. & Murison, R. A systematic review of studies utilizing hair glucocorticoids as a measure of stress suggests the marker is more appropriate for quantifying short-term stressors. Sci. Rep. 9, 11997 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
24.
Koren, L. et al. Towards the validation of endogenous steroid testing in wildlife hair. J. Appl. Ecol. 56, 547–561 (2019).
Article Google Scholar
25.
Wingfield, J. C. & Sapolsky, R. M. Reproduction and resistance to stress: When and how. J. Neuroendocrinol. 15, 711–724 (2003).
CAS PubMed Article PubMed Central Google Scholar
26.
Sopinka, N. M. et al. Manipulating glucocorticoids in wild animals: Basic and applied perspectives. Conserv. Physiol. 3, cov031 (2015).
PubMed PubMed Central Article CAS Google Scholar
27.
Cockrem, J. F. Conservation and behavioral neuroendocrinology. Horm. Behav. 48, 492–501 (2005).
CAS PubMed Article PubMed Central Google Scholar
28.
Fefferman, N. H. & Romero, L. M. Can physiological stress alter population persistence? A model with conservation implications. Conserv. Physiol. 1, cot012 (2013).
PubMed PubMed Central Article Google Scholar
29.
Bauer, C. M. et al. Habitat type influences endocrine stress response in the degu (Octodon degus). Gen. Comp. Endocrinol. 186, 136–144 (2013).
CAS PubMed Article PubMed Central Google Scholar
30.
Behie, A. M., Pavelka, M. S. M. & Chapman, C. A. Sources of variation in fecal cortisol levels in howler monkeys in Belize. Am. J. Primatol. 72, 600–606 (2010).
31.
Cavigelli, S. A. Behavioural patterns associated with faecal cortisol levels in free-ranging female ring-tailed lemurs, Lemur catta. Anim. Behav. 57, 935–944 (1999).
CAS PubMed Article PubMed Central Google Scholar
32.
Mahmud-Al-Rafat, A. & Taylor-Robinson, A. W. Emergence and persistence of hantavirus in rodent reservoirs: Role of glucocorticoid hormone. Biohelikon Immun. Dis. 2, 9 (2014).
Google Scholar
33.
Reeder, D. M. & Kramer, K. M. Stress in free-ranging mammals: Integrating physiology, ecology, and natural history. J. Mammal. 86, 225–235 (2005).
Article Google Scholar
34.
Dantzer, B., Fletcher, Q. E., Boonstra, R. & Sheriff, M. J. Measures of physiological stress: A transparent or opaque window into the status, management and conservation of species?. Conserv. Physiol. 2, cou023 (2014).
PubMed PubMed Central Article CAS Google Scholar
35.
Bhattacharjee, S. et al. Glucocorticoid stress responses of reintroduced tigers in relation to anthropogenic disturbance in Sariska Tiger Reserve in India. PLoS ONE 10, e0127626 (2015).
PubMed PubMed Central Article CAS Google Scholar
36.
Carlitz, E. H. D. et al. Measuring hair cortisol concentrations to assess the effect of anthropogenic impacts on wild chimpanzees (Pan troglodytes). PLoS ONE 11, e0151870 (2016).
PubMed PubMed Central Article CAS Google Scholar
37.
Creel, S., Christianson, D. & Schuette, P. Glucocorticoid stress responses of lions in relationship to group composition, human land use, and proximity to people. Conserv. Physiol. 1, cot021 (2013).
PubMed PubMed Central Article CAS Google Scholar
38.
Hammond, T. T. et al. Physiological and behavioral responses to anthropogenic stressors in a human-tolerant mammal. J. Mammal. 100, 1928–1940 (2019).
Article Google Scholar
39.
Martínez-Mota, R., Valdespino, C., Sánchez-Ramos, M. A. & Serio-Silva, J. C. Effects of forest fragmentation on the physiological stress response of black howler monkeys. Anim. Conserv. 10, 374–379 (2007).
Article Google Scholar
40.
Rangel-Negrín, A., Alfaro, J. L., Valdez, R. A., Romano, M. C. & Serio-Silva, J. C. Stress in Yucatan spider monkeys: Effects of environmental conditions on fecal cortisol levels in wild and captive populations. Anim. Conserv. 12, 496–502 (2009).
Article Google Scholar
41.
Dowle, M., Webster, K. N. & Deane, E. Faecal glucocorticoid metabolite concentrations in the free-ranging bandicoots (Perameles nasuta and Isoodon obesulus) of northern Sydney. Aust. Mammal. 35, 1 (2013).
Article Google Scholar
42.
Malisch, J. L. et al. Baseline and stress-induced plasma corticosterone concentrations of mice selectively bred for high voluntary wheel running. Physiol. Biochem. Zool. 80, 146–156 (2007).
CAS PubMed Article PubMed Central Google Scholar
43.
Mccabe, P. et al. Animal models of disease. Physiol. Behav. 68, 501–507 (2000).
CAS PubMed Article PubMed Central Google Scholar
44.
Fredebaugh-Siller, S. L., Suski, C. D., Zuckerman, Z. C. & Schooley, R. L. Ecological correlates of stress for a habitat generalist in a biofuels landscape. Can. J. Zool. 91, 853–858 (2013).
CAS Article Google Scholar
45.
Johnstone, C. P., Lill, A. & Reina, R. D. Habitat loss, fragmentation and degradation effects on small mammals: Analysis with conditional inference tree statistical modelling. Biol. Conserv. 176, 80–98 (2014).
Article Google Scholar
46.
McCormick, S. D. & Romero, L. M. Conservation endocrinology. Bioscience 67, 429–442 (2017).
Article Google Scholar
47.
Fleytas, M. C. Cambios en el paisaje: evolución de la cobertura vegetal en la Región Oriental del Paraguay. In Biodiversidad del Paraguay: Una aproximación a sus realidades (ed. Fundación Moisés Bertoni) 77–88 (Fundación Moisés Bertoni, 2007).
48.
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
ADS CAS PubMed Article PubMed Central Google Scholar
49.
Beaumont, L. J. et al. Impacts of climate change on the world’s most exceptional ecoregions. Proc. Natl. Acad. Sci. 108, 2306–2311 (2011).
ADS CAS PubMed Article PubMed Central Google Scholar
50.
de la Sancha, N. et al. An annotated checklist of the mammals of Paraguay. THERYA 8, 241–260 (2017).
Article Google Scholar
51.
Porter, L. et al. Pitheciid conservation in Ecuador, Colombia, Peru, Bolivia and Paraguay. In Evolutionary Biology and Conservation of Titis, Sakis and Uacaris (eds. Veiga, L. M., Barnett, A. A., Ferrari, S. F. & Norconk, M. A.) 320–333 (Cambridge University Press, Cambridge, 2013).
52.
de la Sancha, N. U., Libardi, G. S. & Pardiñas, U. F. J. Discovery of a new genus record for Paraguay, the Atlantic Forest endemic rodent, Abrawayaomys (Cricetidae, Sigmodontinae). Mammalia 84, 366–371 (2019).
Article Google Scholar
53.
Palme, R. Non-invasive measurement of glucocorticoids: Advances and problems. Physiol. Behav. 199, 229–243 (2019).
CAS PubMed Article PubMed Central Google Scholar
54.
Hernandez, S. E., Strona, A. L. S., Leiner, N. O., Suzán, G. & Romano, M. C. Seasonal changes of faecal cortisol metabolite levels in Gracilinanus agilis (Didelphimorphia: Didelphidae) and its association to life histories variables and parasite loads. Conserv. Physiol. 6, (2018).
55.
Hing, S., Narayan, E. J., Thompson, R. C. A. & Godfrey, S. S. The relationship between physiological stress and wildlife disease: Consequences for health and conservation. Wildl. Res. 43, 51 (2016).
Article Google Scholar
56.
Beehner, J. C. & Bergman, T. J. The next step for stress research in primates: To identify relationships between glucocorticoid secretion and fitness. Horm. Behav. 91, 68–83 (2017).
CAS PubMed Article PubMed Central Google Scholar
57.
Cruz, C. F., Ribeiro, A., Martins, M. & Cavaco-Paulo, A. Effect of a peptide in cosmetic formulations for hair volume control. Int. J. Cosmet. Sci. 39, 600–609 (2017).
CAS PubMed Article PubMed Central Google Scholar
58.
Song, S.-H. et al. Prevention of lipid loss from hair by surface and internal modification. Sci. Rep. 9, 9834 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
59.
Jessop, T. S., Woodford, R. & Symonds, M. R. E. Macrostress: Do large-scale ecological patterns exist in the glucocorticoid stress response of vertebrates? Funct. Ecol. 27, 120–130 (2013).
Article Google Scholar
60.
de la Sancha, N. U., Maestri, R., Bovendorp, R. S. & Higgins, C. L. Disentangling drivers of small mammal diversity in a highly fragmented forest system. Biotropica 52, 182–195 (2020).
Article Google Scholar
61.
Rimbach, R., Heymann, E. W., Link, A. & Heistermann, M. Validation of an enzyme immunoassay for assessing adrenocortical activity and evaluation of factors that affect levels of fecal glucocorticoid metabolites in two New World primates. Gen. Comp. Endocrinol. 191, 13–23 (2013).
CAS PubMed Article PubMed Central Google Scholar
62.
Velázquez, M. C. & Ramírez Pinto, F. Guía de los mamíferos de la Reserva Natural Tapytá. (Fundación Moisés Bertoni, 2014).
63.
Sikes, R. S. & the Animal Care and Use Committee of the American Society of Mammalogists. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mammal. 97, 663–688 (2016).
64.
de la Sancha, N. U. Patterns of small mammal diversity in fragments of subtropical Interior Atlantic Forest in eastern Paraguay. Mammalia 78, 437–449 (2014).
Google Scholar
65.
de la Sancha, N., D’Elía, G., Netto, F., Pérez, P. & Salazar-Bravo, J. Discovery of Juliomys (Rodentia, Sigmodontinae) in Paraguay, a new genus of Sigmodontinae for the country’s Atlantic Forest. Mammalia 73, 162–167 (2009).
Google Scholar
66.
de la Sancha, N. U., Pérez-Estigarribia, P. E., McCulloch, E. & Boyle, S. A. Micromamíferos. In Guía de los mamíferos de la Reserva Natural Tapytá (eds. Velázquez, M. C. & Ramírez Pinto, F.) 91–124 (Fundación Moisés Bertoni, 2014).
67.
de la Sancha, N. U. et al. Rhipidomys (Rodentia, Cricetidae) from Paraguay: Noteworthy new records and identity of the Paraguayan species. Mammalia 75, 269–276 (2011).
Google Scholar
68.
de la Sancha, N. U. & D’Elía, G. Additions to the Paraguayan mammal fauna: The first records of two marsupials (Didelphimorphia, Didelphidae) with comments on the alpha taxonomy of Cryptonanus and Philander. Mammalia 79, (2015).
69.
Macbeth, B. J., Cattet, M. R. L., Stenhouse, G. B., Gibeau, M. L. & Janz, D. M. Hair cortisol concentration as a noninvasive measure of long-term stress in free-ranging grizzly bears (Ursus arctos): Considerations with implications for other wildlife. Can. J. Zool. 88, 935–949 (2010).
CAS Article Google Scholar
70.
Davenport, M. D., Tiefenbacher, S., Lutz, C. K., Novak, M. A. & Meyer, J. S. Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. Gen. Comp. Endocrinol. 147, 255–261 (2006).
CAS PubMed Article PubMed Central Google Scholar
71.
Koren, L. et al. A novel method using hair for determining hormonal levels in wildlife. Anim. Behav. 63, 403–406 (2002).
Article Google Scholar
72.
Higgins, J. J. An Introduction to Modern Nonparametric Statistics. (Brooks/Cole, 2004).
73.
Gow, R., Thomson, S., Rieder, M., Van Uum, S. & Koren, G. An assessment of cortisol analysis in hair and its clinical applications. Forensic Sci. Int. 196, 32–37 (2010).
CAS PubMed Article PubMed Central Google Scholar
74.
Strauss, R. E. Discriminating groups of organisms. In Morphometrics for Nonmorphometricians (ed. Elewa, A. M. T.) vol. 124, 73–91 (Springer, Berlin, 2010).
75.
Hernandez, G., Garcia, S., Vilela, J. F. & de la Sancha, N. U. Ontogenetic variation of an omnivorous generalist rodent: The case of the montane akodont (Akodon montensis). J. Mammal. 98, 1741–1752 (2017).
Article Google Scholar
76.
Rossi, L. F., de la Sancha, N. U., Luaces, J. P., Estevez, D. Y. & Merani, M. S. Morphological description and comparison of sperm from eighteen species of cricetid rodents. J. Mammal. 99, 1398–1404 (2018).
Article Google Scholar
77.
Ordóñez-Garza, N., Matson, J. O., Strauss, R. E., Bradley, R. D. & Salazar-Bravo, J. Patterns of phenotypic and genetic variation in three species of endemic Mesoamerican Peromyscus (Rodentia: Cricetidae). J. Mammal. 91, 848–859 (2010).
Article Google Scholar
78.
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
Google Scholar
79.
Crawley, M. J. Statistics: An Introduction Using R. 2nd ed. (Wiley, Hoboken, 2015).
80.
Garcia, S., Luengo, J., Sáez, J. A., López, V. & Herrera, F. A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning. IEEE Trans. Knowl. Data Eng. 25, 734–750 (2013).
Article Google Scholar
81.
Liu, H., Hussain, F., Tan, C. L. & Dash, M. Discretization: An enabling technique. Data Min. Knowl. Disc. 6, 393–423 (2002).
MathSciNet Article Google Scholar
82.
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).
83.
Hurvich, C. M. & Tsai, C.-L. Bias of the corrected AIC criterion for underfitted regression and time series models. Biometrika 78, 499–509 (1991).
MathSciNet MATH Google Scholar
84.
Anderson, D. R., Burnham, K. P. & White, G. C. AIC model selection in overdispersed capture-recapture data. Ecology 75, 1780–1793 (1994).
Article Google Scholar
85.
Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).
MathSciNet MATH Article Google Scholar
86.
Mangiafico, S. rcompanion: Functions to Support Extension Education Program Evaluation. (2020).
87.
Fawcett, T. An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006).
Article Google Scholar
88.
Huang, J. & Ling, C. X. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 17, 299–310 (2005).
CAS Article Google Scholar
89.
Friendly, M. A brief history of the mosaic display. J. Comput. Graph. Stat. 11, 89–107 (2002).
MathSciNet Article Google Scholar
90.
McDonald, J. H. Handbook of Biological Statistics. 3rd ed. (Sparky House Publishing, 2014).
91.
ESRI. ArcGIS 10.7. (2019). More
