A new hypothesis for the origin of Amazonian Dark Earths
1.
Sombroek, W. G. Amazon Soils. A Reconnaissance of the Soils of the Brazilian Amazon Region 292 (Wageningen, Netherlands, 1966).
2.
Palace, M. W. et al. Ancient Amazonian populations left lasting impacts on forest structure. Ecosphere 8, e02035 (2017).
Article Google Scholar
3.
Lehmann, J. Amazonian Dark Earths: Origin Properties Management (Kluwer Academic Publishers, Netherlands, 2003).
4.
Glaser, B. & Birk, J. J. State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). Geochim. Cosmochim. Acta 82, 39–51 (2012).
ADS CAS Article Google Scholar
5.
Macedo, R. S., Teixeira, W. G., Corrêa, M. M., Martins, G. C. & Vidal-Torrado, P. Pedogenetic processes in anthrosols with pretic horizon (Amazonian Dark Earth) in Central Amazon, Brazil. PLoS ONE 12, e0178038 (2017).
PubMed PubMed Central Article CAS Google Scholar
6.
Barbosa, J. Z. et al. Elemental signatures of an Amazonian Dark Earth as result of its formation process. Geoderma 361, 114085 (2020).
ADS CAS Article Google Scholar
7.
Quesada, C. A. et al. Variations in soil chemical and physical properties explain basin-wide Amazon forest soil carbon concentrations. Soil 6, 53–88 (2020).
CAS Article Google Scholar
8.
Grau, O. et al. Nutrient-cycling mechanisms other than the direct absorption from soil may control forest structure and dynamics in poor Amazonian soils. Sci. Rep. 7, 45017 (2017).
ADS CAS PubMed PubMed Central Article Google Scholar
9.
Silva, L. C. R. & Lambers, H. Soil-plant-atmosphere interactions: structure, function, and predictive scaling for climate change mitigation. Plant Soil 1–23 https://doi.org/10.1007/s11104-020-04427-1 (2020).
10.
Haridasan, M. Nutritional adaptations of native plants of the cerrado biome in acid soils. Braz. J. Plant Physiol. 20, 183–195 (2008).
Article Google Scholar
11.
Morello, T. F. et al. Fertilizer adoption by smallholders in the Brazilian Amazon: Farm-level evidence. Ecol. Econ. 144, 278–291 (2018).
Article Google Scholar
12.
Lombardo, U. et al. Early Holocene crop cultivation and landscape modification in Amazonia. Nature 581, 190–193 (2020).
ADS CAS PubMed PubMed Central Article Google Scholar
13.
Capriles, J. M. et al. Persistent early to middle Holocene tropical foraging in southwestern Amazonia. Sci. Adv. 5, eaav5449 (2019).
ADS CAS PubMed PubMed Central Article Google Scholar
14.
Bush, M. B. et al. A 6900-year history of landscape modification by humans in lowland Amazonia. Quat. Sci. Rev. 141, 52–64 (2016).
ADS Article Google Scholar
15.
Maezumi, S. Y. et al. The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon. Nat. Plants 4, 540–547 (2018).
PubMed PubMed Central Article Google Scholar
16.
Kern, D. C. et al. Terras pretas: approaches to formation processes in a new paradigm. Geoarchaeology 32, 694–706 (2017).
Article Google Scholar
17.
McMichael, C. H. et al. Predicting pre-Columbian anthropogenic soils in Amazonia. Proc. R. Soc. B Biol. Sci. 281, 20132475 (2014).
CAS Article Google Scholar
18.
Schmidt, M. J. et al. Dark earths and the human built landscape in Amazonia: a widespread pattern of anthrosol formation. J. Archaeol. Sci. 42, 152–165 (2014).
Article Google Scholar
19.
Birk, J. J., Teixeira, W. G., Neves, E. G. & Glaser, B. Faeces deposition on Amazonian Anthrosols as assessed from 5β-stanols. J. Archaeol. Sci. 38, 1209–1220 (2011).
Article Google Scholar
20.
Glaser, B. Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 187–196 (2007).
CAS PubMed Article PubMed Central Google Scholar
21.
El-Naggar, A. et al. Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma 337, 536–554 (2019).
ADS CAS Article Google Scholar
22.
Cunha, T. J. F. et al. Soil organic matter and fertility of anthropogenic dark earths (Terra Preta de Índio) in the Brazilian Amazon basin. Rev. Bras. Cienc. do Solo 33, 85–93 (2009).
CAS Article Google Scholar
23.
Lutfalla, S. et al. Pyrogenic carbon lacks long-term persistence in temperate arable soils. Front. Earth Sci. 5, 96 (2017).
ADS Article Google Scholar
24.
Chadwick, K. D. & Asner, G. P. Landscape evolution and nutrient rejuvenation reflected in Amazon forest canopy chemistry. Ecol. Lett. 21, 978–988 (2018).
PubMed Article PubMed Central Google Scholar
25.
Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J. & Hedin, L. O. Changing sources of nutrients during four million years of ecosystem development. Nature 397, 491–497 (1999).
ADS CAS Article Google Scholar
26.
Vitousek, P. M. Nutrient Cycling and Limitation: Hawai’i as a Model System. Ecology Vol. 30 (Princeton University Press, 2004).
27.
Silva, L. C. R. et al. Can savannas become forests? A coupled analysis of nutrient stocks and fire thresholds in central Brazil. Plant Soil 373, 829–842 (2013).
CAS Article Google Scholar
28.
Alho, C. F. B. V. et al. Spatial variation of carbon and nutrients stocks in Amazonian Dark Earth. Geoderma 337, 322–332 (2019).
ADS CAS Article Google Scholar
29.
Bomfim, B., Silva, L. C. R., Doane, T. A. & Horwath, W. R. Interactive effects of land-use change and topography on asymbiotic nitrogen fixation in the Brazilian Atlantic Forest. Biogeochemistry 142, 137–153 (2019).
CAS Article Google Scholar
30.
Hendrixson, H. A., Sterner, R. W. & Kay, A. D. Elemental stoichiometry of freshwater fishes in relation to phylogeny, allometry and ecology. J. Fish. Biol. 70, 121–140 (2007).
Article Google Scholar
31.
Nishimuta, M. et al. Moisture and mineral content of human feces–high fecal moisture is associated with increased sodium and decreased potassium content. J. Nutr. Sci. Vitaminol. 52, 121–126 (2006).
CAS PubMed Article PubMed Central Google Scholar
32.
Rossetti, D. F. et al. Unfolding long-term late Pleistocene-Holocene disturbances of forest communities in the southwestern Amazonian lowlands. Ecosphere 9, e02457 (2018).
Article Google Scholar
33.
Carson, J. F. et al. Pre-Columbian land use in the ring-ditch region of the Bolivian Amazon. Holocene 25, 1285–1300 (2015).
ADS Article Google Scholar
34.
Shepard, G. H. et al. in Oxford Research Encyclopedia of Environmental Science (Hazlitt, R. ed.) (Oxford, 2020).
35.
Arroyo-Kalin, M. Slash-burn-and-churn: Landscape history and crop cultivation in pre-Columbian Amazonia. Quat. Int. 249, 4–18 (2012).
Article Google Scholar
36.
Brugger, S. O. et al. Long-term man-environment interactions in the Bolivian Amazon: 8000 years of vegetation dynamics. Quat. Sci. Rev. 132, 114–128 (2016).
ADS Article Google Scholar
37.
Maezumi, S. Y. et al. New insights from pre-Columbian land use and fire management in Amazonian dark earth forests. Front. Ecol. Evol. 6, 111 (2018).
Article Google Scholar
38.
Zani, H., Rossetti, D. F., Cohen, M. L. C., Pessenda, L. C. R. & Cremon, E. H. Influence of landscape evolution on the distribution of floristic patterns in northern Amazonia revealed by δ13C data. J. Quat. Sci. 27, 854–864 (2012).
Article Google Scholar
39.
Lombardo, U. et al. Holocene land cover change in south-western Amazonia inferred from paleoflood archives. Glob. Planet. Change 174, 105–114 (2019).
ADS Article Google Scholar
40.
Ward, B. M. et al. Reconstruction of Holocene coupling between the South America Monsoon System and local moisture variability from speleothem δ18O and 87Sr/86Sr records. Quat. Sci. Rev. 210, 51–63 (2019).
ADS Article Google Scholar
41.
Wortham, B. E. et al. Assessing response of local moisture conditions in central Brazil to variability in regional monsoon intensity using speleothem 87Sr/ 86Sr values. Earth Planet. Sci. Lett. 463, 310–322 (2017).
ADS CAS Article Google Scholar
42.
Silva, L. C. R. Importance of climate-driven forest–savanna biome shifts in anthropological and ecological research. Proc. Natl Acad. Sci. USA 111, E3831–E3832 (2014).
ADS CAS PubMed Article PubMed Central Google Scholar
43.
Wright, J. et al. Sixteen hundred years of increasing tree cover prior to modern deforestation in Southern Amazon and Central Brazilian savannas. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15382 (2020).
44.
Bomfim, B. et al. Fire affects asymbiotic nitrogen fixation in Southern Amazon Forests. J. Geophys. Res. Biogeosci. 125, (2020).
45.
Rossetti, D. F., Bertani, T. C., Zani, H., Cremon, E. H. & Hayakawa, E. H. Late Quaternary sedimentary dynamics in Western Amazonia: Implications for the origin of open vegetation/forest contrasts. Geomorphology 177–178, 74–92 (2012).
ADS Article Google Scholar
46.
Hoffmann, W. A. et al. Ecological thresholds at the savanna-forest boundary: How plant traits, resources and fire govern the distribution of tropical biomes. Ecol. Lett. 15, 759–768 (2012).
PubMed Article PubMed Central Google Scholar
47.
Roddaz, M. et al. Evidence for the control of the geochemistry of Amazonian floodplain sediments by stratification of suspended sediments in the Amazon. Chem. Geol. 387, 101–110 (2014).
ADS CAS Article Google Scholar
48.
Santos, R. V. et al. Source area and seasonal 87Sr/86Sr variations in rivers of the Amazon basin. Hydrol. Process. 29, 187–197 (2015).
ADS CAS Article Google Scholar
49.
Passos, M. S. et al. Pleistocene-Holocene sedimentary deposits of the Solimões-Amazonas fluvial system, Western Amazonia. J. South Am. Earth Sci. 98, 102455 (2020).
Article Google Scholar
50.
Bayon, G. et al. Rare earth elements and neodymium isotopes in world river sediments revisited. Geochim. Cosmochim. Acta 170, 17–38 (2015).
ADS CAS Article Google Scholar
51.
Quintana-Cobo, I. et al. Dynamics of floodplain lakes in the Upper Amazon Basin during the late Holocene. Comptes Rendus Geosci. 350, 55–64 (2018).
ADS Article Google Scholar
52.
Hayakawa, E. H., Rossetti, D. F., Hayakawa, E. H. & Rossetti, D. F. Late quaternary dynamics in the Madeira river basin, southern Amazonia (Brazil), as revealed by paleomorphological analysis. Acad. Bras. Cienc. 87, 29–49 (2015).
Article Google Scholar
53.
Gonçalves, E. S., Soares, E. A. A., Tatumi, S. H., Yee, M. & Mittani, J. C. R. Pleistocene-Holocene sedimentation of Solimões-Amazon fluvial system between the tributaries Negro and Madeira, Central Amazon. Braz. J. Geol. 46, 167–180 (2016).
Article Google Scholar
54.
Viers, J. et al. Seasonal and provenance controls on Nd–Sr isotopic compositions of Amazon rivers suspended sediments and implications for Nd and Sr fluxes exported to the Atlantic Ocean. Earth Planet. Sci. Lett. 274, 511–523 (2008).
ADS CAS Article Google Scholar
55.
Sant’Anna, L. G. et al. Age of depositional and weathering events in Central Amazonia. Quat. Sci. Rev. 170, 82–97 (2017).
ADS Article Google Scholar
56.
Guyot, J. L. et al. Clay mineral composition of river sediments in the Amazon Basin. CATENA 71, 340–356 (2007).
Article Google Scholar
57.
Macedo, R. S. et al. Amazonian dark earths in the fertile floodplains of the Amazon River, Brazil: An example of non-intentional formation of anthropic soils in the Central Amazon region. Bol. do Mus. Para. Emilio Goeldi Cienc. Humanas 14, 207–227 (2019).
Article Google Scholar
58.
Gross, D. R. Protein capture and cultural development in the Amazon basin. Am. Anthropol. 77, 526–549 (1975).
Article Google Scholar
59.
Bomfim, B. et al. Litter and soil biogeochemical parameters as indicators of sustainable logging in Central Amazonia. Sci. Total Environ. 714, 136780 (2020).
ADS CAS PubMed Article PubMed Central Google Scholar
60.
Lehmann, J. et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249, 343–357 (2003).
CAS Article Google Scholar
61.
Gay‐des‐Combes, J. M. et al. Tropical soils degraded by slash‐and‐burn cultivation can be recultivated when amended with ashes and compost. Ecol. Evol. 7, 5378–5388 (2017).
PubMed PubMed Central Article Google Scholar
62.
Isendahl, C. & Smith, M. E. Sustainable agrarian urbanism: The low-density cities of the Mayas and Aztecs. Cities 31, 132–143 (2013).
Article Google Scholar
63.
Clement, C. R. et al. The domestication of Amazonia before European conquest. Proc. R. Soc. B Biol. Sci. 282, 20150813 (2015).
Article Google Scholar
64.
de Souza, J. G. et al. Climate change and cultural resilience in late pre-Columbian Amazonia. Nat. Ecol. Evol. 3, 1007–1017 (2019).
PubMed Article PubMed Central Google Scholar
65.
Mongeló, G. Early and Middle Holocene human occupations in Southwest Amazon. Bol. Mus. Para. Emílio Goeldi. Cienc. Hum. https://doi.org/10.1590/2178-2547-bgoeldi-2019-0079 (2020).
66.
Kistler, L. et al. Multiproxy evidence highlights a complex evolutionary legacy of maize in South America. Science 362, 1309–1313 (2018).
ADS CAS PubMed Article PubMed Central Google Scholar
67.
Denevan, W. M. A Bluff model of riverine settlement in prehistoric Amazonia. Ann. Assoc. Am. Geogr. 86, 654–681 (1996).
Article Google Scholar
68.
Silva, L. C. R., Corrêa, R. S., Doane, T. A., Pereira, E. I. P. & Horwath, W. R. Unprecedented carbon accumulation in mined soils: the synergistic effect of resource input and plant species invasion. Ecol. Appl. 23, 1345–1356 (2000).
Article Google Scholar
69.
Kurth, V. J., MacKenzie, M. D. & DeLuca, T. H. Estimating charcoal content in forest mineral soils. Geoderma 137, 135–139 (2006).
ADS CAS Article Google Scholar
70.
Silva, L. C. R. et al. Iron-mediated stabilization of soil carbon amplifies the benefits of ecological restoration in degraded lands. Ecol. Appl. 25, 1226–1234 (2015).
PubMed Article PubMed Central Google Scholar
71.
Hare, V. J., Loftus, E., Jeffrey, A. & Ramsey, C. B. Atmospheric CO2 effect on stable carbon isotope composition of terrestrial fossil archives. Nat. Commun. 9, 252 (2018).
72.
Krull, E. S., Bestland, E. A. & Gates, W. P. Soil organic matter decomposition and turnover in a tropical Ultisol: evidence from δ13C, δ15N and geochemistry. Radiocarbon 44, 93–112 (2002).
73.
Gioia, S. M. C. L. & Pimentel, M. M. The Sm-Nd isotopic method in the Geochronology Laboratory of the University of Brasília. Acad. Bras. Cienc. 72, 218–245 (2000).
Google Scholar More