More stories

  • in

    Evidence for strong environmental control on bacterial microbiomes of Antarctic springtails

    1.
    Ineson, P., Leonard, M. A. & Anderson, J. M. Effect of collembolan grazing upon nitrogen and cation leaching from decomposing leaf litter. Soil Biol. Biochem. 14, 601–605. https://doi.org/10.1016/0038-0717(82)90094-3 (1982).
    Article  Google Scholar 
    2.
    Petersen, H. & Luxton, M. A. comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39, 288–388. https://doi.org/10.1016/j.pedobi.2006.08.006 (1982).
    Article  Google Scholar 

    3.
    Drake, H. L. & Horn, M. A. As the worm turns: The earthworm gut as a transient habitat for soil microbial biomes. Annu. Rev. Microbiol. 61, 169–189. https://doi.org/10.1146/annurev.micro.61.080706.093139 (2007).
    CAS  Article  PubMed  Google Scholar 

    4.
    Liu, Y. et al. Higher soil fauna abundance accelerates litter carbon release across an alpine forest-tundra ecotone. Sci. Rep. 9, 10562. https://doi.org/10.1038/s41598-019-47072-0 (2019).
    CAS  Article  Google Scholar 

    5.
    Hopkin, S. P. Biology of the Springtails (Insecta: Collembola) (Oxford University Press, Oxford, 1997).
    Google Scholar 

    6.
    Maaß, S., Caruso, T. & Rillig, M. C. Functional role of microarthropods in soil aggregation. Pedobiologia 58, 59–63. https://doi.org/10.1016/j.pedobi.2015.03.001 (2015).
    Article  Google Scholar 

    7.
    Bergstrom, D. M., Convey, P. & Huiskes, A. H. L. Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator (Springer, Berlin, 2006). .
    Google Scholar 

    8.
    Convey, P. Antarctic terrestrial biodiversity in a changing world. Polar. Biol. 34(11), 1629–1641. https://doi.org/10.1007/s00300-011-1068-0 (2011).
    Article  Google Scholar 

    9.
    Convey, P. et al. The spatial structure of Antarctic biodiversity. Ecol. Monogr. 84(2), 203–244. https://doi.org/10.1890/12-2216.1 (2014).
    Article  Google Scholar 

    10.
    Wauchope, H. S., Shaw, J. D. & Terauds, A. A snapshot of biodiversity protection in Antarctica. Nat. Commun. 10(1), 946. https://doi.org/10.1038/s41467-019-08915-6 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    Chown, S. L. et al. The changing form of Antarctic biodiversity. Nature 522(7557), 431–438. https://doi.org/10.1038/nature14505 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    12.
    Agamennone, V. et al. The microbiome of Folsomia candida: An assessment of bacterial diversity in a Wolbachia-containing animal. FEMS Microbiol. Ecol. 91(11), 1–10. https://doi.org/10.1093/femsec/fiv128 (2015).
    CAS  Article  Google Scholar 

    13.
    Zhu, D. et al. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biol. Biochem. 115, 302–310. https://doi.org/10.1016/j.soilbio.2017.10.027 (2018).
    CAS  Article  Google Scholar 

    14.
    Bahrndorff, S. et al. Diversity and metabolic potential of the microbiota associated with a soil arthropod. Sci. Rep. 8(1), 1–8. https://doi.org/10.1038/s41598-018-20967-0 (2018).
    CAS  Article  Google Scholar 

    15.
    Ding, J. et al. Effects of long-term fertilization on the associated microbiota of soil collembolan. Soil Biol. Biochem. 130, 141–149. https://doi.org/10.1016/j.soilbio.2018.12.015 (2019).
    CAS  Article  Google Scholar 

    16.
    Anslan, S., Bahram, M. & Tedersoo, L. Temporal changes in fungal communities associated with guts and appendages of Collembola as based on culturing and high-throughput sequencing. Soil Biol. Biochem. 96, 152–159. https://doi.org/10.1016/j.soilbio.2016.02.006 (2016).
    CAS  Article  Google Scholar 

    17.
    Terauds, A. et al. Conservation biogeography of the Antarctic. Divers Distrib. 18(7), 726–741. https://doi.org/10.1111/j.1472-4642.2012.00925.x (2012).
    Article  Google Scholar 

    18.
    Terauds, A. & Lee, J. R. Antarctic biogeography revisited: Updating the Antarctic Conservation Biogeographic Regions. Divers Distrib. 22(8), 836–840. https://doi.org/10.1111/ddi.12453 (2016).
    Article  Google Scholar 

    19.
    Greenslade, P. An Antarctic biogeographical anomaly resolved: The true identity of a widespread species of Collembola. Polar Biol. 41(5), 969–981. https://doi.org/10.1007/s00300-018-2261-1 (2018).
    Article  Google Scholar 

    20.
    Carapelli, A. et al. Evidence for cryptic diversity in the “pan-Antarctic” springtail Friesea antarctica and the description of two new species. Insects 11, 141. https://doi.org/10.3390/insects11030141 (2020).
    Article  PubMed Central  Google Scholar 

    21.
    Carapelli, A., Convey, P., Frati, F., Spinsanti, G. & Fanciulli, P. P. Population genetics of three sympatric springtail species (Hexapoda: Collembola) from the South Shetland Islands: Evidence for a common biogeographic pattern. Biol. J. Linn. Soc. 120, 788–803. https://doi.org/10.1093/biolinnean/blw004 (2017).
    Article  Google Scholar 

    22.
    Collins, G. E., Hogg, I. D., Convey, P., Barnes, A. D. & McDonald, I. R. Spatial and temporal scales matter when assessing the species and genetic diversity of springtails (Collembola) in Antarctica. Front. Ecol. Evol. 7, 76. https://doi.org/10.3389/fevo.2019.00076 (2019).
    Article  Google Scholar 

    23.
    Collins, G. E. et al. Genetic diversity of soil invertebrates corroborates timing estimates for past collapses of the West Antarctic Ice Sheet. PNAS 117, 22293–22302. https://doi.org/10.1073/pnas.2007925117 (2020).
    ADS  CAS  Article  PubMed  Google Scholar 

    24.
    Holmes, C. J. et al. The Antarctic mite, Alaskozetes antarcticus, shares bacterial microbiome community membership but not abundance between adults and tritonymphs. Polar Biol. 42, 2075–2085. https://doi.org/10.1007/s00300-019-02582-5 (2019).
    Article  Google Scholar 

    25.
    Vecchi, M., Newton, I. L. G., Cesari, M., Rebecchi, L. & Guidetti, R. The microbial community of tardigrades: Environmental influence and species specificity of microbiome structure and composition. Microb. Ecol. 76(2), 467–481. https://doi.org/10.1007/s00248-017-1134-4 (2018).
    CAS  Article  PubMed  Google Scholar 

    26.
    Delgado-Baquerizo, M. et al. Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere. Ecology 99(3), 583–596. https://doi.org/10.1002/ecy.2137 (2018).
    Article  PubMed  Google Scholar 

    27.
    Chu, H. et al. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ. Microbiol. 12(11), 2998–3006. https://doi.org/10.1111/j.1462-2920.2010.02277.x (2010).
    CAS  Article  PubMed  Google Scholar 

    28.
    Siciliano, S. D. et al. Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities. Soil Biol. Biochem. 78, 10–20. https://doi.org/10.1016/j.soilbio.2014.07.005 (2014).
    CAS  Article  Google Scholar 

    29.
    Zouache, K. et al. Composition of bacterial communities associated with natural and laboratory populations of Asobara tabida infected with Wolbachia. Appl. Environ. Microb. 75, 3755–3764. https://doi.org/10.1128/aem.02964-08 (2009).
    CAS  Article  Google Scholar 

    30.
    Potapov, A. A., Semenina, E. E., Korotkevich, A. Y., Kuznetsova, N. A. & Tiunov, A. V. Connecting taxonomy and ecology: Trophic niches of collembolans as related to taxonomic identity and life forms. Soil Biol. Biochem. 101, 20–31. https://doi.org/10.1016/j.soilbio.2016.07.002 (2016).
    CAS  Article  Google Scholar 

    31.
    De Wever, A. et al. Hidden levels of phylodiversity in Antarctic green algae: Further evidence for the existence of glacial refugia. Proc. R. Soc. B 276, 3591–3599. https://doi.org/10.1098/rspb.2009.0994 (2009).
    Article  PubMed  Google Scholar 

    32.
    Vyverman, W. et al. Evidence for widespread endemism among Antarctic micro-organisms. Polar Sci. 4(2), 103–113. https://doi.org/10.1016/j.polar.2010.03.006 (2010).
    ADS  Article  Google Scholar 

    33.
    Finlay, B. J. & Clarke, K. J. Ubiquitous dispersal of microbial species. Nature 400, 828–828. https://doi.org/10.1038/23616 (1999).
    ADS  CAS  Article  Google Scholar 

    34.
    Chown, S. L. & Convey, P. Structure and temporal variability across life’s hierarchies in the terrestrial Antarctic. Philos. Trans. R. Soc. B 362, 2307–23331. https://doi.org/10.1098/rstb.2006.1949 (2007).
    Article  Google Scholar 

    35.
    Convey, P., Biersma, E. M., Casanova-Katny, A. & Maturana, C. S. Refuges of Antarctic diversity. Chapter 10. In Past Antarctica (eds Oliva, M. & Ruiz-Fernández, J.) 181–200 (Academic Press, Burlington, 2020). https://doi.org/10.1016/B978-0-12-817925-3.00010-0.
    Google Scholar 

    36.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    37.
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    38.
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13(7), 581–583. https://doi.org/10.1038/nmeth.3869 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584. https://doi.org/10.7717/peerj.2584 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    40.
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with qiime 2’s q2-feature-classifier plugin. Microbiome 6(1), 90. https://doi.org/10.1186/s40168-018-0470-z (2018).
    MathSciNet  Article  PubMed  PubMed Central  Google Scholar 

    41.
    Price, M. N., Dehal, P. S. & Arkin, A. P. Fasttree 2-approximately maximum-likelihood trees for large alignments. PLoS One 5(3), e9490. https://doi.org/10.1371/journal.pone.0009490 (2010).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    42.
    Lahti, L. & Shetty, S. Microbiome R package. http://microbiome.github.io (2012–2019).

    43.
    Ssekagiri, A., Sloan, W. T. & Ijaz, U. Z. microbiomeSeq: An R package for analysis of microbial communities in an environmental context. ISCB Africa ASBCB Conference. http://www.github.com/umerijaz/microbiomeSeq (2017).

    44.
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217 (2014).
    ADS  CAS  Article  Google Scholar 

    45.
    Oksanen, J., et al. Vegan: Community ecology package. R package version 2.5-6. https://github.com/vegandevs/vegan (2019).

    46.
    Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43(7), e47. https://doi.org/10.1093/nar/gkv007 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    47.
    Chen, H. & Boutros, P. C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinf. 12, 35. https://doi.org/10.1186/1471-2105-12-35 (2011).
    Article  Google Scholar 

    48.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer, New York. https://ggplot2.tidyverse.org (2016).

    49.
    Warnes, G. R., et al. gplots: Various R Programming Tools for Plotting Data. R package version 3.0.1.1. https://CRAN.R-project.org/package=gplots (2019). More

  • in

    An under-ice bloom of mixotrophic haptophytes in low nutrient and freshwater-influenced Arctic waters

    1.
    Arrigo, K. R. & Dijken, G. L. Secular trends in Arctic Ocean net primary production. J. Geophys. Res. Oceans. 116, C09011 (2011).
    ADS  Google Scholar 
    2.
    Thomas, D. N. Sea Ice Ch 4 (Wiley Blackwell, Oxford, 2017).
    Google Scholar 

    3.
    Arrigo, K. R. et al. Massive phytoplankton blooms under Arctic sea ice. Science 336, 1408–1408 (2012).
    ADS  CAS  Article  Google Scholar 

    4.
    Assmy, P. et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci. Rep. 7, 40850 (2016).
    ADS  Article  Google Scholar 

    5.
    Horvat, C. et al. The frequency and extent of sub-ice phytoplankton bloom in the Arctic Ocean. Sci. Adv. 3, e1601191 (2017).
    ADS  Article  Google Scholar 

    6.
    Ardyna, M. et al. Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean. Elem. Sci. Anth. 8, 30 (2020).
    Article  Google Scholar 

    7.
    Ardyna, M. et al. Under-ice phytoplankton blooms: Shedding light on the “invisible” part of Arctic primary production. Front. Mar. Sci. 7, 608032 (2020).
    Article  Google Scholar 

    8.
    Rysgaard, S. & Glud, R. N. Carbon cycling in Arctic marine ecosystems: Case study Young Sound (ed. Rysgaard, S. & Glud, R. N.) 62–94 (Meddelelser om Grønland, Bioscience Vol 58, Copenhagen, Denmark, the Commission for Scientific Research in Greenland, 2007).

    9.
    Meire, L. et al. Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob. Chang. Biol. 23, 5344–5357 (2017).
    ADS  Article  Google Scholar 

    10.
    Randelhoff, A. et al. Pan-Arctic Ocean primary production constrained by turbulent nitrate fluxes. Front. Mar. Sci. 7, 150 (2020).
    Article  Google Scholar 

    11.
    Holding, J. M. et al. Seasonal and spatial patterns of primary production in a high-latitude fjord affected by Greenland Ice Sheet run-off. Biogeosciences 16, 3777–3792 (2019).
    ADS  CAS  Article  Google Scholar 

    12.
    Juul-Pedersen, T. et al. Seasonal and interannual phytoplankton production in a sub-Arctic tidewater outlet glacier fjord, SW Greenland. Mar. Ecol. Prog. Ser. 524, 27–38 (2015).
    ADS  Article  Google Scholar 

    13.
    Sejr, M. K. et al. Evidence of local and regional freshening of Northeast Greenland coastal waters. Sci. Rep. 7, 13183 (2017).
    ADS  Article  Google Scholar 

    14.
    Boone, W. et al. Circulation and fjord-shelf exchange during the ice-covered period in Young Sound-Tyrolerfjord, Northeast Greenland (74°N). Estuar. Coast. Shelf Sci. 194, 205–216 (2017).
    ADS  Article  Google Scholar 

    15.
    Haine, T. W. N. et al. Arctic freshwater export: Status, mechanisms, and prospects. Glob. Planet Change 125, 13–35 (2015).
    ADS  Article  Google Scholar 

    16.
    Carmack, E. C. et al. Freshwater and its role in the Arctic Marine System: Sources, disposition, storage export, and physical and biogeochemical consequences in the Arctic and global ocean. J. Geophys. Res. Biogeosci. 121, 675–717 (2015).
    Article  Google Scholar 

    17.
    Lund-Hansen, L. C. et al. Will low primary production rates in the Amundsen Basin (Arctic Ocean) remain low in a future ice-free setting, and what governs this production?. J. Mar. Syst. 205, 103287 (2020).
    Article  Google Scholar 

    18.
    Dahl, E., Bagøien, E., Edvardsen, B. & Stenseth, N. C. The dynamics of Chrysochromulina species in the Skagerrak in relation to environmental conditions. J. Sea. Res. 54, 15–24 (2005).
    ADS  Article  Google Scholar 

    19.
    Hansen, P. J., Nielsen, T. G. & Kaas, H. Distribution and growth of protists and mesozooplankton during a bloom of Chrysochromulina spp. (Prymnesiophyceae, Prymnesiales). Phycologia 34, 409–416 (1995).
    Article  Google Scholar 

    20.
    Nielsen, T. G., Kiørboe, T. & Bjørnsen, P. K. Effects of a Chrysochromulina polylepis subsurface bloom on the planktonic community. Mar. Ecol. Prog. Ser. 62, 21–35 (1990).
    ADS  Article  Google Scholar 

    21.
    Hällfors, G. & Niemi, Å. A Chrysochromulina (Haptophyceae) bloom under the ice in the Tvärminne Archipelago, southern coast of Finland. Acta Soc. Fauna Flora Fenn. 50, 89–104 (1974).
    Google Scholar 

    22.
    Manton, I. Chrysochromulina tenuispine sp. nov. from arctic Canada. Br. Phycol. J. 13, 227–234 (1978).
    Article  Google Scholar 

    23.
    Green, J. C. & Leadbeater, B. S. C. The Haptophyte Algae ch. 13 (Systematics Association, London, 1994).
    Google Scholar 

    24.
    Hansen, P. J. & Hjorth, M. Growth and grazing responses of Chrysochromulina ericina (Prymnesiophyceae): The role of irradiance, prey concentration and pH. Mar. Biol. 141, 975–983 (2002).
    CAS  Article  Google Scholar 

    25.
    Anderson, R., Charvet, S. & Hansen, P. J. Mixotrophy in chlorophytes and haptophytes—Effect of irradiance, macronutrient micronutrient and vitamin limitation. Front. Microbiol. 9, 1704 (2018).
    Article  Google Scholar 

    26.
    Anderson, R. & Hansen, P. J. Meteorological conditions induce strong shifts in mixotrophic and heterotrophic flagellate bacterivory over small spatio-temporal scales. Limnol. Oceanogr. 9999, 1–11 (2019).
    Google Scholar 

    27.
    McKie-Krisberg, Z. M., Gast, R. J. & Sanders, R. W. Physiological responses of three species of Antarctic mixotrophic phytoflagellates to changes in light and dissolved nutrients. Microbiol. Ecol 70, 21–29 (2015).
    CAS  Article  Google Scholar 

    28.
    McKie-Krisberg, Z. M., Sanders, R. W. & Gast, R. J. Evaluation of mixotrophy-associated gene expression in two species of polar marine algae. Front. Mar. Sci. 5, 273 (2018).
    Article  Google Scholar 

    29.
    Rysgaard, S., Nielsen, T. G. & Hansen, B. W. Seasonal variation in nutrients, pelagic primary production and grazing in a high-Arctic coastal marine ecosystem, Young Sound, Northeast Greenland. Mar. Ecol. Prog. Ser. 179, 13–25 (1999).
    ADS  CAS  Article  Google Scholar 

    30.
    Bendtsen, J., Mortensen, J. & Rysgaard, S. Seasonal surface layer dynamics and sensitivity to runoff in a high Arctic fjord (Young Sound/Tyrolerfjord, 74°N). J. Geophys. Res. Oceans. 119, 1–18 (2014).
    Article  Google Scholar 

    31.
    Krawczyk, D. W. et al. Spatial and temporal distribution of planktonic protists in the East Greenland fjord and offshore waters. Mar. Ecol. Prog. Ser. 538, 99–116 (2015).
    ADS  CAS  Article  Google Scholar 

    32.
    Søgaard, D. H., Deming, J. W., Meire, L. & Rysgaard, S. Effects of microbial processes and CaCO3 dynamics on inorganic carbon cycling in snow-covered Arctic winter sea ice. Mar. Ecol. Prog. Ser. 611, 31–44 (2019).
    ADS  Article  Google Scholar 

    33.
    Rysgaard, S. et al. Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics. Cryosphere 7, 707–718 (2013).
    ADS  Article  Google Scholar 

    34.
    Søgaard, D. H. et al. Autotrophic and heterotrophic activity in Arctic first-year sea ice: Seasonal study from Malene Bight, SW Greenland. Mar. Ecol. Prog. Ser. 419, 31–45 (2010).
    ADS  Article  Google Scholar 

    35.
    Grasshoff, K., Kremling, K. & Ehrhardt, M. Methods of Seawater Analysis (WILEY-VCH Verlag GmbH, Weinheim, 1999).
    Google Scholar 

    36.
    Steemann-Nielsen, E. The use of radio-active carbon (C14) for measuring organic production in the sea. ICES J. Mar. Sci. 18, 117–140 (1952).
    Article  Google Scholar 

    37.
    Søgaard, D. H. et al. The relative contributions of biological and abiotic processes to carbon dynamics in subarctic sea ice. Polar Biol. 36, 1761–1777 (2013).
    Article  Google Scholar 

    38.
    Platt, T., Gallegos, C. L. & Harrison, W. G. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res. 38, 687–701 (1980).
    Google Scholar 

    39.
    Jespersen, A. M. & Christoffersen, K. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Arch. Hydrobiol. 109, 445–454 (1987).
    CAS  Google Scholar 

    40.
    Ralph, P. J. & Gademann, R. Rapid light curves: A powerful tool to assess photosynthetic activity. Aquat. Bot. 82, 222–237 (2005).
    CAS  Article  Google Scholar 

    41.
    Jassby, A. D. & Platt, T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21, 540–547 (1976).
    ADS  CAS  Article  Google Scholar  More

  • in

    Primer evaluation and development of a droplet digital PCR protocol targeting amoA genes for the quantification of Comammox in lakes

    1.
    Vitousek, P. M. et al. The Nitrogen Cycle at Regional to Global Scales 1–45 (Springer, New York, 2002).
    Google Scholar 
    2.
    Stein, L. Y. & Klotz, M. G. The nitrogen cycle. Curr. Biol. CB 26, R94–R98 (2016).
    CAS  PubMed  Article  Google Scholar 

    3.
    Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).
    CAS  PubMed  Article  Google Scholar 

    4.
    Winogradsky, S. On the nitrifying organisms. Sciences 110, 1013–1016 (1890).
    Google Scholar 

    5.
    Könneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546 (2005).
    ADS  PubMed  Article  CAS  Google Scholar 

    6.
    Hatzenpichler, R. Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl. Environ. Microbiol. 78, 7501–7510 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    van Kessel, M. A. H. J. et al. Complete nitrification by a single microorganism. Nature 528, 555–559 (2015).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    9.
    Pester, M. et al. NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira. Environ. Microbiol. 16, 3055–3071 (2014).
    CAS  PubMed  Article  Google Scholar 

    10.
    Gruber-Dorninger, C. et al. Functionally relevant diversity of closely related Nitrospira in activated sludge. ISME J. 9, 643–655 (2015).
    CAS  PubMed  Article  Google Scholar 

    11.
    Pjevac, P. et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front. Microbiol. 8, 1508 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Bartelme, R. P., McLellan, S. L. & Newton, R. J. Freshwater recirculating aquaculture system operations drive biofilter bacterial community shifts around a stable nitrifying consortium of ammonia-oxidizing archaea and Comammox Nitrospira. Front. Microbiol. 8, 101 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    13.
    Wang, Y. et al. Comammox in drinking water systems. Water Res. 116, 332–341 (2017).
    CAS  PubMed  Article  Google Scholar 

    14.
    Pinto, A. J. et al. Metagenomic evidence for the presence of Comammox Nitrospira-like bacteria in a drinking water system. mSphere 1 (2016).

    15.
    Fowler, S. J., Palomo, A., Dechesne, A., Mines, P. D. & Smets, B. F. Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities. Environ. Microbiol. 20, 1002–1015 (2018).
    CAS  PubMed  Article  Google Scholar 

    16.
    Beach, N. K. & Noguera, D. R. Design and assessment of species-level qPCR primers targeting Comammox. Front. Microbiol. 10, 36 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    17.
    Hu, H.-W. & He, J.-Z. Comammox—a newly discovered nitrification process in the terrestrial nitrogen cycle. J. Soils Sediments 17, 2709–2717 (2017).
    CAS  Article  Google Scholar 

    18.
    Xia, F. et al. Ubiquity and diversity of complete ammonia oxidizers (Comammox). Appl. Environ. Microbiol. 84, e01390-18 (2018).

    19.
    Jiang, Q., Xia, F., Zhu, T., Wang, D. & Quan, Z. Distribution of comammox and canonical ammonia-oxidizing bacteria in tidal flat sediments of the Yangtze River estuary at different depths over four seasons. J. Appl. Microbiol. 127, 533–543 (2019).
    CAS  PubMed  Article  Google Scholar 

    20.
    Liu, S. et al. Comammox Nitrospira within the Yangtze River continuum: Community, biogeography, and ecological drivers. ISME J. 14, 2488–2504 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Xu, Y. et al. Diversity and abundance of comammox bacteria in the sediments of an urban lake. J. Appl. Microbiol. 128, 1647–1657 (2020).
    CAS  PubMed  Article  Google Scholar 

    22.
    Lu, S., Sun, Y., Lu, B., Zheng, D. & Xu, S. Change of abundance and correlation of Nitrospira inopinata-like comammox and populations in nitrogen cycle during different seasons. Chemosphere 241, 125098 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    23.
    Boehrer, B. & Schultze, M. Stratification of lakes. Rev. Geophys. 46, RG2005 (2008).

    24.
    Hou, J., Song, C., Cao, X. & Zhou, Y. Shifts between ammonia-oxidizing bacteria and archaea in relation to nitrification potential across trophic gradients in two large Chinese lakes (Lake Taihu and Lake Chaohu). Water Res. 47, 2285–2296 (2013).
    CAS  PubMed  Article  Google Scholar 

    25.
    Alfreider, A. et al. CO2 assimilation strategies in stratified lakes: Diversity and distribution patterns of chemolithoautotrophs. Environ. Microbiol. 19, 2754–2768 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Alfreider, A. et al. Autotrophic carbon fixation strategies used by nitrifying prokaryotes in freshwater lakes. FEMS Microbiol. Ecol. 94, fiy163 (2018).

    27.
    Herber, J. et al. A single Thaumarchaeon drives nitrification in deep oligotrophic Lake Constance. Environ. Microbiol. 22, 212–228 (2020).
    CAS  PubMed  Article  Google Scholar 

    28.
    Rotthauwe, J.-H., Witzel, K.-P. & Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63, 4704–4712 (1997).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Junier, P. et al. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Appl. Microbiol. Biotechnol. 85, 425–440 (2010).
    CAS  PubMed  Article  Google Scholar 

    30.
    Kowalchuk, G. A. & Stephen, J. R. Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Annu. Rev. Microbiol. 55, 485–529 (2001).
    CAS  PubMed  Article  Google Scholar 

    31.
    Alves, R. J. E., Minh, B. Q., Urich, T., von Haeseler, A. & Schleper, C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat. Commun. 9, 1517 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Linhart, C. & Shamir, R. The degenerate primer design problem: Theory and applications. J. Comput Biol. 12, 431–456 (2005).

    33.
    Alfreider, A. & Tartarotti, B. Spatiotemporal dynamics of different CO2 fixation strategies used by prokaryotes in a dimictic lake. Sci. Rep. 9, 15068 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    34.
    Luesken, F. A. et al. Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge. Appl. Microbiol. Biotechnol. 92, 845–854 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Wu, D. Y., Ugozzoli, L., Pal, B. K., Qian, J. I. N. & Wallace, R. B. The effect of temperature and oligonucleotide primer length on the specificity and efficiency of amplification by the polymerase chain reaction. DNA Cell Biol. 10, 233–238 (1991).
    CAS  PubMed  Article  Google Scholar 

    36.
    Kits, K. D. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549, 269–272 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Daims, H., Lücker, S. & Wagner, M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol. 24, 699–712 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Berg, I. A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 77, 1925–1936 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Callieri, C., Hernández-Avilés, S., Salcher, M. M., Fontaneto, D. & Bertoni, R. Distribution patterns and environmental correlates of Thaumarchaeota abundance in six deep subalpine lakes. Aquat. Sci. 78, 215–225 (2016).
    CAS  Article  Google Scholar 

    40.
    Coci, M., Odermatt, N., Salcher, M. M., Pernthaler, J. & Corno, G. Ecology and distribution of Thaumarchaea in the deep hypolimnion of Lake Maggiore. Archaea 2015, 1–11 (2015).
    Article  Google Scholar 

    41.
    Auguet, J.-C., Triadó-Margarit, X., Nomokonova, N., Camarero, L. & Casamayor, E. O. Vertical segregation and phylogenetic characterization of ammonia-oxidizing archaea in a deep oligotrophic lake. ISME J. 6, 1786–1797 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Vissers, E. W. et al. Seasonal and vertical distribution of putative ammonia-oxidizing thaumarchaeotal communities in an oligotrophic lake. FEMS Microbiol. Ecol. 83, 515–526 (2013).
    CAS  PubMed  Article  Google Scholar 

    43.
    Vissers, E. W. Spatial and Temporal Dynamics of Thaumarchaeota in Deep European Lakes (Netherlands Institute of Ecology, 2012).

    44.
    Small, G. E. et al. Rates and controls of nitrification in a large oligotrophic lake. Limnol. Oceanogr. 58, 276–286 (2013).
    ADS  CAS  Article  Google Scholar 

    45.
    Lavrentyev, P. J., Gardner, W. S. & Johnson, J. R. Cascading trophic effects on aquatic nitrification: Experimental evidence and potential implications. Aquat. Microb. Ecol. 13, 161–175 (1997).
    Article  Google Scholar 

    46.
    Costa, E., Pérez, J. & Kreft, J.-U. Why is metabolic labour divided in nitrification?. Trends Microbiol. 14, 213–219 (2006).
    CAS  PubMed  Article  Google Scholar 

    47.
    Koch, H., van Kessel, M. A. H. J. & Lücker, S. Complete nitrification: Insights into the ecophysiology of comammox Nitrospira. Appl. Microbiol. Biotechnol. 103, 177–189 (2019).
    CAS  PubMed  Article  Google Scholar 

    48.
    Schramm, A., de Beer, D., Gieseke, A. & Amann, R. Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm. Environ. Microbiol. 2, 680–686 (2000).
    CAS  PubMed  Article  Google Scholar 

    49.
    Nowka, B., Off, S., Daims, H. & Spieck, E. Improved isolation strategies allowed the phenotypic differentiation of two Nitrospira strains from widespread phylogenetic lineages. FEMS Microbiol. Ecol. 91, fiu031 (2015).

    50.
    Ushiki, N., Fujitani, H., Aoi, Y. & Tsuneda, S. Isolation of Nitrospira belonging to sublineage II from a wastewater treatment plant. Microbes Environ. ME13042 (2013).

    51.
    Cotto, I. et al. Long solids retention times and attached growth phase favor prevalence of comammox bacteria in nitrogen removal systems. Water Res. 169, 115268 (2020).
    CAS  PubMed  Article  Google Scholar 

    52.
    Koch, H. et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proc. Natl. Acad. Sci. U.S.A. 112, 11371–11376 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Kalvelage, T. et al. Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone. Nat. Geosci. 6, 228–234 (2013).
    ADS  CAS  Article  Google Scholar 

    54.
    Bristow, L. A. et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc. Natl. Acad. Sci. U.S.A. 113, 10601–10606 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Madeira, F. et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47, W636–W641 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    CAS  PubMed  Article  Google Scholar 

    57.
    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 134 (2012).
    CAS  Article  Google Scholar 

    59.
    Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics (Oxford, England) 25, 1189–1191 (2009).
    CAS  Article  Google Scholar  More

  • in

    Climate change vulnerability assessment of the main marine commercial fish and invertebrates of Portugal

    Selection of species
    The list of species for the vulnerability assessment was based on five different criteria. First, we considered the proportion of each species in the total Portuguese landings between 1989 and 2015, using public landings data from the Direção Geral dos Recursos Marinhos de Portugal (DGRM). The most landed species, accounting for 95% of purse seine, 70% of trawling and 70% of the multigear landings, were included. This selection was carried out separately for each combination of gear and region (Supplementary Table SI1-1). Second, species were chosen in regards of their economic relevance, considering the species representing more than 3% of the total economic revenue of the marine landings within each combination of region and gear (DGRM, Supplementary Table SI1-2). Third, we included the most frequent species in the discards of Portuguese fisheries, according to the work of Leitão et al.42, where the top-ten discarded species per métier are listed (Supplementary Table SI1-3). Fourth, we included the species of importance for the canning industry, obtained by means of a survey covering the main can enterprises of Portugal (Supplementary Table SI1-5). Fifth, a selection of the species of relevance for the Moroccan fisheries sector was carried out, using the reports from the Department of Marine Fisheries of the Kingdom of Morocco43 and the FAO software FishStatJ (most captured species between 2007 and 201744) (Supplementary Table SI1-6). Additionally, due to their importance for specific fleet segments, we included some shark species of interest that were not included by the previous criteria. The selection of shark species was based on reports from the Instituto Português do Mar e as Pescas (IPMA) and included: Galeus melastomus, Prionace glauca, Squalus acanthias, Scyliorhinus canicula, and Hexanchus griseus. Some riverine species were finally removed from the list (Petromyzon marinus, Salmo trutta), as well as cod (Gadus morhua), since it is not captured within the area of study. Finally, some extra species were pointed out by experts during the evaluation process as species with economic interest (Pollicipes pollicipes) or with potential distribution shift into/from the area of study in the context of climate change such as the bivalves Callista chione and Ruditapes philippinarum, and the crabs Callinectes sapidus and Carcinus maenas. The final list of species considered, and their functional group are shown in Table 1.
    Table 1 Species and functional groups considered during the climate change vulnerability assessment.
    Full size table

    Environmental change
    RCP (representative concentration pathway) scenarios of atmospheric greenhouse gas concentration have been proposed by the IPCC for use in research to project the evolution of environmental variables. Using scenarios RCP 4.5 and RCP 8.5 (predicting a global warming of 1.8 and 3.7 °C respectively by the end of the twenty-first century) as forcing, the POLCOMS-ERSEM model45 forecasted a wide array of physical, chemical and biological variables for the Northeast Atlantic and adjacent seas at a resolution of 0.1 degree (approximately 11 km). For the evaluation of the vulnerability of the species of interest, a selection of the most cited variables with impact on the ecology of marine organisms in the Portuguese marine environment was carried out (e.g. Refs.7,8,9). As a result, these variables were finally considered: sea surface temperature (SST, °C), surface pH, surface salinity (psu), surface zooplankton biomass (mol m−3), surface phytoplankton biomass (mol m−3), surface northward and eastward current velocities (m s−1) and river discharge (m−3 year−1). The zooplankton and phytoplankton biomass were summed to obtain an overall plankton biomass (mol m−3) which was finally used in the assessment of vulnerability. Surface variables were calculated using the top sigma layer of the outputs of the model.
    Two time slices of the POLCOMS-ERSEM outputs were used to define two periods for comparison. The first was between 2000 and 2019 setting a reference point for the state of the environment at the beginning of the century (hereafter “reference”), then, the period between 2040 and 2059 served to define the likely state of the environment in the near future (hereafter “future”). Defining the future and reference periods allowed us to compare the expected degree of change of the environmental variables between both periods. To do this on a regional basis, we considered the outputs of the model for each region of Portugal (North, Centre, and South; Fig. 1) and calculated a dimensionless variation index (VI) using the mean of each variable during the reference and future periods, and the standard deviation of the reference period:

    $$ {text{VI}} = frac{{left( {mu ,future – mu ,reference} right)}}{sigma ,reference} , $$
    (1)

    where µ future and µ reference represent the regional average values of the corresponding time slice of the variable, and σ reference is the standard deviation of the regional values in the reference time slice (except for the variable river discharge, for which the average and standard deviation are calculated on a temporal basis) VI takes theoretical values between 0 (when there is no variation between future and reference) and ± infinite (when reference shows no variation all over the region of study). VI was used to weight the influence of each variable in the assessment of the exposure of the species to climate change n Table 2. The idea was to capture the degree of variability of each physical variable, so species exposed to the most variable environmental conditions would be more exposed to the effects of climate change. Then, a weight factor was calculated normalizing between 1 and 2 the absolute values of the VI defined above (“weight factor 1” in Table 2).
    Table 2 Expected physical variability between 2000–2019 (reference) and 2040–2059 (future) according to POLCOMS-ERSEM physical-biogeochemical model. Outputs are shown considering three regions of Portugal (North, Centre, South) and two scenarios of climate change (RCP 4.5 and RCP 8.5). Weight factor 1 captures the degree of variability of the physical variables (see “Methods”). Weight factor 2 represents the likely impact on the physiology of the marine organisms and was obtained from the experts’ criteria. The final weight factor, used in the vulnerability assessment, is the average between weight factor 1 and 2.
    Full size table

    Since two versions of the future period were available (climate change scenarios RCP 4.5 and RCP 8.5), the level of exposure to changing environmental variables was calculated separately for both climate change scenarios, making it possible to estimate the overall vulnerability of the species under each scenario separately.
    Beyond the degree of variability of each variable, a panel of experts on the ecology of marine organisms of Portugal was asked to rank, according to the likely impact on the physiology of marine organisms, the physical variables under consideration. Each expert was asked to order the variables independently, but a consensus answer was finally asked from them. The ranking of the physical variables was posteriorly transformed numerically between 1 and 2, being 1 the less relevant variable and 2 the most relevant variable. Intermediate variables got a value between 1 and 2 following equally distanced steps (see “weight factor 2” in Table 2). The final weight given to each physical variable during the vulnerability assessment was calculated as the average between weight factors 1 and 2 (“final weight factor” in Table 2). It was possible to estimate this parameter for all the exposure indicators with exception of the extreme events frequency, which was not included in the POLCOMS-ERSEM outputs. The likely evolution of this parameter is controversial and thus, a final weight factor of 1 was assigned by consensus with the panel of experts. In the case of oceanic currents, considered as a proxy for upwelling, we considered eastward currents in the North and Centre regions (North–South oriented coast) and northward currents in the South region (East–West oriented coast).
    Vulnerability assessment
    Indicators
    The vulnerability of the species to climate change was evaluated following the conceptual framework described in the 4th Assessment Report of the IPCC29. This approach assumes that the vulnerability (V) of species to environmental change is a function of: (1) their exposure (E) to the changing environmental variables (defined as the overlap between the expected geographic range of change of the variables and the area/habitats of occurrence of a given species), (2) their sensitivity (S) to environmental change (considered as the degree to a which extent a given species will be affected—in terms of population dynamics or life-history traits—by a change in the environment), and (3) their adaptive capacity (AC) to environmental change (understood as the mechanisms of a given species to resist to a specific change of the environment and recover to the state prior to the perturbation).
    For each species, the degree of exposure, sensitivity and adaptive capacity was evaluated considering different aspects (hereafter “indicators”) of its biology, ecology, and exploitation (see Supplementary SI2 for a description of the indicators). The selection of the indicators was made considering the context of climate change in the Portuguese marine environment. Hence, for the level of exposure, the most referenced environmental variables with impact on the ecology of the species of interest were chosen. For the analysis of the sensitivity, a selection of life history traits driving the relationship between the species’ population dynamics and the environment was carried out based on existing literature (e.g. Refs.23,26,28,36). The traits finally considered were: trophic level, fecundity, number of reproductive events in a lifetime, egg spawning strategy, individual growth parameters (growth coefficient, k, in Von Bertalanffy’s growth function), age at maturity, longevity, intrinsic population growth rate (r), sexual strategy (gonochorism, hermaphroditism or protogyny/protandry), length of the spawning seasons, planktonic larval duration (PLD), latitudinal range of distribution, temperature range of distribution, adult mobility, seasonal migrations, sociability, and complexity of the reproductive strategy. The adaptive capacity of the species was analysed considering different aspects related to the degree of conservation or exploitation of the species and the kind of fisheries associated, which give an idea of the capacity of response of the populations to environmental change at a national or regional scale. In this case we considered: the ICES stock status (referred to Portuguese or Iberian stocks when available), the general replenishment potential of the species, related to different life-history parameters such as growth and reproduction, the vulnerability degree assigned by the IUCN, the specific vulnerability to fisheries assessed in Cheung et al.26, and the fishing pressure suffered by each species in Portuguese waters.
    Expert’s assessment
    To evaluate each species from the point of view of each indicator, a fuzzy logic expert-judgement method was applied26. This method consists of categorizing the range of possible answers or values of each indicator into three levels (bins) corresponding to low, moderate, or high levels of exposure, sensitivity and adaptive capacity, respectively. The number of levels considered (3) has been found to be sufficient for this kind of study28,46, and their ranges were defined for each indicator following the existing literature, adjusting their values to the reality of the Portuguese marine environment. For a description of the levels within each indicator see Supplementary SI2.
    Assigning each species to each bin of each indicator was carried by a group of experts in marine biology and ecology with experience in the Portuguese marine environment. A variable number of species was assigned to each expert in regards of their field of knowledge and previous experience. Each species received a minimum of three experts and a maximum of four. The number of tallies assigned to each bin of each indicator (variable between 0 and 5) represented the degree of confidence in the answer. In this way, an absolute confidence in the answer provided was represented by allocating 5 tallies in the corresponding bin, while spreading the five tallies among the three bins meant the highest level of uncertainty. In order to avoid biases in the expert evaluations, each expert was provided with the description of the indicators and their bins found in Supplementary SI2, the maps of climate variability found in Supplementary SI3, and a list of online resources to consult. The experts were allowed to consult any other scientific literature for their evaluations if needed.
    After the evaluation of each indicator of exposure, sensitivity and adaptive capacity, each expert was asked to provide a formed opinion on the likely direction of the effects of climate change for each species. This directional effect (DE) evaluation had two steps: (1) the allocation of five tallies among three bins representing negative, neutral, or positive DE, and (2) providing a short rationale text explaining the allocation of tallies among the bins.
    Experts were also asked to score the quality of the data used to distribute the tallies among the bins of each indicator following the methodology of Hare et al.23. In this case, the experts should assign a value between 0 and 3 to describe the quality of the information. These values correspond to (0) No Data. No information is available to provide an opinion; (1) Expert Judgement. The distribution of tallies among the bins reflects the expert judgement, based on knowledge of the general ecology of the species and its role on the ecosystem; (2) Limited Data. The data used to distribute the tallies may come from similar species or from other geographic regions out of the Iberian Peninsula; (3) Adequate Data. The score is based on data observed, modelled or directly measured for the species in question and is provided by scientific work carried out in the Iberian Peninsula.
    After the individual assessments, a 2-day workshop was carried out where the experts were asked to discuss their evaluations and provide a summarizing text on the likely sign of directional effects of climate change on each species. They were also allowed to modify the distribution of tallies of their votes for the directional effects after the discussion.
    Regional evaluation
    Each expert was asked to perform the evaluation of each indicator independently for each region of Portugal (North, Centre and South; Fig. 1). This procedure made it possible to obtain, for a given species, region-specific assessments of E, S, AC and DE, which could be finally translated into region-specific overall vulnerability assessments.
    Calculation of the overall vulnerability score
    For each species, the number of tallies assigned by the experts to each bin of each indicator was averaged. Then, each tally was assigned a different value in regards of the bin where it was assigned: 1-low, 2-moderate, 3-high, making possible to calculate the value of each indicator by summing the value of the tallies. The final score of the indicator (minimum: 5; maximum: 15) was standardized between 0 and 1. To obtain the value of each dimension of the vulnerability (E, S, or AC) the sum of the values of the related indicators standardized between 0 and 1 was computed. All the indicators had the same weight.
    Finally, to calculate the overall vulnerability, the value of each dimension was standardized between 0 and 1, being V calculated as:

    $$ {text{V}}_{{{text{r}} – {text{cc}}}} = , left( {{text{E}}_{{{text{r}} – {text{cc}}}} + {text{ S}}_{{text{r}}} } right) , {-}{text{ Ac}}_{{text{r}}} , $$
    (2)

    where subscripts indicate region (r) and climate change (cc) specificity, respectively.
    The vulnerability score (Vr-cc) obtained was finally categorized as: “very low vulnerability” (Vr-cc  More

  • in

    Water column gradients beneath the summer ice of a High Arctic freshwater lake as indicators of sensitivity to climate change

    1.
    Hampton, S. E. et al. Ecology under lake ice. Ecol. Lett. 20, 98–111 (2017).
    Article  Google Scholar 
    2.
    Vincent, W. F., Hobbie, J. E. & Laybourn-Parry, J. Introduction to the limnology of high-latitude lake and river ecosystems. In Polar Lakes and Rivers: Limnology of Arctic and Antarctic Aquatic Ecosystems (eds. Vincent, W. F. & Laybourn-Parry, J.) 1–24 (Oxford, Oxford University Press, 2008).

    3.
    Paquette, M., Fortier, D., Mueller, D. R., Sarrazin, D. & Vincent, W. F. Rapid disappearance of perennial ice on Canada’s most northern lake. Geophys. Res. Lett. 42, 1433–1440 (2015).
    ADS  Article  Google Scholar 

    4.
    Lehnherr, I. et al. The world’s largest High Arctic lake responds rapidly to climate warming. Nat. Commun. 9, 1290. https://doi.org/10.1038/s41467-018-03685-z (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Obryk, M. K., Doran, P. T. & Priscu, J. C. Prediction of ice-free conditions for a perennially ice-covered Antarctic lake. J. Geophys. Res. Earth Surf. 124, 686–694 (2019).
    ADS  Article  Google Scholar 

    6.
    Vincent, W. F. et al. Extreme ecosystems and geosystems in the Canadian High Arctic: Ward Hunt Island and vicinity. Ecoscience 18, 236–261 (2011).
    Article  Google Scholar 

    7.
    Spigel, R. H. & Priscu, J. C. Physical limnology of the McMurdo Dry Valleys lakes. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica (ed. Priscu, J. C.) 153–187 (London, American Geophysical Union, 1998).

    8.
    Pernica, P., North, R. L. & Baulch, H. M. In the cold light of day: The potential importance of under-ice convective mixed layers to primary producers. Inland Waters 7, 138–150 (2017).
    CAS  Article  Google Scholar 

    9.
    Kelly, J. R. & Scheibling, R. E. Fatty acids as dietary tracers in benthic food webs. Mar. Ecol. Prog. Ser. 446, 1–22 (2012).
    ADS  CAS  Article  Google Scholar 

    10.
    Taipale, S. et al. Fatty acid composition as biomarkers of freshwater microalgae: analysis of 37 strains of microalgae in 22 genera and in seven classes. Aquat. Microb. Ecol. 71, 165–178 (2013).
    Article  Google Scholar 

    11.
    Mohit, V., Culley, A., Lovejoy, C., Bouchard, F. & Vincent, W. F. Hidden biofilms in a far northern lake and implications for the changing Arctic. NPJ Biofilms Microbiomes 3, 17. https://doi.org/10.1038/s41522-017-0024-3 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    12.
    Paquette, M., Fortier, D. & Vincent, W. F. Water tracks in the High Arctic: a hydrological network dominated by rapid subsurface flow through patterned ground. Arct. Sci. 3, 334–353 (2017).
    Article  Google Scholar 

    13.
    Vincent, W. F. & Mueller, D. Witnessing ice habitat collapse in the Arctic. Science 370, 1031–1032 (2020).
    ADS  CAS  Article  Google Scholar 

    14.
    MacIntyre, S., Cortés, A. & Sadro, S. Sediment respiration drives circulation and production of CO2 in ice-covered Alaskan arctic lakes. Limnol. Oceanogr. Lett. 3, 302–310 (2018).
    CAS  Article  Google Scholar 

    15.
    Cortés, A. & MacIntyre, S. Mixing processes in small arctic lakes during spring. Limnol. Oceanogr. 65, 260–288 (2020).
    ADS  Article  Google Scholar 

    16.
    Bégin, P. N. et al. The littoral zone of polar lakes: Inshore-offshore contrasts in an ice-covered High Arctic lake. Arct. Sci. 7, 1–24. https://doi.org/10.1139/as-2020-0026 (2021).
    Article  Google Scholar 

    17.
    Bégin, P. N. et al. Extreme warming and regime shift toward amplified variability in a far northern lake. Limnol. Oceanogr. 65, 1–23. https://doi.org/10.1002/lno.11546 (2020).
    Article  Google Scholar 

    18.
    Spaulding, S. A., MCKnight, D. M., Smith, R. L. & Dufford, R. Phytoplankton population dynamics in perennially ice-covered Lake Fryxell, Antarctica. J. Plankton Res. 16, 527–541 (1994).

    19.
    Charvet, S., Vincent, W. F. & Lovejoy, C. Chrysophytes and other protists in High Arctic lakes: molecular gene surveys, pigment signatures and microscopy. Polar Biol. 35, 733–748 (2012).
    Article  Google Scholar 

    20.
    Jones, R. I. Mixotrophy in planktonic protists: an overview. Freshw. Biol. 45, 219–226 (2000).
    Article  Google Scholar 

    21.
    Bonilla, S., Villeneuve, V. & Vincent, W. F. Benthic and planktonic algal communities in a High Arctic lake: pigment structure and contrasting responses to nutrient enrichment. J. Phycol. 41, 1120–1130 (2005).
    CAS  Article  Google Scholar 

    22.
    Quesada, A., Fernández-Valiente, E., Hawes, I. & Howard-Williams, C. Benthic primary production in polar lakes and rivers. In Polar Lakes and Rivers: Limnology of Arctic and Antarctic Aquatic Ecosystems (eds. Vincent, W. F. & Laybourn-Parry, J.) 179–196 (Oxford University Press, Oxford, 2008).
    Google Scholar 

    23.
    Rautio, M. et al. Shallow freshwater ecosystems of the circumpolar Arctic. Ecoscience 18, 204–222 (2011).
    Article  Google Scholar 

    24.
    Markager, S. & Vincent, W. F. Light absorption by phytoplankton: development of a matching parameter for algal photosynthesis under different spectral regimes. J. Plankton Res. 23, 1373–1384 (2001).
    Article  Google Scholar 

    25.
    Duarte, C. M. & Prairie, Y. T. Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems 8, 862–870 (2005).
    CAS  Article  Google Scholar 

    26.
    Denfeld, B. A., Baulch, H. M., del Giorgio, P. A., Hampton, S. E. & Karlsson, J. A synthesis of carbon dioxide and methane dynamics during the ice-covered period of northern lakes: Under-ice CO 2 and CH 4 dynamics. Limnol. Oceanogr. Lett. 3, 117–131 (2018).
    CAS  Article  Google Scholar 

    27.
    Kling, G. W., Kipphut, G. W. & Miller, M. C. Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251, 298–301 (1991).
    ADS  CAS  Article  Google Scholar 

    28.
    Matveev, A., Laurion, I. & Vincent, W. F. Winter accumulation of methane and its variable timing of release from thermokarst lakes in subarctic peatlands. J. Geophys. Res. Biogeosci. 124, 3521–3535 (2019).
    CAS  Article  Google Scholar 

    29.
    Paquette, M., Fortier, D., Lafrenière, M. & Vincent, W. F. Periglacial slopewash dominated by solute transfers and subsurface erosion on a High Arctic slope. Permafr. Periglac. Process. 31, 472–486 (2020).
    Article  Google Scholar 

    30.
    Negandhi, K. et al. Small thaw ponds: an unaccounted source of methane in the Canadian High Arctic. PLoS ONE 8, e78204. https://doi.org/10.1371/journal.pone.0078204 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Lyons, W. B. & Finlay, J. Biogeochemical processes in high-latitude lakes and rivers. In Polar Lakes and Rivers: Limnology of Arctic and Antarctic Aquatic Ecosystems (eds. Vincent, W. F. & Laybourn-Parry, J.) 137–156 (Oxford University Press, Oxford, 2008).
    Google Scholar 

    32.
    Watanabe, S., Laurion, I., Chokmani, K., Pienitz, R. & Vincent, W. F. Optical diversity of thaw ponds in discontinuous permafrost: a model system for water color analysis. J. Geophys. Res. Biogeosci. 116, G02003. https://doi.org/10.1029/2010jg001380 (2011).
    ADS  Article  Google Scholar 

    33.
    Retamal, L., Vincent, W. F., Martineau, C. & Osburn, C. L. Comparison of the optical properties of dissolved organic matter in two river-influenced coastal regions of the Canadian Arctic. Estuar. Coast. Shelf Sci. 72, 261–272 (2007).
    ADS  Article  Google Scholar 

    34.
    Wauthy, M. et al. Increasing dominance of terrigenous organic matter in circumpolar freshwaters due to permafrost thaw. Limnol. Oceanogr. Lett. 3, 186–198 (2018).
    CAS  Article  Google Scholar 

    35.
    Murphy, K. R., Stedmon, C. A., Waite, T. D. & Ruiz, G. M. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Mar. Chem. 108, 40–58 (2008).
    CAS  Article  Google Scholar 

    36.
    Jakkila, J., Leppäranta, M., Kawamura, T., Shirasawa, K. & Salonen, K. Radiation transfer and heat budget during the ice season in Lake Pääjärvi Finland. Aquat. Ecol. 43, 681–692 (2009).
    Google Scholar 

    37.
    CEN. Climate station data from Northern Ellesmere Island in Nunavut, Canada, v. 1.7 (2002–2019). Nordicana D1. https://doi.org/10.5885/44985SL-8F203FD3ACCD4138 (2020).

    38.
    Pawlowicz, R. Calculating the conductivity of natural waters. Limnol. Oceanogr. Methods 6, 489–501 (2008).
    CAS  Article  Google Scholar 

    39.
    Prėskienis, V. et al. Seasonal patterns in greenhouse gas emissions from lakes and ponds in a High Arctic polygonal landscape. Limnol. Oceanogr. https://doi.org/10.1002/lno.11660 (2021).
    Article  Google Scholar 

    40.
    Yamamoto, S., Alcauskas, J. B. & Crozier, T. E. Solubility of methane in distilled water and seawater. J. Chem. Eng. Data 21, 78–80 (1976).
    CAS  Article  Google Scholar 

    41.
    Helms, J. R. et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 53, 955–969 (2008).
    ADS  Article  Google Scholar 

    42.
    Weishaar, J. L. et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 37, 4702–4708 (2003).
    ADS  CAS  Article  Google Scholar 

    43.
    Loiselle, S. A. et al. Variability in photobleaching yields and their related impacts on optical conditions in subtropical lakes. J. Photochem. Photobiol. Biol. 95, 129–137 (2009).
    CAS  Article  Google Scholar 

    44.
    McKnight, D. M. et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 46, 38–48 (2001).
    ADS  CAS  Article  Google Scholar 

    45.
    Murphy, K. R., Stedmon, C. A., Graeber, D. & Bro, R. Fluorescence spectroscopy and multi-way techniques PARAFAC. Anal. Methods 5, 6557–6566 (2013).
    Google Scholar 

    46.
    Murphy, K. R. et al. Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison. Environ. Sci. Technol. 44, 9405–9412 (2010).
    ADS  CAS  Article  Google Scholar 

    47.
    Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, Berlin, 2011).
    Google Scholar 

    48.
    IOCCG Protocol Series. Inherent optical property measurements and protocols: absorption coefficient. In Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation (eds. Neeley, A. R. & Mannino, A.) vol. 1.0. https://doi.org/10.25607/OBP-119 (2018).

    49.
    Roy, S. Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography (Cambridge University Press, Cambridge, 2011).
    Google Scholar 

    50.
    Glew, J. R. Miniature gravity corer for recovering short sediment cores. J. Paleolimnol. 5, 285–287 (1991).
    ADS  Article  Google Scholar 

    51.
    Schneider, T., Grosbois, G., Vincent, W. F. & Rautio, M. Saving for the future: Pre-winter uptake of algal lipids supports copepod egg production in spring. Freshw. Biol. 62, 1063–1072 (2017).
    CAS  Article  Google Scholar 

    52.
    Grosbois, G., Mariash, H., Schneider, T. & Rautio, M. Under-ice availability of phytoplankton lipids is key to freshwater zooplankton winter survival. Sci. Rep. 7, 11543. https://doi.org/10.1038/s41598-017-10956-0 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar  More

  • in

    Cryptochrome 1 mediates light-dependent inclination magnetosensing in monarch butterflies

    1.
    Dreyer, D. et al. The Earth’s magnetic field and visual landmarks steer migratory flight behavior in the nocturnal Australian Bogong Moth. Curr. Biol. 28, 2160–2166 (2018).
    CAS  Article  Google Scholar 
    2.
    Guerra, P. A., Gegear, R. J. & Reppert, S. M. A magnetic compass aids monarch butterfly migration. Nat. Commun. 5, 4164 (2014).
    ADS  CAS  Article  Google Scholar 

    3.
    Mouritsen, H. Long-distance navigation and magnetoreception in migratory animals. Nature 558, 50–59 (2018).
    ADS  CAS  Article  Google Scholar 

    4.
    Uebe, R. & Schuler, D. Magnetosome biogenesis in magnetotactic bacteria. Nat. Rev. Microbiol. 14, 621–637 (2016).
    CAS  Article  Google Scholar 

    5.
    Hore, P. J. & Mouritsen, H. The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 45, 299–344 (2016).
    CAS  Article  Google Scholar 

    6.
    Ritz, T., Adem, S. & Schulten, K. A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78, 707–718 (2000).
    CAS  Article  Google Scholar 

    7.
    Schulten, K., Swenberg, C. E. & Weller, A. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Z. Phys. Chem. 111, 1–5 (1978).
    Article  Google Scholar 

    8.
    Rodgers, C. T. & Hore, P. J. Chemical magnetoreception in birds: the radical pair mechanism. Proc. Natl Acad. Sci. USA 106, 353–360 (2009).
    ADS  CAS  Article  Google Scholar 

    9.
    Kerpal, C. et al. Chemical compass behaviour at microtesla magnetic fields strengthens the radical pair hypothesis of avian magnetoreception. Nat. Commun. 10, 3707 (2019).
    ADS  Article  Google Scholar 

    10.
    Maeda, K. et al. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc. Natl Acad. Sci. USA 109, 4774–4779 (2012).
    ADS  CAS  Article  Google Scholar 

    11.
    Emery, P. et al. Drosophila CRY is a deep brain circadian photoreceptor. Neuron 26, 493–504 (2000).
    CAS  Article  Google Scholar 

    12.
    Zhu, H. et al. The two CRYs of the butterfly. Curr. Biol. 15, R953–R954 (2005).
    CAS  Article  Google Scholar 

    13.
    Zoltowski, B. D. et al. Chemical and structural analysis of a photoactive vertebrate cryptochrome from pigeon. Proc. Natl Acad. Sci. USA 116, 19449–19457 (2019).
    CAS  Article  Google Scholar 

    14.
    Merlin, C., Beaver, L. E., Taylor, O. R., Wolfe, S. A. & Reppert, S. M. Efficient targeted mutagenesis in the monarch butterfly using zinc-finger nucleases. Genome Res. 23, 159–168 (2013).
    CAS  Article  Google Scholar 

    15.
    Michael, A. K., Fribourgh, J. L., Van Gelder, R. N. & Partch, C. L. Animal cryptochromes: divergent roles in light perception, circadian timekeeping and beyond. Photochem. Photobiol. 93, 128–140 (2017).
    CAS  Article  Google Scholar 

    16.
    Yuan, Q., Metterville, D., Briscoe, A. D. & Reppert, S. M. Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 24, 948–955 (2007).
    CAS  Article  Google Scholar 

    17.
    Zhang, Y., Markert, M. J., Groves, S. C., Hardin, P. E. & Merlin, C. Vertebrate-like CRYPTOCHROME 2 from monarch regulates circadian transcription via independent repression of CLOCK and BMAL1 activity. Proc. Natl Acad. Sci. USA 114, E7516–E7525 (2017).
    CAS  Article  Google Scholar 

    18.
    Fedele, G. et al. Genetic analysis of circadian responses to low frequency electromagnetic fields in Drosophila melanogaster. PLoS Genet. 10, e1004804 (2014).
    Article  Google Scholar 

    19.
    Fedele, G., Green, E. W., Rosato, E. & Kyriacou, C. P. An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway. Nat. Commun. 5, 4391 (2014).
    ADS  CAS  Article  Google Scholar 

    20.
    Gegear, R. J., Casselman, A., Waddell, S. & Reppert, S. M. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 454, 1014–1018 (2008).
    ADS  CAS  Article  Google Scholar 

    21.
    Gegear, R. J., Foley, L. E., Casselman, A. & Reppert, S. M. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature 463, 804–807 (2010).
    ADS  CAS  Article  Google Scholar 

    22.
    Foley, L. E., Gegear, R. J. & Reppert, S. M. Human cryptochrome exhibits light-dependent magnetosensitivity. Nat. Commun. 2, 356 (2011).
    ADS  Article  Google Scholar 

    23.
    Kutta, R. J., Archipowa, N., Johannissen, L. O., Jones, A. R. & Scrutton, N. S. Vertebrate cryptochromes are vestigial flavoproteins. Sci. Rep. 7, 44906 (2017).
    ADS  CAS  Article  Google Scholar 

    24.
    Zhu, H., Gegear, R. J., Casselman, A., Kanginakudru, S. & Reppert, S. M. Defining behavioral and molecular differences between summer and migratory monarch butterflies. BMC Biol. 7, 14 (2009).
    Article  Google Scholar 

    25.
    Lin, C., Top, D., Manahan, C. C., Young, M. W. & Crane, B. R. Circadian clock activity of cryptochrome relies on tryptophan-mediated photoreduction. Proc. Natl Acad. Sci. USA 115, 3822–3827 (2018).
    CAS  Article  Google Scholar 

    26.
    Nohr, D. et al. Extended electron-transfer in animal cryptochromes mediated by a tetrad of aromatic amino acids. Biophys. J. 111, 301–311 (2016).
    ADS  CAS  Article  Google Scholar 

    27.
    Nohr, D. et al. Determination of radical-radical distances in light-active proteins and their implication for biological magnetoreception. Angew. Chem. Int. Ed. Engl. 56, 8550–8554 (2017).
    CAS  Article  Google Scholar 

    28.
    Palomares, L. A., Joosten, C. E., Hughes, P. R., Granados, R. R. & Shuler, M. L. Novel insect cell line capable of complex N-glycosylation and sialylation of recombinant proteins. Biotechnol. Prog. 19, 185–192 (2003).
    CAS  Article  Google Scholar 

    29.
    Bazalova, O. et al. Cryptochrome 2 mediates directional magnetoreception in cockroaches. Proc. Natl Acad. Sci. USA 113, 1660–1665 (2016).
    ADS  CAS  Article  Google Scholar 

    30.
    Merlin, C., Gegear, R. J. & Reppert, S. M. Antennal circadian clocks coordinate sun compass orientation in migratory monarch butterflies. Science 325, 1700–1704 (2009).
    ADS  CAS  Article  Google Scholar 

    31.
    Yoshii, T., Ahmad, M. & Helfrich-Forster, C. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila’s circadian clock. PLoS Biol. 7, e1000086 (2009).
    Article  Google Scholar 

    32.
    Worster, S., Mouritsen, H. & Hore, P. J. A light-dependent magnetoreception mechanism insensitive to light intensity and polarization. J. R. Soc. Interface 14, (2017).

    33.
    Oztürk, N., Song, S.-H., Selby, C. P. & Sancar, A. Animal type 1 cryptochromes. Analysis of the redox state of the flavin cofactor by site-directed mutagenesis. J. Biol. Chem. 283, 3256–3263 (2008).
    Article  Google Scholar 

    34.
    Wu, H., Scholten, A., Einwich, A., Mouritsen, H. & Koch, K.-W. Protein-protein interaction of the putative magnetoreceptor cryptochrome 4 expressed in the avian retina. Sci. Rep. 10, 7364 (2020).
    ADS  CAS  Article  Google Scholar 

    35.
    Wan, G.-J. et al. Reduced geomagnetic field may affect positive phototaxis and flight capacity of a migratory rice planthopper. Anim. Behav. 121, 107–116 (2016).
    Article  Google Scholar 

    36.
    Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227–229 (2013).
    CAS  Article  Google Scholar 

    37.
    Iiams, S. E., Lugena, A. B., Zhang, Y., Hayden, A. N. & Merlin, C. Photoperiodic and clock regulation of the vitamin A pathway in the brain mediates seasonal responsiveness in the monarch butterfly. Proc. Natl Acad. Sci. USA 116, 25214–25221 (2019).
    CAS  Article  Google Scholar 

    38.
    Markert, M. J. et al. Genomic access to monarch migration using TALEN and CRISPR/Cas9-mediated targeted mutagenesis. G3 (Bethesda) 6, 905–915 (2016).
    CAS  Article  Google Scholar 

    39.
    Jao, L. E., Wente, S. R. & Chen, W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl Acad. Sci. USA 110, 13904–13909 (2013).
    ADS  CAS  Article  Google Scholar 

    40.
    Kim, J. M., Kim, D., Kim, S. & Kim, J. S. Genotyping with CRISPR-Cas-derived RNA-guided endonucleases. Nat. Commun. 5, 3157 (2014).
    ADS  Article  Google Scholar 

    41.
    Zhu, H. et al. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. PLoS Biol. 6, e4 (2008).
    Article  Google Scholar  More

  • in

    Physical and ecological isolation contribute to maintain genetic differentiation between fire salamander subspecies

    Abellán P, Svenning JC (2014) Refugia within refugia–patterns in endemism and genetic divergence are linked to Late Quaternary climate stability in the Iberian Peninsula. Biol J Linn Soc 113:13–28
    Article  Google Scholar 

    Alarcón-Ríos L, Nicieza AG, Kaliontzopoulou A, Buckley D, Velo-Antón G (2020) Evolutionary history and not heterochronic modifications associated with viviparity drive head shape differentiation in a reproductive polymorphic species, Salamandra salamandra. Evol Biol 47:43–55
    Article  Google Scholar 

    Alcobendas M, Castanet J (2000) Bone growth plasticity among populations of Salamandra salamandra: interactions between internal and external factors. Herpetologica 56:14–26
    Google Scholar 

    Alcobendas M, Buckley D, Tejedo M (2004) Variability in survival, growth and metamorphosis in the larval fire salamander (Salamandra salamandra): effects of larval birth size, sibship and environment. Herpetologica 60:232–245
    Article  Google Scholar 

    Antunes B, Lourenço A, Caeiro-Dias G, Dinis M, Gonçalves H, Martínez-Solano I et al. (2018) Combining phylogeography and landscape genetics to infer the evolutionary history of a short-range Mediterranean relict, Salamandra salamandra longirostris. Conserv Genet 19:1411–1424
    CAS  Article  Google Scholar 

    Arntzen JW, van Belkom J (2020) ‘Mainland-island’ population structure of a terrestrial salamander in a forest-bocage landscape with little evidence for in situ ecological speciation. Sci Rep 10:1–15
    Article  CAS  Google Scholar 

    Balkenhol N, Cushman SA, Waits LP, Storfer A (2016) Current status, future opportunities, and remaining challenges in landscape genetics. In: Balkenhol N, Cushman SA, Storfer AT, Waits LP (eds) Landscape genetics: concepts, methods, applications, John Wiley and Sons Ltd, Chichester, pp 247–255.

    Barton NH, Gale KS (1993) Genetic analysis of hybrid zones. Hybrid zones and the evolutionary process. In: Harrison RG (ed) Hybrid zones and the evolutionary process. Oxford University Press, Oxford, p 13–45
    Google Scholar 

    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57:289–300
    Google Scholar 

    Beukema W, Nicieza AG, Lourenço A, Velo‐Antón G (2016) Colour polymorphism in Salamandra salamandra (Amphibia: Urodela), revealed by a lack of genetic and environmental differentiation between distinct phenotypes. J Zool Syst Evol 54:127–136
    Article  Google Scholar 

    Bisconti R, Porretta D, Arduino P, Nascetti G, Canestrelli D (2018) Hybridization and extensive mitochondrial introgression among fire salamanders in peninsular Italy. Sci Rep 8:13187
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Bosch J, López-Bueis I (1994) Comparative study of the dorsal pattern in Salamandra salamandra bejarae (Wolterstorff, 1934) and S. s. almanzoris (Müller & Hellmich, 1935). Herpetol J 4:46–48
    Google Scholar 

    Burgon JD, Vieites DR, Jacobs A, Weidt SK, Gunter HM, Steinfartz S et al. (2020) Functional colour genes and signals of selection in colour polymorphic salamanders. Mol Ecol 29:1284–1299
    CAS  PubMed  Article  Google Scholar 

    Burgon JD, Vences M, Steinfartz S, Bogaerts S, Bonato L, Donaire-Barroso D, Martínez-Solano I, Velo-Antón G, Vieites DR, Mable BK, Elmer KR (2021) Phylogenomic inference of species and subspecies diversity in the Pal earctic salamander genus Salamandra. Molecular Phylogenetics and Evolution 157:107063

    Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113
    CAS  PubMed  Article  Google Scholar 

    Clarke RT, Rothery P, Raybould AF (2002) Confidence limits for regression relationships between distance matrices: estimating gene flow with distance. JABES 7:361
    Google Scholar 

    Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240
    Article  Google Scholar 

    Czypionka T, Goedbloed DJ, Steinfartz S, Nolte AW (2018) Plasticity and evolutionary divergence in gene expression associated with alternative habitat use in larvae of the European Fire Salamander. Mol Ecol 27:2698–2713
    PubMed  Article  Google Scholar 

    Dinis M, Joger U, Slimani T, Martínez-Freiría F, Merabet K, Donaire D et al. (2018) Allopatric diversification and evolutionary melting pot in a North African Palearctic relict: the biogeographic history of Salamandra algira. Mol Phylogenet Evol 130:81–91
    PubMed  Article  Google Scholar 

    Domínguez-Villar D, Carrasco RM, Pedraza J, Cheng H, Edwards R, Willenbring JK (2013) Early maximum extent of paleoglaciers from Mediterranean mountains during the last glaciation. Sci Rep. 3:2034
    PubMed  PubMed Central  Article  Google Scholar 

    Dufresnes C, Pribille M, Alard B, Dubey S, Perrin N, Gonçalves H et al. (2020) Integrating hybrid zone analyses in species delimitation: lessons from two anuran radiations of the Western Mediterranean. Heredity 124:423–438
    CAS  PubMed  Article  Google Scholar 

    Earl DA, VonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361
    Article  Google Scholar 

    Emel SL, Olson DH, Knowles LL, Storfer A (2019) Comparative landscape genetics of two endemic torrent salamander species, Rhyacotriton kezeri and R. variegatus: implications for forest management and species conservation. Conserv Genet 20:801–815
    CAS  Article  Google Scholar 

    Epps CW, Keyghobadi N (2015) Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change. Mol Ecol 24:6021–6040
    PubMed  Article  Google Scholar 

    Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Ficetola GF, Colleoni E, Renaud J, Scali S, Padoa‐Schioppa E, Thuiller W (2016) Morphological variation in salamanders and their potential response to climate change. Glob Chang Biol 22:2013–2024
    PubMed  PubMed Central  Article  Google Scholar 

    Fletcher R, Fortin M (2018) Spatial ecology and conservation modeling. Springer International Publishing, Cham
    Google Scholar 

    Fourcade Y, Engler JO, Rödder D, Secondi J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9:e97122
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Francis RM (2016) pophelper: An r package and web app to analyse and visualize population structure. Mol Ecol Resour 17:27–32
    PubMed  Article  CAS  Google Scholar 

    García-París M, Alcobendas M, Alberch P (1998) Influence of the Guadalquivir river basin on mitochondrial DNA evolution of Salamandra salamandra (Caudata: Salamandridae) from southern Spain. Copeia 1998:173–176
    Article  Google Scholar 

    García-París M, Alcobendas M, Buckley D, Wake DB (2003) Dispersal of viviparity across contact zones in iberian populations of fire salamanders (Salamandra) inferred from discordance of genetic and morphological traits. Evolution 57:129–143

    Gomez A, Lunt DH (2007) Refugia within refugia: patterns of phylogeographic concordance in the Iberian Peninsula. In: Weiss S, Ferrand N (eds). Phylogeography of Southern European Refugia. Springer: Dordrecht. pp 155–188

    Gray LN, Barley AJ, Poe S, Thomson RC, Nieto‐Montes de Oca A, Wang IJ (2019) Phylogeography of a widespread lizard complex reflects patterns of both geographic and ecological isolation. Mol Ecol 28:644–657
    PubMed  Article  Google Scholar 

    Gutiérrez-Rodríguez J, Barbosa AM, Martínez-Solano I (2017a) Present and past climatic effects on the current distribution and genetic diversity of the Iberian spadefoot toad (Pelobates cultripes): an integrative approach. J Biogeogr 44:245–258
    Article  Google Scholar 

    Gutiérrez-Rodríguez J, Barbosa AM, Martínez-Solano I (2017b) Integrative inference of population history in the Ibero-Maghrebian endemic Pleurodeles waltl (Salamandridae). Mol Phylogenet Evol 112:122–137
    PubMed  Article  Google Scholar 

    Hendrix R, Schmidt BR, Schaub M, Krause ET, Steinfartz S (2017) Differentiation of movement behaviour in an adaptively diverging salamander population. Mol Ecol 26:6400–6413
    PubMed  Article  Google Scholar 

    Hendrix R, Susanne Hauswaldt J, Veith M, Steinfartz S (2010) Strong correlation between cross-amplification success and genetic distance across all members of “True Salamanders” (Amphibia: Salamandridae) revealed by Salamandra salamandra-specific microsatellite loci. Mol Ecol Resour 10:1038–1047
    CAS  PubMed  Article  Google Scholar 

    Hendry AP (2017) Eco-evolutionary dynamics. Princeton University Press, Princeton
    Google Scholar 

    Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913
    CAS  Article  Google Scholar 

    Hijmans RJ, Van Etten J (2016) raster: Geographic Data Analysis and Modeling. R package version 2.5-8. Available from: http://CRAN.R-project.org/package=raster

    Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:1–94
    Article  Google Scholar 

    Kalinowski ST (2005) HP-RARE 10: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189
    CAS  Article  Google Scholar 

    Keenan K, Mcginnity P, Cross TF, Crozier WW, Prodöhl PA (2013) DiveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4:782–788
    Article  Google Scholar 

    Linnaeus C (1758) Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis. 10th Edition. Volume 1. Stockholm, Sweden: L. Salvii

    Lourenço A, Gonçalves J, Carvalho F, Wang IJ, Velo-Antón G (2019) Comparative landscape genetics reveals the evolution of viviparity reduces genetic connectivity in fire salamanders. Mol Ecol 28:4573–4591
    PubMed  Article  CAS  Google Scholar 

    Maia-Carvalho B, Vale CG, Sequeira F, Ferrand N, Martínez-Solano I, Gonçalves H (2018) The roles of allopatric fragmentation and niche divergence in intraspecific lineage diversification in the common midwife toad (Alytes obstetricans). J Biogeogr 45:2146–2158
    Article  Google Scholar 

    Martínez-Freiría F, Freitas I, Zuffi MAL, Golay P, Ursenbacher S, Velo-Antón G (2020) Climatic refugia boosted allopatric diversification in Western Mediterranean vipers. J Biogeogr 47:1698–1713
    Article  Google Scholar 

    Martínez-Solano I (2006) Atlas de distribución y estado de conservación de los anfibios de la Comunidad de Madrid. Graellsia 62:253–291
    Article  Google Scholar 

    Martínez-Solano I, Alcobendas M, Buckley D, García-París M (2005) Molecular characterisation of the endangered Salamandra salamandra almanzoris (Caudata, Salamandridae). Ann Zool Fenn 42:57–68
    Google Scholar 

    McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561
    PubMed  PubMed Central  Article  Google Scholar 

    McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Concepts and synthesis emphasizing new ideas to stimulate research in ecology using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724
    PubMed  Article  Google Scholar 

    Méndez L, Perdices A, Machordom A (2019) Genetic structure and diversity of the Iberian populations of the freshwater blenny Salaria fluviatilis (Asso, 1801) and its conservation implications. Conserv Genet 20:1223–1236
    Article  Google Scholar 

    Miraldo A, Hewitt GM, Paulo OS, Emerson BC (2011) Phylogeography and demographic history of Lacerta lepida in the Iberian Peninsula: multiple refugia, range expansions and secondary contact zones. BMC Evol Biol 11:170
    PubMed  PubMed Central  Article  Google Scholar 

    Mulder KP, Rodriguez NC, Grant EHC, Brand A, Fleischer RC (2019) North ‐ facing slopes and elevation shape asymmetric genetic structure in the range ‐ restricted salamander Plethodon shenandoah. Ecol Evol 9:5094–5105
    PubMed  PubMed Central  Article  Google Scholar 

    Noguerales V, Cordero PJ, Ortego J (2017) Testing the role of ancient and contemporary landscapes on structuring genetic variation in a specialist grasshopper. Ecol Evol 7:3110–3122
    PubMed  PubMed Central  Article  Google Scholar 

    Nosil P (2012) Ecological speciation. Oxford University Press, New York
    Google Scholar 

    Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295
    Article  Google Scholar 

    Pereira RJ, Martínez-Solano I, Buckley D (2016) Hybridization during altitudinal range shifts: nuclear introgression leads to extensive cyto-nuclear discordance in the fire salamander. Mol Ecol 25:1551–1565
    CAS  PubMed  Article  Google Scholar 

    Peterman WE (2018) ResistanceGA: an R package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol Evol 9:1638–1647
    Article  Google Scholar 

    Phillips SB, Aneja VP, Kang D, Arya SP (2006) Modelling and analysis of the atmospheric nitrogen deposition in North Carolina. IJGEI 6:231–252
    Google Scholar 

    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959
    CAS  PubMed  PubMed Central  Google Scholar 

    Prunier JG, Colyn M, Legendre X, Nimon KF, Flamand MC (2015) Multicollinearity in spatial genetics: Separating the wheat from the chaff using commonality analyses. Mol Ecol 24:263–283
    CAS  Article  Google Scholar 

    R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://wwwR-project.org/
    Google Scholar 

    Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106
    PubMed  PubMed Central  Article  Google Scholar 

    Sánchez‐Montes G, Wang J, Ariño AH, Martínez‐Solano I (2018) Mountains as barriers to gene flow in amphibians: quantifying the differential effect of a major mountain ridge on the genetic structure of four sympatric species with different life history traits. J Biogeogr 45:318–331
    Article  Google Scholar 

    Sánchez-Montes G, Recuero E, Barbosa AM, Martínez-Solano I (2019) Complementing the Pleistocene biogeography of European amphibians: testimony from a southern Atlantic species. J Biogeogr 46:568–583
    Article  Google Scholar 

    Sexton JP, Hangartner SB, Hoffmann AA (2014) Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution 68:1–15
    CAS  Article  Google Scholar 

    Silva P, López-Bao JV, Llaneza L, Álvares F, Lopes S, Blanco JC et al. (2018) Cryptic population structure reveals low dispersal in Iberian wolves. Sci Rep 8:14108
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Steinfartz S, Küsters D, Tautz D (2004) Isolation and characterization of polymorphic tetranucleotide microsatellite loci in the fire salamander Salamandra salamandra (Amphibia: Caudata). Mol Ecol Notes 4:626–628
    CAS  Article  Google Scholar 

    Velo-Antón G, García-París M, Galán P, Cordero Rivera A (2007) The evolution of viviparity in Holocene islands: ecological adaptation versus phylogenetic descent along the transition from aquatic to terrestrial environments. J Zool Syst Evol 45:345–352
    Article  Google Scholar 

    Velo‐Antón G, Parra JL, Parra‐Olea G, Zamudio KR (2013) Tracking climate change in a dispersal‐limited species: reduced spatial and genetic connectivity in a montane salamander. Mol Ecol 22:3261–3278
    PubMed  Article  Google Scholar 

    Velo-Antón G, Buckley D (2015) Salamandra común—Salamandra salamandra. In: Salvador A, Martínez-Solano I (eds), Enciclopedia Virtual de los Vertebrados Españoles, Museo Nacional de Ciencias Naturales, CSIC www.vertebradosibericos.org

    Wang IJ (2013) Examining the full effects of landscape heterogeneity on spatial genetic variation: a multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution 67:3403–3411
    PubMed  Article  Google Scholar 

    Wang IJ, Bradburd GS (2014) Isolation by environment. Mol Ecol 23:5649–5662
    PubMed  PubMed Central  Article  Google Scholar 

    Wang IJ, Glor RE, Losos JB (2013) Quantifying the roles of ecology and geography in spatial genetic divergence. Ecol Lett 16:175–182
    PubMed  Article  Google Scholar 

    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370
    CAS  Google Scholar 

    Winiarski KJ, Peterman WE, Whiteley AR, McGarigal K (2020) Multiscale resistant kernel surfaces derived from inferred gene flow: an application with vernal pool breeding salamanders. Mol Ecol Resour 20:97–113
    CAS  PubMed  Article  Google Scholar 

    Wogan GOU, Yuan ML, Mahler DL, Wang IJ (2020) Genome-wide epigenetic isolation by environment in a widespread Anolis lizard. Mol Ecol 29:40–55
    CAS  PubMed  Article  Google Scholar 

    Wright S (1943) Isolation by distance. Genetics 28:114–138
    CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    Ecological adaptation drives wood frog population divergence in life history traits

    Adams DC, Church JO (2008) Amphibians do not follow Bergmann’s rule. Evol: Int J Org Evol 62(2):413–420
    Article  Google Scholar 

    Alho J, Herczeg G, Laugen A, Räsänen K, Laurila A, Merilä J (2011) Allen’s rule revisited: quantitative genetics of extremity length in the common frog along a latitudinal gradient. J Evol Biol 24(1):59–70
    CAS  PubMed  Article  Google Scholar 

    Allen JA (1877) The influence of physical conditions in the genesis of species. Radic Rev 1:108–140
    Google Scholar 

    Amado TF, Bidau CJ, Olalla-Tárraga MÁ (2019) Geographic variation of body size in New World anurans: energy and water in a balance. Ecography 42(3):456–466
    Article  Google Scholar 

    Ashton KG (2002) Do amphibians follow Bergmann’s rule? Can J Zool 80(4):708–716
    Article  Google Scholar 

    Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. https://doi.org/10.18637/jss.v067.i01
    Article  Google Scholar 

    Belden LK, Rubbo MJ, Wingfield JC, Kiesecker JM (2007) Searching for the physiological mechanism of density dependence: does corticosterone regulate tadpole responses to density? Physiol Biochem Zool 80(4):444–451
    CAS  PubMed  Article  Google Scholar 

    Berven KA (1982a) The genetic basis of altitudinal variation in the wood frog Rana sylvatica II. An experimental analysis of larval development. Oecologia 52(3):360–369
    PubMed  Article  Google Scholar 

    Berven KA (1982b) The genetic basis of altitudinal variation in the wood frog Rana sylvatica. I. An experimental analysis of life history traits. Evolution 36(5):962–983
    PubMed  Google Scholar 

    Berven KA (1990) Factors affecting population fluctuations in larval and adult stages of the wood frog (Rana sylvatica). Ecology 71(4):1599–1608
    Article  Google Scholar 

    Berven KA (2009) Density dependence in the terrestrial stage of wood frogs: evidence from a 21-year population study. Copeia 2009(2):328–338
    Article  Google Scholar 

    Berven KA, Gill DE (1983) Interpreting geographic-variation in life-history traits. Am Zool 23(1):85–97
    Article  Google Scholar 

    Bijlsma R, Loeschcke V (2012) Genetic erosion impedes adaptive responses to stressful environments. Evol Appl 5(2):117–129
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Bjornstad ON (2020) ncf: spatial covariance functions. R package version 1.2-9. https://cran.r-project.org/package=ncf

    Castellano S, Balletto E (2002) Is the partial Mantel test inadequate? Evolution 56(9):1871–1873
    PubMed  Article  PubMed Central  Google Scholar 

    Chaparro-Pedraza PC, de Roos AM (2020) Density-dependent effects of mortality on the optimal body size to shift habitat: Why smaller is better despite increased mortality risk. Evolution 74(5):831–841
    PubMed  PubMed Central  Article  Google Scholar 

    Conover DO, Schultz ET (1995) Phenotypic similarity and the evolutionary significance of countergradient variation. Trends Ecol Evol 10(6):248–252
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Cordero GA, Epps CW (2012) From desert to rainforest: phenotypic variation in functionally important traits of bushy-tailed woodrats (Neotoma cinerea) across two climatic extremes. J Mamm Evol 19(2):135–153
    Article  Google Scholar 

    Costanzo JP, do Amaral MCF, Rosendale AJ, Lee RE (2013) Hibernation physiology, freezing adaptation and extreme freeze tolerance in a northern population of the wood frog. J Exp Biol 216(18):3461–3473
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Crespi EJ, Warne RW (2013) Environmental conditions experienced during the tadpole stage alter post-metamorphic glucocorticoid response to stress in an amphibian. Integr Comp Biol 53(6):989–1001
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Dahl E, Orizaola G, Nicieza AG, Laurila A (2012) Time constraints and flexibility of growth strategies: geographic variation in catch‐up growth responses in amphibian larvae. J Anim Ecol 81(6):1233–1243
    PubMed  Article  PubMed Central  Google Scholar 

    Davenport JM, Hossack BR (2016) Reevaluating geographic variation in life‐history traits of a widespread Nearctic amphibian. J Zool 299(4):304–310
    Article  Google Scholar 

    Denver RJ (1997) Environmental stress as a developmental cue: corticotropin-releasing hormone is a proximate mediator of adaptive phenotypic plasticity in amphibian metamorphosis. Horm Behav 31(2):169–179
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    DeWitt TJ, Scheiner SM (2004) Phenotypic plasticity: functional and conceptual approaches. Oxford University Press, New York, NY USA

    Dorcas ME, Gibbons JW (2008) Frogs and Toads of the Southeast. University of Georgia Press, Athens, GA, USA

    Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G et al. (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1):27–46
    Article  Google Scholar 

    Duncan SI, Crespi EJ, Mattheus NM, Rissler LJ (2015) History matters more when explaining genetic diversity within the context of the core–periphery hypothesis. Mol Ecol 24(16):4323–4336
    PubMed  Article  PubMed Central  Google Scholar 

    Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Diversity Distrib 17(1):43–57
    Article  Google Scholar 

    Fitzpatrick MJ, Zuckerberg B, Pauli JN, Kearney MR, Thompson KL, Werner LC et al. (2019) Modeling the distribution of niche space and risk for a freeze‐tolerant ectotherm, Lithobates sylvaticus. Ecosphere 10(7):e02788
    Article  Google Scholar 

    Fox J, Weisberg S (2019) An R Companion to Applied Regression, 3rd Edition. Sage, Thousand Oaks, CA

    GBIF.org (2014) GBIF Occurrence Download. https://doi.org/10.15468/dl.e3k4ag

    Gouveia SF, Correia I (2016) Geographical clines of body size in terrestrial amphibians: water conservation hypothesis revisited. J Biogeogr 43(10):2075–2084
    Article  Google Scholar 

    Hahn DA, Martin AR, Porter SD (2008) Body size, but not cooling rate, affects supercooling points in the red imported fire ant, Solenopsis invicta. Environ Entomol 37(5):1074–1080
    PubMed  Article  Google Scholar 

    Hangartner S, Laurila A, Rasanen K (2012) Adaptive divergence in moor frog (Rana arvalis) populations along an acidification gradient: inferences from Q(st) -F(st) correlations. Evolution 66(3):867–881
    PubMed  PubMed Central  Article  Google Scholar 

    Hijmans R, Cameron S, Parra J, Jones P, Jarvis A, Richardson K (2005) WorldClim version 1.3. University of California, Berkeley
    Google Scholar 

    Holderegger R, Kamm U, Gugerli F (2006) Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landsc Ecol 21(6):797–807
    Article  Google Scholar 

    Kawakami T, Morgan TJ, Nippert JB, Ocheltree TW, Keith R, Dhakal P et al. (2011) Natural selection drives clinal life history patterns in the perennial sunflower species, Helianthus maximiliani. Mol Ecol 20(11):2318–2328
    PubMed  Article  Google Scholar 

    Kierepka E, Latch E (2015) Performance of partial statistics in individual‐based landscape genetics. Mol Ecol Resour 15(3):512–525
    CAS  PubMed  Article  Google Scholar 

    Kingsolver JG, Diamond SE (2011) Phenotypic selection in natural populations: what limits directional selection? Am Naturalist 177(3):346–357
    Article  Google Scholar 

    Kingsolver JG, Pfennig DW (2004) Individual-level selection as a cause of cope’s rule of phyletic size increase. Evolution 58(7):1608–1612
    PubMed  Article  Google Scholar 

    Laugen AT, Laurila A, Jönsson KI, Söderman F, Merilä J (2005) Do common frogs (Rana temporaria) follow Bergmann’s rule? Evol Ecol Res 7(5):717–731
    Google Scholar 

    Laugen AT, Laurila A, Räsänen K, Merilä J (2003) Latitudinal countergradient variation in the common frog (Rana temporaria) development rates–evidence for local adaptation. J Evol Biol 16(5):996–1005
    CAS  PubMed  Article  Google Scholar 

    Laurila A, Karttunen S, Merila J (2002) Adaptive phenotypic plasticity and genetics of larval life histories in two Rana temporaria populations. Evolution 56(3):617–627
    PubMed  Article  Google Scholar 

    Lee-Yaw JA, Irwin JT, Green DM (2008) Postglacial range expansion from northern refugia by the wood frog, Rana sylvatica. Mol Ecol 17(3):867–884
    CAS  PubMed  Article  Google Scholar 

    Leinonen T, Cano JM, Mäkinen H, Merilä J (2006) Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of threespine sticklebacks. J Evol Biol 19(6):1803–1812
    CAS  PubMed  Article  Google Scholar 

    Leinonen T, McCairns RJ, O’Hara RB, Merila J (2013a) Q(ST)-F(ST) comparisons: evolutionary and ecological insights from genomic heterogeneity. Nat Rev Genet 14(3):179–190
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Leinonen T, McCairns RS, O’hara RB, Merilä J (2013b) Q ST–F ST comparisons: evolutionary and ecological insights from genomic heterogeneity. Nat Rev Genet 14(3):179
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Lenker MA, Savage AE, Becker CG, Rodriguez D, Zamudio KR (2014) Batrachochytrium dendrobatidis infection dynamics vary seasonally in upstate New York, USA. Dis Aquat Organ 111(1):51–60
    PubMed  Article  Google Scholar 

    Lind M, Johansson F (2011) Testing the role of phenotypic plasticity for local adaptation: growth and development in time‐constrained Rana temporaria populations. J Evol Biol 24(12):2696–2704
    CAS  PubMed  Article  Google Scholar 

    Lind MI, Ingvarsson PK, Johansson H, Hall D, Johansson F (2011) Gene flow and selection on phenotypic plasticity in an island system of Rana temporaria. Evolution 65(3):684–697
    PubMed  Article  Google Scholar 

    Lindgren B, Laurila A (2009) Physiological variation along a geographical gradient: is growth rate correlated with routine metabolic rate in Rana temporaria tadpoles? Biol J Linn Soc 98(1):217–224
    Article  Google Scholar 

    Lomolino MV, Heaney LR (2004) Frontiers of biogeography: new directions in the geography of nature. Sinauer Associates, Sunderland, MA, USA

    Manis ML, Claussen DL (1986) Environmental and genetic influences on the thermal physiology of Rana sylvatica. J Therm Biol 11(1):31–36
    Article  Google Scholar 

    Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27(2 Part 1):209–220
    CAS  Google Scholar 

    Martof BS, Humphries RL (1959) Geographic variation in the wood frog Rana sylvatica. Am Midl Naturalist 61(2):350–389
    Article  Google Scholar 

    Merilä J, Crnokrak P (2001) Comparison of genetic differentiation at marker loci and quantitative traits. J Evol Biol 14(6):892–903
    Article  Google Scholar 

    Merilä J, Laurila A, Laugen AT, Räsänen K, Pahkala M (2000) Plasticity in age and size at metamorphosis in Rana temporaria‐comparison of high and low latitude populations. Ecography 23(4):457–465
    Article  Google Scholar 

    Mitchell-Olds T, Willis JH, Goldstein DB (2007) Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat Rev Genet 8(11):845–856
    CAS  Article  Google Scholar 

    Morrison C, Hero JM (2003) Geographic variation in life‐history characteristics of amphibians: a review. J Anim Ecol 72(2):270–279
    Article  Google Scholar 

    Mueller LD (1997) Theoretical and empirical examination of density-dependent selection. Annu Rev Ecol Syst 28(1):269–288
    Article  Google Scholar 

    Muir AP, Biek R, Thomas R, Mable BK (2014) Local adaptation with high gene flow: temperature parameters drive adaptation to altitude in the common frog (Rana temporaria). Mol Ecol 23(3):561–574
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Nosil P, Vines TH, Funk DJ (2005) Reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution 59(4):705–719
    PubMed  PubMed Central  Google Scholar 

    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara R et al. (2019) vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan

    Olalla-Tárraga MÁ, Rodríguez MÁ (2007) Energy and interspecific body size patterns of amphibian faunas in Europe and North America: anurans follow Bergmann’s rule, urodeles its converse. Glob Ecol Biogeogr 16(5):606–617
    Article  Google Scholar 

    Orizaola G, Quintela M, Laurila A (2010) Climatic adaptation in an isolated and genetically impoverished amphibian population. Ecography 33(4):730–737
    Article  Google Scholar 

    Padgham M, Sumner MD (2020) geodist: fast, dependency-free geodesic distance calculations. R package version 0.0.6. https://CRAN.R-project.org/package=geodist

    Palo JU, O’Hara RB, Laugen AT, Laurila A, Primmer CR, Merila J (2003) Latitudinal divergence of common frog (Rana temporaria) life history traits by natural selection: evidence from a comparison of molecular and quantitative genetic data. Mol Ecol 12(7):1963–1978
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Peters RH, Peters RH (1986) The ecological implications of body size, vol 2. Cambridge University Press, New York, NY, USA

    Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3-4):231–259
    Article  Google Scholar 

    Pigliucci M (2001) Phenotypic plasticity: beyond nature and nurture. Johns Hopkins University Press, Baltimore, MA, USA

    Powell R, Conant R, Collins JT (2016) Peterson field guide to reptiles and amphibians of eastern and central North America. Houghton Mifflin Harcourt, New York, NY, USA

    R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/

    Raufaste N, Rousset F (2001) Are partial Mantel tests adequate? Evolution 55(8):1703–1705
    CAS  PubMed  Article  Google Scholar 

    Rice KC, Jung RE (2004) Water-quality and amphibian population data for Maryland, Washington, DC, and Virginia, 2001–2004. US Geological Survey

    Richter-Boix A, Quintela M, Kierczak M, Franch M, Laurila A (2013) Fine-grained adaptive divergence in an amphibian: genetic basis of phenotypic divergence and the role of nonrandom gene flow in restricting effective migration among wetlands. Mol Ecol 22(5):1322–1340
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Richter-Boix A, Teplitsky C, Rogell B, Laurila A (2010) Local selection modifies phenotypic divergence among Rana temporaria populations in the presence of gene flow. Mol Ecol 19(4):716–731
    PubMed  Article  Google Scholar 

    Richter‐Boix A, Katzenberger M, Duarte H, Quintela M, Tejedo M, Laurila A (2015) Local divergence of thermal reaction norms among amphibian populations is affected by pond temperature variation. Evolution 69(8):2210–2226
    PubMed  Article  Google Scholar 

    Rissler LJ (2016) Union of phylogeography and landscape genetics. Proc Natl Acad Sci USA 113(29):8079–8086
    CAS  PubMed  Article  Google Scholar 

    Roff D (1980) Optimizing development time in a seasonal environment: the ‘ups and downs’ of clinal variation. Oecologia 45(2):202–208
    PubMed  Article  Google Scholar 

    Santos M, Borash DJ, Joshi A, Bounlutay N, Mueller LD (1997) Density‐dependent natural selection in Drosophila: evolution of growth rate and body size. Evolution 51(2):420–432
    PubMed  Google Scholar 

    Schemske DW, Bierzychudek P (2007) Spatial differentiation for flower color in the desert annual Linanthus parryae: was Wright right? Evol: Int J Org Evol 61(11):2528–2543
    Article  Google Scholar 

    Schueler FW (1975) Geographic variation in the size of Rana septentrionalis in Quebec, Ontario, and Manitoba. J Herpetol 9(2):177–185
    Article  Google Scholar 

    Semlitsch RD, Scott DE, Pechmann JHK (1988) Time and size at metamorphosis related to adult fitness in Ambystoma talpoideum. Ecology 69(1):184–192
    Article  Google Scholar 

    Shafer AB, Wolf JB (2013) Widespread evidence for incipient ecological speciation: a meta‐analysis of isolation‐by‐ecology. Ecol Lett 16(7):940–950
    PubMed  PubMed Central  Article  Google Scholar 

    Sheridan JA, Caruso NM, Apodaca JJ, Rissler LJ (2018) Shifts in frog size and phenology: testing predictions of climate change on a widespread anuran using data from prior to rapid climate warming. Ecol Evol 8(2):1316–1327
    PubMed  Article  PubMed Central  Google Scholar 

    Smith-Gill SJ, Berven KA (1979) Predicting amphibian metamorphosis. Am Naturalist 113(4):563–585
    Article  Google Scholar 

    Spitze K (1993) Population structure in Daphnia obtusa: quantitative genetic and allozymic variation. Genetics 135(2):367–374
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Stevens CE, Paszkowski CA (2004) Using chorus-size ranks from call surveys to estimate reproductive activity of the wood frog (Rana sylvatica). J Herpetol 38(3):404–410
    Article  Google Scholar 

    Therneau TM (2020) coxme: Mixed effects cox models. R package version 2.2-16. https://CRAN.R-project.org/package=coxme

    Thomassen HA, Cheviron ZA, Freedman AH, Harrigan RJ, Wayne RK, Smith TB (2010) Spatial modelling and landscape‐level approaches for visualizing intra‐specific variation. Mol Ecol 19(17):3532–3548
    PubMed  Article  Google Scholar 

    Van Buskirk J (2017) Spatially heterogeneous selection in nature favors phenotypic plasticity in anuran larvae. Evolution 71(6):1670–1685
    PubMed  Article  PubMed Central  Google Scholar 

    Venables W, Ripley B (2002) Modern Applied Statistics with S. 4th Edition. Springer, New York, NY, USA

    Wang IJ, Bradburd GS (2014) Isolation by environment. Mol Ecol 23(23):5649–5662
    Article  Google Scholar 

    Wang IJ, Summers K (2010) Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison‐dart frog. Mol Ecol 19(3):447–458
    PubMed  Article  PubMed Central  Google Scholar 

    Warne RW, Crespi EJ (2015) Larval growth rate and sex determine resource allocation and stress responsiveness across life stages in juvenile frogs. J Exp Zool A Ecol Genet Physiol 323(3):191–201
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Weber MM, Stevens RD, Diniz‐Filho JAF, Grelle CEV (2017) Is there a correlation between abundance and environmental suitability derived from ecological niche modelling? A meta‐analysis. Ecography 40(7):817–828
    Article  Google Scholar 

    Weir L (2001) NAAMP unified protocol: call surveys. North American Amphibian Monitoring Program. Patuxtent Wildlife Research Center, Patuxtent, MA, USA

    Whitlock MC (2008) Evolutionary inference from QST. Mol Ecol 17(8):1885–1896
    PubMed  Article  PubMed Central  Google Scholar 

    Whitlock MC, Guillaume F (2009) Testing for spatially divergent selection: comparing QST to FST. Genetics 183(3):1055–1063
    PubMed  PubMed Central  Article  Google Scholar 

    Whitlock MC, Phillips PC (2000) The exquisite corpse: a shifting view of the shifting balance. Trends Ecol Evol 15(9):347–348
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Wilbur HM (1976) Density‐dependent aspects of metamorphosis in Ambystoma and Rana sylvatica. Ecology 57(6):1289–1296
    Article  Google Scholar 

    Wilbur HM, Collins JP (1973) Ecological aspects of amphibian metamorphosis. Science 182(4119):1305–1314
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Wright S (1943) Isolation by distance. Genetics 28(2):114
    CAS  PubMed  PubMed Central  Google Scholar  More