1.
IPCC. Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups i and ii of the intergovernmental panel on climate change. Cambridge, UK, and New York, NY, USA: Cambridge University Press; 2012.
Google Scholar
2.
Trenberth KE, Dai AG, van der Schrier G, Jones PD, Barichivich J, Briffa KR, et al. Global warming and changes in drought. Nat Clim Chang. 2014;4:17–22.
Article Google Scholar
3.
Kreyling J, Henry HAL. Vanishing winters in germany: soil frost dynamics and snow cover trends, and ecological implications. Clim Res. 2011;46:269–76.
Article Google Scholar
4.
Congreves KA, Wagner-Riddle C, Si BC, Clough TJ. Nitrous oxide emissions and biogeochemical responses to soil freezing-thawing and drying-wetting. Soil Biol Biochem. 2018;117:5–15.
CAS Article Google Scholar
5.
Schimel J, Balser TC, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function. Ecology 2007;88:1386–94.
PubMed Article Google Scholar
6.
Tecon R, Or D. Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiol Rev. 2017;41:599–623.
CAS PubMed PubMed Central Article Google Scholar
7.
Koponen HT, Bååth E. Soil bacterial growth after a freezing/thawing event. Soil Biol Biochem. 2016;100:229–32.
CAS Article Google Scholar
8.
Schostag M, Priemé A, Jacquiod S, Russel J, Ekelund F, Jacobsen CS. Bacterial and protozoan dynamics upon thawing and freezing of an active layer permafrost soil. ISME J. 2019;13:1345–59.
CAS PubMed PubMed Central Article Google Scholar
9.
Barnard RL, Osborne CA, Firestone MK. Changing precipitation pattern alters soil microbial community response to wet-up under a mediterranean-type climate. ISME J. 2015;9:946–57.
CAS PubMed Article Google Scholar
10.
Drigo B, Nielsen UN, Jeffries TC, Curlevski NJA, Singh BK, Duursma RA, et al. Interactive effects of seasonal drought and elevated atmospheric carbon dioxide concentration on prokaryotic rhizosphere communities. Environ Microbiol. 2017;19:3175–85.
CAS PubMed Article PubMed Central Google Scholar
11.
Priemé A, Christensen S. Natural perturbations, drying-wetting and freezing-thawing cycles, and the emission of nitrous oxide, carbon dioxide and methane from farmed organic soils. Soil Biol Biochem. 2001;33:2083–91.
Article Google Scholar
12.
Kim DG, Vargas R, Bond-Lamberty B, Turetsky MR. Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences 2012;9:2459–83.
CAS Article Google Scholar
13.
Meisner A, Leizeaga A, Rousk J, Bååth E. Partial drying accelerates bacterial growth recovery to rewetting. Soil Biol Biochem. 2017;112:269–76.
CAS Article Google Scholar
14.
Blazewicz SJ, Schwartz E, Firestone MK. Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil. Ecology. 2014;95:1162–72.
PubMed Article PubMed Central Google Scholar
15.
Barnard RL, Osborne CA, Firestone MK. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J. 2013;7:2229–41.
CAS PubMed PubMed Central Article Google Scholar
16.
Meisner A, Jacquiod S, Snoek BL, ten Hooven FC, van der Putten WH. Drought legacy effects on the composition of soil fungal and prokaryote communities. Front Microbiol. 2018;9:294.
PubMed PubMed Central Article Google Scholar
17.
de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, et al. Soil bacterial networks are less stable under drought than fungal networks. Nat Commun. 2018;9:3033.
PubMed PubMed Central Article CAS Google Scholar
18.
Bouskill NJ, Lim HC, Borglin S, Salve R, Wood TE, Silver WL, et al. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J. 2013;7:384–94.
CAS PubMed Article Google Scholar
19.
Ren J, Song C, Hou A, Song Y, Zhu X, Cagle GA. Shifts in soil bacterial and archaeal communities during freeze-thaw cycles in a seasonal frozen marsh, northeast china. Sci Total Environ. 2018;625:782–91.
CAS PubMed Article Google Scholar
20.
Mannisto MK, Tiirola M, Haggblom MM. Effect of freeze-thaw cycles on bacterial communities of arctic tundra soil. Micro Ecol. 2009;58:621–31.
Article Google Scholar
21.
Evans SE, Wallenstein MD. Climate change alters ecological strategies of soil bacteria. Ecol Lett. 2014;17:155–64.
PubMed Article PubMed Central Google Scholar
22.
Fuchslueger L, Bahn M, Hasibeder R, Kienzl S, Fritz K, Schmitt M, et al. Drought history affects grassland plant and microbial carbon turnover during and after a subsequent drought event. J Ecol. 2016;104:1453–65.
CAS PubMed PubMed Central Article Google Scholar
23.
Hawkes CV, Waring BG, Rocca JD, Kivlin SN. Historical climate controls soil respiration responses to current soil moisture. Proc Natl Acad Sci. 2017;114:6322–7.
CAS PubMed Article PubMed Central Google Scholar
24.
Preece C, Verbruggen E, Liu L, Weedon JT, Peñuelas J. Effects of past and current drought on the composition and diversity of soil microbial communities. Soil Biol Biochem. 2019;131:28–39.
CAS Article Google Scholar
25.
de Nijs EA, Hicks LC, Leizeaga A, Tietema A, Rousk J. Soil microbial moisture dependences and responses to drying–rewetting: the legacy of 18 years drought. Glob Change Biol. 2019;25:1005–15.
Article Google Scholar
26.
Evans SE, Wallenstein MD. Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter? Biogeochemistry 2012;109:101–16.
Article Google Scholar
27.
Butterly CR, Bunemann EK, McNeill AM, Baldock JA, Marschner P. Carbon pulses but not phosphorus pulses are related to decreases in microbial biomass during repeated drying and rewetting of soils. Soil Biol Biochem. 2009;41:1406–16.
CAS Article Google Scholar
28.
Schimel JP, Clein JS. Microbial response to freeze-thaw cycles in tundra and taiga soils. Soil Biol Biochem. 1996;28:1061–6.
Article Google Scholar
29.
Jurburg SD, Nunes I, Brejnrod A, Jacquiod S, Priemé A, Sørensen SJ, et al. Legacy effects on the recovery of soil bacterial communities from extreme temperature perturbation. Front Microbiol. 2017;8:1832.
PubMed PubMed Central Article Google Scholar
30.
Calderón K, Philippot L, Bizouard F, Breuil M-C, Bru D, Spor A. Compounded disturbance chronology modulates the resilience of soil microbial communities and n-cycle related functions. Front Microbiol. 2018;9:2721.
PubMed PubMed Central Article Google Scholar
31.
Wilson SL, Grogan P, Walker VK. Prospecting for ice association: characterization of freeze–thaw selected enrichment cultures from latitudinally distant soils. Can J Microbiol. 2012;58:402–12.
CAS PubMed Article Google Scholar
32.
Evans SE, Wallenstein MD, Burke IC. Is bacterial moisture niche a good predictor of shifts in community composition under long-term drought? Ecology. 2014;95:110–22.
PubMed Article Google Scholar
33.
Yergeau E, Kowalchuk GA. Responses of antarctic soil microbial communities and associated functions to temperature and freeze-thaw cycle frequency. Environ Microbiol. 2008;10:2223–35.
PubMed Article Google Scholar
34.
Lennon JT, Aanderud ZT, Lehmkuhl BK, Schoolmaster DR. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology. 2012;93:1867–79.
PubMed Article Google Scholar
35.
Mackey BM, Derrick CM. Conductance measurements of the lag phase of injured salmonella-typhimurium. J Appl Bacteriol. 1984;57:299–308.
CAS PubMed Article Google Scholar
36.
Nocker A, Fernandez PS, Montijn R, Schuren F. Effect of air drying on bacterial viability: a multiparameter viability assessment. J Microbiol Methods. 2012;90:86–95.
CAS PubMed Article Google Scholar
37.
Potts M. Desiccation tolerance of prokaryotes. Microbiological Rev. 1994;58:755–805.
CAS Article Google Scholar
38.
Öquist MG, Sparrman T, Klemedtsson L, Drotz SH, Grip H, Schleucher J, et al. Water availability controls microbial temperature responses in frozen soil co2 production. Glob Change Biol. 2009;15:2715–22.
Article Google Scholar
39.
Manzoni S, Schimel JP, Porporato A. Responses of soil microbial communities to water-stress: results from a meta-analysis. Ecology. 2012;93:930–8.
PubMed Article Google Scholar
40.
Iovieno P, Bååth E. Effect of drying and rewetting on bacterial growth rates in soil. FEMS Microbiol Ecol. 2008;65:400–7.
CAS PubMed Article Google Scholar
41.
Drotz SH, Sparrman T, Nilsson MB, Schleucher J, Öquist MG. Both catabolic and anabolic heterotrophic microbial activity proceed in frozen soils. Proc Natl Acad Sci USA. 2010;107:21046–51.
CAS PubMed Article Google Scholar
42.
Lennon JT, Jones SE. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol. 2011;9:119–30.
CAS PubMed Article Google Scholar
43.
Manzoni S, Schaeffer SM, Katul G, Porporato A, Schimel JP. A theoretical analysis of microbial eco-physiological and diffusion limitations to carbon cycling in drying soils. Soil Biol Biochem. 2014;73:69–83.
CAS Article Google Scholar
44.
Larsen KS, Jonasson S, Michelsen A. Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types. Appl Soil Ecol. 2002;21:187–95.
Article Google Scholar
45.
Williams MA, Xia K. Characterization of the water soluble soil organic pool following the rewetting of dry soil in a drought-prone tallgrass prairie. Soil Biol Biochem. 2009;41:21–8.
CAS Article Google Scholar
46.
Placella SA, Brodie EL, Firestone MK. Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. Proc Natl Acad Sci USA. 2012;109:10931–6.
CAS PubMed Article Google Scholar
47.
Fukami T. Historical contingency in community assembly: Integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst. 2015;46:1–23.
Article Google Scholar
48.
Szekely AJ, Langenheder S. Dispersal timing and drought history influence the response of bacterioplankton to drying-rewetting stress. ISME J. 2017;11:1764–76.
PubMed PubMed Central Article Google Scholar
49.
Engelhardt IC, Welty A, Blazewicz SJ, Bru D, Rouard N, Breuil M-C, et al. Depth matters: effects of precipitation regime on soil microbial activity upon rewetting of a plant-soil system. ISME J. 2018;12:1061–71.
CAS PubMed PubMed Central Article Google Scholar
50.
Guhr A, Borken W, Spohn M, Matzner E. Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization. Proc Natl Acad Sci USA. 2015;112:14647–51.
CAS PubMed Article PubMed Central Google Scholar
51.
Yergeau E, Hogues H, Whyte LG, Greer CW. The functional potential of high arctic permafrost revealed by metagenomic sequencing, qpcr and microarray analyses. ISME J. 2010;4:1206–14.
CAS PubMed Article PubMed Central Google Scholar
52.
Gittel A, Barta J, Kohoutova I, Mikutta R, Owens S, Gilbert J, et al. Distinct microbial communities associated with buried soils in the siberian tundra. ISME J. 2014;8:841–53.
CAS PubMed Article PubMed Central Google Scholar
53.
Hultman J, Waldrop MP, Mackelprang R, David MM, McFarland J, Blazewicz SJ, et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 2015;521:208–12.
CAS PubMed Article PubMed Central Google Scholar
54.
Feng X, Nielsen LL, Simpson MJ. Responses of soil organic matter and microorganisms to freeze–thaw cycles. Soil Biol Biochem. 2007;39:2027–37.
CAS Article Google Scholar
55.
Carini P, Marsden PJ, Leff J, Morgan EE, Strickland MS, Fierer N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol. 2017;2:6.
Article CAS Google Scholar
56.
Lennon JT, Muscarella ME, Placella SA, Lehmkuhl BK. How, when, and where relic DNA affects microbial diversity. mBio 2018;9:e00637–18.
PubMed PubMed Central Google Scholar
57.
Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rrna as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013;7:2061–8.
CAS PubMed PubMed Central Article Google Scholar
58.
Blagodatskaya E, Kuzyakov Y. Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem. 2013;67:192–211.
CAS Article Google Scholar
59.
van de Voorde TFJ, van der Putten WH, Martijn Bezemer T. Intra- and interspecific plant–soil interactions, soil legacies and priority effects during old-field succession. J Ecol. 2011;99:945–53.
Article Google Scholar
60.
Nunes I, Jurburg S, Jacquiod S, Brejnrod A, Falcão Salles J, Priemé A, et al. Soil bacteria show different tolerance ranges to an unprecedented disturbance. Biol Fertil Soils. 2018;54:189–202.
Article Google Scholar
61.
Christiansen CT, Haugwitz MS, Priemé A, Nielsen CS, Elberling B, Michelsen A, et al. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra. Glob Change Biol. 2017;23:406–20.
Article Google Scholar
62.
Borg Dahl M, Brejnrod AD, Russel J, Sørensen SJ, Schnittler M. Different degrees of niche differentiation for bacteria, fungi, and myxomycetes within an elevational transect in the german alps. Micro Ecol. 2019;78:764–80.
CAS Article Google Scholar
63.
RCoreTeam. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.
Google Scholar
64.
McMurdie PJ, Holmes S. Phyloseq: an r package for reproducible interactive analysis and graphics of microbiome census data. PLOS ONE. 2013;8:e61217.
CAS PubMed PubMed Central Article Google Scholar
65.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: community ecology package. R package version 2.5-5. https://CRAN.R-project.org/package=vegan. 2019.
66.
Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest Package: Tests in Linear Mixed Effects Models. J Stat Softw. 2017;82:1–26.
Article Google Scholar
67.
Bates D, Maechler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw. 2015;67:1–48.
Article Google Scholar
68.
Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, et al. Package ‘gplots’: various r programming tools for plotting data. R package version 3.0.1. https://CRAN.R-project.org/package=gplots. 2019.
69.
Wickham H. Ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.
Google Scholar
70.
Sharma S, Szele Z, Schilling R, Munch JC, Schloter M. Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil. Appl Environ Microbiol. 2006;72:2148–54.
CAS PubMed PubMed Central Article Google Scholar
71.
Tilston EL, Sparrman T, Öquist MG. Unfrozen water content moderates temperature dependence of sub-zero microbial respiration. Soil Biol Biochem. 2010;42:1396–407.
CAS Article Google Scholar
72.
Ho A, Di Lonardo DP, Bodelier PLE. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol Ecol. 2017;93:14.
Google Scholar
73.
Yuste JC, Penuelas J, Estiarte M, Garcia-Mas J, Mattana S, Ogaya R, et al. Drought-resistant fungi control soil organic matter decomposition and its response to temperature. Glob Change Biol. 2011;17:1475–86.
Article Google Scholar
74.
Kaisermann A, Maron PA, Beaumelle L, Lata JC. Fungal communities are more sensitive indicators to non-extreme soil moisture variations than bacterial communities. Appl Soil Ecol. 2015;86:158–64.
Article Google Scholar
75.
Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science. 2013;339:1615–8.
CAS PubMed Article Google Scholar
76.
Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, et al. Global biogeography of highly diverse protistan communities in soil. ISME J. 2013;7:652–9.
CAS PubMed Article Google Scholar
77.
Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, et al. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev. 2018;42:293–323.
CAS PubMed Article Google Scholar
78.
Geisen S, Bandow C, Römbke J, Bonkowski M. Soil water availability strongly alters the community composition of soil protists. Pedobiologia 2014;57:205–13.
Article Google Scholar
79.
Clarholm M. Protozoan grazing of bacteria in soil—impact and importance. Micro Ecol. 1981;7:343–50.
CAS Article Google Scholar
80.
Harder CB, Rønn R, Brejnrod A, Bass D, Al-Soud WA, Ekelund F. Local diversity of heathland cercozoa explored by in-depth sequencing. ISME J. 2016;10:2488.
CAS PubMed PubMed Central Article Google Scholar
81.
Ekelund F, Frederiksen HB, Rønn R. Population dynamics of active and total ciliate populations in arable soil amended with wheat. Appl Environ Microbiol. 2002;68:1096–101.
CAS PubMed PubMed Central Article Google Scholar
82.
Müller H, Achilles-Day UEM, Day JG. Tolerance of the resting cysts of colpoda inflata (ciliophora, colpodea) and meseres corlissi (ciliophora, spirotrichea) to desiccation and freezing. Eur J Protistol. 2010;46:133–42.
PubMed Article Google Scholar
83.
Stieglmeier M, Alves RJE, Schleper C. The phylum thaumarchaeota. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: other major lineages of bacteria and the archaea. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 347–62.
84.
Shi Y, Adams JM, Ni Y, Yang T, Jing X, Chen L, et al. The biogeography of soil archaeal communities on the eastern tibetan plateau. Sci Rep. 2016;6:38893.
CAS PubMed PubMed Central Article Google Scholar
85.
Pedrós-Alió C. The rare bacterial biosphere. Ann Rev Mar Sci. 2012;4:449–66.
PubMed Article Google Scholar
86.
Lynch MDJ, Neufeld JD. Ecology and exploration of the rare biosphere. Nat Rev Microbiol. 2015;13:217–29.
CAS PubMed Article Google Scholar
87.
Chowdhury N, Nakatani AS, Setia R, Marschner P. Microbial activity and community composition in saline and non-saline soils exposed to multiple drying and rewetting events. Plant Soil. 2011;348:103–13.
CAS Article Google Scholar
88.
Fierer N, Schimel JP. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem. 2002;34:777–87.
CAS Article Google Scholar
89.
Schöler A, Jacquiod S, Vestergaard G, Schulz S, Schloter M. Analysis of soil microbial communities based on amplicon sequencing of marker genes. Biol Fertil Soils. 2017;53:485–9.
Article CAS Google Scholar
90.
Lau JA, Lennon JT. Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci USA. 2012;109:14058–62.
CAS PubMed Article PubMed Central Google Scholar
91.
Meisner A, De Deyn GB, de Boer W, van der Putten WH. Soil biotic legacy effects of extreme weather events influence plant invasiveness. Proc Natl Acad Sci USA. 2013;110:9835–8.
CAS PubMed Article PubMed Central Google Scholar
92.
Solyanikova IP, Suzina NE, Egozarian NS, Polivtseva VN, Prisyazhnaya NV, El-Registan GI, et al. The response of soil arthrobacter agilis lush13 to changing conditions: Transition between vegetative and dormant state. J Environ Sci Health B 2017;52:745–51.
CAS PubMed Article PubMed Central Google Scholar
93.
Levinson HS, Hyatt MT. Correlation of respiratory activity with phases of spore germination and growth in bacillus-megaterium as influenced by manganese and l-alanine. J Bacteriol. 1956;72:176–83.
CAS PubMed PubMed Central Article Google Scholar
94.
Williamson KE, Fuhrmann JJ, Wommack KE, Radosevich M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu Rev Virol. 2017;4:201–19.
CAS PubMed Article PubMed Central Google Scholar
95.
van Kruistum H, Bodelier PLE, Ho A, Meima-Franke M, Veraart AJ. Resistance and recovery of methane-oxidizing communities depends on stress regime and history; a microcosm study. Front Microbiol. 2018;9:1714.
PubMed PubMed Central Article Google Scholar
96.
Bérard A, Ben Sassi M, Renault P, Gros R. Severe drought-induced community tolerance to heat wave. An experimental study on soil microbial processes. J Soils Sed. 2012;12:513–8.
Article Google Scholar More