More stories

  • in

    Publisher Correction: Social value shift in favour of biodiversity conservation in the United States

    Affiliations

    Human Dimensions of Natural Resources Department, Colorado State University, Fort Collins, CO, USA
    Michael J. Manfredo, Tara L. Teel & Richard E. W. Berl

    School of Environment and Natural Resources, The Ohio State University, Columbus, OH, USA
    Jeremy T. Bruskotter

    Department of Psychology, University of Michigan, Ann Arbor, MI, USA
    Shinobu Kitayama

    Authors
    Michael J. Manfredo

    Tara L. Teel

    Richard E. W. Berl

    Jeremy T. Bruskotter

    Shinobu Kitayama

    Corresponding author
    Correspondence to Michael J. Manfredo. More

  • in

    Soil fungal and bacterial communities in southern boreal forests of the Greater Khingan Mountains and their relationship with soil properties

    1.
    Gattinger, A., Palojärvi, A. & Schloter, M. Soil microbial communities and related Functions. in Perspectives for agroecosystem management (eds. Schröder P., Pfadenhauer J. & Munch J. C.) 279–292 (Elsevier, 2008).
    2.
    Renella, G. et al. Hydrolase activity, microbial biomass and community structure in long-term Cd-contaminated soils. Soil Biol. Biochem. 36, 443–451 (2004).
    CAS  Article  Google Scholar 

    3.
    Ros, M., Pascual, J. A., Garcia, C., Hernandez, M. T. & Insam, H. Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts. Soil Biol. Biochem. 38, 3443–3452 (2006).
    CAS  Article  Google Scholar 

    4.
    Krishnan, A., Alias, S. A., Wong, C. M. V. L., Pang, K. & Convey, P. Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica. Polar Biol. 34, 1535–1542 (2011).
    Article  Google Scholar 

    5.
    Bronson, K. F. et al. Carbon and nitrogen pools of southern high plains cropland and grassland soils. Soil Sci. Soc. Am. J. 68, 1695 (2004).
    ADS  CAS  Article  Google Scholar 

    6.
    Liu, S. et al. Estimation of plot-level soil carbon stocks in China’s forests using intensive soil sampling. Geoderma 348, 107–114 (2019).
    ADS  CAS  Article  Google Scholar 

    7.
    Kapusta, P., Sobczyk, A., Rożen, A. & Weiner, J. Species diversity and spatial distribution of enchytraeid communities in forest soils: effects of habitat characteristics and heavy metal contamination. Appl. Soil Ecol. 23, 187–198 (2003).
    Article  Google Scholar 

    8.
    Romanowicz, K. J. et al. Active microorganisms in forest soils differ from the total community yet are shaped by the same environmental factors: the influence of pH and soil moisture. FEMS Microbiol. Ecol. 92, w149 (2016).
    Article  CAS  Google Scholar 

    9.
    Ilstedt, U. & Singh, S. Nitrogen and phosphorus limitations of microbial respiration in a tropical phosphorus-fixing acrisol (ultisol) compared with organic compost. Soil Biol. Biochem. 37, 1407–1410 (2005).
    CAS  Article  Google Scholar 

    10.
    Liu, L., Gundersen, P., Zhang, T. & Mo, J. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biol. Biochem. 44, 31–38 (2012).
    Article  CAS  Google Scholar 

    11.
    Turner, B. L. & Wright, S. J. The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest. Biogeochemistry 117, 115–130 (2014).
    CAS  Article  Google Scholar 

    12.
    Allison, S. D., Hanson, C. A. & Treseder, K. K. Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biol. Biochem. 39, 1878–1887 (2007).
    CAS  Article  Google Scholar 

    13.
    Gadd, G. M. Microorganisms in soils: roles in genesis and functions. Soil Biology. 3, 325–356 (2005).
    CAS  Article  Google Scholar 

    14.
    Johnson, M. J., Lee, K. Y. & Scow, K. M. DNA fingerprinting reveals links among agricultural crops, soil properties, and the composition of soil microbial communities. Geoderma 114, 279–303 (2003).
    ADS  Article  Google Scholar 

    15.
    Pietri, J. A. & Brookes, P. C. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biol. Biochem. 40, 1856–1861 (2008).
    Article  CAS  Google Scholar 

    16.
    Anthony, M. A., Crowther, T. W., Maynard, D. S., van den Hoogen, J. & Averill, C. Distinct assembly processes and microbial communities constrain soil organic carbon formation. One Earth. 2, 349–360 (2020).
    Article  Google Scholar 

    17.
    Schulte-Uebbing, L. & de Vries, W. Global-scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate, and boreal forests: A meta-analysis. Global Change Biol. 24, e416–e431 (2018).
    Article  Google Scholar 

    18.
    Juday, G. P. Taiga. (2019) Available at: https://www.britannica.com/science/taiga (Accessed: October 15, 2020.

    19.
    Hu, L. et al. Spatiotemporal dynamics in vegetation GPP over the Great Khingan Mountains using GLASS products from 1982 to 2015. Remote Sens. Basel. 10, 488 (2018).
    ADS  Article  Google Scholar 

    20.
    Jiang, H., Apps, M. J., Peng, C., Zhang, Y. & Liu, J. Modelling the influence of harvesting on Chinese boreal forest carbon dynamics. Forest Ecol. Manag. 169, 65–82 (2002).
    Article  Google Scholar 

    21.
    Tang, H. et al. Variability and climate change trend in vegetation phenology of recent decades in the Greater Khingan Mountain area, Northeastern China. Remote Sens.-Basel. 7, 11914–11932 (2015).

    22.
    Greene, D. F. et al. A review of the regeneration dynamics of North American boreal forest tree species. Can. J. Forest Res. 29, 824–839 (1999).
    ADS  Article  Google Scholar 

    23.
    Yuan, Z. Y. & Chen, H. Y. Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. Crit. Rev. Plant Sci. 29, 204–221 (2010).
    CAS  Article  Google Scholar 

    24.
    Sanderson, L. A., McLaughlin, J. A. & Antunes, P. M. The last great forest: a review of the status of invasive species in the North American boreal forest. Forestry 85, 329–340 (2012).
    Article  Google Scholar 

    25.
    Kreutzweiser, D. P., Hazlett, P. W. & Gunn, J. M. Logging impacts on the biogeochemistry of boreal forest soils and nutrient export to aquatic systems: a review. Environ. Rev. 16, 157–179 (2008).
    CAS  Article  Google Scholar 

    26.
    Dhar, A. et al. Plant community development following reclamation of oil sands mine sites in the boreal forest: a review. Environ. Rev. 26, 286–298 (2018).
    Article  Google Scholar 

    27.
    Simard, D. G., Fyles, J. W., Paré, D. & Nguyen, T. Impacts of clearcut harvesting and wildfire on soil nutrient status in the Quebec boreal forest. Can. J. Soil Sci. 81, 229–237 (2001).
    CAS  Article  Google Scholar 

    28.
    Ohtonen, R. & Väre, H. Vegetation composition determines microbial activities in a boreal forest soil. Microb. Ecol. 36, 328–335 (1998).
    CAS  PubMed  Article  Google Scholar 

    29.
    Nilsson, M., Wardle, D. A. & Dahlberg, A. Effects of plant litter species composition and diversity on the boreal forest plant-soil system. Oikos 86, 16–26 (1999).
    Article  Google Scholar 

    30.
    Dimitriu, P. A. & Grayston, S. J. Relationship between soil properties and patterns of bacterial β-diversity across reclaimed and natural boreal forest soils. Microb. Ecol. 59, 563–573 (2010).
    PubMed  Article  Google Scholar 

    31.
    Buckley, D. H. & Schmidt, T. M. Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ. Microbiol. 5, 441–452 (2003).
    PubMed  Article  Google Scholar 

    32.
    Jangid, K. Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biol. Biochem. 43, 2184–2193 (2011).
    CAS  Article  Google Scholar 

    33.
    Wal, A. V. D. et al. Fungal biomass development in a chronosequence of land abandonment. Soil Biol. Biochem. 38, 51–60 (2006).
    Article  CAS  Google Scholar 

    34.
    Fu, X. et al. Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation. Sci. Total Environ. 502, 280–286 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    35.
    Kalinina, O. et al. Self-restoration of post-agrogenic chernozems of Russia: soil development, carbon stocks, and dynamics of carbon pools. Geoderma 162, 196–206 (2011).
    ADS  CAS  Article  Google Scholar 

    36.
    Gao, Y. et al. Influence of forest type on dark-spored myxomycete community in subtropical forest soil, China. Soil Biol. Biochem. 138, 107606 (2019).
    CAS  Article  Google Scholar 

    37.
    Sheng, Y. et al. Broad-leaved forest types affect soil fungal community structure and soil organic carbon contents. MicrobiologyOpen. 8, e874 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Vatani, L., Hosseini, S. M., Sarjaz, M. R. & Alavi, S. J. Tree species effects on albedo, soil carbon and nitrogen stocks in a temperate forest in Iran. Aus. J. For. Sci. 136, 283–310 (2019).
    Google Scholar 

    39.
    Bauhus, J., Paré, D. & Co Té, L. Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biol. Biochem. . 30, 1077–1089 (1998).

    40.
    Dukunde, A., Schneider, D., Schmidt, M., Veldkamp, E. & Daniel, R. Tree species shape soil bacterial community structure and function in temperate deciduous forests. Front. Microbiol. 10, 1–17 (2019).
    Article  Google Scholar 

    41.
    Tajik, S., Ayoubi, S., Khajehali, J. & Shataee, S. Effects of tree species composition on soil properties and invertebrates in a deciduous forest. Arab. J. Geosci. 12, 368 (2019).
    Article  CAS  Google Scholar 

    42.
    Stingl, U. & Giovannoni, S. J. Molecular diversity and ecology of microbial plankton. Nature 437, 343–348 (2005).
    ADS  PubMed  Article  CAS  Google Scholar 

    43.
    Danger, M., Daufresne, T., Lucas, F., Pissard, S. & Lacroix, G. Does Liebig’s law of the minimum scale up from species to communities?. Oikos 117, 1741–1751 (2008).
    Article  Google Scholar 

    44.
    Sakurai, M., Suzuki, K., Onodera, M., Shinano, T. & Osaki, M. Analysis of bacterial communities in soil by PCR–DGGE targeting protease genes. Soil Biol. Biochem. 39, 2777–2784 (2007).
    CAS  Article  Google Scholar 

    45.
    Wang, Y. et al. Carbon input manipulations affecting microbial carbon metabolism in temperate forest soils—a comparative study between broadleaf and coniferous plantations. Geoderma 355, 113914 (2019).
    ADS  CAS  Article  Google Scholar 

    46.
    Wan, X. et al. Soil C: N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant Soil. 387, 103–116 (2015).
    CAS  Article  Google Scholar 

    47.
    Amtmann, A., Troufflard, S. & Armengaud, P. The effect of potassium nutrition on pest and disease resistance in plants. Physiol. Plantarum. 133, 582–691 (2008).
    Article  CAS  Google Scholar 

    48.
    Pettigrew, W. T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plantarum. 133, 670–681 (2008).
    CAS  Article  Google Scholar 

    49.
    Markewitz, D. & Richter, D. D. Long-term soil potassium availability from a Kanhapludult to an aggrading loblolly pine ecosystem. Forest Ecol. Manag. 130, 109–129 (2000).
    Article  Google Scholar 

    50.
    Tripler, C. E., Kaushal, S. S. & Likens, G. E. Patterns in potassium dynamics in forest ecosystems. Ecol. Lett. 9, 451–466 (2006).
    PubMed  Article  Google Scholar 

    51.
    Mori, T. et al. Testing potassium limitation on soil microbial activity in a sub-tropical forest. J. For. Res. 30, 2341–2347 (2019).
    CAS  Article  Google Scholar 

    52.
    Vuong, T. M. D., Zeng, J. Y. & Man, X. L. Spatial distribution andmonthly dynamics of soil carbon/nitrogen and hydrolases in Pinus sylvestris var. mongolica Litv. natural forest. Scientia Silvae Sinicae. 56, 40–47 (2020).

    53.
    Zeng, J. et al. An investigation into whether effect of tree species on soil microbial community is related with deciduous property or leaf shape. CATENA 195, 104699 (2020).
    Article  Google Scholar 

    54.
    Wu, Y. et al. Changes in the soil microbial community structure with latitude in eastern China, based on phospholipid fatty acid analysis. Appl. Soil Ecol. 43, 234–240 (2009).
    Article  Google Scholar 

    55.
    Washburn, C. & Arthur, M. A. Spatial variability in soil nutrient availability in an oak-pine forest: Potential effects of tree species. Can. J. For. Res. 33, 2321–2330 (2003).
    Article  Google Scholar 

    56.
    Azeez, J. O. Recycling organic waste in managed tropical forest ecosystems: effects of arboreal litter types on soil chemical properties in Abeokuta, southwestern Nigeria. J. For. Res. 30, 1903–1911 (2019).
    CAS  Article  Google Scholar 

    57.
    Ha, T. Effectiveness of the Vietnamese Good Agricultural Practice (VietGAP) on Plant Growth and Quality of Choy Sum (Brassica rapa var. parachinensis) in Northern Vietnam. Aceh International Journal of Science and Technology. 3, 80–87 (2014).

    58.
    Jia, Z. et al. The placental microbiome varies in association with low birth weight in full-term neonates. Nutrients 7, 6924–6937 (2015).
    Article  CAS  Google Scholar 

    59.
    Zhang, Y., Sui, B., Shen, H. & Ouyang, L. Mapping stocks of soil total nitrogen using remote sensing data: a comparison of random forest models with different predictors. Comput. Electron. Agric. 160, 23–30 (2019).
    Article  Google Scholar 

    60.
    Sun, H. et al. Soil organic carbon stabilization mechanisms in a subtropical mangrove and salt marsh ecosystems. Sci. Total Environ. 673, 502–510 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    61.
    Ye, C. et al. Spatial and temporal dynamics of nutrients in riparian soils after nine years of operation of the Three Gorges Reservoir, China. Sci. Total Environ. 664, (2019).

    62.
    Li, J., Zhou, L. & Lin, W. Calla lily intercropping in rubber tree plantations changes the nutrient content, microbial abundance, and enzyme activity of both rhizosphere and non-rhizosphere soil and calla lily growth. Ind. Crop. Prod. (2019).

    63.
    Kandeler, E. & Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fert. Soils. 6, 68–72 (1988).
    CAS  Article  Google Scholar 

    64.
    Ladd, J. N. & Butler, J. H. A. Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol. Biochem. 4, 19–30 (1972).
    CAS  Article  Google Scholar 

    65.
    Ross, D. J. & Roberts, H. S. Enzyme activities and oxygen uptakes of soils under pasture in temperature and rainfall sequences. Eur. J. Soil Sci. 21, 368–381 (1970).
    CAS  Article  Google Scholar 

    66.
    Sharma, N., Bhalla, T. C. & Bhatt, A. K. Partial purification and characterization of extracellular cellulase from a strain of Trichoderma viride isolated from forest soil. Folia Microbiol. 36, 353–359 (1991).
    CAS  Article  Google Scholar 

    67.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microb. 73, 5261–5267 (2007).
    CAS  Article  Google Scholar 

    70.
    Schloss, P. D. et al. Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microb. 75, 7537–7541 (2009).
    CAS  Article  Google Scholar 

    71.
    Chen, H. & Boutros, P. C. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12, 1–7 (2011).
    CAS  Article  Google Scholar 

    72.
    Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, Berlin, 2016).
    Google Scholar 

    73.
    Oksanen, J. et al. Package “vegan”. Commun. Ecol. Package, Version 2, 1–295 (2013).
    Google Scholar 

    74.
    Box, J. F. Guinness, Gosset, Fisher, and small samples. Stat. Sci. 2, 45–52 (1987).
    MathSciNet  MATH  Article  Google Scholar 

    75.
    Holland, S. M. Principal Components Analysis (PCA) 30602–32501 (Department of Geology, University of Georgia, Athens, GA, 2008).
    Google Scholar 

    76.
    Vu, V. Q. ggbiplot: A ggplot2 based biplot. R package. 342, (2011).

    77.
    Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).
    Article  Google Scholar 

    78.
    Langille, M. G. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Morphological function of toe fringe in the sand lizard Phrynocephalus mystaceus

    1.
    Higham, T. E. The integration of locomotion and prey capture in vertebrates: morphology, behavior, and performance. Integr. Comp. Biol. 47, 82–95 (2007).
    PubMed  Article  Google Scholar 
    2.
    Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Adv. Stud. Behav. 16, 229–249 (1986).
    Article  Google Scholar 

    3.
    Cooper, W. E. Jr. & Frederick, W. G. Optimal flight initiation distance. J. Theor. Biol. 244, 59–67 (2007).
    MathSciNet  PubMed  MATH  Article  Google Scholar 

    4.
    Darwin, C. The Voyage of the Beagle (Doubleday and Co, New York, 1962).
    Google Scholar 

    5.
    Arnold, E. N. Identifying the effects of history on adaptation – origins of different sand-diving techniques in lizards. J. Zool. 235, 351–388 (1995).
    Article  Google Scholar 

    6.
    Attum, O., Eason, P. & Cobbs, G. Morphology, niche segregation, and escape tactics in a sand dune lizard community. J. Arid Environ. 68, 564–573 (2007).
    ADS  Article  Google Scholar 

    7.
    Kacoliris, F., Williams, J. & Molinari, A. Selection of key features of vegetation and escape behavior in the sand dune lizard (Liolaemus multimaculatus). Anim. Biol. 60, 157–167 (2010).
    Article  Google Scholar 

    8.
    Arnold, S. J. Morphology, performance and fitness. Am. Zool. 23, 347–361 (1983).
    Article  Google Scholar 

    9.
    Losos, J. B. & Sinervo, B. The effect of morphology and perch diameter on sprint performance of Anolis Lizards. J. Exp. Biol. 145, 23–30 (1989).
    Google Scholar 

    10.
    Losos, J. B. & Irschick, D. J. The effect of perch diameter on escape behavior of Anolis lizards: laboratory predictions and field tests. Anim. Behav. 51, 593–602 (1996).
    Article  Google Scholar 

    11.
    Luke, C. Convergent evolution of lizard toe fringes. Biol. J. Linn. Soc. 27, 1–16 (1986).
    ADS  Article  Google Scholar 

    12.
    Carothers, J. H. An experimental confirmation of morphological adaptation: toe fringes in the sand-dwelling lizard Uma scoparia. Evolution 40, 871–874 (1986).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Irschick, D. J. & Jayne, B. C. Effects of incline on speed, acceleration, body posture and hindlimb kinematics in two species of lizard Callisaurus draconoides and Uma scoparia. J. Exp. Biol. 21, 273–287 (1998).
    Google Scholar 

    14.
    Korff, W. L. & McHenry, M. J. Environmental differences in substrate mechanics do not affect sprinting performance in sand lizards (Uma scoparia and Callisaurus draconoides). J. Exp. Biol. 214, 122–130 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Bergmann, P. J. & Irschick, D. J. Alternate pathways of body shape evolution translate into common patterns of locomotor evolution in two clades of lizards. Evolution 64, 1569–1582 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Li, C., Hsieh, S. T. & Goldman, D. I. Multi-functional foot use during running in the zebra-tailed lizard (Callisaurus draconoides). J. Exp. Biol. 215, 3293–3308 (2012).
    PubMed  Article  Google Scholar 

    17.
    Zhao, E. M., Zhao, K. T. & Zhou, K. Y. Fauna Sinica, Reptilian Vol. 2, Squamata (Beijing Science Press, Beijing, Lacertilia, 1999).
    Google Scholar 

    18.
    Solovyeva, E. N. et al. Cenozoic aridization in Central Eurasia shaped diversification of toad-headed agamas (Phrynocephalus; Agamidae, Reptilia). Peer. J. 6, e4543 (2018).
    PubMed  Article  CAS  Google Scholar 

    19.
    Jiang, Z. G. et al. Red List of China’s Vertebrates. Biodivers. Sci. 24, 550–551 (2016).
    Google Scholar 

    20.
    Du, W. G., Lin, C. X., Shou, L. & Ji, X. Morphological correlates of locomotor performance in four species of lizards using different habitats. Zool. Res. 26, 41–46 (2005).
    CAS  Google Scholar 

    21.
    Pérez, A. & Fabré, N. N. Spatial population structure of the Neotropical tiger catfish Pseudoplatystoma metaense: skull and otolith shape variation. J. Fish Biol. 82, 1453–1468 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    22.
    Higham, T. E. & Russel, A. P. Divergence in locomotor performance, ecology, and morphology between two sympatric sister species of desert-dwelling gecko. Biol. J. Linn. Soc. 101, 860–869 (2010).
    Article  Google Scholar 

    23.
    King, R. B. Analyzing the relationship between clutch size and female body size in reptiles. J. Herpetol. 34, 148–150 (2000).
    Article  Google Scholar 

    24.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: apractical and powerful approach to multiple testing. J. R. Stat. Soc. B. 57, 289–300 (1995).
    MATH  Google Scholar 

    25.
    Imdadullah, M., Aslam, M. & Altaf, S. mctest: an R package for detection of collinearity among regressors. R. J. 8, 495–505 (2016).
    Article  Google Scholar 

    26.
    Carrascal, L. M., Galván, I. & Gordo, O. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118, 681–690 (2009).
    Article  Google Scholar 

    27.
    Garthwaite, P. H. An interpretation of partial least squares. J. Am. Stat. Ass. 89, 122–127 (1994).
    MathSciNet  MATH  Article  Google Scholar 

    28.
    Abdi, H. Partial least squares regression and projection on latent structure regression. Wiley Interdiscip. Rev. Comput. 2, 97–106 (2010).
    Article  Google Scholar 

    29.
    Lesku, J. A., Roth, T. C. II., Amlaner, C. J. & Lima, S. L. A phylogenetic analysis of sleep architecture in mammals: the integration of anatomy, physiology, and ecology. Am. Nat. 168, 441–453 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    30.
    Mitchell, R. J. Testing evolutionary and ecological hypotheses using path analysis and structural equation modeling. Funct. Ecol. 6, 123–129 (1992).
    Article  Google Scholar 

    31.
    Wootton, J. T. Predicting direct and indirect effects: an integrated approach using experiments and path analysis. Ecology 75, 151–165 (1994).
    Article  Google Scholar 

    32.
    Arnold, S. J. Species densities of predators and their prey. Am. Nat. 106, 220–236 (1972).
    Article  Google Scholar 

    33.
    Team, R. C. A Language and Environment for Statistical Computing. Vienna: the R Foundation for Statistical Computing. http://www.R-project.org/ (2020).

    34.
    Irschick, D. J. & Garland, T. Jr. Integrating function and ecology in studies of adaptation: investigations of locomotor capacity as a model system. Annu. Rev. Ecol. Syst. 32, 367–396 (2001).
    Article  Google Scholar 

    35.
    Damme, R. V. & Vanhooydonck, B. Origins of interspecific variation in lizard sprint capacity. Funct. Ecol. 15, 186–202 (2001).
    Article  Google Scholar 

    36.
    Ballinger, R. E., Nietfeldt, J. W. & Krupa, J. J. An experimental analysis of the role of the tail in a high running speed in Cnemidophorus sexlineatus (Reptilia; Squamata: Lacertilia). Herpetology 35, 114–116 (1979).
    Google Scholar 

    37.
    Downes, S. & Shine, R. Why does tail loss increase a lizard’s later vulnerability to snake predators?. Ecology 82, 1293–1303 (2001).
    Article  Google Scholar 

    38.
    Johnson, T. P., Swoap, S. J., Bennett, A. F. & Josephson, R. K. Body size, muscle power output and limitations on burst locomotor performance in the lizard Dipsosaurus dorsalis. J. Exp. Biol. 174, 185–197 (1993).
    Google Scholar 

    39.
    Punzo, F. Tail Autotomy and running speed in the lizards Cophosaurus texanus and Uma notata. J. Herpetol. 16, 329–331 (1982).
    Article  Google Scholar 

    40.
    Borges-Landáez, P. A. & Shine, R. Influence of toe-clipping on running speed in Eulamprus quoyii, an Australian scincid lizard. J. Herpetol. 37, 592–595 (2003).
    Article  Google Scholar 

    41.
    Vanhooydonck, B., Damme, R. V. & Aerts, P. Variation in speed, gait characteristics and microhabitat use in lacertid lizards. J. Exp. Biol. 205, 1037–1046 (2002).
    PubMed  Google Scholar 

    42.
    Darwin, C. R. On the Origin of Species by Means of Natural Selection (Harvard University Press, Cambridge, 1859).
    Google Scholar 

    43.
    Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism. Am. Nat. 175, 623–639 (2010).
    PubMed  Article  Google Scholar 

    44.
    Ricklefs, R. E. & Miles, D. B. Ecological and evolutionary inferences from morphology: an ecological perspective. In Ecological Morphology: Integrative and Organismal Biology (eds Wainwright, P. C. & Reilly, S. M.) 13–41 (University of Chicago Press, Chicago, 1994).
    Google Scholar 

    45.
    Dornburg, A., Sidlaukas, B., Santini, F. & Alfaro, N. M. E. The influence of an innovative locomotor strategy on the phenotypic diversifcation of triggerfsh (Family: Balistidae). Evolution 65, 1912–1926 (2011).
    PubMed  Article  Google Scholar 

    46.
    Vermeij, G. J. Historical contingency and the purported uniqueness of evolutionary innovations. Proc. Natl. Acad. Sci. USA 103, 1804–1809 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    47.
    Collins, C. E. & Higham, T. E. Individuals of the common Namib Day Gecko vary in how adaptive simplification alters sprint biomechanics. Sci. Rep. 7, 15595 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Cameron, S. F., Wynn, M. L. & Wilson, R. S. Sex-specific trade-offs and compensatory mechanisms: bite force and sprint speed pose conflicting demands on the design of geckos (Hemidactylus frenatus). J. Exp. Biol. 216, 3781–3789 (2013).
    CAS  PubMed  Article  Google Scholar 

    49.
    Stebbins, R. C. Some aspects of the ecology of the iguanid genus Uma. Ecol. Monogr. 14, 311–332 (1944).
    Article  Google Scholar 

    50.
    Evans, J. S., Eifler, D. A. & Eifler, M. A. Sand-diving as an escape tactic in the lizard Meroles anchietae. J. Arid Environ. 140, 1–5 (2017).
    ADS  Article  Google Scholar 

    51.
    Halloy, M., Etheridge, R. & Burghardt, G. M. To bury in sand: Phylogenetic relationships among lizard species of the boulengeri group, Liolaemus (Reptilia: Squamata: Tropiduridae), based on behavioral characters. Herpetol. Monogr. 12, 1–37 (1998).
    Article  Google Scholar 

    52.
    Bauwens, D., Garland, T., Castilla, A. M. & Van Damme, R. Evolution of sprint speed in lacertid lizards: morphological, physiological, and behavioral covariation. Evolution 49, 848–863 (1995).
    PubMed  PubMed Central  Google Scholar 

    53.
    Bonine, K. E. & Garland, T. J. Sprint performance of phrynosomatid lizards, measured on a high-speed treadmill, correlates with hindlimb length. J. Zool. 248, 255–265 (1999).
    Article  Google Scholar 

    54.
    Shimada, T., Kadau, D., Shinbrot, T. & Herrmann, H. J. Swimming in granular media. Phys. Rev. E. 80, 020301 (2009).
    ADS  Article  CAS  Google Scholar 

    55.
    Maladen, R. D., Ding, Y., Li, C. & Goldman, D. I. Undulatory swimming in sand: subsurface locomotion of the sandfish lizard. Sci. 325, 314–318 (2009).
    ADS  CAS  Article  Google Scholar 

    56.
    Sharpe, S. S., Ding, Y. & Goldman, D. I. Environmental interaction influences muscle activation strategy during sand-swimming in the sandfish lizard Scincus scincus. J. Exp. Biol. 216, 260–274 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    57.
    Edwards, S., Herrel, A., Vanhooydonck, B., Measey, G. J. & Tolley, K. A. Diving in head first: morphology and performance is linked to predator escape strategy in desert lizards (Meroles, Lacertidae, Squamata). Biol. J. Linn. Soc. 119, 919–931 (2016).
    Article  Google Scholar 

    58.
    Bergmann, P. J., Pettinelli, K. J., Crockett, M. E. & Schaper, E. G. It’s just sand between the toes: how particle size and shape variation affect running performance and kinematics in a generalist lizard. J. Exp. Biol. 220, 3706–3716 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    59.
    Arnold, E. N. Why do morphological phylogenies vary in quality—an investigation based on the comparative history of lizard clades. Proc. R. Soc. B. 240, 135–172 (1990).
    ADS  CAS  Google Scholar 

    60.
    Stellatelli, O. A., Block, C., Vega, L. E. & Cruz, F. B. Nonnative vegetation induces changes in predation pressure and escape behavior of two sand lizards (Liolaemidae: Liolaemus). Herpetology 71, 136–142 (2015).
    Article  Google Scholar 

    61.
    Etheridge, R. & de Queiroz, K. A phylogeny of Iguanidae. In Phylogenetic relationships of the lizard families, essays commemorating Charles L. Camp (eds Estes, R. & Pregill, G.) 283–368 (Stanford University Press, Stanford, 1988).
    Google Scholar 

    62.
    Pang, J. F. et al. A phylogeny of Chinese species in the genus Phrynocephalus (Agamidae) inferred from mitochondrial DNA sequences. Mol. Phylogenet. Evol. 27, 398–409 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Guo, X. & Wang, Y. Partitioned Bayesian analyses, dispersal—vicariance analysis, and the biogeography of Chinese toad-headed lizards (Agamidae: Phrynocephalus): a reevaluation. Mol. Phylogenet. Evol. 45, 643–662 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Acid resistance of Masson pine (Pinus massoniana Lamb.) families and their root morphology and physiological response to simulated acid deposition

    1.
    Reis, S. et al. From acid rain to climate change. Science 338, 1153–1154 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Wang, L., Chen, Z., Shang, H., Wang, J. & Zhang, P. Y. Impact of simulated acid rain on soil microbial community function in Masson pine seedlings. Electron. J. Biotechnol. 17, 199–203 (2014).
    CAS  Article  Google Scholar 

    3.
    Wang, W. X. & Xu, P. J. Research progress in precipitation chemistry in China. Prog. Chem. 21, 266–281 (2010).
    Google Scholar 

    4.
    Meng, Y. et al. Characterization of inorganic ions in rainwater in the megacity of Shanghai: Spatiotemporal variations and source apportionment. Atmos. Res. 222, 12–24 (2019).
    CAS  Article  Google Scholar 

    5.
    Busch, G. et al. Forest ecosystems and the changing patterns of nitrogen input and acid deposition today and in the future based on a scenario. Environ. Sci. Pollut. Res. 8, 95–102 (2001).
    CAS  Article  Google Scholar 

    6.
    Wang, Y. et al. Phenotypic response of tobacco leaves to simulated acid rain and its impact on photosynthesis. Int. J. Agric. Biol. 21, 391–398 (2019).
    CAS  Google Scholar 

    7.
    Ramlall, C. et al. Effects of simulated acid rain on germination, seedling growth and oxidative metabolism of recalcitrant-seeded Trichilia dregeana grown in its natural seed bank. Physiol. Plant. 153, 149–160 (2015).
    CAS  PubMed  Article  Google Scholar 

    8.
    Wang, X. Q., Liu, Z., Niu, L. & Fu, B. Long-term effects of simulated acid rain stress on a staple forest plant, Pinus massoniana Lamb: A proteomic analysis. Trees Struct. Funct. 27, 297–309 (2013).
    Article  CAS  Google Scholar 

    9.
    Tong, S. M. & Zhang, L. Q. Differential sensitivity of growth and net photosynthetic rates in five tree species seedlings under simulated acid rain stress. Pol. J. Environ. Stud. 23, 2259–2264 (2014).
    CAS  Article  Google Scholar 

    10.
    Wu, X. & Liang, C. J. Enhancing tolerance of rice (Oryza sativa) to simulated acid rain by exogenous abscisic acid. Environ. Sci. Pollut. Res. 24, 4860–4870 (2017).
    CAS  Article  Google Scholar 

    11.
    Hu, W. J. et al. Proteome and calcium-related gene expression in Pinus massoniana needles in response to acid rain under different calcium levels. Plant Soil 380, 285–303 (2014).
    CAS  Article  Google Scholar 

    12.
    Luo, S. P., He, B. H., Zeng, Q. P., Li, N. J. & Yang, L. Effects of seasonal variation on soil microbial community structure and enzyme activity in a Masson pine forest in Southwest China. J. Mt. Sci. 17, 1398–1409 (2020).
    Article  Google Scholar 

    13.
    Zhang, M. Y., Wang, S. J., Wu, F. C., Yuan, X. H. & Zhang, Y. Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in southeastern China. Atmos. Res. 84, 311–322 (2007).
    CAS  Article  Google Scholar 

    14.
    Li, Y. F., Wang, Y. J., Wang, B. & Wang, Y. Q. Response of soil respiration and its components to simulated acid rain in a typical forest stand in the three gorges reservoir area. Environ. Sci. 40, 1457–1467. https://doi.org/10.13227/j.hjkx.201803170 (2019).
    Article  Google Scholar 

    15.
    Wu, G. Effect of acidic deposition on productivity of forest ecosystem and estimation of its economic losses in southern suburbs of Chongqing China. J. Environ. Sci-China 10, 83–88. http://kns.cnki.net/kns/detail/detail.aspx?FileName=HJKB802.010&DbName=CJFQ1998 (1998).

    16.
    Quan, W. X. & Ding, G. J. Root tip structure and volatile organic compound responses to drought stress in Masson pine (Pinusmassoniana Lamb.). Acta. Physiol. Plant. 39, 258 (2017).
    Article  CAS  Google Scholar 

    17.
    He, Y. L. et al. Physiological responses of needles of Pinus massoniana elite families to phosphorus stress in acid soil. J. For. Res. 24, 325–332 (2013).
    CAS  Article  Google Scholar 

    18.
    DeHayes, D. H., Schaberg, P. G., Hawley, G. J. & Strimbeck, G. R. Acid rain impacts on calcium nutrition and forest health. Bioscience 49, 789–800 (1999).
    Article  Google Scholar 

    19.
    Ju, S. M., Wang, L. P. & Chen, J. Y. Effects of silicon on the growth, photosynthesis and chloroplast ultrastructure of Oryzasativa L. seedlings under acid rain stress. Silicon 12, 655–664 (2020).
    CAS  Article  Google Scholar 

    20.
    Ma, Y., Guo, L. Q., Wang, H. X., Bai, B. & Shi, D. C. Accumulation, distribution, and physiological contribution of oxalic acid and other solutes in an alkali-resistant forage plant, Kochiasieversiana, during adaptation to saline and alkaline conditions. J. Plant Nutr. Soil Sci. 174, 655–663 (2011).
    CAS  Article  Google Scholar 

    21.
    Rajniak, J. et al. Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nat. Chem. Biol. 14, 442–450 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Zhang, H. et al. Colonization on cucumber root and enhancement of chlorimuron-ethyl degradation in rhizosphere by Hansschlegelia zhihuaiae S113 and root exudates. J. Agric. Food Chem. 66, 4584–4591 (2018).
    CAS  PubMed  Article  Google Scholar 

    23.
    Chen, Y. T., Wang, Y. & Yeh, K. C. Role of root exudates in metal acquisition and tolerance. Curr. Opin. Plant Biol. 39, 66–72 (2017).
    CAS  PubMed  Article  Google Scholar 

    24.
    Yan, F., Schubert, S. & Mengel, K. Effect of low root medium pH on net proton release, root respiration, and root growth of corn (Zeamays L.) and broad bean (Viciafaba L.). Plant Physiol. 99, 415–421 (1992).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Hu, X. F., Wu, A. Q., Wang, F. C. & Chen, F. S. The effects of simulated acid rain on internal nutrient cycling and the ratios of Mg, Al, Ca, N, and P in tea plants of a subtropical plantation. Environ. Monit. Assess. 191, 99 (2019).
    PubMed  Article  CAS  Google Scholar 

    26.
    Ericsson, T. Growth and shoot: root ratio of seedlings in relation to nutrient availability. Plant Soil 168–169, 205–214 (1995).
    Article  Google Scholar 

    27.
    Liu, J. X., Zhou, G. Y., Yang, C. W., Ou, Z. Y. & Peng, C. L. Responses of chlorophyll fluorescence and xanthophyll cycle in leaves of Schimasuperba Gardn. & Champ. and Pinusmassoniana Lamb. to simulated acid rain at Dinghushan biosphere reserve, china. Acta Physiol. Plant. 29, 33–38 (2007).
    Article  CAS  Google Scholar 

    28.
    Liang, C. J. & Zhang, B. J. Effect of exogenous calcium on growth, nutrients uptake and plasma membrane H+-ATPase and Ca2+-ATPase activities in soybean (Glycine max) seedlings under simulated acid rain stress. Ecotoxicol. Environ. Safe 165, 261–269 (2018).
    CAS  Article  Google Scholar 

    29.
    Li, X. W. et al. Boron alleviates aluminum toxicity by promoting root alkalization in transition zone via polar auxin transport. Plant Physiol. 177, 1254–1266 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Wagatsuma, T. The membrane lipid bilayer as a regulated barrier to cope with detrimental ionic conditions: making new tolerant plant lines with altered membrane lipid bilayer. Soil Sci. Plant Nutr. 63, 507–516 (2017).
    CAS  Article  Google Scholar 

    31.
    Liang, C. J., Ma, Y. J. & Li, L. R. Comparison of plasma membrane H+-ATPase response to acid rain stress between rice and soybean. Environ. Sci. Pollut. Res. 27, 6389–6400 (2020).
    CAS  Article  Google Scholar 

    32.
    Guo, Q., Liu, L. & Barkla, B. J. Membrane lipid remodeling in response to salinity. Int. J. Mol. Sci. 20, 4264 (2019).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    33.
    Pellet, D. M., Grunes, D. L. & Kochian, L. V. Organic acid exudation as an aluminum-tolerance mechanism in maize (Zeamays L.). Planta 196, 788–795 (1995).
    CAS  Article  Google Scholar 

    34.
    Wang, H. H. et al. Organic acids enhance the uptake of lead by wheat roots. Planta 225, 1483–1494 (2007).
    CAS  PubMed  Article  Google Scholar 

    35.
    Li, Z. R. et al. Effect of root exudates of intercropping vicia faba and arabis alpina on accumulation and sub-cellular distribution of lead and cadmium. Int. J. Phytoremediat. 21, 4–13 (2019).
    CAS  Article  Google Scholar 

    36.
    Jia, H., Hou, D. Y., Dai, Y., Lu, H. L. & Yan, C. L. Effects of root exudates on the mobility of pyrene in mangrove sediment water system. CATENA 162, 396–401 (2018).
    CAS  Article  Google Scholar 

    37.
    Ahmed, I. M. et al. Physiological and molecular analysis on root growth associated with the tolerance to aluminumand drought individual and combined in Tibetan wild and cultivated barley. Planta 243, 973–985 (2016).
    CAS  PubMed  Article  Google Scholar 

    38.
    Wang, P., Bi, S. P., Wang, S. & Ding, Q. Y. Variation of wheat root exudates under aluminum stress. J. Agric. Food Chem. 54, 10040–10046 (2006).
    CAS  PubMed  Article  Google Scholar 

    39.
    Yao, Y. et al. Thallium-induced oxalate secretion from rice (Oryzasativa L.) root contributes to the reduction of Tl(III) to Tl(I). Environ. Exp. Bot. 155, 387–393 (2018).
    CAS  Article  Google Scholar 

    40.
    Javed, M. et al. Deciphering the growth, organic acid exudations, and ionic homeostasis of Amaranthusviridis L. and Portulacaoleracea L. under lead chloride stress. Environ. Sci. Pollut. Res. 25, 2958–2971 (2017).
    Article  CAS  Google Scholar 

    41.
    Wang, P., Bi, S. P., Ma, L. P. & Han, W. Y. Aluminum tolerance of two wheat cultivars (Brevor and Atlas66) in relation to the irrhizosphere pH and organic acids exuded from roots. J. Agric. Food. Chem. 54, 10033–10039 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    42.
    Tu, J., Wang, H. S., Zhang, Z. F., Jin, X. & Li, W. Q. Trends in chemical composition of precipitation in Nanjing, China, during 1992–2003. Atmos. Res. 73, 283–298 (2005).
    CAS  Article  Google Scholar 

    43.
    Liang, C. J. & Wang, W. M. Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain. Environ. Sci. Pollut. Res. 20, 8182–8191 (2013).
    CAS  Article  Google Scholar 

    44.
    Tang, X. R., Li, W. P., Zuo, H. S. & Yin, Y. L. Study on the growth stability of Pinus Massoniana. J. Hunan For. Sci. Technol. 29, 20–24, http://kns.cnki.net/kns/detail/detail.aspx?FileName=HLKJ200204005&DbName=CJFQ2002 (2002) (in Chinese).

    45.
    Jia, X. M. et al. Comparative physiological responses and adaptive strategies of apple Malushalliana to salt, alkali and saline-alkali stress. Sci. Hortic. Amsterdam 245, 154–162 (2019).
    CAS  Article  Google Scholar 

    46.
    Inoue, S. & Kinoshita, T. Blue light regulation of stomatal opening and the plasma membrane H+-ATPase. Plant Physiol. 174, 531–538 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Wang, S. L., Fan, C. N. Q. & Wang, P. Determination of ultra-trace organic acid in Masson pine (Pinusmassoniana L.) by accelerated solvent extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 981–982, 1–8 (2015).
    Google Scholar 

    48.
    Yao, Y. W., Ren, B. L., Yang, Y., Huang, C. J. & Li, M. Y. Preparation and electrochemical treatment application of Ce-PbO2/ZrO2 composite electrode in the degradation of acridine orange by electrochemical advanced oxidation process. J. Hazard. Mater. 361, 141–151 (2019).
    CAS  PubMed  Article  Google Scholar  More

  • in

    Picophytoplankton dynamics in a large temperate estuary and impacts of extreme storm events

    1.
    Johnson, P. W. & Sieburth, J. M. Chroococcoid cyanobacteria in the sea: A ubiquitous and diverse phototrophic biomass1. Limnol. Oceanogr. 24, 928–935 (1979).
    ADS  Article  Google Scholar 
    2.
    Waterbury, J. B., Watson, S. W., Guillard, R. L. & Brand, L. E. Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium. Nature 277, 293–294 (1979).
    ADS  Article  Google Scholar 

    3.
    Stockner, J. G. & Antia, N. J. Algal picoplankton from marine and freshwater ecosystems: A multidisciplinary perspective. Can. J. Fish. Aquat. Sci. 43, 2472–2503 (1986).
    Article  Google Scholar 

    4.
    Partensky, F., Blanchot, J. & Vaulot, D. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: A review. Bull. l’Institut Oceanogr. Monaco Spec. 19, 457–475 (1999).
    Google Scholar 

    5.
    Stal, L. J. & Staal, M. Nutrient control of cyanobacterial blooms in the Baltic Sea. Aquat. Microb. Ecol. 18, 165–173 (1999).
    Article  Google Scholar 

    6.
    Paczkowska, J. et al. Allochthonous matter: An important factor shaping the phytoplankton community in the Baltic Sea. J. Plankton Res. 39, 23–34 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Gaulke, A. K., Wetz, M. S. & Paerl, H. W. Picophytoplankton: A major contributor to planktonic biomass and primary production in a eutrophic, river-dominated estuary. Estuar. Coast. Shelf Sci. 90, 45–54 (2010).
    ADS  CAS  Article  Google Scholar 

    8.
    Wang, K., Wommack, K. E. & Chen, F. Abundance and distribution of Synechococcus spp. and cyanophages in the Chesapeake Bay. Appl. Environ. Microbiol. 77, 7459–7468 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Olson, R. J., Zettler, E. R. & DuRand, M. D. Phytoplankton analysis using flow cytometry. In Handbook of Methods in Aquatic Microbial Ecology 175–186 (Lewis Publishers, Boca Raton, 1993).

    10.
    Li, W. K. W. Cytometric diversity in marine ultraphytoplankton. Limnol. Oceanogr. 42, 874–880 (1997).
    ADS  CAS  Article  Google Scholar 

    11.
    Collier, J. L. Flow cytometry and the single cell in phycology. J. Phycol. 36, 628–644 (2000).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Liu, H., Jing, H., Wong, T. H. C. & Chen, B. Co-occurrence of phycocyanin- and phycoerythrin-rich Synechococcus in subtropical estuarine and coastal waters of Hong Kong. Environ. Microbiol. Rep. 6, 90–99 (2013).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    13.
    Rajaneesh, K. M. & Mitbavkar, S. Factors controlling the temporal and spatial variations in Synechococcus abundance in a monsoonal estuary. Mar. Environ. Res. 92, 133–143 (2013).
    Article  CAS  Google Scholar 

    14.
    Albrecht, M., Pröschold, T. & Schumann, R. Identification of cyanobacteria in a eutrophic coastal lagoon on the southern Baltic coast. Front. Microbiol. 8, 923 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    15.
    Caroppo, C. Ecology and biodiversity of picoplanktonic cyanobacteria in coastal and brackish environments. Biodivers. Conserv. 24, 949–971 (2015).
    Article  Google Scholar 

    16.
    Murrell, M. C. & Lores, E. M. Phytoplankton and zooplankton seasonal dynamics in a subtropical estuary: Importance of cyanobacteria. J. Plankton Res. 26, 371–382 (2004).
    Article  Google Scholar 

    17.
    Xia, X., Guo, W., Tan, S. & Liu, H. Synechococcus assemblages across the salinity gradient in a salt wedge estuary. Front. Microbiol. 8, 1254 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Phlips, E. J., Badylak, S. & Lynch, T. C. Blooms of the picoplanktonic cyanobacterium Synechococcus in Florida Bay, a subtropical inner-shelf lagoon. Limnol. Ocean. 44, 1166–1175 (1999).
    Article  Google Scholar 

    19.
    Weisse, T. Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. In Advances in Microbial Ecology, vol 13 (ed. Jones, J. G.) 327–370 (Springer US, New York, 1993).

    20.
    Tomas, C. R. Identifying marine phytoplankton (Academic Press, New York, 1997).
    Google Scholar 

    21.
    Gobler, C. J., Renaghan, M. J. & Buck, N. J. Impacts of nutrients and grazing mortality on the abundance of Aureococcus anophagefferens during a New York brown tide bloom. Limnol. Oceanogr. 47, 129–141 (2002).
    ADS  Article  Google Scholar 

    22.
    Vaquer, A., Troussellier, M., Courties, C. & Bibent, B. Standing stock and dynamics of picophytoplankton in the Thau Lagoon (northwest Mediterranean coast). Limnol. Oceanogr. 41, 1821–1828 (1996).
    ADS  Article  Google Scholar 

    23.
    Calvo-Diaz, A. & Moran, X. A. G. Seasonal dynamics of picoplankton in shelf waters of the southern Bay of Biscay. Aquat. Microb. Ecol. 42, 159–174 (2006).
    Article  Google Scholar 

    24.
    Worden, A. Z., Nolan, J. K. & Palenik, B. Assessing the dynamics and ecology of marine picophytoplankton: The importance of the eukaryotic component. Limnol. Ocean. 49, 168–179 (2004).
    CAS  Article  Google Scholar 

    25.
    O’Kelly, C. J., Sieracki, M. E., Thier, E. C. & Hobson, I. C. A transient bloom of Ostreococcus (Chlorophyta, Prasinophyceae) in West Neck Bay, Long Island, New York. J. Phycol. 39, 850–854 (2003).
    Article  Google Scholar 

    26.
    Péquin, B., Mohit, V., Poisot, T., Tremblay, R. & Lovejoy, C. Wind drives microbial eukaryote communities in a temperate closed lagoon. Aquat. Microb. Ecol. 78, 187–200 (2017).
    Article  Google Scholar 

    27.
    Bec, B. et al. Distribution of picophytoplankton and nanophytoplankton along an anthropogenic eutrophication gradient in French Mediterranean coastal lagoons. Aquat. Microb. Ecol. 63, 29–45 (2011).
    Article  Google Scholar 

    28.
    Stal, L. J. et al. BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea–-responses to a changing environment. Cont. Shelf Res. 23, 1695–1714 (2003).
    ADS  Article  Google Scholar 

    29.
    Chen, F., Wang, K., Kan, J., Suzuki, M. T. & Wommack, K. E. Diverse and unique picocyanobacteria in Chesapeake Bay, revealed by 16S–23S rRNA internal transcribed spacer sequences. Appl. Environ. Microbiol. 72, 2239–2243 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Paerl, H. W., Pinckney, J. L., Fear, J. M. & Peierls, B. L. Ecosystem responses to internal and watershed organic matter loading: Consequences for hypoxia in the eutrophying Neuse River Estuary, North Carolina, USA. Mar. Ecol. Prog. Ser. 166, 17–25 (1998).
    ADS  CAS  Article  Google Scholar 

    31.
    Peierls, B. L., Hall, N. S. & Paerl, H. W. Non-monotonic responses of phytoplankton biomass accumulation to hydrologic variability: A comparison of two coastal plain north carolina estuaries. Estuar. Coasts 35, 1376–1392 (2012).
    Article  Google Scholar 

    32.
    Paerl, H. W. et al. Two decades of tropical cyclone impacts on North Carolina’s estuarine carbon, nutrient and phytoplankton dynamics: Implications for biogeochemical cycling and water quality in a stormier world. Biogeochemistry 141, 307–332 (2018).
    ADS  CAS  Article  Google Scholar 

    33.
    Wetz, M. S., Paerl, H. W., Taylor, J. C. & Leonard, J. A. Environmental controls upon picophytoplankton growth and biomass in a eutrophic estuary. Aquat. Microb. Ecol. 63, 133–143 (2011).
    Article  Google Scholar 

    34.
    Apple, J. K., Strom, S. L., Palenik, B. & Brahamsha, B. Variability in protist grazing and growth on different marine Synechococcus isolates. Appl. Environ. Microbiol. 77, 3074–3084 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Zwirglmaier, K., Spence, E. D., Zubkov, M. V., Scanlan, D. J. & Mann, N. H. Differential grazing of two heterotrophic nanoflagellates on marine Synechococcus strains. Environ. Microbiol. 11, 1767–1776 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Paz-Yepes, J., Brahamsha, B. & Palenik, B. Role of a microcin-C-like biosynthetic gene cluster in allelopathic interactions in marine Synechococcus. Proc. Natl. Acad. Sci. 110, 12030–12035 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Wall, C., Rodgers, B., Gobler, C. & Peterson, B. Responses of loggerhead sponges Spechiospongia vesparium during harmful cyanobacterial blooms in a sub-tropical lagoon. Mar. Ecol. Prog. Ser. 451, 31–43 (2012).
    ADS  Article  Google Scholar 

    38.
    Hamilton, T. J., Paz-Yepes, J., Morrison, R. A., Palenik, B. & Tresguerres, M. Exposure to bloom-like concentrations of two marine Synechococcus cyanobacteria (strains CC9311 and CC9902) differentially alters fish behaviour. Conserv. Physiol. 2, cuo020 (2014).
    Article  Google Scholar 

    39.
    Bales, J. D. Effects of Hurricane Floyd inland flooding, September–October 1999, on tributaries to Pamlico Sound, North Carolina. Estuaries 26, 1319–1328 (2003).
    Article  Google Scholar 

    40.
    Paerl, H. W. et al. Recent increase in catastrophic tropical cyclone flooding in coastal North Carolina, USA: Long-term observations suggest a regime shift. Sci. Rep. 9, 10620 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    41.
    Osburn, C. L., Rudolph, J. C., Paerl, H. W., Hounshell, A. G. & Van Dam, B. R. Lingering carbon cycle effects of Hurricane Matthew in North Carolina’s coastal waters. Geophys. Res. Lett. 46, 2654–2661 (2019).
    ADS  CAS  Article  Google Scholar 

    42.
    Paerl, H. W., Rossignol, K. L., Hall, S. N., Peierls, B. L. & Wetz, M. S. Phytoplankton community indicators of short- and long-term ecological change in the anthropogenically and climatically impacted neuse river estuary, North Carolina, USA. Estuar. Coasts 33, 485–497 (2010).
    CAS  Article  Google Scholar 

    43.
    Six, C., Sherrard, R., Lionard, M., Roy, S. & Campbell, D. A. Photosystem II and pigment dynamics among ecotypes of the green alga Ostreococcus. Plant Physiol. 151, 379–390 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Bec, B., Husseini-Ratrema, J., Collos, Y., Souchu, P. & Vaquer, A. Phytoplankton seasonal dynamics in a Mediterranean coastal lagoon: Emphasis on the picoeukaryote community. J. Plankton Res. 27, 881–894 (2005).
    CAS  Article  Google Scholar 

    45.
    Mohan, A. P., Jyothibabu, R., Jagadeesan, L., Lallu, K. R. & Karnan, C. Summer monsoon onset-induced changes of autotrophic pico-and nanoplankton in the largest monsoonal estuary along the west coast of India. Environ. Monit. Assess. 188, 93 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    46.
    Paerl, H. W. et al. Microbial indicators of aquatic ecosystem change: Current applications to eutrophication studies. In FEMS Microbiology Ecology 46, 233–246 (Elsevier, Amsterdam, 2003).

    47.
    NC Weather Forecast Office Newport/Morehead City. Post Tropical Cyclone Report—Hurricane Florence. National Weather Service (2018).

    48.
    Welschmeyer, N. A. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 39, 1985–1992 (1994).
    ADS  CAS  Article  Google Scholar 

    49.
    Schlitzer, R. Ocean Data View. (2020).

    50.
    Mangiafico, S. S. Summary and analysis of extension program evaluation in R, version 1.15. 0. Rutgers Coop. Extension, New Brunswick, NJ https//rcompanion. org/handbook/.[Google Sch. (2016).

    51.
    Siegel, A. F. Robust regression using repeated medians. Biometrika 69, 242–244 (1982).
    MATH  Article  Google Scholar 

    52.
    R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. http://www.R-project.org/. R Foundation for Statistical Computing (2014).

    53.
    Oksanen, J. et al. Package vegan. R Packag ver 254, (2013).

    54.
    Dray, S. et al. Community ecology in the age of multivariate multiscale spatial analysis. Ecol. Monogr. 82, 257–275 (2012).
    Article  Google Scholar 

    55.
    Simpson, G. L. ggvegan: ‘ggplot2’ Plots for the ‘vegan’ Package. (2015).

    56.
    Rudolph, J. C., Arendt, C. A., Hounshell, A. G., Paerl, H. W. & Osburn, C. L. Use of geospatial, hydrologic, and geochemical modeling to determine the influence of wetland-derived organic matter in coastal waters in response to extreme weather events. Front. Mar. Sci. 7, (2020). https://doi.org/10.3389/fmars.2020.00018

    57.
    Ray, R. T., Haas, L. W. & Sieracki, M. E. Autotrophic picoplankton dynamics in a Chesapeake Bay sub-estuary. Mar. Ecol. Prog. Ser. 52, 273–285 (1989).
    ADS  Article  Google Scholar 

    58.
    Marshall, H. G. & Nesius, K. K. Seasonal relationships between phytoplankton composition, abundance, and primary productivity in three tidal rivers of the lower Chesapeake Bay. J. Elisha Mitchell Sci. Soc. 109, 141–151 (1993).
    Google Scholar 

    59.
    Larsson, J. et al. Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea. ISME J. 8, 1892–1903 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Berry, D. L. et al. Shifts in Cyanobacterial strain dominance during the onset of harmful algal blooms in Florida Bay, USA. Microb. Ecol. 70, 361–371 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    61.
    DeLong, J. P., Okie, J. G., Moses, M. E., Sibly, R. M. & Brown, J. H. Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. Proc. Natl. Acad. Sci. U. S. A. 107, 12941–12945 (2010).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Cabello-Yeves, P. J. et al. Novel Synechococcus genomes reconstructed from freshwater reservoirs. Front. Microbiol. 8, 1151 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    63.
    Grébert, T. et al. Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. Proc. Natl. Acad. Sci. U. S. A. 115, E2010–E2019 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    64.
    Stomp, M. et al. Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol. Lett. 10, 290–298 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Marsan, D., Place, A., Fucich, D. & Chen, F. Toxin-antitoxin systems in estuarine Synechococcus strain CB0101 and their transcriptomic responses to environmental stressors. Front. Microbiol. 8, 1213 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    66.
    Zborowsky, S. & Lindell, D. Resistance in marine cyanobacteria differs against specialist and generalist cyanophages. Proc. Natl. Acad. Sci. U. S. A. 116, 16899–16908 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Paerl, H. W., Hall, N. S., Peierls, B. L., Rossignol, K. L. & Joyner, A. R. Hydrologic variability and its control of phytoplankton community structure and function in two shallow, coastal, lagoonal ecosystems: The Neuse and New River estuaries, North Carolina, USA. Estuar. Coasts 37, 31–45 (2014).
    Article  Google Scholar 

    68.
    Rae, B. D., Förster, B., Badger, M. R. & Price, G. D. The CO2-concentrating mechanism of Synechococcus WH5701 is composed of native and horizontally-acquired components. Photosynth. Res. 109, 59–72 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    69.
    Cabello-Yeves, P. J. et al. Ecological and genomic features of two widespread freshwater picocyanobacteria. Environ. Microbiol. 20, 3757–3771 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Vörös, L., Callieri, C., V-Balogh, K. & Bertoni, R. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia 369–370, 117–125 (1998).
    Article  Google Scholar 

    71.
    Osburn, C. L. et al. Optical proxies for terrestrial dissolved organic matter in estuaries and coastal waters. Front. Mar. Sci. 2, 127 (2016).
    MathSciNet  Article  Google Scholar 

    72.
    Kirk, J. T. O. Light and Photosynthesis in Aquatic Ecosystems (Cambridge University Press, Cambridge, 2010).
    Google Scholar 

    73.
    Anderson, S. R., Diou-Cass, Q. P. & Harvey, E. L. Short-term estimates of phytoplankton growth and mortality in a tidal estuary. Limnol. Oceanogr. 63, 2411–2422 (2018).
    ADS  Article  Google Scholar 

    74.
    Brand, L. E., Sunda, W. G. & Guillard, R. R. L. Reduction of marine phytoplankton reproduction rates by copper and cadmium. J. Exp. Mar. Biol. Ecol. 96, 225–250 (1986).
    CAS  Article  Google Scholar 

    75.
    Bianchi, T. S. Biogeochemistry of Estuaries (Oxford University Press, Oxford, 2007).
    Google Scholar 

    76.
    Coclet, C. et al. Trace metal contamination as a toxic and structuring factor impacting ultraphytoplankton communities in a multicontaminated Mediterranean coastal area. Prog. Oceanogr. 163, 196–213 (2018).
    Article  Google Scholar 

    77.
    Delpy, F. et al. Pico- and nanophytoplankton dynamics in two coupled but contrasting coastal bays in the NW Mediterranean Sea (France). Estuar. Coasts 41, 2039–2055 (2018).
    CAS  Article  Google Scholar 

    78.
    CDM Smith. City of Raleigh—Neuse River Water Quality Sampling Report. (2014).

    79.
    Fuller, N. J. et al. Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the red sea. Appl. Environ. Microbiol. 69, 2430–2443 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Mackey, K. R. M. et al. Seasonal succession and spatial patterns of Synechococcus microdiversity in a salt marsh estuary revealed through 16S rRNA gene oligotyping. Front. Microbiol. 8, 1496 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    81.
    Gong, W. et al. Molecular insights into a dinoflagellate bloom. ISME J. 11, 439–452 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    82.
    Ning, X., Cloern, J. E. & Cole, B. E. Spatial and temporal variability of picocyanobacteria Synechococcus sp. San Francisco Bay. Limnol. Oceanogr. 45, 695–702 (2000).
    ADS  CAS  Article  Google Scholar 

    83.
    Li, W. K. W. Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnol. Ocean. 39, 169–175 (1994).
    CAS  Article  Google Scholar 

    84.
    Jardillier, L., Zubkov, M. V., Pearman, J. & Scanlan, D. J. Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic Ocean. ISME J. 4, 1180–1192 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    85.
    Morán, X. A. G. Annual cycle of picophytoplankton photosynthesis and growth rates in a temperate coastal ecosystem: A major contribution to carbon fluxes. Aquat. Microb. Ecol. 49, 267–279 (2007).
    Article  Google Scholar 

    86.
    Christaki, U., Vázquez-Domínguez, E., Courties, C. & Lebaron, P. Grazing impact of different heterotrophic nanoflagellates on eukaryotic (Ostreococcus tauri) and prokaryotic picoautotrophs (Prochlorococcus and Synechococcus). Environ. Microbiol. 7, 1200–1210 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    87.
    Gobler, C. J., Lonsdale, D. J. & Boyer, G. L. A Review of the causes, effects, and potential management of harmful brown tide blooms caused by Aureococcus anophagefferens (Hargraves et Sieburth). Estuaries 28, 726–749 (2005).
    Article  Google Scholar 

    88.
    Schoemann, V., Becquevort, S., Stefels, J., Rousseau, V. & Lancelot, C. Phaeocystis blooms in the global ocean and their controlling mechanisms: A review. J. Sea Res. 53, 43–66 (2005).
    ADS  CAS  Article  Google Scholar 

    89.
    Vaulot, D., Eikrem, W., Viprey, M. & Moreau, H. The diversity of small eukaryotic phytoplankton (≤ 3 μm) in marine ecosystems. FEMS Microbiol. Rev. 32, 795–820 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    90.
    Worden, A. Z. & Not, F. Ecology and diversity of picoeukaryotes. Microb. Ecol. Ocean. 2, 159–205 (2008).
    Article  Google Scholar 

    91.
    Paerl, R. W., Bertrand, E. M., Allen, A. E., Palenik, B. & Azam, F. Vitamin B1 ecophysiology of marine picoeukaryotic algae: Strain-specific differences and a new role for bacteria in vitamin cycling. Limnol. Oceanogr. 60, 215–228 (2015).
    ADS  CAS  Article  Google Scholar 

    92.
    Lovejoy, C. et al. Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in Arctic seas. J. Phycol. 43, 78–89 (2007).
    CAS  Article  Google Scholar 

    93.
    McKie-Krisberg, Z. M. & Sanders, R. W. Phagotrophy by the picoeukaryotic green alga Micromonas: Implications for Arctic Oceans. ISME J. 8, 1953–1961 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    94.
    Botebol, H. et al. Acclimation of a low iron adapted Ostreococcus strain to iron limitation through cell biomass lowering. Sci. Rep. 7, 327 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    95.
    Rodríguez, F. et al. Ecotype diversity in the marine picoeukaryote Ostreococcus (Chlorophyta, Prasinophyceae). Environ. Microbiol. 7, 853–859 (2005).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    96.
    Valdes-Weaver, L. M. et al. Long-term temporal and spatial trends in phytoplankton biomass and class-level taxonomic composition in the hydrologically variable Neuse-Pamlico estuarine continuum, North Carolina, USA. Limnol. Oceanogr. 51, 1410–1420 (2006).
    ADS  Article  Google Scholar 

    97.
    Wetz, M. S. & Paerl, H. W. Estuarine phytoplankton responses to hurricanes and tropical storms with different characteristics (trajectory, rainfall, winds). Estuar. Coasts 31, 419–429 (2008).
    CAS  Article  Google Scholar 

    98.
    Mojica, K. D. A., Huisman, J., Wilhelm, S. W. & Brussaard, C. P. D. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean. ISME J. 10, 500–513 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    99.
    Wang, K. & Chen, F. Prevalence of highly host-specific cyanophages in the estuarine environment. Environ. Microbiol. 10, 300–312 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    100.
    Waterbury, J. B. & Valois, F. W. Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater. Appl. Environ. Microbiol. 59, 3393–3399 (1993).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    101.
    Brussaard, C. P. D. Viral control of phytoplankton Ppopulations—a review. J. Eukaryot. Microbiol. 51, 125–138 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    102.
    Moore, L. R., Post, A. F., Rocap, G. & Chisholm, S. W. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol. Oceanogr. 47, 989–996 (2002).
    ADS  CAS  Article  Google Scholar 

    103.
    Moore, L. R., Ostrowski, M., Scanlan, D. J., Feren, K. & Sweetsir, T. Ecotypic variation in phosphorus-acquisition mechanisms within marine picocyanobacteria. Aquat. Microb. Ecol. 39, 257–269 (2005).
    Article  Google Scholar 

    104.
    Scanlan, D. J. et al. Ecological genomics of marine picocyanobacteria. Microbiol. Mol. Biol. Rev. 73, 249–299 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    105.
    Berg, G. M. B. M., Repeta, D. J. & LaRoche, J. The role of the picoeukaryote Aureococcus anophagefferens in cycling of marine high—molecular weight dissolved organic nitrogen. Limnol. Oceanogr. 48, 1825–1830 (2003).
    ADS  CAS  Article  Google Scholar 

    106.
    Martins, R., Fernandez, N., Beiras, R. & Vasconcelos, V. Toxicity assessment of crude and partially purified extracts of marine Synechocystis and Synechococcus cyanobacterial strains in marine invertebrates. Toxicon 50, 791–799 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    107.
    Gobler, C. J. et al. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc. Natl. Acad. Sci. U. S. A. 108, 4352–4357 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    108.
    Waterbury, J. B. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Photosynth. Picoplankt. 71–120 (1986).

    109.
    Easterling, D. R. et al. Precipitation change in the United States. (2017).

    110.
    Kossin, J. P. et al. Extreme storms. In Climate Science Special Report: Fourth National Climate Assessment, Volume I (eds. Wuebbles, D. J. et al.) 257–276 (U.S. Global Change Research Program, Washington, DC, 2017).

    111.
    Wuebbles, D. et al. CMIP5 climate model analyses: Climate extremes in the United States. Bull. Am. Meteorol. Soc. 95, 571–583 (2014).
    ADS  Article  Google Scholar 

    112.
    Kunkel, K. E. et al. North Carolina Climate Science Report. (2020).

    113.
    Yeo, S. K., Huggett, M. J., Eiler, A. & Rappé, M. S. Coastal bacterioplankton community dynamics in response to a natural disturbance. PLoS ONE 8, e56207 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    114.
    Montagna, P. A., Hu, X., Palmer, T. A. & Wetz, M. Effect of hydrological variability on the biogeochemistry of estuaries across a regional climatic gradient. Limnol. Oceanogr. 63, 2465–2478 (2018).
    ADS  CAS  Article  Google Scholar 

    115.
    Ares, Á. et al. Extreme storms cause rapid but short-lived shifts in nearshore subtropical bacterial communities. Environ. Microbiol. 22, 4571–4588 (2020).
    CAS  Article  Google Scholar 

    116.
    Marshall, H. G. Autotrophic picoplankton: their presence and significance in marine and freshwater ecosystems. Va. J. Sci. 53, (2002).

    117.
    Buitenhuis, E. T. et al. Picophytoplankton biomass distribution in the global ocean. Earth Syst. Sci. Data 4, 37–46 (2012).
    ADS  Article  Google Scholar 

    118.
    Stockner, J. G. Phototrophic picoplankton: An overview from marine and freshwater ecosystems. Limnol. Oceanogr. 33, 765–775 (1988).
    ADS  CAS  Google Scholar 

    119.
    Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).
    ADS  Article  Google Scholar 

    120.
    Flombaum, P. et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl. Acad. Sci. 110, 9824–9829 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    121.
    Hunter-Cevera, K. R. et al. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science 354, 326–329 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    122.
    Agusti, S., Lubián, L. M., Moreno-Ostos, E., Estrada, M. & Duarte, C. M. Projected changes in photosynthetic picoplankton in a warmer subtropical ocean. Front. Mar. Sci. 5, 506 (2019).
    Article  Google Scholar 

    123.
    Cloern, J. E. et al. Human activities and climate variability drive fast-paced change across the world’s estuarine-coastal ecosystems. Glob. Change Biol. 22, 513–529 (2016).
    ADS  Article  Google Scholar  More

  • in

    More than one million barriers fragment Europe’s rivers

    1.
    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. Camb. Phil. Soc. 94, 849–873 (2019).
    Google Scholar 
    2.
    Grizzetti, B. et al. Relationship between ecological condition and ecosystem services in European rivers, lakes and coastal waters. Sci. Total Environ. 671, 452–465 (2019).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    3.
    Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).
    ADS  CAS  PubMed  Google Scholar 

    4.
    Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).
    Google Scholar 

    5.
    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).
    CAS  Google Scholar 

    6.
    Carpenter, S. R., Stanley, E. H. & Zanden, M. J. V. State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annu. Rev. Environ. Resour. 36, 75–99 (2011).
    Google Scholar 

    7.
    Fuller, M. R., Doyle, M. W. & Strayer, D. L. Causes and consequences of habitat fragmentation in river networks: river fragmentation. Ann. NY Acad. Sci. 1355, 31–51 (2015).
    ADS  PubMed  PubMed Central  Google Scholar 

    8.
    Van Looy, K., Tormos, T. & Souchon, Y. Disentangling dam impacts in river networks. Ecol. Indic. 37, 10–20 (2014).
    Google Scholar 

    9.
    Kemp, P. & O’Hanley, J. Procedures for evaluating and prioritising the removal of fish passage barriers: a synthesis. Fish. Manag. Ecol. 17, 297–322 (2010).
    Google Scholar 

    10.
    Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502 (2011).
    Google Scholar 

    11.
    Lehner, B. et al. Global Reservoir and Dam Database version 1 (GRanDv1) https://doi.org/10.7927/H4N877QK (NASA Socioeconomic Data and Applications Center, 2011).

    12.
    Mulligan, M., Soesbergen, A. V. & Sáenz, L. GOODD, a global dataset of more than 38,000 georeferenced dams. Sci. Data 7, 31 (2020).
    PubMed  PubMed Central  Google Scholar 

    13.
    Garcia de Leaniz, C., Berkhuysen, A. & Belletti, B. Beware small dams, they can do damage too. Nature 570, 164 (2019).
    ADS  Google Scholar 

    14.
    Mantel, S. K., Rivers-Moore, N. & Ramulifho, P. Small dams need consideration in riverscape conservation assessments: small dams and riverscape conservation. Aqua. Conserv. Mar. Freshw. Ecosyst. 27, 748–754 (2017).
    Google Scholar 

    15.
    Lucas, M. C., Bubb, D. H., Jang, M.-H., Ha, K. & Masters, J. E. G. Availability of and access to critical habitats in regulated rivers: effects of low-head barriers on threatened lampreys. Freshw. Biol. 54, 621–634 (2009).
    Google Scholar 

    16.
    Birnie-Gauvin, K., Aarestrup, K., Riis, T. M. O., Jepsen, N. & Koed, A. Shining a light on the loss of rheophilic fish habitat in lowland rivers as a forgotten consequence of barriers, and its implications for management. Aqua. Conserv. Mar. Freshw. Ecosyst. 27, 1345–1349 (2017).
    Google Scholar 

    17.
    Magilligan, F. J., Nislow, K. H. & Renshaw, C. E. in Treatise on Geomorphology (ed. Shroder, J. F.) 794–808 (Academic Press, 2013).

    18.
    Petts, G. E. & Gurnell, A. M. Dams and geomorphology: research progress and future directions. Geomorphology 71, 27–47 (2005).
    ADS  Google Scholar 

    19.
    Bizzi, S. et al. On the control of riverbed incision induced by run-of-river power plant. Wat. Resour. Res. 51, 5023–5040 (2015).
    ADS  Google Scholar 

    20.
    Jones, P. E., Consuegra, S., Börger, L., Jones, J. & Garcia de Leaniz, C. Impacts of artificial barriers on the connectivity and dispersal of vascular macrophytes in rivers: a critical review. Freshw. Biol. 65, 1165–1180 (2020).
    Google Scholar 

    21.
    Carpenter-Bundhoo, L. et al. Effects of a low-head weir on multi-scaled movement and behavior of three riverine fish species. Sci. Rep. 10, 6817 (2020).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    22.
    Graf, W. L. Dam nation: a geographic census of American dams and their large-scale hydrologic impacts. Wat. Resour. Res. 35, 1305–1311 (1999).
    ADS  Google Scholar 

    23.
    Jones, J. et al. A comprehensive assessment of stream fragmentation in Great Britain. Sci. Total Environ. 673, 756–762 (2019).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Grizzetti, B. et al. Human pressures and ecological status of European rivers. Sci. Rep. 7, 205 (2017).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Mauch, C. & Zeller, T. (eds) Rivers in History: Perspectives on Waterways in Europe and North America (Univ. of Pittsburgh Press, 2008).

    26.
    Petts, G. E., Möller, H. & Roux, A. L. Historical Change of Large Alluvial Rivers: Western Europe 355 (John Wiley and Sons, 1989).

    27.
    Kemp, P. S. in Freshwater Fisheries Ecology (ed. Craig, J. F.) 717–769 (Wiley, 2015).

    28.
    European Environment Agency in European Waters—Assessment of Status and Pressures 85 (EEA, 2018).

    29.
    Garcia de Leaniz, C. et al. in From Sea to Source v2. Protection and Restoration of Fish Migration in Rivers Worldwide (eds Brink, K. et al.) 142–145 (World Fish Migration Foundation, 2018).

    30.
    Pistocchi, A. et al. Assessment of the Effectiveness of Reported Water Framework Directive Programmes of Measures. Part II—Development of a System of Europe-wide Pressure Indicators. Report No. EUR 28412 EN (Joint Research Centre, 2017).

    31.
    Garcia de Leaniz, C. Weir removal in salmonid streams: implications, challenges and practicalities. Hydrobiologia 609, 83–96 (2008).
    Google Scholar 

    32.
    Downward, S. & Skinner, K. Working rivers: the geomorphological legacy of English freshwater mills. Area 37, 138–147 (2005).
    Google Scholar 

    33.
    Sun, J., Galib, S. M. & Lucas, M. C. Are national barrier inventories fit for stream connectivity restoration needs? A test of two catchments. Wat. Environ. J. https://doi.org/10.1111/wej.12578 (2020).

    34.
    Atkinson, S. et al. An inspection-based assessment of obstacles to salmon, trout, eel and lamprey migration and river channel connectivity in Ireland. Sci. Total Environ. 719, 137215 (2020).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    35.
    European Environment Agency European Catchments and Rivers Network System (ECRINS) (EEA, 2012).

    36.
    Kristensen, P. & Globevnik, L. European small water bodies. Biol. Environ. 114B, 281–287 (2014).
    Google Scholar 

    37.
    Ferreira, T., Globevnik, L. & Schinegger, R. in Multiple Stressors in River Ecosystems 139–155 (Elsevier, 2019).

    38.
    Schwarz, U. Hydropower Pressure on European Rivers 36 (WWF, 2019).

    39.
    Schiemer, F. et al. The Vjosa River corridor: a model of natural hydro-morphodynamics and a hotspot of highly threatened ecosystems of European significance. Land. Ecol. 35, 953–968 (2020).
    Google Scholar 

    40.
    Duflo, E. & Pande, R. Dams. Q. J. Econ. 122, 601–646 (2007).
    Google Scholar 

    41.
    Grill, G., Ouellet Dallaire, C., Fluet Chouinard, E., Sindorf, N. & Lehner, B. Development of new indicators to evaluate river fragmentation and flow regulation at large scales: a case study for the Mekong River Basin. Ecol. Indic. 45, 148–159 (2014).
    Google Scholar 

    42.
    Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).
    Google Scholar 

    43.
    Tilt, B., Braun, Y. & He, D. Social impacts of large dam projects: a comparison of international case studies and implications for best practice. J. Environ. Manage. 90, S249–S257 (2009).
    PubMed  PubMed Central  Google Scholar 

    44.
    Schmitt, R. J. P., Bizzi, S., Castelletti, A. & Kondolf, G. M. Improved trade-offs of hydropower and sand connectivity by strategic dam planning in the Mekong. Nature Sust. 1, 96–104 (2018).
    Google Scholar 

    45.
    Weibel, D. & Peter, A. Effectiveness of different types of block ramps for fish upstream movement. Aquat. Sci. 75, 251–260 (2013).
    Google Scholar 

    46.
    Cote, D., Kehler, D. G., Bourne, C. & Wiersma, Y. F. A new measure of longitudinal connectivity for stream networks. Landsc. Ecol. 24, 101–113 (2009).
    Google Scholar 

    47.
    Tickner, D. et al. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. BioScience 70, 330–342 (2020).
    PubMed  PubMed Central  Google Scholar 

    48.
    Bódis, K., Monforti, F. & Szabó, S. Could Europe have more mini hydro sites? A suitability analysis based on continentally harmonized geographical and hydrological data. Renew. Sust. Energy Rev. 37, 794–808 (2014).
    Google Scholar 

    49.
    Huđek, H., Žganec, K. & Pusch, M. T. A review of hydropower dams in Southeast Europe—distribution, trends and availability of monitoring data using the example of a multinational Danube catchment subarea. Renew. Sust. Energy Rev. 117, 109434 (2020).
    Google Scholar 

    50.
    European Union Bringing Nature Back Into Our Lives. EU 2030 Biodiversity Strategy. https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1590574123338&uri=CELEX:52020DC0380 (European Commission, 2020).

    51.
    Wohl, E. Connectivity in rivers. Progr. Phys. Geog. Earth. Env. 41, 345–362 (2017).
    Google Scholar 

    52.
    Belletti, B. et al. Datasets for the AMBER Barrier Atlas of Europe. Table S1. Details of test rivers showing number of barriers present in current inventories (Atlas) and those encountered in the field. Table S3. Barrier Database sources. figshare https://doi.org/10.6084/m9.figshare.12629051 (2020).

    53.
    Jones, J. et al. Quantifying river fragmentation from local to continental scales: data management and modelling methods. Preprint at https://doi.org/10.22541/au.159612917.72148332 (2020).

    54.
    QGIS Geographic Information System https://qgis.org/en/site/ (Open Source Geospatial Foundation Project, 2010).

    55.
    Chao, A., Wang, Y. T. & Jost, L. Entropy and the species accumulation curve: a novel entropy estimator via discovery rates of new species. Methods Ecol. Evol. 4, 1091–1100 (2013).
    Google Scholar 

    56.
    Strahler, A. N. Quantitative analysis of watershed geomorphology. Trans. AGU 38, 913–920 (1957).
    Google Scholar 

    57.
    R: A Language And Environment For Statistical Computing Version 4.0.0 (2020-04-24) https://www.r-project.org/ (R Foundation for Statistical Computing, 2020).

    58.
    Signorell, A. et al. DescTools: tools for descriptive statistics. R package version 0.99.37 https://andrisignorell.github.io/DescTools/ (2020).

    59.
    Januchowski-Hartley, S. R. et al. Restoring aquatic ecosystem connectivity requires expanding inventories of both dams and road crossings. Front. Ecol. Environ. 11, 211–217 (2013).
    Google Scholar 

    60.
    Schmutz, S. & Moog, O. in Riverine Ecosystem Management 111–127 (Springer, 2018).

    61.
    European Environment Agency CORINE Land Cover (CLC) Version 20 https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-corine (2012).

    62.
    European Commission Global Human Settlement—GHS Population Grid https://ghsl.jrc.ec.europa.eu/ghs_pop.php (2015).

    63.
    European Environment Agency EU-DEM v1.1, https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1 (Copernicus Land Monitoring Service, 2016).

    64.
    Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).
    ADS  Google Scholar 

    65.
    Louppe, G., Wehenkel, L., Sutera, A. & Geurts, P. in Advances in Neural Information Processing Systems (eds Burges, C. J. C. et al.) 431–439 (Neural Information Processing Systems Foundation, 2013).

    66.
    National Inventory of Dams http://nid.usace.army.mil/ (2018).

    67.
    Yoshimura, C., Omura, T., Furumai, H. & Tockner, K. Present state of rivers and streams in Japan. River Res. Appl. 21, 93–112 (2005).
    Google Scholar 

    68.
    Brazil Dams Safety Report http://www.snisb.gov.br/portal/snisb/relatorio-anual-de-seguranca-de-barragem/2019/rsb19-v0.pdf (National Water Agency (ANA), Brazil, 2020).

    69.
    World Commission on Dams Dams and Development: A New Framework for Decision Making https://pubs.iied.org/pdfs/9126IIED.pdf (Earthscan Publications, 2000).

    70.
    International Rivers. The True Cost of Hydropower in China. https://www.internationalrivers.org/wp-content/uploads/sites/86/2020/06/truecostofhydro_en_small.pdf (2014).

    71.
    Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Trans. AGU 89, 93–94 (2008).
    ADS  Google Scholar  More

  • in

    Ecological niche partitioning in a fragmented landscape between two highly specialized avian flush-pursuit foragers in the Andean zone of sympatry

    1.
    Patterson, B. D., Stotz, D. F., Solari, S., Fitzpatrick, J. W. & Pacheco, V. Contrasting patterns of elevational zonation for birds and mammals in the Andes of southeastern Peru. J. Biogeogr. 25, 593–607 (1998).
    Article  Google Scholar 
    2.
    Cadena, C. D. et al. Latitude, elevational climatic zonation and speciation in New World vertebrates. Proc. R. Soc. B 279, 194–201 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Diamond, J. M. Distributional ecology of New Guinea birds: recent ecological and biogeographical theories can be tested on the bird communities of New Guinea. Science 179, 759–769 (1973).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Terborgh, J. & Weske, J. S. The role of competition in the distribution of Andean birds. Ecology 56, 562–576 (1975).
    Article  Google Scholar 

    5.
    Garcia-Moreno, J., Arctander, P. & Fjeldsa, J. Strong diversification at the treeline among Metallura hummingbirds. Auk 116, 702–711 (1999).
    Article  Google Scholar 

    6.
    Freeman, B. G. Competitive interactions upon secondary contact drive elevational divergence in tropical birds. Am. Nat. 186, 470–479 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Cadena, C. D. Testing the role of interspecific competition in the evolutionary origin of elevational zonation: an example with Buarremon Brush-finches (Aves, Emberizidae) in the neotropical mountains. Evolution 61, 1120–1136 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    8.
    Curson, J. & de Juana, E. Spectacled redstart (Myioborus melanocephalus), version 1.0. In Birds of the World (eds del Hoyo, J. et al.) (Cornell Lab of Ornithology, Ithaca, 2020). https://doi.org/10.2173/bow.spered1.01.
    Google Scholar 

    9.
    Harrod, W. D. & Mumme, R. L. Slate-throated redstart (Myioborus miniatus), version 1.0. In Birds of the World (ed. Schulenberg, T. S.) (Cornell Lab of Ornithology, Ithaca, 2020). https://doi.org/10.2173/bow.sltred.01.
    Google Scholar 

    10.
    Remsen, J. V. Jr. & Robinson, S. K. A classification scheme for foraging behavior of birds in terrestrial habitats. Stud. Avian Biol. 13, 144–160 (1990).
    Google Scholar 

    11.
    Jimenez, D. A bird forages through a tree. Elevation: 2263 m. Movie clip at https://macaulaylibrary.org/asset/201110671, added to IBC (Internet Bird Collection) on June 23, 2019; accessed on 26 July, 2020 through Slate-throated Redstart (Myioborus miniatus), version 1.0. (Harrod, W. D. & Mumme R. L.) in Birds of the World (ed. Schulenberg, T. S.); https://doi.org/10.2173/bow.sltred.01 (Cornell Lab of Ornithology, 2016)

    12.
    Jimenez, D. Bird looking for food. Elevation: 2663 m. Movie clip at IBC (Internet Bird Collection (https://macaulaylibrary.org/asset/201955691); Added to IBC on 23 June, 2016; accessed on 26 July, 2020 through Slate-throated Redstart (Myioborus miniatus), version 1.0. (Harrod, W. D. & Mumme R. L.) in Birds of the World (ed. Schulenberg, T. S.); https://doi.org/10.2173/bow.sltred.01 (Cornell Lab of Ornithology, 2016).

    13.
    Jablonski, P. G. A rare predator exploits prey escape behavior: the role of tail fanning and plumage contrast in foraging of the painted redstart (Myioborus pictus). Behav. Ecol. 10, 7–14 (1999).
    Article  Google Scholar 

    14.
    Jablonski, P. G. Searching for conspicuous versus cryptic prey: search rates of flush-pursuing versus substrate-gleaning birds. Condor 104, 657–661 (2002).
    Article  Google Scholar 

    15.
    Jablonski, P. G. et al. Habitat-specific sensory-exploitative signals in birds: propensity of dipteran prey to cause evolution of plumage variation in flush-pursuit birds. Evolution 60, 2633–2642 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Jablonski, P. G., Lee, S. D. & Jerzak, L. Innate plasticity of a predatory behavior: nonlearned context dependence of avian flush-displays. Behav. Ecol. 6, 925–932 (2006).
    Article  Google Scholar 

    17.
    Mumme, R. L. Scare tactics in a Neotropical warbler: white tail feathers enhance flush-pursuit foraging performance in the Slate-throated redstart (Myioborus miniatus). Auk 119, 1024–1035 (2002).
    Google Scholar 

    18.
    Mumme, R. L., Galatowitsch, M. L., Jablonski, P. G., Stawarczyk, T. M. & Cygan, J. P. Evolutionary significance of geographic variation in a plumage-based foraging adaptation: an experimental test in the Slate-throated redstart (Myioborus miniatus). Evolution 60, 1086–1097 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Perez-Eman, J. L., Mumme, R. L. & Jablonski, P. G. Phylogeography and adaptive plumage evolution in Central American subspecies of the slate-throated redstart (Myioborus miniatus). Ornithol. Monogr. 67, 90–102 (2010).
    Article  Google Scholar 

    20.
    Dawkins, R. The Extended Phenotype (Oxford University Press, Oxford, 1983).
    Google Scholar 

    21.
    Jablonski, P. G. & Lee, S. D. Effects of visual stimuli, substrate borne vibrations and air current stimuli on escape reactions in insect prey of flush-pursuing birds and their implications for evolution of flush-pursuers. Behaviour 143, 303–324 (2006).
    Article  Google Scholar 

    22.
    Jablonski, P. G. & Strausfeld, N. J. Exploitation by a recent avian predator of an ancient arthropod escape circuit: prey sensitivity and elements of the displays by predators. Brain Behav. Evol. 56, 94–106 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Jablonski, P. G. & Strausfeld, N. J. Exploitation of an ancient escape circuit by an avian predator: relationships between taxon-specific prey escape circuits and the sensitivity to visual cues from the predator. Brain Behav. Evol. 58, 218–240 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Boles, W. Black fantail (Rhipidura atra), version 1.0. In Birds of the World (eds del Hoyo, J. et al.) (Cornell Lab of Ornithology, Ithaca, 2020). https://doi.org/10.2173/bow.blafan1.01.
    Google Scholar 

    25.
    Boles, W. Dimorphic fantail (Rhipidura brachyrhyncha), version 1.0. In Birds of the World (eds del Hoyo, J. et al.) (Cornell Lab of Ornithology, Ithaca, 2020). https://doi.org/10.2173/bow.dimfan1.01.
    Google Scholar 

    26.
    Moeliker, K. Blue-headed crested-flycatcher (Trochocercus nitens), version 1.0. In Birds of the World (eds del Hoyo, J. et al.) (Cornell Lab of Ornithology, Ithaca, 2020). https://doi.org/10.2173/bow.bhcfly1.01.
    Google Scholar 

    27.
    Clement, P. African blue flycatcher (Elminia longicauda), version 1.0. In Birds of the World (eds del Hoyo, J. et al.) (Cornell Lab of Ornithology, Ithaca, 2020). https://doi.org/10.2173/bow.afbfly1.01.
    Google Scholar 

    28.
    Horak, D. et al. Forest structure determines spatial changes in avian communities along an elevational gradient in tropical Africa. J. Biogeogr. 46, 2466–2478 (2019).
    Article  Google Scholar 

    29.
    Curson, J., Quinn, D. & Beadle, D. New World Warblers (Christopher Helm, London, 1994).
    Google Scholar 

    30.
    Perez-Eman, J. L. Molecular phylogenetics and biogeography of the Neotropical redstarts (Myioborus, Aves, Parulidae). Mol. Phylogen. Evol. 37, 511–528 (2005).
    CAS  Article  Google Scholar 

    31.
    Ridgely, R. S. & Tudor, G. Birds of South America: Passerines (Christopher Helm, London, 2009).
    Google Scholar 

    32.
    Hilbie, C. & Block, N. L. Collared redstart (Myioborus torquatus), version 1.0. In Birds of the World (ed. Schulenberg, T. S.) (Cornell Lab of Ornithology, Ithaca, 2020). https://doi.org/10.2173/bow.colred1.01.
    Google Scholar 

    33.
    Curson, J., del Hoyo, J., Bonan, A., Collar, N. & Kirwan, G. M. Golden-fronted redstart (Myioborus ornatus), version 1.0. In Birds of the World (eds Billerman, S. M. et al.) (Cornell Lab of Ornithology, Ithaca, 2020). https://doi.org/10.2173/bow.gofred1.01.
    Google Scholar 

    34.
    Curson, J. White-fronted redstart (Myioborus albifrons), version 1.0. In Birds of the World (eds del Hoyo, J. et al.) (Cornell Lab of Ornithology, Ithaca, 2020). https://doi.org/10.2173/bow.whfred2.01.
    Google Scholar 

    35.
    Price, T. Speciation in Birds (Roberts and Company, Greenwood Village, 2008).
    Google Scholar 

    36.
    Cadena, C. D. & Loiselle, B. A. Limits to elevational distributions in two species of emberizine finches: disentangling the role of interspecific competition, autoecology, and geographic variation in the environment. Ecography 30, 491–504 (2007).
    Article  Google Scholar 

    37.
    Bussman, R. W. The montane forests of Reserva Biologica San Francisco (Zamora-Chinchipe, Ecuador) Vegetation zonation and natural regeneration. Erde 132, 9–25 (2001).
    Google Scholar 

    38.
    Bussman, R. W. The vegetation of reserva biologica San Francisco, Zamora-Chinchipe, Southern Ecuador—a phytosociological synthesis. In Conservacion de Bioriversidad an los Andes y la Amazonia. Conservation of Biodiversity in the Andes and the Amazon, Cusco, 24–28.09.2001. Memorias del Congreso—Congress Proceedings (eds Bussmann, R. W. & Lange, S.) 71–175 (INKA Cusco, Cuzco, 2002).
    Google Scholar 

    39.
    Ridgely, R. S. & Greenfield, P. J. The Birds of Ecuador (Cornell Univ. Press, Ithaca, 2001).
    Google Scholar 

    40.
    Google. Cascadas de Nambillo by Brian Driscoll. Google Street View, Jul 2018. Accessed 6 August 2020. https://goo.gl/maps/cTv5Cf34LvZV33yTA (2018).

    41.
    Google. Cabanas San Isidro by Daniel Zurita Arthos. Google Street View, Sep 2018.Accessed 6 August 2020. https://goo.gl/maps/NHqLxRMsngRwDbto8 (2018).

    42.
    Google. Milagrosa Waterfall by Elizabeth Clark. Google Street View, Mar 2018. Accessed 6 August 2020. https://goo.gl/maps/SfTW8J8xDVDnpBCC6 (2018).

    43.
    Shopland, J. M. Facultative following of mixed species flocks by two species of neotropical warbler. PhD Dissertation. University of Chicago (1985).

    44.
    Stiles, F. G. & Skutch, A. F. A Guide to the Birds of Costa Rica (Cornell Univ. Press, Ithaca, 1989).
    Google Scholar 

    45.
    Schulenberg, T. S., Stotz, D. F., Lane, D. F., O’Neill, J. P. & Parker, T. A. Birds of Peru (Princeton Univ. Press, Ithaca, 2010).
    Google Scholar 

    46.
    Sullivan, B. L. et al. eBird: a citizen-based bird observation network in the biological sciences. Biol. Conserv. 142, 2282–2292 (2009).
    Article  Google Scholar 

    47.
    eBird. eBird: An online database of bird distribution and abundance [web application]. eBird, Cornell Lab of Ornithology, Ithaca, New York. Available: http://www.ebird.org. Accessed 24 July 2020 (2017).

    48.
    Greeney, H. F. et al. Nesting ecology of the Spectacled Whitestart in Ecuador. Ornitol. Neotrop. 19, 335–344 (2008).
    Google Scholar 

    49.
    Merkord, C. L. Seasonality and Elevational Migration in an ANDEAN BIRD COMMUNITY. PhD Thesis, University of Missouri-Columbia, pp. 154 (2010)

    50.
    Nitta, B. Altitudinal Distribution and Niche Partitioning of Two Redstart Species in Monteverde (Parulidae). Digital Collections > Tropical Ecology Collection [Monteverde Institute], https://digital.lib.usf.edu/?m39.519 (2009).

    51.
    Shopland, J. M. Facultative following of mixed species flocks by two species of Neotropical warbler. Ph.D. Thesis, University of Chicago, Chicago (1985)

    52.
    Brehm, G., Sussenbach, D. & Fiedler, K. Unique elevational diversity patterns of geometrid moths in an Andean montane forest. Ecography 26, 456–466 (2003).
    Article  Google Scholar 

    53.
    Pyrcz, T. W., Wojtusiak, J. & Garlacz, R. Diversity and distribution patterns of Pronophilina butterflies (Lepidoptera: Nymphaliae: Satyrinae) along an altitudinal transect in North-Western Ecuador. Neotrop. Entomol. 38, 716–726 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Brehm, G. & Fiedler, K. Diversity and community structure of geometrid moths of disturbed habitat in a montane area in the Ecuadorian Andes. J. Res. Lepidoptera 38, 1–14 (2005).
    Google Scholar 

    55.
    Janzen, D. H. Sweep samples of tropical foliage insects: effects of seasons, vegetation types, elevation, time of day, and insularity. Ecology 54, 687–708 (1973).
    Article  Google Scholar 

    56.
    Hilt, N. & Fiedler, K. Diversity and composition of Arctiidae moth ensembles along a successional gradient in the Ecuadorian Andes. Divers. Distrib. 11, 387–398 (2005).
    Article  Google Scholar 

    57.
    Harmackova, L., Remesova, E. & Remes, V. Specialization and niche overlap across spatial scales: revealing ecological factors shaping species richness and coexistence in Australian songbirs. J. Anim. Ecol. 88, 1766–1776 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    58.
    Freeman, B. G., Class Freeman, A. M. & Hochachka, W. M. Asymmetric interspecific aggression in New Guinean songbirds that replace one another along an elevational gradient. Ibis 158, 726–737 (2016).
    Article  Google Scholar 

    59.
    Pyrcz, T. W. & Wojtusiak, J. The vertical distribution of pronophilinae butterflies (Nymphalidae, Satyrinae) along an elevational transect in Monte Zerpa (Cordillera de Merida, Venezuela) with remarks on their diversity and parapatric distribution. Glob. Ecol. Biogeogr. 11, 211–221 (2002).
    Article  Google Scholar 

    60.
    Brehm, G., Zeuss, D. & Colwell, R. K. Moth body size increases with elevation along a complete tropical elevational gradient for two hyperdiverse clades. Ecography 42, 632–642 (2019).
    Article  Google Scholar 

    61.
    Robbins, M. B. et al. Abra Maruncunca, dpto. Puno, Peru, revisited: vegetation cover and avifauna changes over a 30-year period. Bull. B.O.C 133, 31–51 (2013).
    Google Scholar 

    62.
    Pouds, J. A., Fogden, M. P. L. & Campbell, J. H. Biological response to climate change on a tropical mountain. Nature 398, 611–615 (1999).
    ADS  Article  CAS  Google Scholar 

    63.
    Swenson, J. J. et al. Plant and animal endemism in the eastern Andean slope: challenges to conservation. BMC Ecol. 12, 1. https://doi.org/10.1186/1472-6785-12-1 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    64.
    Valencia, R. Composition and structure of an Andean forest fragment in eastern Ecuador. In Biodiversity and Conservation of Neotropical Montane Forests (eds Churchill, S. et al.) 239–249 (New York Botanical Garden, New York, 1995).
    Google Scholar 

    65.
    Pollard, J. H. On distance estimators of density in randomly distributed forest. Biometrics 27, 991–1002 (1971).
    Article  Google Scholar 

    66.
    Levins, R. Evolution in Changing Environment (Princeton University Press, Princeton, 1968).
    Google Scholar 

    67.
    Pianka, E. R. Niche overlap and diffuse competition. Proc. Nat. Acad. Sci. U.S.A. 71, 2142–2145 (1974).
    ADS  Article  Google Scholar 

    68.
    Sokal, R. R. & Rohlf, F. J. Biometry (Freeman and Co., New York, 1997).
    Google Scholar 

    69.
    McLachlan, G. Discriminant Analysis and Statistical Pattern Recognition (Wiley, Hobolken, 2004).
    Google Scholar 

    70.
    StatSoft Inc. Electronic Statistics Textbook. http://www.statsoft.com/textbook/ (Tulsa, OK: StatSoft. WEB, 2013).

    71.
    Molga, M. Meteorologia rolnicza. PWRiL, Warszawa [in Polish; English translation: Agricultural meteorology. Warszawa: Centralny Instytut Informacji Naukowo-Technicznej i Ekonomicznej, translated by M. Widymski and L. Widymski. OCLC Number: 641437878, 1962], (1986).

    72.
    Nowakowski, J. J. Long-term variability of phenotypic traits in the Sedge Warbler (Acrocephalus schoenobaenus) population in the Biebrza Marshes—Adaptation to the changing environment [in Polish]. Dissertation and Monographs 168, 1–294 (Publishing House of the University of Warmia and Mazury, Olsztyn, 2011).

    73.
    Holm, S. A simple sequential rejective method procedure. Scand. J. Stat. 6, 65–70 (1979).
    MATH  Google Scholar 

    74.
    Nakagawa, S. A farewell to Bonferroni: the problems of low statistical power and publication bias. Behav. Ecol. 15, 1044–1045 (2004).
    Article  Google Scholar 

    75.
    Akaike, H. Information theory and an extension of the maximum likelihood principle. In 2nd Int Symposium on Information Theory (eds Petrov, B. N. & Csaki, F.) 267–281 (Akademia Kiado, Budapest, 1973).
    Google Scholar 

    76.
    Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical Information-Theoretic Approach (Springer, New York, 1998).
    Google Scholar  More

  • in

    Identifying likely transmissions in Mycobacterium bovis infected populations of cattle and badgers using the Kolmogorov Forward Equations

    1.
    Barrat, A., Barthélemy, M., Pastor-Satorras, R. & Vespignani, A. The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA 101, 3747–3752 (2004).
    ADS  CAS  PubMed  MATH  Article  Google Scholar 
    2.
    Colizza, V., Barthélemy, M., Barrat, A. & Vespignani, A. Epidemic modeling in complex realities. Comptes Rendus Biol. 330, 364–374 (2007).
    Article  Google Scholar 

    3.
    Craft, M. E., Volz, E., Packer, C. & Meyers, L. A. Distinguishing epidemic waves from disease spillover in a wildlife population. Proc. R. Soc. B Biol. Sci. 276, 1777–1785 (2009).
    Article  Google Scholar 

    4.
    Vernon, M. C. & Keeling, M. J. Representing the UK’s cattle herd as static and dynamic networks. Proc. Biol. Sci. 276, 469–476 (2009).
    PubMed  Google Scholar 

    5.
    Kao, R. R., Green, D. M., Johnson, J. & Kiss, I. Z. Disease dynamics over very different time-scales: foot-and-mouth disease and scrapie on the network of livestock movements in the UK. J. R. Soc. Interface 4, 907–916 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    6.
    Craft, M. E. Infectious disease transmission and contact networks in wildlife and livestock. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140107–20140107 (2015).
    Article  Google Scholar 

    7.
    Chiner-Oms, Á. & Comas, I. Large genomics datasets shed light on the evolution of the Mycobacterium tuberculosis complex. Infect. Genet. Evol. https://doi.org/10.1016/j.meegid.2019.02.028 (2019).
    Article  PubMed  Google Scholar 

    8.
    Köser, C. U. et al. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N. Engl. J. Med. 366, 2267–2275 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    9.
    Roetzer, A. et al. Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med. 10, e1001387 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    Kao, R. R., Haydon, D. T., Lycett, S. J. & Murcia, P. R. Supersize me: how whole-genome sequencing and big data are transforming epidemiology. Trends Microbiol. 22, 282–291 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Wymant, C. et al. PHYLOSCANNER: Inferring transmission from within- and between-host pathogen genetic diversity. Mol. Biol. Evol. 35, 719–733 (2018).
    CAS  PubMed  Article  Google Scholar 

    12.
    Gutiérrez, S., Michalakis, Y. & Blanc, S. Virus population bottlenecks during within-host progression and host-to-host transmission. Curr. Opin. Virol. 2, 546–555 (2012).
    PubMed  Article  CAS  Google Scholar 

    13.
    Buckee, C. O. F., Koelle, K., Mustard, M. J. & Gupta, S. The effects of host contact network structure on pathogen diversity and strain structure. Proc. Natl. Acad. Sci. USA 101, 10839–10844 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    14.
    Rasmussen, D. A., Ratmann, O. & Koelle, K. Inference for nonlinear epidemiological models using genealogies and time series. PLoS Comput. Biol. 7, e1002136 (2011).
    ADS  MathSciNet  CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Rasmussen, D. A., Volz, E. M. & Koelle, K. Phylodynamic inference for structured epidemiological models. PLoS Comput. Biol. 10, e1003570 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    16.
    Rasmussen, D. A., Kouyos, R., Günthard, H. F. & Stadler, T. Phylodynamics on local sexual contact networks. PLoS Comput. Biol. 13, 1–23 (2017).
    Article  CAS  Google Scholar 

    17.
    Cottam, E. M. et al. Integrating genetic and epidemiological data to determine transmission pathways of foot-and-mouth disease virus. Proc. R. Soc. B Biol. Sci. 275, 887–895 (2008).
    Article  Google Scholar 

    18.
    Ypma, R. J. F. et al. Unravelling transmission trees of infectious diseases by combining genetic and epidemiological data. Proc. R. Soc. B Biol. Sci. 279, 444–450 (2012).
    CAS  Article  Google Scholar 

    19.
    Ypma, R. J. F., van Ballegooijen, W. M. & Wallinga, J. Relating phylogenetic trees to transmission trees of infectious disease outbreaks. Genetics 195, 1055–1062 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Morelli, M. J. et al. A Bayesian inference framework to reconstruct transmission trees using epidemiological and genetic data. PLoS Comput. Biol. 8, e1002768 (2012).
    MathSciNet  CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Lau, M. S. Y., Marion, G., Streftaris, G. & Gibson, G. A systematic Bayesian integration of epidemiological and genetic data. PLoS Comput. Biol. 11, 1–27 (2015).
    Article  CAS  Google Scholar 

    22.
    De Maio, N., Wu, C. H. & Wilson, D. J. SCOTTI: efficient reconstruction of transmission within outbreaks with the structured coalescent. PLoS Comput. Biol. 12, 1–23 (2016).
    Google Scholar 

    23.
    Li, L. M., Grassly, N. C. & Fraser, C. Quantifying transmission heterogeneity using both pathogen phylogenies and incidence time series. Mol. Biol. Evol. 34, 2982–2995 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Romero-Severson, E. O., Bulla, I. & Leitner, T. Phylogenetically resolving epidemiologic linkage. Proc. Natl. Acad. Sci. USA 113, 2690–2695 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    25.
    Firestone, S. M. et al. Reconstructing foot-and-mouth disease outbreaks: a methods comparison of transmission network models. Sci. Rep. 9, 4809 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Campbell, F., Strang, C., Ferguson, N., Cori, A. & Jombart, T. When are pathogen genome sequences informative of transmission events?. PLoS Pathog. 14, 1–21 (2018).
    Google Scholar 

    27.
    Allen, A. R. One bacillus to rule them all? Investigating broad range host adaptation in Mycobacterium bovis. Infect. Genet. Evol. 53, 68–76 (2017).
    PubMed  Article  Google Scholar 

    28.
    Biek, R. et al. Whole genome sequencing reveals local transmission patterns of Mycobacterium bovis in sympatric cattle and badger populations. PLoS Pathog. 8, e1003008 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Glaser, L. et al. Descriptive epidemiology and whole genome sequencing analysis for an outbreak of bovine tuberculosis in beef cattle and white-tailed deer in northwestern Minnesota. PLoS ONE 11, e0145735 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    30.
    Orloski, K., Robbe-Austerman, S., Stuber, T., Hench, B. & Schoenbaum, M. Whole genome sequencing of Mycobacterium bovis isolated from livestock in the United States, 1989–2018. Front. Vet. Sci. 5, 1–10 (2018).
    Article  Google Scholar 

    31.
    Palmer, M. V. Mycobacterium bovis: characteristics of wildlife reservoir hosts. Transbound. Emerg. Dis. 60, 1–13 (2013).
    PubMed  Article  Google Scholar 

    32.
    Keeling, M. J. & Ross, J. V. On methods for studying stochastic disease dynamics. J. R. Soc. Interface 5, 171–181 (2008).
    CAS  PubMed  Article  Google Scholar 

    33.
    Sharkey, K. J. Deterministic epidemiological models at the individual level. J. Math. Biol. 57, 311–331 (2008).
    MathSciNet  PubMed  MATH  Article  Google Scholar 

    34.
    Stollenwerk, N. & Jansen, V. A. A. Meningitis, pathogenicity near criticality: the epidemiology of meningococcal disease as a model for accidental pathogens. J. Theor. Biol. 222, 347–359 (2003).
    PubMed  MATH  Article  Google Scholar 

    35.
    Delahay, R. J. et al. Long-term temporal trends and estimated transmission rates for Mycobacterium bovis infection in an undisturbed high-density badger (Meles meles) population. Epidemiol. Infect. 141, 1445–1456 (2013).
    CAS  PubMed  Article  Google Scholar 

    36.
    Crispell, J. et al. Combining genomics and epidemiology to analyse bi-directional transmission of Mycobacterium bovis in a multi-host system. Elife https://doi.org/10.7554/eLife.45833.001 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    37.
    Ford, C. B. et al. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat. Genet. 43, 482–488 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Colangeli, R. et al. Whole genome sequencing of Mycobacterium tuberculosis reveals slow growth and low mutation rates during latent infections in humans. PLoS ONE 9, 1–9 (2014).
    MathSciNet  Article  CAS  Google Scholar 

    39.
    Didelot, X., Fraser, C., Gardy, J., Colijn, C. & Malik, H. Genomic infectious disease epidemiology in partially sampled and ongoing outbreaks. Mol. Biol. Evol. 34, 997–1007 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Lycett, S. J. et al. Role for migratory wild birds in the global spread of avian influenza H5N8. Science 354, 213–217 (2016).
    Article  CAS  Google Scholar 

    41.
    Saulnier, E., Gascuel, O. & Alizon, S. Inferring epidemiological parameters from phylogenies using regression-ABC: a comparative study. PLoS Comput. Biol. 13, 1–31 (2017).
    Article  CAS  Google Scholar 

    42.
    De Maio, N., Worby, C. J., Wilson, D. J. & Stoesser, N. Bayesian reconstruction of transmission within outbreaks using genomic variants. PLoS Comput. Biol. 14, 1–23 (2018).
    Google Scholar 

    43.
    Pybus, O. G. & Rambaut, A. Evolutionary analysis of the dynamics of viral infectious disease. Nat. Rev. Genet. 10, 540–550 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Biek, R., Pybus, O. G., Lloyd-Smith, J. O. & Didelot, X. Measurably evolving pathogens in the genomic era. Trends Ecol. Evol. 30, 306–313 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Brooks-Pollock, E., Roberts, G. O. & Keeling, M. J. A dynamic model of bovine tuberculosis spread and control in Great Britain. Nature 511, 228–231 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    46.
    Campbell, F., Cori, A., Ferguson, N. & Jombart, T. Bayesian inference of transmission chains using timing of symptoms, pathogen genomes and contact data. PLOS Comput. Biol. 15, e1006930 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    Robertson, A., Palphramand, K. L., Carter, S. P. & Delahay, R. J. Group size correlates with territory size in European badgers: implications for the resource dispersion hypothesis?. Oikos 124, 507–514 (2015).
    Article  Google Scholar 

    48.
    Roper, T. Badger (Collins, London, 2010).
    Google Scholar 

    49.
    Drewe, J. A., Tomlinson, A. J., Walker, N. J. & Delahay, R. J. Diagnostic accuracy and optimal use of three tests for tuberculosis in live badgers. PLoS ONE 5, e11196 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Walker, T. M. et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect. Dis. 13, 137–146 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Álvarez, J. et al. Research in Veterinary Science Bovine tuberculosis : within-herd transmission models to support and direct the decision-making process. Res. Vet. Sci. 97, S61–S68 (2014).
    PubMed  Article  Google Scholar 

    52.
    Rossi, G. et al. Epidemiological modelling for the assessment of bovine tuberculosis surveillance in the dairy farm network in Emilia-Romagna (Italy). Epidemics 11, 62–70 (2015).
    PubMed  Article  Google Scholar 

    53.
    Kao, R. R., Roberts, M. G. & Ryan, T. J. A model of bovine tuberculosis control in domesticated cattle herds. Proc. R. Soc. B Biol. Sci. 264, 1069–1076 (1997).
    ADS  CAS  Article  Google Scholar 

    54.
    Conlan, A. J. K. et al. Estimating the hidden burden of bovine tuberculosis in Great Britain. PLoS Comput. Biol. 8, e1002730 (2012).
    MathSciNet  CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    O’Hare, A., Orton, R. J., Bessell, P. R. & Kao, R. R. Estimating epidemiological parameters for bovine tuberculosis in British cattle using a Bayesian partial-likelihood approach. Proc. R. Soc. B Biol. Sci. 281, 20140248 (2014).
    Article  Google Scholar 

    56.
    Rossi, G., Aubry, P., Dubé, C. & Smith, R. L. The spread of bovine tuberculosis in Canadian shared pastures: data, model, and simulations. Transbound. Emerg. Dis. 66, 562–577 (2019).
    PubMed  Article  Google Scholar 

    57.
    R Core Team. R: A Language and Environment for Statistical Computing. (2018).

    58.
    Soetaert, K., Petzoldt, T. & Setzer, R. W. Solving differential equations in R: package deSolve. J. Stat. Softw. 33, 1–25 (2010).
    Google Scholar 

    59.
    Lawes, J. R. et al. Bovine TB surveillance in Great Britain in 2014. Vet. Rec. 178, 310–315 (2016).
    CAS  PubMed  Article  Google Scholar 

    60.
    Trewby, H. et al. Use of bacterial whole-genome sequencing to investigate local persistence and spread in bovine tuberculosis. Epidemics 14, 26–35 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    61.
    Crispell, J. et al. Using whole genome sequencing to investigate transmission in a multi-host system: bovine tuberculosis in New Zealand. BMC Genom. 18, 180 (2017).
    Article  CAS  Google Scholar 

    62.
    Salvador, L. C. M. et al. Disease management at the wildlife-livestock interface: using whole-genome sequencing to study the role of elk in Mycobacterium bovis transmission in Michigan. USA. Mol. Ecol. https://doi.org/10.1111/mec.15061 (2019).
    Article  PubMed  Google Scholar 

    63.
    Brooks-Pollock, E. et al. Age-dependent patterns of bovine tuberculosis in cattle. Vet. Res. 44, 1 (2013).
    Article  Google Scholar  More