More stories

  • in

    Respiration characteristics and its responses to hydrothermal seasonal changes in reconstructed soils

    1.
    Huang, S. D. et al. Autotrophic and heterotrophic soil respiration responds asymmetrically to drought in a subtropical forest in the Southeast China. Soil Biol. Biochem. 123, 242–249 (2018).
    CAS  Article  Google Scholar 
    2.
    Peichl, M. et al. Management and climate effects on carbon dioxide and energy exchanges in a maritime grassland. Agric. Ecosyst. Environ. 158, 132–146 (2012).
    Article  Google Scholar 

    3.
    Zhang, X. B. et al. How do environmental factors and different fertilizer strategies affect soil CO2 emission and carbon sequestration in the upland soils of southern China?. Appl. Soil Ecol. 72, 109–118 (2013).
    Article  Google Scholar 

    4.
    Curiel, Y. J. et al. Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Glob. Change Biol. 13, 2018–2035 (2010).
    ADS  Article  Google Scholar 

    5.
    Peri, P. L., Bahamonde, H. & Christiansen, R. Soil respiration in Patagonian semiarid grasslands under contrasting environmental and use conditions. J. Arid Environ. 119, 1–8 (2015).
    ADS  Article  Google Scholar 

    6.
    Davidson, E. A. et al. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48, 53–69 (2000).
    CAS  Article  Google Scholar 

    7.
    Buchmann, N. Biotic and abiotic factors controlling soil respiration rates in Piceaavies stands. Soil Biol Biochem. 32, 1625–1635 (2000).
    CAS  Article  Google Scholar 

    8.
    Li, X. et al. Contribution of root respiration to total soil respiration in a semi-arid grassland on the Loess Plateau, China. Sci. Total Environ. 62, 1209–1217 (2018).
    ADS  Google Scholar 

    9.
    Jia, B. & Zhou, G. Integrated diurnal soil respiration model during growing season of a typical temperate steppe: Effects of temperature, soil water content and biomass production. Soil Biol. Biochem. 41, 681–686 (2009).
    CAS  Article  Google Scholar 

    10.
    Jin, Z., Qi, Y. C., Dong, Y. S. & Domroes, M. Seasonal patterns of soil respiration in three types of communities along grass-desert shrub transition in Inner Mongolia, China. Adv. Atmos. Sci. 26, 503–512 (2009).
    CAS  Article  Google Scholar 

    11.
    Li, Y. C., Hou, C. C., Song, C. C. & Guo, Y. D. Seasonal changes in the contribution of root respiration to total soil respiration in a freshwater marsh in Sanjiang Plain, Northeast China. Environ. Earth Sci. 75, 1–10 (2016).
    ADS  Article  Google Scholar 

    12.
    Zhao, C. Y., Zhao, Z. M., Yilihamu, Hong, Z. & Jun, L. Contribution of root and rhizosphere respiration of Haloxylonammodendron to seasonal variation of soil respiration in the central Asian desert. Quatern. Int. 244, 304–309 (2011).
    Article  Google Scholar 

    13.
    Wang, X. et al. Soil respiration under climate warming: Differential response of heterotrophic and autotrophic respiration. Glob. Change Biol. 20, 3229–3237 (2014).
    ADS  Article  Google Scholar 

    14.
    Sun, Z., Han, J. C. & Wang, H. Y. Soft rock for improving crop yield in sandy soil of Mu Us sandy land, China. Arid Land Res. Manag. 33, 136–154 (2019).
    CAS  Article  Google Scholar 

    15.
    Dong, O. G. et al. water infiltration of covering soils with Different textures and bulk densities in gravelmulched areas. Appl. Soil Ecol. 17, 14039–14052 (2019).
    Google Scholar 

    16.
    Lei, N., Han, J. C., Mu, X. M., Sun, Z. H. & Wang, H. Y. Effects of improved materials on reclamation of soil properties and crop yield in hollow villages in China. J. Soil Sediment 19, 2374–2380 (2019).
    CAS  Article  Google Scholar 

    17.
    Fu, G. et al. Response of ecosystem respiration to experimental warming and clipping at daily time scale in an alpine meadow of Tibet. J. Mt. Sci.-Engl. 10, 455–463 (2013).
    Article  Google Scholar 

    18.
    Wu, J. P. et al. Response of soil respiration and ecosystem carbon budget to vegetation removal in Eucalyptus plantations with contrasting ages. Sci. Rep.-UK 4, 6262 (2014).
    Article  Google Scholar 

    19.
    Han, T. F., Huang, W. J., Liu, J. X., Zhou, G. Y. & Xiao, Y. Different soil respiration responses to litter manipulation in three subtropical successional forests. Sci. Rep.-UK 5, 18166 (2015).
    ADS  CAS  Article  Google Scholar 

    20.
    Lei, N. & Han, J. C. Effect of precipitation on respiration of different reconstructed soils. Sci. Rep.-UK 10, 7328 (2020).
    ADS  CAS  Article  Google Scholar 

    21.
    Kosugi, Y. et al. Spatial and temporal variation in soil respiration in a Southeast Asian tropical rainforest. Agric. Forest Meteorol. 147, 35–47 (2007).
    ADS  Article  Google Scholar 

    22.
    Hu, Z. D., Liu, S. R., Shi, Z. M., Liu, X. L. & He, F. Diel variations and seasonal dynamics of soil respirations in subalpine meadow in western Sichuan Province, China. Acta Ecol. Sin. 32, 6376–6386 (2012).
    Article  Google Scholar 

    23.
    Shi, Z. et al. Seasonal variation and temperature sensitivity of soil V respiration under different plant communities along an elevation gradient in Wuyi Mountains of China. J. Appl. Ecol. 19, 2357–2363 (2008).
    Google Scholar 

    24.
    Wu, C. S., Sha, L. Q., Gao, J. M. & Dong, L. Y. Analysis of soil respiration in a montane evergreen broad-leaved forest and an artificial tea garden in Ailao Mountains, Yunnan province. J. Nanjing For. Univ. (Nat. Sci.) 36, 64–68 (2012) (in Chinese).
    Google Scholar 

    25.
    Zhao, J. X. et al. Soil respiration and its affecting factors of Pinusyunnanensis in the Middle Regions of Yunnan. J. Northwest For. Univ. 30, 8–13 (2015) (in Chinese).
    Google Scholar 

    26.
    Rayment, M. B. & Jarvis, P. G. Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest. Soil Biol. Biochem. 32, 35–45 (2000).
    CAS  Article  Google Scholar 

    27.
    Qi, Y. & Xu, M. Separating the effects of moisture and temperature on soil CO2 efflux in a coniferous forest in the Sierra Nevada Mountains. Plant Soil 237, 15–23 (2001).
    CAS  Article  Google Scholar 

    28.
    Dilustro, J. J., Collins, B., Duncan, L. & Crawford, C. Moisture and soil texture effects on soil CO2 efflux components in southeastern mixed pine forests. Forest Ecol. Manag. 204, 87–97 (2005).
    Article  Google Scholar 

    29.
    Gaumont-guay, D. et al. Influence of temperature and drought on seasonal and interannual variations of soil, bole and ecosystem respiration in a boreal aspen stand. Agric Forest Meteorol. 140, 203–219 (2006).
    ADS  Article  Google Scholar 

    30.
    Yan, J. X., Hao, Z., Jing, X. K. & Li, H. J. Variations of soil respiration and its temperature sensitivity in an orchard in Jinci Region of Taiyuan City. J. Environ. Sci.-China 37, 3625–3633 (2016).
    Google Scholar 

    31.
    Han, G. X., Zhou, G. S. & Xu, Z. Z. Research and prospects for soil respiration of farmland ecosystems in China. J. Plant Ecol.-UK 32, 719–733 (2008).
    CAS  Google Scholar 

    32.
    Yuste, J. C., Janssens, I. A., Carrara, A., Meiresonne, L. & Ceulemans, R. Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. Tree Physiol. 23, 1263–1270 (2003).
    Article  Google Scholar 

    33.
    Conant, R. T., Dalla-bett, A. P., Klopatek, C. C. & Klopatek, J. Controls on soil respiration in semiarid soils. Soil Biol. Biochem. 36, 945–951 (2004).
    CAS  Article  Google Scholar 

    34.
    Giardina, C. P. & Ryan, M. G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404, 858–861 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    35.
    Grace, J. & Rayment, M. Respiration in the balance. Nature 404, 819–820 (2000).
    CAS  PubMed  Article  Google Scholar 

    36.
    Andrews, R. T. et al. Successful embolization of collaterals from the ovarian artery during uterine artery embolization for fibroids: A case report. J. Vasc. Interv. Radiol. 11, 607–610 (2000).
    CAS  PubMed  Article  Google Scholar 

    37.
    Fu, G., Shen, Z. X., Zhang, X. Z. & Zhou, Y. T. Response of soil microbial biomass to short-term experimental warming in alpine meadow on the Tibetan Plateau. Appl. Soil Ecol. 61, 158–160 (2012).
    Article  Google Scholar 

    38.
    Chang, S. X., Shi, Z. & Thomas, B. R. Soil respiration and its temperature sensitivity in agricultural and afforested poplar plantation systems in northern Alberta. Biol. Fertil. Soils 52, 629–641 (2016).
    CAS  Article  Google Scholar 

    39.
    Uribe, C. et al. Effect of wildfires on soil respiration in three typical Mediterranean forest ecosystems in Madrid, Spain. Plant Soil 369, 403–420 (2013).
    CAS  Article  Google Scholar 

    40.
    Bergaust, L., Mao, Y. J., Bakken, L. R. & Frostegard, A. Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrogen oxide reductase in Paracoccusdenitrificans. Appl. Environ. Microbiol. 76, 6387–6396 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Mu, Z. et al. Linking N2O emission to soil mineral N as estimated by CO2 emission and soil C/N ratio. Soil Biol. Biochem. 41, 2593–2597 (2009).
    CAS  Article  Google Scholar 

    42.
    Fu, G. et al. Response of soil respiration to grazing in an alpine meadow at three elevations in Tibet. Sci. World J. 2014, 1–9 (2014).
    Google Scholar 

    43.
    Yu, C. Q., Han, F. S. & Fu, G. Effects of 7 years experimental warming on soil bacterial and fungal community structure in the Northern Tibet alpine meadow at three elevations. Sci. Total Environ. 655, 814–822 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Development of hematopoietic syndrome mice model for localized radiation exposure

    Chemicals and reagents
    Sodium chloride (S3014), potassium chloride (P9541), sodium phosphate dibasic (S3264), potassium phosphate monobasic (P9791), potassium bicarbonate (12602), ammonium chloride (A9434), ethylene diamine tetra acetic acid di-sodium salt (E6635), bovine serum albumin (BSA) (5482), absolute ethanol (100983), methanol (34860) were purchased from Sigma–Aldrich, St. Louis, MO, United States. CD 34, Sca 1, and CBA Flex Set which contains IL-3 (558346), IL-6 (558301), TNFα (558299), IFN γ (562233), G-CSF (560152), GM-CSF (558347), IL-1α (560157), IL-1β (560232), Mouse/Rat Soluble Protein Master Buffer Kit (558266) were procured from BD Biosciences, United States. May-Grunwalds Stain (S039) and Giemsa Stain Solution (TCL083) were procured from Hi-Media India.
    1 L 1X PBS (8 g of sodium chloride, 0.2 g of potassium chloride, 1.44 g of sodium phosphate dibasic, 0.25 g of potassium phosphate monobasic to 1 L at pH 7.4), 1 L 1X RBC lysis buffer (1 g of potassium bicarbonate, 8 g of ammonium chloride and 0.03 g of di-sodium EDTA), 1% BSA in PBS, 70% ethanol in PBS, and may-grunwald-giemsa stain mixed in 3:1 ratio were prepared in the laboratory.
    Animals and groupings
    Pathogen free Strain ‘A’ male mice weighing 25.0–30.0 gm were received from Institute of Nuclear Medicine and Allied Science (INMAS) experimental animal facility at the age of 9 weeks, which is equivalent to young adult humans. Six mice per cage were housed under 25 ± 3 °C temperature and relative humidity of 30–70% in 12 h light/dark cycle with standard food and water. The study design strictly adhered to the guidelines approved by Institutional Animal Care and Use Committee (IACUC) of our institute, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Delhi, India (Institute Animals Ethics Committee number: INM/IAEC/2019/01).
    After 1 week of acclimatization under ambient conditions, mice were grouped for the survival assay according to localized gamma radiation dose i.e. 7, 9, 10, 12, 15, 17 and 19 Gy. Eighteen animals were assigned in each group for this assay.
    For all other parameters mice were divided into two groups with six animals in each. Group 1, consisted of untreated or sham irradiated animals. Group 2 was exposed to 15 Gy localized irradiation. Mice were sacrificed at different time points (1, 2, 4, 7, 10, 15, 20, 25, and 30 days) post treatment. Hematopoietic stem cell marker CD 34 and Sca1 were measured on 1, 4, 7, and 10th day post-irradiation.
    Irradiation
    A Cobalt-60 teletherapy (Model: Bhabhatron-II, Panacea Medical Technologies Pvt Ltd, India) machine was used to irradiate the hinds of the three mice at a time (Fig. 1). The cobalt-60 beam was calibrated following IAEA TRS-398 protocol, with measurement done in water phantom (30 cm × 30 cm × 30 cm), for a field size 10 cm × 10 cm at source to surface distance (SSD) of 80 cm. A Farmer type, 0.6 cc volume, ionization chamber was utilised and the same was recently calibrated for absorbed dose to water (NDW) at Secondary Standard Dosimetry Laboratory (SSDL) of India. The measured absorbed dose rate (water, 10 cm × 10 cm, 80 SSD, Dmax) was 1.39 Gy/min.
    Figure 1

    Representative image of animal exposure with γ-rays in a field size of 2 cm × 35 cm.

    Full size image

    The localized bone marrow irradiation was done using single Posteroanterior (PA) beam with 2 cm × 35 cm field size at 80 cm SSD opened through secondary collimators of the machine. The 5 mm thick acrylic re-strainers were used to immobilize each mouse which also provides the build-up thickness for the irradiation. The dose prescription point was the surface of the hinds i.e. 5 mm below the surface of the re-strainer. The whole irradiation platform was placed on 5 cm thick acrylic slab to provide sufficient back scatter and all the air gaps between the three mice were filled with tissue equivalent gel bolus or wet cotton to compensate for missing side scatter. The prescription doses were absorbed dose to water and not corrected for any tissue heterogeneity.
    The absolute and relative dosimetry of collimated field (2 cm × 35 cm) were performed using pin point (0.04 cc volume) ionization chamber and EBT3 (ISP, Wayne, USA) Gafchromic dosimetry films in solid water phantom. The response of the pin point chamber and EBT3 films was calibrated against the SSDL calibrated ionization chamber in solid water phantom at the depth of 5 cm and field size 10 cm × 10 cm in the same beam quality (i.e. cobalt-60). The film scanning was performed using Epson 10000XL flatbed scanner as per the manufacturers scanning protocol. The beam profiles were obtained from the scanned films and the full width at half maximum (FWHM) in transverse direction was 1.78 cm for the opening of 2.0 cm. The dose uniformity was better than 4% in central 80% of the field. The absolute dose rate (dose to water, dmax, 2 cm × 35 cm, SSD 80 cm) measured at the centre of the field was 1 Gy/min. The overall uncertainty in dose calculations is 6.5% with enhancement or coverage factor (k = 2) at 95% confidence. The main body of the mice was covered with 15 mm lead to prevent any scatter radiation reaching at other body parts of the animal. The surface dose reaching at the shielded body parts of the mice was measured using 0.4 cc ionisation chamber. The measured mean surface dose was 0.024 ± 0.014% of the open field dose. This dose is negligible and considered to be acceptable.
    Survival assay in mice
    For survival assay, 18 mice from each experimental group i.e. 7, 9, 10, 12, 15, 17 and 19 Gy, were irradiated at a fixed dose rate of 1 Gy/min. Groups were inspected daily for their morbidity and mortality status for a total duration of 30 days. All the surviving mice were euthanized humanely using intra-peritoneal injection (i.p.) with dexmedetomidine (0.3 mg/kg) in combination with ketamine (190 mg/kg) at the completion of the observation period.
    Validation of hematopoietic syndrome model
    The model of hematopoietic syndrome was validated with localized radiation of 15 Gy as this was the maximum dose at which all the animals survived as observed in the survival results. Mice were euthanized using intra-peritoneal injection (i.p.) with dexmedetomidine (0.3 mg/kg) in combination with ketamine (190 mg/kg) at 1, 2, 4, 7, 10, 15, 20, 25, and 30th day time points. Further analysis such as organ weight, cell counting, and serum cytokines measurement assays were conducted on various organs such as femur bone, spleen, thymus, lungs, kidneys (L), kidneys (R), liver and heart and blood at above mentioned time points. Hematopoietic stem cell markers (CD 34 and Sca 1) were measured in bone marrow cells of mice at 1, 4, 7, and 10th day time points.
    Body and organ weights
    The control and 15 Gy locally irradiated group animals were sacrificed at 1, 4, 7, 10, 15, 20, 25, and 30th day time points. The organs (spleen, thymus, lungs, kidneys (L), kidneys (R), liver and heart) were dissected out and weighed individually. Relative organ weight was calculated as the ratio between organ weight and body weight.
    Haematology
    The blood samples were collected from untreated and 15 Gy localized radiation group at 1, 4, 7, 10, 15, 20, 25, and 30th day time points in EDTA vial by cardiac puncture. 20 µl of collected blood from each experimental animal was taken for haematology and analysed using Nihon Kohden Celltac α, Tokyo, Japan, a fully automatic 3 part haematology analyzer.
    Bone marrow cell counting
    Total bone marrow cells were flushed out at 1, 4, 7, 10, 15, 20, 25 and 30th day points in 1 ml PBS from both femurs of the untreated mice and 15 Gy localized radiation group. The PBS containing cells was centrifuged at 2000 rpm for 8 min and the supernatant was discarded. The cells were washed with 1 ml PBS and the cell pellet was re-suspended in 1 ml of PBS. The re-suspended sample was diluted as required. The cells were then counted using improved Neubauer chamber under Olympus BX-63 microscope.
    Bone marrow smears study
    Bone marrow cells collected at 1, 4, 7, 10, 15, 20, 25, and 30th day post-irradiation from different treatment groups were centrifuged at 2000 rpm for 8 min and re-suspended in 50 μl of Fetal Bovine Serum (FBS). A small drop of cells suspension was dropped on a clean microscopic slide and then smeared thinly over an area of 2–3 cm by pulling another glass slide held at a 45° angle. Cells were fixed with methanol and stained with may-grunwald-giemsa. Slides were then analysed using Olympus BX-63 microscope.
    Splenocytes and thymocytes counts
    The organs excised at 1, 4, 7, 10, 15, 20, 25, and 30th day time-points were cleaned in chilled PBS. Using sterile-chilled frosted slides both the thymus and spleen were minced into a cell suspension and which was further centrifuged at 2000 rpm for 8 min. After centrifugation the supernatant was discarded. The RBCs were lysed using RBC lysis buffer and the cells were washed with 1 ml PBS. The cells were then counted using improved Neubauer chamber under Olympus BX-63 microscope.
    Measurement of hematopoietic stem cell marker CD 34 and Sca1
    Bone marrow cells were isolated from both the femurs from various treatment groups at different time points. Cell were washed with chilled PBS and fixed with 70% chilled ethanol and stored overnight at – 20 °C. Following day, five million cells were blocked with 1% BSA-PBS and stained with CD 34 and Sca 1 cell-surface markers for 20 min at room temperature. 10,000 cells from each sample were analyzed using FACS LSR II (BD Biosciences, San Jose, CA) and results were visualized by the BD FACSDiva V7 software (BD Biosciences, San Jose, CA).
    Cytokines expression changes
    Mice blood samples were collected in BD serum separation tube at different time-points post treatment (1, 4, 7, 10, 15, 25, and 30 days) via. cardiac puncture from different treatment groups. Samples were incubated at room temperature for 2 h and after incubation centrifuged at 6000g for 15 min. Serum was separated and stored at − 80 °C until analysis. The Levels of IL-3, IL-6, TNFα, IFN γ, G-CSF, GM-CSF, IL-1α,and IL-1β cytokines in mice serum were determined by using respective BD Cytometric Bead Array (CBA) Flex Set (BD Biosciences, USA) on dual laser flow analyzer (LSR-II, Becton Dickinson Biosciences, USA) according to manufacturer’s instructions. Results were analysed using FCAP Array V3 software (BD Biosciences, San Jose, CA).
    Statistical analysis
    All values obtained in our results are represented as mean ± SD of three independent replicates. The 30 day survival data was plotted using Kaplan–Meier analysis. The difference between the experimental groups was evaluated by one-way analysis of variance, with Newman–Keuls multiple comparison test (V, 8.01; GraphPad Prism, San Diego, CA, USA). The comparisons were made among the untreated and 15 Gy locally irradiated groups for all experimental parameters except the survival study. A value of p  More

  • in

    Urban life promotes delayed dispersal and family living in a non-social bird species

    1.
    Lawrence, W. S. Dispersal: an alternative mating tactic conditional on sex ratio and body size. Behav. Ecol. Sociobiol. 21, 367–373 (1987).
    Article  Google Scholar 
    2.
    Russell, E. M. & Rowley, I. Philopatry or dispersal: competition for territory vacancies in the splendid fairy-wren, Malurus splendens. Anim. Behav. 45, 519–539 (1993).
    Article  Google Scholar 

    3.
    Herzig, A. L. Effects of population density on long-distance dispersal in the goldenrod beetle Trirhabda virgata. Ecology 76, 2044–2054 (1995).
    Article  Google Scholar 

    4.
    Verhulst, S., Perrins, C. M. & Riddington, R. Natal dispersal of great tits in a patchy environment. Ecology 78, 864–872 (1997).
    Article  Google Scholar 

    5.
    Johnson, M. L. & Gaines, M. S. Evolution of dispersal: theoretical models and empirical tests using birds and mammals. Annu. Rev. Ecol. Evol. Sys. 21, 449–480 (1990).
    Article  Google Scholar 

    6.
    Clobert, J., Danchin, E., Dhondt, A. A. & Nichols, J. Dispersal (Oxford University Press, Oxford, 2001).
    Google Scholar 

    7.
    Bowler, D. E. & Benton, T. G. Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol. Rev. 80, 205–225 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    8.
    Szulkin, M. & Sheldon, B. C. Dispersal as a means of inbreeding avoidance in a wild bird population. Proc. R. Soc. B 275, 703–711 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    9.
    Cornwallis, C. K. Cooperative breeding and the evolutionary coexistence of helper and nonhelper strategies. Proc. Nat. Acad. Sc. USA 115, 1684–1686 (2018).
    CAS  Article  Google Scholar 

    10.
    Nelson-Flower, M. J., Ridley, A. R., Wiley, E. M. & Flower, T. P. Individual dispersal delays in a cooperative breeder: ecological constraints, the benefits of philopatry and the social queue for dominance. J. Anim. Ecol. 87, 1227–1238 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Komdeur, J. Importance of habitat saturation and territory quality for evolution of cooperative breeding in the Seychelles warbler. Nature 358, 493 (1992).
    ADS  Article  Google Scholar 

    12.
    Kokko, H. & Lundberg, P. Dispersal, migration, and offspring retention in saturated habitats. Am. Nat. 157, 188–202 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Kokko, H. & Ekman, J. Delayed dispersal as a route to breeding: territorial inheritance, safe havens, and ecological constraints. Am. Nat. 160, 468–484 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Lemel, J. Y., Belichon, S., Clobert, J. & Hochberg, M. E. The evolution of dispersal in a two-patch system: some consequences of differences between migrants and residents. Evol. Ecol. 11, 613–629 (1997).
    Article  Google Scholar 

    15.
    Forero, M. G., Donázar, J. A. & Hiraldo, F. Causes and fitness consequences of natal dispersal in a population of black kites. Ecology 83, 858–872 (2002).
    Article  Google Scholar 

    16.
    Kokko, H. & López-Sepulcre, A. From individual dispersal to species ranges: perspectives for a changing world. Science 313, 789–791 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Bonte, D. et al. Costs of dispersal. Biol. Rev. 87, 290–312 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Serrano, D. & Tella, J. L. Lifetime fitness correlates of natal dispersal distance in a colonial bird. J. Anim. Ecol. 81, 97–107 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Kubisch, A., Holt, R. D., Poethke, H. J. & Fronhofer, E. A. Where am I and why? Synthesizing range biology and the eco-evolutionary dynamics of dispersal. Oikos 123, 5–22 (2014).
    Article  Google Scholar 

    20.
    Drobniak, S. M., Wagner, G., Mourocq, E. & Griesser, M. Family living: an overlooked but pivotal social system to understand the evolution of cooperative breeding. Behav. Ecol. 26, 805–811 (2015).
    Article  Google Scholar 

    21.
    Taborsky, M. Sneakers, satellites, and helpers: parasitic and cooperative behavior in fish reproduction. Adv. Study Behav. 23, e100 (1994).
    Google Scholar 

    22.
    Clutton-Brock, T. H. & Lukas, D. The evolution of social philopatry and dispersal in female mammals. Mol. Ecol. 21, 472–492 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Pruett-Jones, S. G. & Lewis, M. J. Sex ratio and habitat limitation promote delayed dispersal in superb fairy-wrens. Nature 348, 541–542 (1990).
    ADS  Article  Google Scholar 

    24.
    Bergmüller, R., Heg, D. & Taborsky, M. Helpers in a cooperatively breeding cichlid stay and pay or disperse and breed, depending on ecological constraints. Proc. R. Soc. B 272, 325–331 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    25.
    Carrete, M., Donázar, J. A., Margalida, A. & Bertran, J. Linking ecology, behaviour and conservation: does habitat saturation change the mating system of bearded vultures?. Biol. Lett. 2, 624–627 (2006).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Covas, R., Doutrelant, C. & du Plessis, M. A. Experimental evidence of a link between breeding conditions and the decision to breed or to help in a colonial cooperative bird. Proc. R. Soc. B 271, 827–832 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    27.
    Baglione, V. et al. Does yearround territoriality rather than habitat saturation explain delayed natal dispersal and cooperative breeding in the carrion crow?. J. Anim. Ecol. 74, 842–851 (2005).
    Article  Google Scholar 

    28.
    Hatchwell, B. J. & Komdeur, J. Ecological constraints, life history traits and the evolution of cooperative breeding. Anim. Behav. 59, 1079–1086 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Pen, I. & Weissing, F. J. Towards a unified theory of cooperative breeding: the role of ecology and life history re-examined. Proc. R. Soc. B 267, 2411–2418 (2000).
    Article  Google Scholar 

    30.
    Covas, R. & Griesser, M. Life history and the evolution of family living in birds. Proc. R. Soc. B 274, 1349–1357 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Griesser, M. & Barnaby, J. Role of Nepotism Cooperation and Competition in the Avian Families. Birds-Evolution, Behavior and Ecology Series (Nova Science Pub Inc, New York, 2010).
    Google Scholar 

    32.
    Baglione, V., Canestrari, D., Marcos, J. M., Griesser, M. & Ekman, J. History, environment and social behaviour: experimentally induced cooperative breeding in the carrion crow. Proc. R. Soc B 269, 1247–1251 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    33.
    Tchabovsky, A. & Bazykin, G. Females delay dispersal and breeding in a solitary gerbil, Meriones tamariscinus. J. Mammal. 85, 105–112 (2004).
    Article  Google Scholar 

    34.
    Ellis, E. C., Fuller, D. Q., Kaplan, J. O. & Lutters, W. G. Dating the Anthropocene: Towards an empirical global history of human transformation of the terrestrial biosphere. Elem. Sci. Anth 1, 18 (2013).
    Article  Google Scholar 

    35.
    Bernardo-Madrid, R. et al. Human activity is altering the world’s zoogeographical regions. Ecol. Lett. 22, 1297–1305 (2019).
    PubMed  PubMed Central  Google Scholar 

    36.
    Rodríguez-Martínez, S., Carrete, M., Roques, S., Rebolo-Ifrán, N. & Tella, J. L. High urban breeding densities do not disrupt genetic monogamy in a bird species. PLoS ONE 9, e91314 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    37.
    McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).
    Article  Google Scholar 

    38.
    Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).
    CAS  PubMed  Article  Google Scholar 

    40.
    Sol, D., González-Lagos, C., Moreira, D., Maspons, J. & Lapiedra, O. Urbanisation tolerance and the loss of avian diversity. Ecol. Lett. 17, 942–950 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    41.
    Carrete, M. & Tella, J. L. Inter-individual variability in fear of humans and relative brain size of the species are related to contemporary urban invasion in birds. PLoS ONE 6, e18859 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Díaz, M. et al. The geography of fear: a latitudinal gradient in anti-predator escape distances of birds across Europe. PLoS ONE 8, e64634 (2013).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Oro, D., Genovart, M., Tavecchia, G., Fowler, M. S. & Martínez-Abraín, A. Ecological and evolutionary implications of food subsidies from humans. Ecol. Lett. 16, 1501–1514 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    44.
    Marzluff, J. M. Worldwide urbanization and its effects on birds. Avian ecology and conservation in an urbanizing world (pp. 19–47) (Springer, Boston, MA. 2001).

    45.
    Haskell, D. G., Knupp, A. M. & Schneider, M. C. Nest predator abundance and urbanization. Avian ecology and conservation in an urbanizing world (pp. 243–258). Springer, Boston, MA. (2001).

    46.
    Luna, Á., Romero-Vidal, P., Hiraldo, F. & Tella, J. L. Cities may save some threatened species but not their ecological functions. PeerJ 6, e4908 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Muhly, T. B., Semeniuk, C., Massolo, A., Hickman, L. & Musiani, M. Human activity helps prey win the predator–prey space race. PLoS ONE 6, e17050 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Rebolo-Ifrán, N., Tella, J. L. & Carrete, M. Urban conservation hotspots: predation release allows the grassland-specialist burrowing owl to perform better in the city. Sci. Rep. 7, 3527 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Tuomainen, U. & Candolin, U. Behavioural responses to human-induced environmental change. Biol. Rev. 86, 640–657 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    50.
    Rodewald, A. D., Kearns, L. J. & Shustack, D. P. Anthropogenic resource subsidies decouple predator-prey relationships. Ecol. Appl. 21, 936–943 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    51.
    Sih, A., Ferrari, M. C. & Harris, D. J. Evolution and behavioural responses to human-induced rapid environmental change. Evol. Appl. 4, 367–387 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    52.
    Carrete, M. & Tella, J. L. Behavioural correlations associated with fear of humans differ between rural and urban burrowing owls. Front. Ecol. Evol. 5, 54 (2017).
    Article  Google Scholar 

    53.
    Moore, J. A., Kamarainen, A. M., Scribner, K. T., Mykut, C. & Prince, H. H. The effects of anthropogenic alteration of nesting habitat on rates of extra-pair fertilization and intraspecific brood parasitism in Canada geese branta Canadensis. Ibis 154, 354–362 (2012).
    Article  Google Scholar 

    54.
    Ryder, T. B., Fleischer, R. C., Shriver, W. G. & Marra, P. P. The ecological–evolutionary interplay: density-dependent sexual selection in a migratory songbird. Ecol. Evol. 2, 976–987 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    55.
    Luna, Á., Palma, A., Sánz-Aguilar, A., Tella, J. L. & Carrete, M. Personality-dependent breeding dispersal in rural but not urban burrowing owls. Sci. Rep. 9, 2886 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    56.
    Luna, Á., Palma, A., Sánz-Aguilar, A., Tella, J. L. & Carrete, M. Sex, personality and conspecific density influence natal dispersal with lifetime fitness consequences in urban and rural burrowing owls. PLoS ONE 15, e0226089 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Mueller, J. C. et al. Evolution of genomic variation in the burrowing owl in response to recent colonization of urban areas. Proc. R. Soc. B 285, 20180206 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    58.
    Miles, L. S., Rivkin, L. R., Johnson, M. T., Munshi-South, J. & Verrelli, B. C. Gene flow and genetic drift in urban environments. Mol. Ecol. 28, 4138–4151 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    59.
    Henger, C. S. et al. Genetic diversity and relatedness of a recently established population of eastern coyotes (Canis latrans) in New York City. Urban Ecosyst. 23, 1–12 (2019).
    Google Scholar 

    60.
    Carrete, M. & Tella, J. L. Individual consistency in flight initiation distances in burrowing owls: a new hypothesis on disturbance-induced habitat selection. Biol. Lett. 6, 167–170 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    61.
    Cockburn, A. Evolution of helping behavior in cooperatively breeding birds. Annu. Rev. Ecol. Syst. 29, 141–177 (1998).
    Article  Google Scholar 

    62.
    Clutton-Brock, T. Breeding together: kin selection and mutualism in cooperative vertebrates. Science 296, 69–72 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Browning, L. E. et al. Career provisioning rules in an obligate cooperative breeder: prey type, size and delivery rate. Behav. Ecol. Sociobiol. 66, 1639–1649 (2012).
    Article  Google Scholar 

    64.
    Richardson, D. S., Burke, T. & Komdeur, J. Direct benefits and the evolution of female-biased cooperative breeding in Seychelles warblers. Evolution 56, 2313–2321 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Gamero, A., Székely, T. & Kappeler, P. M. Delayed juvenile dispersal and monogamy, but no cooperative breeding in white-breasted mesites (Mesitornis variegata). Behav. Ecol. Sociobiol. 68, 73–83 (2014).
    Article  Google Scholar 

    66.
    Brown, J. L. Territorial behavior and population regulation in birds: a review and re-evaluation. Wilson Bull. 81, 293–329 (1969).
    Google Scholar 

    67.
    Emlen, S. T. The evolution of helping. I. An ecological constraints model. Am. Nat. 119, 29–39 (1982).
    Article  Google Scholar 

    68.
    Emlen, S. T. An evolutionary theory of the family. Proc. Natl. Acad. Sci. USA 92, 8092–8099 (1995).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    69.
    Ekman, J., Eggers, S., Griesser, M. & Tegelström, H. Queuing for preferred territories: delayed dispersal of Siberian jays. J. Anim. Ecol. 70(2), 317–324. https://doi.org/10.1111/j.1365-2656,2001.00490.x (2001).
    Article  Google Scholar 

    70.
    Baglione, V., Canestrari, D., Marcos, J. M., Griesser, M. & Ekman, J. History, environment and social behaviour: experimentally induced cooperative breeding in the carrion crow. Proc. R. Soc. B 269, 1247–1251 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    71.
    Gardner, J. L., Magrath, R. D. & Kokko, H. Stepping stones of life: natal dispersal in the group-living but noncooperative speckled warbler. Anim. Behav. 66, 521–530 (2003).
    Article  Google Scholar 

    72.
    Russell, E. M., Yom-Tov, Y. & Geffen, E. Extended parental care and delayed dispersal: northern, tropical, and southern passerines compared. Behav. Ecol. 15, 831–838 (2004).
    Article  Google Scholar 

    73.
    Lucia, K. E. et al. Philopatry in prairie voles: an evaluation of the habitat saturation hypothesis. Behav. Ecol. 19, 774–783 (2008).
    Article  Google Scholar 

    74.
    Clobert, J., Le Galliard, J. F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–220 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    75.
    Bocedi, G., Heinonen, J. & Travis, J. M. Uncertainty and the role of information acquisition in the evolution of context-dependent emigration. Am. Nat. 179, 606–620 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    76.
    Bergmüller, R., Taborsky, M., Peer, K. & Heg, D. Extended safe havens and between-group dispersal of helpers in a cooperatively breeding cichlid. Behaviour 142, 1643–1667 (2005).
    Article  Google Scholar 

    77.
    Tanaka, H., Frommen, J. G., Engqvist, L. & Kohda, M. Task-dependent workload adjustment of female breeders in a cooperatively breeding fish. Behav. Ecol. 29, 221–229 (2018).
    Article  Google Scholar 

    78.
    Suárez-Seoane, S., Osborne, P. E. & Alonso López, J. C. Large-scale habitat selection by agricultural steppe birds in Spain: identifying species–habitat responses using generalized additive models. J. Appl. Ecol. 39, 755–771 (2002).
    Article  Google Scholar 

    79.
    Boyce, M. S. et al. Can habitat selection predict abundance?. J. Anim. Ecol. 85, 11–20 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    80.
    Muller, K. L., Stamps, J. A., Krishnan, V. V. & Willits, N. H. The effects of conspecific attraction and habitat quality on habitat selection in territorial birds (Troglodytes aedon). Am. Nat. 150, 650–661 (1997).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    81.
    Danchin, E., Boulinier, T. & Massot, M. Conspecific reproductive success and breeding habitat selection: implications for the study of coloniality. Ecology 79, 2415–2428 (1998).
    Article  Google Scholar 

    82.
    Brown, C. R., Brown, M. B. & Danchin, E. Breeding habitat selection in cliff swallows: The effect of conspecific reproductive success on colony choice. J. Anim. Ecol. 69, 133–142 (2000).
    Article  Google Scholar 

    83.
    Danchin, E., Giraldeau, L. A., Valone, T. J. & Wagner, R. H. Public information: from nosy neighbors to cultural evolution. Science 305, 487–491 (2004).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    84.
    Serrano, D., Forero, M. G., Donázar, J. A. & Tella, J. L. Dispersal and social attraction affect colony selection and dynamics of lesser kestrels. Ecology 85, 3438–3447 (2004).
    Article  Google Scholar 

    85.
    Farrell, S. L., Morrison, M. L., Campomizzi, A. J. & Wilkins, R. N. Conspecific cues and breeding habitat selection in an endangered woodland warbler. J. Anim. Ecol. J. Anim. Ecol. 81, 1056–1064 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    86.
    Pärt, T. The importance of local familiarity and search costs for age-and sex-biased philopatry in the collared flycatcher. Anim. Behav. 49, 1029–1038 (1995).
    Article  Google Scholar 

    87.
    Clarke, A. L., Sæther, B. E. & Røskaft, E. Sex biases in avian dispersal: a reappraisal. Oikos 79, 429–438 (1997).
    Article  Google Scholar 

    88.
    Piper, W. H., Walcott, C., Mager, J. N. & Spilker, F. J. Nestsite selection by male loons leads to sex-biased site familiarity. J. Anim. Ecol. J. Anim. Ecol. 77, 205–210 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    89.
    Stacey, P. B. & Ligon, J. D. The benefits-of-philopatry hypothesis for the evolution of cooperative breeding: variation in territory quality and group size effects. Am. Nat. 137, 831–846 (1991).
    Article  Google Scholar 

    90.
    Goldstein, J. M., Woolfenden, G. E. & Hailman, J. P. A same-sex stepparent shortens a prebreeder’s duration on the natal territory: tests of two hypotheses in Florida scrub-jays. Behav. Ecol. Sociobiol. 44, 15–22 (1998).
    Article  Google Scholar 

    91.
    Ekman, J. & Griesser, M. Why offspring delay dispersal: experimental evidence for a role of parental tolerance. Proc. R. Soc. B 269, 1709–1713 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    92.
    Griesser, M. & Ekman, A. Nepotistic alarm calling in the Siberian jay, Perisoreus infaustus. Anim. Behav. 67, 933–939 (2004).
    Article  Google Scholar 

    93.
    Griesser, M. Referential calls signal predator behavior in a group-living bird species. Curr. Biol. 18, 69–73 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    94.
    Emlen, S. T. & Wrege, P. H. Breeding biology of white-fronted bee-eaters at Nakuru: the influence of helpers on breeder fitness. J. Anim. Ecol. 60, 309–326 (1991).
    Article  Google Scholar 

    95.
    Cockburn, A. et al. Can we measure the benefits of help in cooperatively breeding birds: the case of superb fairy-wrens Malurus cyaneus?. J. Anim. Ecol. J. Anim. Ecol. 77, 430–438 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    96.
    Kingma, S. A., Hall, M. L., Arriero, E. & Peters, A. Multiple benefits of cooperative breeding in purple-crowned fairy-wrens: a consequence of fidelity?. J. Anim. Ecol. 79, 757–768 (2010).
    PubMed  PubMed Central  Google Scholar 

    97.
    Fitch, M. A. & Shugart, G. W. Comparative biology and behavior of monogamous pairs and one male-two female trios of Herring Gulls. Behav. Ecol. Sociobiol. 14, 1–7 (1983).
    Article  Google Scholar 

    98.
    Del Hoyo, J., Elliot, A. & Sargatal, J. Handbook of the Birds of the World. Barn Owls to Hummingbirds. Vol. 5.Lynx Edicions, Barcelona (1999).

    99.
    Clayton, K. M. & Schmutz, J. K. Is the decline of Burrowing Owls Speotyto cunicularia in prairie Canada linked to changes in Great Plains ecosystems?. Bird Conserv. Int. 9, 163–185 (1999).
    Article  Google Scholar 

    100.
    Haug, E. A., Millsap, B. A. & Martell, M. S. The burrowing owl (Speotyto cunicularia). In Poole, A. & F. Gill (editors). The birds of North America. Philadelphia: The Academy of Natural Sciences; Washington, D. C. The American Ornithologists’ Union. Washington, D. C. The American Ornithologists’ Union (1993).

    101.
    Carrete, M. & Tella, J. L. High individual consistency in fear of humans throughout the adult lifespan of rural and urban burrowing owls. Sci. Rep. 3, 3524 (2013).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    102.
    Rebolo-Ifrán, N. et al. Links between fear of humans, stress and survival support a non-random distribution of birds among urban and rural habitats. Sci. Rep. 5, 13723 (2015).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    103.
    Kalinowski, S. T., Wagner, A. P. & Taper, M. L. ML-Relate: Software for estimating relatedness and relationship from multilocus genotypes. Mol. Ecol. Notes 6, 576–579 (2006).
    CAS  Article  Google Scholar 

    104.
    Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    105.
    Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    106.
    Oliehoek, P. A., Windig, J. J., Van Arendonk, J. A. & Bijma, P. Estimating relatedness between individuals in general populations with a focus on their use in conservation programs. Genetics 173, 483–496 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    107.
    Laake, J. L. RMark: an R interface for analysis of capture-recapture data with MARK (2013).

    108.
    Zar, J. H. Statistical significance of mutation frequencies, and the power of statistical testing, using the Poisson distribution. Biometr. J. 26, 83–88 (1984).
    Article  Google Scholar 

    109.
    Labocha, M. K. & Hayes, J. P. Morphometric indices of body condition in birds: a review. J. Ornithol. 153, 1–22 (2012).
    Article  Google Scholar 

    110.
    Choquet, R., Lebreton, J. D., Gimenez, O., Reboulet, A. M. & Pradel, R. U-CARE: Utilities for performing goodness of fit tests and manipulating CApture–REcapture data. Ecography 32, 1071–1074 (2009).
    Article  Google Scholar 

    111.
    Choquet, R., Rouan, L., Pradel, R. Program E-SURGE: a software application for fitting multievent models. In Modeling demographic processes in marked populations. pp. 845–865. Springer, Boston, MA, 2009.

    112.
    White, G. C. & Burnham, K. P. Program MARK: survival estimation from populations of marked animals. Bird Study 46, S120–S139 (1999).
    Article  Google Scholar 

    113.
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
    Article  Google Scholar 

    114.
    Mollie, E. B. et al. glmmTMB balances speed and flexibility among Packages for zeroinflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Article  Google Scholar 

    115.
    Hartig F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R Package. 2018. https://www.cran.r-project.org/package=DHARMa, Version 0. 2. 0.

    116.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference. A Practical Information-Theoretic Approach (Springer, New York, 2002).
    Google Scholar 

    117.
    Barton, K. MuMIn: Multi-Model Inference. R package version 1. 40. 0. https://CRANhttps://CRAN.R-project.org/package=MuMIn (2017). More

  • in

    Negative frequency-dependent selection and asymmetrical transformation stabilise multi-strain bacterial population structures

    1.
    Russell JB. Discussion on diphtheria. BMJ. 1891;2:631–40.
    Article  Google Scholar 
    2.
    Joseph FH. Notes on some pathogenic bacteria as found in the Transvaal, and the variations from their European prototype. Rep. S Afr Assoc Adv Sci. 1904;2:237–42.
    Google Scholar 

    3.
    Eyre JW, Washbourn JW. Varities and virulence of the pneumococcus. Lancet. 1899;153:19–22.
    Article  Google Scholar 

    4.
    Gladstone RA, Lo SW, Lees JA, Croucher NJ, van Tonder AJ, Corander J, et al. International genomic definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact. EBioMedicine. 2019;43:338–46.
    PubMed  PubMed Central  Article  Google Scholar 

    5.
    Colijn C, Corander J, Croucher NJ. Designing ecologically optimized pneumococcal vaccines using population genomics. Nat Microbiol. 2020;5:473–85.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Weinberger DM, Malley R, Lipsitch M. Serotype replacement in disease after pneumococcal vaccination. Lancet. 2011;378:1962–73.
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Lefevre JC, Faucon G, Sicard AM, Gasc AM. DNA fingerprinting of Streptococcus pneumoniae strains by pulsed-field gel electrophoresis. J Clin Microbiol. 1993;31:2724 LP–8.
    Article  Google Scholar 

    8.
    Selander RK, Levin BR. Genetic diversity and structure in Escherichia coli populations. Science. 1980;210:545–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Smith JM, Smith NH, O’Rourke M, Spratt BG. How clonal are bacteria? Proc Natl Acad Sci USA. 1993;90:4384–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA. 1998;95:3140–5.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Smith JM, Feil EJ, Smith NH. Population structure and evolutionary dynamics of pathogenic bacteria. BioEssays. 2000;22:1115–22.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Croucher NJ, Coupland PG, Stevenson AE, Callendrello A, Bentley SD, Hanage WP. Diversification of bacterial genome content through distinct mechanisms over different timescales. Nat Commun. 2014;5:5471.
    PubMed  PubMed Central  Article  Google Scholar 

    13.
    Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo S, Weiser JN, et al. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Res. 2019;29:304–16.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Alikhan NF, Zhou Z, Sergeant MJ, Achtman M. A genomic overview of the population structure of Salmonella. PLoS Genet. 2018;14:e1007261.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    15.
    Hanage WP, Spratt BG, Turner KME, Fraser C. Modelling bacterial speciation. Philos Trans R Soc B Biol Sci. 2006;361:2039–44.
    Article  Google Scholar 

    16.
    Ford Doolittle W, Papke RT. Genomics and the bacterial species problem. Genome Biol. 2006;7:116.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    17.
    Shapiro BJ, David LA, Friedman J, Alm EJ. Looking for Darwin’s footprints in the microbial world. Trends Microbiol. 2009;17:196–204.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Abu-Raddad LJ, Ferguson NM. The impact of cross-immunity, mutation and stochastic extinction on pathogen diversity. Proc R Soc B Biol Sci. 2004;271:2431–8.
    Article  Google Scholar 

    19.
    Fraser C, Hanage WP, Spratt BG. Neutral microepidemic evolution of bacterial pathogens. Proc Natl Acad Sci USA. 2005;102:1968–73.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Corander J, Fraser C, Gutmann MU, Arnold B, Hanage WP, Bentley SD, et al. Frequency-dependent selection in vaccine-associated pneumococcal population dynamics. Nat Ecol Evol. 2017;1:1950–60.
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Buckee CO, Jolley KA, Recker M, Penman B, Kriz P, Gupta S, et al. Role of selection in the emergence of lineages and the evolution of virulence in Neisseria meningitidis. Proc Natl Acad Sci USA. 2008;105:15082–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Croucher NJ, Finkelstein JA, Pelton SI, Mitchell PK, Lee GM, Parkhill J, et al. Population genomics of post-vaccine changes in pneumococcal epidemiology. Nat Genet. 2013;45:656–63.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Croucher NJ, Hanage WP, Harris SR, McGee L, van der Linden M, de Lencastre H, et al. Variable recombination dynamics during the emergence, transmission and ‘disarming’ of a multidrug-resistant pneumococcal clone. BMC Biol. 2014;12:49.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Croucher NJ, Chewapreecha C, Hanage WP, Harris SR, McGee L, van der Linden M, et al. Evidence for soft selective sweeps in the evolution of pneumococcal multidrug resistance and vaccine escape. Genome Biol Evol. 2014;6:1589–602.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Vos M. A species concept for bacteria based on adaptive divergence. Trends Microbiol. 2011;19:1–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Whitaker RJ. Allopatric origins of microbial species. Philos Trans R Soc B Biol Sci. 2006;361:1975–84.
    Article  Google Scholar 

    27.
    Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP. The bacterial species challenge: Making sense of genetic and ecological diversity. Science. 2009;323:741–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Hanage WP, Fraser C, Spratt BG. Fuzzy species among recombinogenic bacteria. BMC Biol. 2005;3:6.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    29.
    Fraser C, Hanage WP, Spratt BG. Recombination and the nature of bacterial speciation. Science. 2007;315:476–80.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Sheppard SK, McCarthy ND, Falush D, Maiden MCJ. Convergence of Campylobacter species: implications for bacterial evolution. Science. 2008;320:237–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Laible G, Spratt BG, Hakenbeck R. Interspecies recombinational events during the evolution of altered PBP 2x genes in penicillin‐resistant clinical isolates of Streptococcus pneumoniae. Mol Microbiol. 1991;5:1993–2002.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Dowson CG, Coffey TJ, Kell C, Whiley RA. Evolution of penicillin resistance in Streptococcus pneumoniae; the role of Streptococcus mitis in the formation of a low affinity PBP2B in S. pneumoniae. Mol Microbiol. 1993;9:635–43.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Majewski J, Zawadzki P, Pickerill P, Cohan FM, Dowson CG. Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J Bacteriol. 2000;182:1016–23.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Bobay L-M, Ochman H. Biological Species Are Universal across Life’s Domains. Genome Biol Evol. 2017;9:491–501.
    PubMed Central  Article  Google Scholar 

    35.
    Croucher NJ, Harris SR, Barquist L, Parkhill J, Bentley SD. A high-resolution view of genome-wide pneumococcal transformation. PLoS Pathog. 2012;8:e1002745.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Cohan F. Bacterial species and speciation. Syst Biol. 2001;50:513–24.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Nosil P, Funk DJ, Ortiz-Barrientos D. Divergent selection and heterogeneous genomic divergence. Mol Ecol. 2009;18:375–402.
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Cohan FM, Perry EB. A systematics for discovering the fundamental units of bacterial diversity. Curr Biol. 2007;17:R373–R386.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Marttinen P, Hanage WP. Speciation trajectories in recombining bacterial species. PLoS Comput Biol. 2017;13:e1005640.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    Gjini E, Valente C, Sá-Leão R, Gomes MGM. How direct competition shapes coexistence and vaccine effects in multi-strain pathogen systems. J Theor Biol. 2016;388:50–60.
    PubMed  Article  PubMed Central  Google Scholar 

    41.
    Numminen E, Cheng L, Gyllenberg M, Corander J. Estimating the transmission dynamics of Streptococcus pneumoniae from strain prevalence data. Biometrics. 2013;69:748–57.
    PubMed  Article  PubMed Central  Google Scholar 

    42.
    Majewski J, Cohan FM. Adapt globally, act locally: the effect of selective sweeps on bacterial sequence diversity. Genetics. 1999;152:1459–74.
    CAS  PubMed  PubMed Central  Google Scholar 

    43.
    Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev. 2011;35:957–76.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Barraclough TG, Balbi KJ, Ellis RJ. Evolving concepts of bacterial species. Evol Biol. 2012;39:148–57.
    Article  Google Scholar 

    45.
    Chesson P. Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst. 2000;31:343–66.
    Article  Google Scholar 

    46.
    Neher RA, Shraiman BI. Competition between recombination and epistasis can cause a transition from allele to genotype selection. Proc Natl Acad Sci USA. 2009;106:6866–71.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Mostowy R, Croucher NJ, Andam CP, Corander J, Hanage WP, Marttinen P. Efficient inference of recent and ancestral recombination within bacterial populations. Mol Biol Evol. 2017;34:1167–82.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, van der Linden M, et al. Rapid pneumococcal evolution in response to clinical interventions. Science. 2011;331:430–4.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Romero P, Croucher NJ, Hiller NL, Hu FZ, Ehrlich GD, Bentley SD, et al. Comparative genomic analysis of ten Streptococcus pneumoniae temperate bacteriophages. J Bacteriol. 2009;191:4854–62.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Ferguson NM, Galvanl AP, Bush RM. Ecological and immunological determinants of influenza evolution. Nature. 2003;422:428–33.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Cobey S, Lipsitch M. Niche and neutral effects of acquired immunity permit coexistence of pneumococcal serotypes. Science. 2012;335:1376–80.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Cobey S. Pathogen evolution and the immunological niche. Ann N Y Acad Sci. 2014;1320:1–15.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Levin BR. Frequency-dependent selection in bacterial populations. Philos Trans R Soc Lond B Biol Sci. 1988;319:459–72.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Gomes MGM, Medley GF, Nokes DJ. On the determinants of population structure in antigenically diverse pathogens. Proc R Soc Lond Ser B Biol Sci. 2002;269:227–33.
    Article  Google Scholar 

    55.
    Binsker U, Lees JA, Hammond AJ, Weiser JN. Immune exclusion by naturally acquired secretory IgA against pneumococcal pilus-1. J Clin Investig. 2020;130:927–41.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Gupta S, Maiden MCJ, Feavers IM, Nee S, May RM, Anderson RM. The maintenance of strain structure in populations of recombining infectious agents. Nat Med. 1996;2:437–42.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Gupta S, Ferguson N, Anderson R. Chaos, persistence, and evolution of strain structure in antigenically diverse infectious agents. Science. 1998;280:912–5.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Croucher NJ, Campo JJ, Le TQ, Liang X, Bentley SD, Hanage WP, et al. Diverse evolutionary patterns of pneumococcal antigens identified by pangenome-wide immunological screening. Proc Natl Acad Sci USA. 2017;114:E357–66.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Weinberger DM, Dagan R, Givon‐Lavi N, Regev‐Yochay G, Malley R, Lipsitch M. Epidemiologic evidence for serotype‐specific acquired immunity to pneumococcal carriage. J Infect Dis. 2008;197:1511–8.
    PubMed  Article  PubMed Central  Google Scholar 

    60.
    Malley R, Lipsitch M, Bogaert D, Thompson CM, Hermans P, Claire Watkins A, et al. Serum antipneumococcal antibodies and pneumococcal colonization in adults with chronic obstructive pulmonary disease. J Infect Dis. 2007;196:928–35.
    PubMed  Article  Google Scholar 

    61.
    Campo JJ, Le TQ, Pablo JV, Hung C, Teng AA, Tettelin H, et al. Panproteome-wide analysis of antibody responses to whole cell pneumococcal vaccination. Elife. 2018;7:e37015.
    PubMed  PubMed Central  Article  Google Scholar 

    62.
    Buckee CO, Koelle K, Mustard MJ, Gupta S. The effects of host contact network structure on pathogen diversity and strain structure. Proc Natl Acad Sci USA. 2004;101:10839 LP–44.
    Article  Google Scholar 

    63.
    Buckee CO, Recker M, Watkins ER, Gupta S. Role of stochastic processes in maintaining discrete strain structure in antigenically diverse pathogen populations. Proc Natl Acad Sci USA. 2011;108:15504 LP–9.
    Article  Google Scholar 

    64.
    Watkins ER, Penman BS, Lourenço J, Buckee CO, Martin C, Maiden MCJ, et al. Vaccination drives changes in metabolic and virulence profiles of Streptococcus pneumoniae. PLoS Pathog. 2015;11:e1005034.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    65.
    Skwark MJ, Croucher NJ, Puranen S, Chewapreecha C, Pesonen M, Xu YY, et al. Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis. PLoS Genet. 2017;13:e1006508.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    66.
    Pensar J, Puranen S, Arnold B, MacAlasdair N, Kuronen J, Tonkin-Hill G, et al. Genome-wide epistasis and co-selection study using mutual information. Nucleic Acids Res. 2019;47:e112.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Rocha EPC. Neutral theory, microbial practice: challenges in bacterial population genetics. Mol Biol Evol. 2018;35:1338–47.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Azarian T, Martinez PPP, Arnold BJ, Grant LR, Corander J, Fraser C, et al. Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae. PLoS Biol. 2020;18:e3000878.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Johnston C, Campo N, Bergé MJ, Polard P, Claverys JP. Streptococcus pneumoniae, le transformiste. Trends Microbiol. 2014;22:113–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Marttinen P, Gutmann MU, Croucher NJ, Corander J, Hanage WP. Recombination produces coherent bacterial species clusters in both core and accessory genomes. Micro Genom. 2015;1:e000038.
    Google Scholar 

    71.
    Croucher NJ, Mostowy R, Wymant C, Turner P, Bentley SD, Fraser C. Horizontal DNA Transfer mechanisms of bacteria as weapons of intragenomic conflict. PLoS Biol. 2016;14:e1002394.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    72.
    Apagyi KJ, Fraser C, Croucher NJ. Transformation asymmetry and the evolution of the bacterial accessory genome. Mol Biol Evol. 2018;35:575–81.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Spearman C. The proof and measurement of association between two things. Am J Psychol. 1904;100:441–71.
    Article  Google Scholar 

    74.
    Smirnov N. Table for estimating the goodness of fit of empirical distributions. Ann Math Stat. 1948;19:279–81.
    Article  Google Scholar 

    75.
    Kelley T. Statistical method. New York: Macmillan; 1923.
    Google Scholar 

    76.
    Simpson EH. Measurement of diversity. Nature. 1949;163:688.
    Article  Google Scholar 

    77.
    Kimura M. On the probability of fixation of mutant genes in a population. Genetics. 1962;47:713–9.
    CAS  PubMed  PubMed Central  Google Scholar 

    78.
    Hanage WP, Fraser C, Spratt BG. The impact of homologous recombination on the generation of diversity in bacteria. J Theor Biol. 2006;239:210–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    79.
    Lawrence JG. Gene transfer in bacteria: speciation without species? Theor Popul Biol. 2002;61:449–60.
    PubMed  Article  PubMed Central  Google Scholar 

    80.
    Pybus OG, Harvey PH. Testing macro-evolutionary models using incomplete molecular phylogenies. Proc R Soc B Biol Sci. 2000;267:2267–72.
    CAS  Article  Google Scholar 

    81.
    Barraclough TG, Birky CW, Burt A. Diversification in sexual and asexual organisms. Evolution. 2003;57:2166–72.
    PubMed  Article  PubMed Central  Google Scholar 

    82.
    Hudson RR. Gene genealogies and the coalescent process. In: Oxford surveys in evolutionary biology. Oxford: Oxford University Press; 1990. p. 1–44.

    83.
    Numminen E, Gutmann M, Shubin M, Marttinen P, Méric G, van Schaik W, et al. The impact of host metapopulation structure on the population genetics of colonizing bacteria. J Theor Biol. 2016;396:53–62.
    PubMed  Article  PubMed Central  Google Scholar 

    84.
    Castillo-Chavez C, Hethcote HW, Andreasen V, Levin SA, Liu WM. Epidemiological models with age structure, proportionate mixing, and cross-immunity. J Math Biol. 1989;27:233–58.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    85.
    McNally A, Kallonen T, Connor C, Abudahab K, Aanensen D, Horner C, et al. Signatures of negative frequency dependent selection in colonisation factors and the evolution of a multi-drug resistant lineage of Escherichia coli. MBio. 2019;10:e00644–19.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    86.
    Kwun MJ, Oggioni MR, Bentley SD, Fraser C, Croucher NJ. Synergistic activity of mobile genetic element defences in Streptococcus pneumoniae. Genes. 2019;10:707.
    CAS  PubMed Central  Article  Google Scholar 

    87.
    Iranzo J, Puigbo P, Lobkovsky AE, Wolf YI, Koonin EV. Inevitability of genetic parasites. Genome Biol Evol. 2016;8:2856–69. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5631039/.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Budroni S, Siena E, Dunning Hotopp JC, Seib KL, Serruto D, Nofroni C, et al. Neisseria meningitidis is structured in clades associated with restriction modification systems that modulate homologous recombination. Proc Natl Acad Sci USA. 2011;108:4494–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    89.
    Johnston C, Martin B, Granadel C, Polard P, Claverys JP. Programmed protection of foreign DNA from restriction allows pathogenicity island exchange during pneumococcal transformation. PLoS Pathog. 2013;9:e1003178.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    90.
    Kwun MJ, Oggioni MR, De Ste Croix M, Bentley SD, Croucher NJ. Excision-reintegration at a pneumococcal phase-variable restriction-modification locus drives within- and between-strain epigenetic differentiation and inhibits gene acquisition. Nucleic Acids Res. 2018;46:11438–53.
    CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    Microbial niche differentiation explains nitrite oxidation in marine oxygen minimum zones

    Experimental site
    Seawater samples were collected from two stations (Fig. S1a, offshore OMZ station PS2 and coastal OMZ station PS3) in the ETNP in March and April 2018 on board R/V Sally Ride (Cruise ID: SR 1805). NO2− kinetics and O2 effects experiments (≤1 day incubation) were performed at the oxycline, the oxic/anoxic interface (top) of the ODZ and the core of the ODZ at each station (Fig. S1b and Table S1). Long incubations (6–7 days) were performed at the core of the ODZ at both stations to investigate nitrogen reaction rates at very low O2 concentrations.
    Sampling and incubation experiments for NO2− kinetics and O2 effects
    Twelve 30-L Niskin bottles on a rosette with a conductivity–temperature–depth (CTD) profiler were used to collect seawater while recording in situ O2 concentration, temperature, pressure, salinity, and chlorophyll fluorescence. O2 concentration at selected ODZ depths was measured by STOX sensor (on the CTD profiler) with detection limit of 10 nM [42]. NO2− concentrations were measured by standard spectrophotometric methods onboard. O2 and NO2− concentrations were used to select sampling depths. NO3− and NO2− concentrations in incubation samples were measured on a chemiluminescence NO/NOx Analyzer (Teledyne API, San Diego, CA, USA) in the lab.
    Seawater was collected from Niskin bottles into 60 mL air-tight serum bottles after overflowing three times in order to minimize O2 contamination. Serum bottles were sealed with rubber septa and aluminum seals ensuring the absence of bubbles inside bottles. Septa were deoxygenated in anaerobic chambers with three cycles of vacuum/helium flushing over a period of 1 month prior to the cruise. A helium headspace was created for each sample collected from anoxic depths (the top and the core of the ODZ), and then samples were flushed with helium for at least 15 min to remove O2 that might have been introduced during sampling.
    To determine a single NO2− oxidation rate, a set of five serum bottles amended with 15NO2− tracer was incubated on board at 12 °C in the dark. Incubations were terminated in time series (one bottle at day zero (T0), two at 0.5 day and two at 1 day) by adding 0.2 mL of saturated ZnCl2. The T0 bottles served as killed controls for both tracer contamination and abiotic reactions. The observed temporal changes in isotopic signals that occurred in the live samples over a few days in the time courses would not be detected if abiotic reactions were taking place during the >3 months that elapsed before all samples were measured on the mass spec.
    In the lab, NO2− was removed from samples using sulfamic acid, and NO3− in serum bottles was converted into N2O using the denitrifier method [43, 44]. Both concentration and isotopic composition of N2O were measured on a mass spectrometer (Delta Vplus, Thermo Fisher Scientific, Waltham, MA, USA) for calculating nitrite oxidation rate from the linear regression of the five nitrate concentrations at the three time points as previously described [3]. NO2− kinetics of NO2− oxidation were determined by measuring NO2− oxidation rates under different 15NO2− tracer concentrations (0.5–13.8 μM). For responses of NO2− oxidation to O2, different amounts (0, 0.2, 0.5, 1, 2, and 5 mL) of O2 saturated seawater collected from the same Niskin bottle were added into serum bottles to achieve different O2 concentrations. O2 concentrations in serum bottles were monitored by optical oxygen sensors with a detection limit of 62.5 nM (PyroScience GmbH, Aachen, Germany).
    Half-saturation constant
    Half-saturation constant (Km) is the nitrite concentration at which nitrite oxidation rate (V) equals half of the potential maximum rate (Vm). The curve fitting tool in MATLAB_R2015a was used to fit the Michaelis–Menten model (Eq. (2)) to determine Km.

    $${{V}} ,=, {{V}}_{mathrm{m}} ,times,left[ {{mathrm{NO}}_2^-} right]{mathrm{/}}left( {left[ {{mathrm{NO}}_2^-} right] ,+, {{K}}_{mathrm{m}}} right).$$
    ( 2)

    Long incubation experiments
    Longer (≥6 days) incubations were performed in 12-mL exetainers. Seawater from the core of the ODZ (250 m at station PS2, 160 m at station PS3) was sampled into 320 mL ground glass-stoppered bottles, which were immediately transferred into a N2 flushed glove bag. 15NO2− was added into these bottles to reach final concentrations of 7.24 and 8.01 µM at stations PS2 and PS3, respectively. 15NO2− labeled seawater was aliquoted into exetainers and capped within the glove bag. The septa had been stored under helium for at least 1 month. Exetainers were purged with helium for 5 min. Every 12 h, microbial activity in triplicate exetainers was terminated by adding 0.05 mL of 50% w/v ZnCl2. In the lab, N2 produced in exetainers was measured on a mass spectrometer (Europa Scientific 20–20, Crewe, UK) [45]. Denitrification and anammox rates were computed from linear regression of N2 produced at three time points. 15NO3− was measured (as described above) in the same exetainers, and NO2– oxidation rates were computed from linear regression of NO3− produced at three time points. O2 was monitored throughout the incubations in parallel exetainer vials using LUMOS sensors [12, 13]. Each O2 production or consumption rate was determined by linear regression of O2 concentrations at 32 time points. One sensing spot, glued inside an exetainer vial, allowed the optode to measure O2 concentrations every 5 min from the outside. Detection limit and resolution of LUMOS sensors was ≈1 nM.
    DNA sampling, extraction, sequencing, metagenomics, and metatranscriptomics analysis
    Particulate DNA samples were collected by filtration onto 0.22 µm Sterivex filters from the ODZ core samples (250 m at station PS2, 160 m at station PS3). DNA was extracted using the modified plant tissue protocol (All Prep DNA/RNA Mini Kit, Qiagen, Valencia, CA, USA), and subjected to paired-end sequencing on an Illumina MiSeq to generate over 10 million read pairs for each sample by the Genomics Core Facility of Lewis-Sigler Institute for Integrative Genomics at Princeton University. Quality control of raw reads was performed by BBDuk (DOE Joint Genome Institute, Walnut Creek, CA, USA), and assembled into contigs using metaSPAdes v3.12.0 [46] with specified options (-k 21, 33, 55, 77, 99, 127 -m 500). Metagenome-assembled genomes (MAGs) were constructed using MetaBAT v2.12.1 [47] with default (sensitive) mode and contigs longer than 1500 bp. The quality of MAGs was determined by checkM [48]. Taxonomy of MAGs was predicted by GTDB-tk [49]. ETNP PS2 MAG-11 from the ODZ core at station PS2 and ETNP PS3 MAG-54 from the ODZ core at station PS3 were identified as Nitrospina-like NOB. The taxonomy of these two NOB MAGs (ETNP PS2 MAG-11 and ETNP PS3 MAG-54) was further confirmed by comparing them with known OMZ NOB MAGs (MAG-1 and MAG-2) [8] using ANI. ANI between MAGs was assessed using enveomics [50]. MAG-2 [8], ETNP PS2 MAG-11 and ETNP PS3 MAG-54 belong to the same species (threshold for species: ANI ≥95%) based on their ANI values (Table S3). Considering the low completeness of MAG-11 and the high contamination of MAG-54 constructed from the two new metagenomes here (Table S4), we decided to use MAG-2 as the representative for this NOB species.
    We estimated the relative abundance and the transcriptional activity of the two known OMZ NOB species in different oceanic regions (including the two ETNP stations in this study) by mapping metagenomes and metatranscriptomes from this and other studies to MAG-1 and MAG-2. The relative abundance of MAG-1 or MAG-2 at stations PS2 and PS3 in the ETNP was calculated as RPKG (the number of metagenomic reads obtained in this study mapped to a MAG per MAG length (kb) per genome equivalents) [15]. Genome equivalents were estimated using MicrobeCensus v1.1.1 [15]. The transcriptional activity of MAG-1 or MAG-2 in ETNP and ETSP OMZs was assessed by mapping published metatranscriptomic reads from the ETNP (PRJNA263621) [51] and the ETSP (SRA023632.1) [52] to MAG-1 and MAG-2. The relative abundance of RNA in Fig. S4 was calculated as the number of metatranscriptomic reads mapped to a MAG divided by the number of total reads. Mapping was performed by Bowtie2 [53] using “very-sensitive” mode, and only reads with a mapping quality above 20 were included as mapped reads.
    In order to explore the possibility of the presence of other NOB in the ODZ core at stations PS2 and PS3, we also estimated the relative abundance of other (putative) NOB using their marker gene, nxrB (nitrite oxidoreductase). First, we downloaded previously identified (putative) nxrB sequences from the ETSP OMZ [8]. Then, we color coded the genes in Fig. 4 based on previously defined clusters in a phylogenetic tree (see Fig. 3 in [8]): the Nitrospina cluster (blue) contains nxrB grouped with cultured marine NOB, Nitrospina gracilis. Based on BLASTp search results, amino acid sequence identities between all the OMZ nxrB in this cluster and that of Nitrospina gracilis were 96.71%, 96.71%, and 96.87% for NODE_69234, NODE_114897, and NODE_102582, respectively. Only this cluster is associated with known NOB, and the nitrite oxidation capacity of all the other genes associated with nxrB needs to be confirmed. The anammox cluster (red) contains anammox nxrB sequences. The putative cluster (black) contains nxrB grouped with microbes in which nitrite oxidation capacity has not been proven. This putative cluster fell between known NOB and anammox, and was implied to represent unidentified NOB [54]. The last cluster is called unknown nxrB (gray) because neither their phylogeny nor function can be determined based on their distant relationship with known NOB or anammox nxrB. Finally, we mapped the ETNP metagenomic reads obtained in this study to each nxrB gene. Relative abundance of nxrB genes was also expressed as RPKG: relative abundance of nxrB gene = (number of mapped reads to a certain nxrB gene)/(length of this nxrB in kb)/(genome equivalents).
    To explore the potential metabolisms of NOB in anoxic ODZ cores, we searched for chlorite dismutase and NO dismutase (nod) genes in the NOB MAGs. First, protein-coding sequences in the two new NOB MAGs obtained here (ETNP PS2 MAG-11 and ETNP PS3 MAG-54) were predicted by Prodigal v2.6.3 [55]. The protein-coding sequences were annotated by the best BLASTp hits against the nr protein database. DNA sequences encoding Cld were identified in both ETNP NOB MAGs. Predicted Cld amino acid sequences encoded by ETNP MAGs were too short (120 aa) to be compared to Cld of Candidatus Nitrospira defluvii, but they only had one mismatch with Cld amino acid sequences of MAG-2 from the ETSP OMZ based on MUSCLE alignment using MEGA 7 software (Fig. S5b). Thus, we looked for the arginine173, the Cld activity marker, in longer Cld sequences of MAG-1 and MAG-2 by aligning their Cld with the Cld of Candidatus Nitrospira defluvii using MUSCLE in MEGA 7 software. Since nod was not found in the ETNP MAGs via annotation and was not reported in MAG-1 and MAG-2 in the previous study [8], gene search (i.e., searching nod against NOB MAGs) was performed using Hidden Markov Models by HMMER3 [56]. Reference sequences of the search included a nod sequence retrieved from Candidatus Methylomirabilis oxyfera [32] genome (accession numbers FP565575.1), and three environmental nod sequences (accession numbers: KX364450.1, KX364454.1, and KU933965.1). Search queries were the two ETNP MAGs and two ETSP MAGs in Table S3.
    Estimation of NO2− oxidation through disproportionation using an inverse isotope model
    We simulated the distribution of NO2− oxidation rates via disproportionation using a 1-D inverse isotope model [37] in the anoxic ODZ core from two stations in the ETSP OMZ (Fig. S6), where the complete suite of isotope and rate data have been previously published (Table S7). Briefly, the net biochemical production or consumption rate of each nitrogen compound (R14Ammonium, R14Nitrite, R14Nitrate, R15Nitrite, and R15Nitrate) was balanced by vertical diffusion and advection at steady state, and then five equations were used to balance measured 14NH4+, 14NO2−, 15NO2−, 14NO3−, and 15NO3− concentrations (Eqs. (3–7)). The exclusion of horizontal processes was justified [37] since the model was not run all the way to the surface, and using a constant vertical advection term does not violate continuity of the model. F is the rate of each nitrogen cycle process represented in this model (Fig. 5a, b). We modified the previous model by replacing canonical NO2− oxidation with NO2− disproportionation and using the recently determined stoichiometry of nitrate production by anammox from 0.3 to 0.16 [24]. Since OMZ NOB genomes encode nitrite oxidoreductase (catalyzes NO2−→NO3−) and nitrite reductase (catalyzes NO2−→NO), we assumed that the fractionation factor of nitrate production from nitrite by disproportionation is the same as by canonical nitrite oxidation (αDis = αNxr) based on the close clustering between OMZ NOB nxr and aerobic NOB (Nitrospina gracilis) nxr [8], and the fractionation factor of N2 produced by disproportionation is the same as by denitrification (αDisN2 = αNir). Rates of NO2− disproportionation (FDis), NO3− reduction (FNar), denitrification (FNir), and anammox (FAmx) were solved from the equations by the nonnegative least squares optimization routine (lsqnonneg) in MATLAB_R2015a as described previously [37].

    $$R_{14Ammonium} ,=, 0.11,times {,}^{14}F_{Nir} ,+, 0.07,times {,}^{14}F_{Nar} ,- {,}^{14}F_{Amx},$$
    ( 3)

    $$R_{14Nitrite} = – ,^{14}F_{Nir} ,+, {,}^{14}F_{Nar} ,-, (1 ,+, c) ,times,{,}^{14}F_{Amx} \ -, left( {5/3} right) ,times,{,}^{14}F_{Dis},$$
    ( 4)

    $$R_{14Nitrate} ,=, – ^{14}F_{Nar} ,+, c ,times {,}^{14}F_{Amx} ,+, {,}^{14}F_{Dis},$$
    ( 5)

    $$R_{15Nitrite} = -!! {,}^{14}F_{Nir}/alpha_{Nir} ,times,left( {left[ {{,}^{15}{rm{NO}}_{2}^{-}} right]/left[ {{,}^{14}{rm{NO}}_{2}^{-}} right]} right) \ +, {,}^{14}F_{Nar}/alpha_{Nar},times,left( {left[ {{,}^{15}{rm{NO}}_{3}^{-}} right]/left[ {{,}^{14}{rm{NO}}_{3}^{-}} right]} right)\ -, {,}^{14}F_{Amx}/alpha_{Amx},times,left( {left[ {{,}^{15}{rm{NO}}_{2}^{-}} right]/left[ {{,}^{14}{rm{NO}}_{2}^{-}} right]} right) \ -, c times !{,}^{14}F_{Amx}/alpha_{NxrAmx},times,left( {left[ {{,}^{15}{rm{NO}}_{2}^{-}} right]/left[ {{,}^{14}{rm{NO}}_{2}^{-}} right]} right)\ -, {,}^{14}F_{Dis}/alpha_{Dis}timesleft( {left[ {{,}^{15}{rm{NO}}_{2}^{-}} right]/left[ {{,}^{14}{rm{NO}}_{2}^{-}} right]} right) \ -, left( {2/3} right) !times ! {,}^{14}F_{Dis}/alpha_{DisN2} !times left(! {left[ {{,}^{15}{rm{NO}}_{2}^{-}} right]/left[ !{{,}^{14}{rm{NO}}_{2}^{-}} right]} !right),$$
    (6)

    $$R_{15Nitrate} = -!! {,}^{14}F_{Nar}/alpha_{Nar} ,times,left( {left[ {{,}^{15}{rm{NO}}_{3}^{-}} right]/left[ {{,}^{14}{rm{NO}}_{3}^{-}} right]} right) \ +, c times !{,}^{14}F_{Amx}/alpha_{NxrAmx},times,left( {left[ {{,}^{15}{rm{NO}}_{2}^{-}} right]/left[ {{,}^{14}{rm{NO}}_{2}^{-}} right]} right)\ +, ^{14}F_{Dis}/alpha_{Dis},times,left( {left[ {{,}^{15}{rm{NO}}_{2}^{-}} right]/left[ {{,}^{14}{rm{NO}}_{2}^{-}} right]} right).$$
    (7) More

  • in

    Soil microbial legacies differ following drying-rewetting and freezing-thawing cycles

    1.
    IPCC. Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups i and ii of the intergovernmental panel on climate change. Cambridge, UK, and New York, NY, USA: Cambridge University Press; 2012.
    Google Scholar 
    2.
    Trenberth KE, Dai AG, van der Schrier G, Jones PD, Barichivich J, Briffa KR, et al. Global warming and changes in drought. Nat Clim Chang. 2014;4:17–22.
    Article  Google Scholar 

    3.
    Kreyling J, Henry HAL. Vanishing winters in germany: soil frost dynamics and snow cover trends, and ecological implications. Clim Res. 2011;46:269–76.
    Article  Google Scholar 

    4.
    Congreves KA, Wagner-Riddle C, Si BC, Clough TJ. Nitrous oxide emissions and biogeochemical responses to soil freezing-thawing and drying-wetting. Soil Biol Biochem. 2018;117:5–15.
    CAS  Article  Google Scholar 

    5.
    Schimel J, Balser TC, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function. Ecology 2007;88:1386–94.
    PubMed  Article  Google Scholar 

    6.
    Tecon R, Or D. Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiol Rev. 2017;41:599–623.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Koponen HT, Bååth E. Soil bacterial growth after a freezing/thawing event. Soil Biol Biochem. 2016;100:229–32.
    CAS  Article  Google Scholar 

    8.
    Schostag M, Priemé A, Jacquiod S, Russel J, Ekelund F, Jacobsen CS. Bacterial and protozoan dynamics upon thawing and freezing of an active layer permafrost soil. ISME J. 2019;13:1345–59.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Barnard RL, Osborne CA, Firestone MK. Changing precipitation pattern alters soil microbial community response to wet-up under a mediterranean-type climate. ISME J. 2015;9:946–57.
    CAS  PubMed  Article  Google Scholar 

    10.
    Drigo B, Nielsen UN, Jeffries TC, Curlevski NJA, Singh BK, Duursma RA, et al. Interactive effects of seasonal drought and elevated atmospheric carbon dioxide concentration on prokaryotic rhizosphere communities. Environ Microbiol. 2017;19:3175–85.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Priemé A, Christensen S. Natural perturbations, drying-wetting and freezing-thawing cycles, and the emission of nitrous oxide, carbon dioxide and methane from farmed organic soils. Soil Biol Biochem. 2001;33:2083–91.
    Article  Google Scholar 

    12.
    Kim DG, Vargas R, Bond-Lamberty B, Turetsky MR. Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences 2012;9:2459–83.
    CAS  Article  Google Scholar 

    13.
    Meisner A, Leizeaga A, Rousk J, Bååth E. Partial drying accelerates bacterial growth recovery to rewetting. Soil Biol Biochem. 2017;112:269–76.
    CAS  Article  Google Scholar 

    14.
    Blazewicz SJ, Schwartz E, Firestone MK. Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil. Ecology. 2014;95:1162–72.
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Barnard RL, Osborne CA, Firestone MK. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J. 2013;7:2229–41.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Meisner A, Jacquiod S, Snoek BL, ten Hooven FC, van der Putten WH. Drought legacy effects on the composition of soil fungal and prokaryote communities. Front Microbiol. 2018;9:294.
    PubMed  PubMed Central  Article  Google Scholar 

    17.
    de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, et al. Soil bacterial networks are less stable under drought than fungal networks. Nat Commun. 2018;9:3033.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    18.
    Bouskill NJ, Lim HC, Borglin S, Salve R, Wood TE, Silver WL, et al. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J. 2013;7:384–94.
    CAS  PubMed  Article  Google Scholar 

    19.
    Ren J, Song C, Hou A, Song Y, Zhu X, Cagle GA. Shifts in soil bacterial and archaeal communities during freeze-thaw cycles in a seasonal frozen marsh, northeast china. Sci Total Environ. 2018;625:782–91.
    CAS  PubMed  Article  Google Scholar 

    20.
    Mannisto MK, Tiirola M, Haggblom MM. Effect of freeze-thaw cycles on bacterial communities of arctic tundra soil. Micro Ecol. 2009;58:621–31.
    Article  Google Scholar 

    21.
    Evans SE, Wallenstein MD. Climate change alters ecological strategies of soil bacteria. Ecol Lett. 2014;17:155–64.
    PubMed  Article  PubMed Central  Google Scholar 

    22.
    Fuchslueger L, Bahn M, Hasibeder R, Kienzl S, Fritz K, Schmitt M, et al. Drought history affects grassland plant and microbial carbon turnover during and after a subsequent drought event. J Ecol. 2016;104:1453–65.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Hawkes CV, Waring BG, Rocca JD, Kivlin SN. Historical climate controls soil respiration responses to current soil moisture. Proc Natl Acad Sci. 2017;114:6322–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Preece C, Verbruggen E, Liu L, Weedon JT, Peñuelas J. Effects of past and current drought on the composition and diversity of soil microbial communities. Soil Biol Biochem. 2019;131:28–39.
    CAS  Article  Google Scholar 

    25.
    de Nijs EA, Hicks LC, Leizeaga A, Tietema A, Rousk J. Soil microbial moisture dependences and responses to drying–rewetting: the legacy of 18 years drought. Glob Change Biol. 2019;25:1005–15.
    Article  Google Scholar 

    26.
    Evans SE, Wallenstein MD. Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter? Biogeochemistry 2012;109:101–16.
    Article  Google Scholar 

    27.
    Butterly CR, Bunemann EK, McNeill AM, Baldock JA, Marschner P. Carbon pulses but not phosphorus pulses are related to decreases in microbial biomass during repeated drying and rewetting of soils. Soil Biol Biochem. 2009;41:1406–16.
    CAS  Article  Google Scholar 

    28.
    Schimel JP, Clein JS. Microbial response to freeze-thaw cycles in tundra and taiga soils. Soil Biol Biochem. 1996;28:1061–6.
    Article  Google Scholar 

    29.
    Jurburg SD, Nunes I, Brejnrod A, Jacquiod S, Priemé A, Sørensen SJ, et al. Legacy effects on the recovery of soil bacterial communities from extreme temperature perturbation. Front Microbiol. 2017;8:1832.
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Calderón K, Philippot L, Bizouard F, Breuil M-C, Bru D, Spor A. Compounded disturbance chronology modulates the resilience of soil microbial communities and n-cycle related functions. Front Microbiol. 2018;9:2721.
    PubMed  PubMed Central  Article  Google Scholar 

    31.
    Wilson SL, Grogan P, Walker VK. Prospecting for ice association: characterization of freeze–thaw selected enrichment cultures from latitudinally distant soils. Can J Microbiol. 2012;58:402–12.
    CAS  PubMed  Article  Google Scholar 

    32.
    Evans SE, Wallenstein MD, Burke IC. Is bacterial moisture niche a good predictor of shifts in community composition under long-term drought? Ecology. 2014;95:110–22.
    PubMed  Article  Google Scholar 

    33.
    Yergeau E, Kowalchuk GA. Responses of antarctic soil microbial communities and associated functions to temperature and freeze-thaw cycle frequency. Environ Microbiol. 2008;10:2223–35.
    PubMed  Article  Google Scholar 

    34.
    Lennon JT, Aanderud ZT, Lehmkuhl BK, Schoolmaster DR. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology. 2012;93:1867–79.
    PubMed  Article  Google Scholar 

    35.
    Mackey BM, Derrick CM. Conductance measurements of the lag phase of injured salmonella-typhimurium. J Appl Bacteriol. 1984;57:299–308.
    CAS  PubMed  Article  Google Scholar 

    36.
    Nocker A, Fernandez PS, Montijn R, Schuren F. Effect of air drying on bacterial viability: a multiparameter viability assessment. J Microbiol Methods. 2012;90:86–95.
    CAS  PubMed  Article  Google Scholar 

    37.
    Potts M. Desiccation tolerance of prokaryotes. Microbiological Rev. 1994;58:755–805.
    CAS  Article  Google Scholar 

    38.
    Öquist MG, Sparrman T, Klemedtsson L, Drotz SH, Grip H, Schleucher J, et al. Water availability controls microbial temperature responses in frozen soil co2 production. Glob Change Biol. 2009;15:2715–22.
    Article  Google Scholar 

    39.
    Manzoni S, Schimel JP, Porporato A. Responses of soil microbial communities to water-stress: results from a meta-analysis. Ecology. 2012;93:930–8.
    PubMed  Article  Google Scholar 

    40.
    Iovieno P, Bååth E. Effect of drying and rewetting on bacterial growth rates in soil. FEMS Microbiol Ecol. 2008;65:400–7.
    CAS  PubMed  Article  Google Scholar 

    41.
    Drotz SH, Sparrman T, Nilsson MB, Schleucher J, Öquist MG. Both catabolic and anabolic heterotrophic microbial activity proceed in frozen soils. Proc Natl Acad Sci USA. 2010;107:21046–51.
    CAS  PubMed  Article  Google Scholar 

    42.
    Lennon JT, Jones SE. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol. 2011;9:119–30.
    CAS  PubMed  Article  Google Scholar 

    43.
    Manzoni S, Schaeffer SM, Katul G, Porporato A, Schimel JP. A theoretical analysis of microbial eco-physiological and diffusion limitations to carbon cycling in drying soils. Soil Biol Biochem. 2014;73:69–83.
    CAS  Article  Google Scholar 

    44.
    Larsen KS, Jonasson S, Michelsen A. Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types. Appl Soil Ecol. 2002;21:187–95.
    Article  Google Scholar 

    45.
    Williams MA, Xia K. Characterization of the water soluble soil organic pool following the rewetting of dry soil in a drought-prone tallgrass prairie. Soil Biol Biochem. 2009;41:21–8.
    CAS  Article  Google Scholar 

    46.
    Placella SA, Brodie EL, Firestone MK. Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. Proc Natl Acad Sci USA. 2012;109:10931–6.
    CAS  PubMed  Article  Google Scholar 

    47.
    Fukami T. Historical contingency in community assembly: Integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst. 2015;46:1–23.
    Article  Google Scholar 

    48.
    Szekely AJ, Langenheder S. Dispersal timing and drought history influence the response of bacterioplankton to drying-rewetting stress. ISME J. 2017;11:1764–76.
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Engelhardt IC, Welty A, Blazewicz SJ, Bru D, Rouard N, Breuil M-C, et al. Depth matters: effects of precipitation regime on soil microbial activity upon rewetting of a plant-soil system. ISME J. 2018;12:1061–71.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Guhr A, Borken W, Spohn M, Matzner E. Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization. Proc Natl Acad Sci USA. 2015;112:14647–51.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Yergeau E, Hogues H, Whyte LG, Greer CW. The functional potential of high arctic permafrost revealed by metagenomic sequencing, qpcr and microarray analyses. ISME J. 2010;4:1206–14.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Gittel A, Barta J, Kohoutova I, Mikutta R, Owens S, Gilbert J, et al. Distinct microbial communities associated with buried soils in the siberian tundra. ISME J. 2014;8:841–53.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Hultman J, Waldrop MP, Mackelprang R, David MM, McFarland J, Blazewicz SJ, et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 2015;521:208–12.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Feng X, Nielsen LL, Simpson MJ. Responses of soil organic matter and microorganisms to freeze–thaw cycles. Soil Biol Biochem. 2007;39:2027–37.
    CAS  Article  Google Scholar 

    55.
    Carini P, Marsden PJ, Leff J, Morgan EE, Strickland MS, Fierer N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol. 2017;2:6.
    Article  CAS  Google Scholar 

    56.
    Lennon JT, Muscarella ME, Placella SA, Lehmkuhl BK. How, when, and where relic DNA affects microbial diversity. mBio 2018;9:e00637–18.
    PubMed  PubMed Central  Google Scholar 

    57.
    Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rrna as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013;7:2061–8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Blagodatskaya E, Kuzyakov Y. Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem. 2013;67:192–211.
    CAS  Article  Google Scholar 

    59.
    van de Voorde TFJ, van der Putten WH, Martijn Bezemer T. Intra- and interspecific plant–soil interactions, soil legacies and priority effects during old-field succession. J Ecol. 2011;99:945–53.
    Article  Google Scholar 

    60.
    Nunes I, Jurburg S, Jacquiod S, Brejnrod A, Falcão Salles J, Priemé A, et al. Soil bacteria show different tolerance ranges to an unprecedented disturbance. Biol Fertil Soils. 2018;54:189–202.
    Article  Google Scholar 

    61.
    Christiansen CT, Haugwitz MS, Priemé A, Nielsen CS, Elberling B, Michelsen A, et al. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra. Glob Change Biol. 2017;23:406–20.
    Article  Google Scholar 

    62.
    Borg Dahl M, Brejnrod AD, Russel J, Sørensen SJ, Schnittler M. Different degrees of niche differentiation for bacteria, fungi, and myxomycetes within an elevational transect in the german alps. Micro Ecol. 2019;78:764–80.
    CAS  Article  Google Scholar 

    63.
    RCoreTeam. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.
    Google Scholar 

    64.
    McMurdie PJ, Holmes S. Phyloseq: an r package for reproducible interactive analysis and graphics of microbiome census data. PLOS ONE. 2013;8:e61217.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: community ecology package. R package version 2.5-5. https://CRAN.R-project.org/package=vegan. 2019.

    66.
    Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest Package: Tests in Linear Mixed Effects Models. J Stat Softw. 2017;82:1–26.
    Article  Google Scholar 

    67.
    Bates D, Maechler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw. 2015;67:1–48.
    Article  Google Scholar 

    68.
    Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, et al. Package ‘gplots’: various r programming tools for plotting data. R package version 3.0.1. https://CRAN.R-project.org/package=gplots. 2019.

    69.
    Wickham H. Ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.
    Google Scholar 

    70.
    Sharma S, Szele Z, Schilling R, Munch JC, Schloter M. Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil. Appl Environ Microbiol. 2006;72:2148–54.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    71.
    Tilston EL, Sparrman T, Öquist MG. Unfrozen water content moderates temperature dependence of sub-zero microbial respiration. Soil Biol Biochem. 2010;42:1396–407.
    CAS  Article  Google Scholar 

    72.
    Ho A, Di Lonardo DP, Bodelier PLE. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol Ecol. 2017;93:14.
    Google Scholar 

    73.
    Yuste JC, Penuelas J, Estiarte M, Garcia-Mas J, Mattana S, Ogaya R, et al. Drought-resistant fungi control soil organic matter decomposition and its response to temperature. Glob Change Biol. 2011;17:1475–86.
    Article  Google Scholar 

    74.
    Kaisermann A, Maron PA, Beaumelle L, Lata JC. Fungal communities are more sensitive indicators to non-extreme soil moisture variations than bacterial communities. Appl Soil Ecol. 2015;86:158–64.
    Article  Google Scholar 

    75.
    Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science. 2013;339:1615–8.
    CAS  PubMed  Article  Google Scholar 

    76.
    Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, et al. Global biogeography of highly diverse protistan communities in soil. ISME J. 2013;7:652–9.
    CAS  PubMed  Article  Google Scholar 

    77.
    Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, et al. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev. 2018;42:293–323.
    CAS  PubMed  Article  Google Scholar 

    78.
    Geisen S, Bandow C, Römbke J, Bonkowski M. Soil water availability strongly alters the community composition of soil protists. Pedobiologia 2014;57:205–13.
    Article  Google Scholar 

    79.
    Clarholm M. Protozoan grazing of bacteria in soil—impact and importance. Micro Ecol. 1981;7:343–50.
    CAS  Article  Google Scholar 

    80.
    Harder CB, Rønn R, Brejnrod A, Bass D, Al-Soud WA, Ekelund F. Local diversity of heathland cercozoa explored by in-depth sequencing. ISME J. 2016;10:2488.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    81.
    Ekelund F, Frederiksen HB, Rønn R. Population dynamics of active and total ciliate populations in arable soil amended with wheat. Appl Environ Microbiol. 2002;68:1096–101.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    Müller H, Achilles-Day UEM, Day JG. Tolerance of the resting cysts of colpoda inflata (ciliophora, colpodea) and meseres corlissi (ciliophora, spirotrichea) to desiccation and freezing. Eur J Protistol. 2010;46:133–42.
    PubMed  Article  Google Scholar 

    83.
    Stieglmeier M, Alves RJE, Schleper C. The phylum thaumarchaeota. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: other major lineages of bacteria and the archaea. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 347–62.

    84.
    Shi Y, Adams JM, Ni Y, Yang T, Jing X, Chen L, et al. The biogeography of soil archaeal communities on the eastern tibetan plateau. Sci Rep. 2016;6:38893.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    85.
    Pedrós-Alió C. The rare bacterial biosphere. Ann Rev Mar Sci. 2012;4:449–66.
    PubMed  Article  Google Scholar 

    86.
    Lynch MDJ, Neufeld JD. Ecology and exploration of the rare biosphere. Nat Rev Microbiol. 2015;13:217–29.
    CAS  PubMed  Article  Google Scholar 

    87.
    Chowdhury N, Nakatani AS, Setia R, Marschner P. Microbial activity and community composition in saline and non-saline soils exposed to multiple drying and rewetting events. Plant Soil. 2011;348:103–13.
    CAS  Article  Google Scholar 

    88.
    Fierer N, Schimel JP. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem. 2002;34:777–87.
    CAS  Article  Google Scholar 

    89.
    Schöler A, Jacquiod S, Vestergaard G, Schulz S, Schloter M. Analysis of soil microbial communities based on amplicon sequencing of marker genes. Biol Fertil Soils. 2017;53:485–9.
    Article  CAS  Google Scholar 

    90.
    Lau JA, Lennon JT. Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci USA. 2012;109:14058–62.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    91.
    Meisner A, De Deyn GB, de Boer W, van der Putten WH. Soil biotic legacy effects of extreme weather events influence plant invasiveness. Proc Natl Acad Sci USA. 2013;110:9835–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    92.
    Solyanikova IP, Suzina NE, Egozarian NS, Polivtseva VN, Prisyazhnaya NV, El-Registan GI, et al. The response of soil arthrobacter agilis lush13 to changing conditions: Transition between vegetative and dormant state. J Environ Sci Health B 2017;52:745–51.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    93.
    Levinson HS, Hyatt MT. Correlation of respiratory activity with phases of spore germination and growth in bacillus-megaterium as influenced by manganese and l-alanine. J Bacteriol. 1956;72:176–83.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    94.
    Williamson KE, Fuhrmann JJ, Wommack KE, Radosevich M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu Rev Virol. 2017;4:201–19.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    95.
    van Kruistum H, Bodelier PLE, Ho A, Meima-Franke M, Veraart AJ. Resistance and recovery of methane-oxidizing communities depends on stress regime and history; a microcosm study. Front Microbiol. 2018;9:1714.
    PubMed  PubMed Central  Article  Google Scholar 

    96.
    Bérard A, Ben Sassi M, Renault P, Gros R. Severe drought-induced community tolerance to heat wave. An experimental study on soil microbial processes. J Soils Sed. 2012;12:513–8.
    Article  Google Scholar  More