Effects of small ridge and furrow mulching degradable film on dry direct seeded rice
1.
Huang, H. Study on mechanized production engineering mode for paddy rice in double-cropping areas in south china. Published doctorial dissertation, China Agricultural University, Beijing. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFD1214&filename=1014223520.nh (2014).
2.
Gao, Y. M., Yan, T. & Liu, W. J. Research and progress of direct rice seeding mechanization at home and abroad. Agric. Sci. Technol. Equip. 1, 28–29. https://doi.org/10.16313/j.cnki.nykjyzb.2013.01.020 (2013).
Article Google Scholar
3.
Fawzy, S., Osman, A. I., Doran, J. & Rooney, D. W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 6, 2069–2094. https://doi.org/10.1007/s10311-020-01059-w (2020).
CAS Article Google Scholar
4.
Hussain, S. et al. Rice production under climate change: Adaptations and mitigating strategies. In Environment, Climate, Plant and Vegetation Growth (eds Fahad, S. et al.) 659–686 (Springer, Berlin, 2020).
Google Scholar
5.
Vicente-Serrano, S. M., Quiring, S. M., Pena-Gallardo, M., Yuan, S. S. & Dominguez-Castro, F. A review of environmental droughts: Increased risk under global warming?. Earth Sci. Rev. 201, 102953. https://doi.org/10.1016/j.earscirev.2019.102953 (2020).
Article Google Scholar
6.
Ault, T. R. On the essentials of drought in a changing climate. Science 6488, 256–260. https://doi.org/10.1126/science.aaz5492 (2020).
ADS CAS Article Google Scholar
7.
Zhang, L. X. & Zhou, T. J. Drought over east Asia: A review. J. Clim. 8, 3375–3399. https://doi.org/10.1175/JCLI-D-14-00259.1 (2015).
ADS Article Google Scholar
8.
Zhang, X. et al. Urban drought challenge to 2030 sustainable development goals. Sci. Total Environ. 693, 133536. https://doi.org/10.1016/j.scitotenv.2019.07.342 (2019).
ADS CAS Article PubMed Google Scholar
9.
Chakraborty, D. et al. A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production. Sci. Rep. 7, 9342. https://doi.org/10.1038/s41598-017-09742-9 (2017).
ADS CAS Article PubMed PubMed Central Google Scholar
10.
Peng, S. B., Tang, Q. Y. & Zou, Y. B. Current status and challenges of rice production in China. Plant Prod. Sci. 12, 3–8. https://doi.org/10.1626/pps.12.3 (2009).
Article Google Scholar
11.
Sun, L. M. et al. Implications of low sowing rate for hybrid rice varieties under dry direct-seeded rice system in central China. Field Crops Res. 175, 87–95. https://doi.org/10.1016/j.fcr.2015.02.009 (2015).
Article Google Scholar
12.
Farooq, M. et al. Rice direct seeding: Experiences, challenges and opportunities. Soil Tillage Res. 111, 87–98. https://doi.org/10.1016/j.still.2010.10.008 (2011).
Article Google Scholar
13.
Sandhu, N. et al. Deciphering the genetic basis of root morphology, nutrient uptake, yield, and yield-related traits in rice under dry direct-seeded cultivation systems. Sci. Rep. 9, 9334. https://doi.org/10.1038/s41598-019-45770-3 (2019).
ADS CAS Article PubMed PubMed Central Google Scholar
14.
Liu, H. Y. et al. Dry direct-seeded rice as an alternative to transplanted-flooded rice in Central China. Agron. Sustain. Dev. 35, 285–294. https://doi.org/10.1007/s13593-014-0239-0 (2015).
Article Google Scholar
15.
Muhammad, S. et al. The effect of different weed management strategies on the growth and yield of direct-seeded dry rice (Oryza sativa). Planta Daninha. 34, 57–64. https://doi.org/10.1590/S0100-83582016340100006 (2016).
Article Google Scholar
16.
Kakumanu, K. R., Kotapati, G. R., Nagothu, U. S., Kuppanan, P. & Kallam, S. R. Adaptation to climate change and variability: A case of direct seeded rice in Andhra Pradesh, India. J. Water Clim. Change. 10, 419–430. https://doi.org/10.2166/wcc.2018.141 (2019).
Article Google Scholar
17.
Yamane, K. et al. Seed vigour contributes to yield improvement in dry direct-seeded rainfed lowland rice. Ann Appl. Biol. 172, 100–110. https://doi.org/10.1111/aab.12405 (2018).
CAS Article Google Scholar
18.
Nakano, H., Hattori, I. & Morita, S. Dry matter yield response to seeding rate and row spacing in direct-seeded and double-harvested forage rice. Jpn. Agric. Res. Q. 53, 255–264. https://doi.org/10.6090/jarq.53.255 (2019).
CAS Article Google Scholar
19.
Sun, C. L. et al. Implications of low sowing rate for hybrid rice varieties under drydirect-seeded rice system in Central China. Field Crops Res. 175, 87–95. https://doi.org/10.1016/j.fcr.2015.02.009 (2015).
Article Google Scholar
20.
Jabran, K. et al. Mulching improves water productivity, yield and quality of fine rice under water-saving rice production systems. J. Agron. Crop Sci. 201, 389–400. https://doi.org/10.1111/jac.12099 (2015).
Article Google Scholar
21.
Fawibe, O. O., Hiramatsu, M., Taguchi, Y., Wang, J. & Isoda, A. Grain yield, water-use efficiency, and physiological characteristics of rice cultivars under drip irrigation with plastic-film-mulch. J. Crop Improv. 34, 414–436. https://doi.org/10.1080/15427528.2020.1725701 (2020).
Article Google Scholar
22.
He, H. B. et al. Rice performance and water use efficiency under plastic mulching with drip irrigation. PLoS ONE 8, e83103. https://doi.org/10.1371/journal.pone.0083103 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
23.
Farooqi, Z. U. R., Sabir, M., Zeeshan, N., Naveed, K. & Hussain, M. M. Enhancing carbon sequestration using organic amendments and agricultural practices. In Carbon Capture, Utilization and Sequestration (ed. Agarwal, R. K.) 17–35 (IntechOpen, London, 2018).
Google Scholar
24.
Fuss, S. et al. Negative emissions-part 2: Costs, potentials and side effects. Environ. Res. Lett. 6, 063002. https://doi.org/10.1088/1748-9326/aabf9f (2018).
ADS CAS Article Google Scholar
25.
Li, Y. S. et al. Influence of continuous plastic film mulching on yield, water use efficiency and soil properties of rice fields under non-flooding condition. Soil Tillage Res. 93, 370–378. https://doi.org/10.1016/j.still.2006.05.010 (2007).
Article Google Scholar
26.
Huang, Y., Liu, Q., Jia, W. Q., Yan, C. R. & Wang, J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ. Pollut. 260, 114096. https://doi.org/10.1016/j.envpol.2020.114096 (2020).
CAS Article PubMed Google Scholar
27.
Yu, Q. et al. Distribution, abundance and risks of microplastics in the environment. Chemosphere 249, 126059. https://doi.org/10.1016/j.chemosphere.2020.126059 (2020).
ADS CAS Article PubMed Google Scholar
28.
Yan, X. Y. et al. Downward transport of naturally-aged light microplastics in natural loamy sand and the implication to the dissemination of antibiotic resistance genes. Environ. Pollut. 262, 114270. https://doi.org/10.1016/j.envpol.2020.114270 (2020).
CAS Article PubMed Google Scholar
29.
Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 7, e1700782. https://doi.org/10.1126/sciadv.1700782 (2017).
ADS CAS Article Google Scholar
30.
Osman, A. I. et al. Pyrolysis kinetic modelling of abundant plastic waste (PET) and in-situ emission monitoring. Environ. Sci. Eur. 1, 112. https://doi.org/10.1186/s12302-020-00390-x (2020).
CAS Article Google Scholar
31.
Kumar, U. S. U. et al. Neem leaves extract based seaweed bio-degradable composite films with excellent antimicrobial activity for sustainable packaging material. BioResources 1, 700–713. https://doi.org/10.15376/biores.14.1.700-713 (2019).
CAS Article Google Scholar
32.
Qasim, U. et al. Renewable cellulosic nanocomposites for food packaging to avoid fossil fuel plastic pollution: A review. Environ. Chem. Lett. https://doi.org/10.1007/s10311-020-01090-x (2020).
Article Google Scholar
33.
Wang, Y. J., He, K., Zhang, J. B. & Chang, H. Y. Environmental knowledge, risk attitude, and households’ willingness to accept compensation for the application of degradable agricultural mulch film: Evidence from rural China. Sci. Total Environ. 744, 140616. https://doi.org/10.1016/j.scitotenv.2020.140616 (2020).
ADS CAS Article PubMed Google Scholar
34.
Cirujeda, A. et al. Biodegradable mulch instead of polyethylene for weed control of processing tomato production. Agron. Sustain. Dev. 32, 889–897. https://doi.org/10.1007/s13593-012-0084-y (2012).
CAS Article Google Scholar
35.
Yin, M. H., Li, Y. N., Fang, H. & Chen, P. P. Biodegradable mulching film with an optimum degradation rate improves soil environment and enhances maize growth. Agric. Water Manag. 216, 127–137. https://doi.org/10.1016/j.agwat.2019.02.004 (2019).
Article Google Scholar
36.
Daryanto, S., Wang, L. X. & Jacinthe, P. A. Can ridge-furrow plastic mulching replace irrigation in dryland wheat and maize cropping systems?. Agric. Water Manag. 190, 1–5. https://doi.org/10.1016/j.agwat.2017.05.005 (2017).
Article Google Scholar
37.
Qin, S. H., Zhang, J. L., Dai, H. L., Wang, D. & Li, D. M. Effect of ridge–furrow and plastic-mulching planting patterns on yield formation and water movement of potato in a semi-arid area. Agric. Water Manag. 131, 87–94. https://doi.org/10.1016/j.agwat.2013.09.015 (2014).
Article Google Scholar
38.
Fan, Y. L. et al. Effects of ridge and furrow film mulching on soil environment and yield under potato continuous cropping system. Plant Soil Environ. 65, 523–529. https://doi.org/10.17221/481/2019-PSE (2019).
Article Google Scholar
39.
Fan, T. L. et al. Film mulched furrow-ridge water harvesting planting improves agronomic productivity and water use efficiency in rainfed areas. Agric. Water Manag. 217, 1–10. https://doi.org/10.1016/j.agwat.2019.02.031 (2019).
Article Google Scholar
40.
Diaz-Perez, J. C. Root zone temperature, plant growth and yield of broccoli [Brassica oleracea (plenck) var. italica] as affected by plastic film mulches. Sci. Hortic. 123, 156–163. https://doi.org/10.1016/j.scienta.2009.08.014 (2009).
Article Google Scholar
41.
Gholamhoseini, M., Dolatabadian, A. & Habibzadeh, F. Ridge-furrow planting system and wheat straw mulching effects on dryland sunflower yield, soil temperature, and moisture. Agron. J. 111, 3383–3392. https://doi.org/10.2134/agronj2019.02.0097 (2019).
CAS Article Google Scholar
42.
Mo, F. et al. Alternating small and large ridges with full film mulching increase linseed (Linum usitatissimum L.) productivity and economic benefit in a rainfed semiarid environment. Field Crops Res. 219, 120–130. https://doi.org/10.1016/j.fcr.2018.01.036 (2018).
Article Google Scholar
43.
Gu, X. B., Li, Y. N., Du, Y. D. & Yin, M. H. Ridge-furrow rainwater harvesting with supplemental irrigation to improve seed yield and water use efficiency of winter oilseed rape (Brassica napus L.). J. Integr. Agric. 16, 1162–1172. https://doi.org/10.1016/S2095-3119(16)61447-8 (2017).
Article Google Scholar
44.
Mo, F., Wang, J. Y., Xiong, Y. C., Nguluu, S. N. & Li, F. M. Ridge-furrow mulching system in semiarid Kenya: A promising solution to improve soil water availability and maize productivity. Eur. J. Agron. 80, 124–136. https://doi.org/10.1016/j.eja.2016.07.005 (2016).
Article Google Scholar
45.
Zhang, X. D. et al. Ridge-furrow mulching system regulates diurnal temperature amplitude and wetting-drying alternation behavior in soil to promote maize growth and water use in a semiarid region. Field Crops Res. 233, 121–130. https://doi.org/10.1016/j.fcr.2019.01.009 (2019).
Article Google Scholar
46.
Li, F. M., Wang, J., Xu, J. Z. & Xu, H. L. Productivity and soil response to plastic film mulching durations for spring wheat on entisols in the semiarid loess plateau of China. Soil Tillage Res. 78, 9–20. https://doi.org/10.1016/j.still.2003.12.009 (2004).
CAS Article Google Scholar
47.
Li, C. J. et al. Towards the highly effective use of precipitation by ridge-furrow with plastic film mulching instead of relying on irrigation resources in a dry semi-humid area. Field Crops Res. 188, 62–73. https://doi.org/10.1016/j.fcr.2016.01.013 (2016).
ADS Article Google Scholar
48.
Li, Y. Z. et al. The effect of tillage on nitrogen use efficiency in maize (Zea mays L.) in a ridge–furrow plastic film mulch system. Soil Tillage Res. 195, 104409. https://doi.org/10.1016/j.still.2019.104409 (2019).
Article Google Scholar
49.
Zheng, J., Fan, J. L., Zou, Y. F., Chau, H. W. & Zhang, F. C. Ridge-furrow plastic mulching with a suitable planting density enhances rainwater productivity, grain yield and economic benefit of rainfed maize. J. Arid Land. 12, 181–198. https://doi.org/10.1007/s40333-020-0001-1 (2020).
CAS Article Google Scholar
50.
Zhao, H. et al. Ridge-furrow with full plastic film mulching improves water use efficiency and tuber yields of potato in a semiarid rainfed ecosystem. Field Crops Res. 161, 137–148. https://doi.org/10.1016/j.fcr.2014.02.013 (2014).
ADS Article Google Scholar
51.
Ren, X., Chen, X. & Jia, Z. Effect of rainfall collecting with ridge and furrow on soil moisture and root growth of corn in semiarid northwest China. J. Agron. Crop Sci. 196, 109–122. https://doi.org/10.1111/j.1439-037X.2009.00401.x (2010).
Article Google Scholar
52.
Dong, W. L. et al. Ridge and furrow systems with film cover increase maize yields and mitigate climate risks of cold and drought stress in continental climates. Field Crops Res. 207, 71–78. https://doi.org/10.1016/j.fcr.2017.03.003 (2017).
Article Google Scholar
53.
Tian, Y., Su, D. R., Li, F. M. & Li, X. L. Effect of rainwater harvesting with ridge and furrow on yield of potato in semiarid areas. Field Crops Res. 84, 385–391. https://doi.org/10.1016/S0378-4290(03)00118-7 (2003).
Article Google Scholar
54.
Zhang, X. D. et al. Ridge-furrow mulching system drives the efficient utilization of key production resources and the improvement of maize productivity in the loess plateau of China. Soil Tillage Res. 190, 10–21. https://doi.org/10.1016/j.still.2019.02.015 (2019).
Article Google Scholar
55.
Li, R., Hou, X. Q., Jia, Z. K. & Han, Q. F. Soil environment and maize productivity in semi-humid regions prone to drought of Weibei Highland are improved by ridge-and-furrow tillage with mulching. Soil Tillage Res. 196, 104476. https://doi.org/10.1016/j.still.2019.104476 (2020).
Article Google Scholar
56.
Gu, X. B., Li, Y. N. & Du, Y. D. Film-mulched continuous ridge-furrow planting improves soil temperature, nutrient content and enzymatic activity in a winter oilseed rape field, northwest China. J. Arid Land. 10, 362–374. https://doi.org/10.1007/s40333-018-0055-5 (2018).
Article Google Scholar
57.
Li, M. Study on dynamic of maize (Zea mays L.) yield, soil water and soil carbon under the dry-farming plastic mulching system of ridge and furrow. Published doctorial dissertation, LanZhou University, Lanzhou. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFDTEMP&filename=1020655864.nh (2020).
58.
Liu, X. E. et al. Film-mulched ridge-furrow management increases maize productivity and sustains soil organic carbon in a dryland cropping system. Soil Sci. Soc. Am. J. 4, 1434–1441. https://doi.org/10.2136/sssaj2014.04.0121 (2014).
CAS Article Google Scholar
59.
Wang, Y. P. et al. Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China. Agric. For. Meteorol. 228, 42–51. https://doi.org/10.1016/j.agrformet.2016.06.016 (2016).
ADS Article Google Scholar
60.
Li, S. P., Cai, Z. C., Yang, H. & Wang, J. K. Effects of long-term fertilization and plastic film covering on some soil fertility and microbial properties. Acta Ecol. Sin. 5, 2489–2498 (2009).
Google Scholar More