1.
Johnson, P. W. & Sieburth, J. M. Chroococcoid cyanobacteria in the sea: A ubiquitous and diverse phototrophic biomass1. Limnol. Oceanogr. 24, 928–935 (1979).
ADS Article Google Scholar
2.
Waterbury, J. B., Watson, S. W., Guillard, R. L. & Brand, L. E. Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium. Nature 277, 293–294 (1979).
ADS Article Google Scholar
3.
Stockner, J. G. & Antia, N. J. Algal picoplankton from marine and freshwater ecosystems: A multidisciplinary perspective. Can. J. Fish. Aquat. Sci. 43, 2472–2503 (1986).
Article Google Scholar
4.
Partensky, F., Blanchot, J. & Vaulot, D. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: A review. Bull. l’Institut Oceanogr. Monaco Spec. 19, 457–475 (1999).
Google Scholar
5.
Stal, L. J. & Staal, M. Nutrient control of cyanobacterial blooms in the Baltic Sea. Aquat. Microb. Ecol. 18, 165–173 (1999).
Article Google Scholar
6.
Paczkowska, J. et al. Allochthonous matter: An important factor shaping the phytoplankton community in the Baltic Sea. J. Plankton Res. 39, 23–34 (2017).
CAS PubMed Article PubMed Central Google Scholar
7.
Gaulke, A. K., Wetz, M. S. & Paerl, H. W. Picophytoplankton: A major contributor to planktonic biomass and primary production in a eutrophic, river-dominated estuary. Estuar. Coast. Shelf Sci. 90, 45–54 (2010).
ADS CAS Article Google Scholar
8.
Wang, K., Wommack, K. E. & Chen, F. Abundance and distribution of Synechococcus spp. and cyanophages in the Chesapeake Bay. Appl. Environ. Microbiol. 77, 7459–7468 (2011).
CAS PubMed PubMed Central Article Google Scholar
9.
Olson, R. J., Zettler, E. R. & DuRand, M. D. Phytoplankton analysis using flow cytometry. In Handbook of Methods in Aquatic Microbial Ecology 175–186 (Lewis Publishers, Boca Raton, 1993).
10.
Li, W. K. W. Cytometric diversity in marine ultraphytoplankton. Limnol. Oceanogr. 42, 874–880 (1997).
ADS CAS Article Google Scholar
11.
Collier, J. L. Flow cytometry and the single cell in phycology. J. Phycol. 36, 628–644 (2000).
PubMed Article PubMed Central Google Scholar
12.
Liu, H., Jing, H., Wong, T. H. C. & Chen, B. Co-occurrence of phycocyanin- and phycoerythrin-rich Synechococcus in subtropical estuarine and coastal waters of Hong Kong. Environ. Microbiol. Rep. 6, 90–99 (2013).
PubMed Article CAS PubMed Central Google Scholar
13.
Rajaneesh, K. M. & Mitbavkar, S. Factors controlling the temporal and spatial variations in Synechococcus abundance in a monsoonal estuary. Mar. Environ. Res. 92, 133–143 (2013).
Article CAS Google Scholar
14.
Albrecht, M., Pröschold, T. & Schumann, R. Identification of cyanobacteria in a eutrophic coastal lagoon on the southern Baltic coast. Front. Microbiol. 8, 923 (2017).
PubMed PubMed Central Article Google Scholar
15.
Caroppo, C. Ecology and biodiversity of picoplanktonic cyanobacteria in coastal and brackish environments. Biodivers. Conserv. 24, 949–971 (2015).
Article Google Scholar
16.
Murrell, M. C. & Lores, E. M. Phytoplankton and zooplankton seasonal dynamics in a subtropical estuary: Importance of cyanobacteria. J. Plankton Res. 26, 371–382 (2004).
Article Google Scholar
17.
Xia, X., Guo, W., Tan, S. & Liu, H. Synechococcus assemblages across the salinity gradient in a salt wedge estuary. Front. Microbiol. 8, 1254 (2017).
PubMed PubMed Central Article Google Scholar
18.
Phlips, E. J., Badylak, S. & Lynch, T. C. Blooms of the picoplanktonic cyanobacterium Synechococcus in Florida Bay, a subtropical inner-shelf lagoon. Limnol. Ocean. 44, 1166–1175 (1999).
Article Google Scholar
19.
Weisse, T. Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. In Advances in Microbial Ecology, vol 13 (ed. Jones, J. G.) 327–370 (Springer US, New York, 1993).
20.
Tomas, C. R. Identifying marine phytoplankton (Academic Press, New York, 1997).
Google Scholar
21.
Gobler, C. J., Renaghan, M. J. & Buck, N. J. Impacts of nutrients and grazing mortality on the abundance of Aureococcus anophagefferens during a New York brown tide bloom. Limnol. Oceanogr. 47, 129–141 (2002).
ADS Article Google Scholar
22.
Vaquer, A., Troussellier, M., Courties, C. & Bibent, B. Standing stock and dynamics of picophytoplankton in the Thau Lagoon (northwest Mediterranean coast). Limnol. Oceanogr. 41, 1821–1828 (1996).
ADS Article Google Scholar
23.
Calvo-Diaz, A. & Moran, X. A. G. Seasonal dynamics of picoplankton in shelf waters of the southern Bay of Biscay. Aquat. Microb. Ecol. 42, 159–174 (2006).
Article Google Scholar
24.
Worden, A. Z., Nolan, J. K. & Palenik, B. Assessing the dynamics and ecology of marine picophytoplankton: The importance of the eukaryotic component. Limnol. Ocean. 49, 168–179 (2004).
CAS Article Google Scholar
25.
O’Kelly, C. J., Sieracki, M. E., Thier, E. C. & Hobson, I. C. A transient bloom of Ostreococcus (Chlorophyta, Prasinophyceae) in West Neck Bay, Long Island, New York. J. Phycol. 39, 850–854 (2003).
Article Google Scholar
26.
Péquin, B., Mohit, V., Poisot, T., Tremblay, R. & Lovejoy, C. Wind drives microbial eukaryote communities in a temperate closed lagoon. Aquat. Microb. Ecol. 78, 187–200 (2017).
Article Google Scholar
27.
Bec, B. et al. Distribution of picophytoplankton and nanophytoplankton along an anthropogenic eutrophication gradient in French Mediterranean coastal lagoons. Aquat. Microb. Ecol. 63, 29–45 (2011).
Article Google Scholar
28.
Stal, L. J. et al. BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea–-responses to a changing environment. Cont. Shelf Res. 23, 1695–1714 (2003).
ADS Article Google Scholar
29.
Chen, F., Wang, K., Kan, J., Suzuki, M. T. & Wommack, K. E. Diverse and unique picocyanobacteria in Chesapeake Bay, revealed by 16S–23S rRNA internal transcribed spacer sequences. Appl. Environ. Microbiol. 72, 2239–2243 (2006).
CAS PubMed PubMed Central Article Google Scholar
30.
Paerl, H. W., Pinckney, J. L., Fear, J. M. & Peierls, B. L. Ecosystem responses to internal and watershed organic matter loading: Consequences for hypoxia in the eutrophying Neuse River Estuary, North Carolina, USA. Mar. Ecol. Prog. Ser. 166, 17–25 (1998).
ADS CAS Article Google Scholar
31.
Peierls, B. L., Hall, N. S. & Paerl, H. W. Non-monotonic responses of phytoplankton biomass accumulation to hydrologic variability: A comparison of two coastal plain north carolina estuaries. Estuar. Coasts 35, 1376–1392 (2012).
Article Google Scholar
32.
Paerl, H. W. et al. Two decades of tropical cyclone impacts on North Carolina’s estuarine carbon, nutrient and phytoplankton dynamics: Implications for biogeochemical cycling and water quality in a stormier world. Biogeochemistry 141, 307–332 (2018).
ADS CAS Article Google Scholar
33.
Wetz, M. S., Paerl, H. W., Taylor, J. C. & Leonard, J. A. Environmental controls upon picophytoplankton growth and biomass in a eutrophic estuary. Aquat. Microb. Ecol. 63, 133–143 (2011).
Article Google Scholar
34.
Apple, J. K., Strom, S. L., Palenik, B. & Brahamsha, B. Variability in protist grazing and growth on different marine Synechococcus isolates. Appl. Environ. Microbiol. 77, 3074–3084 (2011).
CAS PubMed PubMed Central Article Google Scholar
35.
Zwirglmaier, K., Spence, E. D., Zubkov, M. V., Scanlan, D. J. & Mann, N. H. Differential grazing of two heterotrophic nanoflagellates on marine Synechococcus strains. Environ. Microbiol. 11, 1767–1776 (2009).
CAS PubMed Article PubMed Central Google Scholar
36.
Paz-Yepes, J., Brahamsha, B. & Palenik, B. Role of a microcin-C-like biosynthetic gene cluster in allelopathic interactions in marine Synechococcus. Proc. Natl. Acad. Sci. 110, 12030–12035 (2013).
ADS CAS PubMed Article PubMed Central Google Scholar
37.
Wall, C., Rodgers, B., Gobler, C. & Peterson, B. Responses of loggerhead sponges Spechiospongia vesparium during harmful cyanobacterial blooms in a sub-tropical lagoon. Mar. Ecol. Prog. Ser. 451, 31–43 (2012).
ADS Article Google Scholar
38.
Hamilton, T. J., Paz-Yepes, J., Morrison, R. A., Palenik, B. & Tresguerres, M. Exposure to bloom-like concentrations of two marine Synechococcus cyanobacteria (strains CC9311 and CC9902) differentially alters fish behaviour. Conserv. Physiol. 2, cuo020 (2014).
Article Google Scholar
39.
Bales, J. D. Effects of Hurricane Floyd inland flooding, September–October 1999, on tributaries to Pamlico Sound, North Carolina. Estuaries 26, 1319–1328 (2003).
Article Google Scholar
40.
Paerl, H. W. et al. Recent increase in catastrophic tropical cyclone flooding in coastal North Carolina, USA: Long-term observations suggest a regime shift. Sci. Rep. 9, 10620 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
41.
Osburn, C. L., Rudolph, J. C., Paerl, H. W., Hounshell, A. G. & Van Dam, B. R. Lingering carbon cycle effects of Hurricane Matthew in North Carolina’s coastal waters. Geophys. Res. Lett. 46, 2654–2661 (2019).
ADS CAS Article Google Scholar
42.
Paerl, H. W., Rossignol, K. L., Hall, S. N., Peierls, B. L. & Wetz, M. S. Phytoplankton community indicators of short- and long-term ecological change in the anthropogenically and climatically impacted neuse river estuary, North Carolina, USA. Estuar. Coasts 33, 485–497 (2010).
CAS Article Google Scholar
43.
Six, C., Sherrard, R., Lionard, M., Roy, S. & Campbell, D. A. Photosystem II and pigment dynamics among ecotypes of the green alga Ostreococcus. Plant Physiol. 151, 379–390 (2009).
CAS PubMed PubMed Central Article Google Scholar
44.
Bec, B., Husseini-Ratrema, J., Collos, Y., Souchu, P. & Vaquer, A. Phytoplankton seasonal dynamics in a Mediterranean coastal lagoon: Emphasis on the picoeukaryote community. J. Plankton Res. 27, 881–894 (2005).
CAS Article Google Scholar
45.
Mohan, A. P., Jyothibabu, R., Jagadeesan, L., Lallu, K. R. & Karnan, C. Summer monsoon onset-induced changes of autotrophic pico-and nanoplankton in the largest monsoonal estuary along the west coast of India. Environ. Monit. Assess. 188, 93 (2016).
PubMed Article CAS PubMed Central Google Scholar
46.
Paerl, H. W. et al. Microbial indicators of aquatic ecosystem change: Current applications to eutrophication studies. In FEMS Microbiology Ecology 46, 233–246 (Elsevier, Amsterdam, 2003).
47.
NC Weather Forecast Office Newport/Morehead City. Post Tropical Cyclone Report—Hurricane Florence. National Weather Service (2018).
48.
Welschmeyer, N. A. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 39, 1985–1992 (1994).
ADS CAS Article Google Scholar
49.
Schlitzer, R. Ocean Data View. (2020).
50.
Mangiafico, S. S. Summary and analysis of extension program evaluation in R, version 1.15. 0. Rutgers Coop. Extension, New Brunswick, NJ https//rcompanion. org/handbook/.[Google Sch. (2016).
51.
Siegel, A. F. Robust regression using repeated medians. Biometrika 69, 242–244 (1982).
MATH Article Google Scholar
52.
R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. http://www.R-project.org/. R Foundation for Statistical Computing (2014).
53.
Oksanen, J. et al. Package vegan. R Packag ver 254, (2013).
54.
Dray, S. et al. Community ecology in the age of multivariate multiscale spatial analysis. Ecol. Monogr. 82, 257–275 (2012).
Article Google Scholar
55.
Simpson, G. L. ggvegan: ‘ggplot2’ Plots for the ‘vegan’ Package. (2015).
56.
Rudolph, J. C., Arendt, C. A., Hounshell, A. G., Paerl, H. W. & Osburn, C. L. Use of geospatial, hydrologic, and geochemical modeling to determine the influence of wetland-derived organic matter in coastal waters in response to extreme weather events. Front. Mar. Sci. 7, (2020). https://doi.org/10.3389/fmars.2020.00018
57.
Ray, R. T., Haas, L. W. & Sieracki, M. E. Autotrophic picoplankton dynamics in a Chesapeake Bay sub-estuary. Mar. Ecol. Prog. Ser. 52, 273–285 (1989).
ADS Article Google Scholar
58.
Marshall, H. G. & Nesius, K. K. Seasonal relationships between phytoplankton composition, abundance, and primary productivity in three tidal rivers of the lower Chesapeake Bay. J. Elisha Mitchell Sci. Soc. 109, 141–151 (1993).
Google Scholar
59.
Larsson, J. et al. Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea. ISME J. 8, 1892–1903 (2014).
CAS PubMed PubMed Central Article Google Scholar
60.
Berry, D. L. et al. Shifts in Cyanobacterial strain dominance during the onset of harmful algal blooms in Florida Bay, USA. Microb. Ecol. 70, 361–371 (2015).
PubMed Article PubMed Central Google Scholar
61.
DeLong, J. P., Okie, J. G., Moses, M. E., Sibly, R. M. & Brown, J. H. Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. Proc. Natl. Acad. Sci. U. S. A. 107, 12941–12945 (2010).
ADS CAS PubMed PubMed Central Article Google Scholar
62.
Cabello-Yeves, P. J. et al. Novel Synechococcus genomes reconstructed from freshwater reservoirs. Front. Microbiol. 8, 1151 (2017).
PubMed PubMed Central Article Google Scholar
63.
Grébert, T. et al. Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. Proc. Natl. Acad. Sci. U. S. A. 115, E2010–E2019 (2018).
PubMed PubMed Central Article CAS Google Scholar
64.
Stomp, M. et al. Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol. Lett. 10, 290–298 (2007).
PubMed Article PubMed Central Google Scholar
65.
Marsan, D., Place, A., Fucich, D. & Chen, F. Toxin-antitoxin systems in estuarine Synechococcus strain CB0101 and their transcriptomic responses to environmental stressors. Front. Microbiol. 8, 1213 (2017).
PubMed PubMed Central Article Google Scholar
66.
Zborowsky, S. & Lindell, D. Resistance in marine cyanobacteria differs against specialist and generalist cyanophages. Proc. Natl. Acad. Sci. U. S. A. 116, 16899–16908 (2019).
CAS PubMed PubMed Central Article Google Scholar
67.
Paerl, H. W., Hall, N. S., Peierls, B. L., Rossignol, K. L. & Joyner, A. R. Hydrologic variability and its control of phytoplankton community structure and function in two shallow, coastal, lagoonal ecosystems: The Neuse and New River estuaries, North Carolina, USA. Estuar. Coasts 37, 31–45 (2014).
Article Google Scholar
68.
Rae, B. D., Förster, B., Badger, M. R. & Price, G. D. The CO2-concentrating mechanism of Synechococcus WH5701 is composed of native and horizontally-acquired components. Photosynth. Res. 109, 59–72 (2011).
CAS PubMed Article PubMed Central Google Scholar
69.
Cabello-Yeves, P. J. et al. Ecological and genomic features of two widespread freshwater picocyanobacteria. Environ. Microbiol. 20, 3757–3771 (2018).
CAS PubMed Article PubMed Central Google Scholar
70.
Vörös, L., Callieri, C., V-Balogh, K. & Bertoni, R. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia 369–370, 117–125 (1998).
Article Google Scholar
71.
Osburn, C. L. et al. Optical proxies for terrestrial dissolved organic matter in estuaries and coastal waters. Front. Mar. Sci. 2, 127 (2016).
MathSciNet Article Google Scholar
72.
Kirk, J. T. O. Light and Photosynthesis in Aquatic Ecosystems (Cambridge University Press, Cambridge, 2010).
Google Scholar
73.
Anderson, S. R., Diou-Cass, Q. P. & Harvey, E. L. Short-term estimates of phytoplankton growth and mortality in a tidal estuary. Limnol. Oceanogr. 63, 2411–2422 (2018).
ADS Article Google Scholar
74.
Brand, L. E., Sunda, W. G. & Guillard, R. R. L. Reduction of marine phytoplankton reproduction rates by copper and cadmium. J. Exp. Mar. Biol. Ecol. 96, 225–250 (1986).
CAS Article Google Scholar
75.
Bianchi, T. S. Biogeochemistry of Estuaries (Oxford University Press, Oxford, 2007).
Google Scholar
76.
Coclet, C. et al. Trace metal contamination as a toxic and structuring factor impacting ultraphytoplankton communities in a multicontaminated Mediterranean coastal area. Prog. Oceanogr. 163, 196–213 (2018).
Article Google Scholar
77.
Delpy, F. et al. Pico- and nanophytoplankton dynamics in two coupled but contrasting coastal bays in the NW Mediterranean Sea (France). Estuar. Coasts 41, 2039–2055 (2018).
CAS Article Google Scholar
78.
CDM Smith. City of Raleigh—Neuse River Water Quality Sampling Report. (2014).
79.
Fuller, N. J. et al. Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the red sea. Appl. Environ. Microbiol. 69, 2430–2443 (2003).
CAS PubMed PubMed Central Article Google Scholar
80.
Mackey, K. R. M. et al. Seasonal succession and spatial patterns of Synechococcus microdiversity in a salt marsh estuary revealed through 16S rRNA gene oligotyping. Front. Microbiol. 8, 1496 (2017).
PubMed PubMed Central Article Google Scholar
81.
Gong, W. et al. Molecular insights into a dinoflagellate bloom. ISME J. 11, 439–452 (2017).
CAS PubMed Article PubMed Central Google Scholar
82.
Ning, X., Cloern, J. E. & Cole, B. E. Spatial and temporal variability of picocyanobacteria Synechococcus sp. San Francisco Bay. Limnol. Oceanogr. 45, 695–702 (2000).
ADS CAS Article Google Scholar
83.
Li, W. K. W. Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnol. Ocean. 39, 169–175 (1994).
CAS Article Google Scholar
84.
Jardillier, L., Zubkov, M. V., Pearman, J. & Scanlan, D. J. Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic Ocean. ISME J. 4, 1180–1192 (2010).
CAS PubMed Article PubMed Central Google Scholar
85.
Morán, X. A. G. Annual cycle of picophytoplankton photosynthesis and growth rates in a temperate coastal ecosystem: A major contribution to carbon fluxes. Aquat. Microb. Ecol. 49, 267–279 (2007).
Article Google Scholar
86.
Christaki, U., Vázquez-Domínguez, E., Courties, C. & Lebaron, P. Grazing impact of different heterotrophic nanoflagellates on eukaryotic (Ostreococcus tauri) and prokaryotic picoautotrophs (Prochlorococcus and Synechococcus). Environ. Microbiol. 7, 1200–1210 (2005).
PubMed Article PubMed Central Google Scholar
87.
Gobler, C. J., Lonsdale, D. J. & Boyer, G. L. A Review of the causes, effects, and potential management of harmful brown tide blooms caused by Aureococcus anophagefferens (Hargraves et Sieburth). Estuaries 28, 726–749 (2005).
Article Google Scholar
88.
Schoemann, V., Becquevort, S., Stefels, J., Rousseau, V. & Lancelot, C. Phaeocystis blooms in the global ocean and their controlling mechanisms: A review. J. Sea Res. 53, 43–66 (2005).
ADS CAS Article Google Scholar
89.
Vaulot, D., Eikrem, W., Viprey, M. & Moreau, H. The diversity of small eukaryotic phytoplankton (≤ 3 μm) in marine ecosystems. FEMS Microbiol. Rev. 32, 795–820 (2008).
CAS PubMed Article PubMed Central Google Scholar
90.
Worden, A. Z. & Not, F. Ecology and diversity of picoeukaryotes. Microb. Ecol. Ocean. 2, 159–205 (2008).
Article Google Scholar
91.
Paerl, R. W., Bertrand, E. M., Allen, A. E., Palenik, B. & Azam, F. Vitamin B1 ecophysiology of marine picoeukaryotic algae: Strain-specific differences and a new role for bacteria in vitamin cycling. Limnol. Oceanogr. 60, 215–228 (2015).
ADS CAS Article Google Scholar
92.
Lovejoy, C. et al. Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in Arctic seas. J. Phycol. 43, 78–89 (2007).
CAS Article Google Scholar
93.
McKie-Krisberg, Z. M. & Sanders, R. W. Phagotrophy by the picoeukaryotic green alga Micromonas: Implications for Arctic Oceans. ISME J. 8, 1953–1961 (2014).
CAS PubMed PubMed Central Article Google Scholar
94.
Botebol, H. et al. Acclimation of a low iron adapted Ostreococcus strain to iron limitation through cell biomass lowering. Sci. Rep. 7, 327 (2017).
ADS PubMed PubMed Central Article CAS Google Scholar
95.
Rodríguez, F. et al. Ecotype diversity in the marine picoeukaryote Ostreococcus (Chlorophyta, Prasinophyceae). Environ. Microbiol. 7, 853–859 (2005).
PubMed Article CAS PubMed Central Google Scholar
96.
Valdes-Weaver, L. M. et al. Long-term temporal and spatial trends in phytoplankton biomass and class-level taxonomic composition in the hydrologically variable Neuse-Pamlico estuarine continuum, North Carolina, USA. Limnol. Oceanogr. 51, 1410–1420 (2006).
ADS Article Google Scholar
97.
Wetz, M. S. & Paerl, H. W. Estuarine phytoplankton responses to hurricanes and tropical storms with different characteristics (trajectory, rainfall, winds). Estuar. Coasts 31, 419–429 (2008).
CAS Article Google Scholar
98.
Mojica, K. D. A., Huisman, J., Wilhelm, S. W. & Brussaard, C. P. D. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean. ISME J. 10, 500–513 (2016).
CAS PubMed Article PubMed Central Google Scholar
99.
Wang, K. & Chen, F. Prevalence of highly host-specific cyanophages in the estuarine environment. Environ. Microbiol. 10, 300–312 (2008).
CAS PubMed Article PubMed Central Google Scholar
100.
Waterbury, J. B. & Valois, F. W. Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater. Appl. Environ. Microbiol. 59, 3393–3399 (1993).
CAS PubMed PubMed Central Article Google Scholar
101.
Brussaard, C. P. D. Viral control of phytoplankton Ppopulations—a review. J. Eukaryot. Microbiol. 51, 125–138 (2004).
PubMed Article PubMed Central Google Scholar
102.
Moore, L. R., Post, A. F., Rocap, G. & Chisholm, S. W. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol. Oceanogr. 47, 989–996 (2002).
ADS CAS Article Google Scholar
103.
Moore, L. R., Ostrowski, M., Scanlan, D. J., Feren, K. & Sweetsir, T. Ecotypic variation in phosphorus-acquisition mechanisms within marine picocyanobacteria. Aquat. Microb. Ecol. 39, 257–269 (2005).
Article Google Scholar
104.
Scanlan, D. J. et al. Ecological genomics of marine picocyanobacteria. Microbiol. Mol. Biol. Rev. 73, 249–299 (2009).
CAS PubMed PubMed Central Article Google Scholar
105.
Berg, G. M. B. M., Repeta, D. J. & LaRoche, J. The role of the picoeukaryote Aureococcus anophagefferens in cycling of marine high—molecular weight dissolved organic nitrogen. Limnol. Oceanogr. 48, 1825–1830 (2003).
ADS CAS Article Google Scholar
106.
Martins, R., Fernandez, N., Beiras, R. & Vasconcelos, V. Toxicity assessment of crude and partially purified extracts of marine Synechocystis and Synechococcus cyanobacterial strains in marine invertebrates. Toxicon 50, 791–799 (2007).
CAS PubMed Article PubMed Central Google Scholar
107.
Gobler, C. J. et al. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc. Natl. Acad. Sci. U. S. A. 108, 4352–4357 (2011).
ADS CAS PubMed PubMed Central Article Google Scholar
108.
Waterbury, J. B. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Photosynth. Picoplankt. 71–120 (1986).
109.
Easterling, D. R. et al. Precipitation change in the United States. (2017).
110.
Kossin, J. P. et al. Extreme storms. In Climate Science Special Report: Fourth National Climate Assessment, Volume I (eds. Wuebbles, D. J. et al.) 257–276 (U.S. Global Change Research Program, Washington, DC, 2017).
111.
Wuebbles, D. et al. CMIP5 climate model analyses: Climate extremes in the United States. Bull. Am. Meteorol. Soc. 95, 571–583 (2014).
ADS Article Google Scholar
112.
Kunkel, K. E. et al. North Carolina Climate Science Report. (2020).
113.
Yeo, S. K., Huggett, M. J., Eiler, A. & Rappé, M. S. Coastal bacterioplankton community dynamics in response to a natural disturbance. PLoS ONE 8, e56207 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
114.
Montagna, P. A., Hu, X., Palmer, T. A. & Wetz, M. Effect of hydrological variability on the biogeochemistry of estuaries across a regional climatic gradient. Limnol. Oceanogr. 63, 2465–2478 (2018).
ADS CAS Article Google Scholar
115.
Ares, Á. et al. Extreme storms cause rapid but short-lived shifts in nearshore subtropical bacterial communities. Environ. Microbiol. 22, 4571–4588 (2020).
CAS Article Google Scholar
116.
Marshall, H. G. Autotrophic picoplankton: their presence and significance in marine and freshwater ecosystems. Va. J. Sci. 53, (2002).
117.
Buitenhuis, E. T. et al. Picophytoplankton biomass distribution in the global ocean. Earth Syst. Sci. Data 4, 37–46 (2012).
ADS Article Google Scholar
118.
Stockner, J. G. Phototrophic picoplankton: An overview from marine and freshwater ecosystems. Limnol. Oceanogr. 33, 765–775 (1988).
ADS CAS Google Scholar
119.
Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).
ADS Article Google Scholar
120.
Flombaum, P. et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl. Acad. Sci. 110, 9824–9829 (2013).
ADS CAS PubMed Article PubMed Central Google Scholar
121.
Hunter-Cevera, K. R. et al. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science 354, 326–329 (2016).
ADS CAS PubMed Article PubMed Central Google Scholar
122.
Agusti, S., Lubián, L. M., Moreno-Ostos, E., Estrada, M. & Duarte, C. M. Projected changes in photosynthetic picoplankton in a warmer subtropical ocean. Front. Mar. Sci. 5, 506 (2019).
Article Google Scholar
123.
Cloern, J. E. et al. Human activities and climate variability drive fast-paced change across the world’s estuarine-coastal ecosystems. Glob. Change Biol. 22, 513–529 (2016).
ADS Article Google Scholar More