More stories

  • in

    Reference carbon cycle dataset for typical Chinese forests via colocated observations and data assimilation

    We selected 10 permanent plots with long-term observations from CERN to include typical forest types of various ages in the East China monsoon forest region, including tropical rainforests, subtropical evergreen coniferous and broad-leaved mixed forests, warm temperate deciduous broad-leaved forests and temperate coniferous and broad-leaved forests, with evident precipitation and temperature gradients from south to north (Fig. 1). The spatial representativeness of the selected 10 sites across the Chinese forest region was evaluated by calculating the Euclidean distance based on various environmental factors. The 10 sites performed well and represented more than 80% of the Chinese forest region (Fig. S1). Of these forests, the Xishuangbanna tropical seasonal rainforest (BNF), Dinghu Mountain subtropical evergreen coniferous and broad-leaved mixed forest (DHF), Ailao Mountain subtropical evergreen broad-leaved forest (ALF), and Changbai Mountain temperate deciduous coniferous and broad-leaved mixed forest (CBF) are mature natural forests; the Shennongjia subtropical evergreen deciduous broad-leaved mixed forest (SNF) and Huitong subtropical evergreen broad-leaved forest (HTF) are natural secondary forests; and the other sites, i.e., the Beijing warm temperate deciduous broad-leaved mixed forest (BJF), Maoxian warm temperate deciduous coniferous mixed forest (MXF), Qianyanzhou subtropical evergreen artificial coniferous mixed forest (QYF), and Heshan subtropical evergreen broad-leaved forest (HSF), are plantations or middle- and young-age forests. All 10 sites are well protected and subject to minimal human activities, thus reflecting the C cycle dynamics under global environmental change, e.g., climate change, increasing CO2 and nitrogen deposition. The detailed characteristics of each plot can be found in their profiles in the CFCCD database.
    There are three main steps to create the observation-based basic dataset and assimilated dataset of typical Chinese forests C cycle dynamics:
    1.
    Observation-based basic data acquisition. An ensemble of daily atmospheric and water data at ten CERN sites were used as forcing datasets for MDF and future scientific analysis; biological and soil data were also collected from CERN and processed by quality control and statistical calculation as benchmark to constrain the model.

    2.
    Implementation of a multiple data-model fusion framework. The Markov Chain Monte Carlo (MCMC) that integrated the Data Assimilation Linked Ecosystem Carbon (DALEC) model with multiple and dynamic observational data was used to retrieve C-cycle process parameters in a realistic disequilibrium state.

    3.
    Key process parameters and C function data assimilation. The key parameters of the process-based C cycle model (DALEC) were determined via the model-data fusion method; then the ecosystem C sequestration datasets were simulated by forward running the DALEC model with optimized parameters and then validated based on observational data and other previous studies.

    Each step is explained in more detail below.
    Observation-based basic data acquisition
    Atmospheric and water data
    In situ observations of daily air temperature (Ta), photosynthetically active radiation (PAR), relative humidity (RH), precipitation (Precip), and soil moisture (Sw) at the 10 sites from 2005 to 2015 were obtained from the CERN scientific and technological resources service system (http://www.cnern.org.cn/). These atmospheric and water data were mostly observed by an automatic meteorological station at each site. Among them, the PAR was estimated by a LI-COR LI-190SZ Quantum Sensor; Ta and RH were measured by a QMT110 sensor; Sw was estimated by a soil moisture neutron probe or the Time-Domain Reflectometry (TDR) soil moisture probe; the associated saturated soil water capacity (Sc) was measured by the cutting ring method to sample soil in each field campaign and the oven-drying method to measure saturated moisture content after the soil was soaked in water for 48 h; and Precip was artificially observed by CERN staff using an SM1-1 rain gauge. These monitoring data were collected in keeping with CERN’s protocols of observation and quality control29,30.
    There were occasional missing data in time-continuous meteorological observations; therefore, the data were processed by standardized gap filling31. Specifically, for Ta, PAR, and RH, which were applied as model driver, we used a linear interpolation method to interpolate continuous missing data with less than three observations; otherwise, we established a regression model using the CERN observations and other observations from adjacent stations of the China Meteorology Administration (756 meteorological stations; http://data.cma.cn/en) to interpolate continuous missing data with more than three observations.
    Biological data
    Biomass.
    At each site, the diameters at breast height (DBHs) and tree heights were measured for each tree in a regular inventory performed at least once every five years. The allometric equations of the DBH and/or tree heights with the biomasses of different plant tissues (i.e., leaves, branches, stems and roots) were developed at each site for various species based on the felled standard trees in the destructive plot. Then, we calculated the biomasses for the ten ecosystems using these allometric equations (FA02 table downloaded from http://www.cnern.org.cn/), which all passed the significance test (0.01 level) and have the R2 most above 0.9 when its estimation compare to observations from standard trees. For some unfelled species under protection, the allometric equations were obtained from Luo et al.32, which were developed based on national inventories and meta analyses from the published literature.
    Litterfall.
    The aboveground litterfall biomass was measured monthly by ten replicates with 1 m × 1 m baskets during the growing season or once during the nongrowing season. All collected litter was dried at 70 °C for 24 h in the laboratory and then weighed. To avoid the effects of wind on the measurement of litterfall biomass within an individual month, annual litterfall biomass data were finally adopted for each site.
    LAI.
    The leaf area index (LAI) at each site was measured optically with an LAI-2000 plant canopy analyzer (LI-COR, Lincoln, NE, USA) at least quarterly every year.
    Soil data
    Soil organic matter (SOM) was measured by the potassium dichromate oxidation titrimetric method. Soil bulk density (SBD) was measured by the cutting ring method in each field campaign at 10 forest sites. Soil particle size (i.e., soil mechanical composition) was measure by the laser particle analyzer. At least three samples were collected from each of the five soil layers (0–10, 10–20, 20–40, 40–60, and 60–100 cm) once every five years.
    SOC.
    The soil organic C (SOC) content was calculated from SOM, SBD, and volume percentage of gravel with particle size >2 mm at 10 forest sites as follows33:

    $$SOC={sum }_{i=1}^{n}0.58times {H}_{i}times {B}_{i}times {O}_{i}times (1-{rm{theta }})times 100$$
    (1)

    where SOC is the soil organic C density (g C/m2) of all n layers, Hi is the soil thickness (cm), Bi is the soil bulk density (g/cm3), Oi is the SOM content of the ith layer (%), and θ is the volume percentage (%) of gravel with particle size >2 mm. In the absence of soil bulk density or soil organic matter content measurements in some layers, the missing soil measurements corresponding to specific soil depths of theses forest ecosystems were supplemented according to the empirical formulas of the relationships between SOM/soil bulk density and soil depth in different layers, which were developed based on the long-term and across-site CERN soil observations34.
    All these raw atmospheric, biological, and soil data mentioned above can be directly download from CERN scientific and technological resources service system (http://www.cnern.org.cn/data/initDRsearch) or obtained after online application via protocol sharing.
    Auxiliary flux data
    Net ecosystem exchange (NEE).
    These data were obtained from ChinaFLUX (http://www.chinaflux.org/), covering CBF, QYF, and BNF. The data were aggregated to the daily time step from half-hourly CO2 flux data measured by the eddy covariance technique and processed with quality control and gap filling procedures35.
    Implementation of MDF method
    The assimilated data were retrieved from a multiple data-model fusion method (Fig. 2). Specifically, the long-term and dynamic observations of biomass, litterfall, LAI and SOC were used as the model constraint data; Ta, PAR, and RH were used as the meteorological driving data; and the metropolis simulated annealing algorithm, a variation in the MCMC technique36,37, was applied to retrieve the C cycle parameters (e.g., C allocation and C turnover times) against the observations and prior knowledge. Then, we forward-simulated the model to produce the dynamic and time-continuous changes in ecosystem C sequestration function.
    Fig. 2

    Flowchart of the generation of assimilated datasets in a multiple- and long-term data assimilation framework.

    Full size image

    Since the dynamic C cycle observations provided an effective solution to constrain the C cycle states without the steady state assumption (SSA), the novelty of our MDF framework involves estimating these C cycle dynamics in better agreement with the actual dynamic disequilibrium state38. Therefore, the uncertainty in allocation and turnover parameters and in C pool states have largely been reduced based on the time-series observations under the non-SSA (NSSA)21,39,40, thereby significantly enhancing the model’s ability to predict the C sequestration function19,41,42.
    Carbon cycle process model description
    DALEC is a box model of C pools connected via fluxes running at a daily time step and has been applied extensively to the MDF research21,43. Its main structure (i.e., C cycle, C allocation, and turnover process) is generally consistent with state-of-the-art process-based models (Fig. S2; Table S1), with five pools (i.e., foliage (Cf), fine root (Cr), woody (Cw, including branches, stems, and coarse roots), litter (Clit) and SOM (Csom)) for evergreen forests and an additional labile pool (Clab) of stored C that supports leaf flushing for deciduous forests. The C cycle was initiated with the canopy C influx: gross primary productivity (GPP), which was predicted by the Aggregated Canopy Model (ACM)44 (Appendix S1). After GPP is consumed by autotrophic respiration (Ra), the remaining photosynthate (NPP) is allocated to plant tissue pools (Cf, Cr, or Cw). The C exiting from all C reservoirs was based on a first order differential equation with various turnover rates, with temperature and moisture dependency on the turnover from the litter and soil pools. In contrast to the original DALEC model only with temperature scalar fTa, here we added a new function fSw to express soil moisture pressure on litter and soil decomposition processes (Appendix S1). In general, the C pools and fluxes in DALEC were iteratively calculated at a daily time step and determined as a function of the key turnover and allocation parameters. A detailed model description can be found in Williams et al.45 and Fox et al.46.
    Multiple data-model fusion at the nonsteady state
    In a realistic disequilibrium state, C pools are time-variant, i.e., the C efflux is not equal to the C influx (left(frac{dC}{dt}ne 0right)); thus, the MDF was run via the dynamic and long-term CERN observations to constrain the DALEC model at the non-steady state (Eq. 2). Here, to avoid the uncertainty arising from the spin-up process under SSA, we determined the initial state of the C pools by the initial observations of C stocks or by optimization (i.e., Clab, which cannot be directly observed). Then, the turnover and allocation parameters were retrieved under the disequilibrium state with dynamic environmental forcing. This method avoids the considerable uncertainties when invoking the SSA to estimate the initial state of C pools and the C cycle parameters(e.g., allocation coefficients and turnover rates)39,40,47, which could lead to obvious biases in C sequestration19.

    $$left{begin{array}{l}Delta {C}_{i}ne 0\ {C}_{i}left({rm{t}}+1right)={C}_{i}left({rm{t}}right)+{I}_{i}left({rm{t}}right)-{k}_{i}{C}_{i}left({rm{t}}right),{rm{i}}=1,2ldots n\ {C}_{i}left({rm{t}}=0right)={C}_{i}0end{array}right.$$
    (2)

    where Ci, Ii, and ki represent the size, input and turnover rate of the ith C reservoir, respectively; Ci0 represents the initial state of the ith C reservoir; t represents the specific model-running time step (daily step); and ΔCi represents the ith C pool change between t day and t +1 day when applicable into actual calculation. According to the Bayesian theory, the posterior distributions of the parameters are calculated by maximizing the likelihood function (Eq. 3).

    $$L={prod }_{j=1}^{m}{prod }_{i=1}^{{n}_{j}}frac{1}{sqrt{2pi }{sigma }_{j}}{e}^{-{left({x}_{j,i}-{mu }_{j,i}left({boldsymbol{P}}right)right)}^{2}/2{sigma }_{j}^{2}}$$
    (3)

    where L is the integrated likelihood function; m is the number of multiple data types; n is the number of data points categorized by the jth data type; xj,i is the measured value composed of dynamic C cycle observations; μj,i(P) represents the modeled fluxes and stocks based on parameters under the NSSA (P); and σj is the standard deviation of each data point classified by the jth data type. Moreover, we imposed a sequence of ecological and dynamic constraints on the model parameter inter-relationships and pool dynamics (Appendix S2), which can significantly reduce uncertainty in model parameters and simulations48. The more detailed disequilibrium method can be found in our latest study19.
    Key C-cycle process parameters and C sequestration data assimilation
    Key process parameter estimation
    Here, we mainly focus on how the C input (i.e., the net primary productivity) partitioned into various plant pools (i.e., foliar, wood, and fine roots), i.e., allocation coefficients, which could be directly determined from the optimized parameters (Fig. S3) of the DALEC model after the step 2: MDF method. Another key process parameter, C turnover time, needs further simple statistical calculation based on the model simulations with optimized parameters. Turnover time is commonly estimated by the equation “τ = stock/flux”20,49. Since the C influx is not equal to the C efflux in the realistic dynamic disequilibrium state, the turnover time should be defined as the ratio between the mass of a C pool and its outgoing flux50. Note that with few natural and anthropogenic disturbances in these well-protected CERN sites12,18, the C efflux is approximately equivalent to the Rh from soil and litterfall (mortality) and Ra (growth) from vegetation. Hence, the turnover time for vegetation, soil, and whole ecosystem can be derived as follows:

    $${tau }_{veg}=frac{{C}_{live}}{{I}_{live}-Delta {C}_{live}}=frac{{C}_{live}}{litterfall+{R}_{a}}$$
    (4)

    $${tau }_{soil}=frac{{C}_{dead}}{{I}_{dead}-Delta {C}_{dead}}=frac{{C}_{dead}}{{R}_{h}}$$
    (5)

    $${tau }_{eco}=frac{{C}_{eco}}{{I}_{eco}-Delta {C}_{eco}}=frac{{C}_{live+}{C}_{dead}}{{R}_{a}+{R}_{h}}$$
    (6)

    where τveɡ, τsoil, and τeco refer to the biomass, soil and whole-ecosystem turnover times, respectively; Clive, Cdead and Ceco refer to the live biomass C pool size (Cf, Cr, and Cw,), dead organic C pool size (Csoil and Clitter), and the whole-ecosystem C pool size, respectively; Ilive, Idead and Ieco refer to the C input into the live biomass C pool, dead organic C pool, and whole ecosystem C pool, respectively; ΔClive, ΔCdead and ΔCeco refer to the changes in the live biomass C pool, dead organic C pool size, and whole-ecosystem C pool size, respectively; and Ra, Rh and litterfall refer to the autotrophic and heterotrophic respiration, and turnover from all live C pools (i.e., foliage, fine root and woody pools),respectively, as calculated from the DALEC output driven with the estimated parameters during 2005–2015. Since the C reservoirs, fluxes, and turnover times are instantaneous values, we used the averages of the fluxes and reservoirs over multiple years to reflect the average turnover time during a specific period (i.e., 2005–2015).
    Time-continuous C sequestration estimation
    The optimized parameter values under the NSSA along with the initial observations of the corresponding C pool sizes were used in forward modeling driven by dynamic environmental variables from 2005 to 2015 to obtain the time-continuous soil and vegetation C storage51. The difference between the ecosystem C influx (GPP) and ecosystem respiration (Ra+Rh) is used to examine the ecosystem C sequestration, i.e., net ecosystem productivity (NEP). Similarly, the difference between the ecosystem C influx (GPP) and ecosystem autotrophic respiration (Ra) is used to examine the net primary ecosystem productivity (NPP). More

  • in

    Paternal effects in the initiation of migratory behaviour in birds

    1.
    Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103, 247–260 (2003).
    Article  Google Scholar 
    2.
    Gilroy, J. J., Gill, J. A., Butchart, S. H. M., Jones, V. R. & Franco, A. M. A. Migratory diversity predicts population declines in birds. Ecol. Lett. 19, 308–317 (2016).
    Article  Google Scholar 

    3.
    Gill, J. A., Alves, J. A. & Gunnarsson, T. G. Mechanisms driving phenological and range change in migratory species. Philos. Trans. R. Soc. B 374, 20180047 (2019).
    Article  Google Scholar 

    4.
    Méndez, V., Gill, J. A., Alves, J. A., Burton, N. H. K. & Davies, R. G. Consequences of population change for local abundance and site occupancy of wintering waterbirds. Divers. Distrib. 24, 24–35 (2018).
    Article  Google Scholar 

    5.
    Finch, T., Butler, S. J., Franco, A. M. A. & Cresswell, W. Low migratory connectivity is common in long-distance migrant birds. J. Anim. Ecol. 86, 662–673 (2017).
    Article  Google Scholar 

    6.
    Phillips, R. A., Silk, J. R. D., Croxall, J. P., Afanasyev, V. & Bennett, V. J. Summer distribution and migration of nonbreeding albatrosses: Individual consistencies and implications for conservation. Ecology 86, 2386–2396 (2005).
    Article  Google Scholar 

    7.
    Newton, I. The Migration Ecology of Birds (Academic Press, New York, 2008).
    Google Scholar 

    8.
    Grist, H. et al. Site fidelity and individual variation in winter location in partially migratory European shags. PLoS ONE 9, e98562 (2014).
    ADS  Article  Google Scholar 

    9.
    Alves, J. A. et al. Costs, benefits, and fitness consequences of different migratory strategies. Ecology 94, 11–17 (2013).
    ADS  Article  Google Scholar 

    10.
    Evans, D. R. et al. Individual condition, but not fledging phenology, carries over to affect post-fledging survival in a neotropical migratory songbird. Ibis (Lond. 1859) 162, 331–344 (2020).
    Article  Google Scholar 

    11.
    Gill, J. A. et al. Why is timing of bird migration advancing when individuals are not?. Proc. Biol. Sci. 281, 20132161 (2014).
    PubMed  PubMed Central  Google Scholar 

    12.
    Meyburg, B.-U. et al. Orientation of native versus translocated juvenile lesser spotted eagles (Clanga pomarina) on the first autumn migration. J. Exp. Biol. 220, 2765–2776 (2017).
    Article  Google Scholar 

    13.
    Gill, J. A. Does competition really drive population distributions?. Wader Study 126, 166–168 (2019).
    Article  Google Scholar 

    14.
    Berthold, P. Control of Bird Migration (Chapman & Hall, Boca Raton, 1996).
    Google Scholar 

    15.
    Sutherland, W. J. Evidence for flexibility and constraint in migration systems. J. Avian Biol. 29, 441 (1998).
    Article  Google Scholar 

    16.
    Harrison, X. A. et al. Cultural inheritance drives site fidelity and migratory connectivity in a long-distance migrant. Mol. Ecol. 19, 5484–5496 (2010).
    Article  Google Scholar 

    17.
    Piersma, T., Loonstra, A. H. J., Verhoeven, M. A. & Oudman, T. Rethinking classic starling displacement experiments: evidence for innate or for learned migratory directions?. J. Avian Biol. 51, jav.02337 (2020).
    Article  Google Scholar 

    18.
    Þórisson, B. et al. Population size of oystercatchers Haematopus ostralegus wintering in Iceland. Bird Study 65, 274–278 (2018).
    Article  Google Scholar 

    19.
    Méndez, V. et al. Individual variation in migratory behaviour in a sub-Arctic partial migrant shorebird. Behav. Ecol. https://doi.org/10.1093/beheco/araa010 (2020).
    Article  Google Scholar 

    20.
    van de Pol, M. et al. A global assessment of the conservation status of the nominate subspecies of Eurasian oystercatcher Haematopus ostralegus ostralegus. Int. Wader Stud. 20, 47–61 (2014).
    Google Scholar 

    21.
    Méndez, V. et al. Effects of migratory behaviour on breeding phenology and success in a sub-arctic partially migratory shorebird. J. Anim. Ecol. (under review).

    22.
    Ens, B. J., Safriel, U. N. & Harris, M. P. Divorce in the long-lived and monogamous oystercatcher, Haematopus ostralegus: incompatibility or choosing the better option?. Anim. Behav. 45, 1199–1217 (1993).
    Article  Google Scholar 

    23.
    Ens, B. J., Choudhury, S. & Black, J. M. Mate fidelity and divorce in monogamous birds. In Partnerships in Birds: The Study of Monogamy (ed. Black, J. M.) 344–401 (Oxford University Press, Oxford, 1996).
    Google Scholar 

    24.
    Winger, B. M., Auteri, G. G., Pegan, T. M. & Weeks, B. C. A long winter for the Red Queen: rethinking the evolution of seasonal migration. Biol. Rev. 94, 737–752 (2019).
    Article  Google Scholar 

    25.
    Bulla, M. et al. Unexpected diversity in socially synchronized rhythms of shorebirds. Nature 540, 109–113 (2016).
    ADS  CAS  Article  Google Scholar 

    26.
    Nol, E. Sex roles in the American oystercatcher. Behaviour 95, 232–260 (1985).
    Article  Google Scholar 

    27.
    Reynolds, J. D. & Székely, T. The evolution of parental care in shorebirds: life histories, ecology, and sexual selection. Behav. Ecol. 8, 126–134 (1997).
    Article  Google Scholar 

    28.
    Lazarus, J. The logic of mate desertion. Anim. Behav. 39, 672–684 (1990).
    Article  Google Scholar 

    29.
    Safriel, U. N., Ens, B. J., Kaiser, A. & Goss-Custard, J. D. Rearing to independence. In The Oystercatcher: From Individuals to Populations (ed. Goss-Custard, J. D.) 219–250 (Oxford University Press, Oxford, 1996).
    Google Scholar 

    30.
    Gunnarsson, T. G., Gill, J. A., Sigurbjörnsson, T. & Sutherland, W. J. Pair bonds: arrival synchrony in migratory birds. Nature 431, 646 (2004).
    ADS  CAS  Article  Google Scholar 

    31.
    Gunnarsson, T. G., Gill, J. A., Newton, J., Potts, P. M. & Sutherland, W. J. Seasonal matching of habitat quality and fitness in a migratory bird. Proc. R. Soc. B 272, 2319–2323 (2005).
    Article  Google Scholar 

    32.
    Gunnarsson, T. G. Monitoring wader productivity during autumn passage in Iceland. Wader Study Gr. Bull. 110, 21–29 (2006).
    Google Scholar 

    33.
    Cramp, S. & Simmons, K. E. L. Birds of the Western Palearctic (Oxford University Press, Oxford, 1983).
    Google Scholar 

    34.
    Alves, J. A., Gunnarsson, T. G., Sutherland, W. J., Potts, P. M. & Gill, J. A. Linking warming effects on phenology, demography, and range expansion in a migratory bird population. Ecol. Evol. 9, 2365–2375 (2019).
    Article  Google Scholar 

    35.
    Liebezeit, J. R. et al. Assessing the development of shorebird eggs using the flotation method: species-specific and generalized regression models. Condor 109, 32–47 (2007).
    Article  Google Scholar 

    36.
    Burnham, K. & Anderson, D. Model Selection and Multi-model Inference: A Practical Information-Theoretic Approach (Springer, Berlin, 2002).
    Google Scholar 

    37.
    R Core Team. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2020).
    Google Scholar  More

  • in

    Phytoplankton morpho-functional trait dataset from French water-bodies

    1.
    Litchman, E. et al. Global biogeochemical impacts of phytoplankton: a trait-based perspective. J. Ecol. 103, 1384–1396 (2015).
    CAS  Article  Google Scholar 
    2.
    De Senerpont Domis, L. N. et al. Plankton dynamics under different climatic conditions in space and time. Freshw. Biol. 58, 463–482 (2013).
    Article  Google Scholar 

    3.
    Reynolds, C. Ecology of Phytoplankton. (Cambridge University Press, 2006).

    4.
    Phillips, G. et al. Water Framework Directive Intercalibration: Central Baltic Lake Phytoplankton Ecological Assessment Methods. 189 (Join Research Center, 2014).

    5.
    Ptacnik, R., Solimini, A. & Brettum, P. Performance of a new phytoplankton composition metric along a eutrophication gradient in Nordic lakes. Hydrobiologia 633, 75–82 (2009).
    CAS  Article  Google Scholar 

    6.
    Pollard, A. I., Hampton, S. E. & Leech, D. M. The promise and potential of continental-scale limnology using the U.S. Environmental Protection Agency’s National Lakes. Assessment. Limnol. Oceanogr. Bull. 27, 36–41 (2018).
    Article  Google Scholar 

    7.
    de Hoyos, C. et al. Water Framework Directive Intercalibration: Mediterranean Lake Phytoplankton Ecological Assessment Methods. 189 (Join Research Center, 2014).

    8.
    Mischke, U., Riedmüller, U., Hoehn, E., Schönfelder, I. & Nixdorf, B. Description of the German System for Phytoplankton-Based Assessment of Lakes for Implementation of the EU Water Framework Directive (WFD). 31 (Univ. Cottbus, 2008).

    9.
    Laplace-Treyture, C. & Feret, T. Performance of the Phytoplankton Index for Lakes (IPLAC): A multimetric phytoplankton index to assess the ecological status of water bodies in France. Ecol. Indic. 69, 686–698 (2016).
    CAS  Article  Google Scholar 

    10.
    Xue, Y. et al. Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom. ISME J. 12, 2263–2277 (2018).
    CAS  Article  Google Scholar 

    11.
    Barbe, J. et al. Actualisation de la Méthode de Diagnose Rapide des Plans d’Eau: Analyse Critique des Indices de Qualité des Lacs et Propositions d’Indices de Fonctionnement de l’Écosystème Lacustre. 107 (Cemagref, 2003).

    12.
    Marchetto, A., Padedda, B., Mariani, M., Luglie, A. & Sechi, N. A numerical index for evaluating phytoplankton response to changes in nutrient levels in deep mediterranean reservoirs. J. Limnol. 68, 106–121 (2009).
    Article  Google Scholar 

    13.
    Kruk, C., Mazzeo, N., Lacerot, G. & Reynolds, C. S. Classification schemes for phytoplankton: A local validation of a functional approach to the analysis of species temporal replacement. J. Plankton Res. 24, 901–912 (2002).
    Article  Google Scholar 

    14.
    Reynolds, C. S. Phytoplankton designer – or how to predict compositional responses to trophic-state change. Hydrobiologia 424, 123–132 (2000).
    Article  Google Scholar 

    15.
    Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24, 417–428 (2002).
    Article  Google Scholar 

    16.
    Mieleitner, J. & Reichert, P. Modelling functional groups of phytoplankton in three lakes of different trophic state. Ecol. Model. 211, 279–291 (2008).
    Article  Google Scholar 

    17.
    Rangel, L. M., Soares, M. C. S., Paiva, R. & Silva, L. H. S. Morphology-based functional groups as effective indicators of phytoplankton dynamics in a tropical cyanobacteria-dominated transitional river–reservoir system. Ecol. Indic. 64, 217–227 (2016).
    Article  Google Scholar 

    18.
    Salmaso, N., Naselli-Flores, L. & Padisák, J. Functional classifications and their application in phytoplankton ecology. Freshw. Biol. 60, 603–619 (2015).
    Article  Google Scholar 

    19.
    Padisák, J., Borics, G., Grigorszky, I. & Soróczki-Pintér, É. Use of phytoplankton assemblages for monitoring ecological status of lakes within the water framework directive: The assemblage index. Hydrobiologia 553, 1–14 (2006).
    Article  Google Scholar 

    20.
    Borics, G. et al. A new evaluation technique of potamo-plankton for the assessment of the ecological status of rivers. Large Rivers 17, 465–486 (2007).
    Google Scholar 

    21.
    European Parliament. Directive 2000/60/CE du Parlement Européen et du Conseil du 23 Octobre 2000 Établissant un Cadre pour une Politique Communautaire dans le Domaine de l’Eau. 72 (Communauté Européenne, 2000).

    22.
    Padisák, J., Crossetti, L. O. & Naselli-Flores, L. Use and misuse in the application of the phytoplankton functional classification: A critical review with updates. Hydrobiologia 621, 1–19 (2009).
    Article  Google Scholar 

    23.
    Kruk, C. et al. Classification of Reynolds phytoplankton functional groups using individual traits and machine learning techniques. Freshw. Biol. 62, 1681–1692 (2017).
    CAS  Article  Google Scholar 

    24.
    Wentzky, V. C., Tittel, J., Jäger, C. G., Bruggeman, J. & Rinke, K. Seasonal succession of functional traits in phytoplankton communities and their interaction with trophic state. J. Ecol. 108, 1649–1663 (2020).
    CAS  Article  Google Scholar 

    25.
    Olenina, I. et al. Biovolumes and Size-Classes of Phytoplankton in the Baltic Sea. 144 (Baltic Marine Environnment Protection Commission, 2006).

    26.
    Kremer, C. T., Gillette, J. P., Rudstam, L. G., Brettum, P. & Ptacnik, R. A compendium of cell and natural unit biovolumes for >1200 freshwater phytoplankton species. Ecology 95, 2984–2984 (2014).
    Article  Google Scholar 

    27.
    Druart, J. C. & Rimet, F. Protocole d’Analyse du Phytoplancton de l’INRA: Prélèvement, Dénombrement et Biovolume. 96 (INRA, 2008).

    28.
    Rimet, F. & Druart, J.-C. A trait database for phytoplankton of temperate lakes. Ann. Limnol. – Int. J. Limnol. 54, 18 (2018).
    Article  Google Scholar 

    29.
    John, D. M., Whitton, B. A. & Brook, A. J. The Freshwater Algal Flora of the British Isles: an Identification Guide to Freshwater and Terrestrial Algae. Second Edition. (Cambridge University Press, 2011).

    30.
    Wehr, J. D., Sheath, R. G. & Kociolek, P. Freshwater Algae of North America: Ecology and Classification. (Academic press, 2015).

    31.
    Laplace-Treyture, C., Hadoux, E., Plaire, M., Dubertrand, A. & Esmieu, P. PHYTOBS v3.0: Outil de Comptage du Phytoplancton en Laboratoire et de Calcul de l’IPLAC. Version 3.0. Application JAVA. https://hydrobio-dce.inrae.fr/phytobs-software/ (2017).

    32.
    Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollinger, U. & Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424 (1999).
    Article  Google Scholar 

    33.
    Hutorowicz, A. Opracowanie Standardowych Objętości Komórek do Szacowania Biomasy w Wybranych Taksonów Glonów Planktonowych Wraz z Określeniem Sposobu Pomiarów i Szacowania. 42 (Instytutu Rybactwa Śródlądowego, 2005).

    34.
    Padisak, J. & Adrian, R. In Methoden der Biologischen Wasseruntersuchung 2. Biologische Gewässeruntersuchung (ed. Friedrich, W. und G.) Biovolumen und Biomasse (Gustav Fischer Verlag, 1999).

    35.
    NF EN 16695. Qualité de l’eau – Lignes Directrices pour l’Estimation du Biovolume des Microalgues. 106 (2015).

    36.
    Menden-Deuer, S. & Lessard, E. J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45, 569–579 (2000).
    ADS  CAS  Article  Google Scholar 

    37.
    Sieburth, J. M., Smetacek, V. & Lenz, J. Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23, 1256–1263 (1978).
    ADS  Article  Google Scholar 

    38.
    Ignatiades, L. Redefinition of cell size classification of phytoplankton – a potential tool for improving the quality and assurance of data interpretation. Mediterr. Mar. Sci. 17, 56 (2015).
    Article  Google Scholar 

    39.
    Whitton, B. A. Ecology of Cyanobacteria II. Their Diversity in Space and Time. (Springer Verlag, 2012).

    40.
    Dittmann, E., Gugger, M., Sivonen, K. & Fewer, D. P. Natural product biosynthetic diversity and comparative genomics of the Cyanobacteria. Trends Microbiol. 23, 642–652 (2015).
    CAS  Article  Google Scholar 

    41.
    Sanseverino, I., Conduto, D., Pozzoli, L., Dobricic, S. & Lettieri, T. Algal Bloom and its Economic Impact. 48 (Join Research Center, 2016).

    42.
    Sanseverino, I., Conduto Antonio, D., Loos, R. & Lettieri, T. Cyanotoxins: Methods and Approaches for their Analysis and Detection. 64 (Join Research Center, 2017).

    43.
    Meriluoto, J., Spoof, L. & Codd, G. A. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. (John Wiley & Sons, 2017).

    44.
    Lwoff, A., Van Niel, C. B., Ryan, P. J. & Tatum, E. L. Nomenclature of Nutritional Types of Microorganisms. In Cold Spring Harbor Symposia on Quantitative Biology. XI (5th ed.) 302–303 (1946).

    45.
    Morris, J. Biology: How Life Works. (W. H. Freeman/Macmillan Learning, 2018).

    46.
    Laplace-Treyture, C. et al. Phytoplankton morpho-functional trait dataset from French water-bodies. Portail Data INRAE https://doi.org/10.15454/GJGIAH (2020).

    47.
    Morabito, G., Oggioni, A., Caravati, E. & Panzani, P. Seasonal morphological plasticity of phytoplankton in Lago Maggiore (N. Italy). Hydrobiologia 578, 47–57 (2007).
    Article  Google Scholar 

    48.
    Naselli-Flores, L., Padisák, J. & Albay, M. Shape and size in phytoplankton ecology: Do they matter? Hydrobiologia 578, 157–161 (2007).
    Article  Google Scholar 

    49.
    Strathmann, R. R. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12, 411–418 (1967).
    ADS  CAS  Article  Google Scholar 

    50.
    Chaffin, J. D., Stanislawczyk, K., Kane, D. D. & Lambrix, M. M. Nutrient addition effects on chlorophyll a, phytoplankton biomass, and heterocyte formation in Lake Erie’s central basin during 2014–2017: Insights into diazotrophic blooms in high nitrogen water. Freshw. Biol. 00, 1–15 (2020).
    Google Scholar 

    51.
    Hadoux, E. & Laplace-Treyture, C. PHYTOBS: Phytoplankton Counting Tool in Laboratory. Version 1.0. JAVA Application. https://hydrobio-dce.inrae.fr/phytobs-software/ (2009).

    52.
    Huber Pestalozzi, G. & Thienemann, A. Das Phytoplankton des Susswassers Systematik und Biologie: 5 Teil Chlorophyceae (Grünalgen) Ordnung: Volvocales. (E. Schweizerbart’sche verlagsbuchhandlung, 1974).

    53.
    Komarek, J., Fott, B. & Huber Pestalozzi, G. Das Phytoplankton des Susswassers Systematik und Biologie: 7 Teil 1 Halfte Chlorophyceae (Grunalgen) Ordnung: Chlorococcales. (E. Schweizerbart’sche verlagsbuchhandlung, 1983).

    54.
    Coesel, P. F. M. & Meesters, K. J. Desmids of the Lowlands: Mesotaeniaceae and Desmidiaceae of the European Lowlands. (KNNV Publishing, 2007).

    55.
    Coesel, P. F. M. & Meesters, K. European Flora of the Desmid Genera Staurastrum and Staurodesmus. (KNNV Publishing, 2013).

    56.
    Starmach, K. Chrysophyceae und Haptophyceae. (VEB Gustav Fischer Verlag, 1985).

    57.
    Komarek, J. & Anagnostidis, K. Cyanoprokaryota 1.Teil: Chroococcales. (Gustav Fischer, 1999).

    58.
    Komarek, J. & Anagnostidis, K. Cyanoprokaryota 2.Teil: Oscillatoriales. (Elsevier, 2005).

    59.
    Komarek, J. Cyanoprokaryota: 3. Teil/Part 3: Heterocytous Genera. (Springer Spektrum Verlag, 2013).

    60.
    Anses. Evaluation des Risques Liés aux Cyanobactéries et leurs Toxines dans les Eaux Douces. Avis de l’Anses. 438 (Anses, 2020).

    61.
    Bey, M.-Y. & Ector, L. Atlas des Diatomées des Cours d’Eau de la Région Rhône-Alpes. (DREAL Rhône-Alpes, 2013).

    62.
    Cox, E. J. Identification of Freshwater Diatoms from Live Material. (Chapman & Hall, 1996).

    63.
    Druart, J. C. & Straub, F. Description de deux nouvelles Cyclotelles (Bacillariophyceae) de milieux alcalins et eutrophes: Cyclotella costei nov. sp. et Cyclotella wuethrichiana nov. sp. Swiss J. Hydrol. 50, 182–188 (1988).
    Article  Google Scholar 

    64.
    Houk, V. Atlas of Freshwater Centric Diatoms with a Brief Key and Descriptions Part I Melosiraceae, Orthoseiraceae, Paraliaceae and Aulacoseiraceae. vol. 1 (Czech Phycological Society, Prague & Palacký University Olomouc, 2003).

    65.
    Houk, V. & Klee, R. Atlas of freshwater centric diatoms with a brief key and descriptions Part II Melosiraceae and Aulacoseiraceae (Supplement to Part I). Fottea J. Czech Phycol. Soc. 7, 85–255 (2007).
    Google Scholar 

    66.
    Houk, V., Klee, R. & Tanaka, H. Atlas of Freshwater Centric Diatoms with a Brief Key and Descriptions Part IV Stephanodiscaceae B. vol. 14 (Czech Phycological Society, Prague & Palacký University Olomouc, 2014).

    67.
    Houk, V., Klee, R. & Tanaka, H. Atlas of Freshwater Centric Diatoms with a Brief Key and Descriptions Part III Steogabiduscaceae A Cyclotella, Tertiarius, Discostella. vol. 10 (Czech Phycological Society, Prague & Palacký University Olomouc, 2010).

    68.
    Houk, V., Klee, R. & Tanaka, H. Atlas of freshwater centric diatoms with a brief key and descriptions: second emended edition of Part I and II Melosiraceae, Orthoseiraceae, Paraliaceae and Aulacoseiraceae. Fottea J. Czech Phycol. Soc. 17, 1–615 (2017).
    Google Scholar 

    69.
    Krammer, K. & Lange Bertalot, H. Bacillariophyceae. 1. Teil: Naviculaceae. (Specktrum Akademischer Verlag GmbH Heidelberg, 1999).

    70.
    Krammer, K. & Lange Bertalot, H. Bacillariophyceae. 4. Teil: Achnanthaceae Kritische Ergänzungen zu Achnanthes s.l., Bavicula s. str., Gomphonema. (Spektrum, 2004).

    71.
    Krammer, K. & Lange Bertalot, H. Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. (Elsevier, 2007).

    72.
    Krammer, K. & Lange-Bertalot, H. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. (Gustav Fischer Verlag, 2004).

    73.
    Lange-Bertalot, H., Hofmann, G., Werum, M. & Cantonati, M. Freshwater Benthic Diatoms of Central Europe: Over 800 Common Species Used in Ecological Assessment. (Koeltz Botanical Books, 2017).

    74.
    Siver, P. A. et al. Observations on Fragilaria longifusiformis comb. nov. et nom. nov. (Bacillariophyceae), a widespread planktic diatom documented from North America and Europe. Phycol. Res. 54, 183–192 (2006).
    Article  Google Scholar 

    75.
    Popovsky, J. & Pfiester, L. A. Dinophyceae (Dinoflagellida). (Gustav Fischer Verlag, 1990).

    76.
    Moestrup, Ø. & Calado, A. J. Dinophyceae. vol. 6 (Spektrum Akademischer Verlag, 2018).

    77.
    Huber Pestalozzi, G. Das Phytoplankton des Susswassers Systematik und Biologie: 4 Teil Euglenophyceen. (E. Schweizerbart’sche verlagsbuchhandlung, 1969).

    78.
    Ettl, H. Xanthophyceae: 1. Teil. (Gustav Fischer Verlag, 1978).

    79.
    Rieth, A. Xanthophyceae: 2. Teil. (Gustav Fischer Verlag, 1980). More

  • in

    Bacterial associations in the healthy human gut microbiome across populations

    1.
    Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLOS Biol. 14, e1002533 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 
    2.
    Kho, Z. Y. & Lal, S. K. The human gut microbiome—A potential controller of wellness and disease. Front. Microbiol. 9, 1835 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    3.
    Kostic, A. D., Xavier, R. J. & Gevers, D. The microbiome in inflammatory bowel disease: Current status and the future ahead. Gastroenterology 146, 1489–1499 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Thaiss, C. A., Zmora, N., Levy, M. & Elinav, E. The microbiome and innate immunity. Nature 535, 65–74 (2016).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    5.
    Das, B. & Nair, G. B. Homeostasis and dysbiosis of the gut microbiome in health and disease. J. Biosci. 44, 117 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Shreiner, A. B., Kao, J. Y. & Young, V. B. The gut microbiome in health and in disease. Curr. Opin. Gastroenterol. 31, 69–75 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Petersen, C. & Round, J. L. Defining dysbiosis and its influence on host immunity and disease: How changes in microbiota structure influence health. Cell. Microbiol. 16, 1024–1033 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    9.
    Koren, O. et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl. Acad. Sci. 108, 4592–4598 (2011).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    10.
    Karlsson, F. H. et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3, 1245 (2012).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    11.
    Chatelier, L. M. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    12.
    Franzosa, E. A. et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293–305 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Becker, C., Neurath, M. F. & Wirtz, S. The intestinal microbiota in inflammatory bowel disease. ILAR J. 56, 192–204 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).
    PubMed Central  Article  ADS  CAS  Google Scholar 

    16.
    Johnson, A. J. et al. Daily sampling reveals personalized diet–microbiome associations in humans. Cell Host Microbe 25, 789-802.e5 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Villmones, H. C. et al. Species level description of the human ileal bacterial microbiota. Sci. Rep. 8, 1–9 (2018).
    CAS  Article  Google Scholar 

    18.
    Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    20.
    Zhou, J., Deng, Y., Luo, F., He, Z. & Yang, Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. MBio 2, e00122-e211 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Lupatini, M. et al. Network topology reveals high connectance levels and few key microbial genera within soils. Front. Environ. Sci. 2, 10 (2014).
    Article  Google Scholar 

    22.
    Eiler, A., Heinrich, F. & Bertilsson, S. Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J. 6, 330–342 (2012).
    CAS  PubMed  Article  Google Scholar 

    23.
    Kara, E. L., Hanson, P. C., Hu, Y. H., Winslow, L. & McMahon, K. D. A decade of seasonal dynamics and co-occurrences within freshwater bacterioplankton communities from eutrophic Lake Mendota, WI, USA. ISME J. 7, 680–684 (2013).
    PubMed  Article  Google Scholar 

    24.
    Shetty, S. A., Hugenholtz, F., Lahti, L., Smidt, H. & de Vos, W. M. Intestinal microbiome landscaping: Insight in community assemblage and implications for microbial modulation strategies. FEMS Microbiol. Rev. 41, 182–199 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl. Acad. Sci. 115, E11951–E11960 (2018).
    CAS  PubMed  Article  Google Scholar 

    26.
    Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: Surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Fox, G. E., Magrum, L. J., Balcht, W. E., Wolfef, R. S. & Woese, C. R. Classification of methanogenic bacteria by 16S ribosomal RNA characterization (comparative oligonucleotide cataloging/phylogeny/molecular evolution). Evolution (N.Y.) 74, 4537–4541 (1977).
    CAS  Google Scholar 

    28.
    Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66 (2004).
    CAS  PubMed  Article  ADS  Google Scholar 

    29.
    Větrovský, T. & Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE 8, e57923 (2013).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    30.
    Edgar, R. C. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences. PeerJ 6, 1–29 (2018).
    Google Scholar 

    31.
    Ranjan, R., Rani, A., Metwally, A., McGee, H. S. & Perkins, D. L. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem. Biophys. Res. Commun. 469, 967–977 (2016).
    CAS  PubMed  Article  Google Scholar 

    32.
    Laudadio, I. et al. Quantitative assessment of shotgun metagenomics and 16S rDNA amplicon sequencing in the study of human gut microbiome. Omi. A J. Integr. Biol. 22, 248–254 (2018).
    CAS  Article  Google Scholar 

    33.
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 1–6 (2017).
    Article  Google Scholar 

    34.
    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    35.
    Layeghifard, M., Hwang, D. M. & Guttman, D. S. Disentangling interactions in the microbiome: A network perspective. Trends Microbiol. 25, 217–228 (2017).
    CAS  PubMed  Article  Google Scholar 

    36.
    Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. Ser. B 44, 40 (1982).
    MathSciNet  MATH  Google Scholar 

    37.
    Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, 1–25 (2015).
    Article  CAS  Google Scholar 

    38.
    Friedman, J., Hastie, T. & Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9, 432–441 (2008).
    PubMed  MATH  Article  Google Scholar 

    39.
    Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).
    CAS  PubMed  Article  ADS  Google Scholar 

    40.
    Efron, B. & Tibshirani, R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1, 54–75 (1986).
    MathSciNet  MATH  Article  Google Scholar 

    41.
    Su, W., Bogdan, M., Candès, E. & Candes, E. False discoveries occur early on the lasso path. Ann. Stat. 45, 2133–2150 (2017).
    MathSciNet  MATH  Article  Google Scholar 

    42.
    Saunders, A. M., Albertsen, M., Vollertsen, J. & Nielsen, P. H. The activated sludge ecosystem contains a core community of abundant organisms. ISME J. 10, 11–20 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Tsvetovat, M. & Kouznetsov, A. Social network analysis for startups. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki (2011).

    44.
    Stadtfeld, C., Takács, K. & Vörös, A. The emergence and stability of groups in social networks. Soc. Netw. 60, 129–145 (2020).
    Article  Google Scholar 

    45.
    Cordasco, G. & Gargano, L. Community detection via semi-synchronous label propagation algorithms. 2010 IEEE Int. Work. Bus. Appl. Soc. Netw. Anal. BASNA 2010 (2010). https://doi.org/10.1109/BASNA.2010.5730298.

    46.
    Prettejohn, B. J., Berryman, M. J. & McDonnell, M. D. Methods for generating complex networks with selected structural properties for simulations: A review and tutorial for neuroscientists. Front. Comput. Neurosci. 5, 11 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Guimerà, R., Sales-Pardo, M. & Amaral, L. A. N. Modularity from fluctuations in random graphs and complex networks. Phys. Rev. E 70, 25101 (2004).
    Article  ADS  CAS  Google Scholar 

    48.
    Trosvik, P. & de Muinck, E. J. Ecology of bacteria in the human gastrointestinal tract—Identification of keystone and foundation taxa. Microbiome 3, 44 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Verster, A. J. & Borenstein, E. Competitive lottery-based assembly of selected clades in the human gut microbiome. Microbiome 6, 186 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Berry, D. & Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 5, 219 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    51.
    Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Nemergut, D. R. et al. Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 77, 342–356 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16 (1964).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960).
    CAS  PubMed  Article  ADS  Google Scholar 

    55.
    Jackson, M. A. et al. Detection of stable community structures within gut microbiota co-occurrence networks from different human populations. PeerJ 6, e4303 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    56.
    Darcy, J. L. et al. A phylogenetic model for the recruitment of species into microbial communities and application to studies of the human microbiome. ISME J. 14, 1359–1368 (2020).
    PubMed  Article  Google Scholar 

    57.
    Pacheco, A. R., Moel, M. & Segrè, D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat. Commun. 10, 103 (2019).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    58.
    Chase, J. M. & Leibold, M. A. Spatial scale dictates the productivity–biodiversity relationship. Nature 416, 427–430 (2002).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    59.
    Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20, 1006–1017 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Mark Welch, J. L., Hasegawa, Y., McNulty, N. P., Gordon, J. I. & Borisy, G. G. Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice. Proc. Natl. Acad. Sci. 114, E9105–E9114 (2017).
    CAS  PubMed  Article  Google Scholar 

    61.
    Fung, T. C., Artis, D. & Sonnenberg, G. F. Anatomical localization of commensal bacteria in immune cell homeostasis and disease. Immunol. Rev. 260, 35–49 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).
    CAS  PubMed  Article  Google Scholar 

    63.
    Stachowicz, J. J. Mutualism, facilitation, and the structure of ecological communities. Bioscience 51, 235 (2001).
    Article  Google Scholar 

    64.
    Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    65.
    Lynd, L. R., Weimer, P. J., van Zyl, W. H. & Pretorius, I. S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 72 (2002).
    Article  Google Scholar 

    66.
    Turroni, F. et al. Glycan cross-feeding activities between bifidobacteria under in vitro conditions. Front. Microbiol. 6, 1030 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    67.
    Hall, C. V. et al. Co-existence of network architectures supporting the human gut microbiome. iScience 22, 380–391 (2019).
    PubMed  PubMed Central  Article  ADS  Google Scholar 

    68.
    Fisher, C. K. & Mehta, P. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression. PLoS ONE 9, e102451 (2014).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    69.
    Jones, M. B. et al. Library preparation methodology can influence genomic and functional predictions in human microbiome research. Proc. Natl. Acad. Sci. 112, 14024–14029 (2015).
    CAS  PubMed  Article  ADS  Google Scholar 

    70.
    Lahti, L., Salojärvi, J., Salonen, A., Scheffer, M. & de Vos, W. M. Tipping elements in the human intestinal ecosystem. Nat. Commun. 5, 4344 (2014).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    71.
    Dhakan, D. B. et al. The unique composition of Indian gut microbiome, gene catalogue, and associated fecal metabolome deciphered using multi-omics approaches. Gigascience 8, giz004 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    72.
    Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Yachida, S. et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 25, 968–976 (2019).
    CAS  PubMed  Article  Google Scholar 

    74.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Langmead, B. & Salzberg, S. Bowtie2. Nat. Methods 9, 357–359 (2013).
    Article  CAS  Google Scholar 

    76.
    O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).
    PubMed  Article  CAS  Google Scholar 

    77.
    Xia, L. C., Cram, J. A., Chen, T., Fuhrman, J. A. & Sun, F. Accurate genome relative abundance estimation based on shotgun metagenomic reads. PLoS ONE 6, e27992 (2011).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    78.
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    79.
    Hyatt, D. et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).
    Article  CAS  Google Scholar 

    80.
    Jones, P. et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    81.
    Haft, D. H. TIGRFAMs: A protein family resource for the functional identification of proteins. Nucleic Acids Res. 29, 41–43 (2001).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    Liao, Y., Smyth, G. K. & Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    83.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).
    Google Scholar 

    84.
    Zhao, T., Liu, H., Roeder, K., Lafferty, J. & Wasserman, L. The huge package for high-dimensional undirected graph estimation in R. J. Mach. Learn. Res. 13, 6 (2016).
    MathSciNet  MATH  Google Scholar 

    85.
    Liu, H., Roeder, K. & Wasserman, L. Stability approach to regularization selection (stars) for high dimensional graphical models. Advances in Neural Information Processing Systems (2010).

    86.
    Hagberg, A., Swart, P. & Chult, D. S. Exploring network structure, dynamics, and function using NetworkX. No. LA-UR-08-05495; LA-UR-08-5495 (Los Alamos National Lab. (LANL), Los Alamos, 2008).

    87.
    Newman, M. E. J. Networks: An Introduction 168–234 (Oxford University Press, Oxford, 2010).
    Google Scholar 

    88.
    Newman, M. E. J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103, 8577–8582 (2006).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    89.
    Newman, M. E. J. Mixing patterns in networks. Phys. Rev. E 67, 26126 (2003).
    MathSciNet  CAS  Article  ADS  Google Scholar 

    90.
    Fortunato, S. Community detection in graphs. Phys. Rep. 486, 75–174 (2010).
    MathSciNet  Article  ADS  Google Scholar 

    91.
    Brandes, U. A faster algorithm for betweenness centrality*. J. Math. Sociol. 25, 163–177 (2001).
    MATH  Article  Google Scholar  More

  • in

    Functional traits explain crayfish invasive success in the Netherlands

    1.
    Keller, R. P., Geist, J., Jeschke, J. M. & Kühn, I. Invasive species in Europe: ecology, status, and policy. Environ. Sci. Eur. 23, 1–17 (2011).
    Article  Google Scholar 
    2.
    Parker, M., Thompson, J. N. & Weller, S. G. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332 (2001).
    Article  Google Scholar 

    3.
    Allendorf, F. W. & Lundquist, L. L. Introduction: population biology, evolution, and control of invasive species. Conserv. Biol. 17, 24–30 (2003).
    Article  Google Scholar 

    4.
    Crowl, T. A., Crist, T. O., Parmenter, R. R., Belovsky, G. & Lugo, A. E. The spread of invasive species and infectious disease as drivers of ecosystem change. Front. Ecol. Environ. 6, 238–246 (2008).
    Article  Google Scholar 

    5.
    van der Veer, G. & Nentwig, W. Environmental and economic impact assessment of alien and invasive fish species in Europe using the generic impact scoring system. Ecol. Freshw. Fish 24, 646–656 (2015).
    Article  Google Scholar 

    6.
    Clavero, M. & García-Berthou, E. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20, 110 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Scalera, R. How much is Europe spending on invasive alien species?. Biol. Invasions 12, 173–177 (2010).
    Article  Google Scholar 

    8.
    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    McLellan, R., Iyengar, L., Jeffries, B. & Oerlemans, N. Living Planet Report 2014: Species and Spaces, People and Places (WWF International, Gland, 2014).
    Google Scholar 

    10.
    García-Berthou, E. et al. Introduction pathways and establishment rates of invasive aquatic species in Europe. Can. J. Fish. Aquat. Sci. 62, 453–463 (2005).
    Article  Google Scholar 

    11.
    Karatayev, A. Y., Burlakova, L. E., Padilla, D. K., Mastitsky, S. E., & Olenin, S. Invaders are not a random selection of species. Biol. Invasions, 11, 2009. https://doi.org/10.1007/s10530-009-9498-0 (2009).
    Article  Google Scholar 

    12.
    Verdonschot, R. C. M., Vos, J. H., & Verdonschot, P. F. M. Exotische macrofauna en macrofyten in de Nederlandse zoete wateren: voorkomen en beleid in 2012. (WOt-werkdocument 334) (Wettelijke Onderzoekstaken Natuur & Milieu, 2013).

    13.
    Holdich, D. M., Reynolds, J. D., Souty-Grosset, C. & Sibley, P. J. A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowl. Manag. Aquat. Ecosyst. 394–395, 11 (2009).
    Article  Google Scholar 

    14.
    Chucholl, C. Invaders for sale: trade and determinants of introduction of ornamental freshwater crayfish. Biol. Invasions 15, 125–141 (2013).
    Article  Google Scholar 

    15.
    Barbaresi, S. & Gherardi, F. The invasion of the alien crayfish Procambarus clarkii in Europe, with particular reference to Italy. Biol. Invasions 2, 259–264 (2000).
    Article  Google Scholar 

    16.
    Gherardi, F. Crayfish invading Europe: the case study of Procambarus clarkii. Mar. Freshw. Behav. Physiol. 39, 175–191 (2006).
    Article  Google Scholar 

    17.
    Kouba, A., Petrusek, A. & Kozák, P. Continental-wide distribution of crayfish species in Europe: update and maps. Knowl. Manag. Aquat. Ecosyst. 413, 5 (2014).
    Article  Google Scholar 

    18.
    Lowe, S., Browne, M., Boudjelas, S., & De Poorter, M. 100 of the world’s worst invasive alien species: a selection from the global invasive species database in Aliens vol. 12 (Invasive Species Specialist Group, 2000).

    19.
    Padilla, D. K. & Williams, S. L. Beyond ballast water: aquarium and ornamental trades as sources of invasive species in aquatic ecosystems. Front. Ecol. Environ. 2, 131–138 (2004).
    Article  Google Scholar 

    20.
    Faulkes, Z. The global trade in crayfish as pets. Crustacean Res. 44, 75–92 (2015).
    Article  Google Scholar 

    21.
    Soes, D. M., & Koese, B. Invasive Crayfish in the Netherlands: A Preliminary Risk Analysis. (Bureau Waardenburg bv, Stichting EIS-Nederland, Invasive Alien Species Team, 2010).

    22.
    Chucholl, C. & Wendler, F. Positive selection of beautiful invaders: long-term persistence and bio-invasion risk of freshwater crayfish in the pet trade. Biol. Invasions 19, 197–208 (2017).
    Article  Google Scholar 

    23.
    Zeng, Y., Chong, K. Y., Grey, E. K., Lodge, D. M. & Yeo, D. C. Disregarding human pre-introduction selection can confound invasive crayfish risk assessments. Biol. Invasions 17, 2373–2385 (2015).
    Article  Google Scholar 

    24.
    Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).
    PubMed  Article  Google Scholar 

    25.
    Statzner, B., Bonada, N. & Dolédec, S. Biological attributes discriminating invasive from native European stream macroinvertebrates. Biol. Invasions 10, 517–530 (2008).
    Article  Google Scholar 

    26.
    Whitney, K. D. & Gabler, C. A. Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Divers. Distrib. 14, 569–580 (2008).
    Article  Google Scholar 

    27.
    Kolar, C. S. & Lodge, D. M. Progress in invasion biology: predicting invaders. Trends Ecol. Evol. 16, 199–204 (2001).
    PubMed  Article  Google Scholar 

    28.
    Marchetti, M. P., Moyle, P. B. & Levine, R. Invasive species profiling? Exploring the characteristics of non-native fishes across invasion stages in California. Freshw. Biol. 49, 646–661 (2004).
    Article  Google Scholar 

    29.
    Grabowski, M., Bacela, K. & Konopacka, A. How to be an invasive gammarid (Amphipoda: Gammaroidea)-comparison of life history traits. Hydrobiologia 590, 75–84 (2007).
    Article  Google Scholar 

    30.
    Thiébaut, G. Invasion success of non-indigenous aquatic and semi-aquatic plants in their native and introduced ranges. A comparison between their invasiveness in North America and in France. Biol. Invasions 9, 1–12 (2007).
    Article  Google Scholar 

    31.
    Swart, C., Visser, V. & Robinson, T. B. Patterns and traits associated with invasions by predatory marine crabs. NeoBiota 39, 79 (2018).
    Article  Google Scholar 

    32.
    Larson, E. R. & Olden, J. D. Latent extinction and invasion risk of crayfishes in the southeastern United States. Conserv. Biol. 24, 1099–1110 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    33.
    Tricarico, E., Vilizzi, L., Gherardi, F. & Copp, G. H. Calibration of FI-ISK, an invasiveness screening tool for nonnative freshwater invertebrates. Risk Anal. Int. J. 30, 285–292 (2010).
    Article  Google Scholar 

    34.
    Larson, E. R. & Olden, J. D. Using avatar species to model the potential distribution of emerging invaders. Glob Ecol. Biogeogr. 21, 1114–1125 (2012).
    Article  Google Scholar 

    35.
    Veselý, L., Buřič, M. & Kouba, A. Hardy exotics species in temperate zone: can “warm water” crayfish invaders establish regardless of low temperatures?. Sci. Rep. 5, 16340 (2015).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Jaklič, M. & Vrezec, A. The first tropical alien crayfish species in European waters: the redclaw Cherax quadricarinatus (Von Martens, 1868) (Decapoda, Parastacidae). Crustaceana 84, 651–665 (2011).
    Article  Google Scholar 

    37.
    Colautti, R. I., Grigorovich, I. A. & MacIsaac, H. J. Propagule pressure: a null model for biological invasions. Biol. Invasions 8, 1023–1037 (2006).
    Article  Google Scholar 

    38.
    Marchetti, M. P., Moyle, P. B. & Levine, R. Alien fishes in California watersheds: characteristics of successful and failed invaders. Ecol. Appl. 14, 587–596 (2004).
    Article  Google Scholar 

    39.
    Bennett, S. N., Olson, J. R., Kershner, J. L. & Corbett, P. Propagule pressure and stream characteristics influence introgression: cutthroat and rainbow trout in British Columbia. Ecol. Appl. 20, 263–277 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Cruz, M. J. & Rebelo, R. Colonization of freshwater habitats by an introduced crayfish, Procambarus clarkii Southwest Iberian Peninsula. Hydrobiologia 575, 191–201 (2007).
    Article  Google Scholar 

    41.
    Lynas, J., Storey, A. W. & Knott, B. Aggressive interactions between three species of freshwater crayfish of the genus Cherax (Decapoda: Parastacidae). Mar. Freshw. Behav. Physiol. 40, 105–116 (2007).
    Article  Google Scholar 

    42.
    Corey, S. Comparative fecundity of four species of crayfish in southwestern Ontario, Canada (Decapoda, Astacidea). Crustaceana 52(3), 276–286 (1987).
    Article  Google Scholar 

    43.
    Somers, K. M. Characterizing size-specific fecundity in crustaceans. Crustacean Egg Prod. 7, 357–378 (1991).
    Google Scholar 

    44.
    Maguire, I., Klobučar, G. I. V. & Erben, R. The relationship between female size and egg size in the freshwater crayfish Austropotamobius torrentium. Bulletin Français de la Pêche et de la Pisciculture 376–377, 777–785 (2005).
    Article  Google Scholar 

    45.
    Pilotto, F. et al. The invasive crayfish Faxonius limosus in Lake Varese: estimating abundance and population size structure in the context of habitat and methodological constraints. J. Crustacean Biol. 28, 633–640 (2008).
    Article  Google Scholar 

    46.
    Hobbs Jr, H. H. A checklist of the North and Middle American crayfishes (Decapoda: Astacidae and Cambaridae). Smithsonian Contrib. Zool. 166, 1–161 (1974).
    Google Scholar 

    47.
    Mrugała, A. et al. Trade of ornamental crayfish in Europe as a possible introduction pathway for important crustacean diseases: crayfish plague and white spot syndrome. Biol. Invasions 17, 1313–1326 (2015).
    Article  Google Scholar 

    48.
    Svoboda, J., Mrugała, A., Kozubíková-Balcarová, E. & Petrusek, A. Hosts and transmission of the crayfish plague pathogen Aphanomyces astaci: a review. J. Fish Dis. 40, 127–140 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Grandjean, F. et al. Status of Pacifastacus leniusculus and its role in recent crayfish plague outbreaks in France: improving distribution and crayfish plague infection patterns. Aquat. Invasions, 12, 541–549 (2017).
    Article  Google Scholar 

    50.
    Crandall, K. A. & De Grave, S. An updated classification of the freshwater crayfishes (Decapoda: Astacidea) of the world, with a complete species list. J. Crustacean Biol. 37, 615–653 (2017).
    Article  Google Scholar 

    51.
    Freshwater Crayfish: A Global Overview. (ed. Kawai, T., Faulkes, Z., & Scholtz, G.) (CRC Press, Boca Raton, 2015).

    52.
    Buřič, M., Kouba, A. & Kozak, P. Reproductive plasticity in freshwater invader: from long-term sperm storage to parthenogenesis. PLoS ONE 8, e77597. https://doi.org/10.1371/journal.pone.0077597 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    53.
    Kaldre, K., Meženin, A., Paaver, T., & Kawai, T. A preliminary study on the tolerance of marble crayfish Procambarus fallax f. virginalis to low temperature in Nordic climate in Freshwater crayfish: global overview, 54–62 (2016).

    54.
    Vogt, G. Marmorkrebs: natural crayfish clone as emerging model for various biological disciplines. J. Biosci. 36, 377–382 (2011).
    PubMed  Article  Google Scholar 

    55.
    Chucholl, C. Predicting the risk of introduction and establishment of an exotic aquarium animal in Europe: insights from one decade of Marmorkrebs (Crustacea, Astacida, Cambaridae) releases. Biol. Invasions 5, 309–318 (2014).
    Article  Google Scholar 

    56.
    Chucholl, C., Morawetz, K. & Groß, H. The clones are coming–strong increase in Marmorkrebs [Procambarus fallax (Hagen, 1870) f. virginalis] records from Europe. Aquat. Invasions 7, 511–519 (2012).
    Article  Google Scholar 

    57.
    Soes, D. M. & van Eekelen, R. Rivierkreeften, een oprukkend probleem?. De Levende Natuur 107, 56–59 (2006).
    Google Scholar 

    58.
    Mauvisseau, Q., Tönges, S., Andriantsoa, R., Lyko, F. & Sweet, M. Early detection of an emerging invasive species: eDNA monitoring of a parthenogenetic crayfish in freshwater systems. Manag. Biol. Invasions 10, 461 (2019).
    Article  Google Scholar 

    59.
    Strand, D. A. et al. Monitoring a Norwegian freshwater crayfish tragedy: eDNA snapshots of invasion, infection and extinction. J. Appl. Ecol. 56, 1661–1673 (2019).
    CAS  Article  Google Scholar 

    60.
    Beentjes, K. K., Speksnijder, A. G., Schilthuizen, M., Schaub, B. E. & van der Hoorn, B. B. The influence of macroinvertebrate abundance on the assessment of freshwater quality in The Netherlands. Metabarcoding Metagenom. 2, e26744 (2018).
    Article  Google Scholar 

    61.
    Melo-Merino, S. M., Reyes-Bonilla, H. & Lira-Noriega, A. Ecological niche models and species distribution models in marine environments: a literature review and spatial analysis of evidence. Ecol. Model. 415, 108837 (2020).
    Article  Google Scholar 

    62.
    Zhang, Z. et al. Impacts of climate change on the global potential distribution of two notorious invasive crayfishes. Freshw. Biol. 65, 353–365 (2020).
    Article  Google Scholar 

    63.
    Capinha, C., Leung, B. & Anastácio, P. Predicting worldwide invasiveness for four major problematic decapods: an evaluation of using different calibration sets. Ecography 34, 448–459 (2011).
    Article  Google Scholar 

    64.
    Havel, J. E., Kovalenko, K. E., Thomaz, S. M., Amalfitano, S. & Kats, L. B. Aquatic invasive species: challenges for the future. Hydrobiologia 750, 147–170 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Früh, D., Stoll, S. & Haase, P. Physicochemical and morphological degradation of stream and river habitats increases invasion risk. Biol. Invasions 14, 2243–2253 (2012).
    Article  Google Scholar 

    66.
    Ghalambor, C. K., McKay, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).
    Article  Google Scholar 

    67.
    Scalici, M. et al. The new threat to Italian inland waters from the alien crayfish “gang”: the Australian Cherax destructor Clark, 1936. Hydrobiologia 632, 341–345 (2009).
    Article  Google Scholar 

    68.
    Koese, B. & Evers, C. H. M. A National Inventory of Invasive Freshwater Crayfish in the Netherlands in 2010 (EIS, Stichting European Invertebrate Survey Nederland, 2011).
    Google Scholar 

    69.
    Clement, J., & van Puijenbroek, P. Basiskaart Aquatisch: de Watertypenkaart Het oppervlaktewater in de TOP10NL geclassificeerd naar watertype (No. 500067004). (Planbureau voor de Leefomgeving 2010).

    70.
    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. 4, 439–473 (2007).
    ADS  Google Scholar 

    71.
    Lyko, F. The marbled crayfish (Decapoda: Cambaridae) represents an independent new species. Zootaxa 4363(4), 544–552 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    72.
    Usseglio-Polatera, P. & Tachet, H. Theoretical habitat templets, species traits, and species richness: Plecoptera and Ephemeroptera in the Upper Rhône River and its floodplain. Freshw. Biol. 31, 357–375 (1994).
    Article  Google Scholar 

    73.
    Poff, N. L. et al. Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. J. North Am. Benthological. Soc. 25, 730–755 (2006).
    Article  Google Scholar 

    74.
    Wyse, S. V. et al. A quantitative assessment of shoot flammability for 60 tree and shrub species supports rankings based on expert opinion. Int. J. Wildland Fire 25, 466–477 (2016).
    Article  Google Scholar 

    75.
    Hill, M. O. TWINSPAN. A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. (Ecology and Systematics, Cornell University, 1979).

    76.
    Hu, G. et al. Regeneration of different plant functional types in a Masson pine forest following pine wilt disease. PLoS ONE 7, e36432. https://doi.org/10.1371/journal.pone.0036432 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    77.
    Agir, S. U., Kutbay, H. G. & Surmen, B. Plant diversity along coastal dunes of the Black Sea (North of Turkey). Rendiconti Lincei 27, 443–453 (2016).
    Article  Google Scholar 

    78.
    Andrej, P. & Andraž, Č. Functional response traits and plant community strategy indicate the stage of secondary succession. Hacquetia 11, 209–225 (2012).
    Article  Google Scholar 

    79.
    Hill, M.O. & Šmilauer, P. TWINSPAN for Windows version 2.3. (Centre for Ecology and Hydrology & University of South Bohemia, Huntingdon & Ceske Budejovice, 2005).

    80.
    Roleček, J., Tichý, L., Zelený, D. & Chytrý, M. Modified TWINSPAN classification in which the hierarchy respects cluster heterogeneity. J. Veg. Sci. 20, 596–602 (2009).
    Article  Google Scholar  More

  • in

    Extreme temperatures compromise male and female fertility in a large desert bird

    1.
    Angilletta, M. J. Thermal Adaptation: A Theoretical And Empirical Analysis (Oxford University Press, 2009).
    2.
    Chown, S. L., Sinclair, B. J., Leinaas, H. P. & Gaston, K. J. Hemispheric asymmetries in biodiversity—a serious matter for ecology. PLoS Biol. 2, e406 (2004).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    3.
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).
    ADS  Article  Google Scholar 

    4.
    Kellermann, V., van Heerwaarden, B., Sgrò, C. M. & Hoffmann, A. A. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 325, 1244–1246 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    5.
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).
    PubMed  Article  Google Scholar 

    6.
    García-Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L. & Kress, W. J. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc. Natl Acad. Sci. USA 113, 680–685 (2016).
    ADS  PubMed  Article  CAS  Google Scholar 

    7.
    Geerts, A. N. et al. Rapid evolution of thermal tolerance in the water flea, Daphnia. Nat. Clim. Change 5, 665–668 (2015).
    ADS  Article  Google Scholar 

    8.
    Iossa, G. Sex-specific differences in thermal fertility limits. Trends Ecol. Evol. 34, 490–492 (2019).
    PubMed  Article  Google Scholar 

    9.
    Walsh, B. S. et al. The impact of climate change on fertility. Trends Ecol. Evol. 34, 249–259 (2019).
    PubMed  Article  Google Scholar 

    10.
    Vasudeva, R. et al. Adaptive thermal plasticity enhances sperm and egg performance in a model insect. eLife 8, e49452 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Hurley, L. L., McDiarmid, C. S., Friesen, C. R., Griffith, S. C. & Rowe, M. Experimental heatwaves negatively impact sperm quality in the zebra finch. Proc. R. Soc. B 285, 20172547 (2018).
    PubMed  Article  Google Scholar 

    12.
    Dahlke, F., Wohlrab, S., Butzin, M. & Pörtner, H. Thermal bottlenecks in the lifecycle define climate vulnerability of fish. Science 369, 65–70 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Bathiany, S., Dakos, V., Scheffer, M. & Lenton, T. M. Climate models predict increasing temperature variability in poor countries. Sci. Adv. 4, 1–11 (2018).
    Article  Google Scholar 

    14.
    Vázquez, D. P., Gianoli, E., Morris, W. F. & Bozinovic, F. Ecological and evolutionary impacts of changing climatic variability. Biol. Rev. 92, 22–42 (2017).
    PubMed  Article  Google Scholar 

    15.
    Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    16.
    Sgrò, C. M. & Hoffmann, A. A. Genetic correlations, tradeoffs and environmental variation. Heredity 93, 241–248 (2004).
    PubMed  Article  Google Scholar 

    17.
    Wood, C. W. & Brodie, E. D. Environmental effects on the structure of the G-matrix. Evolution 69, 2927–2940 (2015).
    PubMed  Article  Google Scholar 

    18.
    Brommer, J. E., Merila, J., Sheldon, B. C. & Gustavsson, L. Natural selection and genetic variation for reproductive reaction norms in a wild bird population. Evolution 59, 1362–1371 (2005).
    PubMed  Article  Google Scholar 

    19.
    Brommer, J. E., Rattiste, K. & Wilson, A. J. Exploring plasticity in the wild: laying date–temperature reaction norms in the common gull Larus canus. Proc. R. Soc. B 275, 687–693 (2008).
    PubMed  Article  Google Scholar 

    20.
    Nussey, D. H., Postma, E., Gienapp, P., Visser, M. E. & Gienapp, P. Selection on heritable phenotypic plasticity in a wild bird population. Science 310, 304–306 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    21.
    Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    22.
    Matthysen, E., Adriaensen, F. & Dhondt, A. A. Multiple responses to increasing spring temperatures in the breeding cycle of blue and great tits (Cyanistes caeruleus, Parus major). Glob. Change Biol. 17, 1–16 (2011).
    ADS  Article  Google Scholar 

    23.
    Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    24.
    Schiegg, K., Pasinelli, G., Walters, J. R. & Daniels, S. J. Inbreeding and experience affect response to climate change by endangered woodpeckers. Proc. R. Soc. B 269, 1153–1159 (2002).
    PubMed  Article  Google Scholar 

    25.
    Wilson, S., Norris, D. R., Wilson, A. G. & Arcese, P. Breeding experience and population density affect the ability of a songbird to respond to future climate variation. Proc. R. Soc. B 274, 2539–2545 (2007).
    PubMed  Article  Google Scholar 

    26.
    Dunn, P. O. & Winkler, D. W. Climate change has affected the breeding date of tree swallows throughout North America. Proc. R. Soc. B 266, 2487–2490 (1999).
    CAS  Article  Google Scholar 

    27.
    Hällfors, M. H. et al. Shifts in timing and duration of breeding for 73 boreal bird species over four decades. Proc. Natl Acad. Sci. USA 117, 18557–18565 (2020).
    PubMed  Article  CAS  Google Scholar 

    28.
    Gienapp, P., Postma, E. & Visser, M. E. Why breeding time has not responded to selection for earlier breeding in a songbird population. Evolution 60, 2381 (2006).
    PubMed  Article  Google Scholar 

    29.
    Jàrvinen, A. Global warming and egg size of birds. Ecography 17, 108–110 (1994).
    Article  Google Scholar 

    30.
    Kitaysky, A. S. & Golubova, E. G. Climate change causes contrasting trends in reproductive performance of planktivorous and piscivorous alcids. J. Anim. Ecol. 69, 248–262 (2000).
    Article  Google Scholar 

    31.
    Julliard, R., Clavel, J., Devictor, V., Jiguet, F. & Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244 (2006).
    PubMed  Article  Google Scholar 

    32.
    Weatherhead, P. J. Effects of climate variation on timing of nesting, reproductive success, and offspring sex ratios of red-winged blackbirds. Oecologia 144, 168–175 (2005).
    ADS  PubMed  Article  Google Scholar 

    33.
    Auer, S. K. & Martin, T. E. Climate change has indirect effects on resource use and overlap among coexisting bird species with negative consequences for their reproductive success. Glob. Change Biol. 19, 411–419 (2013).
    ADS  Article  Google Scholar 

    34.
    Riddell, E. A., Iknayan, K. J., Wolf, B. O., Sinervo, B. & Beissinger, S. R. Cooling requirements fueled the collapse of a desert bird community from climate change. Proc. Natl Acad. Sci. USA116, 21609–21615 (2019).
    CAS  PubMed  Article  Google Scholar 

    35.
    Visser, M. E., Van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. B 265, 1867–1870 (1998).
    Article  Google Scholar 

    36.
    Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    37.
    Magige, F. J., Stokke, B. G., Sortland, R. & Røskaft, E. Breeding biology of ostriches (Struthio camelus) in the Serengeti ecosystem, Tanzania. Afr. J. Ecol. 47, 400–408 (2009).
    Article  Google Scholar 

    38.
    Bertram, B. C. R. The Ostrich Communal Nesting System (Princeton University Press, New Jersey, 1992).

    39.
    Kimwele, C. N. & Graves, J. A. A molecular genetic analysis of the communal nesting of the ostrich (Struthio camelus). Mol. Ecol. 12, 229–236 (2003).
    CAS  PubMed  Article  Google Scholar 

    40.
    Maloney, S. K. Thermoregulation in ratites: a review. Aust. J. Exp. Agric. 48, 1293–1301 (2008).
    Article  Google Scholar 

    41.
    Hassan, S. M., Siam, A. A., Mady, M. E. & Cartwright, A. L. Egg storage period and weight effects on hatchability of ostrich (Struthio camelus) eggs. Poult. Sci. 84, 1908–1912 (2005).
    CAS  PubMed  Article  Google Scholar 

    42.
    Gonzalez, A., Satterlee, D. G., Moharer, F. & Cadd, G. G. Factors affecting ostrich egg hatchability. Poult. Sci. 78, 1257–1262 (1999).
    CAS  PubMed  Article  Google Scholar 

    43.
    Roff, D. A. & Wilson, A. J. Quantifying genotype-by-environment interactions in laboratory systems. In Genotype‐by‐Environment Interactions and Sexual Selection (eds. Hunt, J. & Hosken, D.) 100–136 (John Wiley & Sons, Ltd, 2014).

    44.
    Christians, J. K. Avian egg size: variation within species and inflexibility within individuals. Biol. Rev. Camb. Philos. Soc. 77, 1–26 (2002).
    PubMed  Article  Google Scholar 

    45.
    Lack, D. The Natural Regulation of Animal Numbers (Clarendon Press, 1954).

    46.
    Perrins, C. M. The timing of birds‘ breeding seasons. Ibis 112, 242–255 (1970).
    Article  Google Scholar 

    47.
    Sales, K. et al. Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nat. Commun. 9, 1–11 (2018).
    ADS  CAS  Article  Google Scholar 

    48.
    McAfee, A. et al. Vulnerability of honey bee queens to heat-induced loss of fertility. Nat. Sustain 3, 367–376 (2020).
    Article  Google Scholar 

    49.
    Pérez-Crespo, M., Pintado, B. & Gutiérrez-Adán, A. Scrotal heat stress effects on sperm viability, sperm DNA integrity, and the offspring sex ratio in mice. Mol. Reprod. Dev. 75, 40–47 (2008).
    PubMed  Article  CAS  Google Scholar 

    50.
    Hansen, P. J. Effects of heat stress on mammalian reproduction. Philos. Trans. R. Soc. B 364, 3341–3350 (2009).
    Article  Google Scholar 

    51.
    Moreno, R. D., Lagos-Cabre, R., Bunay, J., Urzua, N. & Bustamante-Marin, X. Molecular basis of heat stress damage in mammalian testis. In Testis: Anatomy, Physiology and Pathology (eds. Nemoto, Y. & Inaba, N.) 127–155 (Nova Science, 2012).

    52.
    Karaca, A. G., Parker, H. M., Yeatman, J. B. & McDaniel, C. D. The effects of heat stress and sperm quality classification on broiler breeder male fertility and semen ion concentrations. Br. Poult. Sci. 43, 621–628 (2002).
    CAS  PubMed  Article  Google Scholar 

    53.
    Mita, P., Hinton, B. T. & Dufour, J. M. The blood–testis and blood–epididymis barriers are more than just their tight junctions. Biol. Reprod. 84, 851–858 (2011).
    Article  CAS  Google Scholar 

    54.
    Smith, C. C. & Fretwell, S. D. The optimal balance between size and number of offspring. Am. Nat. 108, 499–506 (1974).
    Article  Google Scholar 

    55.
    Ojanen, M. Composition of the eggs of the great tit (Parus major) and pied flycatcher (Ficedula hypoleuca). Ann. Zool. Fenn. 20, 57–63 (1983).
    Google Scholar 

    56.
    Krist, M. Egg size and offspring quality: a meta-analysis in birds. Biol. Rev. 86, 692–716 (2011).
    PubMed  Article  Google Scholar 

    57.
    Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Pearson, 1996).

    58.
    Lynch, M. & Gabriel, W. Environmental tolerance. Am. Nat. 129, 283–303 (1987).
    Article  Google Scholar 

    59.
    Gilchrist, G. W. Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. Am. Nat. 146, 252–270 (1995).
    Article  Google Scholar 

    60.
    Whitlock, M. C. The red queen beats the jack-of-all-trades: the limitations on the evolution of phenotypic plasticity and niche breadth. Am. Nat. 148, S65 (1996).
    Article  Google Scholar 

    61.
    Pen, I. & Weissing, F. J. Towards a unified theory of cooperative breeding: the role of ecology and life history re-examined. Proc. R. Soc. B 267, 2411–2418 (2000).
    Article  Google Scholar 

    62.
    Emlen, S. T. The evolution of helping. I. An ecological constraints model. Am. Nat. 119, 29–39 (1982).
    Article  Google Scholar 

    63.
    Rubenstein, D. R. Spatiotemporal environmental variation, risk aversion, and the evolution of cooperative breeding as a bet-hedging strategy. Proc. Natl Acad. Sci. USA 108, 10816–10822 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    64.
    Cornwallis, C. K. et al. Cooperation facilitates the colonization of harsh environments. Nat. Ecol. Evol. 1, 0057 (2017).
    Article  Google Scholar 

    65.
    Rubenstein, D. R. & Lovette, I. J. Temporal environmental variability drives the evolution of cooperative breeding in birds. Curr. Biol. 17, 1414–1419 (2007).
    CAS  PubMed  Article  Google Scholar 

    66.
    Albright, T. P. et al. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proc. Natl Acad. Sci. USA 114, 201613625 (2017).
    Google Scholar 

    67.
    Vincze, O. et al. Parental cooperation in a changing climate: fluctuating environments predict shifts in care division. Glob. Ecol. Biogeogr. 26, 347–358 (2017).
    Article  Google Scholar 

    68.
    Nord, A. & Nilsson, J. Å. Heat dissipation rate constrains reproductive investment in a wild bird. Funct. Ecol. 33, 250–259 (2019).
    Article  Google Scholar 

    69.
    Cloete, S. W. P. et al. Variance components for live weight, body measurements and reproductive traits of pair-mated ostrich females. Br. Poult. Sci. 47, 147–158 (2006).
    CAS  PubMed  Article  Google Scholar 

    70.
    Rybnik, P. K., Horbanczuk, J. O., Naranowicz, H., Lukaszewicz, E. & Malecki, I. A. Semen collection in the ostrich (Struthio camelus) using a dummy or a teaser female. Br. Poult. Sci. 48, 635–643 (2007).
    CAS  PubMed  Article  Google Scholar 

    71.
    Brand, T. S., Olivier, T. R. & Gous, R. M. The response in food intake and reproductive parameters of breeding ostriches to increasing dietary energy. South Afr. J. Anim. Sci. 40, 434–437 (2010).
    Google Scholar 

    72.
    Brand, T. S., Olivier, T. R. & Gous, R. M. The reproductive response of female ostriches to dietary protein. Br. Poult. Sci. 56, 232–238 (2015).
    CAS  PubMed  Article  Google Scholar 

    73.
    Martin, P. A., Reimers, T. J., Lodge, J. R. & Dziuk, P. J. The effect of ratios and numbers of spermatozoa mixed from two males on proportions of offspring. J. Reprod. Fertil. 39, 251–258 (1974).
    CAS  PubMed  Article  Google Scholar 

    74.
    Birkhead, T. R. & Møller, A. P. Sperm Competition and Sexual Selection (Academic Press, 1998).

    75.
    Birkhead, T. R. & Biggins, J. D. Sperm competition mechanisms in birds: models and data. Behav. Ecol. 9, 253–260 (1998).
    Article  Google Scholar 

    76.
    Soley, J. T. & Roberts, J. C. Ultrastructure of ostrich (Struthio camelus) spermatozoa. II. Scanning electron microscopy. Onderstepoort J. Vet. Res. 61, 239–246 (1994).
    CAS  PubMed  Google Scholar 

    77.
    Lake, P. E. & Stewart, J. M. Artificial Insemination in Poultry. Ministry of Agriculture Fisheries and Food, Bulletin 213 (Her Majesty’s Stationery Office, 1978).

    78.
    Bonato, M., Malecki, I. A., Rybnik-Trzaskowska, P. K., Cornwallis, C. K. & Cloete, S. W. P. Predicting ejaculate quality and libido in male ostriches: effect of season and age. Anim. Reprod. Sci. 151, 49–55 (2014).
    PubMed  Article  Google Scholar 

    79.
    Bonato, M., Rybnik, P. K., Malecki, I. A., Cornwallis, C. K. & Cloete, S. W. P. Twice daily collection yields greater semen output and does not affect male libido in the ostrich. Anim. Reprod. Sci. 123, 258–264 (2011).
    PubMed  Article  Google Scholar 

    80.
    Muvhali, P. T. et al. Ostrich ejaculate characteristics and male libido around equinox and solstice dates. Trop. Anim. Health and Prod. 52, 2609–2619 (2020).
    CAS  Article  Google Scholar 

    81.
    Brand, Z., Cloete, S. W. P., Brown, C. R. & Malecki, I. A. Systematic factors that affect ostrich egg incubation traits. South Afr. J. Anim. Sci. 38, 315–325 (2008).
    Google Scholar 

    82.
    Bronneberg, R. G. G. et al. The relation between ultrasonographic observations in the oviduct and plasma progesterone, luteinizing hormone and estradiol during the egg laying cycle in ostriches. Domest. Anim. Endocrinol. 32, 15–28 (2007).
    CAS  PubMed  Article  Google Scholar 

    83.
    Van Schalkwyk, S. J., Cloete, S. W. P. & De Kock, J. A. Repeatability and phenotypic correlations for body weight and reproduction in commercial ostrich breeding pairs. Br. Poult. Sci. 37, 953–962 (1996).
    PubMed  Article  Google Scholar 

    84.
    Jones, R. C. & Lin, M. Spermatogenesis in birds. In Oxford Reviews of Reproductive Biology, Vol. 15 (ed. Milligan, S. R.) (Oxford University Press, 1993).

    85.
    R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2020).

    86.
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
    Article  Google Scholar 

    87.
    Araya-Ajoy, Y. G. & Dingemanse, N. J. Repeatability, heritability, and age-dependence of seasonal plasticity in aggressiveness in a wild passerine bird. J. Anim. Ecol. 86, 227–238 (2017).
    PubMed  Article  Google Scholar 

    88.
    Araya-Ajoy, Y. G., Mathot, K. J. & Dingemanse, N. J. An approach to estimate short-term, long-term and reaction norm repeatability. Methods Ecol. Evol. 6, 1462–1473 (2015).
    Article  Google Scholar 

    89.
    Scheiner, S. M. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 24, 35–68 (1993).
    Article  Google Scholar 

    90.
    Wilson, A. J. Why h2 does not always equal VA/VP. J. Evol. Biol. 21, 647–650 (2008).
    CAS  PubMed  Article  Google Scholar 

    91.
    de Villemereuil, P., Morrissey, M. B., Nakagawa, S. & Schielzeth, H. Fixed-effect variance and the estimation of repeatabilities and heritabilities: Issues and solutions. J. Evol. Biol. 31, 621–632 (2018).
    PubMed  Article  Google Scholar 

    92.
    de Villemereuil, P., Schielzeth, H., Nakagawa, S. & Morrissey, M. General methods for evolutionary quantitative genetic inference from generalized mixed models. Genetics 204, 1281–1294 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    93.
    BirdLife International. BirdLife International and Handbook of the Birds of the World. Bird Species Distribution Maps of the World (BirdLife International, 2019).

    94.
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Article  Google Scholar  More

  • in

    Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism

    1.
    Taylor, S. A. & Larson, E. L. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat. Ecol. Evol. 3, 170–177 (2019).
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    Payseur, B. A. & Rieseberg, L. H. A genomic perspective on hybridization and speciation. Mol. Ecol. 25, 2337–2360 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Arnold, M. L. & Kunte, K. Adaptive genetic exchange: a tangled history of admixture and evolutionary innovation. Trends Ecol. Evol. 32, 601–611 (2017).
    PubMed  Article  Google Scholar 

    4.
    Mallet, J. Hybrid speciation. Nature 446, 279–283 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Abbott, R. et al. Hybridization and speciation. J. Evol. Biol. 26, 229–246 (2013).
    CAS  PubMed  Article  Google Scholar 

    6.
    Gross, B. L. & Rieseberg, L. H. The ecological genetics of homoploid hybrid speciation. J. Hered. 96, 241–252 (2005).
    CAS  PubMed  Article  Google Scholar 

    7.
    Schumer, M., Rosenthal, G. G. & Andolfatto, P. How common is homoploid hybrid speciation? Evolution 68, 1553–1560 (2014).
    PubMed  Article  Google Scholar 

    8.
    Grant, V. Pollination systems as isolating mechanisms in angiosperms. Evolution 3, 82–97 (1949).
    CAS  PubMed  Article  Google Scholar 

    9.
    Kay, K. M. & Sargent, R. D. The role of animal pollination in plant speciation: Integrating ecology, geography, and genetics. Annu. Rev. Ecol. Evol. Syst. 40, 637–656 (2009).
    Article  Google Scholar 

    10.
    Serrano-Serrano, M. L., Rolland, J., Clark, J. L., Salamin, N. & Perret, M. Hummingbird pollination and the diversification of angiosperms: an old and successful association in Gesneriaceae. Proc. R. Soc. B Biol. Sci. 284, https://doi.org/10.1098/rspb.2016.2816 (2017).

    11.
    Thompson, J. N. Specific hypotheses on the geographic mosaic of coevolution. Am. Nat. 153, S1–S14 (1999).
    Article  Google Scholar 

    12.
    Van der Niet, T., Peakall, R. & Johnson, S. D. Pollinator-driven ecological speciation in plants: new evidence and future perspectives. Ann. Bot. 113, 199–211 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    13.
    Armbruster, W. S. The specialization continuum in pollination systems: diversity of concepts and implications for ecology, evolution and conservation. Funct. Ecol. 31, 88–100 (2017).
    Article  Google Scholar 

    14.
    Ayasse, M., Stokl, J. & Francke, W. Chemical ecology and pollinator-driven speciation in sexually deceptive orchids. Phytochemistry 72, 1667–1677 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Machado, C. A., Robbins, N., Gilbert, M. T. P. & Herre, E. A. Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proc. Natl Acad. Sci. USA 102, 6558–6565 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    16.
    Kawakita, A. Evolution of obligate pollination mutualism in the tribe Phyllantheae (Phyllanthaceae). Plant Species Biol. 25, 3–19 (2010).
    Article  Google Scholar 

    17.
    Ramirez, W. Host specificity of fig wasps (Agaonidae). Evolution 24, 680–691 (1970).
    Article  Google Scholar 

    18.
    Schiestl, F. P. & Schluter, P. M. Floral isolation, specialized pollination, and pollinator behavior in orchids. Annu. Rev. Entomol. 54, 425–446 (2009).
    CAS  PubMed  Article  Google Scholar 

    19.
    Ramirez, S. R. et al. Asynchronous diversification in a specialized plant-pollinator mutualism. Science 333, 1742–1746 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    20.
    Cruaud, A. et al. An extreme case of plant-insect co-diversification: figs and fig-pollinating wasps. Syst. Biol. 61, 1029–1047 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Berg, C. C. & Corner, E. J. H. in Flora Malesiana Series I -Seed Plants Vol. 17 (ed. Nooteboom, H. P.) 1–702 (Nationaal Herbarium, Nederland, 2005).

    22.
    Wang, G., Cannon, C. H. & Chen, J. Pollinator sharing and gene flow among closely related sympatric dioecious fig taxa. Proc. R. Soc. B Biol. Sci. 283, https://doi.org/10.1098/rspb.2015.2963 (2016).

    23.
    Machado, C. A., Jousselin, E., Kjellberg, F., Compton, S. G. & Herre, E. A. Phylogenetic relationships, historical biogeography and character evolution of fig-pollinating wasps. Proc. R. Soc. B Biol. Sci. 268, 685–694 (2001).
    CAS  Article  Google Scholar 

    24.
    Harrison, R. D. Figs and the diversity of tropical rainforests. Bioscience 55, 1053–1064 (2005).
    Article  Google Scholar 

    25.
    Grison-Pigé, L., Bessière, J. M. & Hossaert-McKey, M. Specific attraction of fig-pollinating wasps: Role of volatile compounds released by tropical figs. J. Chem. Ecol. 28, 283–295 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    Herre, E. A. et al. Molecular phylogenies of figs and their pollinator wasps. J. Biogeogr. 23, 521–530 (1996).
    Article  Google Scholar 

    27.
    Molbo, D., Machado, C. A., Sevenster, J. G., Keller, L. & Herre, E. A. Cryptic species of fig-pollinating wasps: Implications for the evolution of the fig-wasp mutualism, sex allocation, and precision of adaptation. Proc. Natl Acad. Sci. USA 100, 5867–5872 (2003).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Rasplus, J. Y. in The Biodiversity of African Plants (eds van der Maesen, L. J. G. et al.) 639–649 (Springer, 1996).

    29.
    Yang, L.-Y. et al. The incidence and pattern of co-pollinator diversification in dioecious and monoecious figs. Evolution 69, 294–304 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Cornille, A. et al. Floral volatiles, pollinator sharing and diversification in the fig-wasp mutualism: insights from Ficus natalensis, and its two wasp pollinators (South Africa). Proc. R. Soc. B Biol. Sci. 279, 1731–1739 (2012).
    CAS  Article  Google Scholar 

    31.
    Compton, S. G. A collapse of host specificity in some African fig wasps. S. Afr. J. Sci. 86, 39–40 (1990).
    Google Scholar 

    32.
    Renoult, J. P., Kjellberg, F., Grout, C., Santoni, S. & Khadari, B. Cyto-nuclear discordance in the phylogeny of Ficus section Galoglychia and host shifts in plant-pollinator associations. BMC Evol. Biol. 9, 248 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Satler, J. D. et al. Inferring processes of coevolutionary diversification in a community of Panamanian strangler figs and associated pollinating wasps. Evolution 73, 2295–2311 (2019).

    34.
    Jackson, A. P., Machado, C. A., Robbins, N. & Herre, E. A. Multi-locus phylogenetic analysis of neotropical figs does not support co-speciation with the pollinators: the importance of systematic scale in fig/wasp cophylogenetic studies. Symbiosis 45, 57–72 (2008).
    CAS  Google Scholar 

    35.
    Parrish, T. L., Koelewijn, H. P., van Dijk, P. J. & Kruijt, M. Genetic evidence for natural hybridization between species of dioecious Ficus on island populations. Biotropica 35, 333–343 (2003).
    Article  Google Scholar 

    36.
    Ramirez, W. Hybridization of Ficus religiosa with F. septica and F. aurea (Moraceae). Rev. Biol. Trop. 42, 339–342 (1994).
    Google Scholar 

    37.
    Wei, Z. D., Kobmoo, N., Cruaud, A. & Kjellberg, F. Genetic structure and hybridization in the species group of Ficus auriculata: can closely related sympatric Ficus species retain their genetic identity while sharing pollinators? Mol. Ecol. 23, 3538–3550 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Bruun-Lund, S., Clement, W. L., Kjellberg, F. & Rønsted, N. First plastid phylogenomic study reveals potential cyto-nuclear discordance in the evolutionary history of Ficus L. (Moraceae). Mol. Phylogenet. Evol. 109, 93–104 (2017).
    PubMed  Article  Google Scholar 

    39.
    Zhang, X. et al. Genomes of the Banyan tree and pollinator wasp provide insights into fig-wasp coevolution. Cell 183, 875–889 (2020).
    CAS  PubMed  Article  Google Scholar 

    40.
    Mirarab, S. & Warnow, T. ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics 31, 44–52 (2015).
    Article  CAS  Google Scholar 

    41.
    Rønsted, N., Weiblen, G. D., Clement, W. L., Zerega, N. J. C. & Savolainen, V. Reconstructing the phylogeny of figs (Ficus, Moraceae) to reveal the history of the fig pollination mutualism. Symbiosis 45, 45–55 (2008).
    Google Scholar 

    42.
    Ane, C., Larget, B., Baum, D. A., Smith, S. D. & Rokas, A. Bayesian estimation of concordance among gene trees. Mol. Biol. Evol. 24, 412–426 (2007).
    CAS  PubMed  Article  Google Scholar 

    43.
    Larget, B. R., Kotha, S. K., Dewey, C. N. & Ane, C. BUCKy: Gene tree/species tree reconciliation with Bayesian concordance analysis. Bioinformatics 26, 2910–2911 (2010).
    CAS  PubMed  Article  Google Scholar 

    44.
    Baum, D. A. Concordance trees, concordance factors, and the exploration of reticulate genealogy. Taxon 56, 417–426 (2007).
    Article  Google Scholar 

    45.
    Solis-Lemus, C., Bastide, P. & Ane, C. PhyloNetworks: a package for phylogenetic networks. Mol. Biol. Evol. 34, 3292–3298 (2017).
    CAS  PubMed  Article  Google Scholar 

    46.
    Soraggi, S., Wiuf, C. & Albrechtsen, A. Powerful inference with the D-statistic on low-coverage whole-genome data. G3 (Bethesda) 8, 551–566 (2018).

    47.
    Durand, E. Y., Patterson, N., Reich, D. & Slatkin, M. Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239–2252 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Degnan, J. H. & Rosenberg, N. A. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24, 332–340 (2009).
    PubMed  Article  Google Scholar 

    49.
    Conow, C., Fielder, D., Ovadia, Y. & Libeskind-Hadas, R. Jane: a new tool for the cophylogeny reconstruction problem. Algorithms Mol. Biol. 5, https://doi.org/10.1186/1748-7188-5-16 (2010).

    50.
    Ramsey, A. J. & Mandel, J. R. When one genome is not enough: organellar heteroplasmy in plants. Annual Plant Reviews 2, 619–658 (2019).
    Article  Google Scholar 

    51.
    Zhang, Q. & Liu, Y. & Sodmergen. Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant Cell Physiol. 44, 941–951 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Hu, Y. C., Zhang, Q. & Rao, G. Y. & Sodmergen. Occurrence of plastids in the sperm cells of Caprifoliaceae: Biparental plastid inheritance in angiosperms is unilaterally derived from maternal inheritance. Plant Cell Physiol. 49, 958–968 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Mayr, E. Animal Species and Evolution 1–811 (Belknap Press, 1963).

    54.
    Wu, C. I. The genic view of the process of speciation. J. Evol. Biol. 14, 851–865 (2001).
    Article  Google Scholar 

    55.
    Sun, M. et al. Deep phylogenetic incongruence in the angiosperm clade Rosidae. Mol. Phylogenet. Evol. 83, 156–166 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    56.
    Folk, R. A., Soltis, P. S., Soltis, D. E. & Guralnick, R. New prospects in the detection and comparative analysis of hybridization in the tree of life. Am. J. Bot. 105, 364–375 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    57.
    Jiao, X., Flouri, T., Rannala, B. & Yang, Z. The impact of cross-species gene flow on species tree estimation. Syst. Biol. 69, 830–847 (2020).

    58.
    Jousselin, E. et al. One fig to bind them all: host conservatism in a fig wasp community unraveled by cospeciation analyses among pollinating and nonpollinating fig wasps. Evolution 62, 1777–1797 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    59.
    Moe, A. M. & Weiblen, G. D. Pollinator-mediated reproductive isolation among dioecious fig species (Ficus, Moraceae). Evolution 66, 3710–3721 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    60.
    Wang, G., Compton, S. G. & Chen, J. The mechanism of pollinator specificity between two sympatric fig varieties: a combination of olfactory signals and contact cues. Ann. Bot. 111, 173–181 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Bronstein, J. L. Maintenance of species-specificity in a neotropical fig – pollinator wasp mutualism. Oikos 48, 39–46 (1987).
    Article  Google Scholar 

    62.
    Ware, A., Kaye, P., Compton, S. & Noort, S. Fig volatiles: their role in attracting pollinators and maintaining pollinator specificity. Plant Syst. Evol. 186, 147–156 (1993).
    Article  Google Scholar 

    63.
    Soler, C. C. L., Proffit, M., Bessière, J. M., Hossaert-McKey, M. & Schatz, B. Evidence for intersexual chemical mimicry in a dioecious plant. Ecol. Lett. 15, 978–985 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    64.
    Hossaert-McKey, M., Soler, C., Schatz, B. & Proffit, M. Floral scents: their roles in nursery pollination mutualisms. Chemoecology 20, 75–88 (2010).
    Article  Google Scholar 

    65.
    Knudsen, J. T., Eriksson, R., Gershenzon, J. & Stahl, B. Diversity and distribution of floral scent. Bot. Rev. 72, 1–120 (2006).
    Article  Google Scholar 

    66.
    Herre, E. A., Jander, K. C. & Machado, C. A. Evolutionary ecology of figs and their associates: Recent progress and outstanding puzzles. Annu. Rev. Ecol. Evol. Syst. 39, 439–458 (2008).
    Article  Google Scholar 

    67.
    Kiester, A. R., Lande, R. & Schemske, D. W. Models of coevolution and speciation in plants and their pollinators. Am. Nat. 124, 220–243 (1984).
    Article  Google Scholar 

    68.
    Vereecken, N. J., Cozzolino, S. & Schiestl, F. P. Hybrid floral scent novelty drives pollinator shift in sexually deceptive orchids. BMC Evol. Biol. 10, 103 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Rønsted, N. et al. 60 million years of co-divergence in the fig-wasp symbiosis. Proc. R. Soc. B Biol. Sci. 272, 0962–8452 (2005). 2593-2599.
    Google Scholar 

    70.
    Wiebes, J. T. Co-evolution of figs and their insect pollinators. Annu. Rev. Ecol. Syst. 10, 1–12 (1979).
    Article  Google Scholar 

    71.
    Zhu, H. et al. Native Seed Plants in Xishuangbanna of Yunnan (eds Zhu, H. & Yan, L.) 1–565 (Science Press, 2012).

    72.
    Yang, J. B., Li, D. Z. & Li, H. T. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs. Mol. Ecol. Resour. 14, 1024–1031 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Andrews, S. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).

    75.
    Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    76.
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    77.
    McKenna, A. et al. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    78.
    Jin, J.-J. et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 31 (2020).
    Article  Google Scholar 

    79.
    Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350–3352 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Weiß, C. L., Pais, M., Cano, L. M., Kamoun, S. & Burbano, H. A. nQuire: a statistical framework for ploidy estimation using next generation sequencing. BMC Bioinformatics 19, 122 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    81.
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    83.
    Yang, Z. H. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
    CAS  PubMed  Article  Google Scholar 

    84.
    Zhu, T. Q., Dos Reis, M. & Yang, Z. H. Characterization of the uncertainty of divergence time estimation under relaxed molecular clock models using multiple loci. Syst. Biol. 64, 267–280 (2015).
    CAS  PubMed  Article  Google Scholar 

    85.
    Gardner, E. M., Sarraf, P., Williams, E. W. & Zerega, N. J. C. Phylogeny and biogeography of Maclura (Moraceae) and the origin of an anachronistic fruit. Mol. Phylogenet. Evol. 117, 49–59 (2017).
    PubMed  Article  Google Scholar 

    86.
    dos Reis, M. & Yang, Z. Approximate likelihood calculation on a phylogeny for bayesian estimation of divergence times. Mol. Biol. Evol. 28, 2161–2172 (2011).
    PubMed  Article  CAS  Google Scholar 

    87.
    Yang, Z. & Rannala, B. Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol. Biol. Evol. 23, 212–226 (2006).
    CAS  PubMed  Article  Google Scholar 

    88.
    Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in Island Clades. Syst. Biol. 63, 951–970 (2014).
    PubMed  Article  Google Scholar 

    89.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    90.
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772–772 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    91.
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    92.
    Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 1–13 (2014).
    Article  Google Scholar 

    93.
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    94.
    Wang, G. et al. Data from: Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism. Dryad, Dataset https://doi.org/10.5061/dryad.zcrjdfn7m (2020).

    95.
    Zhang, T. & Zhang, S. C. Code from: Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism. Github https://doi.org/10.5281/zenodo.4308886 (2020). More