Amynthas corticis genome reveals molecular mechanisms behind global distribution
1.
Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).
CAS PubMed PubMed Central Article Google Scholar
2.
Darwin, C. The Formation of Vegetable Mould Through the Action of Worms. (Cambridge Univ. Press, 1881).
3.
Vila, M. B. C. & Pysek, P. How well do we understand the impacts of alien species on ecosystem services? A pan‐European, cross‐taxa assessment. Front. Ecol. Environ. 8, 135–144 (2010).
Article Google Scholar
4.
Callaham, M. A. Pandora’s box contained bait: the global problem of introduced earthworms. Annu. Rev. Ecol. Evol. Syst. 39, 593–613 (2008).
Article Google Scholar
5.
Blouin, M. et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 64, 161–182 (2013).
Article Google Scholar
6.
Qiu, J. & Turner, M. G. Effects of non-native Asian earthworm invasion on temperate forest and prairie soils in the Midwestern US. Biol. Invasions 19, 73–88 (2017).
Article Google Scholar
7.
Pejchar, L. & Mooney, H. A. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 24, 497–504 (2009).
PubMed Article Google Scholar
8.
Viktorov, A. G. Diversity of polyploid races in the family Lumbricidae. Soil Biol. Biochem. 29, 217–221 (1997).
Article Google Scholar
9.
Terhivuo, J. & Saura, A. Dispersal and clonal diversity of North-European parthenogenetic earthworms. Biol. Invasions 8, 1205–1218 (2006).
Article Google Scholar
10.
Garbar, A. V. & Vlasenko, R. P. Karyotypes of three species of the genus Aporrectodea Örley (Oligochaeta: Lumbricidae) from the Ukraine. Comp. Cytogenet. 1, 59–62 (2007).
Google Scholar
11.
Bakhtadze, N. G., Bakhtadze, G. I. & Kvavadze, E. S. The chromosome numbers of Georgian earthworms (Oligochaeta: Lumbricidae). Comp. Cytogenet. 2, 79–83 (2008).
Google Scholar
12.
Hegarty, M. J. & Hiscock, S. J. Genomic clues to the evolutionary success of polyploid plants. Curr. Biol. 18, R435–R444 (2008).
CAS PubMed Article Google Scholar
13.
Finigan, P., Tanurdzic, M. & Martienssen, R. A. in Polyploidy and Genome Evolution (Springer, 2012).
14.
Sailer, C., Schmid, B. & Grossniklaus, U. Apomixis allows the transgenerational fixation of phenotypes in hybrid plants. Curr. Biol. 26, 331–337 (2016).
CAS PubMed Article Google Scholar
15.
Novo, M. et al. Multiple introductions and environmental factors affecting the establishment of invasive species on a volcanic island. Soil Biol. Biochem. 85, 89–100 (2015).
CAS Article Google Scholar
16.
Kang, M. M. Earthworm genome assembly protocol. Zenodo https://doi.org/10.5281/zenodo.4288562 (2020).
Article Google Scholar
17.
Lim, J. Y., Yoon, J. & Hovde, C. J. A brief overview of Escherichia coli O157:H7 and its plasmid O157. J. Microbiol. Biotechnol. 20, 5–14 (2010).
CAS PubMed PubMed Central Article Google Scholar
18.
van Elsas, J. D., Semenov, A. V., Costa, R. & Trevors, J. T. Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J. 5, 173–183 (2011).
PubMed Article Google Scholar
19.
Lassegues, M., Milochau, A., Doignon, F., Du Pasquier, L. & Valembois, P. Sequence and expression of an Eisenia-fetida-derived cDNA clone that encodes the 40-kDa fetidin antibacterial protein. Eur. J. Biochem. 246, 756–762 (1997).
CAS PubMed Article Google Scholar
20.
Rorat, A., Vandenbulcke, F., Galuszka, A., Klimek, B. & Plytycz, B. Protective role of metallothionein during regeneration in Eisenia andrei exposed to cadmium. Comp. Biochem Physiol. 203, 39–50 (2017).
CAS Google Scholar
21.
Bilej, M. et al. Distinct carbohydrate recognition domains of an invertebrate defense molecule recognize Gram-negative and Gram-positive bacteria. J. Biol. Chem. 276, 45840–45847 (2001).
CAS PubMed Article Google Scholar
22.
Cho, J. H., Park, C. B., Yoon, Y. G., Kim, S. C. & Lumbricin, I. A novel proline-rich antimicrobial peptide from the earthworm: purification, cDNA cloning and molecular characterization. Biochim. Biophys. Acta 1408, 67–76 (1998).
CAS PubMed Article Google Scholar
23.
Skanta, F., Prochazkova, P., Roubalova, R., Dvorak, J. & Bilej, M. LBP/BPI homologue in Eisenia andrei earthworms. Dev. Comp. Immunol. 54, 1–6 (2016).
CAS PubMed Article Google Scholar
24.
Joskova, R., Silerova, M., Prochazkova, P. & Bilej, M. Identification and cloning of an invertebrate-type lysozyme from Eisenia andrei. Dev. Comp. Immunol. 33, 932–938 (2009).
CAS PubMed Article Google Scholar
25.
Prochazkova, P. et al. Developmental and immune role of a novel multiple cysteine cluster TLR from Eisenia andrei earthworms. Front. Immunol. 10, 1277 (2019).
CAS PubMed PubMed Central Article Google Scholar
26.
Skanta, F., Roubalova, R., Dvorak, J., Prochazkova, P. & Bilej, M. Molecular cloning and expression of TLR in the Eisenia andrei earthworm. Dev. Comp. Immunol. 41, 694–702 (2013).
CAS PubMed Article Google Scholar
27.
Wang, J. et al. Transcriptional responses of earthworm (Eisenia fetida) exposed to naphthenic acids in soil. Environ. Pollut. 204, 264–270 (2015).
CAS PubMed Article Google Scholar
28.
Silerova, M. et al. Characterization, molecular cloning and localization of calreticulin in Eisenia fetida earthworms. Gene 397, 169–177 (2007).
CAS PubMed Article Google Scholar
29.
Li, Y., Zhao, C., Lu, X., Ai, X. & Qiu, J. Identification of a cytochrome P450 gene in the earthworm Eisenia fetida and its mRNA expression under enrofloxacin stress. Ecotoxicol. Environ. Saf. 150, 70–75 (2018).
CAS PubMed Article Google Scholar
30.
Roubalova, R. et al. The effect of dibenzo-p-dioxin- and dibenzofuran-contaminated soil on the earthworm Eisenia andrei. Environ. Pollut. 193, 22–28 (2014).
CAS PubMed Article Google Scholar
31.
Weiss, C. L., Pais, M., Cano, L. M., Kamoun, S. & Burbano, H. A. nQuire: a statistical framework for ploidy estimation using next generation sequencing. BMC Bioinform. 19, 122 (2018).
Article CAS Google Scholar
32.
Pendleton, M. et al. Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat. Methods 12, 780–786 (2015).
CAS PubMed PubMed Central Article Google Scholar
33.
Kokot, M., Dlugosz, M. & Deorowicz, S. KMC 3: counting and manipulating k-mer statistics. Bioinformatics 33, 2759–2761 (2017).
CAS PubMed Article Google Scholar
34.
Zwarycz, A. S., Nossa, C. W., Putnam, N. H. & Ryan, J. F. Timing and scope of genomic expansion within Annelida: evidence from homeoboxes in the genome of the earthworm Eisenia fetida. Genome Biol. Evol. 8, 271–281 (2015).
PubMed PubMed Central Article CAS Google Scholar
35.
Simakov, O. et al. Insights into bilaterian evolution from three spiralian genomes. Nature 493, 526–531 (2013).
CAS PubMed Article Google Scholar
36.
Horn, K. M. et al. Na(+) /K(+) -ATPase gene duplications in clitellate annelids are associated with freshwater colonization. J. Evol. Biol. 32, 580–591 (2019).
CAS PubMed Article Google Scholar
37.
Horn, K. M. & Anderson, F. E. Spiralian genomes reveal gene family expansions associated with adaptation to freshwater. J. Mol. Evol. 88, 463–472 (2020).
CAS PubMed Article PubMed Central Google Scholar
38.
Schreiber, F., Patricio, M., Muffato, M., Pignatelli, M. & Bateman, A. TreeFam v9: a new website, more species and orthology-on-the-fly. Nucleic Acids Res. 42, D922–D925 (2014).
CAS PubMed Article PubMed Central Google Scholar
39.
Li, H. et al. TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Res. 34, D572–D580 (2006).
CAS PubMed Article PubMed Central Google Scholar
40.
Ruan, J. et al. TreeFam: 2008 update. Nucleic Acids Res. 36, D735–D740 (2008).
CAS PubMed Article PubMed Central Google Scholar
41.
Han, M. V., Thomas, G. W. C., Lugo-Martinez, J. & Hahn, M. W. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol. Biol. Evol. 30, 1987–1997 (2013).
CAS PubMed Article PubMed Central Google Scholar
42.
Hahn, M. W., De Bie, T., Stajich, J. E., Nguyen, C. & Cristianini, N. Estimating the tempo and mode of gene family evolution from comparative genomic data. Genome Res. 15, 1153–1160 (2005).
CAS PubMed PubMed Central Article Google Scholar
43.
Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).
CAS PubMed PubMed Central Article Google Scholar
44.
The Gene Ontology, C. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 47, D330–D338 (2019).
Article CAS Google Scholar
45.
Klopfenstein, D. V. et al. GOATOOLS: a Python library for gene ontology analyses. Sci. Rep. 8, 10872 (2018).
CAS PubMed PubMed Central Article Google Scholar
46.
Shao, Y. et al. Genome and single-cell RNA-sequencing of the earthworm Eisenia andrei identifies cellular mechanisms underlying regeneration. Nat. Commun. 11, 2656 (2020).
CAS PubMed PubMed Central Article Google Scholar
47.
Liu, X., Sun, Z., Chong, W., Sun, Z. & He, C. Growth and stress responses of the earthworm Eisenia fetida to Escherichia coli O157:H7 in an artificial soil. Micro. Pathog. 46, 266–272 (2009).
Article CAS Google Scholar
48.
Wang, X., Chang, L. & Sun, Z. Differential expression of genes in the earthworm Eisenia fetida following exposure to Escherichia coli O157:H7. Dev. Comp. Immunol. 35, 525–529 (2011).
PubMed Article CAS Google Scholar
49.
Wang, X., Chang, L., Sun, Z. & Zhang, Y. Comparative proteomic analysis of differentially expressed proteins in the earthworm Eisenia fetida during Escherichia coli O157:H7 stress. J. Proteome Res. 9, 6547–6560 (2010).
CAS PubMed Article Google Scholar
50.
Wang, X., Li, X. & Sun, Z. iTRAQ-based quantitative proteomic analysis of the earthworm Eisenia fetida response to Escherichia coli O157:H7. Ecotoxicol. Environ. Saf. 160, 60–66 (2018).
PubMed Article CAS PubMed Central Google Scholar
51.
Zhang, Y. et al. PCR-DGGE analysis of earthworm gut bacteria diversity in stress of Escherichia coli O157:H7. Adv. Biosci. Biotechnol. 4, 437–441 (2013).
Article CAS Google Scholar
52.
Fischer, D. S., Theis, F. J. & Yosef, N. Impulse model-based differential expression analysis of time course sequencing data. Nucleic Acids Res. 46, e119 (2018).
PubMed PubMed Central Article CAS Google Scholar
53.
Sander, J., Schultze, J. L. & Yosef, N. ImpulseDE: detection of differentially expressed genes in time series data using impulse models. Bioinformatics 33, 757–759 (2017).
CAS PubMed PubMed Central Google Scholar
54.
Cooper, E. L. Earthworm immunity. Prog. Mol. Subcell. Biol. 15, 10–45 (1996).
CAS PubMed Article PubMed Central Google Scholar
55.
Bilej, M., Prochazkova, P., Silerova, M. & Joskova, R. Earthworm immunity. Adv. Exp. Med Biol. 708, 66–79 (2010).
CAS PubMed Article PubMed Central Google Scholar
56.
Langille, M. G. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).
CAS PubMed PubMed Central Article Google Scholar
57.
Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).
CAS PubMed PubMed Central Article Google Scholar
58.
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).
Article CAS Google Scholar
59.
Sapountzis, P. et al. The enterobacterium Trabulsiella odontotermitis presents novel adaptations related to its association with fungus-growing termites. Appl. Environ. Microbiol. 81, 6577–6588 (2015).
CAS PubMed PubMed Central Article Google Scholar
60.
Kotak, M. et al. Complete genome sequence of the Opitutaceae bacterium strain TAV5, a potential facultative methylotroph of the wood-feeding termite Reticulitermes flavipes. Genome Announc. https://doi.org/10.1128/genomeA.00060-15 (2015).
61.
Vezina, C., Kudelski, A. & Sehgal, S. N. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. 28, 721–726 (1975).
CAS Article Google Scholar
62.
Jeske, O., Jogler, M., Petersen, J., Sikorski, J. & Jogler, C. From genome mining to phenotypic microarrays: planctomycetes as source for novel bioactive molecules. Antonie Van. Leeuwenhoek 104, 551–567 (2013).
CAS PubMed Article PubMed Central Google Scholar
63.
Jeske, O. et al. Developing techniques for the utilization of planctomycetes as producers of bioactive molecules. Front. Microbiol. 7, 1242 (2016).
PubMed PubMed Central Article Google Scholar
64.
Kolton, M. et al. Draft genome sequence of Flavobacterium sp. strain F52, isolated from the rhizosphere of bell pepper (Capsicum annuum L. cv. Maccabi). J. Bacteriol. 194, 5462–5463 (2012).
CAS PubMed PubMed Central Article Google Scholar
65.
Kolton, M. et al. Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Appl. Environ. Microbiol. 77, 4924–4930 (2011).
CAS PubMed PubMed Central Article Google Scholar
66.
Sang, M. K. & Kim, K. D. The volatile-producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper. J. Appl. Microbiol. 113, 383–398 (2012).
CAS PubMed Article PubMed Central Google Scholar
67.
Youssef, N. H., Blainey, P. C., Quake, S. R. & Elshahed, M. S. Partial genome assembly for a candidate division OP11 single cell from an anoxic spring (Zodletone Spring, Oklahoma). Appl. Environ. Microbiol. 77, 7804–7814 (2011).
CAS PubMed PubMed Central Article Google Scholar
68.
Havarstein, L. S., Diep, D. B. & Nes, I. F. A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol. Microbiol. 16, 229–240 (1995).
CAS PubMed Article PubMed Central Google Scholar
69.
Weon, H. Y. et al. Rubellimicrobium aerolatum sp. nov., isolated from an air sample in Korea. Int. J. Syst. Evol. Microbiol. 59, 406–410 (2009).
CAS PubMed Article PubMed Central Google Scholar
70.
Saha, P. & Chakrabarti, T. Aeromonas sharmana sp. nov., isolated from a warm spring. Int. J. Syst. Evol. Microbiol. 56, 1905–1909 (2006).
CAS PubMed Article PubMed Central Google Scholar
71.
Corby-Harris, V. et al. Origin and effect of Alpha 2.2 Acetobacteraceae in honey bee larvae and description of Parasaccharibacter apium gen. nov., sp. nov. Appl. Environ. Microbiol. 80, 7460–7472 (2014).
PubMed PubMed Central Article CAS Google Scholar
72.
Ryu, J. H. et al. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319, 777–782 (2008).
CAS PubMed Article PubMed Central Google Scholar
73.
Cui, H. et al. Bacterial community shaped by heavy metals and contributing to health risks in cornfields. Ecotoxicol. Environ. Saf. 166, 259–269 (2018).
CAS PubMed Article PubMed Central Google Scholar
74.
Han, J. I. et al. Complete genome sequence of the metabolically versatile plant growth-promoting endophyte Variovorax paradoxus S110. J. Bacteriol. 193, 1183–1190 (2011).
CAS PubMed Article PubMed Central Google Scholar
75.
Belimov, A. A. et al. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. N. Phytol. 181, 413–423 (2009).
CAS Article Google Scholar
76.
Schmalenberger, A. et al. The role of Variovorax and other Comamonadaceae in sulfur transformations by microbial wheat rhizosphere communities exposed to different sulfur fertilization regimes. Environ. Microbiol. 10, 1486–1500 (2008).
CAS PubMed Article PubMed Central Google Scholar
77.
Yurgel, S. N., Douglas, G. M., Dusault, A., Percival, D. & Langille, M. G. I. Dissecting community structure in wild blueberry root and soil microbiome. Front. Microbiol. 9, 1187 (2018).
PubMed PubMed Central Article Google Scholar
78.
Zadel, U. et al. Changes induced by heavy metals in the plant-associated microbiome of Miscanthus x giganteus. Sci. Total Environ. 711, 134433 (2020).
CAS PubMed Article PubMed Central Google Scholar
79.
Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).
CAS PubMed PubMed Central Article Google Scholar
80.
Sturzenbaum, S. R., Andre, J., Kille, P. & Morgan, A. J. Earthworm genomes, genes and proteins: the (re)discovery of Darwin’s worms. Proc. Biol. Sci. 276, 789–797 (2009).
CAS PubMed Google Scholar
81.
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).
PubMed PubMed Central Article CAS Google Scholar
82.
Marcais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).
CAS PubMed PubMed Central Article Google Scholar
83.
Chin, C. S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).
CAS PubMed PubMed Central Article Google Scholar
84.
Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).
CAS PubMed PubMed Central Article Google Scholar
85.
Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9, e112963 (2014).
PubMed PubMed Central Article CAS Google Scholar
86.
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
CAS PubMed PubMed Central Article Google Scholar
87.
Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119–1125 (2013).
CAS PubMed PubMed Central Article Google Scholar
88.
English, A. C. et al. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS One 7, e47768 (2012).
CAS PubMed PubMed Central Article Google Scholar
89.
Chaisson, M. J. & Tesler, G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinform. 13, 238 (2012).
CAS Article Google Scholar
90.
Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
CAS PubMed PubMed Central Article Google Scholar
91.
Nishimura, O., Hara, Y. & Kuraku, S. gVolante for standardizing completeness assessment of genome and transcriptome assemblies. Bioinformatics 33, 3635–3637 (2017).
CAS PubMed PubMed Central Article Google Scholar
92.
Liu, B. et al. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. arXiv 1308, 2012v1 (2019).
Google Scholar
93.
Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).
CAS PubMed PubMed Central Article Google Scholar
94.
Rio, D. C., Ares, M., Hannon, G. J. & Nilsen, T. W. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb. Protoc. 2010, t5439 (2010).
Article Google Scholar
95.
Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinform. Chapter 4, Unit 4 10, (2004).
96.
Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).
PubMed PubMed Central Article Google Scholar
97.
Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935 (2013).
CAS PubMed PubMed Central Article Google Scholar
98.
Kalvari, I. et al. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res. 46, D335–D342 (2018).
CAS PubMed Article Google Scholar
99.
Kalvari, I. et al. Non-coding RNA analysis using the Rfam database. Curr. Protoc. Bioinform. 62, e51 (2018).
Article CAS Google Scholar
100.
Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).
CAS PubMed PubMed Central Article Google Scholar
101.
Apweiler, R. et al. UniProt: the Universal Protein knowledgebase. Nucleic Acids Res. 32, D115–D119 (2004).
CAS PubMed PubMed Central Article Google Scholar
102.
Slater, G. S. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinform. 6, 31 (2005).
Article CAS Google Scholar
103.
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
CAS PubMed PubMed Central Article Google Scholar
104.
Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).
CAS PubMed PubMed Central Article Google Scholar
105.
Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).
PubMed PubMed Central Article CAS Google Scholar
106.
UniProt, C. UniProt: a hub for protein information. Nucleic Acids Res. 43, D204–D212 (2015).
Article CAS Google Scholar
107.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
CAS PubMed PubMed Central Article Google Scholar
108.
Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).
CAS PubMed PubMed Central Article Google Scholar
109.
Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C. & Kanehisa, M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35, W182–W185 (2007).
PubMed PubMed Central Article Google Scholar
110.
Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
CAS PubMed PubMed Central Article Google Scholar
111.
Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–D293 (2016).
CAS PubMed Article PubMed Central Google Scholar
112.
Howe, K. L., Bolt, B. J., Shafie, M., Kersey, P. & Berriman, M. WormBase ParaSite – a comprehensive resource for helminth genomics. Mol. Biochem. Parasitol. 215, 2–10 (2017).
CAS PubMed PubMed Central Article Google Scholar
113.
Barrett, T. et al. BioProject and BioSample databases at NCBI: facilitating capture and organization of metadata. Nucleic Acids Res. 40, D57–D63 (2012).
CAS PubMed Article PubMed Central Google Scholar
114.
Howe, K. L. et al. WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids Res. 44, D774–D780 (2016).
CAS PubMed Article PubMed Central Google Scholar
115.
Eddy, S. R. Multiple alignment using hidden Markov models. Proc. Int. Conf. Intell. Syst. Mol. Biol. 3, 114–120 (1995).
116.
Etherington, G. J., Ramirez-Gonzalez, R. H. & MacLean, D. bio-samtools 2: a package for analysis and visualization of sequence and alignment data with SAMtools in Ruby. Bioinformatics 31, 2565–2567 (2015).
CAS PubMed Article PubMed Central Google Scholar
117.
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
CAS PubMed PubMed Central Article Google Scholar
118.
Kuck, P. & Meusemann, K. FASconCAT: convenient handling of data matrices. Mol. Phylogenet. Evol. 56, 1115–1118 (2010).
PubMed Article CAS PubMed Central Google Scholar
119.
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
CAS PubMed PubMed Central Article Google Scholar
120.
Sanderson, M. J. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19, 301–302 (2003).
CAS PubMed Article Google Scholar
121.
Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).
CAS Article Google Scholar
122.
De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271 (2006).
Article CAS Google Scholar
123.
Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018).
CAS PubMed Article Google Scholar
124.
Pedersen, T. L. MSGFplus: an interface between R and MS-GF+. R package version 1.18.0 (2019).
125.
Gatto, L. & Christoforou, A. Using R and Bioconductor for proteomics data analysis. Biochim. et. Biophys. Acta 1844, 42–51 (2014).
CAS Article Google Scholar
126.
Magoc, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
CAS PubMed PubMed Central Article Google Scholar
127.
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
CAS PubMed PubMed Central Article Google Scholar
128.
Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahe, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
PubMed PubMed Central Article Google Scholar
129.
Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).
PubMed PubMed Central Article Google Scholar
130.
DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).
CAS PubMed PubMed Central Article Google Scholar
131.
National Genomics Data Center, M. & Partners. Database resources of the National Genomics Data Center in 2020. Nucleic Acids Res. 48, D24–D33 (2020). More
