More stories

  • in

    Tropical rhodolith beds are a major and belittled reef fish habitat

    The Abrolhos shelf extends ~ 200 km offshore and is SWA’s most biodiverse region, encompassing a large mid-to-outer shelf hard bottom domain with reefs and rhodolith beds (~ 20,900 km2)5,6. Fine-sediment dissipative beaches and a large estuary with mangroves dominate the coastline, and terrigenous-mixed sediments predominate in the inner shelf27. This large and complex seascape (Fig. 1) comprises a representative experimental setting for understanding the distribution and abundance of reef fishes in different habitats, as well as for exploring the drivers and spatial scaling of beta diversity in reef fish assemblages. The high richness of reef fishes off coral reefs that we found in Abrolhos was unexpected, and sheds new light toward the integration of phenomena that occur at different scales and across distinct habitats and groups of organisms11,20. From a practical standpoint, our results are relevant to improve marine management in complex tropical seascapes with rhodolith beds23 and other large marginal habitats.
    The high richness of reef fishes in rhodolith beds, where fish biomass was smaller than on reefs (Supplementary Fig. S1 online; Fig. 4), seems to be primarily related to the much larger area of rhodolith beds, as well as to the broader depth and cross-shelf range of this hard-bottom habitat, contrasting with reefs. Rather than being a regional idiosyncrasy, the relatively larger area and cross-shelf range of non-reef habitat used by reef fishes seems to be recurrent in tropical shelves across all ocean basins8,9,23. However, due to logistical constrains and to the apparent smaller relevance of marginal habitats to fish and other reef-associated organisms, these habitats are still much less sampled than the iconic shallow water reefs20, with the exception of mangroves and seagrass beds3,8,9.
    Compositional variability in biological communities is strongly dependent on spatial scale. Accordingly, beta diversity is expected to be high at biogeographic and local scales, while turnover tends to be lower at regional scales28,29. Reef fish assemblages tend to vary sharply at small spatial scales ( More

  • in

    Near-term climate change impacts on sub-national malaria transmission

    1.
    World Health Organization. Global Health Observatory (GHO) data: Malaria. (2018). Available at: https://www.who.int/gho/malaria/en/.
    2.
    World Health Organization. Climate Change and health. (2018). Available at: https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health. Accessed 31st December 2019.

    3.
    World Health Organization. World Malaria Report 2018. WHO/HTM/GM (World Health Organization, Geneva, 2018).
    Google Scholar 

    4.
    Aal, R. & Elshayeb, A. A. The effects of climate changes on the distribution and spread of malaria in Sudan. Am. J. Environ. Eng. 1, 15–20 (2012).
    Article  Google Scholar 

    5.
    Abeku, T. A. et al. Effects of meteorological factors on epidemic malaria in Ethiopia: a statistical modelling approach based on theoretical reasoning. Parasitology 128, 585–593 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Parham, P. E. & Michael, E. Modelling climate change and malaria transmission. Model. Parasite Transm. Control 673, 184–199 (2010).
    Article  Google Scholar 

    7.
    Gething, P. W. et al. Climate change and the global malaria recession. Nature 465, 342–345 (2010).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Zhai, J. X. et al. Development of an empirical model to predict malaria outbreaks based on monthly case reports and climate variables in Hefei, China, 1990–2011. Acta Trop. 178, 148–154 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Tompkins, A. M. & Thomson, M. C. Uncertainty in malaria simulations in the highlands of Kenya: relative contributions of model parameter setting, driving climate and initial condition errors. PLoS ONE 13, 16831 (2018).
    Article  CAS  Google Scholar 

    10.
    Moukam Kakmeni, F. M. et al. Spatial panorama of malaria prevalence in Africa under climate change and interventions scenarios. Int. J. Health Geogr. 17, 1–13 (2018).
    Article  Google Scholar 

    11.
    Hurtado, L. A., Calzada, J. E., Rigg, C. A., Castillo, M. & Chaves, L. F. Climatic fluctuations and malaria transmission dynamics, prior to elimination, in Guna Yala, República de Panamá. Malar. J. 17, 1–12 (2018).
    Article  Google Scholar 

    12.
    Ferrao, J. L., Niquisse, S., Mendes, J. M. & Painho, M. Mapping and modelling malaria risk areas using climate, socio-demographic and clinical variables in Chimoio, Mozambique. Int. J. Environ. Res. Public Health 15, 1–15 (2018).
    Article  Google Scholar 

    13.
    Semakula, H. M. et al. Prediction of future malaria hotspots under climate change in sub-Saharan Africa. Clim. Change 143, 415–428 (2017).
    ADS  CAS  Article  Google Scholar 

    14.
    Imai, C. et al. Associations between malaria and local and global climate variability in five regions in Papua New Guinea. Trop. Med. Health 44, 1–9 (2016).
    Article  Google Scholar 

    15.
    Caminade, C. et al. Impact of climate change on global malaria distribution. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1302089111 (2014).
    Article  PubMed  Google Scholar 

    16.
    World Health Organization. World Malaria Report 2008 (World Health Organization, Geneva, 2008). ISBN 978 92 4 1564403

    17.
    Chizema-Kawesha, E. et al. Scaling up malaria control in Zambia: progress and impact 2005–2008. Am. J. Trop. Med. Hyg. 83, 480–488 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Mukonka, V. et al. Diagnostic approaches to malaria in Zambia, 2009–2014. Geospat. Health 10, 330 (2015).
    PubMed  Article  Google Scholar 

    19.
    Chanda, E. et al. Insecticide resistance and the future of malaria control in Zambia. PLoS ONE 6, 1–9 (2011).
    Article  CAS  Google Scholar 

    20.
    Kamuliwo, M. et al. The changing burden of malaria and association with vector control interventions in Zambia using district-level surveillance data, 2006–2011. Malar. J. 12, 1–9 (2013).
    Article  Google Scholar 

    21.
    Shimaponda-Mataa, N. M., Tembo-Mwase, E., Gebreslasie, M., Achia, T. N. O. & Mukaratirwa, S. Modelling the influence of temperature and rainfall on malaria incidence in four endemic provinces of Zambia using semiparametric Poisson regression. Acta Trop. 166, 81–91 (2017).
    PubMed  Article  Google Scholar 

    22.
    President’s Malaria Initiative. President’s Malaria Initiative Zambia Malaria Operational Plan FY 2019 (2019).

    23.
    Pinchoff, J. et al. Predictive malaria risk and uncertainty mapping in Nchelenge District, Zambia: evidence of widespread, persistent risk and implications for targeted interventions. Am. J. Trop. Med. Hyg. 93, 1260–1267 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Nkumama, I. N., O’Meara, W. P. & Osier, F. H. A. Changes in malaria epidemiology in Africa and new challenges for elimination. Trends Parasitol. 33, 128–140 (2017).
    PubMed  Article  Google Scholar 

    25.
    Bennett, A. et al. The relative contribution of climate variability and vector control coverage to changes in malaria parasite prevalence in Zambia 2006–2012. Parasites Vectors 9, 431 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Ashton, R. A., Prosnitz, D., Andrada, A., Herrera, S. & Yé, Y. Evaluating malaria programmes in moderate- and low-transmission settings: practical ways to generate robust evidence. Malar. J. https://doi.org/10.1186/s12936-020-03158-z (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    27.
    Carpenter, C. C. J., Pearson, G. W., Mitchell, V. S. & Oaks, S. C. Jr. Malaria: Obstacles and Opportunities (National Academies Press, Washington, 1991).
    Google Scholar 

    28.
    Benelli, G., Jeffries, C. L. & Walker, T. Biological control of mosquito vectors: past, present, and future. Insects 7, 52 (2016).
    PubMed Central  Article  PubMed  Google Scholar 

    29.
    Ukawuba, I. et al. Using rainfall and temperature data in the evaluation of national malaria control programs in Africa. Am. J. Trop. Med. Hyg. 97, 32–45 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Martens, W. J., Jetten, T. H. & Focks, D. A. Sensitivity of malaria, schistosomiasis and dengue to global warming. Clim. Change 35, 145–156 (1997).
    Article  Google Scholar 

    31.
    Martens, W., Niessen, L. W., Rotmans, J., Jetten, T. H. & McMichael, A. J. Potential impact of global climate change on malaria risk. Environ. Health Perspect. 103, 458–464 (1995).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Van Lieshout, M., Kovats, R. S., Livermore, M. T. J. & Martens, P. Climate change and malaria: analysis of the SRES climate and socio-economic scenarios. Glob. Environ. Change 14, 87–99 (2004).
    Article  Google Scholar 

    33.
    Martens, P. et al. Climate change and future populations at risk of malaria. Glob. Environ. Change 9, S89–S107 (1999).
    Article  Google Scholar 

    34.
    Arab, A., Jackson, M. C. & Kongoli, C. Modelling the effects of weather and climate on malaria distributions in West Africa. Malar. J. 13, 126 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Central Statistical Office. 2010 census of population and housing: Population and Demographic Projections 2011–2035. 199 (2013).

    36.
    Maude, R. J., Mercado, C. E. G., Rowley, J., Ekapirat, N. & Dondorp, A. Estimating malaria disease burden in the Asia-Pacific. Wellcome Open Res. 4, 59 (2019).
    Article  Google Scholar 

    37.
    Van Buuren, S. Flexible Imputation of Missing Data (Chapman and Hall/CRC, Boca Raton, 2018).
    Google Scholar 

    38.
    Stekhoven, D. J. & Bühlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2011).
    PubMed  Article  CAS  Google Scholar 

    39.
    Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Saha, S. et al. NCEP Climate Forecast System Version 2 (CFSv2) Monthly Products (2012). https://doi.org/10.5065/D69021ZF

    41.
    Smets, B., Jacobs, T., Swinnen, E., Toté, C. & Wolfs, D. Gio Global Land Component-Lot I “Operation of the Global Land Component”, Framework Service Contract N° 388533 (JRC), Product User Manual Normalized Difference Vegetation Index (NDVI). 2.2 (2018).

    42.
    Smets, B. et al. A 10-daily 1km NDVI from METOP-AVHRR. 10 (2013).

    43.
    Hijmans, R. J. raster: Geographic data analysis and modeling. R package version 2.8–19. Vienna, Austria R Found. Retrieved from https://CRAN.R-project.org/package=rasterImage (2019).

    44.
    Colón-González, F. J., Tompkins, A. M., Biondi, R., Bizimana, J. P. & Namanya, D. B. Assessing the effects of air temperature and rainfall on malaria incidence: an epidemiological study across Rwanda and Uganda. Geospat. Health 11, 1–2 (2016).
    Article  Google Scholar 

    45.
    Suk, J. E. Climate change, malaria, and public health: accounting for socioeconomic contexts in past debates and future research. Wiley Interdiscip. Rev. Clim. Change 7, 551–568 (2016).
    Article  Google Scholar 

    46.
    Mohammadkhani, M., Khanjani, N., Bakhtiari, B. & Sheikhzadeh, K. The relation between climatic factors and malaria incidence in Kerman, South East of Iran. Parasite Epidemiol. Control 1, 205–210 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Okuneye, K. & Gumel, A. B. Analysis of a temperature- and rainfall-dependent model for malaria transmission dynamics. Math. Biosci. 287, 72–92 (2017).
    MathSciNet  PubMed  MATH  Article  Google Scholar 

    48.
    Krefis, A. C. et al. Modeling the relationship between precipitation and malaria incidence in children from a holoendemic area in Ghana. Am. J. Trop. Med. Hyg. 84, 285–291 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Abiodun, G. J., Maharaj, R., Witbooi, P. & Okosun, K. O. Modelling the influence of temperature and rainfall on the population dynamics of Anopheles arabiensis. Malar. J. 15, 1–15 (2016).
    Article  Google Scholar 

    50.
    Blanford, J. I. et al. Implications of temperature variation for malaria parasite development across Africa. Sci. Rep. 3, 1300 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Odongo-Aginya, E., Ssegwanyi, G., Kategere, P. & Vuzi, P. C. Relationship between malaria infection intensity and rainfall pattern in Entebbe peninsula, Uganda. Afr. Health Sci. 5, 238–245 (2005).
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Darkoh, E. L., Larbi, J. A. & Lawer, E. A. A weather-based prediction model of malaria prevalence in Amenfi West District, Ghana. Malar. Res. Treat. https://doi.org/10.1155/2017/7820454 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    53.
    Kilian, A. H., Langi, P., Talisuna, A. & Kabagambe, G. Rainfall pattern, El Nino and malaria in Uganda. Trans. R. Soc. Trop. Med. Hyg. 93, 22–23 (1999).
    CAS  PubMed  Article  Google Scholar 

    54.
    Phung, D., Talukder, M. R. R., Rutherford, S. & Chu, C. A climate-based prediction model in the high-risk clusters of the Mekong Delta region, Vietnam: towards improving dengue prevention and control. Trop. Med. Int. Health 21, 1324–1333 (2016).
    PubMed  Article  Google Scholar 

    55.
    Wu, X., Lu, Y., Zhou, S., Chen, L. & Xu, B. Impact of climate change on human infectious diseases: empirical evidence and human adaptation. Environ. Int. 86, 14–23 (2016).
    PubMed  Article  Google Scholar 

    56.
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Article  Google Scholar 

    57.
    Jiang, Z., Raymond, M., Shi, D. & DiStefano, C. Using a linear mixed-effect model framework to estimate multivariate generalizability theory parameters in R. Behav. Res. Methods https://doi.org/10.3758/s13428-020-01399-z (2020).
    Article  PubMed  Google Scholar 

    58.
    Napier, G., Lee, D., Robertson, C. & Lawson, A. A Bayesian space-time model for clustering areal units based on their disease trends. Biostatistics 00, 1–17 (2018).
    CAS  Google Scholar 

    59.
    Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian data analysis. Technometrics 46, 696 (2004).
    MATH  Google Scholar 

    60.
    Hamra, G., MacLehose, R. & Richardson, D. Markov chain monte carlo: an introduction for epidemiologists. Int. J. Epidemiol. 42, 627–634 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    61.
    Lee, D., Rushworth, A. & Napier, G. Spatio-temporal areal unit modeling in R with conditional autoregressive priors using the CARBayesST package. J. Stat. Softw. 84, 1–39 (2018).
    CAS  Article  Google Scholar 

    62.
    Jaiswal, R. K., Lohani, A. K. & Tiwari, H. L. Statistical analysis for change detection and trend assessment in climatological parameters. Environ. Process. 2, 729–749 (2015).
    Article  Google Scholar 

    63.
    Wijngaard, J. B., Klein Tank, A. M. G. & Können, G. P. Homogeneity of 20th century European daily temperature and precipitation series. Int. J. Climatol. 23, 679–692 (2003).
    Article  Google Scholar 

    64.
    Hachigonta, S. & Reason, C. J. C. Interannual variability in dry and wet spell characteristics over Zambia. Clim. Res. 32, 49–62 (2006).
    Article  Google Scholar 

    65.
    Kaluba, P., Verbist, K. M. J., Cornelis, W. M. & Van Ranst, E. Spatial mapping of drought in Zambia using regional frequency analysis. Hydrol. Sci. J. https://doi.org/10.1080/02626667.2017.1343475 (2017).
    Article  Google Scholar 

    66.
    Waldman, K. B. et al. Cognitive biases about climate variability in smallholder farming systems in Zambia. Weather Clim. Soc. https://doi.org/10.1175/WCAS-D-18-0050.1 (2019).
    Article  Google Scholar 

    67.
    Musonda, B. Rainfall and Temperature Characteristic Over Zambia (2013).

    68.
    Mubanga, K. H. & Umar, B. B. Climate variability and change in Southern Zambia: 1910 to 2009 Kabwe. In 2014 International Conference on Intelligent Agriculture (ICOIA) (2015). https://doi.org/10.7763/IPCBEE

    69.
    Zambian Ministry of Health. Zambia National Malaria Indicator Survey 2006. 38–41 (2006).

    70.
    Zambian Ministry of Health. The Zambia National Malaria Indicator Survey 2008 (2008).

    71.
    Zambian Ministry of Health. Zambia National Malaria Indicator Survey 2012 (2012).

    72.
    Zambian Ministry of Health. Zambia Malaria Indicator Survey 2015 (2015).

    73.
    Zambian Ministry of Health. Zambia National Malaria Indicator Survey 2010. Malariasurveys.org (2010).

    74.
    Kilian, A. et al. Evidence for a useful life of more than three years for a polyester-based long-lasting insecticidal mosquito net in Western Uganda. Malar. J. 10, 299 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    75.
    Tan, K. R. et al. A longitudinal study of the durability of long-lasting insecticidal nets in Zambia. Malar. J. 15, 1–12 (2016).
    Article  CAS  Google Scholar 

    76.
    Pulkki-Brännström, A.-M., Wolff, C., Brännström, N. & Skordis-Worrall, J. Cost and cost effectiveness of long-lasting insecticide-treated bed nets-a model-based analysis. Cost Eff. Resour. Alloc. 10, 5 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    77.
    Stuckey, E. M. et al. Simulation of malaria epidemiology and control in the highlands of western Kenya. Malar. J. https://doi.org/10.1186/1475-2875-11-357 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    78.
    Carter, R., Mendis, K. N. & Roberts, D. Spatial targeting of interventions against malaria. Bull. World Health Organ. 78, 1401–1411 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    79.
    Bousema, T. et al. The impact of hotspot-targeted interventions on malaria transmission: study protocol for a cluster-randomized controlled trial. Trials 14, 36 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    80.
    Bousema, T. et al. The impact of hotspot-targeted interventions on malaria transmission in Rachuonyo South District in the Western Kenyan Highlands: a cluster-randomized controlled trial. PLoS Med. 13, e1001993 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    81.
    Walker, P. G. T., Griffin, J. T., Ferguson, N. M. & Ghani, A. C. Estimating the most efficient allocation of interventions to achieve reductions in Plasmodium falciparum malaria burden and transmission in Africa: a modelling study. Lancet Glob. Health 4, e474–e484 (2016).
    PubMed  Article  Google Scholar 

    82.
    World Health Organisation (WHO). Malaria Prevention Works: Let’s Close the Gap (WHO, Geneva, 2017).
    Google Scholar 

    83.
    Kitojo, C. et al. Estimating malaria burden among pregnant women using data from antenatal care centres in Tanzania: a population-based study. Lancet Glob. Health 7, e1695–e1705 (2019).
    PubMed  Article  Google Scholar 

    84.
    Coldiron, M. E., Von Seidlein, L. & Grais, R. F. Seasonal malaria chemoprevention: successes and missed opportunities. Malar. J. https://doi.org/10.1186/s12936-017-2132-1 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    85.
    Ndiaye, J. L. A. et al. Seasonal malaria chemoprevention combined with community case management of malaria in children under 10 years of age, over 5months, in south-east senegal: a cluster randomized trial. PLoS Med. https://doi.org/10.1371/journal.pmed.1002762 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    86.
    Issiaka, D. et al. Impact of seasonal malaria chemoprevention on hospital admissions and mortality in children under 5 years of age in Ouelessebougou, Mali. Malar. J. https://doi.org/10.1186/s12936-020-03175-y (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    87.
    Lasry, E. et al. Seasonal malaria chemoprevention, three years of implementation. Am. J. Trop. Med. Hyg. 51, 523–532 (2015).
    Google Scholar 

    88.
    Cissé, B. et al. Effectiveness of seasonal malaria chemoprevention in children under ten years of age in senegal: a stepped-wedge cluster-randomised trial. PLoS Med. https://doi.org/10.1371/journal.pmed.1002175 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    89.
    Chandramohan, D. et al. Effect of adding azithromycin to seasonal malaria chemoprevention. N. Engl. J. Med. https://doi.org/10.1056/nejmoa1811400 (2019).
    Article  PubMed  Google Scholar 

    90.
    Ndiaye, J. L. A. et al. Impact of seasonal malaria chemoprevention after 3 years at scale in Southern Senegal. Am. J. Trop. Med. Hyg. 19, 103 (2017).
    Google Scholar 

    91.
    Braganza, K., Karoly, D. J. & Arblaster, J. M. Diurnal temperature range as an index of global climate change during the twentieth century. Geophys. Res. Lett. 31, 1–4 (2004).
    Article  Google Scholar 

    92.
    Roget, E. & Khan, V. M. Decadal differences of the diurnal temperature range in the Aral Sea region at the turn of the century. Tellus A Dyn. Meteorol. Oceanogr. 70, 1–12 (2018).
    Article  Google Scholar 

    93.
    Lubinda, J. The spatio-temporal impact of climate change on malaria transmission, control and elimination in southern Africa: the case of Zambia (Unpublished doctoral dissertation). (Ulster University, 2020).

    94.
    Chaves, L. F. & Koendraat, C. J. Climate change and highland malaria: fresh air for a hot debate the quarterly review of bilology. J. Chem. Inf. Model. 53, 1689–1699 (2010).
    Google Scholar 

    95.
    Murdock, C. C., Sternberg, E. D. & Thomas, M. B. Malaria transmission potential could be reduced with current and future climate change. Sci. Rep. 6, 27771 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    96.
    Paaijmans, K. P. et al. Influence of climate on malaria transmission depends on daily temperature variation. Proc. Natl. Acad. Sci. 107, 15135–15139 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    97.
    Thomson, M. C. et al. Using rainfall and temperature data in the evaluation of national malaria control programs in Africa. Am. J. Trop. Med. Hyg. https://doi.org/10.4269/ajtmh.16-0696 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    98.
    Sena, L., Deressa, W. & Ali, A. Correlation of climate variability and malaria: a retrospective comparative study, Southwest Ethiopia. Ethiop. J. Health Sci. 25, 129 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    99.
    Kiszewski, A. E. & Teklehaimanot, A. A review of the clinical and epidemiologic burdens of epidemic malaria. Am. J. Trop. Med. Hyg. 71, 128–135 (2004).
    PubMed  Article  Google Scholar 

    100.
    Lobo, N. F. et al. Unexpected diversity of Anopheles species in Eastern Zambia: implications for evaluating vector behavior and interventions using molecular tools. Sci. Rep. 5, 17952 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    101.
    Moyes, C. L. et al. Analysis-ready datasets for insecticide resistance phenotype and genotype frequency in African malaria vectors. Sci. Data https://doi.org/10.1038/s41597-019-0134-2 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    102.
    President’s Malaria Initiative. President’s Malaria Initiative 2016—Zambia. 1–45 (2016).

    103.
    Hancock, P. A. et al. Mapping trends in insecticide resistance phenotypes in African malaria vectors. PLoS Biol. https://doi.org/10.1371/journal.pbio.3000633 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    104.
    World Health Organization. INDOOR RESIDUAL SPRAYING: An Operational Manual for Indoor Residual Spraying (IRS) for Malaria Transmission Control and Elimination (WHO Press, Cleveland, 2015).
    Google Scholar 

    105.
    Mukonka, V. M. et al. High burden of malaria following scale-up of control interventions in Nchelenge District, Luapula Province, Zambia. Malar. J. 13, 153 (2014).
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Individual fate and gut microbiome composition in the European wild rabbit (Oryctolagus cuniculus)

    1.
    Graham, A. L. et al. Fitness consequences of immune responses: Strengthening the empirical framework for ecoimmunology. Funct. Ecol. 25, 5–17 (2011).
    Article  Google Scholar 
    2.
    Maynard, C. L., Elson, C. O., Hatton, R. D. & Weaver, C. T. Reciprocal interactions of the intestinal microbiota and immune system. Nature 489, 231–241 (2012).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    3.
    Baldo, L., Riera, J. L., Tooming-Klunderud, A., Albà, M. M. & Salzburger, W. Gut microbiota dynamics during dietary shift in eastern African cichlid fishes. PLoS ONE 10, 1–23. https://doi.org/10.1371/journal.pone.0127462 (2015).
    CAS  Article  Google Scholar 

    4.
    Shapira, M. Gut microbiotas and host evolution: Scaling up symbiosis. Trends Ecol. Evol. 31, 539–549 (2016).
    PubMed  Article  Google Scholar 

    5.
    Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    6.
    Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Org, E. et al. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes 7, 313–322 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Russell, J. B. Factors that alter rumen microbial ecology. Science 292, 1119–1122 (2001).
    CAS  PubMed  Article  ADS  Google Scholar 

    9.
    DuPont, A. W. & DuPont, H. L. The intestinal microbiota and chronic disorders of the gut. Nat. Rev. Gastroenterol. Hepatol. 8, 523–531 (2011).
    PubMed  Article  Google Scholar 

    10.
    Walters, A. W. et al. The microbiota influences the Drosophila melanogaster life history strategy. Mol. Ecol. 29, 639–653 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Moreno, S., Villafuerte, R., Cabezas, S. & Lombardi, L. Wild rabbit restocking for predator conservation in Spain. Biol. Cons. 118, 183–193 (2004).
    Article  Google Scholar 

    12.
    Webb, N. J. Growth and mortality in juvenile European wild rabbits (Oryctolagus cuniculus). J. Zool. 230, 665–677 (1993).
    Article  Google Scholar 

    13.
    Villafuerte, R. & Delibes-Mateos, M. The IUCN red list of threatened species: Oryctolagus cuniculus (2019). https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T41291A45189779.en (2019).

    14.
    Ferrand, N. Inferring the evolutionary history of the European rabbit (Oryctolagus cuniculus) from molecular markers. In Lagomorph Biology: Evolution, Ecology and Conservation (eds Alves, P. C. et al.) 47–63 (Springer, Berlin, 2008).
    Google Scholar 

    15.
    Rafati, N. N. et al. A genomic map of clinal variation across the European rabbit hybrid zone. Mol. Ecol. 27, 1457–1478 (2018).
    CAS  PubMed  Article  Google Scholar 

    16.
    Delibes-Mateos, M., Villafuerte, R., Cooke, B. & Alves, P. C. Oryctolagus cuniculus (Linnaeus, 1758). In Lagomorphs: Pikas, Rabbits and Hares of the World (eds Smith, A. T. et al.) 99–104 (John Hopkins University Press, Baltimore, 2018).
    Google Scholar 

    17.
    Geraldes, A. et al. Reduced introgression of the Y chromosome between subspecies of the European rabbit (Oryctolagus cuniculus) in the Iberian Peninsula. Mol. Ecol. 17, 4489–4499 (2008).
    CAS  PubMed  Article  Google Scholar 

    18.
    Sneddon, I. A. Latrine use by the European rabbit (Oryctolagus cuniculus). J. Mammal. 72, 769–775 (1991).
    Article  Google Scholar 

    19.
    Mykytowycz, R. & Dudzinski, M. L. A study on the weight of odoriferous and other glands in relation to the social status and degree of sexual activity in the wild rabbit, Oryctolagus cuniculus (L.). Wildl. Res. 11, 31–47 (1996).
    Article  Google Scholar 

    20.
    Rouco, C., Villafuerte, R., Castro, F. & Ferreras, P. Effect of artificial warren size on a restocked European wild rabbit population. Anim. Conserv. 14, 117–123 (2011).
    Article  Google Scholar 

    21.
    Villafuerte, R. & Viñuela, J. Size of rabbits consumed by black kites increased after a rabbit epizootic. Mammal Rev. 29, 261–264 (1999).
    Article  Google Scholar 

    22.
    Ferrera, I. et al. High-diversity biofilm for the oxidation of sulfide-containing effluents. Appl. Environ. Microbiol. 64, 726–734 (2004).
    CAS  Google Scholar 

    23.
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).
    CAS  PubMed  Article  ADS  Google Scholar 

    24.
    Edgar, R. C. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 10, 996–998 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).
    Article  CAS  Google Scholar 

    26.
    Paulson, J. N., Stine, O. C., Bravo, H. C. & Pop, M. Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 10, 1200–1202 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).
    Google Scholar 

    28.
    Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.3-5 (2016).

    29.
    Aßhauer, K. P., Wemheuer, B., Daniel, R. & Meinicke, P. Tax4fun: Predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31, 2882–2884 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    30.
    Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Bayer, E. A., Shoham, Y. & Lamed, R. Cellulose-Decomposing Bacteria and Their Enzyme Systems 3rd edn. (Springer, Berlin, 2006).
    Google Scholar 

    32.
    Foley, W. J. & Cork, S. J. Use of fibrous diets by small herbivores: How far can the rules be ‘bent’?. Trends Ecol. Evol. 7, 159–162 (1992).
    CAS  PubMed  Article  Google Scholar 

    33.
    Hirakawa, H. Coprophagy in leporids and other mammalian herbivores. Mammal Rev. 31, 61–80 (2001).
    Article  Google Scholar 

    34.
    Zeng, B. et al. The bacterial communities associated with fecal types and body weight of rex rabbits. Sci. Rep. 5, 9342. https://doi.org/10.1038/srep09342 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Grimont, F. & Grimont, P. A. D. Proteobacteria: Gamma subclass. In The Prokaryotes Vol. 6 (eds Falkow, S. et al.) 219–244 (Springer, New York, 2006).
    Google Scholar 

    36.
    Stecher, B. et al. Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. Proc. Natl. Acad. Sci. USA 109, 1269–1274 (2012).
    CAS  PubMed  Article  ADS  Google Scholar 

    37.
    Gagen, E. J., Padmanabha, J., Denman, S. E. & McSweeney, C. S. Hydrogenotrophic culture enrichment reveals rumen Lachnospiraceae and Ruminococcaceae acetogens and hydrogen-responsive Bacteroidetes from pasture-fed cattle. FEMS Microbiol. Lett. 362, 1–8 (2015).
    Article  CAS  Google Scholar 

    38.
    Meehan, C. J. & Beiko, R. G. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol. Evol. 6, 703–713 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Barcenilla, A. et al. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl. Environ. Microbiol. 66, 1654–1661 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Flint, H. J. Polysaccharide breakdown by anaerobic microorganisms inhabiting the mammalian gut. Adv. Appl. Microbiol. 56, 89–120 (2004).
    CAS  PubMed  Article  Google Scholar 

    41.
    Stalder, G. L. et al. Gut microbiota of the European hare (Lepus europaeus). Sci. Rep. 9, 2738. https://doi.org/10.1038/s41598-019-39638-9 (2019).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    42.
    Gillilland, M. G. et al. Ecological succession of bacterial communities during conventionalization of germ-free mice. Appl. Environ. Microbiol. 78, 2359–2366 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Lupp, C. Host-Mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 119–129 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Lawley, T. D. & Walker, A. W. Intestinal colonization resistance. Immunology 138, 1–11 (2013).
    CAS  PubMed  Article  Google Scholar 

    45.
    Punzalan, C. & Qamar, A. Probiotics for the treatment of liver disease. In The Microbiota in Gastrointestinal Pathophysiology: Implications for Human Health, Prebiotics, Probiotics, and Dysbiosis (eds Floch, M. H. et al.) 373–381 (Academic Press, New York, 2017).
    Google Scholar 

    46.
    Lopez-Siles, M. et al. Mucosa-associated Faecalibacterium prausnitzii phylotype richness is reduced in patients with inflammatory bowel disease. Appl. Environ. Microbiol. 81, 7582–7592 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Li, H. et al. Pika population density is associated with the composition and diversity of gut microbiota. Front. Microbiol. 7, 758 (2016).
    PubMed  PubMed Central  Google Scholar 

    48.
    Amato, K. R. Co-evolution in context: The importance of studying gut microbiomes in wild animals. Microbiome Sci. Med. 1, 10–29 (2013).
    Article  Google Scholar 

    49.
    Thompson, H. V. & King, C. M. The European Rabbit: History and Biology of a Successful Colonizer (Oxford Science Publications, Oxford, 1984).
    Google Scholar 

    50.
    Martins, H., Milne, J. A. & Rego, F. Seasonal and spatial variation in the diet of the wild rabbit (Oryctolagus cuniculus L.) in Portugal. J. Zool. 258, 395–404 (2002).
    Article  Google Scholar 

    51.
    Cubas, J. et al. Endemic plant species are more palatable to introduced herbivores than non-endemics. Proc. R. Soc. B 286, 20190136. https://doi.org/10.1098/rspb.2019.0136 (2019).
    Article  PubMed  Google Scholar 

    52.
    Khalifa, A. Y., Alsyeeh, A. M., Almalki, M. A. & Saleh, F. A. Characterization of the plant growth promoting bacterium, Enterobacter cloacae msr1, isolated from roots of non-nodulating Medicago sativa. Saudi J. Biol. Sci. 23, 79–86 (2016).
    CAS  PubMed  Article  Google Scholar 

    53.
    Polizeli, M. L. T. M. et al. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67, 577–591 (2005).
    CAS  PubMed  Article  Google Scholar 

    54.
    Fisher, E. H. & Stein, E. A. α-Amylases. In The Enzyme 2nd edn (eds Boyer, P. D. et al.) 313–143 (Academic Press Inc, New York, 1960).
    Google Scholar 

    55.
    Bletz, M. C. et al. Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nat. Commun. 7, 13699. https://doi.org/10.1038/ncomms13699 (2016).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    56.
    Martínez-Mota, R. et al. Natural diets promote retention of the native gut microbiota in captive rodents. ISME J. 14, 67–78 (2020).
    PubMed  Article  CAS  Google Scholar 

    57.
    Van Leeuwen, P. et al. Effects of captivity, diet, and relocation on the gut bacterial communities of white-footed mice. Ecol. Evol. 10, 4677–4690 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Grieneisen, L. E., Livermore, J., Alberts, S., Tung, J. & Archie, E. A. Group living and male dispersal to predict core gut microbiome in wild baboons. Integr. Comp. Biol. 57, 770–785 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Cowan, D. P. Aspects of the social organization of the European wild rabbit (Oryctolagus cuniculus). Ethology 75, 197–210 (1987).
    Article  Google Scholar 

    60.
    Marsh, M. K., Hutchings, M. R., McLeod, S. R. & White, P. C. Spatial and temporal heterogeneities in the contact behavior of rabbits. Behav. Ecol. Sociobiol. 65, 183–195 (2011).
    Article  Google Scholar 

    61.
    Moller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997. https://doi.org/10.1126/sciadv.1500997 (2016).
    CAS  Article  ADS  Google Scholar 

    62.
    Carro, F., Ortega, M. & Soriguer, R. C. Is restocking a useful tool for increasing rabbit densities?. Glob. Ecol. Conserv. 17, e00560. https://doi.org/10.1016/j.gecco.2019.e00560 (2019).
    Article  Google Scholar 

    63.
    Rouco, C., Ferreras, P., Castro, F. & Villafuerte, R. A longer confinement period favors European wild rabbit (Oryctolagus cuniculus) survival during soft releases in low-cover habitats. Eur. J. Wildl. Res. 56, 215–219 (2010).
    Article  Google Scholar  More

  • in

    Online media reveals a global problem of discarded containers as deadly traps for animals

    1.
    Ravenelle, J. & Nyhus, P. J. Global patterns and trends in human–wildlife conflict compensation. Conserv. Biol. 31, 1247–1256 (2017).
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    Hopewell, J., Dvorak, R. & Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B 364, 2115–2126 (2009).
    CAS  Article  Google Scholar 

    3.
    Kaza, S., Yao, L., Bhada-Tata, P. & Van Woerden, F. What a waste 2.0: A global snapshot of solid waste management to 2050. Urban Development (World Bank, Washington, DC, 2018).

    4.
    Obradović, M., Kalambura, S., Smolec, D. & Jovičić, N. Dumping and illegal transport of hazardous waste, danger of modern society. Coll. Antropol. 38, 793–803 (2014).
    PubMed  PubMed Central  Google Scholar 

    5.
    Kubásek, M. & Hřebíček, J. Crowdsource approach for mapping of illegal dumps in the Czech Republic. Int. J. Spatial Data Infrastruct. Res. 8, 144–157 (2013).
    Google Scholar 

    6.
    Danthurebandara, M., Van Passel, S., Nelen, D., Tielemans, Y., & Van Acker, K. Environmental and socio-economic impacts of landfills. Linnaeus Eco-Tech 2012, 26–28 (2012).

    7.
    Lebreton, L. et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci. Rep. 8, 4666. https://doi.org/10.1038/s41598-018-22939-w (2018).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    8.
    Baranová, B., Manko, P. & Jászay, T. Waste dumps as local biodiversity hotspots for soil macrofauna and ground beetles (Coleoptera: Carabidae) in the agricultural landscape. Ecol. Eng. 81, 1–13 (2015).
    Article  Google Scholar 

    9.
    Jagiello, Z., Dylewski, Ł, Tobolka, M. & Aguirre, J. I. Life in a polluted world: A global review of anthropogenic materials in bird nests. Environ. Pollut. 251, 717–722 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Michlewicz, M. & Tryjanowski, P. Anthropogenic waste products as preferred nest sites for Myrmica rubra (L.) (Hymenoptera, Formicidae). J. Hymenopt. Res. 57, 103–114 (2017).
    Article  Google Scholar 

    11.
    Kolenda, K. et al. Deadly trap or sweet home? The case of discarded containers as novelty microhabitats for ants. Glob. Ecol. Conserv. 23, e01064. https://doi.org/10.1016/j.gecco.2020.e01064 (2020).
    Article  Google Scholar 

    12.
    Robertson, B. A., Rehage, J. S. & Sih, A. Ecological novelty and the emergence of evolutionary traps. Trends Ecol. Evol. 28, 552–560 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Schuyler, Q., Hardesty, B. D., Wilcox, C. & Townsend, K. Global analysis of anthropogenic debris ingestion by sea turtles. Conserv. Biol. 28, 129–139 (2014).
    PubMed  Article  Google Scholar 

    14.
    Roman, L., Schuyler, Q. A., Hardesty, B. D. & Townsend, K. A. Anthropogenic debris ingestion by avifauna in eastern Australia. PLoS One 11, e0158343. https://doi.org/10.1371/journal.pone.0158343 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Zhao, S., Zhu, L. & Li, D. Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: Not only plastics but also natural fibers. Sci. Total Environ. 550, 1110–1115 (2016).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    16.
    Lusher, A. L. et al. Microplastic and macroplastic ingestion by a deep diving, oceanic cetacean: The True’s beaked whale Mesoplodon mirus. Environ. Pollut. 199, 185–191 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Foley, C. J., Feiner, Z. S., Malinich, T. D. & Höök, T. O. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Sci. Total Environ. 631, 550–559 (2018).
    PubMed  Article  ADS  CAS  PubMed Central  Google Scholar 

    18.
    Rideout, B. A. et al. Patterns of mortality in free-ranging California Condors (Gymnogyps californianus). J. Wildl. Dis. 48, 95–112 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Strine, C. T. et al. Mortality of a wild king cobra, Ophiophagus hannah Cantor, 1836 (Serpentes: Elapidae) from Northeast Thailand after ingesting a plastic bag. Asian Herpetol. Res. 5, 284–286 (2014).
    Article  Google Scholar 

    20.
    Ryan, P. G., Dilley, B. J., Ronconi, R. A. & Connan, M. Rapid increase in Asian bottles in the South Atlantic Ocean indicates major debris inputs from ships. Proc. Natl. Acad. Sci. USA. 116, 20892–20897 (2019).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    21.
    Debernardi, P., Patriarca, E., Perrone, A., Cantini, M. & Chiarenzi, B. Small mammals found in discarded bottles in alpine and pre-alpine areas of NW-Italy. Hystrix 9, 51–55 (1997).
    Google Scholar 

    22.
    Davenport, J., Hills, J., Glasspool, A. & Ward, J. Threats to the critically endangered endemic Bermudian skink Eumeces longirostris. Oryx 35, 332–339 (2001).
    Article  Google Scholar 

    23.
    Benedict, R. A. & Billeter, M. C. Discarded bottles as a cause of mortality in small vertebrates. Southeast. Nat. 3, 371–378 (2004).
    Article  Google Scholar 

    24.
    Brannon, M. P. & Bargelt, L. B. Discarded bottles as a mortality threat to shrews and other small mammals in the Southern Appalachian Mountains. J. N. C. Acad. Sci. 129, 126–129 (2013).
    Google Scholar 

    25.
    Morris, P. A. & Harper, J. F. The occurrence of small mammals in discarded bottles. Proc. Zool. Soc. Lond. 145, 148–153 (1965).
    Article  Google Scholar 

    26.
    Hamed, M. K. & Laughlin, T. F. Small-mammal mortality caused by discarded bottles and cans along a US Forest Service road in the Cherokee National Forest. Southeast. Nat. 14, 506–516 (2015).
    Article  Google Scholar 

    27.
    Kolenda, K., Przybył, M., Piłacińska, B. & Rychlik, L. Survey of discarded bottles as an effective method in detection of small mammal diversity. Pol. J. Ecol. 66, 57–63 (2018).
    Article  Google Scholar 

    28.
    Kolenda, K., Kurczaba, K. & Kulesza, M. Littering as a lethal threat to small animals. Przegląd Przyr. 26, 53–62 (2015) (in Polish with English summary).
    Google Scholar 

    29.
    Poeta, G., Romiti, F. & Battisti, C. Discarded bottles in sandy coastal dunes as threat for macro-invertebrate populations: First evidence of a trap effect. Vie Milieu 65, 125–127 (2015).
    Google Scholar 

    30.
    Lavers, J. L., Sharp, P. B., Stuckenbrock, S. & Bond, A. L. Entrapment in plastic debris endangers hermit crabs. J. Hazard. Mater. 387, 121703. https://doi.org/10.1016/j.jhazmat.2019.121703 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Moates, G. Small mammal mortality in discarded bottles and drinks cans—A Norfolk-based field study in a global context. J. Litter Environ. Qual. 2, 5–13 (2018).
    Google Scholar 

    32.
    Castilla, A. M. & Bauwens, D. Observations on the natural history, present status, and conservation of the insular lizard Podarcis hispanica atrata on the Columbretes archipelago, Spain. Biol. Conserv. 58, 69–84 (1991).
    Article  Google Scholar 

    33.
    Di Minin, E., Tenkanen, H. & Toivonen, T. Prospects and challenges for social media data in conservation science. Front. Environ. Sci. 3, 63. https://doi.org/10.3389/fenvs.2015.00063 (2015).
    Article  Google Scholar 

    34.
    Toivonen, T. et al. Social media data for conservation science: A methodological overview. Biol. Conserv. 233, 298–315 (2019).
    Article  Google Scholar 

    35.
    Kaplan, A. M. & Haenlein, M. Users of the world, unite! The challenges and opportunities of Social Media. Bus. Horiz. 53, 59–68 (2010).
    Article  Google Scholar 

    36.
    Perrin, A. Social media usage 2005–2015. (Pew Research Center, Washington, 2015).
    Google Scholar 

    37.
    Jagiello, Z., Dyderski, M. K. & Dylewski, Ł. What can we learn about the behaviour of red and grey squirrels from YouTube? Ecol. Inform. 51, 52–60 (2019).
    Article  Google Scholar 

    38.
    Ruths, D. & Pfeffer, J. Social media for large studies of behavior. Science 346, 1063–1064 (2014).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    39.
    Anderson, A. A. & Huntington, H. E. Social media, science, and attack discourse: How Twitter discussions of climate change use sarcasm and incivility. Sci. Commun. 39, 598–620 (2017).
    Article  Google Scholar 

    40.
    Sorokowski, P., Kowal, M., Zdybek, P. & Oleszkiewicz, A. Are online haters psychopaths? Psychological predictors of online hating behavior. Front. Psychol. 11, 553 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Mikula, P., Hadrava, J., Albrecht, T. & Tryjanowski, P. Large-scale assessment of commensalistic–mutualistic associations between African birds and herbivorous mammals using internet photos. PeerJ 6, e4520. https://doi.org/10.7717/peerj.4520 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    42.
    Daume, S., Albert, M. & Von Gadow, K. Forest monitoring and social media—Complementary data sources for ecosystem surveillance? For. Ecol. Manag. 316, 9–20 (2014).
    Article  Google Scholar 

    43.
    Stafford, R. et al. Eu-social science: The role of internet social networks in the collection of bee biodiversity data. PLoS One 5, e14381. https://doi.org/10.1371/journal.pone.0014381 (2010).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    44.
    van Zanten, B. T. et al. Continental-scale quantification of landscape values using social media data. Proc. Natl. Acad. Sci. 113, 12974–12979 (2016).
    PubMed  Article  ADS  CAS  PubMed Central  Google Scholar 

    45.
    Hausmann, A. et al. Social media data can be used to understand tourists’ preferences for nature-based experiences in protected areas. Conserv. Lett. 11, e12343. https://doi.org/10.1111/conl.12343 (2018).
    Article  Google Scholar 

    46.
    Tryjanowski, P. et al. Birds drinking alcohol: Species and relationship with people. A review of information from scientific literature and social media. Animals 10, 270. https://doi.org/10.3390/ani10020270 (2020).
    Article  Google Scholar 

    47.
    Hausmann, A. et al. Assessing global popularity and threats to important bird and biodiversity areas using social media data. Sci. Total Environ. 683, 617–623 (2019).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    48.
    Hetman, M., Kubicka, A. M., Sparks, T. H. & Tryjanowski, P. Road kills of non-human primates: A global view using a different type of data. Mammal Rev. 49, 276–283 (2019).
    Article  Google Scholar 

    49.
    Pace, D. S. et al. An integrated approach for cetacean knowledge and conservation in the central Mediterranean Sea using research and social media data sources. Aquat. Conserv. 29, 1302–1323 (2019).
    Article  Google Scholar 

    50.
    Guinard, É., Julliard, R. & Barbraud, C. Motorways and bird traffic casualties: Carcasses surveys and scavenging bias. Biol. Conserv. 147, 40–51 (2012).
    Article  Google Scholar 

    51.
    Luniak, M. Synurbization–adaptation of animal wildlife to urban development. In Proceedings of the 4th International Symposium on Urban Wildlife Conservation, Tucson, AZ (eds. Shaw, W. W. et al.) 50–55 (2004).

    52.
    Soulsbury, C. D. & White, P. C. Human–wildlife interactions in urban areas: A review of conflicts, benefits and opportunities. Wildlife Res. 42, 541–553 (2016).
    Article  Google Scholar 

    53.
    Brown, T. J., Ham, S. H. & Hughes, M. Picking up litter: An application of theory-based communication to influence tourist behaviour in protected areas. J. Sustain. Tour. 18, 879–900 (2010).
    Article  Google Scholar 

    54.
    Wilson, S. P. & Verlis, K. M. The ugly face of tourism: Marine debris pollution linked to visitation in the southern Great Barrier Reef, Australia. Mar. Pollut. Bull. 117, 239–246 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Jakiel, M., Bernatek-Jakiel, A., Gajda, A., Filiks, M. & Pufelska, M. Spatial and temporal distribution of illegal dumping sites in the nature protected area: The Ojców National Park, Poland. J. Environ. Plan. Manag. 62, 286–305 (2019).
    Article  Google Scholar 

    56.
    Ducarme, F., Luque, G. M. & Courchamp, F. What are “charismatic species” for conservation biologists. BioSci. Master Rev. 10, 1–8 (2013).
    Google Scholar 

    57.
    Elfström, M., Zedrosser, A., Støen, O. G. & Swenson, J. E. Ultimate and proximate mechanisms underlying the occurrence of bears close to human settlements: Review and management implications. Mammal Rev. 44, 5–18 (2014).
    Article  Google Scholar 

    58.
    Kumbhojkar, S., Yosef, R., Benedetti, Y. & Morelli, F. Human-leopard (Panthera pardus fusca) co-existence in Jhalana forest reserve, India. Sustainability 11, 3912. https://doi.org/10.3390/su11143912 (2019).
    Article  Google Scholar 

    59.
    IUCN. The IUCN Red List of Threatened Species, http://www.iucnredlist.org (2019).

    60.
    Arrizabalaga, A., González, L. M. & Torre, I. Small mammals in discarded bottles: A new world record. Galemys 28, 63–65 (2016).
    Article  Google Scholar 

    61.
    Chandrasekaran, S. et al. Disposed paper cups and declining bees. Curr. Sci. 101, 1262 (2011).
    Google Scholar 

    62.
    Shine, R. & Koenig, J. Snakes in the garden: An analysis of reptiles “rescued” by community-based wildlife carers. Biol. Conserv. 102, 271–283 (2001).
    Article  Google Scholar 

    63.
    Peris, S. J. Feeding in urban refuse dumps: Ingestion of plastic objects by the White Stork (Ciconia ciconia). Ardeola 50, 81–84 (2003).
    Google Scholar 

    64.
    Mrosovsky, N., Ryan, G. D. & James, M. C. Leatherback turtles: The menace of plastic. Mar. Pollut. Bull. 58, 287–289 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Jankowiak, Ł, Malecha, A. W. & Krawczyk, A. J. Garbage in the diet of carnivores in an agricultural area. Eur. J. Ecol. 2, 81–86 (2016).
    Article  Google Scholar 

    66.
    Poeta, G., Eleonora, S., Alicia, T. R. & Battisti, C. Ecological effects of anthropogenic litter on marine mammals: A global review with a “black-list” of impacted taxa. Hystrix 28, 253–264 (2017).
    Google Scholar 

    67.
    Heathcote, G., Hobday, A. J., Spaulding, M., Gard, M. & Irons, G. Citizen reporting of wildlife interactions can improve impact-reduction programs and support wildlife carers. Wildlife Res. 46, 415–428 (2019).
    Article  Google Scholar 

    68.
    Fraser, H., Taylor, N. & Signal, T. Young people empathising with other animals: Reflections on an Australian RSPCA humane education programme. Aotearoa N. Z. Soc. Work 29, 5–16 (2017).
    Article  Google Scholar 

    69.
    Tiplady, C. M., Walsh, D. A. B. & Phillips, C. J. Public response to media coverage of animal cruelty. J. Agric. Environ. Ethics. 26, 869–885 (2013).
    Article  Google Scholar 

    70.
    ElQadi, M. et al. Mapping species distributions with social media geo-tagged images: Case studies of bees and flowering plants in Australia. Ecol. Inform. 39, 23–31 (2017).
    Article  Google Scholar 

    71.
    Siriwat, P. & Nijman, V. Illegal pet trade on social media as an emerging impediment to the conservation of Asian otters species. J. Asia-Pacific Biodivers. 11, 469–475 (2018).
    Article  Google Scholar 

    72.
    Di Minin, E., Fink, C., Hiippala, T. & Tenkanen, H. A framework for investigating illegal wildlife trade on social media with machine learning. Conserv. Biol. 33, 210–213 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    73.
    RSPCA. Plastic litter is a growing threat to animals reveals RSPCA Cymru, https://news.rspca.org.uk/2019/02/05/plastic-litter-is-a-growing-threat-to-animals-reveals-rspca-cymru/ (2019).

    74.
    Schuyler, Q., Hardesty, B. D., Lawson, T. J., Opie, K. & Wilcox, C. Economic incentives reduce plastic inputs to the ocean. Mar. Policy 96, 250–255 (2018).
    Article  Google Scholar 

    75.
    Haarr, M. L., Pantalos, M., Hartviksen, M. K. & Gressetvold, M. Citizen science data indicate a reduction in beach litter in the Lofoten archipelago in the Norwegian Sea. Mar. Pollut. Bull. 153, 111000. https://doi.org/10.1016/j.marpolbul.2020.111000 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    76.
    Brannon, M. P., Brannon, J. K. & Baird, R. E. Educational applications of small-mammal skeletal remains found in discarded bottles. Southeast. Nat. 16, 4–10 (2017).
    Article  Google Scholar 

    77.
    Wyles, K. J., Pahl, S., Holland, M. & Thompson, R. C. Can beach cleans do more than clean-up litter? Comparing beach cleans to other coastal activities. Environ. Behav. 49, 509–535 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    78.
    Ethnologue 2019. What are the top 200 most spoken languages? http://www.ethnologue.com/guides/ethnologue200 (2019).

    79.
    Lessa, E. P. & Farina, R. A. Reassessment of extinction patterns among the late Pleistocene mammals of South America. Palaeontology 39, 651–662 (1996).
    Google Scholar 

    80.
    Lê, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).
    Article  Google Scholar 

    81.
    Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. https://CRAN.R-project.org/package=factoextra (2020). More

  • in

    Effects of anthropogenic activities on microplastics in deposit-feeders (Diptera: Chironomidae) in an urban river of Taiwan

    1.
    Arthur, C., Baker, J. & Bamford, H. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris. Group 530 (2009).
    2.
    Wagner, M. & Lambert, S. Freshwater Microplastics (Springer International Publishing, Cham, 2018). https://doi.org/10.1007/978-3-319-61615-5.
    Google Scholar 

    3.
    Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E. & Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 586, 127–141 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Cox, K. D. et al. Human consumption of microplastics. Environ. Sci. Technol. 53, 7068–7074 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Zhao, S., Zhu, L. & Li, D. Microplastic in three urban estuaries, China. Environ. Pollut. 206, 597–604 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Kunz, A., Walther, B. A., Löwemark, L. & Lee, Y. C. Distribution and quantity of microplastic on sandy beaches along the northern coast of Taiwan. Mar. Pollut. Bull. 111, 126–135 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Eriksen, M. et al. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9, 1–15 (2014).
    Google Scholar 

    8.
    Van Cauwenberghe, L., Vanreusel, A., Mees, J. & Janssen, C. R. Microplastic pollution in deep-sea sediments. Environ. Pollut. 182, 495–499 (2013).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    9.
    Obbard, R. W. et al. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Futur. 2, 315–320 (2014).
    ADS  Article  Google Scholar 

    10.
    Dris, R. et al. Microplastic contamination in an urban area: A case study in Greater Paris. Environ. Chem. 12, 592–599 (2015).
    CAS  Article  Google Scholar 

    11.
    Wetherbee, G. A., Baldwin, A. K. & Ranville, J. F. It is raining plastic. U.S. Geological Survey Open-File Report 2019-1048 (2019). https://doi.org/10.3133/ofr20191048.

    12.
    Barboza, L. G. A. & Gimenez, B. C. G. Microplastics in the marine environment: Current trends and future perspectives. Mar. Pollut. Bull. 97, 5–12 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Yonkos, L. T., Friedel, E. A., Perez-Reyes, A. C., Ghosal, S. & Arthur, C. D. Microplastics in four estuarine rivers in the chesapeake bay, U.S.A. Environ. Sci. Technol. 48, 14195–14202 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Browne, M. A. et al. Accumulation of microplastic on shorelines woldwide: sources and sinks—Environmental science and technology (ACS Publications). Environ. Sci. Technol. 45, 9175–9179. https://doi.org/10.1021/es201811s (2011).
    ADS  CAS  Article  Google Scholar 

    15.
    Eriksen, M. et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar. Pollut. Bull. 77, 177–182 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Cole, M., Lindeque, P., Halsband, C. & Galloway, T. S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 62, 2588–2597 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Nel, H. A., Dalu, T. & Wasserman, R. J. Sinks and sources: Assessing microplastic abundance in river sediment and deposit feeders in an Austral temperate urban river system. Sci. Total Environ. 612, 950–956 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Wang, W., Ndungu, A. W., Li, Z. & Wang, J. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China. Sci. Total Environ. 575, 1369–1374 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Klein, S., Worch, E. & Knepper, T. P. Occurrence and spatial distribution of microplastics in river shore sediments of the rhine-main area in Germany. Environ. Sci. Technol. 49, 6070–6076 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 764–768 (2015).
    ADS  Article  CAS  Google Scholar 

    21.
    Browne, M. A., Galloway, T. S. & Thompson, R. C. Spatial patterns of plastic debris along estuarine shorelines. Environ. Sci. Technol. 44, 3404–3409 (2010).
    ADS  CAS  Article  Google Scholar 

    22.
    Li, J. et al. Using mussel as a global bioindicator of coastal microplastic pollution. Environ. Pollut. 244, 522–533 (2019).
    CAS  Article  Google Scholar 

    23.
    Bonanno, G. & Orlando-Bonaca, M. Perspectives on using marine species as bioindicators of plastic pollution. Mar. Pollut. Bull. 137, 209–221 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Akindele, E. O., Ehlers, S. M. & Koop, J. H. E. First empirical study of freshwater microplastics in West Africa using gastropods from Nigeria as bioindicators. Limnologica 78, 125708 (2019).
    CAS  Article  Google Scholar 

    25.
    Su, L. et al. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. Environ. Pollut. 234, 347–355 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Dalu, T. et al. Variation partitioning of benthic diatom community matrices: Effects of multiple variables on benthic diatom communities in an Austral temperate river system. Sci. Total Environ. 601–602, 73–82 (2017).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    27.
    Scherer, C., Brennholt, N., Reifferscheid, G. & Wagner, M. Feeding type and development drive the ingestion of microplastics by freshwater invertebrates. Sci. Rep. 7, 1–9 (2017).
    Article  CAS  Google Scholar 

    28.
    Silva, C. J. M., Silva, A. L. P., Gravato, C. & Pestana, J. L. T. Ingestion of small-sized and irregularly shaped polyethylene microplastics affect Chironomusriparius life-history traits. Sci. Total Environ. 672, 862–868 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Ziajahromi, S., Kumar, A., Neale, P. A. & Leusch, F. D. L. Effects of polyethylene microplastics on the acute toxicity of a synthetic pyrethroid to midge larvae (Chironomustepperi) in synthetic and river water. Sci. Total Environ. 671, 971–975 (2019).
    ADS  CAS  Article  Google Scholar 

    30.
    Windsor, F. M., Tilley, R. M., Tyler, C. R. & Ormerod, S. J. Microplastic ingestion by riverine macroinvertebrates. Sci. Total Environ. 646, 68–74 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Ziajahromi, S., Kumar, A., Neale, P. A. & Leusch, F. D. L. Environmentally relevant concentrations of polyethylene microplastics negatively impact the survival, growth and emergence of sediment-dwelling invertebrates. Environ. Pollut. 236, 425–431 (2018).
    CAS  PubMed  Article  Google Scholar 

    32.
    Open Government Data License. National Development Council. https://data.gov.tw/en.

    33.
    Central Weather Bureau Observation Data Inquiry System. https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp.

    34.
    Merritt, R. W. & Cummins, K. W. An Introduction to the Aquatic Insects of North America 3rd edn. (Kendall/Hunt Pub. Co., Dubuque, 1996).
    Google Scholar 

    35.
    Löder, M. G. J. & Gerdts, G. Methodology used for the detection and identification of microplastics—A critical appraisal. In Marine Anthropogenic Litter (eds Bergmann, M. et al.) 201–227 (Springer, Cham, 2015). https://doi.org/10.1007/978-3-319-16510-3_8.
    Google Scholar 

    36.
    Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 46, 3060–3075 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Li, J. et al. Microplastics in mussels along the coastal waters of China. Environ. Pollut. 214, 177–184 (2016).
    CAS  PubMed  Article  Google Scholar 

    38.
    Taiwan Map Store. National Land Surveying and Mapping Center. https://whgis.nlsc.gov.tw/.

    39.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference (Springer, New York, 2002).
    Google Scholar 

    40.
    Hurvich, C. M. & Tsai, C. L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).
    MathSciNet  MATH  Article  Google Scholar 

    41.
    R Core Team. R: A Language and Environment for Statistical Computing (2018).

    42.
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Article  Google Scholar 

    43.
    Rizopoulos, D. GLMMadaptive: Generalized linear mixed models using adaptive gaussian quadrature (2020).

    44.
    Bartoń, K. MuMIn: Multi-model inference (2019).

    45.
    Lüdecke, D., Makowski, D. & Waggoner, P. performance: Assessment of regression models performance (2019).

    46.
    Lechner, A. et al. The Danube so colourful: A potpourri of plastic litter outnumbers fish larvae in Europe’s second largest river. Environ. Pollut. 188, 177–181 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Moore, C. J., Lattin, G. L. & Zellers, A. F. Quantity and type of plastic debris flowing from two urban rivers to coastal waters and beaches of Southern California. Rev. Gestão Costeira Integr. 11, 65–73 (2011).
    Article  Google Scholar 

    48.
    Lechner, A. & Ramler, D. The discharge of certain amounts of industrial microplastic from a production plant into the River Danube is permitted by the Austrian legislation. Environ. Pollut. 200, 159–160 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    von Schuckmann, K., Brandt, P. & Eden, C. Generation of tropical instability waves in the Atlantic Ocean. J. Geophys. Res. Oceans 113, 539–550 (2008).
    Google Scholar 

    50.
    Murphy, F., Ewins, C., Carbonnier, F. & Quinn, B. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ. Sci. Technol. 50, 5800–5808 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Dris, R., Gasperi, J. & Tassin, B. Sources and fate of microplastics in urban areas: A focus on Paris megacity. In Freshwater Microplastics (eds Wagner, M. & Lambert, S.) 69–83 (Springer International Publishing, Cham, 2018).
    Google Scholar 

    52.
    Siegfried, M., Koelmans, A. A., Besseling, E. & Kroeze, C. Export of microplastics from land to sea. A modelling approach. Water Res. 127, 249–257 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Enforcement Rule for Sewerage Law. Construction and planning agency ministry of the interior. https://www.cpami.gov.tw/index.php?option=com_content&view=frontpage&Itemid=36 (2007).

    54.
    Su, L. et al. Microplastics in Taihu Lake, China. Environ. Pollut. 216, 711–719 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Mani, T., Hauk, A., Walter, U. & Burkhardt-Holm, P. Microplastics profile along the Rhine River. Sci. Rep. 5, 1–7 (2015).
    Article  CAS  Google Scholar 

    56.
    Fischer, E. K., Paglialonga, L., Czech, E. & Tamminga, M. Microplastic pollution in lakes and lake shoreline sediments—A case study on Lake Bolsena and Lake Chiusi (central Italy). Environ. Pollut. 213, 648–657 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Collignon, A. et al. Neustonic microplastic and zooplankton in the North Western Mediterranean Sea. Mar. Pollut. Bull. 64, 861–864 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Rillig, M. C. Microplastic in terrestrial ecosystems and the soil?. Environ. Sci. Technol. 46, 6453–6454 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Rech, S. et al. Rivers as a source of marine litter—A study from the SE Pacific. Mar. Pollut. Bull. 82, 66–75 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Habib, R. Z., Thiemann, T. & AlKendi, R. Microplastics and wastewater treatment plants—A review. J. Water. Resour. Prot. 12, 1–35 (2020).
    CAS  Article  Google Scholar 

    61.
    Qi, Y. et al. Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 645, 1048–1056 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Clayton, G. W. et al. Polymer seed coating of early- and late-fall-seeded herbicide-tolerant canola (Brassicanapus L.) cultivars. Can. J. Plant Sci. 84, 971–979 (2004).
    Article  Google Scholar 

    63.
    Nizzetto, L., Futter, M. & Langaas, S. Are agricultural soils dumps for microplastics of urban origin?. Environ. Sci. Technol. 50, 10777–10779 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Ristola, T., Pellinen, J., Ruokolainen, M., Kostamo, A. & Kukkonen, J. V. K. Effect of sediment type, feeding level, and larval density on growth and development of a midge (Chironomusriparius). Environ. Toxicol. Chem. 18, 756 (1999).
    CAS  Article  Google Scholar 

    65.
    Conrad, O. Module Channel Network and Drainage Basins (2003)

    66.
    Conrad, O. et al. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 8, 1991–2007 (2015).
    ADS  Article  Google Scholar  More

  • in

    Metabarcoding profiling of microbial diversity associated with trout fish farming

    General microbial profile
    For the 16S libraries, the six samples recorded 1,054,909 reads, with a length between 51 to 533 bp and an average of 458. In general, the number of clustered sequences was 652,899 (61.89%), while the number of replicated reads was 140,196 (13.29%). The number of classified sequences was 1,047,271 (99.28%) while only 7,155 sequences exhibited ‘unassigned’ (0.68%). The quality control of classification, in this case, the alignment similarity, was between 75 and 100%, while the majority exceeded 80%. Based on the 16S rRNA dataset, prokaryotic OTU identification pipeline,  > 99% of the detected OTUs belonged to the bacteria domain. A total of 1318 species belonging to 17 phyla were detected in all samples. The most abundant were Proteobacteria (75.57%), Bacteroidetes (14.40%), Actinobacteria (0.94%), Verrucomicrobia (0.62%), and Cyanobacteria (0.25%).
    For the ITS2 libraries, the six samples recorded 2,193,552 reads, the assembled contigs length between 201 and 482 with an average of 292. In general, the number of generated consensus sequences ranged between seven and 47 per sample. In total, 191 (~ 75%) were successfully identified with pairwise identity ranging from 82 to 100%, while 63 sequences (~ 25%) hit an uncultured species (Supplementary Fig. 1). Based on the customized eukaryote OTU identification pipeline, 118 out of 233 were known species, ~ 55% of the identified OTUs belonged to the kingdom Fungi, ~ 33% belonged to the kingdom Plantae, and ~ 12% belonged to the kingdom Animalia. Due to the high diversity among the detected OTUs, fungi were grouped by their major function rather than their taxonomical position. The most represented Fungi group was the plant pathogens (~ 45%), followed by mushrooms/yeasts (~ 28%), volatile producers (~ 11%), fish pathogens (~ 8%), and human pathogens (~ eight%) of the total fungal OTUs (Fig. 1).
    Figure 1

    Microbial diversity detected by the metabarcoding analysis. The relative abundance of identified bacterial OTUs among the six water samples, where top abundant bacterial phyla are written in bold (A). The histogram plot shows the identified eukaryotic groups per domain (Planta, Fungi, or Animalia). The target group in the eukaryotic metabarcoding analysis was the fungal group distributed according to their prominent role and function (BBMerge–accurate paired shotgun read merging via overlap).

    Full size image

    Comparative metabarcoding analysis
    Microbial diversity indices
    For the 16S, the average alpha-diversity was estimated for each source; P-source showed a lower alpha-diversity than I-source. For 16S rRNA, the Simpson index values of the P-sources were lower than the I-sources (Fig. 2). Specifically, in samples from location N compared to the rest of the samples (0.86 for N-I and 0.49 for N-P). For B and G locations, D-index was 0.64 (B-I), 0.54 (B-P), 0.79 (G-I), and 0.66 (G-P). Based on sample locations, beta-diversity values of location G were the highest, while location B was the lowest. The G-I showed the highest beta-diversity for inter-location values, followed by N-P, N-I, G-P, B-I, and B-P (Fig. 2). This might indicate that the changes in a pond diversity are contributed by sources other than the inflow-water (e.g., transferred by juvenile fish or fingerlings, or the introduction of fish feeds).
    Figure 2

    Alpha and beta-diversity of identified bacterial communities are estimated according to the Simpson diversity index and Bray Curtis, respectively. The three locations (N, G, and B) from two different sources, the inflow- (I) and pond-water (P), are shown.

    Full size image

    Species occurrences and distributions
    The identified species were detected in all locations (common) or exclusively detected in (a) either I-source or P-source samples, (b) exclusively found in one location regardless of the water source, (c) uniquely recorded in one sample.
    A total of 1318 bacterial species were delimited. In which 1074 species were identified from I-sources, with the highest number was found in B-I (774), followed by N-I (669) and G-I (548). The number of detected species from P-sources was 1006 across the three locations. The highest number of species was found in B-P (882), followed by N-P (553) and G-P (415) locations. The highest number of species was 1081 from location B (321 were unique), followed by 804 species from location N (124 were unique) and 665 species from location G (94 were unique), regardless of the water source (i.e., species detected in one or both samples of each location). Locations N and B had 208 common species, while locations B and G shared 99 species, and locations N and G shared only 19 species. A total of 453 species were common among the three locations, of which 442 were common regardless of the water source.
    Out of the 453 common species, six species were exclusively detected from I-sources samples. Among the 442, the highest number of species was 415 from B-I (19 unique), followed by 399 from N-I (five unique) and 383 from G-I (five unique). Forty-one species were common between N-I and B-I, 25 between B-I and G-I, and 22 between N-I and G-I samples. Three hundred thirty-one species were common among samples N-I, B-I, and G-I. The number of the exclusively detected species in P-sources samples was five from the three locations. Among 442 species, the highest number of species was 424 from B-I (26 unique), followed by 386 from N-I (13 unique) and 346 from G-I (five unique). A total of 62 species were common between N-I and B-I, 30 between B-I and G-I, and five between N-I and G-I samples, while 306 were common among N-I, B-I, and G-I samples (Fig. 3).
    Figure 3

    Venn diagram of shared and uniquely identified OTUs among the three sampling locations (a), where the common OTUs were counted by source (I or P; b). For each source, OTUs were separated by sample locations, respectively (c & d).

    Full size image

    Based on the fungal community, 233 OTUs were detected, 84 were unknown fungi (36%), 31 uncultured fungi with at least one taxonomical rank is known (14%), and 118 species were successfully identified (50%). The detected OTUs in I-sources was 123, with the highest number of OTUs from B-I (79), followed by N-I (37) and G-I (seven). The number of detected OTUs in P-source was 110 from the three locations. The highest number of OTUs was found in B-P (46), followed by N-P (42) and G-P (22) locations. Regardless of the water source, the highest number of OTUs was 125 from location B (24 were unique), followed by 79 OTUs from location N (30 were unique), and 29 OTUs from location G (11 were unique). Locations N and B shared two OTUs, while B and G shared one OTU, and N and G locations shared no OTU. Only one uncultured fungus was shared among the three locations. Between both water sources, based on known and uncultured fungi with at least one taxonomical rank, 20 species were common between the I- and P-sources, 56 species unique for I-sources, and 49 species unique for P-sources. However, none were commonly found among the P-source from the three sample source locations. Fungal OTUs number was following the bacterial OTUs number per sample, reflecting the homogenized overall diversity within each water sample.
    Microbial diversity unique to trout aquaculture water
    Due to the lack of common eukaryotic OTUs among the P-source sites, the following analysis only focused on the prokaryotic species. The six exclusively identified bacterial species from the I-source belonged to three phyla, Proteobacteria, which has four species (Burkholderiaceae bacterium belong to MWH-UniP1 aquatic group, Caulobacteraceae bacterium, Hyphomonadaceae bacterium, and Rhodospirillales bacterium), one from phylum Bacteroidetes (Spirosomaceae bacterium) and one from phylum Firmicutes (Solibacillus sp.). For the P-source samples, the five exclusively species among the three locations belonged to two phyla, Bacteroidetes (Ekhidna sp., Polaribacter sp., and Sphingobacteriaceae bacterium) and Proteobacteria (Thalassotalea sp. and Paraherbaspirillum sp.).
    Among the commonly-shared species, the one-tail distribution student t-test was applied to identify significantly different bacterial species between the two water sources (Table 1). A total of 15 species belonged to two phyla, and 12 families were significantly different between the I- and P-source samples. The phylum Bacteroides (significant at average; p value of 0.001) included eight species: Marinoscillum sp. (Cyclobacteriaceae), Dysgonomonas sp. (Dysgonomonadaceae), Paludibacter sp. (Paludibacteraceae), Saprospiraceae bacterium, Mucilaginibacter and Pedobacter (Sphingobacteriaceae), Lacihabitans (Spirosomaceae), uncultured ST-12K33 (unknown family), and Empedobacter (Weeksellaceae); all of the aforementioned species were less represented in I-source and more represented in P-sources. In the case of the other phylum (Proteobacteria), eight species were found to be significant. Three species: Simplicispira sp. (Burkholderiaceae), Amaricoccus, and Thioclava (Rhodobacteraceae) were up-represented in I-source and while four species: Alicycliphilus and Caenimonas (Burkholderiaceae), Orientia sp. (Rickettsiaceae), and Sphingomonadaceae bacterium were up-represent in P-source.
    Table 1 Significantly differentiated bacteria (p  > 0.05) as determined via a t-test, ordered by classification.
    Full size table

    The species exhibiting the highest overall relative abundance was Simplicispira sp. (0.45), which was up-represented in the I-source, while the uncultured Saprospiraceae bacterium (0.227), Pedobacter sp. (0.164), and uncultured Sphingomonadaceae bacterium (0.213) were up-represented in the P-source.
    All data were analyzed using Pearson-based multiple correlation analysis based on the counts of all the identified species and visualized using heatmaps. Samples-based clustering was estimated for several correlation blocks. The single correlation-block that was detected to cluster the samples by location (i.e., N, B, and G) regardless of their source included nine species. Three correlation-blocks were found to cluster the samples by water source (i.e., I or P) regardless of their location, and these included 16 species, one of which included 11 species (Fig. 4). The correlated species were tested for species-species co-occurrence and visualized as a network. One significant connection was formed among five of the 16 species found to distinguish the water source, but none distinguish the sampling location. The detected species belonged to phylum Proteobacteria, Candidatus Symbiobacter sp., Comamonas sp., and Polaromonas sp. (Burkholderiaceae) and Porphyrobacter sp. (Sphingomonadaceae), and one species belonged to phylum Firmicutes, Lachnospiraceae bacterium in one connected cluster. The 11 species that did not form a network were Beijerinckiaceae bacterium, Bacteriap25, Gracilibacter sp., Malikia sp., Oligoflexus sp., Pelomonas sp., Polycyclovorans sp., Thioclava sp., Thauera sp., uncultured Alpha-proteobacterium, and uncultured Gamma-proteobacterium (JTB255; Fig. 4).
    Figure 4

    source samples from the P-source samples and includes 11 species (A), and the other discriminates the N, B, and G locations regardless of the water source and includes nine species (B).

    Heatmaps based on Person-multiple correlation analysis among the identified bacterial species. Two heatmaps, one was able to discriminate the I-

    Full size image

    Influence of samples locations and distance on microbial diversity
    The flow of water is northeast; accordingly, the flow of water hypothetically runs first from location N, passes through B, and then finally reaches G. Interestingly, it was observed that both N and B locations shared more OTUs than with the G location (Supplementary Fig. 1). Furthermore, N samples have less OTUs than the B and G sites, which raised a question about the influence of the geographic position and distance on the sampled locations. Based on such a hypothesis, a Euclidean geographic distance matrix was estimated to provide a spatial scale for further correlation analysis. A Mantel test was performed to examine the correlation between the geographic distance between the sampled farms and the number of characteristic species in I- and P-source samples. In the case of the inflow-water samples, no significant (p  > 0.05) correlation was observed. In contrast, the characteristic species count for pond-water samples significantly correlated with the distance between the samples (r = 0.969, p  More

  • in

    Quantification of dissolved O2 in bulk aqueous solutions and porous media using NMR relaxometry

    1.
    Seevers, D. O. A nuclear magnetic method for determining the permeability of sandstones. Presented at the SPWLA 7th Annual Logging Symposium, Tulsa, OK, 9–11 May 1966.
    2.
    Timur, A. Effective porosity and permeability of sandstones investigated through nuclear magnetic principles. Log Anal. 10(1), 3 (1969).
    Google Scholar 

    3.
    Coates, G. R., Xiao, L. & Prammer, M. G. NMR Logging Principles and Applications (Halliburton Energy Services, Houston, 1999).
    Google Scholar 

    4.
    Korringa, J., Seevers, D. O. & Torrey, H. C. Theory of spin pumping and relaxation in systems with a low concentration of electron spin resonance centers. Phys. Rev. 127(4), 1143–1150 (1962).
    ADS  CAS  Article  Google Scholar 

    5.
    Kleinberg, R. L., Kenyon, W. E. & Mitra, P. P. Mechanism of NMR relaxation of fluids in rock. J. Magn. Reson. Ser. A 108(2), 206–214 (1994).
    ADS  CAS  Article  Google Scholar 

    6.
    Watson, A. T. & Chang, C. T. P. Characterizing porous media with NMR methods. Prog. Nucl. Magn. Reson. Spectrosc. 31(4), 343–386 (1997).
    CAS  Article  Google Scholar 

    7.
    Godefroy, S., Fleury, M., Deflandre, F. & Korb, J. P. Temperature effect on NMR surface relaxation in rocks for well logging applications. J. Phys. Chem. B 106(43), 11183–11190 (2002).
    CAS  Article  Google Scholar 

    8.
    Glasel, J. A. & Lee, K. H. On the interpretation of water nuclear magnetic resonance relaxation times in heterogeneous systems. J. Am. Chem. Soc. 96(4), 970–978 (1974).
    CAS  Article  Google Scholar 

    9.
    Foley, I., Farooqui, S. A. & Kleinberg, R. L. Effect of paramagnetic ions on NMR relaxation of fluids at solid surfaces. J. Magn. Reson. Ser. A 123(1), 95–104 (1996).
    ADS  CAS  Article  Google Scholar 

    10.
    Mitchell, J., Stark, S. C. & Strange, J. H. Probing surface interactions by combining NMR cryoporometry and NMR relaxometry. J. Phys. D Appl. Phys. 38(12), 1950–1958 (2005).
    ADS  CAS  Article  Google Scholar 

    11.
    Keating, K. & Knight, R. A laboratory study to determine the effect of iron oxides on proton NMR measurements. Geophysics 72(1), E27–E32 (2007).
    ADS  Article  Google Scholar 

    12.
    Saidian, M. & Prasad, M. Effect of mineralogy on porosity, pore size distribution and surface relaxivity on nuclear magnetic resonance characterizations: A case study of Middle Bakken and Three Forks Formations. J. Fuel 161, 197–206 (2015).
    CAS  Article  Google Scholar 

    13.
    Benedekt, G. B. & Purcell, E. M. Nuclear magnetic resonance in liquids under high pressure. J. Chem. Phys. 22(12), 2003–2012 (1954).
    ADS  Article  Google Scholar 

    14.
    Nestle, N., Baumann, T. & Niessner, R. Oxygen determination in oxygen-supersaturated drinking waters by NMR relaxometry. Water Res. 37(14), 3361–3366 (2003).
    CAS  PubMed  Article  Google Scholar 

    15.
    Shikhov, I. & Arns, C. H. Temperature-dependent oxygen effect on NMR D-T2 relaxation-diffusion correlation of n-alkanes. Appl. Magn. Reson. 47(12), 1391–1408 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Horvath, I. T. & Millar, J. M. NMR under high gas pressure. Chem. Rev. 91(7), 13339–21351 (1991).
    Article  Google Scholar 

    17.
    Kamatari, Y. O., Kitahara, R., Yamada, H., Yokoyama, S. & Akasaka, K. High-pressure NMR spectroscopy for characterizing folding intermediates and denatured states of proteins. Methods 34(1), 133–143 (2004).
    CAS  PubMed  Article  Google Scholar 

    18.
    Bezonova, I., Forman-Kay, J. & Prosser, R. S. Molecular oxygen as a paramagnetic NMR probe of protein solvent exposure and topology. Concepts Magn. Reson. Part A 32(4), 239–253 (2008).
    Article  CAS  Google Scholar 

    19.
    Prosser, R. S. & Evanics, F. Paramagnetic effects of dioxygen in solution NMR—studies of membrane immersion depth, protein topology, and protein interactions. In Modern Magnetic Resonance (ed. Webb, G. A.) 475–483 (Springer, Dordrecht, 2008).
    Google Scholar 

    20.
    Erriah, B. & Elliot, S. J. Experimental evidence for the role of paramagnetic oxygen concentration on the decay of long-lived nuclear spin order. R. Soc. Chem. Adv. 9, 23418–23424 (2019).
    CAS  Google Scholar 

    21.
    Debye, P. Polar Molecules (New York, 1945).

    22.
    Chiarotti, G., Cristiani, G. & Giulotto, L. Proton relaxation in pure liquids and in liquids containing paramagnetic gases in solution. Il Nuovo Cimento 1(5), 863–873 (1955).
    Article  Google Scholar 

    23.
    Mirhej, M. E. Proton spin relaxation by paramagnetic molecular oxygen. Can. J. Chem. 43(5), 1130–1138 (1964).
    Article  Google Scholar 

    24.
    Parker, D. S. & Harmon, J. F. Dipolar spin-lattice relaxation in water containing oxygen. Chem. Phys. Lett. 25(4), 505–506 (1974).
    ADS  CAS  Article  Google Scholar 

    25.
    Morriss, C. E. et al. Hydrocarbon saturation and viscosity estimation from NMR logging in the Belridge Diatomite. Log Analyst 38(2), 44–72 (1997).
    MathSciNet  Google Scholar 

    26.
    Lo, S. W., Hirasaki, G. J., House, W. V. & Kobayashi, R. Mixing rules and correlations of NMR relaxation time with viscosity, diffusivity, and gas/oil ratios of methane/hydrocarbon mixtures. SPE J. 7(1), 24–34 (2002).
    CAS  Article  Google Scholar 

    27.
    Mutina, A. R. & Hurlimann, M. D. Effect of oxygen on the NMR relaxation properties of crude oils. Appl. Magn. Reson. 29, 503–516 (2005).
    CAS  Article  Google Scholar 

    28.
    Lawson, C. L. & Hanson, R. J. Solving Least Square Problems (Prentice-Hall, Englewood Cliffs, 1974).
    Google Scholar 

    29.
    Hirasaki, G. J., Lo, S. & Zhang, Y. NMR properties of petroleum reservoir fluids. Magn. Reson. Imaging 21(3–4), 269–277 (2003).
    CAS  PubMed  Article  Google Scholar 

    30.
    Ferrell, F. T. & Himmelblau, D. M. Diffusion coefficients of nitrogen and oxygen in water. J. Chem. Eng. Data 12(1), 111–115 (1967).
    CAS  Article  Google Scholar 

    31.
    Niesar, U., Corongiu, G., Clementi, E. & Bhattacharya, D. K. Molecular dynamics simulations of liquid water using the NCC ab initio potential. J. Phys. Chem. 94(20), 7949–7956 (1991).
    Article  Google Scholar 

    32.
    Martin, D., McKenna, H. & Livina, V. The human physiological impact of global deoxygenation. J. Physiol Sci. 67(1), 97–106 (2017).
    CAS  PubMed  Article  Google Scholar 

    33.
    Majid, A., Saidian, M., Prasad, M. & Koh, C. A. Measurement of water droplets in water-in-oil emulsions using low field nuclear magnetic resonance for gas hydrate slurry application. Can. J. Chem. 93(9), 1007–1013 (2015).
    CAS  Article  Google Scholar 

    34.
    Scardina, P. & Edwards, M. Prediction and measurement of bubble formation in water treatment. J. Environ. Eng. 17(11), 968–973 (2001).
    Article  Google Scholar 

    35.
    Carr, H. & Purcell, E. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94(3), 630–638 (1954).
    ADS  CAS  Article  Google Scholar 

    36.
    Meiboom, S. & Gill, D. Modified spin echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29(8), 668–691 (1958).
    ADS  Article  Google Scholar 

    37.
    Buttler, J. P., Reeds, J. A. & Dawson, S. V. Estimating solution of first kind integral equations with non-negative constraints and optimal smoothing. Siam J. Numer. Anal. 18(3), 381–397 (1981).
    ADS  MathSciNet  Article  Google Scholar 

    38.
    Benson, B. B. & Krause, D. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Am. Soc. Limnol. Oceanogr. 29(3), 620–632 (1984).
    ADS  CAS  Article  Google Scholar 

    39.
    Geng, M. & Duan, Z. Prediction of oxygen solubility in pure water and brines up to high temperatures and pressures. Geochim. Cosmochim. Acta 74(2010), 5631–5640 (2010).
    ADS  CAS  Article  Google Scholar  More

  • in

    Oilbirds disperse large seeds at longer distance than extinct megafauna

    1.
    Terborgh, J. et al. Tree recruitment in an empty forest. J. Ecol. 89, 1757–1768 (2008).
    Article  Google Scholar 
    2.
    Stevenson, P. The abundance of large ateline monkeys is positively associated with the diversity of plants regenerating in Neotropical forests. Biotropica 43, 512–519 (2011).
    Article  Google Scholar 

    3.
    Peres, C., Emilio, T., Schietti, J., Desmoulière, S. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl. Acad. Sci. 113, 892–897 (2016).
    CAS  PubMed  Article  ADS  Google Scholar 

    4.
    Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105 (2015).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    5.
    Chanthorn, W., Hartig, F., Brockelman, W. Y., Srisang, W., Nathalang, A. & Santon, J. Defaunation of large-bodied frugivores reduces carbon storage in a tropical forest of Southeast Asia. Sci. Rep. 9 (2019).

    6.
    Davis, M. & Shaw, R. Range shifts and adaptive responses to quaternary climate change. Science 292, 673–679 (2001).
    CAS  PubMed  Article  ADS  Google Scholar 

    7.
    Corlett, R. T. Seed dispersal distances and plant migration potential in tropical East Asia. Biotropica 41, 592–598 (2009).
    Article  Google Scholar 

    8.
    Duque, A., Stevenson, P. & Feeley, K. Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proc. Natl. Acad. Sci. 112, 10744–10749 (2015).
    CAS  PubMed  Article  ADS  Google Scholar 

    9.
    Howe, H. & Smallwood, J. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 13, 201–228 (1982).
    Article  Google Scholar 

    10.
    Wright, S. J. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 130, 1–14 (2002).
    PubMed  Article  ADS  Google Scholar 

    11.
    Sugiyama, A., Comita, L., Masaki, T., Condit, R. & Hubbell, S. Resolving the paradox of clumped seed dispersal: Positive density and distance dependence in a bat-dispersed species. Ecology 99, 2583–2591 (2018).
    PubMed  Article  Google Scholar 

    12.
    Bagchi, R. et al. Spatial patterns reveal negative density dependence and habitat associations in tropical trees. Ecology 92, 1723–1729 (2011).
    PubMed  Article  Google Scholar 

    13.
    Clark, J.S. Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord. Am. Nat. 152, 204-224 (1998)

    14.
    Nathan, R. Long-distance dispersal of plants. Science 313, 786–788 (2006).
    CAS  PubMed  Article  ADS  Google Scholar 

    15.
    Nathan, R. et al. Mechanisms of long-distance seed dispersal. Trends Ecol. Evol. 23, 638–647 (2008).
    PubMed  Article  Google Scholar 

    16.
    Abedi-Lartey, M., Dechmann, D. K. N., Wikelski, M., Scharf, A. K. & Fahr, J. Long-distance seed dispersal by straw-coloured fruit bats varies by season and landscape. Glob. Ecol. Conserv. 7, 12–24 (2016).
    Article  Google Scholar 

    17.
    Baraloto, C., Forget, P. M. & Goldberg, D. E. Seed mass, seedling size and Neotropical tree seedling establishment. J. Ecol. 96, 1156–1166 (2005).
    Article  CAS  Google Scholar 

    18.
    Mack, A. L. An advantage of large seed size: tolerating rather than succumbing to seed predators. Biotropica 30, 604–608 (1998).
    Article  Google Scholar 

    19.
    Peres, C. A., Roosmalen, M. V., Levey, D. J., Silva, W. & Galetti, M. Primate frugivory in two species-rich Neotropical forests: implications for the demography of large-seeded plants in overhunted areas. In Seed dispersal and frugivory: ecology, evolution and conservation (eds. Levey Silva, D. J. W. & Galetti, M.) 407–421 (Wallingford: CAB International, 2002).

    20.
    Galetti, M. & Dirzo, R. Ecological and evolutionary consequences of living in a defaunated world. Biol. Conserv. 163, 1–6 (2013).
    Article  Google Scholar 

    21.
    Doughty, C., Wolf, A. & Malhi, Y. The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nat. Geosci. 6, 761–764 (2013).
    CAS  Article  ADS  Google Scholar 

    22.
    Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. Camb. Philos. Soc. 93, 845–862 (2018).
    PubMed  Article  Google Scholar 

    23.
    Pires, M., Guimarães, P., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services. Ecography 41, 153–163 (2017).
    Article  Google Scholar 

    24.
    Bosque, C. & Parra, O. Digestive efficiency and rate of food passage in oilbird nestlings. The Condor 94, 557–571 (1992).
    Article  Google Scholar 

    25.
    Rojas-Lizarazo, G. Diet and reproduction in a high mountain oilbird (Steatornis caripensis) colony in Colombia. Ornitol. Colomb. 53–69 (2016).

    26.
    Stevenson, P., Cardona, L., Acosta Rojas, D., Henao Díaz, F. & Cardenas, S. Diet of oilbirds (Steatornis caripensis) in Cueva de los Guácharos National Park (Colombia): Temporal variation in fruit consumption, dispersal and seed morphology. Ornitol. Neotrop. 28, 295–307 (2017).
    Google Scholar 

    27.
    McAtee, W. L. Notes on the food of the Guacharo (Steatornis caripensis). Auk 39, 108–109 (1922).
    Article  Google Scholar 

    28.
    Holland, R. A., Wikelski, M., Kümmeth, F. & Bosque, C. The secret life of oilbirds: New insights into the movement ecology of a unique avian frugivore. PLoS ONE 4, e8264 (2009).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    29.
    Karubian, J. et al. Seed dispersal by Neotropical birds: Emerging patterns and underlying processes. Ornitol. Neotrop. 23, 9–24 (2012).
    Google Scholar 

    30.
    McKey, D. In Coevolution of animals and plants (eds. Gilben, L. E. & Raven, P. H.) 159–191 (University Texas Press, 1975).

    31.
    Cárdenas, S., Cardona, L. M., Echeverry-Galvis, M. & Stevenson, P. R. Movement patterns and habitat preference of oilbirds (Steatornis caripensis) in the southern Andes of Colombia. Avian Cons. Ecol. 15, 5 (2020).
    Google Scholar 

    32.
    Cárdenas, S., Echeverry-Galvis, M. & Stevenson, P. R. Seed dispersal effectiveness by oilbirds (Steatornis caripensis) in the Southern Andes of Colombia. Biotropica. https://doi.org/10.1111/btp.12908 (2020).
    Article  Google Scholar 

    33.
    Anderson, J. T., Nuttle, T., Saldaña Rojas, J. S., Pendergast, T. H. & Flecker, A. S. Extremely long-distance seed dispersal by an overfished Amazonian frugivore. Proc. R. Soc. Lond., Ser. B: Biol. Sci. 278, 3329–3335 (2011).
    Google Scholar 

    34.
    Wood, C. A. The Polynesian fruit pigeon, Globicera pacifica, its food and digestive apparatus. Auk 41, 433–438 (1924).
    Article  Google Scholar 

    35.
    Stocker, G. C. & Irvine, A. K. Seed dispersal by cassowaries (Casuarius casuarius) in North Queensland’s Rainforests. Biotropica 15, 170–176 (1983).
    Article  Google Scholar 

    36.
    Gautier-Hion, A. et al. Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia 65, 324–337 (1985).
    CAS  PubMed  Article  ADS  Google Scholar 

    37.
    Lieberman, D., Lieberman, M. & Martin, C. Notes on seeds in elephant dung from Bia National Park Ghana. Biotropica 19, 365 (1987).
    Article  Google Scholar 

    38.
    Guillotin, M., Dubost, G. & Sabatier, D. Food choice and food competition among the three major primate species of French Guiana. J. Zool. 233, 551–579 (1994).
    Article  Google Scholar 

    39.
    Fragoso, J. M. V. & Huffman, J. M. Seed-dispersal and seedling recruitment patterns by the last Neotropical megafaunal element in Amazonia, the tapir. J. Trop. Ecol. 16, 369–385 (2000).
    Article  Google Scholar 

    40.
    Naranjo, E. Ecology and conservation of Baird’s Tapir in Mexico. Trop. Conserv. Sci. 2, 140–158 (2009).
    Article  Google Scholar 

    41.
    Kitamura, S., Madsri, S. & Poonswad, P. Characteristics of hornbill-dispersed fruits in lowland Dipterocarp forests of southern Thailand. Raffles Bul. Zool. 24, 137–147 (2011).
    Google Scholar 

    42.
    Stevenson, P., Link, A., Onshuus, A., Quiroz, A. & Velasco, M. Estimation of seed shadows generated by Andean woolly monkeys (Lagothrix lagothricha lugens). Int. J. Primatol. 35, 1021–1036 (2014).
    Article  Google Scholar 

    43.
    Chen, S. C. & Moles, A. T. A mammoth mouthful? A test of the idea that larger animals ingest larger seeds. Global Ecol. Biogeogr. 24, 1269–1280 (2015).
    Article  Google Scholar 

    44.
    Norconk, M., Grafton, B. & Conklin-Brittain, N. Seed dispersal by Neotropical seed predators. Am. J. Primatol. 45, 103–126 (1998).
    CAS  PubMed  Article  Google Scholar 

    45.
    Lord, J. M. Frugivore gape size and the evolution of fruit size and shape in southern hemisphere floras. Austral Ecol. 29, 430–436 (2004).
    Article  Google Scholar 

    46.
    Vellend, M., Myers, J., Gardescu, S. & Marks, P. Dispersal of Trillium seeds by deer: Implications for long-distance migration of forest herbs. Ecology 84, 1067–1072 (2003).
    Article  Google Scholar 

    47.
    Baños-Villalba, A. et al. Seed dispersal by macaws shapes the landscape of an Amazonian ecosystem. Sci. Rep. 7 (2017).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    48.
    Jansen, P. et al. Thieving rodent as substitute dispersers of megafaunal seeds. Proc. Natl. Acad. Sci. 109, 12610–12615 (2012).
    CAS  PubMed  Article  ADS  Google Scholar 

    49.
    Blanco, G., Tella, J. L., Hiraldo, F. & Díaz-Luque, J. A. Multiple external seed dispersers challenge the megafaunal syndrome anachronism and the surrogate ecological function of livestock. Front. Ecol. Evol. 7, 328 (2019).
    Article  Google Scholar 

    50.
    Prada, C. & Stevenson, P. Plant composition associated with environmental gradients in tropical montane forests (Cueva de Los Guácharos National Park, Huila, Colombia). Biotropica 48, 568–576 (2016).
    Article  Google Scholar 

    51.
    Bosque, C. & Parra, O. Digestive efficiency and rate of food passage in oilbird nestlings. The Condor 94, 557–571 (1992).
    Article  Google Scholar 

    52.
    Calenge, C. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).
    Article  Google Scholar 

    53.
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria 2014).

    54.
    Chen, S. C. & Moles, A. T. A mammoth mouthful? A test of the idea that larger animals ingest larger seeds. Glob. Ecol. Biogeogr. 24, 1269–1280 (2015).
    Article  Google Scholar 

    55.
    Fox, J. & Weisberg, S. An R Companion to Applied Regression, Third edition. Sage, Thousand Oaks CA https://socialsciences.mcmaster.ca/jfox/Books/Companion/ (2019). More