Leaf proteome modulation and cytological features of seagrass Cymodocea nodosa in response to long-term high CO2 exposure in volcanic vents
1.
Tassi, F. et al. Low-pH waters discharging from submarine vents at Panarea Island (Aeolian Islands, southern Italy) after the 2002 gas blast: Origin of hydrothermal fluids and implications for volcanic surveillance. Appl. Geochem. 24, 246–254 (2009).
CAS Article Google Scholar
2.
Boatta, F. et al. Geochemical survey of Levante Bay, Vulcano Island (Italy), a natural laboratory for the study of ocean acidification. Mar. Pollut. Bull. 73, 485–494. https://doi.org/10.1016/j.marpolbul.2013.01.029 (2013).
CAS Article PubMed Google Scholar
3.
Hall-Spencer, J. M. et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99 (2008).
ADS CAS Article Google Scholar
4.
Ricevuto, E., Kroeker, K. J., Ferrigno, F. & Gambi, M. C. Spatio-temporal variability of polychaete colonization at volcanic CO2 vents indicates high tolerance to ocean acidification. Mar. Biol. 161, 2909–2919. https://doi.org/10.1007/s00227-014-2555-y (2014).
CAS Article Google Scholar
5.
Ricevuto, E., Vizzini, S. & Gambi, M. C. Ocean acidification effects on stable isotope signatures and trophic interactions of polychaete consumers and organic matter sources at a CO2 shallow vent system. J. Exp. Mar. Biol. Ecol. 468, 105–117. https://doi.org/10.1016/j.jembe.2015.03.016 (2015).
CAS Article Google Scholar
6.
Foo, S.A., Byrne, M., Ricevuto, E., Gambi, M.C. The Carbon Dioxide Vents of Ischia, Italy, A Natural System to Assess Impacts of Ocean Acidification on Marine Ecosystems: An Overview of Research and Comparisons with Other Vent Systems. In Oceanography and Marine Biology An Annual Review. S. J. Hawkins, A. J. Evans, A.C. Dale, L. B. Firth, I. P. Smith eds. Taylor & Francis Group, 56 (2018).
7.
Mutalipassi, M. et al. Ocean acidification alters the responses of invertebrates to wound-activated infochemicals produced by epiphytes of the seagrassPosidonia oceanica. J. Exp. Mar. Biol. Ecol. 530–531, 151435 (2020).
Article Google Scholar
8.
Apostolaki, E. T., Vizzini, S., Hendriks, I. E. & Olsen, Y. S. Seagrass ecosystem response to long-term high CO2 in a Mediterranean volcanic vent. Mar. Environ. Res. 99, 9–15 (2014).
CAS Article Google Scholar
9.
Vizzini, S., Apostolaki, E. T., Ricevuto, E., Polymenakou, P. & Mazzola, A. Plant and sediment properties in seagrass meadows from two Mediterranean CO2 vents: Implications for carbon storage capacity of acidified oceans. Mar. Environ. Res. 146, 101–108 (2019).
CAS Article Google Scholar
10.
Beer, S., Björk, M., Beardall, J. Acquisition of carbon in marine plants. In: John Wiley & Sons eds. Photoshynthesis in the Marine Environment. Wiley Blackwell, Iowa, USA. pp: 95–124 (2014).
11.
Beer, S., Björk, M., Hellblom, F. & Axelsson, L. Inorganic carbon utilization in marine angiosperms (seagrasses). Funct. Plant Biol. 29, 349–354 (2002).
CAS Article Google Scholar
12.
Koch, M., Bowes, G., Ross, C. & Zhang, X. H. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Change Biol. 19, 103–132. https://doi.org/10.1111/j.1365-2486.2012.02791.x (2013).
ADS Article Google Scholar
13.
Zimmerman, R. C., Kohrs, D. G., Steller, D. L. & Alberte, R. S. Impacts of CO2 enrichment on productivity and light requirements of eelgrass. Plant Physiol. 115, 599–607. https://doi.org/10.1104/pp.115.2.599 (1997).
CAS Article PubMed PubMed Central Google Scholar
14.
Garrard, S. L. & Beaumont, N. J. The effect of ocean acidification on carbon storage and sequestration in seagrass beds; a global and UK context. Mar. Pollut. Bull. 86, 138–146 (2014).
CAS Article Google Scholar
15.
Hendriks, I. E., Duarte, C. M. & Alvarez, M. A. Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Estuar. Coast. Shelf Sci. 86, 157–164 (2010).
ADS CAS Article Google Scholar
16.
Zimmerman, R. C., Hill, V. J. & Gallegos, C. L. Predicting effects of ocean warming, acidification, and water quality on Chesapeake region eelgrass. Limnol. Oceanogr. 60(2015), 1781–1804 (2015).
ADS CAS Article Google Scholar
17.
Pacella, S. R., Cheryl, A. B., George, G. W., Rochelle, G. L. & Burke, H. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification. PNAS 115(15), 3870–3875 (2018).
ADS CAS Article Google Scholar
18.
Russell, B. D., Connell, S. D., Uthicke, S. & Hall-Spencer, J. M. Future seagrass beds: can increased productivity lead to increased carbon storage?. Mar. Pollut. Bull. 73, 463–469 (2013).
CAS Article Google Scholar
19.
de los Santos, C. B., Godbold, J. A. & Solan, M. Short-term growth and biomechanical responses of the temperate seagrassCymodocea nodosato CO2 enrichment. Mar. Ecol. Prog. Ser. 572, 91–102 (2017).
ADS CAS Article Google Scholar
20.
Schneider, G. et al. Structural and physiological responses of Halodule wrightii to ocean acidification. Protoplasma 255, 629–641 (2018).
CAS Article Google Scholar
21.
Radoglou, K. M. & Jarvis, P. G. The effects of CO2 enrichment and nutrient supply on growth morphology and anatomy of Phaseolus vulgaris L seedlings. Ann. Bot. 70, 245–256 (1992).
CAS Article Google Scholar
22.
Epron, D., Liozon, R. & Mousseau, M. Effects of elevated CO2 concentration on leaf characteristics and photosynthetic capacity of beech (Fagus sylvatica) during the growing season. Tree Physiol. 16, 425–432 (1995).
Article Google Scholar
23.
Lin, J., Jach, M. E. & Ceulemans, R. Stomatal density and needle anatomy of Scots pine (Pinus sylvestris) are affected by elevated CO2. New Phytol. 150, 665–674 (2001).
Article Google Scholar
24.
Ruocco, M. et al. Genome-wide transcriptional reprogramming in the seagrassCymodocea nodosa under experimental ocean acidification. MolEcol 26, 4241–4259. https://doi.org/10.1111/mec.14204 (2017).
CAS Article Google Scholar
25.
Olivé, I. et al. Linking gene expression to productivity to unravel long- and short-term responses of seagrasses exposed to CO2 in volcanic vents. Sci. Rep. 7, 42278 (2017).
ADS Article Google Scholar
26.
Procaccini, G. et al. Depth-specific fluctuations of gene expression and protein abundance modulate the photophysiology in the seagrassPosidonia oceanica. Sci. Rep. 7, 42890. https://doi.org/10.1038/srep42890 (2017).
ADS CAS Article PubMed PubMed Central Google Scholar
27.
Kumar, M. et al. Proteome analysis reveals extensive light stress response reprogramming in the seagrassZostera muelleri (Alismatales, Zosteraceae) metabolism. Frontiers Plant Sci. 7, 2023 (2017).
Article Google Scholar
28.
Piro, A. et al. The modulation of leaf metabolism plays a role in salt tolerance of Cymodocea nodosa exposed to hypersaline stress in mesocosms. Front Plant Sci. 6, 464 (2015).
Article Google Scholar
29.
Dattolo, E. et al. Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles. Front. Plant Sci. 4, 195. https://doi.org/10.3389/fpls.2013.00195 (2013).
Article PubMed PubMed Central Google Scholar
30.
Mazzuca, S. et al. Seagrass light acclimation: 2-DE protein analysis in Posidonia leaves grown inchronic low light conditions. J. Exp. Mar. Biol. Ecol. 374, 113–122 (2009).
CAS Article Google Scholar
31.
Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).
ADS Article Google Scholar
32.
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
CAS Article Google Scholar
33.
Watanabe, C. K. et al. Effects of elevated CO2 on levels of primary metabolites and transcripts of genes encoding respiratory enzymes and their diurnal patterns in Arabidopsis thaliana: possible relationships with respiratory rates. Plant Cell Physiol. 55(2), 341–357. https://doi.org/10.1093/pcp/pct185 (2014).
CAS Article PubMed PubMed Central Google Scholar
34.
Lauritano, C. et al. Response of key stress-related genes of the seagrassPosidonia oceanica in the vicinity of submarine volcanic vents. Biogeosciences 12, 4947–4971 (2015).
Article Google Scholar
35
Neha, S., Gokhale, S. P. & Kumar, B. A. Effect of elevated [CO2] on cell structure and function in seed plants. Clim. Change Environ. Sustain. 2, 69–104. https://doi.org/10.5958/2320-642X.2014.00001.5 (2014).
Article Google Scholar
36.
Iuchi, S. et al. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 27, 325–333. https://doi.org/10.1046/j.1365-313x.2001.01096.x (2001).
CAS Article PubMed Google Scholar
37.
Endo, A. et al. Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol. 147, 1984–1993 (2008).
CAS Article Google Scholar
38
Toh, S. et al. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellins action in Arabidopsis seeds. Plant Physiol. 146, 1368–1385 (2008).
CAS Article Google Scholar
39.
Dong, C. H. et al. ADF proteins are involved in the control of flowering and regulate F-actin organization, cell expansion, and organ growth in Arabidopsis. Plant Cell 13, 1333–1346 (2001).
CAS Article Google Scholar
40.
Vantard, M. & Blanchoin, L. Actin polymerization processes in plant cells. Curr. Opin. Plant Biol. 5(6), 502–506 (2002).
CAS Article Google Scholar
41.
Smertenko, A. P. et al. Ser6 in the maize actin-depolymerizing factor, ZmADF3, is phosphorylated by a calcium-stimulated protein kinase and is essential for the control of functional activity. Plant J. 14(2), 187–193 (1988).
Article Google Scholar
42.
Webster, J. & Stone, B. A. Isolation, structure and monosaccharide composition of the wall of vegetative parts of Heterozostera tasmanica (Martens ex Aschers) den Hartog. Aquat. Bot. 47, 39–52 (1994).
CAS Article Google Scholar
43.
Olsen J.L., Rouzé, P., Verhelst, B., Lin, Y.-C., Bayer, T., Collen, J., Dattolo, E., De Paoli, E., Dittami, S., Maumus, F., et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530, 331–335 (2016) https://doi.org/10.1038/nature16548.
ADS CAS Article PubMed Google Scholar
44.
Brummel, D. A. Cell wall acidification and its role in Auxin-stimulated growth. J. Exp. Bot. 37(2), 270–276 (1986).
Article Google Scholar
45.
Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).
ADS CAS Article Google Scholar
46.
Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2007).
Article Google Scholar
47.
Lucini, L. & Bernardo, L. Comparison of proteome response to saline and zinc stress in lettuce. Front. Plant Sci. https://doi.org/10.3389/fpls.2015.00240 (2015).
Article PubMed PubMed Central Google Scholar More