More stories

  • in

    Dynamic allometric scaling of tree biomass and size

    1.
    Weiskittel, A. R. et al. A call to improve methods for estimating tree biomass for regional and national assessments. J. For. 113, 414–424 (2015).
    Google Scholar 
    2.
    Huang, H., Liu, C., Wang, X., Zhou, X. & Gong, P. Integration of multi-resource remotely sensed data and allometric models for forest aboveground biomass estimation in China. Remote Sens. Environ. 221, 225–234 (2019).
    Article  Google Scholar 

    3.
    Zianis, D. & Seura, S. Biomass and stem volume equations for tree species in Europe. Silva Fenn. Monogr. 4, 1–63 (2005).
    Google Scholar 

    4.
    Henry, M. et al. Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations. Silva Fenn. 45, 477–569 (2011).
    Article  Google Scholar 

    5.
    Jenkins, J. C., Chojnacky, D. C., Heath, L. S. & Birdsey, R. A. Comprehensive Database of Diameter-Based Biomass Regressions for North American Tree Species (USDA Forest Service, 2003).

    6.
    Yuen, J. Q., Fung, T. & Ziegler, A. D. Review of allometric equations for major land covers in SE Asia: uncertainty and implications for above- and below-ground carbon estimates. For. Ecol. Manag. 360, 323–340 (2016).
    Article  Google Scholar 

    7.
    Liu, C. et al. Separating regressions for model fitting to reduce the uncertainty in forest volume–biomass relationship. Forests 10, 658 (2019).
    Article  Google Scholar 

    8.
    Niklas, K. J. A phyletic perspective on the allometry of plant biomass-partitioning patterns and functionally equivalent organ-categories. New Phytol. 171, 27–40 (2006).
    PubMed  Article  Google Scholar 

    9.
    Smith, J. E., Heath, L. S. & Jenkins, J. C. Forest Volume-to-Biomass Models and Estimates of Mass for Live and Standing Dead Trees of U.S. Forests (USDA Forest Service, 2003).

    10.
    Jalkanen, A., Mäkipää, R., Ståhl, G., Lehtonen, A. & Petersson, H. Silviculture-driven vegetation change in a European temperate deciduous forest. Ann. For. Sci. 62, 313–323 (2005).
    Article  Google Scholar 

    11.
    Guo, Z., Fang, J., Pan, Y. & Birdsey, R. Inventory-based estimates of forest biomass carbon stocks in China: a comparison of three methods. For. Ecol. Manag. 259, 1225–1231 (2010).
    Article  Google Scholar 

    12.
    Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).
    Article  Google Scholar 

    13.
    Ishihara, M. I. et al. Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests. Ecol. Appl. 25, 1433–1446 (2015).
    PubMed  Article  Google Scholar 

    14.
    Xiang, W. et al. General allometric equations and biomass allocation of Pinus massoniana trees on regional scale in southern China. Ecol. Res. 26, 697–711 (2011).
    Article  Google Scholar 

    15.
    Parresol, B. R. Assessing tree and stand biomass: a review with examples and critical comparisons. For. Sci. 45, 573–593 (1999).
    Google Scholar 

    16.
    Wirth, C., Schumacher, J. & Schulze, E.-D. Generic biomass functions for Norway spruce in Central Europe—a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiol. 24, 121–139 (2004).
    PubMed  Article  Google Scholar 

    17.
    Rutishauser, E. et al. Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia. For. Ecol. Manag. 307, 219–225 (2013).
    Article  Google Scholar 

    18.
    Chave, J. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87–99 (2005).
    CAS  PubMed  Article  Google Scholar 

    19.
    Gonzalez-Benecke, C. A. et al. Local and general above-stump biomass functions for loblolly pine and slash pine trees. For. Ecol. Manag. 334, 254–276 (2014).
    Article  Google Scholar 

    20.
    Sileshi, G. W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 329, 237–254 (2014).
    Article  Google Scholar 

    21.
    Picard, N., Rutishauser, E., Ploton, P., Ngomanda, A. & Henry, M. Should tree biomass allometry be restricted to power models? For. Ecol. Manag. 353, 156–163 (2015).
    Article  Google Scholar 

    22.
    Sheil, D. et al. Does biomass growth increase in the largest trees? Flaws, fallacies and alternative analyses. Funct. Ecol. 31, 568–581 (2017).
    Article  Google Scholar 

    23.
    Muller-Landau, H. C. et al. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9, 575–588 (2006).
    PubMed  Article  Google Scholar 

    24.
    Schafer, J. L. & Mack, M. C. Growth, biomass, and allometry of resprouting shrubs after fire in scrubby flatwoods. Am. Midl. Nat. 172, 266–284 (2014).
    Article  Google Scholar 

    25.
    Poorter, H. et al. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytol. 208, 736–749 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Smith, R. J. Rethinking allometry. J. Theor. Biol. 87, 97–111 (1980).
    CAS  PubMed  Article  Google Scholar 

    27.
    Dassot, M. et al. Terrestrial laser scanning for measuring the solid wood volume, including branches, of adult standing trees in the forest environment. Comput. Electron. Agric. 89, 86–93 (2012).
    Article  Google Scholar 

    28.
    Disney, M. I. et al. Weighing trees with lasers: advances, challenges and opportunities. Interface Focus 8, 201700484 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Sarrus, P. F. & Rameaux, J.-F. Application des sciences accessoires et principalement des mathématiques à la physiologie générale. Bull. Acad. R. Méd. 3, 1094–1100 (1838).
    Google Scholar 

    30.
    Huxley, J. S. & Teissier, G. Terminology of relative growth. Nature 137, 780–781 (1936).
    Article  Google Scholar 

    31.
    Gayon, J. History of the concept of allometry. Am. Zool. 40, 748–758 (2000).
    Google Scholar 

    32.
    Rubner, M. Über den einfluss der körpergrösse auf stoff- und kraftwechsel. Z. Biol. 19, 536–562 (1883).
    Google Scholar 

    33.
    von Bertalanffy, L. General System Theory: Foundations, Development, Applications (George Braziller, 1973).

    34.
    Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932).
    CAS  Article  Google Scholar 

    35.
    West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).
    CAS  PubMed  Article  Google Scholar 

    36.
    West, G. B., Brown, J. H. & Enquist, B. J. A general model for ontogenetic growth. Nature 413, 628–631 (2001).
    CAS  PubMed  Article  Google Scholar 

    37.
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Article  Google Scholar 

    38.
    Bokma, F. Evidence against universal metabolic allometry. Funct. Ecol. 18, 184–187 (2004).
    Article  Google Scholar 

    39.
    Dodds, P. S., Rothman, D. H. & Weitz, J. S. Re-examination of the “3/4-law” of metabolism. J. Theor. Biol. 209, 9–27 (2001).
    CAS  PubMed  Article  Google Scholar 

    40.
    Kozłowski, J. & Konarzewski, M. Is West, Brown and Enquist’s model of allometric scaling mathematically correct and biologically relevant? Funct. Ecol. 18, 283–289 (2004).
    Article  Google Scholar 

    41.
    Henry, M. et al. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. For. Ecol. Manag. 260, 1375–1388 (2010).
    Article  Google Scholar 

    42.
    Satoo, T. Notes on Kittredge’s method of estimation of amount of leaves of forest stand. Jpn. J. For. 44, 267–272 (1962).
    Google Scholar 

    43.
    Ruark, G. A., Martin, G. L. & Bockheim, J. G. Comparison of constant and variable allometric ratios for estimating populus tremuloides biomass. For. Sci. 33, 294–300 (1987).
    Google Scholar 

    44.
    Mori, S. et al. Mixed-power scaling of whole-plant respiration from seedlings to giant trees. Proc. Natl Acad. Sci. USA 107, 1447–1451 (2010).
    CAS  PubMed  Article  Google Scholar 

    45.
    Tjørve, E. Shapes and functions of species-area curves (II): a review of new models and parameterizations. J. Biogeogr. 36, 1435–1445 (2009).
    Article  Google Scholar 

    46.
    Luo, Y., Wang, X., Zhang, X. & Lu, F. Biomass and Its Allocation of Forest Ecosystems in China [in Chinese] (Chinese Forestry Publishing House, 2013).

    47.
    Stovall, A. E. L., Shugart, H. H., Stovall, A. E. L. & Anderson-Teixeira, K. J. Assessing terrestrial laser scanning for developing non-destructive biomass allometry. For. Ecol. Manag. 427, 217–229 (2018).
    Article  Google Scholar 

    48.
    Packard, G. C. Is logarithmic transformation necessary in allometry? Biol. J. Linn. Soc. 109, 476–486 (2013).
    Article  Google Scholar 

    49.
    Mascaro, J., Litton, C. M., Hughes, R. F., Uowolo, A. & Schnitzer, S. A. Is logarithmic transformation necessary in allometry? Ten, one-hundred, one-thousand-times yes. Biol. J. Linn. Soc. 111, 230–233 (2014).
    Article  Google Scholar 

    50.
    Sprugel, D. G. Correcting for bias in log-transformed allometric equations. Ecology 64, 209–210 (1983).
    Article  Google Scholar 

    51.
    Peichl, M. & Arain, M. A. Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. For. Ecol. Manag. 253, 68–80 (2007).
    Article  Google Scholar 

    52.
    Wolf, A., Field, C. B. & Berry, J. A. Allometric growth and allocation in forests: a perspective from FLUXNET. Ecol. Appl. 21, 1546–1556 (2011).
    PubMed  Article  Google Scholar 

    53.
    Litton, C. M., Raich, J. W. & Ryan, M. G. Carbon allocation in forest ecosystems. Glob. Change Biol. 13, 2089–2109 (2007).
    Article  Google Scholar 

    54.
    Vallet, P., Dhôte, J. F., Moguédec, G. L. E., Ravart, M. & Pignard, G. Development of total aboveground volume equations for seven important forest tree species in France. For. Ecol. Manag. 229, 98–110 (2006).
    Article  Google Scholar 

    55.
    Cannell, M. G. R. World Forest Biomass and Primary Production Data (Academic Press, 1982).

    56.
    Usoltsev, V. A. Forest Biomass and Primary Production Database for Eurasia (Ural State Forest Engineering Univ., 2013).

    57.
    West, G. B. & Brown, J. H. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J. Exp. Biol. 208, 1575–1592 (2005).
    PubMed  Article  Google Scholar 

    58.
    Reich, P. B. et al. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439, 457–461 (2006).
    CAS  PubMed  Article  Google Scholar 

    59.
    Li, H., Han, X. & Wu, J. Lack of evidence for 3/4 scaling of metabolism in terrestrial plants. J. Integr. Plant Biol. 47, 1173–1183 (2005).
    Article  Google Scholar 

    60.
    Zhou, X. et al. Correcting the overestimate of forest biomass carbon on the national scale. Method Ecol. Evol. 7, 447–455 (2016).
    Article  Google Scholar 

    61.
    Enquist, B. J., Brown, J. H. & West, G. B. Allometric scaling of plant energetics and population density. Nature 395, 163–165 (1998).
    CAS  Article  Google Scholar  More

  • in

    Urban street tree biodiversity and antidepressant prescriptions

    1.
    Heinz, A., Deserno, L. & Reininghaus, U. Urbanicity, social adversity and psychosis. World Psychiatry 12, 187–197 (2013).
    PubMed  PubMed Central  Article  Google Scholar 
    2.
    McDonald, R. I. et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. https://doi.org/10.1038/s41893-019-0436-6 (2019).
    Article  Google Scholar 

    3.
    Bratman, G. N. et al. Nature and mental health: An ecosystem service perspective. Sci. Adv. 5, eaax903 (2019).
    ADS  Article  Google Scholar 

    4.
    Ramaswami, A. Unpacking the urban infrastructure nexus with environment, health, livability, well-being, and equity. One Earth 2, 120–124 (2020).
    Article  Google Scholar 

    5.
    Endreny, T. A. Strategically growing the urban forest will improve our world. Nat. Commun. 9, 10–12 (2018).
    Article  CAS  Google Scholar 

    6.
    Blicharska, M. et al. Biodiversity’s contributions to sustainable development. Nat. Sustain. 2, 1083–1093 (2019).
    Article  Google Scholar 

    7.
    Wolf, L. J., Zu Ermgassen, S., Balmford, A., White, M. & Weinstein, N. Is variety the spice of life? An experimental investigation into the effects of species richness on self-reported mental well-being. PLoS ONE 12, e0170225 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    8.
    Stewart, G. H. et al. Urban biotopes of aotearoa New Zealand (URBANZ) II: Floristics, biodiversity and conservation values of urban residential and public woodlands. Christchurch. Urban For. Urban Green. 8, 149–162 (2009).
    Article  Google Scholar 

    9.
    Church, S. P. From street trees to natural areas: Retrofitting cities for human connectedness to nature. J. Environ. Plan. Manag. 61, 878–903 (2018).
    Article  Google Scholar 

    10.
    Salmond, J. A. et al. Health and climate related ecosystem services provided by street trees in the urban environment. Environ. Heal. 15, 1–36 (2016).
    Article  Google Scholar 

    11.
    Wolf, K. L. et al. Urban trees and human health: A scoping review. Int. J. Environ. Res. Public Health 17, 4371 (2020).
    PubMed Central  Article  PubMed  Google Scholar 

    12.
    Elsadek, M., Liu, B., Lian, Z. & Xie, J. The influence of urban roadside trees and their physical environment on stress relief measures: A field experiment in Shanghai. Urban For. Urban Green. 42, 51–60 (2019).
    Article  Google Scholar 

    13.
    Barnes, M. R. et al. Characterizing nature and participant experience in studies of nature exposure for positive mental health: An integrative review. Front. Psychol. 9, 66 (2019).
    Article  Google Scholar 

    14.
    van den Berg, M. et al. Health benefits of green spaces in the living environment: A systematic review of epidemiological studies. Urban For. Urban Green. 14, 806–816 (2015).
    Article  Google Scholar 

    15.
    Coldwell, D. F. & Evans, K. L. Visits to urban green-space and the countryside associate with different components of mental well-being and are better predictors than perceived or actual local urbanisation intensity. Landsc. Urban Plan. 175, 114–122 (2018).
    Article  Google Scholar 

    16.
    Collins, R. M. et al. A systematic map of research exploring the effect of greenspace on mental health. Landsc. Urban Plan. 201, 103823 (2020).
    Article  Google Scholar 

    17.
    Ekkel, E. D. & de Vries, S. Nearby green space and human health: Evaluating accessibility metrics. Landsc. Urban Plan. 157, 214–220 (2017).
    Article  Google Scholar 

    18.
    Jiang, X., Larsen, L. & Sullivan, W. Connections–between daily greenness exposure and health outcomes. Int. J. Environ. Res. Public Health 17, 3965 (2020).
    PubMed Central  Article  PubMed  Google Scholar 

    19.
    Marselle, M. R., Martens, D., Dallimer, M. & Irvine, K. N. Review of the mental health and wellbeing benefits of biodiversity. In Biodiversity and Health in the Face of Climate Change (eds Marselle, M. R. et al.) (Springer, Berlin, 2019).
    Google Scholar 

    20.
    de Vries, S. & Snep, R. Biodiversity in the context of ‘biodiversity – mental health’ research. In Biodiversity and Health in the Face of Climate Change (eds Marselle, M. R. et al.) 159–173 (Springer, Berlin, 2019).
    Google Scholar 

    21.
    Reid, C. E., Clougherty, J. E., Shmool, J. L. C. & Kubzansky, L. D. Is all urban green space the same? A comparison of the health benefits of trees and grass in New York City. Int. J. Environ. Res. Public Health 14, 1411 (2017).
    PubMed Central  Article  PubMed  Google Scholar 

    22.
    Roberts, H., van Lissa, C., Hagedoorn, P., Kellar, I. & Helbich, M. The effect of short-term exposure to the natural environment on depressive mood: A systematic review and meta-analysis. Environ. Res. 177, 108606 (2019).
    CAS  PubMed  Article  Google Scholar 

    23.
    Frumkin, H. et al. Nature contact and human health: A research agenda. Environ. Health Perspect. 125, 66 (2017).
    Article  Google Scholar 

    24.
    van den Bosch, M. & Sang, Å. O. Urban natural environments as nature-based solutions for improved public health—A systematic review of reviews. Environ. Res. 158, 373–384 (2017).
    PubMed  Article  CAS  Google Scholar 

    25.
    Cook, P. A., Howarth, M. & Wheater, C. P. Biodiversity and health in the face of climate change—Implications for public health. In Biodiversity and Health in the Face Of Climate Change (eds Marselle, M. R. et al.) (Springer, Berlin, 2019).
    Google Scholar 

    26.
    Wendelboe-Nelson, C., Kelly, S., Kennedy, M. & Cherrie, J. W. A scoping review of mapping research on green space and associated mental health benefits. Int. J. Environ. Res. Public Health 16, 2081 (2019).
    PubMed Central  Article  PubMed  Google Scholar 

    27.
    Gidlow, C. et al. Research note: Natural environments and prescribing in England. Landsc. Urban Plan. 151, 103–108 (2016).
    Article  Google Scholar 

    28.
    Helbich, M., Klein, N., Roberts, H., Hagedoorn, P. & Groenewegen, P. P. More green space is related to less antidepressant prescription rates in the Netherlands: A Bayesian geoadditive quantile regression approach. Environ. Res. 166, 290–297 (2018).
    CAS  PubMed  Article  Google Scholar 

    29.
    Triguero-Mas, M. et al. Natural outdoor environments and mental and physical health: Relationships and mechanisms. Environ. Int. 77, 41 (2015).
    Article  Google Scholar 

    30.
    Taylor, M. S., Wheeler, B. W., White, M. P., Economou, T. & Osborne, N. J. Research note: Urban street tree density and antidepressant prescription rates—A cross-sectional study in London, UK. Landsc. Urban Plan. 136, 174–179 (2015).
    Article  Google Scholar 

    31.
    Smith, G. et al. Characterisation of the natural environment: Quantitative indicators across Europe. Int. J. Health Geogr. 16, 1–15 (2017).
    Article  Google Scholar 

    32.
    Egorov, A. I. et al. Vegetated land cover near residence is associated with reduced allostatic load and improved biomarkers of neuroendocrine, metabolic and immune functions. Environ. Res. 158, 508–521 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    de Vries, S., Verheij, R. A., Groenewegen, P. P. & Spreeuwenberg, P. Natural environments-healthy environments? An exploratory analysis of the relationship between greenspace and health. Environ. Plan. A 35, 1717–1732 (2003).
    Article  Google Scholar 

    34.
    van den Berg, A. E., Maas, J., Verheij, R. A. & Groenewegen, P. P. Green space as a buffer between stressful life events and health. Soc. Sci. Med. 70, 1203–1210 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Kaplan, R. The nature of the view from home: Psychological benefits. Environ. Behav. 33, 507–542 (2001).
    Article  Google Scholar 

    36.
    Markevych, I. et al. Exploring pathways linking greenspace to health: Theoretical and methodological guidance. Environ. Res. 158, 301–317 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Hartig, T., Mitchell, R., de Vries, S. & Frumkin, H. Nature and health. Annu. Rev. Public Health 35, 207–228 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Shanahan, D. F. et al. Health benefits of nature experiences depend on dose. Sci. Rep. 6, 66 (2016).
    Google Scholar 

    39.
    Shanahan, D. F., Fuller, R. A., Bush, R., Lin, B. B. & Gaston, K. J. The health benefits of urban nature: How much do we need?. Bioscience 65, 476–485 (2015).
    Article  Google Scholar 

    40.
    Luck, T. et al. The prevalence of current depressive symptoms in an urban adult population: Results of the Leipzig population-based study of adults (LIFE-ADULT-Study). Thieme 44, 148–153 (2017).
    Google Scholar 

    41.
    Zuelke, A. E. et al. The association between unemployment and depression—Results from the population-based LIFE-adult-study. J. Affect. Disord. 235, 399–406 (2018).
    PubMed  Article  Google Scholar 

    42.
    Techniker Krankenkasse. Depressionsatlas: Arbeitsunfähigkeit und Arzneiverordnungen Depression Atlas: Inability to Work and Medication Prescriptions. https://www.tk.de/resource/blob/2026640/c767f9b02cabbc503fd3cc6188bc76b4/tk-depressionsatlas-data.pdf (2015).

    43.
    Mitchell, R. & Popham, F. Effect of exposure to natural environment on health inequalities: An observational population study. Lancet 372, 1655–1660 (2008).
    PubMed  Article  Google Scholar 

    44.
    Mitchell, R. J., Richardson, E. A., Shortt, N. K. & Pearce, J. R. Neighborhood environments and socioeconomic inequalities in mental well-being. Am. J. Prev. Med. 49, 80–84 (2015).
    PubMed  Article  Google Scholar 

    45.
    Sarkar, C., Webster, C. & Gallacher, J. Residential greenness and prevalence of major depressive disorders: A cross-sectional, observational, associational study of 94 879 adult UK Biobank participants. Lancet Planet. Heal. 2, E162–E173 (2018).
    Article  Google Scholar 

    46.
    OECD. Health at a Glance 2017: OECD Indicators. https://www.oecd-ilibrary.org/social-issues-migration-health/health-at-a-glance-2017_health_glance-2017-en (2017).

    47.
    Landry, S. M. & Chakraborty, J. Street trees and equity: Evaluating the spatial distribution of an urban amenity. Environ. Plan. A 41, 2651–2670 (2009).
    Article  Google Scholar 

    48.
    Lin, J., Wang, Q. & Li, X. Landscape and urban planning socioeconomic and spatial inequalities of street tree abundance, species diversity, and size structure in New York City. Landsc. Urban Plan. 206, 103992 (2021).
    Article  Google Scholar 

    49.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, Berlin, 2016).
    Google Scholar 

    50.
    Stadt Leipzig. Local subdivision of Leipzig: city districts [Kommunale Gebietsgliederung Leipzig: Stadtbezirke]. https://opendata.leipzig.de/dataset/kommunale-gebietsgliederung-leipzig-stadtbezirke4987b (2020).

    51.
    Helbich, M. et al. Using deep learning to examine street view green and blue spaces and their associations with geriatric depression in Beijing China. Environ. Int. 126, 107–117 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    52.
    Thompson, C. W. et al. More green space is linked to less stress in deprived communities: Evidence from salivary cortisol patterns. Landsc. Urban Plan. 105, 221–229 (2012).
    Article  Google Scholar 

    53.
    Maas, J. et al. Morbidity is related to a green living environment. J. Epidemiol. Community Health 63, 967 (2009).
    CAS  PubMed  Article  Google Scholar 

    54.
    Honold, J., Lakes, T., Beyer, R. & van der Meer, E. Restoration in urban spaces: Nature views from home, greenways, and public parks. Environ. Behav. 48, 796–825 (2016).
    Article  Google Scholar 

    55.
    Zhao, J., Wu, J. & Wang, H. Characteristics of urban streets in relation to perceived restorativeness. J. Expo. Sci. Environ. Epidemiol. 30, 309–319 (2020).
    CAS  PubMed  Article  Google Scholar 

    56.
    Kuo, F. E. Coping with poverty—Impacts of environment and attention in the inner city. Environ. Behav. 33, 5–34 (2001).
    Article  Google Scholar 

    57.
    Giollabhui, N. M., Olino, T. M., Nielsen, J., Abramson, L. Y. & Alloy, L. B. Is worse attention a risk factor for or a consequence of depression, or are worse attention and depression better accounted for by stress? A prospective test of three hypotheses. Clin. Psychol. Sci. 7, 93–109 (2019).
    PubMed  Article  Google Scholar 

    58.
    Cohen, S. & Janicki-Deverts, D. Who’s stressed? Distributions of psychological stress in the United States in probability samples from 1983, 2006, and 2009. J. Appl. Soc. Psychol. 42, 1320–1334 (2012).
    Article  Google Scholar 

    59.
    St John, A. M., Kibbe, M. & Tarullo, A. R. A systematic assessment of socioeconomic status and executive functioning in early childhood. J. Exp. Child Psychol. 178, 352–368 (2019).
    PubMed  Article  Google Scholar 

    60.
    Dallimer, M. et al. Biodiversity and the feel-good factor: understanding associations between self-reported human well-being and species richness. Bioscience 62, 47–55 (2012).
    Article  Google Scholar 

    61.
    Cox, D. T. C. et al. Doses of neighborhood nature: The benefits for mental health of living with nature. Bioscience 67, 147–155 (2017).
    Google Scholar 

    62.
    Cracknell, D., White, M. P., Pahl, S. & Depledge, M. H. A preliminary investigation into the restorative potential of public aquaria exhibits: A UK student-based study. Landsc. Res. 42, 18–32 (2017).
    Article  Google Scholar 

    63.
    Vich, G., Marquet, O. & Miralles-Guasch, C. Green streetscape and walking: Exploring active mobility patterns in dense and compact cities. J. Transp. Heal. 12, 50–59 (2019).
    Article  Google Scholar 

    64.
    Cox, D. T. C., Hudson, H. L., Shanahan, D. F., Fuller, R. A. & Gaston, K. J. The rarity of direct experiences of nature in an urban population. Landsc. Urban Plan. 160, 79–84 (2017).
    Article  Google Scholar 

    65.
    Cox, D. T. C. et al. Skewed contributions of individual trees to indirect nature experiences. Landsc. Urban Plan. 185, 28–34 (2019).
    Article  Google Scholar 

    66.
    Chang, C. C. et al. Life satisfaction linked to the diversity of nature experiences and nature views from the window. Landsc. Urban Plan. 202, 103874 (2020).
    Article  Google Scholar 

    67.
    Dzhambov, A. M. et al. Does greenery experienced indoors and outdoors provide an escape and support mental health during the COVID-19 quarantine?. Environ. Res. 110420, 66. https://doi.org/10.1016/j.envres.2020.110420 (2020).
    CAS  Article  Google Scholar 

    68.
    Lindenmayer, D. B. & Laurance, W. F. The ecology, distribution, conservation and management of large old trees. Biol. Rev. 92, 1434–1458 (2017).
    PubMed  Article  Google Scholar 

    69.
    Lindenmayer, D. B., Laurance, W. F. & Franklin, J. F. Ecology: Global decline in large old trees. Science 338, 1305–1306 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    70.
    Simkin, J., Ojala, A. & Tyrväinen, L. Restorative effects of mature and young commercial forests, pristine old-growth forest and urban recreation forest—A field experiment. Urban For. Urban Green. 48, 126567 (2020).
    Article  Google Scholar 

    71.
    Anguelovski, I., Cole, H., Connolly, J. & Triguero-Mas, M. Do green neighbourhoods promote urban health justice?. Lancet Public Heal. 3, 66 (2018).
    Google Scholar 

    72.
    United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. United Nations Sustainable Knowledge Platform. Sustainable Development Goals https://sustainabledevelopment.un.org/post2015/transformingourworld (2015).

    73.
    Loeffler, M. et al. The LIFE-Adult-study: Objectives and design of a population-based cohort study with 10,000 deeply phenotyped adults in Germany. BMC Public Health 15, 691 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    74.
    WHO Collborating Centre for Drug Statistics Methodology. ATC/DDD Index: N06A Antidepressants. https://www.whocc.no/atc_ddd_index/?code=N06A (2019).

    75.
    Stadt Leipzig. Baumkataster und Statistik. https://www.leipzig.de/umwelt-und-verkehr/umwelt-und-naturschutz/baeume-und-baumschutz/stadtbaeume/baumkataster-und-statistik/ (2018).

    76.
    Kessler, R. C. & Essex, M. Marital status and depression: The importance of coping resources. Soc. Forces 61, 484–507 (1982).
    Article  Google Scholar 

    77.
    Lampert, T., Kroll, L., Müters, S. & Stolzenberg, H. Measurement of socioeconomic status in the German health interview and examination survey for adults (DEGS1). Bundesgesundheitsblatt Gesundheitsforsch. Gesundheitsschutz 56, 631–636 (2013).
    CAS  Article  Google Scholar 

    78.
    Fergusson, D. M., Boden, J. M. & Horwood, L. J. Tests of causal links between alcohol abuse or dependence and major depression. Arch. Gen. Psychiatry 66, 260–266 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    79.
    Covey, L. S., Glassman, A. H. & Stetner, F. Cigarette smoking and major depression. J. Addict. Dis. 17, 35–46 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    80.
    Zhao, G. et al. Depression and anxiety among US adults: Associations with body mass index. Int. J. Obes. 33, 257–266 (2009).
    CAS  Article  Google Scholar 

    81.
    Øverland, S. et al. Seasonality and symptoms of depression: A systematic review of the literature. Epidemiol. Psychiatr. Sci. 29, e31 (2020).
    Article  Google Scholar 

    82.
    Glaesmer, H. et al. Psychometric properties and population-based norms of the Life Orientation Test Revised (LOT-R). Br. J. Health Psychol. 17, 432–445 (2012).
    PubMed  Article  Google Scholar 

    83.
    Herzberg, P. Y., Glaesmer, H. & Hoyer, J. Separating optimism and pessimism: A robust psychometric analysis of the revised Life Orientation Test (LOT-R). Psychol. Assess. 18, 433–438 (2006).
    PubMed  Article  Google Scholar 

    84.
    Matthies, S. A., Rüter, S., Prasse, R. & Schaarschmidt, F. Factors driving the vascular plant species richness in urban green spaces: Using a multivariable approach. Landsc. Urban Plan. 134, 177–187 (2015).
    Article  Google Scholar  More

  • in

    Reanalysis datasets outperform other gridded climate products in vegetation change analysis in peripheral conservation areas of Central Asia

    1.
    Gaston, K. J., Jackson, S. F., Cantú-Salazar, L. & Cruz-Piñón, G. The Ecological Performance of Protected Areas. Annu. Rev. Ecol. Evol. Syst. 39, 93–113 (2008).
    Article  Google Scholar 
    2.
    Williams, S. E. et al. Research priorities for natural ecosystems in a changing global climate. Glob. Change Biol. 26, 410–416 (2020).
    ADS  Article  Google Scholar 

    3.
    Hoffmann, S., Irl, S. D. H. & Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun. 10, 4787 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    4.
    IUCN & UNEP. The World Database on Protected Areas (WDPA). www.protectedplanet.net. (UNEP-WCMC, 2018).

    5.
    Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A. & Ziese, M. GPCC Full Data Monthly Product Version 2018 at 0.25°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historical Data. 10.5676/DWD_GPCC/FD_M_V2018_025; ftp://ftp.dwd.de/pub/data/gpcc/html/fulldata-monthly_v2018_doi_download.html; accessed on 26 March 2019. (2018).

    6.
    Schneider, U., Finger, P., Meyer-Christoffer, A., Ziese, M. & Becker, A. Global Precipitation Analysis Products of the GPCC. Deutscher Wetterdienst, Abt. Hydrometeorologie, Weltzentrum für Niederschlagsklimatologie (WZN) 17 (2018).

    7.
    Hofstra, N., Haylock, M., New, M. & Jones, P. D. Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature. J. Geophys. Res. 114, D21101 (2009).
    ADS  Article  Google Scholar 

    8.
    Prein, A. F. & Gobiet, A. Impacts of uncertainties in European gridded precipitation observations on regional climate analysis: UNCERTAINTY IN EUROPEAN PRECIPITATION. Int. J. Climatol. 37, 305–327 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    9.
    Zandler, H., Haag, I. & Samimi, C. Evaluation needs and temporal performance differences of gridded precipitation products in peripheral mountain regions. Sci. Rep. 9, 15118 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    10.
    Liu, M. et al. Evaluation of high-resolution satellite rainfall products using rain gauge data over complex terrain in southwest China. Theor. Appl. Climatol. 119, 203–219 (2015).
    ADS  Article  Google Scholar 

    11.
    Fu, Y. et al. Assessment of multiple precipitation products over major river basins of China. Theor. Appl. Climatol. 123, 11–22 (2016).
    ADS  Article  Google Scholar 

    12.
    Hu, Z., Hu, Q., Zhang, C., Chen, X. & Li, Q. Evaluation of reanalysis, spatially interpolated and satellite remotely sensed precipitation data sets in central Asia: Central Asia Precipitation. J. Geophys. Res. Atmos. 121, 5648–5663 (2016).
    Article  Google Scholar 

    13.
    Hu, Z. et al. Evaluation of three global gridded precipitation data sets in central Asia based on rain gauge observations. Int. J. Climatol. 38, 3475–3493 (2018).
    Article  Google Scholar 

    14.
    Beck, H. E. et al. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. 21, 6201–6217 (2017).
    ADS  CAS  Article  Google Scholar 

    15.
    Iwasaki, H. NDVI prediction over Mongolian grassland using GSMaP precipitation data and JRA-25/JCDAS temperature data. J. Arid Environ. 73, 557–562 (2009).
    ADS  Article  Google Scholar 

    16.
    Gessner, U. et al. The relationship between precipitation anomalies and satellite-derived vegetation activity in Central Asia. Glob. Planet. Change 110, 74–87 (2013).
    ADS  Article  Google Scholar 

    17.
    Los, S. O. Testing gridded land precipitation data and precipitation and runoff reanalyses (1982–2010) between 45° S and 45° N with normalised difference vegetation index data. Hydrol. Earth Syst. Sci. 19, 1713–1725 (2015).
    ADS  Article  Google Scholar 

    18.
    Papagiannopoulou, C. et al. Vegetation anomalies caused by antecedent precipitation in most of the world. Environ. Res. Lett. 12, 074016 (2017).
    ADS  Article  Google Scholar 

    19.
    Chen, Z., Wang, W. & Fu, J. Vegetation response to precipitation anomalies under different climatic and biogeographical conditions in China. Sci. Rep. 10, 830 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Eckert, S., Hüsler, F., Liniger, H. & Hodel, E. Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J. Arid Environ. 113, 16–28 (2015).
    ADS  Article  Google Scholar 

    21.
    Otto, M., Höpfner, C., Curio, J., Maussion, F. & Scherer, D. Assessing vegetation response to precipitation in northwest Morocco during the last decade: an application of MODIS NDVI and high resolution reanalysis data. Theor. Appl. Climatol. 123, 23–41 (2016).
    ADS  Article  Google Scholar 

    22.
    Formica, A. F., Burnside, R. J. & Dolman, P. M. Rainfall validates MODIS-derived NDVI as an index of spatio-temporal variation in green biomass across non-montane semi-arid and arid Central Asia. J. Arid Environ. 142, 11–21 (2017).
    ADS  Article  Google Scholar 

    23.
    Wang, X., Wu, C., Peng, D., Gonsamo, A. & Liu, Z. Snow cover phenology affects alpine vegetation growth dynamics on the Tibetan Plateau: Satellite observed evidence, impacts of different biomes, and climate drivers. Agric. For. Meteorol. 256–257, 61–74 (2018).
    ADS  Article  Google Scholar 

    24.
    Verbyla, D. & Kurkowski, T. A. NDVI–Climate relationships in high-latitude mountains of Alaska and Yukon Territory. Arct. Antarct. Alp. Res. 51, 397–411 (2019).
    Article  Google Scholar 

    25.
    Breckle, S.-W. Flora and vegetation of Afghanistan. badr 1, 155–194 (2007).
    Article  Google Scholar 

    26.
    Bedunah, D. J., Shank, C. C. & Alavi, M. A. Rangelands of Band-e-Amir National Park and Ajar Provisional Wildlife Reserve, Afghanistan. Rangelands 32, 41–52 (2010).
    Article  Google Scholar 

    27.
    Pohl, E., Knoche, M., Gloaguen, R., Andermann, C. & Krause, P. Sensitivity analysis and implications for surface processes from a hydrological modelling approach in the Gunt catchment, high Pamir Mountains. Earth Surf. Dyn. 3, 333–362 (2015).
    ADS  Article  Google Scholar 

    28
    Soelberg, J. & Jäger, A. K. Comparative ethnobotany of the Wakhi agropastoralist and the Kyrgyz nomads of Afghanistan. J. Ethnobiol. Ethnomed. https://doi.org/10.1186/s13002-015-0063-x (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    29.
    Didan, K. MOD13Q1 MODIS/terra vegetation indices 16-day L3 global 250m SIN Grid V006. NASA EOSDIS Land Process. DAAC https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).

    30.
    Dinku, T. et al. Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Q. J. R. Meteorol. Soc. 144, 292–312 (2018).
    ADS  Article  Google Scholar 

    31.
    Sun, Q. et al. A review of global precipitation data sets: data sources, estimation, and intercomparisons. Rev. Geophys. 56, 79–107 (2018).
    ADS  Article  Google Scholar 

    32.
    Hall, D. K. & Riggs, G. A. MOD10A1 MODIS/Terra Snow Cover Daily L3 Global 500m SIN Grid, Version 6. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/MODIS/MOD10A1.006. Accessed on 25 March 2020. (2016).

    33.
    Wang, K. et al. Snow effects on alpine vegetation in the Qinghai-Tibetan Plateau. Int. J. Digit. Earth 8, 58–75 (2013).
    Article  Google Scholar 

    34.
    Chen, X., An, S., Inouye, D. W. & Schwartz, M. D. Temperature and snowfall trigger alpine vegetation green-up on the world’s roof. Glob. Change Biol. 21, 3635–3646 (2015).
    ADS  Article  Google Scholar 

    35.
    Asam, S. et al. Relationship between spatiotemporal variations of climate, snow cover and plant phenology over the Alps—an earth observation-based analysis. Remote Sens. 10, 1757 (2018).
    ADS  Article  Google Scholar 

    36.
    Funk, C. C. et al. CHIRPS-2.0. A quasi-global precipitation time series for drought monitoring: U.S. Geological Survey Data Series 832, 4 p. http://pubs.usgs.gov/ds/832/. Accessed on 25 March 2020. (2014).

    37.
    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).
    Article  Google Scholar 

    38.
    Copernicus Climate Change Service. C3S ERA5-Land reanalysis . Copernicus Climate Change Service, https://cds.climate.copernicus.eu/cdsapp#!/home. Accessed on 25 March 2020. (2019).

    39.
    Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A. & Ziese, M. GPCC Monitoring Product Version 6: Near Real-Time Monthly Land-Surface Precipitation from Rain-Gauges based on SYNOP and CLIMAT data. 10.5676/DWD_GPCC/MP_M_V6_100; ftp://ftp.dwd.de/pub/data/gpcc/monitoring_v6/. Accessed on 25 March 2020. (2018).

    40.
    Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J. & Jackson, T. GPM IMERG Final Precipitation L3 1 month 0.1 degree x 0.1 degree V06, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC),https://doi.org/10.5067/GPM/IMERG/3B-MONTH/06. Accessed on 25 March 2020. (2019).

    41.
    Global Modeling and Assimilation Office. MERRA-2 tavgM_2d_flx_Nx: 2d,Monthly mean,Time-Averaged,Single-Level,Assimilation,Surface Flux Diagnostics V5.12.4; https://doi.org/10.5067/0JRLVL8YV2Y4. Accessed on 25 March 2020. (Goddard Earth Sciences Data and Information Services Center (GES DISC), 2015).

    42.
    Unger-Shayesteh, K. et al. What do we know about past changes in the water cycle of Central Asian headwaters? A review. Glob. Planet. Change 110, 4–25 (2013).
    ADS  Article  Google Scholar 

    43.
    Amante, C. & Eakins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5C8276M, Accessed on 25 March 2020. (2009).

    44.
    Jpl, N. A. S. A. NASA shuttle radar topography mission global 1 arc second data set. NASA EOSDIS Land Process. DAAC. https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003 (2013).

    45.
    QGIS Development Team. GIS Geographic Information System. Version 3.12 București. Open Source Geospatial Foundation Project. http://qgis.osgeo.org/. (2020).

    46.
    Smallwood, P. D. & Shank, C. C. From buffer zone to national park: Afghanistan’s Wakhan National Park. In Collateral Values Vol. 25 (eds Lookingbill, T. R. & Smallwood, P. D.) 213–233 (Springer, Berlin, 2019).
    Google Scholar 

    47.
    Vanselow, K. A. The high-mountain pastures of the Eastern Pamirs (Tajikistan): an evaluation of the ecological basis and the pasture potential. (Erlangen, Nürnberg, Univ., Diss., 2011).

    48.
    Breckle, S. W. & Rafiqpoor, M. D. Field Guide Afghanistan—Flora and Vegetation. (Scientia Bonnensis, 2010).

    49.
    Moheb, Z. & Bradfield, D. Status of the common leopard in Afghanistan. ISSN 1027–2992. Cat News 61, (2014).

    50.
    Mohibbi, A. A. & Cochard, R. Residents’ resource uses and nature conservation in Band-e-Amir National Park, Afghanistan. Environ. Dev. 11, 141–161 (2014).
    Article  Google Scholar 

    51.
    Moqanaki, E. M. et al. Distribution and status of the Pallas’s cat in the south-west part of its range. ISSN 1027–2992. Cat News Special Issue 13, (2019).

    52.
    Gray, T. I. & Tapley, B. D. Vegetation health: Nature’s climate monitor. Adv. Space Res. 5, 371–377 (1985).
    ADS  Article  Google Scholar 

    53.
    Sun, J. & Qin, X. Precipitation and temperature regulate the seasonal changes of NDVI across the Tibetan Plateau. Environ. Earth Sci. 75, 291 (2016).
    Article  Google Scholar 

    54.
    Anyamba, A. & Tucker, C. J. Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. J. Arid Environ. 63, 596–614 (2005).
    ADS  Article  Google Scholar 

    55.
    Quetin, G. R. & Swann, A. L. S. Empirically derived sensitivity of vegetation to climate across global gradients of temperature and precipitation. J. Clim. 30, 5835–5849 (2017).
    ADS  Article  Google Scholar 

    56
    Meroni, M., Fasbender, D., Rembold, F., Atzberger, C. & Klisch, A. Near real-time vegetation anomaly detection with MODIS NDVI: timeliness vs. accuracy and effect of anomaly computation options. Remote Sens. Environ. 221, 508–521 (2019).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Rita, A. et al. The impact of drought spells on forests depends on site conditions: the case of 2017 summer heat wave in southern Europe. Glob. Change Biol. 26, 851–863 (2020).
    ADS  Article  Google Scholar 

    58.
    Kandasamy, S., Baret, F., Verger, A., Neveux, P. & Weiss, M. A comparison of methods for smoothing and gap filling time series of remote sensing observations – application to MODIS LAI products. Biogeosciences 10, 4055–4071 (2013).
    ADS  Article  Google Scholar 

    59.
    Liu, R., Shang, R., Liu, Y. & Lu, X. Global evaluation of gap-filling approaches for seasonal NDVI with considering vegetation growth trajectory, protection of key point, noise resistance and curve stability. Remote Sens. Environ. 189, 164–179 (2017).
    ADS  Article  Google Scholar 

    60.
    Zandler, H., Brenning, A. & Samimi, C. Quantifying dwarf shrub biomass in an arid environment: comparing empirical methods in a high dimensional setting. Remote Sens. Environ. 158, 140–155 (2015).
    ADS  Article  Google Scholar 

    61.
    Hyndman, R. J. Discussion of ‘High-dimensional autocovariance matrices and optimal linear prediction’. Electron. J. Stat. 9, 792–796 (2015).
    MathSciNet  MATH  Article  Google Scholar 

    62.
    Propastin, P. A., Kappas, M. & Muratova, N. R. Inter-annual changes in vegetation activities and their relationship to temperature and precipitation in Central Asia from 1982 to 2003. J. Environ. Inf. 12, 75–87 (2008).
    Article  Google Scholar 

    63
    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
    ADS  Article  Google Scholar 

    64.
    Parker, W. S. Reanalyses and observations: what’s the difference?. Bull. Am. Meteorol. Soc. 97, 1565–1572 (2016).
    ADS  Article  Google Scholar 

    65.
    El Kenawy, A. M. & McCabe, M. F. A multi-decadal assessment of the performance of gauge- and model-based rainfall products over Saudi Arabia: climatology, anomalies and trends: RAINFALL PRODUCTS IN SAUDI ARABIA. Int. J. Climatol. 36, 656–674 (2016).
    Article  Google Scholar 

    66.
    Song, S. & Bai, J. Increasing winter precipitation over arid Central Asia under global warming. Atmosphere 7, 139 (2016).
    ADS  Article  Google Scholar 

    67.
    Ahmed, K., Shahid, S., Wang, X., Nawaz, N. & Najeebullah, K. Evaluation of gridded precipitation datasets over arid regions of Pakistan. Water 11, 210 (2019).
    Article  Google Scholar 

    68.
    Anjum, M. N. et al. Performance evaluation of latest integrated multi-satellite retrievals for Global Precipitation Measurement (IMERG) over the northern highlands of Pakistan. Atmos. Res. 205, 134–146 (2018).
    Article  Google Scholar 

    69.
    Gelaro, R. et al. The modern-era retrospective analysis for research and applications, Version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Reichle, R. H. et al. Land surface precipitation in MERRA-2. J. Clim. 30, 1643–1664 (2017).
    ADS  Article  Google Scholar 

    71.
    Peng, S., Piao, S., Ciais, P., Fang, J. & Wang, X. Change in winter snow depth and its impacts on vegetation in China. Glob. Change Biol. https://doi.org/10.1111/j.1365-2486.2010.02210.x (2010).
    Article  Google Scholar 

    72.
    Qiu, B. et al. Satellite-observed solar-induced chlorophyll fluorescence reveals higher sensitivity of alpine ecosystems to snow cover on the Tibetan Plateau. Agric. For. Meteorol. 271, 126–134 (2019).
    ADS  Article  Google Scholar 

    73.
    Hall, D. K., Riggs, G. A., DiGirolamo, N. E. & Román, M. O. Evaluation of MODIS and VIIRS cloud-gap-filled snow-cover products for production of an Earth science data record. Hydrol. Earth Syst. Sci. 23, 5227–5241 (2019).
    ADS  Article  Google Scholar 

    74.
    Salomonson, V. V. & Appel, I. Development of the Aqua MODIS NDSI fractional snow cover algorithm and validation results. IEEE Trans. Geosci. Remote Sens. 44, 1747–1756 (2006).
    ADS  Article  Google Scholar 

    75.
    Riggs, G., Hall, D. & Román, M. O. VIIRS Snow Cover Algorithm Theoretical Basis Document (ATBD). 38 (2015).

    76
    Zhu, A.-X. Resampling Raster. In International Encyclopedia of Geography: People, the Earth, Environment and Technology (eds Richardson, D. et al.) 1–5 (Wiley, New York, 2017). https://doi.org/10.1002/9781118786352.wbieg0878.
    Google Scholar 

    77.
    Behnke, R. et al. Evaluation of downscaled, gridded climate data for the conterminous United States. Ecol. Appl. 26, 1338–1351 (2016).
    CAS  PubMed  Article  Google Scholar 

    78.
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
    MATH  Article  Google Scholar 

    79.
    Zandler, H. Wakhan Rangeland Assessment Report 2018. Unpublished report. (2018).

    80.
    Camberlin, P., Martiny, N., Philippon, N. & Richard, Y. Determinants of the interannual relationships between remote sensed photosynthetic activity and rainfall in tropical Africa. Remote Sens. Environ. 106, 199–216 (2007).
    ADS  Article  Google Scholar 

    81.
    Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. 110, 52–57 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    82.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    83.
    Peña, M. A., Brenning, A. & Sagredo, A. Constructing satellite-derived hyperspectral indices sensitive to canopy structure variables of a Cordilleran Cypress (Austrocedrus chilensis) forest. ISPRS J. Photogram. Remote Sens. 74, 1–10 (2012).
    Article  Google Scholar 

    84.
    Zandler, H., Brenning, A. & Samimi, C. Potential of space-borne hyperspectral data for biomass quantification in an arid environment: advantages and limitations. Remote Sens. 7, 4565–4580 (2015).
    ADS  Article  Google Scholar 

    85
    Efron, B. & Tibshirani, R. An Introduction to the Bootstrap (Chapman & Hall, London, 1993).
    Google Scholar 

    86.
    Banik, S. & Kibria, B. M. Confidence intervals for the population correlation coefficient ρ. Int. J. Stats. Med. Res. 5, 99–111 (2016).
    Article  Google Scholar 

    87.
    Mudelsee, M. Estimating Pearson’s correlation coefficient with bootstrap confidence interval from serially dependent time series. Math. Geol. 35, 651–665 (2003).
    MATH  Article  Google Scholar 

    88.
    Abdi, A. M. et al. The El Niño – La Niña cycle and recent trends in supply and demand of net primary productivity in African drylands. Clim. Change 138, 111–125 (2016).
    ADS  Article  Google Scholar 

    89.
    Lima, E., Davies, P., Kaler, J., Lovatt, F. & Green, M. Variable selection for inferential models with relatively high-dimensional data: Between method heterogeneity and covariate stability as adjuncts to robust selection. Sci. Rep. 10, 8002 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    90.
    Degenhardt, F., Seifert, S. & Szymczak, S. Evaluation of variable selection methods for random forests and omics data sets. Brief. Bioinform. 20, 492–503 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    91
    Kursa, M. B. & Rudnicki, W. R. Feature selection with the Boruta package. J. Stat. Soft. https://doi.org/10.18637/jss.v036.i11 (2010).
    Article  Google Scholar 

    92.
    Diesing, M. Deep-sea sediments of the global ocean. https://essd.copernicus.org/preprints/essd-2020-22/ (2020) 10.5194/essd-2020-22.

    93.
    R Core Team. R: A Language and Environment for Statistical Computing. Version 4.0.3. https://www.R-project.org/. (R Foundation for Statistical Computing, 2020).

    94.
    Daham, A., Han, D., Rico-Ramirez, M. & Marsh, A. Analysis of NVDI variability in response to precipitation and air temperature in different regions of Iraq, using MODIS vegetation indices. Environ. Earth Sci. 77, 389 (2018).
    Article  Google Scholar 

    95.
    Chen, S., Gan, T. Y., Tan, X., Shao, D. & Zhu, J. Assessment of CFSR, ERA-Interim, JRA-55, MERRA-2, NCEP-2 reanalysis data for drought analysis over China. Clim. Dyn. 53, 737–757 (2019).
    Article  Google Scholar 

    96
    Kath, J. et al. Not so robust: robusta coffee production is highly sensitive to temperature. Glob. Change Biol. https://doi.org/10.1111/gcb.15097 (2020).
    Article  Google Scholar 

    97.
    Mahto, S. S. & Mishra, V. Does ERA-5 outperform other reanalysis products for hydrologic applications in India?. J. Geophys. Res. Atmos. 124, 9423–9441 (2019).
    ADS  Article  Google Scholar 

    98.
    Royé, D., Íñiguez, C. & Tobías, A. Comparison of temperature–mortality associations using observed weather station and reanalysis data in 52 Spanish cities. Environ. Res. 183, 109237 (2020).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    99.
    Dee, D. P., Källén, E., Simmons, A. J. & Haimberger, L. Comments on “Reanalyses Suitable for Characterizing Long-Term Trends”. Bull. Am. Meteorol. Soc. 92, 65–70 (2011).
    ADS  Article  Google Scholar 

    100.
    Rasmussen, R. et al. How well are we measuring snow: the NOAA/FAA/NCAR winter precipitation test bed. Bull. Am. Meteorol. Soc. 93, 811–829 (2012).
    ADS  Article  Google Scholar 

    101.
    Yuan, X., Li, L. & Chen, X. Increased grass NDVI under contrasting trends of precipitation change over North China during 1982–2011. Remote Sens. Lett. 6, 69–77 (2015).
    Article  Google Scholar 

    102.
    Wang, X., Ciais, P., Wang, Y. & Zhu, D. Divergent response of seasonally dry tropical vegetation to climatic variations in dry and wet seasons. Glob. Change Biol. 24, 4709–4717 (2018).
    ADS  Article  Google Scholar 

    103
    Basheer, M. & Elagib, N. A. Performance of satellite-based and GPCC 7.0 rainfall products in an extremely data-scarce country in the Nile Basin. Atmos. Res. 215, 128–140 (2019).
    Article  Google Scholar 

    104.
    Piazzi, G. et al. Cross-country assessment of H-SAF snow products by sentinel-2 imagery validated against in-situ observations and webcam photography. Geosciences 9, 129 (2019).
    ADS  Article  Google Scholar 

    105.
    Lievens, H. et al. Snow depth variability in the Northern Hemisphere mountains observed from space. Nat. Commun. 10, 4629 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    106.
    Sur, C., Park, S.-Y., Kim, T.-W. & Lee, J.-H. Remote sensing-based agricultural drought monitoring using hydrometeorological variables. KSCE J. Civ. Eng. 23, 5244–5256 (2019).
    Article  Google Scholar 

    107.
    Geruo, A., Velicogna, I., Zhao, M., Colliander, A. & Kimball, J. S. Satellite detection of varying seasonal water supply restrictions on grassland productivity in the Missouri basin, USA. Remote Sens. Environ. 239, 111623 (2020).
    ADS  Article  Google Scholar 

    108.
    Lu, X. et al. Correcting GPM IMERG precipitation data over the Tianshan Mountains in China. J. Hydrol. 575, 1239–1252 (2019).
    ADS  Article  Google Scholar 

    109.
    Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    110.
    Bai, L., Shi, C., Li, L., Yang, Y. & Wu, J. Accuracy of CHIRPS satellite-rainfall products over Mainland China. Remote Sens. 10, 362 (2018).
    ADS  Article  Google Scholar 

    111.
    Berg, A. A., Famiglietti, J. S., Walker, J. P. & Houser, P. R. Impact of bias correction to reanalysis products on simulations of North American soil moisture and hydrological fluxes. J. Geophys. Res. 108, ACL2-1-ACL2-5 (2003).
    Google Scholar 

    112.
    Sahoo, A. K., Sheffield, J., Pan, M. & Wood, E. F. Evaluation of the tropical rainfall measuring mission multi-satellite precipitation analysis (TMPA) for assessment of large-scale meteorological drought. Remote Sens. Environ. 159, 181–193 (2015).
    ADS  Article  Google Scholar 

    113.
    Zambrano, F., Wardlow, B., Tadesse, T., Lillo-Saavedra, M. & Lagos, O. Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile. Atmos. Res. 186, 26–42 (2017).
    Article  Google Scholar 

    114.
    Dörre, A. Local knowledge-based water management and irrigation in the western pamirs. Int. J. EI 1, 254–266 (2018).
    Article  Google Scholar  More

  • in

    Uncovering the chemistry behind inducible morphological defences in the crustacean Daphnia magna via micro-Raman spectroscopy

    1.
    Currey, J. D. The failure of exoskeletons and endoskeletons. J. Morphol. 123, 1–16 (1967).
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Taylor, D. & Dirks, J.-H. Shape optimization in exoskeletons and endoskeletons: a biomechanics analysis. J. R. Soc. Interface 9, 3480–3489 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    3.
    Boßelmann, F., Romano, P., Fabritius, H., Raabe, D. & Epple, M. The composition of the exoskeleton of two crustacea: The American lobster Homarusamericanus and the edible crab Cancerpagurus. Thermochim. Acta 463, 65–68 (2007).
    Article  CAS  Google Scholar 

    4.
    Tynyakov, J. et al. A crayfish molar tooth protein with putative mineralized exoskeletal chitinous matrix properties. J. Exp. Biol. 218, 3487–3498 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Sugawara, A. et al. Self-organization of oriented calcium carbonate/polymer composites: Effects of a matrix peptide isolated from the exoskeleton of a crayfish. Angew. Chemie – Int. Ed. 45, 2876–2879 (2006).
    CAS  Article  Google Scholar 

    6.
    Inoue, H., Ozaki, N. & Nagasawa, H. Purification and structural determination of a phosphorylated peptide with anti-calcification and chitin-binding activities in the exoskeleton of the crayfish, Procambarus clarkii. Biosci. Biotechnol. Biochem. 65, 1840–1848 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Taylor, J. R. A., Hebrank, J. & Kier, W. M. Mechanical properties of the rigid and hydrostatic skeletons of molting blue crabs, Callinectes sapidus Rathbun. J. Exp. Biol. 210, 4272–4278 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    8.
    Chen, P. Y., Lin, A. Y. M., McKittrick, J. & Meyers, M. A. Structure and mechanical properties of crab exoskeletons. Acta Biomater. 4, 587–596 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    9.
    Cribb, B. W. et al. Structure, composition and properties of naturally occuring non-calcified crustacean cuticle. Arthropod Struct. Dev. 38, 173–178 (2009).
    CAS  PubMed  Article  Google Scholar 

    10.
    Bentov, S., Weil, S., Glazer, L., Sagi, A. & Berman, A. Stabilization of amorphous calcium carbonate by phosphate rich organic matrix proteins and by single phosphoamino acids. J. Struct. Biol. 171, 207–215 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Halcrow, K. Cell and tissue the fine structure of the carapace integument of Daphniamagna Straus (Crustacea Branchiopoda). Cell Tissue Res. 276, 267–276 (1976).
    Google Scholar 

    12.
    Benzie, J. A. H. Cladocera: The Genus Daphnia (Including Daphniopsis) Benzie Teil 1. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World Vol. 21 (2005).

    13.
    Harvell, C. D. & Tollrian, R. The Ecology and Evolution of Inducible Defenses Vol. 65. (Princeton University Press, Princeton, 1999).

    14.
    Laforsch, C., Beccara, L. & Tollrian, R. Inducible defenses The relevance of chemical alarm cues in Daphnia. Limnol. Oceanogr. 51, 1466–1472 (2006).
    ADS  Article  Google Scholar 

    15.
    Tollrian, R. Predator-induced morphological defenses: Costs, life history shifts, and maternal effects in Daphniapulex. Ecology 76, 1691–1705 (1995).
    Article  Google Scholar 

    16.
    Van Der Stap, I., Vos, M. & Mooij, W. M. Inducible defenses and rotifer food chain dynamics. Hydrobiologia 593, 103–110 (2007).
    Article  CAS  Google Scholar 

    17.
    Altwegg, R., Marchinko, K. B., Duquette, S. L. & Anholt, B. R. Dynamics of an inducible defence in the protist Euplotes. Arch. Hydrobiol. 160, 431–446 (2004).
    Article  Google Scholar 

    18.
    Frost, S. D. W. The immune system as an inducible defense. in The Ecology and Evolution of Inducible Defenses 104–126 (1999).

    19.
    Grant, J. W. G. W. G. & Bayly, I. A. E. Predator induction of crests in morphs of the Daphnia carinata King complex. Limnol. Oceanogr. 26, 201–218 (1981).

    20.
    Laforsch, C. & Tollrian, R. Inducible defenses in multipredator environments: Cyclomorphosis in Daphniacucullata. Ecology 85, 2302–2311 (2004).
    Article  Google Scholar 

    21.
    Ritschar, S., Rabus, M. & Laforsch, C. Predator-specific inducible morphological defenses of a water flea against two freshwater predators. J. Morphol. 281, 653–661 (2020).
    PubMed  Article  Google Scholar 

    22.
    Laforsch, C., Ngwa, W., Grill, W. & Tollrian, R. An acoustic microscopy technique reveals hidden morphological defenses in Daphnia. PNAS 101, 15911–15914 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    23.
    Rabus, M., Söllradl, T., Clausen-Schaumann, H. & Laforsch, C. Uncovering ultrastructural defences in Daphniamagna. PLoS ONE 8, e67856 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Otte, K. A., Fröhlich, T., Arnold, G. J. & Laforsch, C. Proteomic analysis of Daphniamagna hints at molecular pathways involved in defensive plastic responses. BMC Genomics 15, 306 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Otte, K. A., Schrank, I., Fröhlich, T., Arnold, G. J. & Laforsch, C. Interclonal proteomic responses to predator exposure in Daphnia magna may depend on predator composition of habitats. Mol. Ecol. 24, 3901–3917 (2015).

    26.
    Krafft, C. et al. Label-free molecular imaging of biological cells and tissues by linear and nonlinear Raman spectroscopic approaches. Angew. Chem. Int. Ed. 56, 4392–4430 (2017).
    CAS  Article  Google Scholar 

    27.
    Butler, H. J. et al. Using Raman spectroscopy to characterize biological materials. Nat. Protoc. 11, 664–687 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Kuhar, N., Sil, S., Verma, T. & Umapathy, S. Challenges in application of Raman spectroscopy to biology and materials. RSC Adv. 8, 25888–25908 (2018).
    CAS  Article  Google Scholar 

    29.
    Talari, A. C. S., Movasaghi, Z., Rehman, S. & Rehman, I. U. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 50, 46–111 (2015).
    ADS  CAS  Article  Google Scholar 

    30.
    Kruppert, S. et al. Push or Pull? The light-weight architecture of the Daphniapulex carapace is adapted to withstand tension, not compression. J. Morphol. 277, 1320–1328 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Gierlinger, N., Reisecker, C., Hild, S. & Gamsjaeger, S. Raman microscopy: Insights into chemistry and structure of biological materials. in Materials Design Inspired by Nature: Function Through Inner Architecture. 151–179 (2013). https://doi.org/10.1039/9781849737555-00151.

    32.
    Rabus, M., Waterkeyn, A., Van Pottelbergh, N., Brendonck, L. & Laforsch, C. Interclonal variation, effectiveness and long-term implications of Triops-induced morphological defences in Daphniamagna Strauss. J. Plankton Res. 34, 152–160 (2012).
    Article  Google Scholar 

    33.
    Rabus, M. & Laforsch, C. Growing large and bulky in the presence of the enemy. Funct. Ecol. 25, 1137–1143 (2011).
    Article  Google Scholar 

    34.
    Nikolov, S. et al. Robustness and optimal use of design principles of arthropod exoskeletons studied by ab initio-based multiscale simulations. J. Mech. Behav. Biomed. Mater. 4, 129–145 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Al-Sawalmih, A., Li, C., Siegel, S., Fratzl, P. & Paris, O. On the stability of amorphous minerals in lobster cuticle. Adv. Mater. 21, 4011–4015 (2009).
    CAS  Article  Google Scholar 

    36.
    Luquet, G. Biomineralizations: Insights and prospects from crustaceans. Zookeys 176, 103–121 (2012).
    Article  Google Scholar 

    37.
    Becker, A., Ziegler, A. & Epple, M. The mineral phase in the cuticles of two species of crustacea consists of magnesium calcite, amorphous calcium carbonate and amorphous calcium phosphate. R. Soc. Chem. 1814–1820 (2005).

    38.
    Roer, R. & Dillaman, R. The structure and clacification of the crustacean cuticle. Am. Zool. 24, 893–909 (1984).
    CAS  Article  Google Scholar 

    39.
    Gower, L. B. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 108, 4551–4627 (2008).
    CAS  PubMed  Article  Google Scholar 

    40.
    Bots, P., Benning, L. G., Rodriguez-Blanco, J.-D., Roncal-Herrero, T. & Shaw, S. Mechanistic insights into the crystallization of amorphous calcium carbonate (ACC). Cryst. Growth Des. 12, 3806–3814 (2012).
    CAS  Article  Google Scholar 

    41.
    Addadi, L., Raz, S. & Weiner, S. Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Adv. Mater. 15, 959–970 (2003).
    CAS  Article  Google Scholar 

    42.
    Kawasaki, T. et al. Crystalline calcium phosphate and magnetic mineral content of Daphnia resting eggs. Zool. Sci. 21, 63–67 (2004).
    CAS  Article  Google Scholar 

    43.
    Gerrish, G. A. & Cáceres, C. E. Genetic versus environmental influence on pigment variation in the ephippia of Daphniapulicaria. Freshw. Biol. 48, 1971–1982 (2003).
    Article  Google Scholar 

    44.
    Bentov, S., Abehsera, S. & Sagi, A. The mineralized exoskeletons of crustaceans. in (Cohen, E., Moussian, B. eds) Extracellular Composite Matrices in Arthropods 137–163. (Springer, Cham, 2016). https://doi.org/10.1007/978-3-319-40740-1.

    45.
    Weiner, S., Levi-Kalisman, Y., Raz, S. & Addadi, L. Biologically formed amorphous calcium carbonate. Connect. Tissue Res. 44, 214–218 (2003).
    CAS  PubMed  Article  Google Scholar 

    46.
    Hessen, D. A. G. O. & Rukke, N. A. The costs of moulting in Daphnia; mineral regulation of carbon budgets. Freshw. Biol. 1, 169–178 (2000).
    Article  Google Scholar 

    47.
    Waervagen, S. B., Rukke, N. A. & Hessen, D. O. Calcium content of crustacean zooplankton and its potential role in species distribution. Freshw. Biol. 47, 1866–1878 (2002).
    CAS  Article  Google Scholar 

    48.
    Nikolov, S. et al. Revealing the design principles of high-performance biological composites using Ab initio and multiscale simulations: The example of lobster cuticle. Adv. Mater. 22, 519–526 (2010).
    CAS  PubMed  Article  Google Scholar 

    49.
    Bentov, S., Aflalo, E. D., Tynyakov, J., Glazer, L. & Sagi, A. Calcium phosphate mineralization is widely applied in crustacean mandibles. Sci. Rep. 6, 1–10 (2016).
    Article  CAS  Google Scholar 

    50.
    Raabe, D., Al-Sawalmih, A., Yi, S. B. & Fabritius, H. Preferred crystallographic texture of α-chitin as a microscopic and macroscopic design principle of the exoskeleton of the lobster Homarus americanus. Acta Biomater. 3, 882–895 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Raabe, D. et al. Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue. J. Cryst. Growth 283, 1–7 (2005).
    ADS  CAS  Article  Google Scholar 

    52.
    Kruppert, S. et al. Biomechanical properties of predator-induced body armour in the freshwater crustacean Daphnia. Sci. Rep. 7, 1–13 (2017).
    Article  Google Scholar 

    53.
    Azan, S. S. E. & Arnott, S. E. The impact of calcium decline on population growth rates of crustacean zooplankton in Canadian Shield lakes. Limnol. Oceanogr. 602–616 (2017). https://doi.org/10.1002/lno.10653.

    54.
    Riessen, H. P. et al. Changes in water chemistry can disable plankton prey defenses. Proc. Natl. Acad. Sci. U. S. A. 109, 15377–15382 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Tan, Q.-G. & Wang, W.-X. The regulation of calcium in Daphniamagna reared in different calcium environments. Limnol. Oceanogr. 54, 746–756 (2009).
    ADS  CAS  Article  Google Scholar 

    56.
    Elendt, B. P. Selenium deficiency in Crustacea. Protoplasma 154, 25–33 (1990).
    CAS  Article  Google Scholar 

    57.
    Team, R. C. R: A Language and Environment for Statistical Computing. (2008).

    58.
    Ramoji, A. et al. Raman Spectroscopy follows time-dependent changes in T lymphocytes isolated from spleen of endotoxemic mice. ImmunoHorizons 3, 45–60 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Chaturvedi, D. et al. Different phases of breast cancer cells: Raman study of immortalized, transformed, and invasive cells. Biosensors 6 (2016).

    60.
    Laforsch & Tollrian. A new preparation technique of daphnids for Scanning Electron Microscopy using hexamethyldisilazane. rch. Hydrobiol. 149, 587–596 (2000).

    61.
    Rohlf, F. J. & Sokal, R. R. Statistical tables. (1995). More

  • in

    A cross-species interaction with a symbiotic commensal enables cell-density-dependent growth and in vivo virulence of an oral pathogen

    1.
    Miller MB, Bassler BL. Quorum sensing in bacteria. Ann Rev Microbiol. 2001;55:165–99.
    CAS  Article  Google Scholar 
    2.
    Whiteley M, Diggle SP, Greenberg EP. Progress in and promise of bacterial quorum sensing research. Nat. 2017;551:313–20.
    CAS  Article  Google Scholar 

    3.
    Grossman AD. Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Ann Rev Genet. 1995;29:477–508.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Kaprelyants AS, Kell DB. Do bacteria need to communicate with each other for growth? Trends Microbiol. 1996;4:237–42.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Mukamolova GV, Kaprelyants AS, Young DI, Young M, Kell DB. A bacterial cytokine. Proc Natl Acad Sci USA. 1998;95:8916–21.
    CAS  PubMed  Article  Google Scholar 

    6.
    Lankford CE, Walker JR, Reeves JB, Nabbut NH, Byers BR, Jones RJ. Inoculum-dependent division lag of Bacillus cultures and its relation to an endogenous factor(s) (“schizokinen”). J Bacteriol. 1966;91:1070–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Halmann M, Benedict M, Mager J. Nutritional Requirements of Pasteurella tularensis for Growth from Small Inocula. J Gen Microbiol. 1967;49:451–60.
    Article  Google Scholar 

    8.
    Jannasch HW. Bacterial growth at low population densities. Nat. 1962;196:496–7.
    CAS  Article  Google Scholar 

    9.
    Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, Strausbaugh LD, et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 2013;7:1016–25.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Schincaglia GP, Hong BY, Rosania A, Barasz J, Thompson A, Sobue T, et al. Clinical, immune, and microbiome traits of gingivitis and peri-implant mucositis. J Dent Res. 2017;96:47–55.
    CAS  PubMed  Article  Google Scholar 

    11.
    Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, Yang ZK, et al. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J. 2012;6:1176–85.
    CAS  PubMed  Article  Google Scholar 

    12.
    Kolenbrander PE, Palmer RJ Jr, Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol. 2010;8:471–80.
    CAS  PubMed  Article  Google Scholar 

    13.
    Loe H, Theilade E, Jensen SB. Experimental gingivitis in man. J Periodontol. 1965;36:177–87.
    CAS  PubMed  Article  Google Scholar 

    14.
    Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015;15:30–44.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Kuboniwa M, Houser JR, Hendrickson EL, Wang Q, Alghamdi SA, Sakanaka A, et al. Metabolic crosstalk regulates Porphyromonas gingivalis colonization and virulence during oral polymicrobial infection. Nat Microbiol. 2017;2:1493–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Zhou P, Li X, Huang IH, Qi F. Veillonella catalase protects the growth of Fusobacterium nucleatum in microaerophilic and Streptococcus gordonii-resident environments. Appl Environ Microbiol. 2017;83:19.
    Google Scholar 

    17.
    Stacy A, Fleming D, Lamont RJ, Rumbaugh KP, Whiteley M. A commensal bacterium promotes virulence of an opportunistic pathogen via cross-respiration. mBio. 2016;7:3.
    Article  Google Scholar 

    18.
    Lyons SR, Griffen AL, Leys EJ. Quantitative real-time PCR for Porphyromonas gingivalis and total bacteria. J Clin Microbiol. 2000;38:2362–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Hong BY, Furtado Araujo MV, Strausbaugh LD, Terzi E, Ioannidou E, Diaz PI. Microbiome profiles in periodontitis in relation to host and disease characteristics. PloS ONE. 2015;10:e0127077.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    20.
    Tanner AC, Kent R Jr, Kanasi E, Lu SC, Paster BJ, Sonis ST, et al. Clinical characteristics and microbiota of progressing slight chronic periodontitis in adults. J Clin Periodontol. 2007;34:917–30.
    CAS  PubMed  Article  Google Scholar 

    21.
    Yost S, Duran-Pinedo AE, Teles R, Krishnan K, Frias-Lopez J. Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis. Genome Med. 2015;7:27.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Maekawa T, Krauss JL, Abe T, Jotwani R, Triantafilou M, Triantafilou K, et al. Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis. Cell Host Microbe. 2014;15:768–78.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Hajishengallis G, Liang S, Payne MA, Hashim A, Jotwani R, Eskan MA, et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe. 2011;10:497–506.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Lamell CW, Griffen AL, McClellan DL, Leys EJ. Acquisition and colonization stability of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in children. J Clin Microbiol. 2000;38:1196–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Teles FR, Teles RP, Sachdeo A, Uzel NG, Song XQ, Torresyap G, et al. Comparison of microbial changes in early redeveloping biofilms on natural teeth and dentures. J Periodontol. 2012;83:1139–48.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Naginyte M, Do T, Meade J, Devine DA, Marsh PD. Enrichment of periodontal pathogens from the biofilms of healthy adults. Sci Rep. 2019;9:5491.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Davey ME. Techniques for the growth of Porphyromonas gingivalis biofilms. Periodontol 2000. 2006;42:27–35.
    PubMed  Article  Google Scholar 

    28.
    James CE, Hasegawa Y, Park Y, Yeung V, Tribble GD, Kuboniwa M, et al. LuxS involvement in the regulation of genes coding for hemin and iron acquisition systems in Porphyromonas gingivalis. Infec Immun. 2006;74:3834–44.
    CAS  Article  Google Scholar 

    29.
    Bizhang M, Ellerbrock B, Preza D, Raab W, Singh P, Beikler T, et al. Detection of nine microorganisms from the initial carious root lesions using a TaqMan-based real-time PCR. Oral Dis. 2011;17:642–52.
    CAS  PubMed  Article  Google Scholar 

    30.
    Byrne SJ, Dashper SG, Darby IB, Adams GG, Hoffmann B, Reynolds EC. Progression of chronic periodontitis can be predicted by the levels of Porphyromonas gingivalis and Treponema denticola in subgingival plaque. Oral Microbiol Immunol. 2009;24:469–77.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Huang S, Li R, Zeng X, He T, Zhao H, Chang A, et al. Predictive modeling of gingivitis severity and susceptibility via oral microbiota. ISME J. 2014;8:1768–80.
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Camelo-Castillo A, Novoa L, Balsa-Castro C, Blanco J, Mira A, Tomas I. Relationship between periodontitis-associated subgingival microbiota and clinical inflammation by 16S pyrosequencing. J Clin Periodontol. 2015;42:1074–82.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Kirst ME, Li EC, Alfant B, Chi YY, Walker C, Magnusson I, et al. Dysbiosis and alterations in predicted functions of the subgingival microbiome in chronic periodontitis. Appl Environ Microbiol. 2015;81:783–93.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    34.
    Kistler JO, Booth V, Bradshaw DJ, Wade WG. Bacterial community development in experimental gingivitis. PloS ONE. 2013;8:e71227.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    The-Human-Microbiome-Project-Consortium. Structure, function and diversity of the healthy human microbiome. Nat. 2012;486:207–14.
    Article  CAS  Google Scholar 

    36.
    Ganesan SM, Joshi V, Fellows M, Dabdoub SM, Nagaraja HN, O’Donnell B, et al. A tale of two risks: smoking, diabetes and the subgingival microbiome. ISME J. 2017;11:2075–89.
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Abe T, Hajishengallis G. Optimization of the ligature-induced periodontitis model in mice. J Immunol Methods. 2013;394:49–54.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Price RR, Viscount HB, Stanley MC, Leung KP. Targeted profiling of oral bacteria in human saliva and in vitro biofilms with quantitative real-time PCR. Biofouling 2007;23:203–13.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Albuquerque P, Nicola AM, Nieves E, Paes HC, Williamson PR, Silva-Pereira I, et al. Quorum sensing-mediated, cell density-dependent regulation of growth and virulence in Cryptococcus neoformans. mBio 2013;5:e00986–13.
    PubMed  PubMed Central  Google Scholar 

    42.
    Chen H, Fujita M, Feng Q, Clardy J, Fink GR. Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci USA. 2004;101:5048–52.
    CAS  PubMed  Article  Google Scholar 

    43.
    Yoshida M, Kashiwagi K, Shigemasa A, Taniguchi S, Yamamoto K, Makinoshima H, et al. A unifying model for the role of polyamines in bacterial cell growth, the polyamine modulon. J Biol Chem. 2004;279:46008–13.
    CAS  PubMed  Article  Google Scholar 

    44.
    Dutzan N, Abusleme L, Bridgeman H, Greenwell-Wild T, Zangerle-Murray T, Fife ME, et al. On-going mechanical damage from mastication drives homeostatic Th17 cell responses at the oral barrier. Immunity 2017;46:133–47.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Kassebaum NJ, Bernabe E, Dahiya M, Bhandari B, Murray CJ, Marcenes W. Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression. J Dent Res. 2014;93:1045–53.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Zhou P, Li X, Qi F. Identification and characterization of a haem biosynthesis locus in Veillonella. Microbiol. 2016;162:1735–43.
    CAS  Article  Google Scholar 

    47.
    Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 2018;16:745–59.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Baker PJ, Dixon M, Roopenian DC. Genetic control of susceptibility to Porphyromonas gingivalis-induced alveolar bone loss in mice. Infec Immun. 2000;68:5864–8.
    CAS  Article  Google Scholar 

    49.
    Dominy SS, Lynch C, Ermini F, Benedyk M, Marczyk A, Konradi A, et al. Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv. 2019;5:eaau3333.
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    Pangolins in peril get a hand from human neighbours

    A Philippine pangolin pup nuzzles close to its mother, who is curled into a protective ball. Credit: Gregg Yan (CC BY-SA 4.0)

    Conservation biology
    22 December 2020

    The expertise of local people could help to protect an extremely rare Philippine species.

    The Philippine pangolin is a mammal of mystery: poorly understood, except that it is close to extinction. Now, researchers have gleaned data that could help to protect the pangolin — simply by asking the people who know it best.
    Restricted to a scattering of Philippine islands, the Philippine pangolin (Manis culionensis) is nocturnal and elusive, leaving scientists with little knowledge of the creature’s habits and conservation status. To fill these gaps, Lucy Archer at Zoological Society of London Philippines in Puerto Princesa City and her colleagues conducted almost 1,300 interviews of people living in the pangolin’s home range.
    More than 85% of survey respondents recognized the animal and knew something about it, and almost 20% had seen a pangolin in 2018 or 2019. Sightings in this time span were reported by people in 17 of the 18 survey areas, providing evidence that the species persists in much of its territory.
    The results show that there’s hope for the pangolin and that governments should act to protect the animal across its range, the authors say. More