More stories

  • in

    Estimating and explaining the spread of COVID-19 at the county level in the USA

    Data selection and handling: death data
    For mortality due to COVID-19, we used time series provided by the New York Times12. We selected the New York Times dataset because it is rigorously curated. We analyzed separately only counties that had records of 100 or more deaths by 23 May, 2020. The threshold of 100 was a balance between including more counties and obtaining reliable estimates of r(t). Preliminary simulations showed that time series with low numbers of deaths would bias r(t) estimates (Supplementary Fig. 2). However, we did not want to use the maximum daily number of deaths as a selection criterion, because this could lead to selection of counties based on data from a single day. It would also involve some circularity, because the information obtained, r(t), would be directly related to the criterion used to select datasets. Therefore, we used the threshold of 100 cumulative deaths. The District of Columbia was treated as a county. Also, because the New York Times dataset aggregated the five boroughs of New York City, we treated them as a single county. For counties with fewer than 100 deaths, we aggregated mortality to the state level to create a single time series. For thirteen states (AK, DE, HI, ID, ME, MT, ND, NH, SD, UT, VM, WV, and WY), the aggregated time series did not contain 100 or more deaths and were therefore not analyzed.
    Data selection and handling: explanatory county-level variables
    County-level variables were collected from several public data sources36,37,38,39,40,41,42. We selected socio-economic variables a priori in part to represent a broad set of population characteristics.
    Time series analysis: time series model
    We used a time-varying autoregressive model15,56 designed explicitly to estimate the rate of increase of a variable using nonlinear, state-dependent error terms16. We assume in our analyses that the susceptible proportion of the population represented by a time series is close to one, and therefore there is no decrease in the infection rate caused by a pool of individuals who were infected, recovered, and were then immune to further infection.
    The model is

    $$xleft( t right) = rleft( {t-1} right) + xleft( {t-1} right)$$
    (1a)

    $$rleft( t right) = rleft( {t-1} right) + omega_rleft( t right)$$
    (1b)

    $$Dleft( t right) = {mathrm{exp}}(xleft( t right) + phi left( t right))$$
    (1c)

    Here, x(t) is the unobserved, log-transformed value of daily deaths at time t, and D(t) is the observed count that depends on the observation uncertainty described by the random variable ϕ(t). Because a few of the datasets that we analyzed had zeros, we replaced zeros with 0.5 before log-transformation. The model assumes that the death count increases exponentially at rate r(t), where the latent state variable r(t) changes through time as a random walk with ωr(t) ~ N(0, σ2r). We assume that the count data follow a quasi-Poisson distribution. Thus, the expectation of counts at time t is exp(x(t)), and the variance is proportional to this expectation.
    We fit the model using the extended Kalman filter to compute the maximum likelihood57,58. In addition to the parameters σ2r and σ2ϕ, we estimated the initial value of r(t) at the start of the time series, r0, and the initial value of x(t), x0. The estimation also requires terms for the variances in x0 and r0, which we assumed were zero and σ2r, respectively. In the validation using simulated data (Supplementary Methods: Simulation model), we found that the estimation process tended to absorb σ2r to zero too often. To eliminate this absorption to zero, we imposed a minimum of 0.02 on σ2r.
    Time series analysis: parametric bootstrapping
    To generate approximate confidence intervals for the time-varying estimates of r(t) (Eq. 1b), we used a parametric bootstrap designed to simulate datasets with the same characteristics as the real data that are then refit using the autoregressive model. We used bootstrapping to obtain confidence intervals, because an initial simulation study showed that standard methods, such as obtaining the variance of r(t) from the Kalman filter, were too conservative (the confidence intervals too narrow) when the number of counts was small. Furthermore, parametric bootstrapping can reveal bias and other features of a model, such as the lags we found during model fitting (Supplementary Fig. 1a, b).
    Changes in r(t) consist of unbiased day-to-day variation and the biased deviations that lead to longer-term changes in r(t). The bootstrap treats the day-to-day variation as a random variable while preserving the biased deviations that generate longer-term changes in r(t). Specifically, the bootstrap was performed by calculating the differences between successive estimates of r(t), Δr(t) = r(t) – r(t-1), and then standardizing to remove the bias, Δrs(t) = Δr(t) – E[Δr(t)], where E[] denotes the expected value. The sequence Δrs(t) was fit using an autoregressive time-series model with time lag 1, AR(1), to preserve any shorter-term autocorrelation in the data. For the bootstrap, a new time series was simulated from this AR(1) model, Δρ(t), and then standardized, Δρs(t) = Δρ(t) – E[Δρ(t)]. The simulated time series for the spread rate was constructed as ρ(t) = r(t) + Δρs(t)/21/2, where dividing by 21/2 accounts for the fact that Δρs(t) was calculated from the difference between successive values of r(t). A new time series of count data, ξ(t), was then generated using equation 1 with the parameters from fitting the data. Finally, the statistical model was fit to the reconstructed ξ(t). In this refitting, we fixed the variance in r(t), σ2r, to the same value as estimated from the data. Therefore, the bootstrap confidence intervals are conditional of the estimate of σ2r.
    Time series analysis: calculating R0
    We derived estimates of R(t) directly from r(t) using the Dublin-Lotka equation21 from demography. This equation is derived from a convolution of the distribution of births under the assumption of exponential population growth. In our case, the “birth” of COVID-19 is the secondary infection of susceptible hosts leading to death, and the assumption of exponential population growth is equivalent to assuming that the initial rate of spread of the disease is exponential, as is the case in equation 1. Thus,

    $$Rleft( t right) = 1/mathop {sum}nolimits_{_tau} {{mathrm{e}}^{ – r(t)}} tau p(tau)$$
    (2)

    where p(τ) is the distribution of the proportion of secondary infections caused by a primary infection that occurred τ days previously. We used the distribution of p(τ) from Li et al.59 that had an average serial interval of T0 = 7.5 days; smaller or larger values of T0, and greater or lesser variance in p(τ), will decrease or increase R(t) but will not change the pattern in R(t) through time. Note that the uncertainty in the distribution of serial times for COVID-19 is a major reason why we focus on estimating r0, rather than R0: the estimates of r0 are not contingent on time distributions that are poorly known. Computing R(t) from r(t) also does not depend on the mean or variance in time between secondary infection and death. We report values of R(t) at dates that are offset by 18 days, the average length of time between initial infection and death given by Zhou et al.60.
    Time series analysis: Initial date of the time series
    Many time series consisted of initial periods containing zeros that were uninformative. As the initial date for the time series, we chose the day on which the estimated daily death count exceeded 1. To estimate the daily death count, we fit a Generalized Additive Mixed Model (GAMM) to the death data while accounting for autocorrelation and greater measurement error at low counts using the R package mgcv61. We used this procedure, rather than using a threshold of the raw death count, because the raw death count will include variability due to sampling small numbers of deaths. Applying the GAMM to “smooth” over the variation in count data gives a well-justified method for standardizing the initial dates for each time series.
    Time series analysis: validation
    We performed extensive simulations to validate the time-series analysis approach (Supplementary Methods: Simulation model).
    Regression analysis for r 0
    We applied a Generalized Least Squares (GLS) regression model to explain the variation in estimates of r0 from the 160 county and county-aggregate time series:

    $$r_0 = b_0 + b_1start.date + b_2logleft( {pop.size} right) + b_3pop.den^{0.25} + varepsilon$$
    (3)

    where start.date is the Julian date of the start of the time series, log(pop.size) and pop.den0.25 are the log-transformed population size and 0.25 power-transformed population density of the county or county-aggregate, respectively, and ε is a multivariate Gaussian random variable with covariance matrix σ2Σ. We used the transforms log(pop.size) and pop.den0.25 to account for nonlinear relationships with r0; these transforms give the highest maximum likelihood of the overall regression. The covariance matrix contains a spatial correlation matrix of the form C = uI + (1–u)S(g) where u is the nugget and S(g) contains elements exp(−dij/g), where dij is the distance between spatial locations and g is the range62. To incorporate differences in the precision of the estimates of r0 among time series, we weighted by the vector of their standard errors, s, so that Σ = diag(s) * C * diag(s), where * denotes matrix multiplication. With this weighting, the overall scaling term for the variance, σ2, will equal 1 if the residual variance of the regression model matches the square of the standard errors of the estimates of r0 from the time series. We fit the regression model with the function gls() in the R package nlme63.
    To make predictions for new values of r0, we used the relationship

    $$hat e_{mathrm{i}} = bar e + {mathbf{v}}_{mathbf{i}} ast ,{mathbf{V}}^{ – 1}(epsilon_i – bar e)$$
    (4)

    where ει is the GLS residual for data i, (hat e)i is the predicted residual, (bar e) is the mean of the GLS residuals, V is the covariance matrix for data other than i, and vi is a row vector containing the covariances between data i and the other data in the dataset64. This equation was used for three purposes. First, we used it to compute R2pred for the regression model by removing each data point, recomputing (hat e)i, and using these values to compute the predicted residual variance23. Second, we used it to obtain predicted values of r0, and subsequently R0, for the 160 counties and county-aggregates for which r0 was also estimated from time series. Third, we used equation (4) to obtain predicted values of r0, and hence predicted R0, for all other counties. We also calculated the variance of the estimates from64

    $$hat v_{mathrm{i}} = sigma^2-{mathbf{v}}_{mathbf{i}} ast ,{mathbf{V}}^{ – 1} ast v_i^{mathbf{t}}$$
    (5)

    Predicted values of R0 were mapped using the R package usmap65.
    Regression analysis for SARS-CoV-2 effects on r0
    The GISAID metadata27 for SARS-CoV-2 contains the clade and state-level location for strains in the USA; strains G, GH, and GR contain the G614 mutation. For each state, we limited the SARS-CoV-2 genomes to those collected no more than 30 days following the onset of outbreak that we used as the starting point for the time series from which we estimated r0; from these genomes (totaling 5290 from all states), we calculated the proportion that had the G614 mutation. We limited the analyses to the 28 states that had five or more genome samples. For each state, we selected the estimates of r0 from the county or county-aggregate representing the greatest number of deaths. We fit these estimates of r0 with the weighted Least Squares (LS) model as in equation (3) with additional variables for strain. Figure 3 was constructed using the R packages usmap65 and scatterpie66.
    Statistics and reproducibility
    The statistics for this study are summarized in the preceding sections of the “Methods”. No experiments were conducted, so experimental reproducibility is not an issue. Nonetheless, we repeated analyses using alternative datasets giving county-level characteristics, and also an alternative dataset on SARS-CoV-2 strains (Supplementary Methods: Analysis of Nextstrain metadata of SARS-CoV-2 strains), and all of the conclusions were the same.
    Reporting summary
    Further information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Empirical support for the biogeochemical niche hypothesis in forest trees

    1.
    Tracy, C. R. & Christian, K. A. Ecological relations among space, time, and thermal niche axes. Ecology 67, 609–615 (1986).
    Article  Google Scholar 
    2.
    Peterson, A. T., Soberon, J. & Sanchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Hirzel, A. H., Hausser, J., Chessel, D. & Perrin, N. Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83, 2017–2036 (2002).
    Article  Google Scholar 

    4.
    Sexton, J. P., Montiel, J., Shay, J. E., Stephens, M. R. & Slatyer, R. A. Evolution of ecological niche breadth. Rev. Ecol. Evol. Syst. 48, 183–206 (2017).
    Article  Google Scholar 

    5.
    Wright, J. W., Davies, K. F., Lau, J. A., McCall, A. C. & McKay, J. K. Experimental verification of ecological niche modelling in a heterogeneous environment. Ecology 87, 2433–2439 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Swanson, H. K. et al. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 96, 318–324 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Grubb, P. J. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol. Rev. 52, 107–145 (1977).
    Article  Google Scholar 

    8.
    Herrel, A., Spithoven, L., Van Damme, V. & De Vree, F. Sexual dimorphism of head size in Gallotia galloti: testing the divergence hypothesis by functional analyses. Funct. Ecol. 13, 289–297 (1999).
    Article  Google Scholar 

    9.
    Mouillot, D. et al. Niche overlap estimates based on quantitative functional traits: a new family of non-parametric indices. Oecologia 145, 345–353 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    10.
    Kraft, N., Valencia, R. & Ackerly, D. D. Functional traits and niche based tree community assembly in an Amazonian forest. Science 322, 580–582 (2008).
    CAS  PubMed  Article  Google Scholar 

    11.
    Peñuelas, J., Sardans, J., Ogaya, R. & Estiarte, M. Nutrient stoichiometric relations and biogeochemical niche in coexisting plant species: effect of simulated climate change. Pol. J. Ecol. 56, 613–622 (2008).
    Google Scholar 

    12.
    Peñuelas, J. et al. Faster returns on “leaf economics” and different biogeochemical niche in invasive compared with native plant species. Glob. Change Biol. 16, 2171–2185 (2010).
    Article  Google Scholar 

    13.
    Peñuelas, J. et al. The bioelements, the elementome and the “biogeochemical niche”. Ecology 100, e02652 (2019).
    PubMed  Article  Google Scholar 

    14.
    Sardans, J. et al. Factors influencing the foliar elemental composition and stoichiometry in forest trees in Spain. Persp. Plant Ecol. Evol. Syst. 18, 52–69 (2016).
    Article  Google Scholar 

    15.
    Sardans, J. et al. Foliar elemental composition of European forest tree species associated with evolutionary traits and present environmental and competitive conditions. Glob. Ecol. Biogeogr. 24, 240–255 (2015).
    Article  Google Scholar 

    16.
    Urbina, I. et al. Shifts in the elemental composition of plants during a very severe drought. Environ. Exp. Bot. 111, 63–73 (2015).
    CAS  PubMed  Article  Google Scholar 

    17.
    Urbina, I. et al. Plant community composition affects the species biogeochemical niche. Ecosphere 8, e01801 (2017).
    Article  Google Scholar 

    18.
    White, P. J. et al. Testing distinctness of shoot ionomes of angiosperm families using the Rothamsted Park grass continuous hay experiment. N. Phytol. 196, 101–109 (2012).
    CAS  Article  Google Scholar 

    19.
    Kerkhoff, A. J., Fagan, W. F., Elser, J. J. & Enquist, B. J. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am. Nat. 168, E103–E122 (2006).
    PubMed  Article  Google Scholar 

    20.
    Sun, L. K. et al. Leaf elemental stoichiometry of Tamarix Lour. Species in relation to geographic, climatic, soil, and genetic components in China. Ecol. Eng. 106, 448–457 (2017).
    Article  Google Scholar 

    21.
    Neugebauer, K. et al. Variation in the angiosperm ionome. Physiol. Plant. 163, 306–322 (2018).
    CAS  Article  Google Scholar 

    22.
    Gillman, L. N., Keeling, D. J., Gardner, R. C. & Wright, S. D. Faster evolution of highly conserved in tropical plants. J. Evol. Biol. 23, 1327–1330 (2010).
    CAS  PubMed  Article  Google Scholar 

    23.
    Puurtinen, M. et al. Temperature-dependent mutational robustness can explain faster molecular evolution at warm temperatires, affecting speciation rate and global patterns of species diversity. Ecography 39, 1025–1033 (2016).
    Article  Google Scholar 

    24.
    Kellner, A., Ritz, C. M., Schlittenhaedt, P. & Hellwig, F. H. Genetic differentiation in the genus Lithops L. (Ruschoideae, Aizoaceae) reveals a high level of convergent evolution and reflects geographic distribution. Plant Biol. 13, 368–380 (2011).
    CAS  PubMed  Article  Google Scholar 

    25.
    Jwa, N. S. & Hwang, B. K. Convergent evolution of pathogen effectors toward reactive oxygen species signaling networks in plants. Front. Plant Sci. 8, 1687 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Molina-Montenegro, M. A. et al. Is the success of plant invasions the result of rapid adaptive evolution in seed traits? Evidence from a latitudinal rainfall gradient. Front. Plant Sci. 9, 208 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    27.
    Anacker, B. L. & Strauss, S. Y. Ecological similarity is related to phylogenetic distance between species in a cross-niche field transplant experiment. Ecology 97, 1807–1818 (2016).
    PubMed  Article  Google Scholar 

    28.
    Reich, P. B. & Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl Acad. Sci. USA 101, 11001–11106 (2004).
    CAS  PubMed  Article  Google Scholar 

    29.
    Ordoñez, J. C. et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 18, 137–149 (2009).
    Article  Google Scholar 

    30.
    Kerkhoff, A. J., Enquist, B. J., Elser, J. J. & Fagan, W. F. Plantallometry, stoichiometry and the temperature-dependence of primary productivity. Glob. Ecol. Biogeogr. 14, 585–598 (2005).
    Article  Google Scholar 

    31.
    Yuan, Z. Y. & Chen, H. Y. H. Global trends in senesced-leaf nitrogen and phosphorus. Glob. Ecol. Biogeogr. 18, 532–542 (2009).
    Article  Google Scholar 

    32.
    Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    33.
    McGroddy, M. E., Daufresne, T. & Hedin, L. O. Scaling of C/N/P stoichiometry in forest worldwide: implications of terrestrial Redfield-type ratios. Ecology 85, 2390–2401 (2004).
    Article  Google Scholar 

    34.
    Townsend, A. R., Cleveland, C. C., Asner, G. P. & Bustamante, M. M. C. Controls over foliar N:P ratios in tropical rainforest. Ecology 88, 107–118 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Lovelock, C. E., Feller, I. C., Ball, M. C., Ellis, J. & Sorell, B. Testing the growth rate vs. geochemical hypothesis for latitudinal variation in plant nutrients. Ecol. Lett. 10, 1154–1163 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Marschner, H. Mineral Nutrition of Higher Plants (Academic Press, 1995).

    37.
    Zhang, Y. et al. Log-term trends in total inorganic nitrogen and sulfur deposition in US from 1990 to 2010. Atmos. Chem. Phys. 18, 9091–9106 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Horn, K. J. et al. Growth and survival relationships of 71 tree species with nitrogen and sulfur deposition across the conterminous U.S. PLoS ONE 14, e0212984 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Papanikolaou, N., Britton, A. J., Helliwell, R. C. & Johnson, D. Nitrogen deposition, vegetation burning and climate warming act independently on microbial community structure and enzyme activity associated with decomposing litter in low-alpine heath. Glob. Change Biol. 16, 3120–3132 (2010).
    Google Scholar 

    40.
    Marklein, A. R. & Houlton, B. Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. N. Phytol. 193, 696–704 (2012).
    CAS  Article  Google Scholar 

    41.
    Sardans, J. et al. Foliar and soil concentrations and stoichiometry of nitrogen and phosphorus across European Pinus sylvestris forests: relationships with climate, N deposition and tree growth. Funct. Ecol. 30, 676–689 (2016).
    Article  Google Scholar 

    42.
    Peñuelas, J. et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 2934 (2013).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    43.
    Penuelas, J. et al. Increasing atmospheric CO2 concentrations correlate with declining nutritional status of European forests. Commun. Biol. 3, 125 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Ahmad, N. & Mermut, A. Vertisols and Technologies for their Development 1st edn, Vol. 24 (Elsevier, 1996).

    45.
    Nishiue, A., Nanzyo, M., Kanno, H. & Takahashi, T. Properties and classification of volcanic ash soils around Lake Kuwanuma on the eastern footslope of Mt. Funagata in Miyagi prefecture, northeastern Japan. Soil Sci. Plant Nutr. 60, 848–862 (2014).
    CAS  Article  Google Scholar 

    46.
    De la Riva, E. G. et al. Biogeochemical and ecomorphological niche segregation of Mediterranean woody species along a local gradient. Fron. Plant Sci. 8, 1242 (2017).
    Article  Google Scholar 

    47.
    Yu, Q. et al. Stoichiometry homeostasis of vascular plants in the inner Mongolia grassland. Oecologia 166, 1–10 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    48.
    Sardans, J., Albert Rivas-Ubach, A. & Peñuelas, J. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review. Biogeochemistry 111, 1–39 (2012).
    Article  Google Scholar 

    49.
    Gracia, C., Burriel, J. A., Ibàñez, J. J., Mata, T. & Vayreda, J. Inventari ecològic i forestal de Catalunya: regió forestal V (CREAF, 2004).

    50.
    Fick, A. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Article  Google Scholar 

    51.
    Lang, R. Verwitterung und Bodenbildung als Einfuehrung in die Bodenkunde (Schweizerbart Science Publishers, 1920).

    52.
    Köppen, W. Klassification der Klimate nach Tempertur, Niederschlag and Jahreslauf. Petermanns Geog. Mitt. 64, 243–248 (1918).
    Google Scholar 

    53.
    De Martonne, E. Nouvelle carte mondiale de l’indece d’aridité. Ann. Géogr. 51, 242–250 (1942).
    Google Scholar 

    54.
    Emberger, L. La vegetation de la región Mèditerranéenne, essai d’une classification des groupements vegetaux. Rev. Gén. Bot. 42, 641–662, 705–721 (1930).

    55.
    Vorösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).
    PubMed  Article  CAS  Google Scholar 

    56.
    R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2011).

    57.
    Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies, and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).
    Article  Google Scholar 

    58.
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    59.
    Revell, L. J. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Article  Google Scholar 

    60.
    Blomberg, S. P., Garland, T. & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745 (2003).
    PubMed  Article  Google Scholar 

    61.
    Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).
    Article  Google Scholar 

    62.
    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).
    CAS  PubMed  Article  Google Scholar 

    63.
    Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).
    Article  Google Scholar 

    64.
    Revell, L. J. Two new graphical methods for mapping trait evolution on phylogenies. Methods Ecol. Evol. 4, 754–759 (2013).
    Article  Google Scholar 

    65.
    Raamsdonk, L. M. et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat. Biotechnol. 19, 45–50 (2001).
    CAS  PubMed  Article  Google Scholar 

    66.
    Hadfield, J. D. MCMC methods for multi-response generalised linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 2 (2010). More

  • in

    Author Correction: Tree mode of death and mortality risk factors across Amazon forests

    School of Geography, Earth and Enviornmental Sciences, University of Birmingham, Birmingham, UK
    Adriane Esquivel-Muelbert & Thomas A. M. Pugh

    School of Geography, University of Leeds, Leeds, UK
    Adriane Esquivel-Muelbert, Oliver L. Phillips, Roel J. W. Brienen, Martin J. P. Sullivan, Timothy R. Baker, Emanuel Gloor, Aurora Levesley, Simon L. Lewis, Karina Liana Lisboa Melgaço Ladvocat, Gabriela Lopez-Gonzalez, Nadir Pallqui Camacho, Julie Peacock, Georgia Pickavance & David Galbraith

    Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
    Adriane Esquivel-Muelbert & Thomas A. M. Pugh

    School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
    Sophie Fauset

    Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
    Martin J. P. Sullivan

    International Master Program of Agriculture, National Chung Hsing University, Taichung, Taiwan
    Kuo-Jung Chao

    Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
    Ted R. Feldpausch

    Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
    Niro Higuchi, Adriano José Nogueira Lima & Carlos Quesada

    School of Mathematics, University of Leeds, Leeds, UK
    Jeanne Houwing-Duistermaat & Haiyan Liu

    Faculty of Natural Sciences, Department of Life, Imperial College London Sciences, London, UK
    Jon Lloyd

    Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
    Yadvinder Malhi & Simone Matias de Almeida Reis

    UNEMAT – Universidade do Estado de Mato Grosso PPG-Ecologia e Conservação, Campus de Nova Xavantina, Nova Xavantina, MT, Brazil
    Beatriz Marimon, Ben Hur Marimon Junior, Paulo Morandi, Edmar Almeida de Oliveira & Simone Matias de Almeida Reis

    Jardín Botánico de Missouri, Oxapampa, Peru
    Abel Monteagudo-Mendoza, Victor Chama Moscoso, Luis Valenzuela Gamarra & Rodolfo Vasquez Martinez

    Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
    Lourens Poorter, Frans Bongers, Marielos Peña-Claros & Pieter Zuidema

    Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, AC, Brazil
    Marcos Silveira

    Instituto de Investigaciones para el Desarrollo Forestal (INDEFOR), Universidad de Los Andes, Mérida, Venezuela
    Emilio Vilanova Torre & Julio Serrano

    University of California, Berkeley, CA, USA
    Emilio Vilanova Torre

    Escuela de Ciencias Agropecuarias y Ambientales, Universidad Nacional Abierta y a Distancia, Boyacá, Colombia
    Esteban Alvarez Dávila

    Fundación ConVida, Medellín, Colombia
    Esteban Alvarez Dávila

    Instituto de Investigaciones de la Amazonia Peruana, Iquitos, Peru
    Jhon del Aguila Pasquel, Nallaret Davila Cardozo & Eurídice Honorio Coronado

    Instituto de Biodiversidade e Florestas, Universidade Federal do Oeste do Pará, Santarém, Brazil
    Everton Almeida

    Center for Tropical Conservation, Nicholas School of the Environment, University in Durham, Durham, NC, USA
    Patricia Alvarez Loayza

    Projeto Dinâmica Biológica de Fragmentos, Instituto Nacional de Pesquisas da Amazônia Florestais, Manaus, AM, Brazil
    Ana Andrade & José Luís Camargo

    National Institute for Space Research (INPE), São José dos Campos, SP, Brazil
    Luiz E. O. C. Aragão

    Museo de Historia Natural Noel Kempff Mercado, Universidad Autónoma Gabriel Rene Moreno, Santa Cruz de la Sierra, Bolivia
    Alejandro Araujo-Murakami & Marisol Toledo

    Wageningen Environmental Research, Wageningen University and Research, Wageningen, Netherlands
    Eric Arets

    Dirección de la Carrera de Biología, Universidad Autónoma Gabriel René Moreno, Santa Cruz de la Sierra, Bolivia
    Luzmila Arroyo

    UNELLEZ-Guanare, Herbario Universitario (PORT), Portuguesa, Venezuela Compensation International Progress S.A. Ciprogress–Greenlife, Bogotá, D.C., Colombia
    Gerardo A. Aymard C.

    INRAE, UMR EcoFoG, CNRS, Cirad, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, France
    Michel Baisie, Damien Bonal, Benoit Burban, Aurélie Dourdain, Maxime Rejou-Machain & Clement Stahl

    Department of Biological Sciences, International Center for Tropical Botany, Florida International University, Miami, FL, USA
    Christopher Baraloto

    Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil
    Plínio Barbosa Camargo

    Universidade Federal do Acre, Campus Floresta, Cruzeiro do Sul, Brazil
    Jorcely Barroso

    UR Forest & Societies, CIRAD, Montpellier, France
    Lilian Blanc

    Department of Biology, Utrecht, Netherlands
    René Boot

    Woods Hole Research Center, Falmouth, MA, USA
    Foster Brown

    Laboratório de Botânica e Ecologia Vegetal, Universidade Federal do Acre, Rio Branco, AC, Brazil
    Wendeson Castro

    Laboratoire Evolution et Diversite Biologique, CNRS, Toulouse, France
    Jerome Chave

    Inventory and Monitoring Program, National Park Service, Fort Collins, CO, USA
    James Comiskey

    Proyecto Castaña, Madre de Dios, Peru
    Fernando Cornejo Valverde

    Instituto de Geociências, Faculdade de Meteorologia, Universidade Federal do Para, Belém, Brazil
    Antonio Lola da Costa

    Department of Anthropology and Primate Molecular Ecology and Evolution Laboratory, University of Texas, Austin, TX, USA
    Anthony Di Fiore

    National Museum of Natural History, Smithsonian Institute, Washington, DC, USA
    Terry Erwin

    Universidad Nacional Jorge Basadre de Grohmann, Tacna, Peru
    Gerardo Flores Llampazo

    Museu Paraense Emílio Goeldi, Belém, Brazil
    Ima Célia Guimarães Vieira & Rafael Salomão

    Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
    Rafael Herrera

    IIAMA, Universitat Politécnica de València, València, Spain
    Rafael Herrera

    Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
    Isau Huamantupa-Chuquimaco

    Instituto Amazónico de Investigaciones Imani, Universidad Nacional de Colombia Sede Amazonia, Leticia, Colombia
    Eliana Jimenez-Rojas

    Agteca, Santa Cruz, Bolivia
    Timothy Killeen

    College of Science and Engineering, James Cook University, Cairns, QLD, Australia
    Susan Laurance & William Laurance

    Department of Geography, University College London, London, UK
    Simon L. Lewis

    Environmental Science and Policy, George Mason University, Fairfax, VA, USA
    Thomas Lovejoy

    Research School of Biology, Australian National University, Canberra, ACT, Australia
    Patrick Meir

    School of Geosciences, University of Edinburgh, Edinburgh, UK
    Patrick Meir

    Escuela de Ciencias Forestales, Unidad Académica del Trópico, Universidad Mayor de San Simón, Cochabamba, Bolivia
    Casimiro Mendoza

    Facultad de Ingeniería Ambiental, Universidad Estatal Amazónica, Puyo, Ecuador
    David Neill

    Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú
    Percy Nuñez Vargas, Nadir Pallqui Camacho & Javier Silva Espejo

    Universidad Autónoma del Beni José Ballivián, Trinidad, Bolivia
    Guido Pardo & Vincent Vos

    Universidad Regional Amazónica Ikiam, Ikiam, Ecuador
    Maria Cristina Peñuela-Mora

    Broward County Parks Recreation, Oakland Park, FL, USA
    John Pipoly

    Keller Science Action Center, Field Museum, Chicago, IL, USA
    Nigel Pitman

    Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
    Adriana Prieto & Agustín Rudas

    Institute of Research for Forestry Development (INDEFOR), Universidad de los Andes, Mérida, Venezuela
    Hirma Ramirez-Angulo

    Socioecosistemas y Cambio Climatico, Fundacion Con Vida, Medellín, Colombia
    Zorayda Restrepo Correa

    Centro de Conservacion, Investigacion y Manejo de Areas Naturales, CIMA Cordillera Azul, Lima, Peru
    Lily Rodriguez Bayona

    Universidade Federal Rural da Amazônia, Belém, Brazil
    Rafael Salomão & Natalino Silva

    Departamento de Biología, Universidad de La Serena, La Serena, Chile
    Javier Silva Espejo

    Guyana Forestry Commission, Georgetown, Guyana
    James Singh

    Federal University of Alagoas, Maceió, Brazil
    Juliana Stropp

    Institute for Conservation Research, Escondido, CA, USA
    Varun Swamy

    Institute for Transport Studies, University of Leeds, Leeds, UK
    Joey Talbot

    Biodiversity Dynamics, Naturalis Biodiversity Center, Leiden, The Netherlands
    Hans ter Steege

    Systems Ecology, Free University, De Boelelaan 1087, Amsterdam, Netherlands
    Hans ter Steege

    Department of Biology, University of Florida, Gainesville, FL, USA
    John Terborgh

    Iwokrama International Centre for Rainforest Conservation and Development, Georgetown, Guyana
    Raquel Thomas

    Universidad de los Andes, Mérida, Venezuela
    Armando Torres-Lezama

    School of Geography, University of Nottingham, Nottingham, UK
    Geertje van der Heijden

    Van Hall Larenstein University of Applied Sciences, Leeuwarden, Netherlands
    Peter van der Meer

    Van der Hoult Forestry Consulting, Leeuwarden, The Netherlands
    Peter van der Hout

    Núcleo de Estudos e Pesquisas Ambientais – Universidade Estadual de Campinas, Campinas, Brazil
    Simone Aparecida Vieira

    Herbario del Sur de Bolivia, Universidad de San Francisco Xavier de Chuquisaca, Sucre, Bolivia
    Jeanneth Villalobos Cayo

    Tropenbos International, Wageningen, Netherlands
    Roderick Zagt More

  • in

    Dinoflagellates alter their carbon and nutrient metabolic strategies across environmental gradients in the central Pacific Ocean

    1.
    Pennington, J. T. et al. Primary production in the eastern tropical Pacific: a review. Prog. Oceanogr. 69, 285–317 (2006).
    Article  Google Scholar 
    2.
    Moore, J. K., Doney, S. C., Glover, D. M. & Fung, I. Y. Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean. Deep Sea Res. II 49, 463–507 (2002).
    CAS  Article  Google Scholar 

    3.
    Landry, M. R. et al. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). I. Microplankton community abundances and biomass. Mar. Ecol. Prog. Ser. 201, 27–42 (2000).
    CAS  Article  Google Scholar 

    4.
    Saito, M. A. et al. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers. Science 345, 1173–1177 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton. Science 305, 354–360 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Stoecker, D. K., Hansen, P. J., Caron, D. A. & Mitra, A. Mixotrophy in the marine plankton. Ann. Rev. Mar. Sci. 9, 311–335 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Flynn, K. J. et al. Misuse of the phytoplankton–zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. J. Plankton Res. 35, 3–11 (2013).
    Article  Google Scholar 

    8.
    Beisner, B. E. et al. A guide to methods for estimating phago-mixotrophy in nanophytoplankton. J. Plankton Res. 41, 77–89 (2019).
    CAS  Article  Google Scholar 

    9.
    Caron, D. A., Countway, P. D., Jones, A. C., Kim, D. Y. & Schnetzer, A. Marine protistan diversity. Ann. Rev. Mar. Sci. 4, 467–493 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    10.
    Ward, B. A. & Follows, M. J. Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux. Proc. Natl Acad. Sci. USA 113, 2958–2963 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Ward, B. A., Dutkiewicz, S., Barton, A. D. & Follows, M. J. Biophysical aspects of resource acquisition and competition in algal mixotrophs. Am. Nat. 178, 98–112 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Edwards, K. F. Mixotrophy in nanoflagellates across environmental gradients in the ocean. Proc. Natl Acad. Sci. USA 116, 6211–6220 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Ward, B. A. Mixotroph ecology: more than the sum of its parts. Proc. Natl Acad. Sci. USA 116, 5846–5848 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Carradec, Q. et al. A global ocean atlas of eukaryotic genes. Nat. Commun. 9, 373 (2018).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    15.
    Caputi, L. et al. Community-level responses to iron availability in open ocean planktonic ecosystems. Global Biogeochem. Cycles 33, 391–419 (2019).
    CAS  Article  Google Scholar 

    16.
    Malviya, S. et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc. Natl Acad. Sci. USA 113, E1516–E1525 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    18.
    Le Bescot, N. et al. Global patterns of pelagic dinoflagellate diversity across protist size classes unveiled by metabarcoding. Environ. Microbiol. 18, 609–626 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Gorsky, G. et al. Expanding Tara oceans protocols for underway, ecosystemic sampling of the ocean-atmosphere interface during Tara Pacific expedition (2016–2018). Front. Mar. Sci. 6, 750 (2019).
    Article  Google Scholar 

    21.
    Wilken, S. et al. The need to account for cell biology in characterizing predatory mixotrophs in aquatic environments. Phil. Trans. R. Soc. Lond. B Biol. Sci. 374, 20190090 (2019).
    CAS  Article  Google Scholar 

    22.
    Edgcomb, V. P. Marine protist associations and environmental impacts across trophic levels in the twilight zone and below. Curr. Opin. Microbiol. 31, 169–175 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Robinson, C. et al. Mesopelagic zone ecology and biogeochemistry: a synthesis. Deep Sea Res. 2 Top. Stud. Oceanogr. 57, 1504–1518 (2010).
    CAS  Article  Google Scholar 

    24.
    Pernice, M. C. et al. Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans. ISME J. 10, 945–958 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    25.
    López-García, P., Rodríguez-Valera, F., Pedrós-Alió, C. & Moreira, D. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603–607 (2001).
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    Hu, S. K. et al. Shifting metabolic priorities among key protistan taxa within and below the euphotic zone. Environ. Microbiol. 20, 2865–2879 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Jeong, H. J. et al. Mixotrophy in the phototrophic dinoflagellate Takayama helix (family Kareniaceae): predator of diverse toxic and harmful dinoflagellates. Harmful Algae 60, 92–106 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    28.
    Hansen, P. J. The role of photosynthesis and food uptake for the growth of marine mixotrophic dinoflagellates. J. Eukaryot. Microbiol. 58, 203–214 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Adolf, J. E. et al. Species specificity and potential roles of Karlodinium micrum toxin. Afr. J. Mar. Sci. 28, 415–419 (2006).
    Article  Google Scholar 

    30.
    Glibert, P. M. et al. Grazing by Karenia brevis on Synechococcus enhances its growth rate and may help to sustain blooms. Aquat. Microb. Ecol. 55, 17–30 (2009).
    Article  Google Scholar 

    31.
    Kleiner, M. Assessing species biomass contributions in microbial communities via metaproteomics. Nat. Commun. 8, 1558 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    32.
    Chavez, F. P., Buck, K. R. & Barber, R. T. Phytoplankton taxa in relation to primary production in the equatorial Pacific. Deep Sea Res. A. 37, 1733–1752 (1990).
    Article  Google Scholar 

    33.
    Goericke, R. & Repeta, D. The pigments of Prochlorococcus marinus: the presence of divinyl chlorophyll a and b in a marine procaryote. Limnol. Oceanogr. 37, 425–433 (1992).
    CAS  Article  Google Scholar 

    34.
    Irigoien, X., Meyer, B., Harris, R. & Harbour, D. Using HPLC pigment analysis to investigate phytoplankton taxonomy: the importance of knowing your species. Helgol. Mar. Res. 58, 77–82 (2004).
    Article  Google Scholar 

    35.
    Binder, B. J., Chisholm, S. W., Olson, R. J., Frankel, S. L. & Worden, A. Z. Dynamics of picophytoplankton, ultraphytoplankton and bacteria in the central equatorial Pacific. Deep Sea Res. 2 Top. Stud. Oceanogr. 43, 907–931 (1996).
    Article  Google Scholar 

    36.
    de Baar, H. J. W. et al. Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment. J. Geophys. Res. Oceans 110, C09S16 (2005).
    Article  CAS  Google Scholar 

    37.
    Bodył, A. & Moszczyński, K. Did the peridinin plastid evolve through tertiary endosymbiosis? A hypothesis. Eur. J. Phycol. 41, 435–448 (2006).
    Article  Google Scholar 

    38.
    Ishida, K.-I. & Green, B. R. Second- and third-hand chloroplasts in dinoflagellates: phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont. Proc. Natl Acad. Sci. USA 99, 9294–9299 (2002).
    CAS  PubMed  Article  Google Scholar 

    39.
    De salas, M. F. et al. Takayama gen. nov. (Gymnodiniales, Dinophyceae), a new genus of unarmored dinoflagellates with sigmoid apical grooves, including the description of two new species. J. Phycol. 39, 1233–1246 (2003).
    Article  Google Scholar 

    40.
    Yoon, H. S., Hackett, J. D. & Bhattacharya, D. A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc. Natl Acad. Sci. USA 99, 11724–11729 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Chavez, F. P., Buck, K. R., Service, S. K., Newton, J. & Barber, R. T. Phytoplankton variability in the central and eastern tropical Pacific. Deep Sea Res. 2 Top. Stud. Oceanogr. 43, 835–870 (1996).
    CAS  Article  Google Scholar 

    42.
    Jeong, H. J. et al. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45, 65–91 (2010).
    CAS  Article  Google Scholar 

    43.
    Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    44.
    Labarre, A., Obiol, A., Wilken, S., Forn, I. & Massana, R. Expression of genes involved in phagocytosis in uncultured heterotrophic flagellates. Limnol. Oceanogr. 65, S149–S160 (2020).
    CAS  Article  Google Scholar 

    45.
    Burns, J. A., Pittis, A. A. & Kim, E. Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic. Nat. Ecol. Evol. 2, 697–704 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Zhang, Y. Metatranscriptomic signatures associated with phytoplankton regime shift from diatom dominance to a dinoflagellate bloom. Front. Microbiol. 10, 590 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    47.
    Liu, Z., Campbell, V., Heidelberg, K. B. & Caron, D. A. Gene expression characterizes different nutritional strategies among three mixotrophic protists. FEMS Microbiol. Ecol. 92, fiw106 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    48.
    Yu, L. et al. Comparative metatranscriptomic profiling and microRNA sequencing to reveal active metabolic pathways associated with a dinoflagellate bloom. Sci. Total Environ. 699, 134323 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Zhuang, Y., Zhang, H., Hannick, L. & Lin, S. Metatranscriptome profiling reveals versatile N-nutrient utilization, CO2 limitation, oxidative stress, and active toxin production in an Alexandrium fundyense bloom. Harmful Algae 42, 60–70 (2015).
    CAS  Article  Google Scholar 

    50.
    Yutin, N., Wolf, M. Y., Wolf, Y. I. & Koonin, E. V. The origins of phagocytosis and eukaryogenesis. Biol. Direct 4, 9 (2009).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    51.
    Perret, E., Davoust, J., Albert, M., Besseau, L. & Soyer-Gobillard, M. O. Microtubule organization during the cell cycle of the primitive eukaryote dinoflagellate Crypthecodinium cohnii. J. Cell Sci. 104, 639–651 (1993).
    PubMed  PubMed Central  Google Scholar 

    52.
    Brown, D. L., Cachon, J., Cachon, M. & Boillot, A. The cytoskeletal microtubular system of some naked dinoflagellates. Cell Motil. 9, 361–374 (1988).
    Article  Google Scholar 

    53.
    Gagnon, C. et al. The polyglutamylated lateral chain of alpha-tubulin plays a key role in flagellar motility. J. Cell Sci. 109, 1545–1553 (1996).
    CAS  PubMed  PubMed Central  Google Scholar 

    54.
    Okamoto, N. & Keeling, P. A comparative overview of the flagellar apparatus of dinoflagellate, perkinsids and colpodellids. Microorganisms 2, 73–91 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    55.
    McKie-Krisberg, Z. M., Sanders, R. W. & Gast, R. J. Evaluation of mixotrophy-associated gene expression in two species of polar marine algae. Front. Mar. Sci. 5, 273 (2018).
    Article  Google Scholar 

    56.
    Rubin, E. T., Cheng, S., Montalbano, A. L., Menden-Deuer, S. & Rynearson, T. A. Transcriptomic response to feeding and starvation in a herbivorous dinoflagellate. Front. Mar. Sci. 6, 246 (2019).
    Article  Google Scholar 

    57.
    Lie, A. A. Y. et al. Effect of light and prey availability on gene expression of the mixotrophic chrysophyte, Ochromonas sp. BMC Genomics 18, 163 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    58.
    Massana, R. et al. Gene expression during bacterivorous growth of a widespread marine heterotrophic flagellate. ISME J. https://doi.org/10.1038/s41396-020-00770-4 (2020).

    59.
    Santoferrara, L. F., Guida, S., Zhang, H. & McManus, G. B. De novo transcriptomes of a mixotrophic and a heterotrophic ciliate from marine plankton. PLoS ONE 9, e101418 (2014).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    60.
    Bouché, N., Yellin, A., Snedden, W. A. & Fromm, H. Plant-specific calmodulin-binding proteins. Annu. Rev. Plant Biol. 56, 435–466 (2005).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    61.
    Crivici, A. & Ikura, M. Molecular and structural basis of target recognition by calmodulin. Annu. Rev. Biophys. Biomol. Struct. 24, 85–116 (1995).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Becker, K. et al. Quantifying post-transcriptional regulation in the development of Drosophila melanogaster. Nat. Commun. 9, 4970 (2018).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    63.
    Slamovits, C., Okamoto, N., Burri, L. James, E. R. & Keeling, P. J. A bacterial proteorhodopsin proton pump in marine eukaryotes. Nat. Commun. 2, 183 (2011).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    64.
    Lin, S. Genomic understanding of dinoflagellates. Res. Microbiol. 162, 551–569 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Olson, D. K., Yoshizawa, S., Boeuf, D., Iwasaki, W. & Delong, E. F. Proteorhodopsin variability and distribution in the North Pacific Subtropical Gyre. ISME J. 12, 1047–1060 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Guo, Z., Zhang, H., Liu, S. & Lin, S. Biology of the marine heterotrophic dinoflagellate Oxyrrhis marina: current status and future directions. Microorganisms 1, 33–57 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Guo, Z., Zhang, H. & Lin, S. Light-promoted rhodopsin expression and starvation survival in the marine dinoflagellate Oxyrrhis marina. PLoS ONE 9, e114941 (2014).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    68.
    Taylor, A. G., Landry, M. R., Selph, K. E. & Yang, E. J. Biomass, size structure and depth distributions of the microbial community in the eastern equatorial Pacific. Deep Sea Res. 2 Top. Stud. Oceanogr. 58, 342–357 (2011).
    CAS  Article  Google Scholar 

    69.
    Takahashi, M., Satake, K.-I. & Nakamoto, N. Chlorophyll distribution and photosynthetic activity in the north and equatorial Pacific Ocean along 155°W. J. Oceanogr. Soc. Japan 28, 27–36 (1972).
    Article  Google Scholar 

    70.
    Ducklow, H. W. The bacterial component of the oceanic euphotic zone. FEMS Microbiol. Ecol. 30, 1–10 (1999).
    CAS  Article  Google Scholar 

    71.
    Behrmann, G. & Hardeland, R. Ultrastructural characterization of asexual cysts of Gonyaulax polyedra Stein (Dinoflagellata). Protoplasma 185, 22–27 (1995).
    Article  Google Scholar 

    72.
    Roy, S., Letourneau, L. & Morse, D. Cold-induced cysts of the photosynthetic dinoflagellate Lingulodinium polyedrum have an arrested circadian bioluminescence rhythm and lower levels of protein phosphorylation. Plant Physiol. 164, 966–977 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Bravo, I. & Figueroa, R. I. Towards an ecological understanding of dinoflagellate cyst functions. Microorganisms 2, 11–32 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    74.
    Gotthardt, D. et al. High-resolution dissection of phagosome maturation reveals distinct membrane trafficking phases. Mol. Biol. Cell 13, 3508–3520 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Keeling, P, J. et al. The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889 (2014).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    76.
    Garcia, H. E. et al. World Ocean Atlas 2013. Volume 4, Dissolved Inorganic Nutrients (Phosphate, Nitrate, Silicate) NOAA Atlas NESDIS Series 76 (NOAA, 2013); https://www.nodc.noaa.gov/OC5/woa13/pubwoa13.html

    77.
    Alexander, H., Jenkins, B. D., Rynearson, T. A. & Dyhrman, S. T. Metatranscriptome analyses indicate resource partitioning between diatoms in the field. Proc. Natl Acad. Sci. USA 112, E2182–E2190 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    78.
    Bender, S. J., Parker, M. S. & Armbrust, E. V. Coupled effects of light and nitrogen source on the urea cycle and nitrogen metabolism over a diel cycle in the marine diatom Thalassiosira pseudonana. Protist 163, 232–251 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    79.
    Groussman, R. D., Parker, M. S. & Armbrust, E. V. Diversity and evolutionary history of iron metabolism genes in diatoms. PLoS ONE 10, e0129081 (2015).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    80.
    Marchetti, A. et al. Development of a molecular-based index for assessing iron status in bloom-forming pennate diatoms. J. Phycol. 53, 820–832 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    81.
    Chappell, P. D. et al. Genetic indicators of iron limitation in wild populations of Thalassiosira oceanica from the northeast Pacific Ocean. ISME J. 9, 592–602 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    82.
    McQuaid, J. B. et al. Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms. Nature 555, 534–537 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    83.
    Morrissey, J. et al. A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake. Curr. Biol. 25, 364–371 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    84.
    Allen, A. E. et al. Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc. Natl Acad. Sci. USA 105, 10438–10443 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    85.
    Erdner, D. L. & Anderson, D. M. Ferredoxin and flavodoxin as biochemical indicators of iron limitation during open-ocean iron enrichment. Limnol. Oceanogr. 44, 1609–1615 (1999).
    CAS  Article  Google Scholar 

    86.
    La Roche, J., Boyd, P. W., McKay, R. M. L. & Geider, R. J. Flavodoxin as an in situ marker for iron stress in phytoplankton. Nature 382, 802–805 (1996).
    CAS  Article  Google Scholar 

    87.
    Peers, G. & Price, N. M. Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 441, 341–344 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    88.
    Morey, J. S. et al. Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition. BMC Genomics 12, 346 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    89.
    Jing, X., Lin, S., Zhang, H., Koerting, C. & Yu, Z. Utilization of urea and expression profiles of related genes in the dinoflagellate Prorocentrum donghaiense. PLoS ONE 12, e0187837 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    90.
    Fan, C., Glibert, P. M., Alexander, J. & Lomas, M. W. Characterization of urease activity in three marine phytoplankton species, Aureococcus anophagefferens, Prorocentrum minimum, and Thalassiosira weissflogii. Mar. Biol. 142, 949–958 (2003).
    CAS  Article  Google Scholar 

    91.
    Shilova, I. N. et al. Differential effects of nitrate, ammonium, and urea as N sources for microbial communities in the North Pacific Ocean. Limnol. Oceanogr. 62, 2550–2574 (2017).
    CAS  Article  Google Scholar 

    92.
    Casey, J. R., Lomas, M. W., Mandecki, J. & Walker, D. E. Prochlorococcus contributes to new production in the Sargasso Sea deep chlorophyll maximum. Geophys. Res. Lett. 34, L10604 (2007).
    Article  CAS  Google Scholar 

    93.
    Price, N. M. & Morel, F. M. M. Cadmium and cobalt substitution for zinc in a marine diatom. Nature 344, 658–660 (1990).
    CAS  Article  Google Scholar 

    94.
    McGinn, P. J. & Morel, F. M. M. Expression and regulation of carbonic anhydrases in the marine diatom Thalassiosira pseudonana and in natural phytoplankton assemblages from Great Bay, New Jersey. Physiol. Plant. 133, 78–91 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    95.
    Marchetti, A. et al. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. Proc. Natl Acad. Sci. USA 109, E317–E325 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    96.
    Bertrand, E. M. et al. Phytoplankton–bacterial interactions mediate micronutrient colimitation at the coastal Antarctic sea ice edge. Proc. Natl Acad. Sci. USA 112, 9938–9943 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    97.
    Bender, S. J., Durkin, C. A., Berthiaume, C. T., Morales, R. L. & Armbrust, E. V. Transcriptional responses of three model diatoms to nitrate limitation of growth. Front. Mar. Sci. 1, 3 (2014).
    Article  Google Scholar 

    98.
    Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res. A 34, 267–285 (1987).
    CAS  Article  Google Scholar 

    99.
    Gloege, L., McKinley, G. A., Mouw, C. B. & Ciochetto, A. B. Global evaluation of particulate organic carbon flux parameterizations and implications for atmospheric pCO2. Global Biogeochem. Cycles 31, 1192–1215 (2017).
    CAS  Article  Google Scholar 

    100.
    Smayda, T. J. Adaptations and selection of harmful and other dinoflagellate species in upwelling systems. 2. Motility and migratory behaviour. Prog. Oceanogr. 85, 71–91 (2010).
    Article  Google Scholar 

    101.
    Raven, J. A. & Richardson, K. Dinophyte flagella: a cost–benefit analysis. New. Phytol. 98, 259–276 (1984).
    Article  Google Scholar 

    102.
    Hou, Y. & Lin, S. Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes: gene content estimation for dinoflagellate genomes. PLoS ONE 4, e6978 (2009).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    103.
    Lin, S. The smallest dinoflagellate genome is yet to be found: a comment on LaJeunesse et al. ‘Symbiodinium (Pyrrophyta) genome sizes (DNA content) are smallest among dinoflagellates’. J. Phycol. 42, 746–748 (2006).
    Article  Google Scholar 

    104.
    Fuhrman, J. Genome sequences from the sea. Nature 424, 1001–1002 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    105.
    Rocap, G. et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424, 1042–1047 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    106.
    Saito, M. A. et al. Needles in the blue sea: sub-species specificity in targeted protein biomarker analyses within the vast oceanic microbial metaproteome. Proteomics 15, 3521–3531 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    107.
    Cutter, G. et al. Sampling and sample-handling protocols for GEOTRACES cruises. EPIC Eprint https://epic.awi.de/id/eprint/34484/ (2010).

    108.
    Anderson, R. F. & Henderson, G. M. GEOTRACES: a global study of the marine biogeochemical cycles of trace elements and their isotopes. Oceanography 18, 76–79 (2005).
    Article  Google Scholar 

    109.
    Saito, M. A. & Schneider, D. L. Examination of precipitation chemistry and improvements in precision using the Mg(OH)2 preconcentration inductively coupled plasma mass spectrometry (ICP-MS) method for high-throughput analysis of open-ocean Fe and Mn in seawater. Anal. Chim. Acta 565, 222–233 (2006).
    CAS  Article  Google Scholar 

    110.
    Munson, K. M., Lamborg, C. H., Swarr, G. J. & Saito, M. A. Mercury species concentrations and fluxes in the Central Tropical Pacific Ocean. Global Biogeochem. Cycles 29, 656–676 (2015).
    CAS  Article  Google Scholar 

    111.
    Lu, X. & Zhu, H. Tube-gel digestion: a novel proteomic approach for high throughput analysis of membrane proteins. Mol. Cell. Proteomics 4, 1948–1958 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    112.
    Vizcaíno, J. A. et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 41, D1063–D1069 (2013).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    113.
    Zhang, Y., Wen, Z., Washburn, M. P. & Florens, L. Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins. Anal. Chem. 82, 2272–2281 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    114.
    Schmieder, R., Lim, Y. W. & Edwards, R. Identification and removal of ribosomal RNA sequences from metatranscriptomes. Bioinformatics 28, 433–435 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    115.
    Rho, M., Tang, H. & Ye, Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res. 38, e191 (2010).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    116.
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

    117.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    CAS  PubMed  Article  Google Scholar 

    118.
    Kolody, B. C. et al. Diel transcriptional response of a California Current plankton microbiome to light, low iron, and enduring viral infection. ISME J. 13, 2817–2833 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    119.
    Ogata, H. & et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 27, 29–34 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    120.
    Nordberg, H. et al. The genome portal of the Department of Energy joint genome institute: 2014 updates. Nucleic Acids Res. 42, D26–D31 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    121.
    Hancock, J. M., Zvelebil, M. J., Hancock, J. M. & Bishop, M. J. in Dictionary of Bioinformatics and Computational Biology (eds Hancock, J. M. & Zvelebil, M. J.) (Wiley, 2004).

    122.
    Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).
    CAS  Article  Google Scholar 

    123.
    Wagner, G. P., Kin, K. & Lynch, V. J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131, 281–285 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    124.
    Li, B., Ruotti, V., Stewart, R. M., Thomson, J. A. & Dewey, C. N. RNA-seq gene expression estimation with read mapping uncertainty. Bioinformatics 26, 493–500 (2010).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    125.
    Lane, D. J. et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl Acad. Sci. USA 82, 6955–6959 (1985).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    126.
    Herlemann, D. P. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    127.
    Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    128.
    Hugerth, L. W. et al. Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in microbial consortia. PLoS ONE 9, e95567 (2014).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    129.
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    130.
    Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    131.
    Mordret, S. et al. dinoref: a curated dinoflagellate (Dinophyceae) reference database for the 18S rRNA gene. Mol. Ecol. Resour. 18, 974–987 (2018).
    CAS  Article  Google Scholar 

    132.
    Decelle, J. et al. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol. Ecol. Resour. 15, 1435–1445 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    133.
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    134.
    Chen, I.-M. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2018).
    Article  CAS  Google Scholar 

    135.
    Dupont, C. L. et al. Genomes and gene expression across light and productivity gradients in eastern subtropical Pacific microbial communities. ISME J. 9, 1076–1092 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    136.
    Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    137.
    Hothorn, T., Hornik, K., de Wiel, M. & Zeileis, A. coin: Conditional inference procedures in a permutation test framework. R package version 0.6.6 https://rdrr.io/cran/coin/ (2006).

    138.
    McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    139.
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.3-0 https://cran.r-project.org/web/packages/vegan/index.html (2015).

    140.
    Johnson, L. K., Alexander, H. & Brown, C. T. Re-assembly, quality evaluation, and annotation of 678 microbial eukaryotic reference transcriptomes. Gigascience 8, giy158 (2019).
    PubMed  PubMed Central  Google Scholar 

    141.
    Madeira, F. et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47, W636–W641 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    142.
    Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2: a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    143.
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    144.
    Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics 11, 538 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    145.
    Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).
    Article  Google Scholar 

    146.
    Brown, M. Ocean Data View 4.0. Oceanography 11, 19–21 (1998).
    Article  Google Scholar 

    147.
    Garcia, H. E. et al. World Ocean Atlas 2009, Volume 4: Nutrients (Phosphate, Nitrate, and Silicate) (ed. Levitus, S.) (US Government Printing Office, 2010). More

  • in

    Host relatedness and landscape connectivity shape pathogen spread in the puma, a large secretive carnivore

    1.
    Daversa, D. R., Fenton, A., Dell, A. I., Garner, T. W. J. & Manica, A. Infections on the move: how transient phases of host movement influence disease spread. Proc. R. Soc. B Biol. Sci. 284, 20171807 (2017).
    Article  Google Scholar 
    2.
    Mazé-Guilmo, E., Blanchet, S., McCoy, K. D. & Loot, G. Host dispersal as the driver of parasite genetic structure: a paradigm lost? Ecol. Lett. 19, 336–347 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Biek, R. & Real, L. A. The landscape genetics of infectious disease emergence and spread. Mol. Ecol. 19, 3515–3531 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    4.
    Kozakiewicz, C. P. et al. Pathogens in space: Advancing understanding of pathogen dynamics and disease ecology through landscape genetics. Evol. Appl. https://doi.org/10.1111/eva.12678 (2018).

    5.
    Brüniche-Olsen, A., Burridge, C. P., Austin, J. J. & Jones, M. E. Disease induced changes in gene flow patterns among Tasmanian devil populations. Biol. Conserv. 165, 69–78 (2013).
    Article  Google Scholar 

    6.
    Kyle, C. J. et al. Spatial patterns of neutral and functional genetic variations reveal patterns of local adaptation in raccoon (Procyon lotor) populations exposed to raccoon rabies. Mol. Ecol. 23, 2287–2298 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Schwabl, P. et al. Prediction and prevention of parasitic diseases using a landscape genomics framework. Trends Parasitol. 33, 264–275 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    8.
    Streicker, D. G. et al. Host-pathogen evolutionary signatures reveal dynamics and future invasions of vampire bat rabies. Proc. Natl. Acad. Sci. USA 113, 10926–10931 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Gijsbers, E. F. et al. Low level of HIV-1 evolution after transmission from mother to child. Sci. Rep. 4, 4650–4655 (2014).
    Google Scholar 

    10.
    Lee, J. S. et al. Gene flow and pathogen transmission among bobcats (Lynx rufus) in a fragmented urban landscape. Mol. Ecol. 21, 1617–1631 (2012).
    PubMed  Article  Google Scholar 

    11.
    Fountain-Jones, N. M. et al. Urban landscapes can change virus gene flow and evolution in a fragmentation-sensitive carnivore. Mol. Ecol. 26, 6487–6498 (2017).
    PubMed  Article  Google Scholar 

    12.
    Brearley, G. et al. Wildlife disease prevalence in human-modified landscapes. Biol. Rev. Camb. Philos. Soc. 88, 427–442 (2013).
    PubMed  Article  Google Scholar 

    13.
    Mcdonald, R. I., Kareiva, P. & Forman, R. T. T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 141, 1695–1703 (2008).
    Article  Google Scholar 

    14.
    Riley, S. P. D. et al. A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol. Ecol. 15, 1733–1741 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Riley, S. P. D. et al. Effects of urbanization and habitat fragmentation on bobcats and coyotes in southern California. Conserv. Biol. 17, 566–576 (2003).
    Article  Google Scholar 

    17.
    Smith, J. A. et al. Fear of the human ‘super predator’ reduces feeding time in large carnivores. Proc. Biol. Sci. 284, 20170433 (2017).
    PubMed  PubMed Central  Google Scholar 

    18.
    Tracey, J. A., Bevins, S. N., VandeWoude, S. & Crooks, K. R. An agent-based movement model to assess the impact of landscape fragmentation on disease transmission. Ecosphere 5, 119 (2014).
    Article  Google Scholar 

    19.
    Volz, E. M., Koelle, K. & Bedford, T. Viral phylodynamics. PLoS Comput. Biol. 9, e1002947 (2013).

    20.
    Ordeñana, M. A. et al. Effects of urbanization on carnivore species distribution and richness. J. Mammal. 91, 1322–1331 (2010).
    Article  Google Scholar 

    21.
    Crooks, K. R. Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv. Biol. 16, 488–502 (2002).
    Article  Google Scholar 

    22.
    Blecha, K. A., Boone, R. B. & Alldredge, M. W. Hunger mediates apex predator’s risk avoidance response in wildland-urban interface. J. Anim. Ecol. 87, 609–622 (2018).
    PubMed  Article  Google Scholar 

    23.
    Lewis, J. S. et al. The effects of urbanization on population density, occupancy, and detection probability of wild felids. Ecol. Appl. 25, 1880–1895 (2015).
    PubMed  Article  Google Scholar 

    24.
    Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).
    PubMed  Article  Google Scholar 

    25.
    Cunningham, M. W. et al. Epizootiology and management of feline leukemia virus in the Florida puma. J. Wildl. Dis. 44, 537–552 (2008).

    26.
    Trumbo, D. et al. Urbanization impacts apex predator gene flow but not genetic diversity across an urban-rural divide. Mol. Ecol. 28, 4926–4940 (2019).

    27.
    VandeWoude, S. & Apetrei, C. Going wild: lessons from naturally occurring T-lymphotropic lentiviruses. Clin. Microbiol. Rev. 19, 728–762 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Brown, E. W., Yuhki, N., Packer, C. & O’Brien, S. J. A lion lentivirus related to feline immunodeficiency virus: epidemiologic and phylogenetic aspects. J. Virol. 68, 5953–5968 (1994).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Biek, R. et al. Epidemiology, genetic diversity, and evolution of endemic feline immunodeficiency virus in a population of wild cougars. J. Virol. 77, 9578–9589 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Biek, R., Ruth, T. K., Murphy, K. M., Anderson, C. R. Jr. & Poss, M. Examining effects of persistent retroviral infection on fitness and pathogen susceptibility in a natural feline host. Can. J. Zool. 84, 365–373 (2006).
    Article  Google Scholar 

    31.
    Reynolds, J. J. H. et al. Feline immunodeficiency virus in puma: estimation of force of infection reveals insights into transmission. Ecol. Evol. ece3.5584, https://doi.org/10.1002/ece3.5584 (2019).

    32.
    Fountain-Jones, N. M. et al. Linking social and spatial networks to viral community phylogenetics reveals subtype-specific transmission dynamics in African lions. J. Anim. Ecol. 86, 1469–1482 (2017).
    PubMed  Article  Google Scholar 

    33.
    Fountain-Jones, N. M. et al. Towards an eco-phylogenetic framework for infectious disease ecology. Biol. Rev. 93, 950–970 (2018).
    PubMed  Article  Google Scholar 

    34.
    Smith, J. A. et al. Fear of the human ‘super predator’ reduces feeding time in large carnivores. Proc. R. Soc. London B Biol. Sci. 284, 20170433 (2017).

    35.
    Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 (2007).
    Article  Google Scholar 

    36.
    Clarke, R. T., Rothery, P. & Raybould, A. F. Condence limits for regression relationships between distance matrices: estimating gene flow with distance. J. Agric. Biol. Environ. Stat. https://doi.org/10.1198/108571102320 (2002).

    37.
    Chou, J. et al. A comparative study of SVDquartets and other coalescent-based species tree estimation methods. BMC Genomics 16, S2 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    38.
    Shirk, A. J., Landguth, E. L. & Cushman, S. A. A comparison of regression methods for model selection in individual-based landscape genetic analysis. Mol. Ecol. Resour. 18, 55–67 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    39.
    Smouse, P. E. & Peakall, R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity (Edinb.) 82, 561–573 (1999).
    Article  Google Scholar 

    40.
    Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).
    Article  Google Scholar 

    41.
    Logan, K. A. & Sweanor, L. L. Desert Puma: Evolutionary Ecology and Conservation of an Enduring Carnivore (Island Press, 2001).

    42.
    Biek, R. et al. Genetic consequences of sex-biased dispersal in a solitary carnivore: yellowstone cougars. Biol. Lett. 2, 312–315 (2006).
    PubMed  PubMed Central  Article  Google Scholar 

    43.
    Dickson, B. G., Jenness, J. S. & Beier, P. Influence of vegetation, topography, and roads on cougar movement in Southern California. J. Wildl. Manag. 69, 264–276 (2005).
    Article  Google Scholar 

    44.
    Kerr, T. J. et al. Viruses as indicators of contemporary host dispersal and phylogeography: an example of feline immunodeficiency virus (FIV Ple) in free-ranging African lion (Panthera leo). J. Evol. Biol. https://doi.org/10.1111/jeb.13348 (2018).

    45.
    Epps, C. W. & Keyghobadi, N. Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change. Mol. Ecol. 24, 6021–6040 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Hornocker, M. G. & Negri, S. Cougar: Ecology and Conservation (University of Chicago Press, 2010).

    47.
    Sweanor, L. L., Logan, K. A. & Hornocker, M. G. Cougar dispersal patterns, metapopulation dynamics, and conservation. Conserv. Biol. 14, 798–808 (2000).
    Article  Google Scholar 

    48.
    Suraci, J. P., Clinchy, M., Zanette, L. Y. & Wilmers, C. C. Fear of humans as apex predators has landscape‐scale impacts from mountain lions to mice. Ecol. Lett. ele.13344 https://doi.org/10.1111/ele.13344 (2019).

    49.
    Tian, H. et al. Transmission dynamics of re-emerging rabies in domestic dogs of rural China. PLOS Pathog. 14, e1007392 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Carver, S. et al. Pathogen exposure varies widely among sympatric populations of wild and domestic felids across the United States. Ecol. Appl. 26, 367–381 (2016).
    PubMed  Article  Google Scholar 

    51.
    Di Pietro, F., Ortenzi, F., Tilio, M., Concetti, F. & Napolioni, V. Genomic DNA extraction from whole blood stored from 15- to 30-years at −20 °C by rapid phenol–chloroform protocol: a useful tool for genetic epidemiology studies. Mol. Cell. Probes 25, 44–48 (2011).
    PubMed  Article  CAS  Google Scholar 

    52.
    Lee, J. S. et al. Targeted enrichment for pathogen detection and characterization in three felid species. J. Clin. Microbiol. 55, 1658–1670 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Lee, J. S. et al. Evolution of puma lentivirus in bobcats (Lynx rufus) and mountain lions (Puma concolor) in North America. J. Virol. 88, 7727–7737 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 1, vev003 (2015).

    56.
    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
    CAS  PubMed  Article  Google Scholar 

    57.
    Stöver, B. C. & Müller, K. F. TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinforma. 11, 7 (2010).
    Article  Google Scholar 

    58.
    Rambaut, A., Lam, T. T., Max Carvalho, L. & Pybus, O. G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2, vew007 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4 (2018).

    60.
    Ayres, D. L. et al. BEAGLE 3: Improved performance, scaling, and usability for a high-performance computing library for statistical phylogenetics. Syst. Biol. 68, 1052–1061, https://doi.org/10.1093/sysbio/syz020 (2019).

    61.
    Lemey, P., Rambaut, A., Welch, J. J. & Suchard, M. A. Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol. 27, 1877–1885 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Lefort, V., Longueville, J.-E. & Gascuel, O. SMS: Smart model selection in PhyML. Mol. Biol. Evol. 34, 2422–2424 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Gill, M. S. et al. Improving Bayesian population dynamics inference: a coalescent-based model for multiple loci. Mol. Biol. Evol. 30, 713–724 (2013).
    CAS  PubMed  Article  Google Scholar 

    64.
    Baele, G. et al. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol. Biol. Evol. 29, 2157–2167 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Lartillot, N. & Philippe, H. Computing Bayes factors using thermodynamic integration. Syst. Biol. 55, 195–207 (2006).
    PubMed  Article  Google Scholar 

    66.
    Xie, W., Lewis, P. O., Fan, Y., Kuo, L. & Chen, M.-H. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst. Biol. 60, 150–160 (2011).
    PubMed  Article  Google Scholar 

    67.
    Baele, G., Lemey, P. & Vansteelandt, S. Make the most of your samples: Bayes factor estimators for high-dimensional models of sequence evolution. BMC Bioinforma. 14, 85 (2013).
    Article  Google Scholar 

    68.
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Volz, E. M. et al. Identification of hidden population structure in time-scaled phylogenies. Syst. Biol. 69, 884–896, https://doi.org/10.1093/sysbio/syaa009 (2019).

    70.
    Karcher, M. D., Palacios, J. A., Lan, S. & Minin, V. N. phylodyn: an R package for phylodynamic simulation and inference. Mol. Ecol. Resour. 17, 96–100 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Karcher, M. D., Palacios, J. A., Bedford, T., Suchard, M. A. & Minin, V. N. Quantifying and mitigating the effect of preferential sampling on phylodynamic inference. PLoS Comput. Biol. 12, e1004789 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    72.
    Bowcock, A. M. et al. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368, 455–457 (1994).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    McRae, B. H. Isolation by resistance. Evolution 60, 1551–1561 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    74.
    Chifman, J. & Kubatko, L. Quartet inference from SNP data under the coalescent model. Bioinformatics 30, 3317–3324 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Swofford, D. L. PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10 (Sinauer Associates, 2002).

    76.
    Peterman, W. E. ResistanceGA: an R package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol. Evol. 9, 1638–1647 (2018).
    Article  Google Scholar 

    77.
    Pierce, B. M., Bleich, V. C. & Bowyer, R. T. Social organization of mountain lions: does a land-tenure system regulate population size? Ecology 81, 1533–1543 (2000).
    Article  Google Scholar 

    78.
    Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett. 18, 1–16 (2015).
    PubMed  Article  Google Scholar 

    79.
    Fitzpatrick, M. C. et al. Forecasting the future of biodiversity: a test of single- and multi-species models for ants in North America. Ecography 34, 836–847 (2011).
    Article  Google Scholar 

    80.
    Dellicour, S., Rose, R., Faria, N. R., Lemey, P. & Pybus, O. G. SERAPHIM: studying environmental rasters and phylogenetically informed movements. Bioinformatics 32, 3204–3206 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    81.
    Dellicour, S. et al. Explaining the geographic spread of emerging epidemics: a framework for comparing viral phylogenies and environmental landscape data. BMC Bioinforma. 17, 82–94 (2016).
    Article  CAS  Google Scholar 

    82.
    Laenen, L. et al. Spatio-temporal analysis of Nova virus, a divergent hantavirus circulating in the European mole in Belgium. Mol. Ecol. 25, 5994–6008 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    83.
    Dijkstra, E. W. A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959).
    Article  Google Scholar 

    84.
    Dellicour, S. et al. Using viral gene sequences to compare and explain the heterogeneous spatial dynamics of virus epidemics. Mol. Biol. Evol. 34, 2563–2571 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Polarization of microbial communities between competitive and cooperative metabolism

    1.
    Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Raaijmakers, J. M. & Mazzola, M. Soil immune responses. Science 352, 1392–1393 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    4.
    Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Lawson, C. E. et al. Common principles and best practices for engineering microbiomes. Nat. Rev. Microbiol. 17, 725–741 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Armstrong, R. A. & McGehee, R. Competitive exclusion. Am. Nat. 115, 151–170 (1980).
    Article  Google Scholar 

    11.
    Tan, J., Zuniga, C. & Zengler, K. Unraveling interactions in microbial communities – from co-cultures to microbiomes. J. Microbiol. 53, 295–305 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Zengler, K. & Zaramela, L. S. The social network of microorganisms—how auxotrophies shape complex communities. Nat. Rev. Microbiol. 16, 383–390 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Freilich, S. et al. Competitive and cooperative metabolic interactions in bacterial communities. Nat. Commun. 2, 589 (2011).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    14.
    Levy, R. & Borenstein, E. Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. Proc. Natl Acad. Sci. USA 110, 12804–12809 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Zelezniak, A. et al. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc. Natl Acad. Sci. USA 112, 6449–6454 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Billick, I. & Case, T. J. Higher order interactions in ecological communities: what are they and how can they be detected? Ecology 75, 1529–1543 (1994).
    Article  Google Scholar 

    17.
    Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 0109 (2017).
    Article  Google Scholar 

    18.
    Morin, M., Pierce, E. C. & Dutton, R. J. Changes in the genetic requirements for microbial interactions with increasing community complexity. eLife 7, e37072 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    21.
    Machado, D., Andrejev, S., Tramontano, M. & Patil, K. R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 46, 7542–7553 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Freilich, S. et al. The large-scale organization of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Res. 38, 3857–3868 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Barberán, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351 (2011).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Faust, K. et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol. 8, e1002606 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Zomorrodi, A. R. & Maranas, C. D. OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput. Biol. 8, e1002363 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Khandelwal, R. A., Olivier, B. G., Röling, W. F. M., Teusink, B. & Bruggeman, F. J. Community flux balance analysis for microbial consortia at balanced growth. PLoS ONE 8, e64567 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Chan, S. H. J., Simons, M. N. & Maranas, C. D. SteadyCom: predicting microbial abundances while ensuring community stability. PLoS Comput. Biol. 13, e1005539 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    28.
    Mee, M. T., Collins, J. J., Church, G. M. & Wang, H. H. Syntrophic exchange in synthetic microbial communities. Proc. Natl Acad. Sci. USA 111, E2149–E2156 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Ponomarova, O. et al. Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Syst. 5, 345–357 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Chaffron, S., Rehrauer, H., Pernthaler, J. & Mering, C. V. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res. 20, 947–959 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Amarasekare, P. Interference competition and species coexistence. Proc. R. Soc. Lond. B 269, 2541–2550 (2002).
    Article  Google Scholar 

    32.
    Blin, K. et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–W87 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Crump, B. C., Amaral-Zettler, L. A. & Kling, G. W. Microbial diversity in arctic freshwaters is structured by inoculation of microbes from soils. ISME J. 6, 1629–1639 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    O’Brien, S. L. et al. Spatial scale drives patterns in soil bacterial diversity. Environ. Microbiol. 18, 2039–2051 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Zarraonaindia, I. et al. The soil microbiome influences grapevine-associated microbiota. mBio 6, e02527-14 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Lax, S. et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345, 1048–1052 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Nolan, M. J. et al. Molecular-based investigation of Cryptosporidium and Giardia from animals in water catchments in southeastern Australia. Water Res. 47, 1726–1740 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Haig, S.-J., Quince, C., Davies, R. L., Dorea, C. C. & Collins, G. Replicating the microbial community and water quality performance of full-scale slow sand filters in laboratory-scale filters. Water Res. 61, 141–151 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Koehler, A. V., Haydon, S. R., Jex, A. R. & Gasser, R. B. Cryptosporidium and Giardia taxa in faecal samples from animals in catchments supplying the city of Melbourne with drinking water (2011 to 2015). Parasit. Vectors 9, 315 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Rivière, A., Gagnon, M., Weckx, S., Roy, D. & Vuyst, L. D. Mutual cross-feeding interactions between Bifidobacterium longum subsp. longum NCC2705 and Eubacterium rectale ATCC 33656 explain the bifidogenic and butyrogenic effects of arabinoxylan oligosaccharides. Appl. Environ. Microbiol. 81, 7767–7781 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    D’Souza, G. et al. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat. Prod. Rep. 35, 455–488 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    43.
    Pacheco, A. R. & Segrè, D. A multidimensional perspective on microbial interactions. FEMS Microbiol. Lett. 366, fnz125 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Pacheco, A. R., Moel, M. & Segrè, D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat. Commun. 10, 103 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    45.
    Barton, M. D., Delneri, D., Oliver, S. G., Rattray, M. & Bergman, C. M. Evolutionary systems biology of amino acid biosynthetic cost in yeast. PLoS ONE 5, e11935 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    46.
    Campbell, K. et al. Self-establishing communities enable cooperative metabolite exchange in a eukaryote. eLife 4, e09943 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    D’Souza, G. & Kost, C. Experimental evolution of metabolic dependency in bacteria. PLoS Genet. 12, e1006364 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Harcombe, W. Novel cooperation experimentally evolved between species. Evolution 64, 2166–2172 (2010).
    PubMed  PubMed Central  Google Scholar 

    49.
    Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405.e21 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Valen, L. V. A new evolutionary law. Evol. Theory 1, 1–30 (1973).
    Google Scholar 

    52.
    Morris, J. J., Lenski, R. E. & Zinser, E. R. The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio 3, e00036-12 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Bosch, A. A. T. M., Biesbroek, G., Trzcinski, K., Sanders, E. A. M. & Bogaert, D. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog. 9, e1003057 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Peleg, A. Y., Hogan, D. A. & Mylonakis, E. Medically important bacterial–fungal interactions. Nat. Rev. Microbiol. 8, 340–349 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Jones, D. T., Taylor, W. R. & Thornton, J. M. The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8, 275–282 (1992).
    CAS  Article  Google Scholar 

    58.
    Ciccarelli, F. D. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Mende, D. R., Sunagawa, S., Zeller, G. & Bork, P. Accurate and universal delineation of prokaryotic species. Nat. Methods 10, 881–884 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Sievers, F. et al. Fast scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539–539 (2014).
    Article  Google Scholar 

    61.
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    62.
    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).
    Article  CAS  Google Scholar 

    63.
    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Article  Google Scholar 

    65.
    Bollback, J. P. SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinformatics 7, 88 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    A global horizon scan of the future impacts of robotics and autonomous systems on urban ecosystems

    1.
    Schwab, K. The Fourth Industrial Revolution (Penguin, 2017).
    2.
    Marvin, S., White, A., Kovacic, M., Lockhart, A. & Macrorie, R. Urban Robotics and Automation: Critical Challenges, International Experiments and Transferable Lessons for the UK UK-RAS White Paper (UK-RAS Network, 2018).

    3.
    Salvini, P. Urban robotics: towards responsible innovations for our cities. Rob. Autom. Syst. 100, 278–286 (2018).
    Article  Google Scholar 

    4.
    Vougioukas, S. G. Agricultural robotics. Annu. Rev. Control Robot. Auton. Syst. 2, 365–392 (2019).
    Article  Google Scholar 

    5.
    Allan, B. M. et al. Futurecasting ecological research: the rise of technoecology. Ecosphere 9, e02163 (2018).
    Article  Google Scholar 

    6.
    Hodgson, J. C. et al. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evol. 9, 1160–1167 (2018).
    Article  Google Scholar 

    7.
    Dash, J. P., Watt, M. S., Paul, T. S. H., Morgenroth, J. & Hartley, R. Taking a closer look at invasive alien plant research: a review of the current state, opportunities, and future directions for UAVs. Methods Ecol. Evol. 10, 2020–2033 (2019).
    Article  Google Scholar 

    8.
    Global Autonomous Robot Market—Industry Trends and Forecast to 2026 (Data Bridge Market Research, 2019).

    9.
    Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).
    CAS  PubMed  Article  Google Scholar 

    10.
    Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).
    PubMed  Article  CAS  Google Scholar 

    11.
    Du Toit, M. J. et al. Urban green infrastructure and ecosystem services in sub-Saharan Africa. Landsc. Urban Plan. 180, 249–261 (2018).
    Article  Google Scholar 

    12.
    Nitoslawski, S. A., Galle, N. J., van den Bosch, C. K. & Steenberg, J. W. N. Smarter ecosystems for smarter cities? A review of trends, technologies, and turning points for smart urban forestry. Sustain. Cities Soc. 51, 101770 (2019).
    Article  Google Scholar 

    13.
    Gulsrud, N. M. et al. ‘Rage against the machine’? The opportunities and risks concerning the automation of urban green infrastructure. Landsc. Urban Plan. 180, 85–92 (2018).
    Article  Google Scholar 

    14.
    Bibri, S. E. & Krogstie, J. Smart sustainable cities of the future: an extensive interdisciplinary literature review. Sustain. Cities Soc. 31, 183–212 (2017).
    Article  Google Scholar 

    15.
    Colding, J. & Barthel, S. An urban ecology critique on the “Smart City” model. J. Clean. Prod. 164, 95–101 (2017).
    Article  Google Scholar 

    16.
    Martin, C. J., Evans, J. & Karvonen, A. Smart and sustainable? Five tensions in the visions and practices of the smart-sustainable city in Europe and North America. Technol. Forecast. Soc. Change 133, 269–278 (2018).
    Article  Google Scholar 

    17.
    Cantrell, B., Martin, L. J. & Ellis, E. C. Designing autonomy: opportunities for new wildness in the Anthropocene. Trends Ecol. Evol. 32, 156–166 (2017).
    PubMed  Article  Google Scholar 

    18.
    Luvisi, A. & Lorenzini, G. RFID-plants in the smart city: applications and outlook for urban green management. Urban For. Urban Green. 13, 630–637 (2014).
    Article  Google Scholar 

    19.
    Kahila-Tani, M., Broberg, A., Kyttä, M. & Tyger, T. Let the citizens map—public participation GIS as a planning support system in the Helsinki master plan process. Plan. Pract. Res. 31, 195–214 (2016).
    Article  Google Scholar 

    20.
    McPhearson, T. et al. Advancing urban ecology toward a science of cities. BioScience 66, 198–212 (2016).
    Article  Google Scholar 

    21.
    Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).
    Article  Google Scholar 

    22.
    Gomez-Baggethun, E. & Barton, D. N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 86, 235–245 (2013).
    Article  Google Scholar 

    23.
    Sutherland, W. J. et al. A horizon scan of emerging issues for global conservation in 2019. Trends Ecol. Evol. 34, 83–94 (2019).
    PubMed  Article  Google Scholar 

    24.
    Mukherjee, N. et al. The Delphi technique in ecology and biological conservation: applications and guidelines. Methods Ecol. Evol. 6, 1097–1109 (2015).
    Article  Google Scholar 

    25.
    Stanley, M. C. et al. Emerging threats in urban ecosystems: a horizon scanning exercise. Front. Ecol. Environ. 13, 553–560 (2015).
    Article  Google Scholar 

    26.
    Sandbrook, C., Fisher, J. A., Holmes, G., Luque-Lora, R. & Keane, A. The global conservation movement is diverse but not divided. Nat. Sustain. 2, 316–323 (2019).
    Article  Google Scholar 

    27.
    MacGregor-Fors, I. & Escobar-Ibáñez, J. F. Avian Ecology in Latin American Cityscapes (Springer, 2017).

    28.
    Dobbs, C. et al. Urban ecosystem services in Latin America: mismatch between global concepts and regional realities? Urban Ecosyst. 22, 173–187 (2019).
    Article  Google Scholar 

    29.
    Cunningham, M. L., Regan, M. A., Horberry, T., Weeratunga, K. & Dixit, V. Public opinion about automated vehicles in Australia: results from a large-scale national survey. Transp. Res. Part A Policy Pract. 129, 1–18 (2019).
    Article  Google Scholar 

    30.
    Kaur, K. & Rampersad, G. Trust in driverless cars: investigating key factors influencing the adoption of driverless cars. J. Eng. Technol. Manag. 48, 87–96 (2018).
    Article  Google Scholar 

    31.
    Artmann, M., Kohler, M., Meinel, G., Gan, J. & Ioja, I. C. How smart growth and green infrastructure can mutually support each other—a conceptual framework for compact and green cities. Ecol. Indic. 96, 10–22 (2019).
    Article  Google Scholar 

    32.
    Aronson, M. F. J. et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B Biol. Sci. 281, 20133330 (2014).
    Article  Google Scholar 

    33.
    Haaland, C. & van den Bosch, C. K. Challenges and strategies for urban green-space planning in cities undergoing densification: a review. Urban For. Urban Green. 14, 760–771 (2015).
    Article  Google Scholar 

    34.
    Papa, E. & Ferreira, A. Sustainable accessibility and the implementation of automated vehicles: identifying critical decisions. Urban Sci. 2, 5 (2018).
    Article  Google Scholar 

    35.
    Stead, D. & Vaddadi, B. Automated vehicles and how they may affect urban form: a review of recent scenario studies. Cities 92, 125–133 (2019).
    Article  Google Scholar 

    36.
    Duarte, F. & Ratti, C.The impact of autonomous vehicles on cities: a review;. J. Urban Technol. 25, 3–18 (2018).
    Article  Google Scholar 

    37.
    Fagnant, D. J. & Kockelman, K. Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transp. Res. A Policy Pract. 77, 167–181 (2015).
    Article  Google Scholar 

    38.
    Narayanan, S., Chaniotakis, E. & Antoniou, C. Shared autonomous vehicle services: a comprehensive review. Transp. Res. C Emerg. Technol. 111, 255–293 (2020).
    Article  Google Scholar 

    39.
    Heinrichs, D. in Autonomous Driving: Technical, Legal and Social Aspects (eds Maurer, M. et al.) 213–231 (Springer Berlin Heidelberg, 2016).

    40.
    Soteropoulos, A., Berger, M. & Ciari, F. Impacts of automated vehicles on travel behaviour and land use: an international review of modelling studies. Transp. Rev. 39, 29–49 (2019).
    Article  Google Scholar 

    41.
    Meyer, J., Becker, H., Bosch, P. M. & Axhausen, K. W. Autonomous vehicles: the next jump in accessibilities? Res. Transp. Econ. 62, 80–91 (2017).
    Article  Google Scholar 

    42.
    Hawkins, J. & Habib, K. N. Integrated models of land use and transportation for the autonomous vehicle revolution. Transp. Rev. 39, 66–83 (2019).
    Article  Google Scholar 

    43.
    Dupras, J. et al. The impacts of urban sprawl on ecological connectivity in the Montreal Metropolitan Region. Environ. Sci. Policy 58, 61–73 (2016).
    Article  Google Scholar 

    44.
    Loeb, B., Kockelman, K. M. & Liu, J. Shared autonomous electric vehicle (SAEV) operations across the Austin, Texas network with charging infrastructure decisions. Transp. Res. C Emerg. Technol. 89, 222–233 (2018).
    Article  Google Scholar 

    45.
    Samonte, M. J. C. et al. PHYTO: An IoT Urban Gardening Mobile App (Association for Computing Machinery, 2019).

    46.
    Canales-Ide, F., Zubelzu, S. & Rodriguez-Sinobas, L. Irrigation systems in smart cities coping with water scarcity: the case of Valdebebas, Madrid (Spain). J. Environ. Manag. 247, 187–195 (2019).
    Article  Google Scholar 

    47.
    Kolokotsa, D. Smart cooling systems for the urban environment. Using renewable technologies to face the urban climate change. Sol. Energy 154, 101–111 (2017).
    Article  Google Scholar 

    48.
    Taufik, T. & Hasanah, R. N. Light sensing smart blinds. In 2018 Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS) 1–4 (IEEE, 2018); https://doi.org/10.1109/EECCIS.2018.8692805

    49.
    Kendal, D. et al. A global comparison of the climatic niches of urban and native tree populations. Glob. Ecol. Biogeogr. 27, 629–637 (2018).
    Article  Google Scholar 

    50.
    Wheeler, M. M. et al. Continental-scale homogenization of residential lawn plant communities. Landsc. Urban Plan. 165, 54–63 (2017).
    Article  Google Scholar 

    51.
    Aronson, M. F. J. et al. Biodiversity in the city: key challenges for urban green space management. Front. Ecol. Environ. 15, 189–196 (2017).
    Article  Google Scholar 

    52.
    Lam, T. L. & Xu, Y. S. Climbing strategy for a flexible tree climbing robot—treebot. IEEE Trans. Rob. 27, 1107–1117 (2011).
    Article  Google Scholar 

    53.
    Dallimer, M., Tang, Z. Y., Gaston, K. J. & Davies, Z. G. The extent of shifts in vegetation phenology between rural and urban areas within a human-dominated region. Ecol. Evol. 6, 1942–1953 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    54.
    Latli, A., Michel, L. N., Lepoint, G. & Kestemont, P. River habitat homogenisation enhances trophic competition and promotes individual specialisation among young of the year fish. Freshw. Biol. 64, 520–531 (2019).
    CAS  Article  Google Scholar 

    55.
    Shaw, L. M., Chamberlain, D. & Evans, M. The house sparrow Passer domesticus in urban areas: reviewing a possible link between post-decline distribution and human socioeconomic status. J. Ornithol. 149, 293–299 (2008).
    Article  Google Scholar 

    56.
    Ferguson, M., Roberts, H. E., McEachan, R. R. C. & Dallimer, M. Contrasting distributions of urban green infrastructure across social and ethno-racial groups. Landsc. Urban Plan. 175, 136–148 (2018).
    Article  Google Scholar 

    57.
    Leong, M., Dunn, R. R. & Trautwein, M. D.Biodiversity and socioeconomics in the city: a review of the luxury effect. Biol. Lett. 14, 20180082 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Nesbitt, L., Meitner, M. J., Girling, C., Sheppard, S. R. J. & Lu, Y. H. Who has access to urban vegetation? A spatial analysis of distributional green equity in 10 US cities. Landsc. Urban Plan. 181, 51–79 (2019).
    Article  Google Scholar 

    59.
    Hajat, A., Hsia, C. & O’Neill, M. S. Socioeconomic disparities and air pollution exposure: a global review. Curr. Environ. Health Rep. 2, 440–450 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Pope, R., Wu, J. & Boone, C. Spatial patterns of air pollutants and social groups: a distributive environmental justice study in the Phoenix metropolitan region of USA. Environ. Manag. 58, 753–766 (2016).
    Article  Google Scholar 

    61.
    Jenerette, G. D. et al. Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landsc. Ecol. 22, 353–365 (2007).
    Article  Google Scholar 

    62.
    Frumkin, H. et al. Nature contact and human health: a research agenda. Environ. Health Perspect. 125, 075001 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    63.
    Rafael, S. et al. Autonomous vehicles opportunities for cities air quality. Sci. Total Environ. 712, 136546 (2020).
    CAS  PubMed  Article  Google Scholar 

    64.
    Stern, R. E. et al. Quantifying air quality benefits resulting from few autonomous vehicles stabilizing traffic. Transp. Res. D Transp. Environ. 67, 351–365 (2019).
    Article  Google Scholar 

    65.
    Twohig-Bennett, C. & Jones, A. The health benefits of the great outdoors: a systematic review and meta-analysis of greenspace exposure and health outcomes. Environ. Res. 166, 628–637 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Thompson Coon, J. et al. Does participating in physical activity in outdoor natural environments have a greater effect on physical and mental wellbeing than physical activity indoors? A systematic review. Environ. Sci. Technol. 45, 1761–1772 (2011).
    CAS  PubMed  Article  Google Scholar 

    67.
    Hedblom, M., Heyman, E., Antonsson, H. & Gunnarsson, B. Bird song diversity influences young people’s appreciation of urban landscapes. Urban For. Urban Green. 13, 469–474 (2014).
    Article  Google Scholar 

    68.
    Parsons, R., Tassinary, L. G., Ulrich, R. S., Hebl, M. R. & Grossman-Alexander, M. The view from the road: implications for stress recovery and immunization. J. Environ. Psychol. 18, 113–140 (1998).
    Article  Google Scholar 

    69.
    Hahmann, S., Miksch, J., Resch, B., Lauer, J. & Zipf, A. Routing through open spaces—a performance comparison of algorithms. Geo. Spat. Inf. Sci. 21, 247–256 (2018).
    Article  Google Scholar 

    70.
    Harper, C. D., Hendrickson, C. T., Mangones, S. & Samaras, C. Estimating potential increases in travel with autonomous vehicles for the non-driving, elderly and people with travel-restrictive medical conditions. Transp. Res. C Emerg. Technol. 72, 1–9 (2016).
    Article  Google Scholar 

    71.
    Wei, J. W., Lee, B. & Wen, L. B.Citizen science and the urban ecology of birds and butterflies—a systematic review. PLoS ONE 11, e0156425 (2016).
    Article  CAS  Google Scholar 

    72.
    Schuttler, S. G., Sorensen, A. E., Jordan, R. C., Cooper, C. & Shwartz, A.Bridging the nature gap: can citizen science reverse the extinction of experience? Front. Ecol. Environ. 16, 405–411 (2018).
    Article  Google Scholar 

    73.
    Jepson, P. & Ladle, R. J. Nature apps: waiting for the revolution. Ambio 44, 827–832 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    74.
    Botello, B., Buehler, R., Hankey, S., Mondschein, A. & Jiang, Z. Planning for walking and cycling in an autonomous-vehicle future. Transp. Res. Interdiscip. Perspect. 1, 100012 (2019).
    Google Scholar 

    75.
    Gulsrud, N. M. in Routledge Research Companion to Landscape Architecture (eds Braae, E. & Steiner, H.) 103–111 (Routledge, 2018).

    76.
    Potts, S. G., Neumann, P., Vaissière, B. & Vereecken, N. J. Robotic bees for crop pollination: why drones cannot replace biodiversity. Sci. Total Environ. 642, 665–667 (2018).
    CAS  PubMed  Article  Google Scholar 

    77.
    Kahn, P. H., Severson, R. L. & Ruckert, J. H. The human relation with nature and technological nature. Curr. Dir. Psychol. Sci. 18, 37–42 (2009).
    Article  Google Scholar 

    78.
    Mackay, C. M. L. & Schmitt, M. T. Do people who feel connected to nature do more to protect it? A meta-analysis. J. Environ. Psychol. 65, 101323 (2019).
    Article  Google Scholar 

    79.
    Truong, M. X. A. & Clayton, S. Technologically transformed experiences of nature: a challenge for environmental conservation? Biol. Conserv. 244, 108532 (2020).
    Article  Google Scholar 

    80.
    Alonzo, M., McFadden, J. P., Nowak, D. J. & Roberts, D. A. Mapping urban forest structure and function using hyperspectral imagery and lidar data. Urban For. Urban Green. 17, 135–147 (2016).
    Article  Google Scholar 

    81.
    Fairbrass, A. J. et al. CityNet—deep learning tools for urban ecoacoustic assessment. Methods Ecol. Evol. 10, 186–197 (2019).
    Article  Google Scholar 

    82.
    Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29, 358–367 (2014).
    PubMed  Article  Google Scholar 

    83.
    Ampatzidis, Y., De Bellis, L. & Luvisi, A.iPathology: robotic applications and management of plants and plant diseases. Sustainability 9, 1010 (2017).
    Article  Google Scholar 

    84.
    Nasi, R. et al. Remote sensing of bark beetle damage in urban forests at individual tree level using a novel hyperspectral camera from UAV and aircraft. Urban For. Urban Green. 30, 72–83 (2018).
    Article  Google Scholar 

    85.
    Smith, R. J., Verissimo, D., Isaac, N. J. B. & Jones, K. E. Identifying Cinderella species: uncovering mammals with conservation flagship appeal. Conserv. Lett. 5, 205–212 (2012).
    Article  Google Scholar 

    86.
    Cooper, N., Brady, E., Steen, H. & Bryce, R. Aesthetic and spiritual values of ecosystems: recognising the ontological and axiological plurality of cultural ecosystem ‘services’. Ecosyst. Serv. 21, 218–229 (2016).
    Article  Google Scholar 

    87.
    Colding, J., Colding, M. & Barthel, S.The smart city model: a new panacea for urban sustainability or unmanageable complexity? Environ. Plan. B Urban Anal. City Sci. 47, 179–187 (2020).
    Article  Google Scholar 

    88.
    Cadotte, M. W., Yasui, S. L. E., Livingstone, S. & MacIvor, J. S. Are urban systems beneficial, detrimental, or indifferent for biological invasion? Biol. Invasions 19, 3489–3503 (2017).
    Article  Google Scholar 

    89.
    Jurdak, R. et al. Autonomous surveillance for biosecurity. Trends Biotechnol. 33, 201–207 (2015).
    CAS  PubMed  Article  Google Scholar 

    90.
    Martinez, B. et al. Technology innovation: advancing capacities for the early detection of and rapid response to invasive species. Biol. Invasions 22, 75–100 (2020).
    Article  Google Scholar 

    91.
    Mulero-Pazmany, M. et al. Unmanned aircraft systems as a new source of disturbance for wildlife: a systematic review. PLoS ONE 12, e0178448 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    92.
    Rush, G. P., Clarke, L. E., Stone, M. & Wood, M. J. Can drones count gulls? Minimal disturbance and semiautomated image processing with an unmanned aerial vehicle for colony-nesting seabirds. Ecol. Evol. 8, 12322–12334 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    93.
    Ditmer, M. A. et al. Bears show a physiological but limited behavioral response to unmanned aerial vehicles. Curr. Biol. 25, 2278–2283 (2015).
    CAS  PubMed  Article  Google Scholar 

    94.
    Zvereva, E. L. & Kozlov, M. V. Responses of terrestrial arthropods to air pollution: a meta-analysis. Environ. Sci. Pollut. Res. 17, 297–311 (2010).
    CAS  Article  Google Scholar 

    95.
    Zvereva, E. L., Toivonen, E. & Kozlov, M. V. Changes in species richness of vascular plants under the impact of air pollution: a global perspective. Glob. Ecol. Biogeogr. 17, 305–319 (2008).
    Article  Google Scholar 

    96.
    Francis, C. D. & Barber, J. R. A framework for understanding noise impacts on wildlife: an urgent conservation priority. Front. Ecol. Environ. 11, 305–313 (2013).
    Article  Google Scholar 

    97.
    Irwin, A. The dark side of light: how artificial lighting is harming the natural world. Nature 553, 268–270 (2018).
    CAS  PubMed  Article  Google Scholar 

    98.
    Knop, E. et al. Artificial light at night as a new threat to pollination. Nature 548, 206–209 (2017).
    CAS  PubMed  Article  Google Scholar 

    99.
    Cabrera-Cruz, S. A., Smolinsky, J. A. & Buler, J. J. Light pollution is greatest within migration passage areas for nocturnally-migrating birds around the world. Sci. Rep. 8, 3261 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    100.
    Cashikar, A., Li, J. & Biswas, P. Particulate matter sensors mounted on a robot for environmental aerosol measurements. J. Environ. Eng. 145, 04019057 (2019).
    CAS  Article  Google Scholar 

    101.
    Shah, M., Shah, S. K. & Shah, M. Autonomous robotic vehicle for oil spills cleaning with nano particles. In 2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS) 1–6 (IEEE, 2018).

    102.
    Alfeo, A. L. et al. Urban swarms: a new approach for autonomous waste management. Preprint at arXiv https://doi.org/10.1109/ICRA.2019.8794020 (2019).

    103.
    Perkins, D. N., Brune Drisse, M.-N., Nxele, T. & Sly, P. D. E-waste: a global hazard. Ann. Glob. Health 80, 286–295 (2014).
    PubMed  Article  Google Scholar 

    104.
    Boyer, T. & Polasky, S. J.Valuing urban wetlands: a review of non-market valuation studies. Wetlands 24, 744–755 (2004).
    Article  Google Scholar 

    105.
    Rouse, M. The worldwide urban water and wastewater infrastructure challenge. Int. J. Water Resour. Dev. 30, 20–27 (2014).
    Article  Google Scholar 

    106.
    Yuan, Z. G. et al. Sweating the assets—the role of instrumentation, control and automation in urban water systems. Water Res. 155, 381–402 (2019).
    CAS  PubMed  Article  Google Scholar 

    107.
    Hall, S., Price, R. & Mandhani, N. Use of autonomous vehicles for drinking water monitoring and management in an urban environment. In Proc. ASAE Annual International Meeting 7855–7862 (American Society of Association Executives, 2004).

    108.
    Troutman, S. C., Love, N. G. & Kerkez, B. Balancing water quality and flows in combined sewer systems using real-time control. Environ. Sci. Water Res. Technol. 6, 1357–1369 (2020).
    CAS  Article  Google Scholar 

    109.
    McDonald, W. Drones in urban stormwater management: a review and future perspectives. Urban Water J. 16, 505–518 (2019).
    CAS  Article  Google Scholar 

    110.
    Kerkez, B. et al. Smarter stormwater systems. Environ. Sci. Technol. 50, 7267–7273 (2016).
    CAS  PubMed  Article  Google Scholar 

    111.
    Chen, Y. & Han, D. Water quality monitoring in smart city: a pilot project. Autom. Constr. 89, 307–316 (2018).
    Article  Google Scholar 

    112.
    Booth, D. B., Roy, A. H., Smith, B. & Capps, K. A. Global perspectives on the urban stream syndrome. Freshw. Sci. 35, 412–420 (2016).
    Article  Google Scholar 

    113.
    Prudencio, L. & Null, S. E.Stormwater management and ecosystem services: a review. Environ. Res. Lett. 13, 033002 (2018).
    Article  Google Scholar 

    114.
    Sadler, G. R., Lee, H.-C., Lim, R. S.-H. & Fullerton, J. Research article: recruitment of hard-to-reach population subgroups via adaptations of the snowball sampling strategy. Nurs. Health Sci. 12, 369–374 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    115.
    Mahler, A. G. Global South (Oxford Univ. Press, 2017); https://doi.org/10.1093/OBO/9780190221911-0055

    116.
    Ricciardi, A. et al. Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol. Evol. 32, 464–474 (2017).
    PubMed  Article  Google Scholar 

    117.
    Danziger, S., Levav, J. & Avnaim-Pesso, L. Extraneous factors in judicial decisions. Proc. Natl Acad. Sci. USA 108, 6889–6892 (2011).
    CAS  PubMed  Article  Google Scholar 

    118.
    Bryer, J. & Speerschneider, K. likert: Analysis and visualization likert items https://cran.r-project.org/web/packages/likert/likert.pdf (2016).

    119.
    R Core Development Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

    120.
    Goddard, M. A. & Dallimer, M. University of Leeds Data Repository (Univ. Leeds, 2020); https://doi.org/10.5518/912

    121.
    Future Foresight (Dubai Future Foundation, 2018); https://www.dubaifuture.gov.ae/publications/ More