Reconstruction of forest dynamics in the Western Palaearctic based on phylogeographic analysis of the ringlet butterfly Erebia aethiops
1.
Hewitt, G. M. Some genetic consequences of ice ages. Biol. J. Lin. Soc. 58, 247–276 (1996).
Article Google Scholar
2.
Husemann, M., Schmitt, T., Zachos, F. E., Ulrich, W. & Habel, J. C. Palearctic biogeography revisited: evidence for the existence of a North African refugium for Western Palaearctic biota. J. Biogeogr. 41, 81–94. https://doi.org/10.1111/jbi.12180 (2014).
Article Google Scholar
3.
Hewitt, G. M. Postglacial recolonization of European biota. Biol. J. Lin. Soc. 68, 87–112 (1999).
Article Google Scholar
4.
Hewitt, G. M. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. B Biol. Sci. 359, 183–195. https://doi.org/10.1098/rstb.2003.1388 (2004).
CAS Article Google Scholar
5.
de Lattin, G. Grundriß der Zoogeographie (Gustav Fischer, Jena, 1967).
Google Scholar
6.
Schmitt, T. & Varga, Z. Extra-Mediterranean refugia: The rule and not the exception?. Front. Zool. 9, 1–12. https://doi.org/10.1186/1742-9994-9-22 (2012).
Article Google Scholar
7.
Drees, C. et al. Molecular analyses and species distribution models indicate cryptic northern mountain refugia for a forest-dwelling ground beetle. J. Biogeogr. 43, 2223–2236. https://doi.org/10.1111/jbi.12828 (2016).
Article Google Scholar
8.
Juřičková, L., Horáčková, J. & Ložek, V. Direct evidence of central European forest refugia during the last glacial period based on mollusc fossils. Quat. Res. 82, 222–228. https://doi.org/10.1016/j.yqres.2014.01.015 (2014).
Article Google Scholar
9.
Pinceel, J., Jordaens, K., Pfenninger, M. & Backeljau, T. Rangewide phylogeography of a terrestrial slug in Europe: Evidence for Alpine refugia and rapid colonization after the Pleistocene glaciations. Mol. Ecol. 14, 1133–1150. https://doi.org/10.1111/j.1365-294X.2005.02479.x (2005).
CAS Article PubMed Google Scholar
10.
Gratton, P., Konopiński, M. K. & Sbordoni, V. Pleistocene evolutionary history of the Clouded Apollo (Parnassius mnemosyne): Genetic signatures of climate cycles and a “time-dependent” mitochondrial substitution rate. Mol. Ecol. 17, 4248–4262. https://doi.org/10.1111/j.1365-294X.2008.03901.x (2008).
CAS Article PubMed Google Scholar
11.
Hofman, S. et al. Phylogeography of the fire-bellied toads Bombina: Independent Pleistocene histories inferred from mitochondrial genomes. Mol. Ecol. 16, 2301–2316. https://doi.org/10.1111/j.1365-294X.2007.03309.x (2007).
CAS Article PubMed Google Scholar
12.
Junker, M. et al. Three in one-multiple faunal elements within an endangered european butterfly species. PLoS ONE 10, 1–24. https://doi.org/10.1371/journal.pone.0142282 (2015).
CAS Article Google Scholar
13.
Ursenbacher, S., Carlsson, M., Helfer, V., Tegelström, H. & Fumagalli, L. Phylogeography and Pleistocene refugia of the adder (Vipera berus) as inferred from mitochondrial DNA sequence data. Mol. Ecol. 15, 3425–3437. https://doi.org/10.1111/j.1365-294X.2006.03031.x (2006).
CAS Article PubMed Google Scholar
14.
Magri, D. Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J. Biogeogr. 35, 450–463. https://doi.org/10.1111/j.1365-2699.2007.01803.x (2008).
Article Google Scholar
15.
Svenning, J.-C., Normand, S. & Kageyama, M. Glacial refugia of temperate trees in Europe: Insights from species distribution modelling. J. Ecol. 96, 1117–1127. https://doi.org/10.1111/j.1752-4598.2012.00212.x (2008).
Article Google Scholar
16.
Cheddadi, R. et al. Imprints of glacial refugia in the modern genetic diversity of Pinus sylvestris. Global Ecol. Biogeogr. 15, 271–282. https://doi.org/10.1111/j.1466-822x.2006.00226.x (2006).
Article Google Scholar
17.
Willis, K. J. & Van Andel, T. H. Trees or no trees? The environments of central and eastern Europe during the Last Glaciation. Quatern. Sci. Rev. 23, 2369–2387. https://doi.org/10.1016/j.quascirev.2004.06.002 (2004).
ADS Article Google Scholar
18.
Rudner, Z. E. & Sümegi, P. Recurring Taiga forest-steppe habitats in the Carpathian Basin in the Upper Weichselian. Quatern. Int. 76, 177–189. https://doi.org/10.1016/S1040-6182(00)00101-4 (2001).
Article Google Scholar
19.
van Swaay, C., Warren, M. & Grégoire, L. Biotope use and trends of European butterflies. J. Insect Conserv. 10, 189–209. https://doi.org/10.1007/s10841-006-6293-4 (2006).
Article Google Scholar
20.
Slamova, I., Klecka, J. & Konvicka, M. Diurnal behavior and habitat preferences of Erebia aethiops, an aberrant lowland species of a mountain butterfly clade. J. Insect Behav. 24, 230–246. https://doi.org/10.1007/s10905-010-9250-8 (2011).
Article Google Scholar
21.
Burnaz, S. & Balazs, S. Contributions to the knowledge of diurnal Lepidoptera fauna of the North-Eastern part of Ţarcu Mountains (Southern Carpathians, Romania). Buletin de Informare Entomologica 22, 41–52 (2011).
Google Scholar
22.
Slamova, I., Klecka, J. & Konvicka, M. Woodland and grassland mosaic from a butterfly perspective: Habitat use by Erebia aethiops (Lepidoptera: Satyridae). Insect Conserv. Divers. 6, 243–254. https://doi.org/10.1111/j.1752-4598.2012.00212.x (2013).
Article Google Scholar
23.
Tshikolovets, V. V. Butterflies of Europe & the Mediterranean area (Tshikolovets Publications, Pardubice, 2011).
Google Scholar
24.
Varga, Z. Die Erebien der Balkanhalbinsel und Karpaten V. Übersicht der subspezifischen Gliederung und der Verbreitung der Erebia Dalman, 1816 -Arten (Lepidoptera, Nymphalidae, Saryrinae) in der Balkanhalbinsel und in den Karpaten (II. Teil). Entomol Roman 6, 5–39 (2001).
Google Scholar
25.
Imbrie, J., et al. Milankovitch theory, the two shorter cycles can be explained radiation cycle (arising from of Geological Sciences, Brown 2 Institut d’ Astronomie et de Geophysique of Earth, Atmospheric, and Planetary Earth Observatory, Columbia for Climatic and Sp. Cycle 8, 699–735 (1993).
26.
Nei, M. Genetic Distance between Populations 106, 283–29 (1972).
27.
Hausdorf, B. & Hennig, C. Species delimitation using dominant and codominant multilocus. Markers 59, 491–503. https://doi.org/10.1093/sysbio/syq039 (2010).
CAS Article Google Scholar
28.
Nakatani, T., Usami, S. & Itoh, T. Molecular phylogenetic analysis of the Erebia aethiops group (Lepidoptera, Nymphalidae). Lepidopterol. Soc. Jpn. 58, 387–404 (2007).
Google Scholar
29.
Lukhtanov, V. & Lukhtanov, A. Die Tagfalter Nordwestasiens (Dr. Ulf Eitschberger, Marktleuthen, 1994).
Google Scholar
30.
Peña, C., Witthauer, H., Klečková, I., Fric, Z. & Wahlberg, N. Adaptive radiations in butterflies: Evolutionary history of the genus Erebia (Nymphalidae: Satyrinae). Biol. J. Lin. Soc. 116(2), 449–467. https://doi.org/10.1111/bij.12597 (2015).
Article Google Scholar
31.
Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: The rear edge matters. Ecol. Lett. 8, 461–467. https://doi.org/10.1111/j.1461-0248.2005.00739.x (2005).
Article PubMed Google Scholar
32.
Schmitt, T., Hewitt, G. M. & Müller, P. Disjunct distributions during glacial and interglacial periods in mountain butterflies: Erebia epiphron as an example. J. Evol. Biol. 19, 108–113. https://doi.org/10.1111/j.1420-9101.2005.00980.x (2006).
CAS Article PubMed Google Scholar
33.
Schmitt, T. & Seitz, A. Intraspecific allozymatic differentiation reveals the glacial refugia and the postglacial expansions of European Erebia medusa (Lepidoptera: Nymphalidae). Biol. J. Linn. Soc. 74, 429–458. https://doi.org/10.1006/bijl.2001.0584 (2001).
Article Google Scholar
34.
van Husen, D. Geological processes during the Quaternary. Mitteilungen Der Österreichischen Geologischen Gesellschaft 92, 135–156 (2000).
Google Scholar
35.
Schmitt, T. Biogeographical and evolutionary importance of the European high mountain systems. Front. Zool. 6, 1–10. https://doi.org/10.1186/1742-9994-6-9 (2009).
Article Google Scholar
36.
Albre, J., Gers, C. & Legal, L. Molecular phylogeny of the Erebia tyndarus (Lepidoptera, Rhopalocera, Nymphalidae, Satyrinae) species group combining CoxII and ND5 mitochondrial genes: A case study of a recent radiation. Mol. Phylogenet. Evol. 47, 196–210. https://doi.org/10.1016/j.ympev.2008.01.009 (2008).
CAS Article PubMed Google Scholar
37.
Fišer Pečnikar, Ž, Balant, M., Glasnović, P. & Surina, B. Seed dormancy and germination of the rare, high elevation Balkan endemic Cerastium dinaricum (Caryophyllaceae). Biologia 73, 937–943. https://doi.org/10.2478/s11756-018-0115-5 (2018).
CAS Article Google Scholar
38.
Giachino, P. M. A new species of Aphaobiella Pretner, 1949 from Grintavec Mt., Slovenia (Coleoptera: Cholevidae, Leptodirinae). Fragm. Entomol. 48, 19–23. https://doi.org/10.4081/fe.2016.165 (2016).
Article Google Scholar
39.
Canestrelli, D., Salvi, D., Maura, M., Bologna, M. A. & Nascetti, G. One species, three Pleistocene evolutionary histories: Phylogeography of the Italian crested newt, Triturus carnifex. PLoS ONE 7, e41754. https://doi.org/10.1371/journal.pone.0041754 (2012).
ADS CAS Article PubMed PubMed Central Google Scholar
40.
Previšić, A., Walton, C., KuČiniĆ, M., Mitrikeski, P. T. & Kerovec, M. Pleistocene divergence of Dinaric Drusus endemics (Trichoptera, Limnephilidae) in multiple microrefugia within the Balkan Peninsula. Mol. Ecol. 18, 634–647. https://doi.org/10.1111/j.1365-294X.2008.04046.x (2009).
CAS Article PubMed Google Scholar
41.
Deffontaine, V. et al. Beyond the Mediterranean peninsulas: Evidence of central European glacial refugia for a temperate forest mammal species, the bank vole (Clethrionomys glareolus). Mol. Ecol. 14, 1727–1739. https://doi.org/10.1111/j.1365-294X.2005.02506.x (2005).
CAS Article PubMed Google Scholar
42.
Krebs, P., Pezzatti, G. B., Beffa, G., Tinner, W. & Conedera, M. Revising the sweet chestnut (Castanea sativa Mill.) refugia history of the last glacial period with extended pollen and macrofossil evidence. Quat. Sci. Rev. 206, 111–128. https://doi.org/10.1016/j.quascirev.2019.01.002 (2019).
ADS Article Google Scholar
43.
Varga, Z. Geographische Isolation und Subspeziation bei den Hochgebirgslepidopteren der Balkanhalbinsel. Acta Entomol Jugoslaviae. (1975).
44.
Bhagwat, S. A. & Willis, K. J. Species persistence in northerly glacial refugia of Europe: A matter of chance or biogeographical traits?. J. Biogeogr. 35, 464–482. https://doi.org/10.1111/j.1365-2699.2007.01861.x (2008).
Article Google Scholar
45.
Filipi, K., Marková, S., Searle, J. B. & Kotlík, P. Mitogenomic phylogenetics of the bank vole Clethrionomys glareolus, a model system for studying end-glacial colonization of Europe. Mol. Phylogenet. Evol. 82, 245–257. https://doi.org/10.1016/j.ympev.2014.10.016 (2015).
Article PubMed Google Scholar
46.
Hammouti, N., Schmitt, T., Seitz, A., Kosuch, J. & Veith, M. Combining mitochondrial and nuclear evidences: A refined evolutionary history of Erebia medusa (Lepidoptera: Nymphalidae: Satyrinae) in Central Europe based on the COI gene. J. Zool. Syst. Evolut. Res. 48, 115–125. https://doi.org/10.1111/j.1439-0469.2009.00544.x (2010).
Article Google Scholar
47.
Vila, M., Marí-Mena, N., Guerrero, A. & Schmitt, T. Some butterflies do not care much about topography: a single genetic lineage of Erebia euryale (Nymphalidae) along the northern Iberian mountains. J. Zool. Syst. Evolut. Res. 49, 119–132. https://doi.org/10.1111/j.1439-0469.2010.00587.x (2011).
Article Google Scholar
48.
Vodă, R., Dapporto, L., Dincă, V. & Vila, R. Cryptic matters: Overlooked species generate most butterfly beta-diversity. Ecography 38, 405–409. https://doi.org/10.1111/ecog.00762 (2015).
Article Google Scholar
49.
Hebert, P. D. N., Ratnasingham, S. & DeWaard, J. R. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. B Biol. Sci. 270, 1–4. https://doi.org/10.1098/rsbl.2003.0025 (2003).
CAS Article Google Scholar
50.
Weller, S. J., Pashley, D. P., Martin, J. A. & Constable, J. L. Phylogeny of noctuoid moths and the utility of combining independent nuclear and mitochondrial genes. Syst. Biol. 43, 194–211. https://doi.org/10.1093/sysbio/43.2.194 (1994).
Article Google Scholar
51.
Hebert, P. D. N., & Beaton, M. J. Methodologies for allozyme analysis using cellulose acetate electrophoresis. Zoology 32 (1993).
52.
Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 (2012).
Article PubMed PubMed Central Google Scholar
53.
Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680. https://doi.org/10.1093/nar/22.22.4673 (1994).
CAS Article PubMed PubMed Central Google Scholar
54.
Hall, T. A. BioEdit. Nucleic Acids Symp. Ser. 41, 95–98 (1999).
CAS Google Scholar
55.
Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302. https://doi.org/10.1093/molbev/msx248 (2017).
CAS Article Google Scholar
56.
Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036 (1999).
CAS Article Google Scholar
57.
Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410 (2015).
Article Google Scholar
58.
Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650. https://doi.org/10.1371/journal.pcbi.1006650 (2019).
CAS Article PubMed PubMed Central Google Scholar
59.
Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. Partitionfinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773. https://doi.org/10.1093/molbev/msw260 (2017).
CAS Article PubMed Google Scholar
60.
Papadopoulou, A., Anastasiou, I. & Vogler, A. P. Revisiting the insect mitochondrial molecular clock: The mid-aegean trench calibration. Mol. Biol. Evol. 27, 1659–1672. https://doi.org/10.1093/molbev/msq051 (2010).
CAS Article PubMed Google Scholar
61.
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904. https://doi.org/10.1093/sysbio/syy032 (2018).
CAS Article PubMed PubMed Central Google Scholar
62.
Drummond, A. J., & Ho, S. Y. W. A rough guide to BEAST 1.4. Edinburgh, 1–41, http://beast-mcmc.googlecode.com/files/BEAST14_Manual_17May2007.pdf (2007).
63.
Yu, Y., Harris, A. J., Blair, C. & He, X. RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. Mol. Phylogenet. Evol. 87, 46–49. https://doi.org/10.1016/j.ympev.2015.03.008 (2015).
Article PubMed Google Scholar
64.
Siegismund, H. R. G-STAT, Version 3, Genetical Statistical Programs for the Analysis of Population Data. (The Arboretum, Royal Veterinary and Agricultural University, Horsholm, Denmark, 1993).
65.
Excoffier, L., Laval, G. & Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinform. 1, 117693430500100. https://doi.org/10.1177/117693430500100003 (2005).
Article Google Scholar
66.
Rice, W. R. The sequential Bonferroni test. Evolution 43, 235 (1989).
Article Google Scholar
67.
Saitou, N. & Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 97, 407–425 (1987).
Google Scholar
68.
Felsenstein, J. PHYLIP (Phylogeny Inference Package), Version 3.5.c. (Department of Genetics, University of Washington, Seattle, Washington, 2000).
69.
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
CAS PubMed PubMed Central Google Scholar
70.
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).
CAS Article PubMed Google Scholar
71.
Guillot, G., Estoup, A., Mortier, F., & Cosson, J. F. A spatial statistical model for landscape genetics. Genetics 170, 1261–1280. https://doi.org/10.1534/genetics.104.033803 (2005).
CAS Article PubMed PubMed Central Google Scholar
72.
Team, Q. D. QGIS Geographic Information System. Open Source Geospatial Foundation Project (2020). http://qgis.osgeo.org. Accessed 05 Nov 2020. More
