More stories

  • in

    Endophytic fungi protect tomato and nightshade plants against Tuta absoluta (Lepidoptera: Gelechiidae) through a hidden friendship and cryptic battle

    1.
    Ekesi, S., Chabi-Olaye, A., Subramanian, S. & Borgemeister, C. Horticultural pest management and the African economy: successes, challenges and opportunities in a changing global environment. Acta Hortic. 911, 165–183 (2011).
    Article  Google Scholar 
    2.
    Pratt, C. F., Constantine, K. L. & Murphy, S. T. Economic impacts of invasive alien species on African smallholder livelihoods. Glob. Food Secur. 14, 31–37 (2017).
    Article  Google Scholar 

    3.
    Desneux, N., Luna, M. G., Guillemaud, T. & Urbaneja, A. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J. Pest Sci. 84, 403–408 (2011).
    Article  Google Scholar 

    4.
    Idriss, G. E. A. et al. Host range and effects of plant species on preference and fitness of Tuta absoluta (Lepidoptera: Gelechiidae). J. Econ. Entomol. https://doi.org/10.1093/jee/toaa002 (2020).
    Article  PubMed  Google Scholar 

    5.
    Aigbedion-Atalor, P. O. et al. The South America tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), spreads its wings in Eastern Africa: distribution and socioeconomic impacts. J. Econ. Entomol. 112, 2797–2807 (2019).
    PubMed  Article  Google Scholar 

    6.
    Biondi, A., Guedes, R. N. C., Wan, F.-H. & Desneux, N. Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Annu. Rev. Entomol. 63, 239–258 (2018).
    CAS  PubMed  Article  Google Scholar 

    7.
    Desneux, N. et al. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J. Pest Sci. 83, 197–215 (2010).
    Article  Google Scholar 

    8.
    Guedes, R. N. C. C. et al. Insecticide resistance in the tomato pinworm Tuta absoluta: patterns, spread, mechanisms, management and outlook. J. Pest Sci. 92, 1329–1342 (2019).
    Article  Google Scholar 

    9.
    Dimbi, S., Maniania, N. K. & Ekesi, S. Horizontal transmission of Metarhizium anisopliae in fruit flies and effect of fungal infection on egg laying and fertility. Insects 4, 206–216 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    Maniania, N. K., Ekesi, S. & Dolinski, C. Entomopathogens routinely used in pest control strategies: orchards in tropical climate. In Microbial Control of Insect and Mite Pests: From Theory to Practice (Elsevier Inc., 2016). https://doi.org/10.1016/B978-0-12-803527-6.00018-4.

    11.
    Mweke, A. et al. Evaluation of the entomopathogenic fungi Metarhizium anisopliae, Beauveria bassiana and Isaria sp. for the management of Aphis craccivora (Hemiptera: Aphididdae). J. Econ. Entomol. 111, 1587–1594 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    12.
    Akutse, K. S. et al. Ovicidal effects of entomopathogenic fungal isolates on the invasive Fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Appl. Entomol. 143, 626–634 (2019).
    CAS  Article  Google Scholar 

    13.
    Akutse, K. S., Subramanian, S., Khamis, F. M., Ekesi, S. & Mohamed, S. A. Entomopathogenic fungus isolates for adult Tuta absoluta (Lepidoptera: Gelechiidae) management and their compatibility with Tuta pheromone. J. Appl. Entomol. https://doi.org/10.1111/jen.12812 (2020).
    Article  Google Scholar 

    14.
    Inglis, G. D., Goettel, M. S., Butt, T. M. & Strasser, H. Use of hyphomycetous fungi for managing insect pests. In Fungi as Biocontrol Agents: Progress, Problems and Potential (eds. Butt, T. M. & Magan, M.) 23–69 (2001). https://doi.org/10.1079/9780851993560.0023.

    15.
    Behie, S. W. & Bidochka, M. J. Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle. Appl. Environ. Microbiol. 80, 1553–1560 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    16.
    Akutse, K. S., Khamis, F. M., Ekesi, S., Wekesa, S. & Subramanian, S. Effect of endophytically-colonized tomato and nightshade host plants on life-history parameters of Tuta absoluta (Lepidoptera: Gelechiidae). (International Congress on Invertebrate Pathology and Microbial Control and 52nd Annual Meeting of the Society for Invertebrate Pathology & 17th Meeting of the IOBC‐WPRS Working Group “Microbial and Nematode Control of Invertebrate Pests”, 2019).

    17.
    Wilson, D. Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73, 274–276 (1995).
    Article  Google Scholar 

    18.
    Quesada-Moraga, E., Muñoz-Ledesma, F. J. & Santiago-Álvarez, C. Systemic protection of Papaver somniferum L. against Iraella luteipes (Hymenoptera: Cynipidae) by an endophytic strain of Beauveria bassiana (Ascomycota: Hypocreales). Environ. Entomol. 38, 723–730 (2009).
    CAS  PubMed  Article  Google Scholar 

    19.
    Barelli, L., Moonjely, S., Behie, S. W. & Bidochka, M. J. Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi. Plant Mol. Biol. 90, 657–664 (2016).
    CAS  PubMed  Article  Google Scholar 

    20.
    Latz, M. A. C., Jensen, B., Collinge, D. B. & Jørgensen, H. J. L. Endophytic fungi as biocontrol agents: elucidating mechanisms in disease suppression. Plant Ecol. Divers. 11, 555–567 (2018).
    Article  Google Scholar 

    21.
    Ownley, B. H. et al. Beauveria bassiana: endophytic colonization and plant disease control. J. Invertebr. Pathol. 98, 267–270 (2008).
    CAS  PubMed  Article  Google Scholar 

    22.
    Akello, J. & Sikora, R. Systemic acropedal influence of endophyte seed treatment on Acyrthosiphon pisum and Aphis fabae offspring development and reproductive fitness. Biol. Control 61, 215–221 (2012).
    Article  Google Scholar 

    23.
    Akutse, K. S., Maniania, N. K., Fiaboe, K. K. M., Van den Berg, J. & Ekesi, S. Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecol. 6, 293–301 (2013).
    Article  Google Scholar 

    24.
    Russo, M. L. et al. Endophytic effects of Beauveria bassiana on Corn (Zea mays) and its herbivore, Rachiplusia nu (Lepidoptera: Noctuidae). Insects 10, 2–9 (2019).
    Article  Google Scholar 

    25.
    Lahrmann, U. et al. Host-related metabolic cues affect colonization strategies of a root endophyte. Proc. Natl. Acad. Sci. USA 110, 13965–13970 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    26.
    Fadiji, A. E. & Babalola, O. O. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front. Bioeng. Biotechnol. 8, 1–20 (2020).
    Article  Google Scholar 

    27.
    Gathage, J. W. et al. Prospects of fungal endophytes in the control of Liriomyza leafminer flies in common bean Phaseolus vulgaris under field conditions. Biocontrol 61, 741–753 (2016).
    Article  Google Scholar 

    28.
    Muvea, A. M. et al. Colonization of onions by endophytic fungi and their impacts on the biology of Thrips tabaci. PLoS ONE 9, 1–7 (2014).
    Article  CAS  Google Scholar 

    29.
    Powell, W. A., Klingeman, W. E., Ownley, B. H. & Gwinn, K. D. Evidence of endophytic Beauveria bassiana in seed-treated tomato plants acting as a systemic entomopathogen to larval Helicoverpa zea (Lepidoptera: Noctuidae). J. Entomol. Sci. 44, 391–396 (2009).
    Article  Google Scholar 

    30.
    Klieber, J. & Reineke, A. The entomopathogen Beauveria bassiana has epiphytic and endophytic activity against the tomato leaf miner Tuta absoluta. J. Appl. Entomol. 140, 580–589 (2016).
    CAS  Article  Google Scholar 

    31.
    Resquín-romero, G., Garrido-jurado, I., Delso, C., Ríos-moreno, A. & Quesada-moraga, E. Transient endophytic colonizations of plants improve the outcome of foliar applications of mycoinsecticides against chewing insects. J. Invertebr. Pathol. 136, 23–31 (2016).
    PubMed  Article  CAS  Google Scholar 

    32.
    Mutune, B. et al. Fungal endophytes as promising tools for the management of bean stem maggot Ophiomyia phaseoli on beans Phaseolus vulgaris. J. Pest Sci. 89, 993–1001 (2016).
    Article  Google Scholar 

    33.
    Posada, F., Aime, M. C., Peterson, S. W., Rehner, S. A. & Vega, F. E. Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycol. Res. 111, 748–757 (2007).
    CAS  PubMed  Article  Google Scholar 

    34.
    Bing, L. A. & Lewis, L. C. Suppression of Ostrinia nubilalis (Hübner) (Lepidoptera: Pyralidae) by endophytic Beauveria bassiana (Balsamo) Vuillemin. Environ. Entomol. 20, 1207–1211 (1991).
    Article  Google Scholar 

    35.
    Behie, S. W., Jones, S. J., Bidochka, M. J. & Hyde, K. Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecol. 13, 112–119 (2015).
    Article  Google Scholar 

    36.
    Akello, J. et al. Beauveria bassiana (Balsamo) Vuillemin as an endophyte in tissue culture banana (Musa spp.). J. Invertebr. Pathol. 96, 34–42 (2007).
    PubMed  Article  Google Scholar 

    37.
    Posada, F. J. & Vega, F. E. A new method to evaluate the biocontrol potential of single spore isolates of fungal entomopathogens. J. Insect Sci. 5, 1–10 (2005).
    Article  Google Scholar 

    38.
    Demers, J. E., Gugino, B. K. & del Jiménez-Gasco, M. Highly diverse endophytic and soil Fusarium oxysporum populations associated with field-grown tomato plants. Appl. Environ. Microbiol. 81, 81–90 (2015).
    PubMed  Article  CAS  Google Scholar 

    39.
    Bogner, C. W. et al. Fungal root endophytes of tomato from Kenya and their nematode biocontrol potential. Mycol. Prog. 15, 1–17 (2016).
    Article  Google Scholar 

    40.
    Hardoim, P. R. et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79, 293–320 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Martin, J. T. Role of cuticle in the defense against plant disease. Annu. Rev. Phytopathol. 2, 81–100 (1964).
    Article  Google Scholar 

    42.
    Jensen, R. E., Enkegaard, A. & Steenberg, T. Increased fecundity of Aphis fabae on Vicia faba plants following seed or leaf inoculation with the entomopathogenic fungus Beauveria bassiana. PLoS ONE 14, 1–12 (2019).
    Google Scholar 

    43.
    Landa, B. B. et al. In-planta detection and monitorization of endophytic colonization by a Beauveria bassiana strain using a new-developed nested and quantitative PCR-based assay and confocal laser scanning microscopy. J. Invertebr. Pathol. 114, 128–138 (2013).
    CAS  PubMed  Article  Google Scholar 

    44.
    Bing, L. A. & Lewis, L. C. Endophytic Beauveria bassiana (Balsamo) Vuillemin in corn: The influence of the plant growth stage and Ostrinia nubilalis (Hubner). Biocontrol Sci. Technol. 2, 39–47 (1992).
    Article  Google Scholar 

    45.
    Greenfield, M. et al. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation. Biol. Control 95, 40–48 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    46.
    Card, S., Johnson, L., Teasdale, S. & Caradus, J. Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiol. Ecol. 92, 1–19 (2016).
    Article  CAS  Google Scholar 

    47.
    Philippot, L., Raaijmakers, J. M., Lemanceau, P. & Van Der Putten, W. H. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Publ. Gr. 11, 789–799 (2013).
    CAS  Google Scholar 

    48.
    Tumuhaise, V. et al. Pathogenicity and performance of two candidate isolates of Metarhizium anisopliae and Beauveria bassiana (Hypocreales: Clavicipitaceae) in four liquid culture media for the management of the legume pod borer Maruca vitrata (Lepidoptera: Crambidae). Int. J. Trop. Insect Sci. 35, 34–47 (2015).
    Article  Google Scholar 

    49.
    Branine, M., Bazzicalupo, A. & Branco, S. Biology and applications of endophytic insect-pathogenic fungi. PLoS Pathog. 15, 1–7 (2019).
    Article  CAS  Google Scholar 

    50.
    Barelli, L., Moreira, C. C. & Bidochka, M. J. Initial stages of endophytic colonization by Metarhizium involves rhizoplane colonization. Microbiology 164, 1531–1540 (2018).
    CAS  PubMed  Article  Google Scholar 

    51.
    Wyrebek, M., Huber, C., Sasan, R. K. & Bidochka, M. J. Three sympatrically occurring species of Metarhizium show plant rhizosphere specificity. Microbiology 157, 2904–2911 (2011).
    CAS  PubMed  Article  Google Scholar 

    52.
    Muvea, A. M. et al. Behavioral responses of Thrips tabaci Lindeman to endophyte-inoculated onion plants. J. Pest Sci. 88, 555–562 (2015).
    Article  Google Scholar 

    53.
    Slansky, F. Jr. Insect nutrition: an adaptationist’s perspective. Florida Entomol. 65, 45–71 (1982).
    Article  Google Scholar 

    54.
    Carroll, G. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69, 2–9 (1988).
    Article  Google Scholar 

    55.
    Allegrucci, N., Velazquez, M. S., Russo, M. L., Perez, E. & Scorsetti, A. C. Endophytic colonisation of tomato by the entomopathogenic fungus Beauveria bassiana: the use of different inoculation techniques and their effects on the tomato leafminer Tuta absoluta (Lepidoptera : Gelechiidae). J. Plant Prot. Res. 54, 331–337 (2017).
    Google Scholar 

    56.
    Barta, M. In planta bioassay on the effects of endophytic Beauveria strains against larvae of horse-chestnut leaf miner (Cameraria ohridella). Biol. Control 121, 88–98 (2018).
    Article  Google Scholar 

    57.
    Russo, M. L. et al. Effect of endophytic entomopathogenic fungi on soybean Glycine max (L.) Merr. growth and yield. J. King Saud Univ. Sci. 31, 728–736 (2018).
    Article  Google Scholar 

    58.
    Contreras-cornejo, H. A., Macías-rodríguez, L. & Larsen, J. The root endophytic fungus Trichoderma atroviride induces foliar herbivory resistance in maize plants. Appl. Soil Ecol. 124, 45–53 (2017).
    Article  Google Scholar 

    59.
    Contreras-Cornejo, H. A., Macías-Rodríguez, L., Del Val, E. & Larsen, J. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol. Ecol. 92, 1–17 (2016).
    Article  CAS  Google Scholar 

    60.
    Coppola, M. et al. Trichoderma harzianum enhances tomato indirect defense against aphids. Insect Sci. 24, 1025–1033 (2017).
    CAS  PubMed  Article  Google Scholar 

    61.
    Meera, M. S., Shivanna, M. B., Kageyama, K. & Hyakumachi, M. Persistence of induced systemic resistance in cucumber in relation to root colonization by plant growth promoting fungal isolates. Crop Prot. 14, 123–130 (1995).
    Article  Google Scholar 

    62.
    Lewis, L. C., Berry, E. C., Obrycki, J. J. & Bing, L. A. Aptness of insecticides (Bacillus thuringiensis and carbofuran ) with endophytic Beauveria bassiana, in suppressing larval populations of the European corn borer. Agric. Ecosyst. Environ. 57, 27–34 (1996).
    Article  Google Scholar 

    63.
    Qayyum, M. A., Wakil, W., Arif, M. J., Sahi, S. T. & Dunlap, C. A. Infection of Helicoverpa armigera by endophytic Beauveria bassiana colonizing tomato plants. Biol. Control 90, 200–207 (2015).
    Article  Google Scholar 

    64.
    Jallow, M. F. A., Dugassa-Gobena, D. & Vidal, S. Influence of an endophytic fungus on host plant selection by a polyphagous moth via volatile spectrum changes. Arthropod. Plant. Interact. 2, 53–62 (2008).
    Article  Google Scholar 

    65.
    Jaber, L. R. & Vidal, S. Fungal endophyte negative effects on herbivory are enhanced on intact plants and maintained in a subsequent generation. Ecol. Entomol. 35, 25–36 (2010).
    Article  Google Scholar 

    66.
    Davis, T. S., Crippen, T. L., Hofstetter, R. W. & Tomberlin, J. K. Microbial volatile emissions as insect semiochemicals. J. Chem. Ecol. 39, 840–859 (2013).
    CAS  PubMed  Article  Google Scholar 

    67.
    Silva, D. B., Bueno, V. H. P., Lins, J. C. & Van Lenteren, J. C. Life history data and population growth of Tuta absoluta at constant and alternating temperatures on two tomato lines. Bull. Insectol. 68, 223–232 (2015).
    Google Scholar 

    68.
    Pereyra, P. C. & Sánchez, N. E. Effect of two solanaceous plants on developmental and population parameters of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotrop. Entomol. 35, 671–676 (2006).
    PubMed  Article  Google Scholar 

    69.
    Dash, C. K. et al. Endophytic entomopathogenic fungi enhance the growth of Phaseolus vulgaris L. (Fabaceae) and negatively affect the development and reproduction of Tetranychus urticae Koch (Acari: Tetranychidae). Microb. Pathog. 125, 385–392 (2018).
    PubMed  Article  Google Scholar 

    70.
    Akello, J., Dubois, T., Coyne, D. & Kyamanywa, S. Endophytic Beauveria bassiana in banana (Musa spp.) reduces banana weevil (Cosmopolites sordidus) fitness and damage. Crop Prot. 27, 1437–1441 (2008).
    Article  Google Scholar 

    71.
    Golo, P. S. et al. Production of destruxins from Metarhizium spp. fungi in artificial medium and in endophytically colonized cowpea plants. PLoS ONE 9, 1–9 (2014).
    Article  CAS  Google Scholar 

    72.
    Goettel, M. S. & Inglis, D. G. Fungi: Hyphomycetes. Manual of Techniques in Insect Pathology (1997). https://doi.org/10.1016/B978-012432555-5/50013-0.

    73.
    Schulz, B., Guske, S., Dammann, U. & Boyle, C. Endophyte-host interactions. II. Defining symbiosis of the endophyte–host interaction. Symbiosis 25, 213–227 (1998).
    Google Scholar 

    74.
    Inglis, G. D., Enkerli, J. & Goettel, M. S. Laboratory Techniques Used for Entomopathogenic Fungi. Hypocreales. Manual of Techniques in Invertebrate Pathology (Elsevier, New York, 2012). https://doi.org/10.1016/B978-0-12-386899-2.00007-5
    Google Scholar 

    75.
    Petrini, O. & Fisher, P. J. Fungal endophytes in Salicornia perennis. Trans. Br. Mycol. Soc. 87, 647–651 (1986).
    Article  Google Scholar 

    76.
    Aigbedion-Atalor, P. O. et al. Host stage preference and performance of Dolichogenidea gelechiidivoris (Hymenoptera: Braconidae), a candidate for classical biological control of Tuta absoluta in Africa. Biol. Control 144, 1–8 (2020).
    Article  CAS  Google Scholar 

    77.
    Oliveira, F. A., da Silva, D. J. H., Leite, G. L. D., Jham, G. N. & Picanço, M. Resistance of 57 greenhouse-grown accessions of Lycopersicon esculentum and three cultivars to Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Sci. Hortic. (Amsterdam) 119, 182–187 (2009).
    CAS  Article  Google Scholar 

    78.
    Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).
    MathSciNet  MATH  Article  Google Scholar 

    79.
    De Mendiburu, F. agricolae: statistical procedures for agricultural research. R package version 1.3–2 https://CRAN.R-project.org/package=agricolae (2020).

    80.
    Therneau, T. A Package for Survival Analysis in R. R package version 3.1-12, https://CRAN.R-project.org/package=survival. (2020).

    81.
    Crawley, M. J. The R Book (Wiley, New York, 2007). https://doi.org/10.1002/9780470515075.
    Google Scholar 

    82.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2019).
    Google Scholar  More

  • in

    Antler cannibalism in reindeer

    1.
    McKintosh, E., Tabrizi, S. J. & Collinge, J. Prion diseases. J. Neuro. Virol. 9, 183–193 (2003).
    CAS  Google Scholar 
    2.
    Chen, C. & Dong, X. P. Epidemiological characteristics of human prion diseases. Infect. Dis. Poverty 5, 47 (2016).
    Article  Google Scholar 

    3.
    Huor, A. et al. The emergence of classical BSE from atypical/Nor98 scrapie. PNAS 116, 26853–26862 (2019).
    CAS  Article  Google Scholar 

    4.
    Prusiner, S. B. Prion diseases and the BSE crisis. Science 278, 245–251 (1997).
    CAS  Article  Google Scholar 

    5.
    Wadsworth, J. D. F. et al. The origin of the prion agent of kuru: molecular and biological strain typing. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 3747–3753 (2008).
    CAS  Article  Google Scholar 

    6.
    Liberski, P. P., Gajos, A., Sikorska, B. & Lindenbaum, S. Kuru, the first human prion disease. Viruses 11, 232 (2019).
    Article  Google Scholar 

    7.
    Haley, N. J. & Hoover, E. A. Chronic Wasting Disease of cervids: current knowledge and future perspectives. Annu. Rev. Anim. Biosci. 3, 305–325 (2015).
    CAS  Article  Google Scholar 

    8.
    Benestad, S. L., Mitchell, G., Simmons, M., Ytrehus, B. & Vikøren, T. First case of chronic wasting disease in Europe in a Norwegian free-ranging reindeer. Vet. Res. 47, 88 (2016).
    Article  Google Scholar 

    9.
    Becker, R. Deadly animal prion disease appears in Europe. Nature https://doi.org/10.1038/nature.2016.19759 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    10.
    Stokstad, E. Norway seeks to stamp out prion disease. Science 356, 12 (2017).
    ADS  CAS  Article  Google Scholar 

    11.
    Sutherland, W. J. et al. A 2018 horizon scan of emerging issues for global conservation and biological diversity. Trends Ecol. Evol. 33, 47–58 (2018).
    Article  Google Scholar 

    12.
    Nonno, R., Di Bari, M. A., Pirisinu, L., et al. Studies in bank voles reveal strain differences between chronic wasting disease prions from Norway and North America. Proc Natl Acad Sci USA in press, (2020).

    13.
    Sutcliffe, A. J. Similarity of bones and antlers gnawed by deer to human artefacts. Nature 246, 428–430 (1973).
    ADS  CAS  Article  Google Scholar 

    14.
    Gambín, P., Ceacero, F., Garcia, A. J., Landete-Castillejos, T. & Gallego, L. Patterns of antler consumption reveal osteophagia as a natural mineral resource in key periods for red deer (Cervus elaphus). Eur. J. Wildl. Res. 63, 39 (2017).
    Article  Google Scholar 

    15.
    Klaus, G. & Schmid, B. Geophagy at natural licks and mammal ecology: a review. Mammalia 62, 481–497 (1999).
    Google Scholar 

    16.
    Mahaney, W. C. & Krishnamani, R. Understanding geophagy in animals: standard procedures for sampling soils. J. Chem. Ecol. 29, 1503–1523 (2003).
    CAS  Article  Google Scholar 

    17.
    Bazely, D. R. Carnivorous herbivores: mineral nutrition and the balanced diet. Trends Ecol. Evol. 4, 155–156 (1989).
    Article  Google Scholar 

    18.
    Loe, L. E. et al. Antler growth as a cost of reproduction in female reindeer. Oecologia 189, 601–609 (2019).
    ADS  Article  Google Scholar 

    19.
    Clutton-Brock, T. H., Albon, S. D. & Harvey, P. H. Antlers, body size and breeding group size in the Cervidae. Nature 285, 565–567 (1980).
    ADS  Article  Google Scholar 

    20.
    Schaefer, J. A. & Mahoney, S. P. Antlers on female caribou: biogeography of the bones of contention. Ecology 82, 3556–3560 (2001).
    Article  Google Scholar 

    21.
    Angers, R. C. et al. Chronic wasting disease prions in elk antler velvet. Emerg. Infect. Dis. 15, 696–703 (2009).
    CAS  Article  Google Scholar 

    22.
    Nieto-Diaz, M. et al. Deer antler innervation and regeneration. Front Biosci. 17, 1389–1401 (2012).
    CAS  Article  Google Scholar 

    23.
    Guiroy, D. C. et al. Neuronal degeneration and neurofilament accumulation in the trigeminal ganglia in creutzfeldt-jakob disease. Ann Neurol. 25, 102–106 (1989).
    CAS  Article  Google Scholar 

    24.
    Rolf, H. J. & Enderle, A. Hard fallow deer antler: a living bone till antler casting?. Anat. Rec. 255, 69–77 (1999).
    CAS  Article  Google Scholar 

    25.
    Huor, A. et al. Infectivity in bone marrow from sporadic CJD patients. J. Pathol. 243, 273–278 (2017).
    Article  Google Scholar 

    26.
    Davenport, K. A. et al. PrPC expression and prion seeding activity in the alimentary tract and lymphoid tissue of deer. PLoS ONE 12, e0183927 (2017).
    Article  Google Scholar 

    27.
    Mysterud, A. et al. The demographic pattern of infection with chronic wasting disease in reindeer at an early epidemic stage. Ecosphere 10, e02931 (2019).
    Article  Google Scholar 

    28.
    Pirisinu, L. et al. A novel type of Chronic Wasting Disease detected in European moose (Alces alces) in Norway. Emerg. Infect. Dis. 24, 2210–2218 (2018).
    CAS  Article  Google Scholar 

    29.
    Vikøren, T. et al. First detection of Chronic Wasting Disease in a wild red deer (Cervus elaphus) in Europe. J. Wildl. Dis. 55, 970–972 (2019).
    Article  Google Scholar 

    30.
    Buschmann, A. et al. Atypical BSE in Germany – Proof of transmissibility and biochemical characterization. Vet. Microbiol. 117, 103–116 (2006).
    CAS  Article  Google Scholar 

    31.
    Benestad, S. L. et al. Cases of scrapie with unusal features in Norway and designation of a new type, Nor98. Vet. Rec. 153, 2002–2008 (2003).
    Article  Google Scholar 

    32.
    Estevez, J. A., Landete-Castillejos, T., García, A. J., Ceacero, F. & Gallego, L. Population management and bone structural effects in composition and radio-opacity of iberian red deer (Cervus elaphus hispanicus) antlers. Eur. J. Wildl. Res. 54, 215–223 (2008).
    Article  Google Scholar 

    33.
    Norman, G. Likert scales, levels of measurement and the “laws” of statistics. Adv. Health. Sci. Educ. 15, 625–632 (2019).
    Article  Google Scholar 

    34.
    Collinge, J. & Clarke, A. R. A general model of prion strains and their pathogenicity. Science 318, 930 (2007).
    ADS  CAS  Article  Google Scholar 

    35.
    Marion, M. S. et al. Experimental oral transmission of atypical scrapie to sheep. Emerg. Infect. Dis. 17, 848 (2011).
    Article  Google Scholar 

    36.
    Angers, R. C. et al. Prion strain mutation determined by prion protein conformational compatibility and primary structure. Science 328, 1154 (2010).
    ADS  CAS  Article  Google Scholar 

    37.
    Igel-Egalon, A., Béringue, V., Rezaei, H. & Sibille, P. Prion strains and transmission barrier phenomena. Pathogens 7, (2018).

    38.
    Le Dur, A. et al. Divergent prion strain evolution driven by PrPC expression level in transgenic mice. Nat. Commun. 8, 14170 (2017).
    ADS  Article  Google Scholar  More

  • in

    Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents

    1.
    Karl DM, Wirsen CO, Jannasch HW. Deep-sea primary production at the Galapagos hydrothermal vents. Science (80-). 1980;207:1345–7.
    CAS  Article  Google Scholar 
    2.
    Yamamoto M, Takai K. Sulfur metabolisms in epsilon-and gamma-Proteobacteria in deep-sea hydrothermal fields. Front Microbiol. 2011;2:192.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Kato S, Nakamura K, Toki T, Ishibashi J-I, Tsunogai U, Hirota A, et al. Iron-based microbial ecosystem on and below the seafloor: a case study of hydrothermal fields of the southern mariana trough. Front Microbiol. 2012;3:89.
    PubMed  PubMed Central  Google Scholar 

    4.
    Winkel M, de Beer D, Lavik G, Peplies J, Mußmann M. Close association of active nitrifiers with Beggiatoa mats covering deep-sea hydrothermal sediments. Environ Microbiol. 2014;16:1612–26.
    CAS  PubMed  Article  Google Scholar 

    5.
    Fortunato CS, Larson B, Butterfield DA, Huber JA. Spatially distinct, temporally stable microbial populations mediate biogeochemical cycling at and below the seafloor in hydrothermal vent fluids. Environ Microbiol. 2018;20:769–84.
    CAS  PubMed  Article  Google Scholar 

    6.
    Kendall B, Anbar AD, Kappler A, Konhauser KO. The global iron cycle. In: Knoll AH, Canfield DE, Konhauser KO (eds). Fundamentals of Geobiology, 1st ed. Blackwell Publishing Ltd.; 2012. pp. 65–92.

    7.
    McAllister SM, Moore RM, Gartman A, Luther GW, Emerson D, Chan CS. The Fe(II)-oxidizing Zetaproteobacteria: historical, ecological, and genomic perspectives. FEMS Microbiol Ecol. 2019;95:fiz015.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Kato S, Kobayashi C, Kakegawa T, Yamagishi A. Microbial communities in iron-silica-rich microbial mats at deep-sea hydrothermal fields of the Southern Mariana Trough. Environ Microbiol. 2009;11:2094–111.
    CAS  PubMed  Article  Google Scholar 

    9.
    Hassenrück C, Fink A, Lichtschlag A, Tegetmeyer HE, de Beer D, Ramette A. Quantification of the effects of ocean acidification on sediment microbial communities in the environment: The importance of ecosystem approaches. FEMS Microbiol Ecol. 2016;92:fiw02.
    Article  CAS  Google Scholar 

    10.
    Kato S, Yanagawa K, Sunamura M, Takano Y, Ishibashi J, Kakegawa T, et al. Abundance of Zetaproteobacteria within crustal fluids in back-arc hydrothermal fields of the Southern Mariana Trough. Environ Microbiol. 2009;11:3210–22.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    McAllister SM, Davis RE, McBeth JM, Tebo BM, Emerson D, Moyer CL. Biodiversity and emerging biogeography of the neutrophilic iron-oxidizing Zetaproteobacteria. Appl Environ Microbiol. 2011;77:5445–57.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Makita H, Kikuchi S, Mitsunobu S, Takaki Y, Yamanaka T, Toki T, et al. Comparative analysis of microbial communities in iron-dominated flocculent mats in deep-sea hydrothermal environments. Appl Environ Microbiol. 2016;82:5741–55.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Scott JJ, Breier JA, Luther GW III, Emerson D. Microbial iron mats at the Mid-Atlantic Ridge and evidence that Zetaproteobacteria may be restricted to iron-oxidizing marine systems. PLoS ONE. 2015;10:e0119284.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    14.
    Scott JJ, Glazer BT, Emerson D. Bringing microbial diversity into focus: high-resolution analysis of iron mats from the Lō’ihi Seamount. Environ Microbiol. 2017;19:301–16.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Hager KW, Fullerton H, Butterfield DA, Moyer CL. Community structure of lithotrophically-driven hydrothermal microbial mats from the Mariana Arc and Back-Arc. Front Microbiol. 2017;8:1578.
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Forget NL, Murdock SA, Juniper SK. Bacterial diversity in Fe-rich hydrothermal sediments at two South Tonga Arc submarine volcanoes. Geobiology. 2010;8:417–32.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Vander Roost J, Thorseth IH, Dahle H. Microbial analysis of Zetaproteobacteria and co-colonizers of iron mats in the Troll Wall Vent Field, Arctic Mid-Ocean Ridge. PLoS ONE. 2017;12:e0185008.
    Article  CAS  Google Scholar 

    18.
    Rassa AC, McAllister SM, Safran SA, Moyer CL. Zeta-Proteobacteria dominate the colonization and formation of microbial mats in low-temperature hydrothermal vents at Loihi Seamount, Hawaii. Geomicrobiol J. 2009;26:623–38.
    CAS  Article  Google Scholar 

    19.
    Fullerton H, Hager KW, McAllister SM, Moyer CL. Hidden diversity revealed by genome-resolved metagenomics of iron-oxidizing microbial mats from Lo’ihi Seamount, Hawai’i. ISME J. 2017;11:1900–14.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Field EK, Sczyrba A, Lyman AE, Harris CC, Woyke T, Stepanauskas R, et al. Genomic insights into the uncultivated marine Zetaproteobacteria at Loihi Seamount. ISME J. 2015;9:857–70.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Chan CS, McAllister SM, Leavitt AH, Glazer BT, Krepski ST, Emerson D. The architecture of iron microbial mats reflects the adaptation of chemolithotrophic iron oxidation in freshwater and marine environments. Front Microbiol. 2016;7:796.
    PubMed  PubMed Central  Google Scholar 

    22.
    Fleming EJ, Davis RE, McAllister SM, Chan CS, Moyer CL, Tebo BM, et al. Hidden in plain sight: discovery of sheath-forming, iron-oxidizing Zetaproteobacteria at Loihi Seamount, Hawaii, USA. FEMS Microbiol Ecol. 2013;85:116–27.
    PubMed  Article  PubMed Central  Google Scholar 

    23.
    Barco RA, Emerson D, Sylvan JB, Orcutt BN, Jacobson Meyers ME, Ramírez GA, et al. New insight into microbial iron oxidation as revealed by the proteomic profile of an obligate iron-oxidizing chemolithoautotroph. Appl Environ Microbiol. 2015;81:5927–37.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    McAllister SM, Polson SW, Butterfield DA, Glazer BT, Sylvan JB, Chan CS. Validating the Cyc2 neutrophilic iron oxidation pathway using meta-omics of Zetaproteobacteria iron mats at marine hydrothermal vents. mSystems. 2020;5:e00553–19.
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Singer E, Emerson D, Webb EA, Barco RA, Kuenen JG, Nelson WC, et al. Mariprofundus ferrooxydans, PV-1 the first genome of a marine Fe(II) oxidizing Zetaproteobacterium. PLoS ONE. 2011;6:e25386.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Mori JF, Scott JJ, Hager KW, Moyer CL, Küsel K, Emerson D. Physiological and ecological implications of an iron- or hydrogen-oxidizing member of the Zetaproteobacteria, Ghiorsea bivora, gen. nov., sp. nov. ISME J. 2017;11:2624–36.
    PubMed  PubMed Central  Article  Google Scholar 

    27.
    Zimmerman AE, Howard-Varona C, Needham DM, John SG, Worden AZ, Sullivan MB, et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol. 2020;18:21–34.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Bennett SA, Hansman RL, Sessions AL, Nakamura K, Edwards KJ. Tracing iron-fueled microbial carbon production within the hydrothermal plume at the Loihi seamount. Geochim Cosmochim Acta. 2011;75:5526–39.
    CAS  Article  Google Scholar 

    29.
    Jesser KJ, Fullerton H, Hager KW, Moyer CL. Quantitative PCR analysis of functional genes in iron-rich microbial mats at an active hydrothermal vent system (Lō’ihi Seamount, Hawai’i). Appl Environ Microbiol. 2015;81:2976–84.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Singer E, Heidelberg JF, Dhillon A, Edwards KJ. Metagenomic insights into the dominant Fe(II) oxidizing Zetaproteobacteria from an iron mat at Lō’ihi, Hawai’i. Front Microbiol. 2013;4:52.
    PubMed  PubMed Central  Article  Google Scholar 

    31.
    Chiu BK, Kato S, McAllister SM, Field EK, Chan CS. Novel pelagic iron-oxidizing Zetaproteobacteria from the Chesapeake Bay oxic-anoxic transition zone. Front Microbiol. 2017;8:1280.
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Makita H, Tanaka E, Mitsunobu S, Miyazaki M, Nunoura T, Uematsu K, et al. Mariprofundus micogutta sp. nov., a novel iron-oxidizing zetaproteobacterium isolated from a deep-sea hydrothermal field at the Bayonnaise knoll of the Izu-Ogasawara arc, and a description of Mariprofundales ord. nov. and Zetaproteobacteria classis. Arch Microbiol. 2017;199:335–46.
    CAS  PubMed  Article  Google Scholar 

    33.
    Laufer K, Nordhoff M, Halama M, Martinez RE, Obst M, Nowak M, et al. Microaerophilic Fe(II)-oxidizing Zetaproteobacteria isolated from low-Fe marine coastal sediments: Physiology and characterization of their twisted stalks. Appl Environ Microbiol. 2017;83:e03118–16.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Glazer BT, Rouxel OJ. Redox speciation and distribution within diverse iron-dominated microbial habitats at Loihi Seamount. Geomicrobiol J. 2009;26:606–22.
    CAS  Article  Google Scholar 

    35.
    Sylvan JB, Wankel SD, LaRowe DE, Charoenpong CN, Huber JA, Moyer CL, et al. Evidence for microbial mediation of subseafloor nitrogen redox processes at Loihi Seamount, Hawaii. Geochim Cosmochim Acta. 2017;198:131–50.
    CAS  Article  Google Scholar 

    36.
    Sedwick PN, McMurtry GM, Macdougall JD. Chemistry of hydrothermal solutions from Pele’s Vents, Loihi Seamount, Hawaii. Geochim Cosmochim Acta. 1992;56:3643–67.
    CAS  Article  Google Scholar 

    37.
    Karl DM, Brittain AM, Tilbrook BD. Hydrothermal and microbial processes at Loihi Seamount, a mid-plate hot-spot volcano. Deep Sea Res Part A, Oceanogr Res Pap. 1989;36:1655–73.
    CAS  Article  Google Scholar 

    38.
    Bryce C, Blackwell N, Schmidt C, Otte J, Huang YM, Kleindienst S, et al. Microbial anaerobic Fe(II) oxidation—ecology, mechanisms and environmental implications. Environ Microbiol. 2018;20:3462–83.
    CAS  PubMed  Article  Google Scholar 

    39.
    Laufer K, Byrne JM, Glombitza C, Schmidt C, Jørgensen BB, Kappler A. Anaerobic microbial Fe(II) oxidation and Fe(III) reduction in coastal marine sediments controlled by organic carbon content. Environ Microbiol. 2016;18:3159–74.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Robertson EK, Roberts KL, Burdorf LDW, Cook P, Thamdrup B. Dissimilatory nitrate reduction to ammonium coupled to Fe(II) oxidation in sediments of a periodically hypoxic estuary. Limnol Oceanogr. 2016;61:365–81.
    CAS  Article  Google Scholar 

    41.
    Glöckner FO, Yilmaz P, Quast C, Gerken J, Beccati A, Ciuprina A, et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J Biotechnol. 2017;261:169–76.
    PubMed  Article  CAS  Google Scholar 

    42.
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Wu Y-W, Tang Y-H, Tringe SG, Simmons BA, Singer SW. MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome. 2014;2:26.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    46.
    Alneberg J, Bjarnason BS, De Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.
    CAS  PubMed  Article  Google Scholar 

    47.
    Graham ED, Heidelberg JF, Tully BJ. BinSanity: unsupervised clustering of environmental microbial assemblies using coverage and affinity propagation. PeerJ. 2017;5:e3035.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Quinlan AR, Hall IM. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012;131:281–5.
    CAS  PubMed  Article  Google Scholar 

    51.
    Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 2014;42:D206–14.
    CAS  PubMed  Article  Google Scholar 

    53.
    Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG Tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.
    CAS  PubMed  Article  Google Scholar 

    54.
    Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun. 2016;7:13219.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Garber AI, Nealson KH, Okamoto A, McAllister SM, Chan CS, Barco RA, et al. FeGenie: a comprehensive tool for the identification of iron genes and iron gene neighborhoods in genome and metagenome assemblies. Front Microbiol. 2020;11:37.
    PubMed  PubMed Central  Article  Google Scholar 

    56.
    Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinforma. 2009;10:421.
    Article  CAS  Google Scholar 

    57.
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
    CAS  PubMed  Article  Google Scholar 

    58.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
    CAS  PubMed  Article  Google Scholar 

    59.
    Pruesse E, Peplies J, Glöckner FO. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol. 2008;57:758–71.
    PubMed  Article  Google Scholar 

    61.
    Moore RM, Harrison AO, McAllister SM, Polson SW, Wommack KE. Iroki: automatic customization and visualization of phylogenetic trees. PeerJ. 2020;8:e8584.
    PubMed  PubMed Central  Article  Google Scholar 

    62.
    Darling AE, Jospin G, Lowe E, Matsen FA, Bik HM, Eisen JA. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ. 2014;2:e243.
    PubMed  PubMed Central  Article  Google Scholar 

    63.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from. Genome Res. 2015;25:1043–55.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: mining viral signal from microbial genomic data. PeerJ. 2015;3:e985.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    65.
    Wommack KE, Bhavsar J, Polson SW, Chen J, Dumas M, Srinivasiah S, et al. VIROME: a standard operating procedure for analysis of viral metagenome sequences. Stand Genom Sci. 2012;6:421–33.
    CAS  Google Scholar 

    66.
    Bolduc B, Jang HBin, Doulcier G, You Z-Q, Roux S, Sullivan MB. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria. PeerJ. 2017;5:e3243.
    PubMed  PubMed Central  Article  Google Scholar 

    67.
    Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell. 2019;177:1109–23.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Nasko DJ, Ferrell BD, Moore RM, Bhavsar JD, Polson SW, Wommack KE. CRISPR spacers indicate preferential matching of specific virioplankton genes. MBio. 2019;10:e02651–18.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Lau MCY, Aitchison JC, Pointing SB. Bacterial community composition in thermophilic microbial mats from five hot springs in central Tibet. Extremophiles. 2009;13:139–49.
    PubMed  Article  Google Scholar 

    70.
    Qiu Y, Hanada S, Ohashi A, Harada H, Kamagata Y, Sekiguchi Y. Syntrophorhabdus aromaticivorans gen. nov., sp. nov., the first cultured anaerobe capable of degrading phenol to acetate in obligate syntrophic associations with a hydrogenotrophic methanogen. Appl Environ Microbiol. 2008;74:2051–8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    71.
    Nobu MK, Narihiro T, Tamaki H, Qiu Y, Sekiguchi Y, Woyke T, et al. The genome of Syntrophorhabdus aromaticivorans strain UI provides new insights for syntrophic aromatic compound metabolism and electron flow. Environ Microbiol. 2015;17:4861–72.
    CAS  PubMed  Article  Google Scholar 

    72.
    Omoregie EO, Mastalerz V, de Lange G, Straub KL, Kappler A, Røy H, et al. Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the Chefren mud volcano (Nile deep sea fan, eastern Mediterranean). Appl Environ Microbiol. 2008;74:3198–215.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017;11:2399–406.
    PubMed  PubMed Central  Article  Google Scholar 

    74.
    Williamson SJ, Cary SC, Williamson KE, Helton RR, Bench SR, Winget D, et al. Lysogenic virus–host interactions predominate at deep-sea diffuse-flow hydrothermal vents. ISME J. 2008;2:1112–21.
    CAS  PubMed  Article  Google Scholar 

    75.
    Sharma A, Schmidt M, Kiesel B, Mahato NK, Cralle L, Singh Y, et al. Bacterial and Archaeal viruses of Himalayan hot springs at Manikaran modulate host genomes. Front Microbiol. 2018;9:3095.
    PubMed  PubMed Central  Article  Google Scholar 

    76.
    Anderson RE, Sogin ML, Baross JA. Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics. PLoS ONE. 2014;9:e109696.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    77.
    Emerson D, Moyer CL. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. Appl Environ Microbiol. 2002;68:3085–93.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    78.
    Emerson D, Fleming EJ, McBeth JM. Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol. 2010;64:561–83.
    CAS  PubMed  Article  Google Scholar 

    79.
    Hernsdorf AW, Amano Y, Miyakawa K, Ise K, Suzuki Y, Anantharaman K, et al. Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments. ISME J. 2017;11:1915–29.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Quaiser A, Bodi X, Dufresne A, Naquin D, Francez A-J, Dheilly A, et al. Unraveling the stratification of an iron-oxidizing microbial mat by metatranscriptomics. PLoS ONE. 2014;9:e102561.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    81.
    Kato S, Chan C, Itoh T, Ohkuma M. Functional gene analysis of freshwater iron-rich flocs at circumneutral ph and isolation of a stalk-forming microaerophilic iron-oxidizing bacterium. Appl Environ Microbiol. 2013;79:5283–90.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    Hemp J, Gennis RB. Diversity of the heme-copper superfamily in Archaea: Insights from genomics and structural modeling. Results Probl Cell Differ. 2008;45:1–31.
    CAS  PubMed  Article  Google Scholar 

    83.
    Ferris FG. Biogeochemical properties of bacteriogenic iron oxides. Geomicrobiol J. 2005;22:79–85.
    CAS  Article  Google Scholar 

    84.
    Sowers TD, Harrington JM, Polizzotto ML, Duckworth OW. Sorption of arsenic to biogenic iron (oxyhydr)oxides produced in circumneutral environments. Geochim Cosmochim Acta. 2017;198:194–207.
    CAS  Article  Google Scholar 

    85.
    Bennett SA, Toner BM, Barco R, Edwards KJ. Carbon adsorption onto Fe oxyhydroxide stalks produced by a lithotrophic iron-oxidizing bacteria. Geobiology. 2014;12:146–56.
    CAS  PubMed  Article  Google Scholar 

    86.
    Rentz JA, Turner IP, Ullman JL. Removal of phosphorus from solution using biogenic iron oxides. Water Res. 2009;43:2029–35.
    CAS  PubMed  Article  Google Scholar 

    87.
    Chan CS, Fakra SC, Emerson D, Fleming EJ, Edwards KJ. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. ISME J. 2011;5:717–27.
    CAS  PubMed  Article  Google Scholar 

    88.
    Bennett SA, Toner BM, Barco R, Edwards KJ. Carbon adsorption onto Fe oxyhydroxide stalks produced by a lithotrophic iron-oxidizing bacteria. Geobiology. 2014;12:146–56.
    CAS  PubMed  Article  Google Scholar 

    89.
    Wilhelm SW, Suttle CA. Viruses and nutrient cycles in the sea: Viruses play critical roles in the structure and function of aquatic food webs. Bioscience. 1999;49:781–8.
    Article  Google Scholar 

    90.
    Chen J, Strous M. Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution. Biochim Biophys Acta. 2013;1827:136–44.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    91.
    Choi PS, Naal Z, Moore C, Casado-Rivera E, Abruña HD, Helmann JD, et al. Assessing the impact of denitrifier-produced nitric oxide on other bacteria. Appl Environ Microbiol. 2006;72:2200–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    92.
    Klueglein N, Kappler A. Abiotic oxidation of Fe(II) by reactive nitrogen species in cultures of the nitrate-reducing Fe(II) oxidizer Acidovorax sp. BoFeN1 – questioning the existence of enzymatic Fe(II) oxidation. Geobiology. 2013;11:180–90.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    93.
    Hafenbradl D, Keller M, Dirmeier R, Rachel R, Roßnagel P, Burggraf S, et al. Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch Microbiol. 1996;166:308–14.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    94.
    He S, Tominski C, Kappler A, Behrens S, Roden EE. Metagenomic analyses of the autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture KS. Appl Environ Microbiol. 2016;82:2656–68.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    95.
    Straub KL, Benz M, Schink B, Widdel F. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol. 1996;62:1458–60.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    96.
    Blöthe M, Roden EE. Composition and activity of an autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture. Appl Environ Microbiol. 2009;75:6937–40.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    97.
    Emerson D, Scott JJ, Leavitt A, Fleming E, Moyer C. In situ estimates of iron-oxidation and accretion rates for iron-oxidizing bacterial mats at Lō’ihi Seamount. Deep Res Part I Oceanogr Res Pap. 2017;126:31–9.
    CAS  Article  Google Scholar 

    98.
    Jenkins WJ, Hatta M, Fitzsimmons JN, Schlitzer R, Lanning NT, Shiller A, et al. An intermediate-depth source of hydrothermal 3He and dissolved iron in the North Pacific. Earth Planet Sci Lett. 2020;539:116223.
    CAS  Article  Google Scholar  More

  • in

    Organism body size structures the soil microbial and nematode community assembly at a continental and global scale

    1.
    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Luan, L. et al. Coupling bacterial community assembly to microbial metabolism across soil profiles. mSystems 5, e00298–20 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Stegen, J. C. et al. Groundwater–surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover. Nat. Commun. 7, 11237 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    5.
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    7.
    Oliverio, A. M. et al. The global-scale distributions of soil protists and their contributions to belowground systems. Sci. Adv. 6, eaax8787 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    9.
    Nemergut, D. R. et al. Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 77, 342–356 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    Martiny, J. B. H. et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–112 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C. & Martiny, J. B. H. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10, 497–506 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Dini-Andreote, F., Stegen, J. C., Van Elsas, J. D. & Falcão Salles, J. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc. Natl Acad. Sci. USA 112, E1326–E1332 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Zhou, J. & Ning, D. Stochastic community assembly: does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 81, e00002–e00017 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    15.
    Chave, J. Neutral theory and community ecology. Ecol. Lett. 7, 241–253 (2004).
    ADS  Article  Google Scholar 

    16.
    Letten, A. D., Ke, P.-J. & Fukami, T. Linking modern coexistence theory and contemporary niche theory. Ecol. Monogr. 87, 161–177 (2017).
    Article  Google Scholar 

    17.
    Stegen, J. C., Lin, X. J., Fredrickson, J. K. & Konopka, A. E. Estimating and mapping ecological processes influencing microbial community assembly. Front. Microbiol. 6, 370 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Li, P. et al. Distinct Successions of common and rare bacteria in soil under humic acid amendment – a microcosm study. Front. Microbiol. 10, 2271 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Stearns, S. C. The Evolution of Life Histories (Oxford Univ. Press, Oxford, 1992).

    20.
    Villarino, E. et al. Large-scale ocean connectivity and planktonic body size. Nat. Commun. 9, 142 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    21.
    Woo, C., An, C., Xu, S., Yi, S. M. & Yamamoto, N. Taxonomic diversity of fungi deposited from the atmosphere. ISME J. 12, 2051–2060 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Soininen, J., Korhonen, J. J. & Luoto, M. Stochastic species distributions are driven by organism size. Ecology 94, 660–670 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    23.
    Farjalla, V. F. et al. Ecological determinism increases with organism size. Ecology 93, 1752–1759 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Thuiller, W., Lavorel, S. & Araújo, M. B. Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob. Ecol. Biogeogr. 14, 347–357 (2005).
    Article  Google Scholar 

    25.
    Li, P. et al. Responses of microbial communities to a gradient of pig manure amendment in red paddy soils. Sci. Total Environ. 705, 135884 (2020).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Article  Google Scholar 

    27.
    Foissner, W. Protist diversity and distribution: some basic considerations. Biodivers. Conserv. 17, 235–242 (2008).
    Article  Google Scholar 

    28.
    Pimm, S. L., Jones, H. L. & Diamond, J. On the risk of extinction. Am. Nat. 132, 757–785 (1988).
    Article  Google Scholar 

    29.
    Jiang, Y. et al. Crop rotations alter bacterial and fungal diversity in paddy soils across East Asia. Soil Biol. Biochem. 95, 250–261 (2016).
    CAS  Article  Google Scholar 

    30.
    Li, P. et al. Spatial variation in soil fungal communities across paddy fields in subtropical China. mSystems 5, e00704–e00719 (2020).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Peay, K. G., Kennedy, P. G. & Talbot, J. M. Dimensions of biodiversity in the Earth mycobiome. Nat. Rev. Microbiol. 14, 434–447 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Geisen, S. et al. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol. Rev. 42, 293–323 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Tucker, C. M., Shoemaker, L. G., Davies, K. F., Nemergut, D. R. & Melbourne, B. A. Differentiating between niche and neutral assembly in metacommunities using null models of β-diversity. Oikos 125, 778–789 (2016).
    Article  Google Scholar 

    34.
    Doledec, S., Chessel, D. & Gimaret-Carpentier, C. Niche separation in community analysis: a new method. Ecology 81, 2914–2927 (2000).
    Article  Google Scholar 

    35.
    Sloan, W. T., Woodcock, S., Lunn, M., Head, I. M. & Curtis, T. P. Modeling taxa-abundance distributions in microbial communities using environmental sequence data. Microb. Ecol. 53, 443–455 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    36.
    De Wit, R. & Bouvier, T. Everything is everywhere, but, the environment selects; what did BaasBecking and Beijerinck really say. Environ. Microbiol. 8, 755–758 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    37.
    Zinger, L. et al. Body size determines soil community assembly in a tropical forest. Mol. Ecol. 28, 528–543 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Chase, J. M. et al. Embracing scale-dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecol. Lett. 21, 1737–1751 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    39.
    Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3, 470–480 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    De Bie, T. et al. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol. Lett. 15, 740–747 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    41.
    Lowe, W. H. & McPeek, M. A. Is dispersal neutral? Trends Ecol. Evol. 29, 444–450 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    42.
    O’Brien, E. M., Whittaker, R. J. & Field, R. Climate and woody plant diversity in Southern Africa: relationships at species, genus and family levels. Ecography 21, 495–509 (1998).
    Article  Google Scholar 

    43.
    Brown, J. H. Why are there so many species in the tropics? J. Biogeogr. 41, 8–22 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    44.
    Li, X. et al. Agriculture erases climate constraints on soil nematode communities across large spatial scales. Glob. Change Biol. 26, 919–930 (2020).
    ADS  Article  Google Scholar 

    45.
    Briones, M. J. I. Soil fauna and soil functions: a jigsaw puzzle. Front. Environ. Sci. 22, 7 (2014).
    Google Scholar 

    46.
    Martiny, J. B. H., Jones, S. E., Lennon, J. T. & Martiny, A. C. Microbiomes in light of traits: a phylogenetic perspective. Science 350, 9323 (2015).
    ADS  Article  CAS  Google Scholar 

    47.
    Pansu, M. & Gautheyrou, J. Handbook of Soil Analysis: Mineralogical, Organic, and Inorganic Methods. (Springer, 2006).

    48.
    Biddle, J. F., Fitz-Gibbon, S., Schuster, S. C., Brenchley, J. E. & House, C. H. Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc. Natl Acad. Sci. USA 105, 10583–10588 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (2008).
    Article  Google Scholar 

    50.
    Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Zhang, Y. & Sun, Y. HMM-FRAME: accurate protein domain classification for metagenomic sequences containing frameshift errors. BMC Bioinform. 12, 198 (2011).
    Article  Google Scholar 

    54.
    Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
    CAS  Article  Google Scholar 

    56.
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2012).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    58.
    Zhao, J. et al. Size spectra of soil nematode assemblages under different land use types. Soil Biol. Biochem. 85, 130–136 (2015).
    CAS  Article  Google Scholar 

    59.
    Soininen, J., McDonald, R. & Hillebrand, H. The distance decay of similarity in ecological communities. Ecography 30, 3–12 (2007).
    Article  Google Scholar 

    60.
    Dray, S., Legendre, P. & Peres-Neto, P. R. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol. Model. 196, 483–493 (2006).
    Article  Google Scholar 

    61.
    Chen, W., Jiao, S., Li, Q. & Du, N. Dispersal limitation relative to environmental filtering governs the vertical small‐scale assembly of soil microbiomes during restoration. J. Appl. Ecol. 57, 402–412 (2020).
    Article  Google Scholar 

    62.
    Jiao, S., Yang, Y., Xu, Y., Zhang, J. & Lu, Y. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME J. 14, 202–216 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Elzhov, T. V., Mullen, K. M., Spiess, A.-N. & Bolker, B. Minpack. lm: R Interface to the levenberg–marquardt nonlinear least-squares algorithm found in MINPACK, plus support for bounds (CRAN Repository, 2016).

    64.
    Harrell, F. E. Jr. Hmisc: harrell miscellaneous. R. package version 3.0−12 (2013). .

    65.
    Davison, J. et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349, 970–973 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Fiore-Donno, A. M., Weinert, J., Wubet, T. & Bonkowski, M. Metacommunity analysis of amoeboid protists in grassland soils. Sci. Rep. 6, 19068 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Heger, T. J. et al. High-throughput environmental sequencing reveals high diversity of litter and moss associated protist communities along a gradient of drainage and tree productivity. Environ. Microbiol. 20, 1185–1203 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Oksanen, J. et al. Vegan: community ecology package. R. package version 2.5−4 (2019).

    69.
    Field, A., Miles, J. & Field, Z. Discovering Statistics Using R. London (Sage publications, 2012). More

  • in

    A probabilistic approach to dispersal in spatially explicit meta-populations

    Figure 2

    Patch characteristics for NPC with (N=20). (a) individual patch connectivity versus normalized patch area parameter (beta _i). (b) pair-wise connectivity for the homogeneous patch case with (beta _i=0.5) (forall) i, versus normalized inter-patch distances (dfrac{D_{ij}}{L}) (forall) (i ne j).

    Full size image

    In the following section, we start by discussing some important characteristics of NPC. In “Homogeneous patches” section, we look at the system behavior for homogeneous patch parameters and contrast between different connectivity modes, namely (1) all-to-all connected, (2) fixed NBM, and (3) rewiring NBM. We study the homogeneous patch case first to focus on the influence of NPC on system dynamics without any confounding effects of patch heterogeneity. In “Heterogeneous patches” section, we discuss some general results for NBMs with heterogeneous patches, expressed through different patch carrying capacities.
    NPC characteristics
    For the case of (N=20) patches, individual patch (C_i) and pair-wise patch (C_{ij}) connectivity estimates are shown as functions of patch areas (beta _i) and inter-patch distances (D_{ij}), in Fig. 2a,b respectively. We observe a nearly linear growth in (C_i) as a function of patch areas in Fig. 2a, and a nonlinear (exponential) decrease in (C_{ij}) as a function of inter-patch distances in Fig. 2b. These results nicely illustrate the essential features of the NPC as formulated in Eq. (3): (a) larger patches have more incoming/outgoing connections as compared to smaller patches, and (b) closely located patches connect more frequently as compared to distant ones.
    Homogeneous patches
    The influence of dispersal rate d on species persistence are investigated and compared for the (1) all-to-all connected model, (2) fixed NBM, and (3) rewiring NBM. For uniformity in comparison, we consider the dispersal efficiency parameter (delta =1) in the following “Probability of persistence” and “Influence of patch density and network rewiring rates on persistence” sections.
    Probability of persistence
    Figure 3

    Persistence probabilities (P_{mathrm{per}}) as a function of dispersal rate d, for different connectivity configurations with (N=20) and dispersal efficiency (delta =1). Curves: all-to-all connected (black), fixed NBM (green), and rewiring NBM (red) (rewiring every 100 time units). The ensemble sizes (number of network realizations) for these calculations are fixed at (N_{text{ensemble}}=100) for all three cases. Standard error values (mathrm{SE}(P_{mathrm{per}})), for NBM calculations are highlighted by error bars every four data points to avoid graph overcrowding. Corresponding biomass calculations can be seen in the Online Appendix Fig. A.1.

    Full size image

    Figure 3 highlights the influence of NPC on the system dynamics for the (N=20) case. For the (1) deterministic all-to-all connected case, species persistence (P_{{rm per}}=1) in the entire d range, and is mathematically expected to stay at the same value for arbitrarily high (d rightarrow infty) values—which is extremely counter intuitive considering the physical bounds and limitations in natural systems. Notably for an all-to-all connected system with (delta =1), the second term in Eq. (1) vanishes due to the parameter symmetry and the diffusive mean field nature of the term. Consequently, the dynamics of this system is essentially independent of the dispersal rate d, and therefore not affected by any changes in d. Hence in this case, local populations in each patch independently follow their logistic growth, and settle on the respective carrying capacity (K_i = K) (forall) i—which constitutes the stable equilibrium for the system. On the contrary, for the other two cases of (2) fixed and (3) rewiring NBMs, we observe decreasing (P_{mathrm{per}}) estimates for increasing d values. These results suggest that several network realizations in the NPC ensembles can lead to species extinction with higher dispersal rates in the NBMs. Furthermore, for rewiring NBM, (P_{mathrm{per}}) approaches very low values for higher d, before exhibiting species extinction (P_{mathrm{per}}=0) for (d approx 28) (not shown). On the contrary, we do not observe species extinction (P_{mathrm{per}}=0) for quite high d values for the fixed NBM case. Please see Online Appendix: Fig. A.1 for the corresponding average biomass calculations.
    Influence of patch density and network rewiring rates on persistence
    Figure 4

    Persistence probabilities (P_{mathrm{per}}) as a function of the dispersal rate d for (a) fixed, and (b) rewiring (every 100 time units) NBMs. (N_{text{ensemble}}=100) network realizations were used for the simulations, for (N=10) (blue), (N=20) (red) and (N=40) (black) network sizes. Standard error values (mathrm{SE}(P_{mathrm{per}})) for these calculations are highlighted by error bars every four data points. Related biomass calculations can be seen in Online Appendix Fig. A.2.

    Full size image

    Figure 4 shows the relationship between species persistence probability (P_{mathrm{per}}), and dispersal rate d for fixed and rewiring NBMs. Since the value of largest possible distance in the system (L) is fixed (fixed landscape) for all calculations, an increase in number of patches N corresponds to an increase in patch density in the meta-population. The results suggest that a higher patch density supports species persistence in the system for higher dispersal rates d. For (N=10), (P_{mathrm{per}} > 0) (non-zero) for the fixed NBM case over the entire investigated range of d, extending to even higher d values (not shown here). This implies that there are always some network realizations in the ensemble that support species persistence. In contrast, the species go extinct at (d approx 5) for the rewiring NBM case. For (N=20), both fixed and rewiring NBMs yield non-zero (P_{mathrm{per}}) estimates in the investigated d range. However we observe a steeper decrease in persistence with increasing d, and consequently, extinction for (d approx 28) (not shown) for the rewiring NBM. For higher number of patches: (N=40), (P_{mathrm{per}} approx 1) for the entire d range for both fixed and rewiring NBMs, and this behavior extends to even higher d values above the range shown in Fig. 4. Our calculations suggest an exponential growth in the total number of connections as a function of number of patches N for a fixed landscape, and hence for increasing patch densities (see Online Appendix B, Fig. B.1). Therefore, we can conclude that higher patch densities tend to shift the (P_{mathrm{per}}) behavior closer to a highly connected case, which yields (P_{mathrm{per}}) results similar to the all-to-all connected situation. Overall, (N=20) seems to provide an appropriate trade-off between a system which is neither too sparse, nor a densely filled landscape, where a sparse system might lead to a higher proportion of isolated patches, and a dense system can mask the effects of spatially explicit connectivity. Therefore, we use (N=20) as the standard meta-population size in most of our calculations for the given set of parameter values.
    For the case of rewiring NBMs, persistence probability (P_{mathrm{per}}) is also influenced by the rewiring time intervals of the connectivity matrix. Results in Fig. 5 compare the (P_{mathrm{per}}) estimates for fixed, and rewiring NBMs with different rewiring rates—every 10 and 100 time units. These results show that a faster rewiring NBM promotes species persistence in comparison to the fixed and slower rewiring NBMs, for a range of dispersal rates (d in (5,10))—a faster rewiring provides higher (P_{mathrm{per}}) estimates in this d range. However, the average biomass estimates for all these three cases are quite similar in this dispersal rate range (Online Appendix: Fig. A.3). However, for higher d values, species persistence for both rewiring NBMs is lower compared to the fixed NBM. Eventually, the rewiring NBMs exhibit species extinction for higher d, whereas, the fixed NBM still yields non-vanishing (P_{mathrm{per}}) estimates (not shown).
    Figure 5

    (P_{mathrm{per}}) estimates for (N=20), as a function of dispersal rate d, and (mathrm{SE}(P_{mathrm{per}})) are highlighted by error bars every four data points, for identical patches with fixed (black) versus different rewiring rates—every 10 (green) and 100 (red) time units. (N_{text{ensemble}}=100) network realizations were used for these calculations. Corresponding biomass estimates are provided in Online Appendix Fig. A.3.

    Full size image

    To better understand the mechanism of species extinction in the meta-population, we need to focus on the critical role of the between-patch interaction (second) term in Eq. (1), i.e. (-dleft( x_i-dfrac{delta _i}{k_{mathrm{in}}^{i}}sum nolimits _{j=1}^{N} A_{ij} x_jright)). As mentioned before, this term assumes that the dispersal process is diffusive in nature, and the diffusion occurs along a gradient from higher to lower values. With this assumption, the following situations can occur for any (d >0): (1) average input from other patches is higher than the patch population, i.e. (dfrac{delta _i}{k_{mathrm{in}}^{i}}sum nolimits _{j=1}^{N} A_{ij} x_j > x_i) (implies) (dleft( dfrac{delta _i}{k_{mathrm{in}}^{i}}sum nolimits _{j=1}^{N} A_{ij} x_j – x_iright) >0), the interaction term is positive implying an increase in the number of individuals within the patch via dispersal, i.e. net species movement is directed into the patch due to the population gradient, (2) average input from other patches is less than the patch population, i.e. (x_i >dfrac{delta _i}{k_{mathrm{in}}^{i}}sum nolimits _{j=1}^{N} A_{ij} x_j) (implies) (dleft( dfrac{delta _i}{k_{mathrm{in}}^{i}}sum nolimits _{j=1}^{N} A_{ij} x_j – x_iright) 0), the underlying NPC has a strong influence on the observed dynamics. The underlying connectivity matrix can lead to a situation where some patches have no incoming connections—such a situation is more likely in a sparsely connected network and/or for a network with low patch density. Absence of any incoming connections will lead to case (3) as discussed above, implying to net loss in the local biomass. Consequently, local populations will go extinct in these source-only patches once the dispersal rate is higher than the species growth rate for case (3). This extinction will decrease the biomass flux from these patches to the connected sink patches. With increasing dispersal rates, this will lead to case (2) for these sink patches and eventually they will also experience local extinction, thereby, enabling a cascade which leads to the extinction of the entire meta-population. In terms of bifurcation analysis, this extinction corresponds to a transcritical bifurcation (stability exchange) between equilibria with species persistence and extinction. An important point to consider is that for a fixed landscape, different NPC realizations can give rise to completely different persistence/extinction scenarios. Considering an NPC realization where all patches have at least one incoming connection, and another realization where one/some patches have no incoming connections (source-only case) or are isolated, the described mechanism indicates that species can persist for comparatively higher d values in the former case, as compared to the latter.
    Figure 6

    (i) (P_{mathrm{per}}) projection on the ((d,delta )) plane for homogeneous patches, and (ii) for the heterogeneous patch case. [(a.i),(a.ii)] correspond to all-to-all connected system, [(b.i),(b.ii)] to fixed NBM, and [(c.i),(c.ii)] to rewiring NBM with a rewire every 100 time units. The blue shaded area corresponds to meta-population extinction, i.e. (P_{mathrm{per}}=0), whereas red regimes correspond to (P_{mathrm{per}}=1). The boundary between persistence and extinction for the all-to-all connected system is indicated by a yellow curve which for comparison, is indicated in all panels. (N_{text{ensemble}}=100) for these calculations. Corresponding biomass calculations are shown in Online Appendix Fig. A.4.

    Full size image

    Figure 7

    (i) (mathrm{SE}(P_{mathrm{per}})) projection on the ((d,delta )) plane for homogeneous patches, and (ii) for the heterogeneous patch case. [(a.i),(a.ii)] correspond to all-to-all connected system, [(b.i),(b.ii)] to fixed NBM, and [(c.i),(c.ii)] to NBM rewiring every 100 time units. The blue shaded area corresponds to regimes where the error is zero. Positive values are highlighted by colors as per the attached color bar. The boundary between persistence and extinction for the all-to-all connected system is again indicated by a yellow curve for comparison in all the panels. (N_{text{ensemble}}=100) for these calculations. The dynamical differences between all-to-all connected, and NBMs are even more obvious in these calculations.

    Full size image

    Dependence of persistence patterns on dispersal rate and efficiency
    So far, the results were presented for cases with a dispersal efficiency (delta _i = delta = 1). However, an assumption of 100% efficiency of dispersal is unrealistic. Losses during the dispersal process are likely to occur in natural systems and there is a chance of the species not establishing after arrival in a new patch. To take these losses into account, we introduced (delta) in our system Eq. (1). In the following, we investigate species persistence for different connectivity scenarios for (delta in [0,1]), and (d in [0,20]). (P_{mathrm{per}}) ((mathrm{SE}(P_{mathrm{per}}))) behaviors for the homogeneous case are shown in the top row of Fig. 6 (Fig. 7), for (a.i) all-to-all connected, (b.i) fixed NBM, and (c.i) rewiring NBM, respectively.
    Starting with the all-to-all connected case, we do not observe any transitions to (P_{mathrm{per}}=0) for (delta =1). The reason is related to parameter symmetries leading to a vanishing interaction term in Eq. (1) as discussed before. Therefore, the species in their respective patches can grow to the patch carrying capacities (K_i = K) (forall) i—see also the average biomass estimates in Online Appendix Fig. A.4. On considering dispersal efficiency (delta < 1), the interaction term in Eq. (1) does not vanish, and therefore, species extinction can arise, as seen in Fig. 6(a.i), where red (blue) areas correspond to persistence probabilities of one (zero). Linear stability analysis of the extinction equilibrium, (mathbf{x} ^*=mathbf{0} implies (x_1^*=0,x_2^*=0,ldots , x_N^*=0)^T), and any general (N ge 2) yields the following eigenspectrum, $$begin{aligned} begin{aligned} lambda _i={left{ begin{array}{ll}(r-d) + ddelta , &{}quad i=1 (largest) \ (r-d)-dfrac{ddelta }{(N-1)} &{}quad i=2,ldots ,N. end{array}right. } end{aligned} end{aligned}$$ (4) Note that these eigenvalues (lambda _i)s are independent of patch carrying capacities, therefore the persistence–extinction boundary is unaffected by parameter mismatch in the carrying capacities. Using the largest eigenvalue (lambda _1), one can follow the transition boundary of the transcritical bifurcation between persistence and extinction in the ((d,delta )) plane, which satisfies the expression (lambda _1 = (r-d) + ddelta =0). This boundary (yellow curve) is highlighted in Fig. 6(a.i) and is in excellent agreement with the theoretical estimates of this transition boundary (see Online Appendix Fig. A.4 for biomass calculations). Additionally, corresponding (mathrm{SE}(P_{mathrm{per}})) calculations in Fig. 7(a.i) show that the error values for the homogeneous all-to-all connected case are uniformly vanishing in the entire considered ((d,delta )) plane. This is due to the behavior of (P_{mathrm{per}}) which is 1 before the bifurcation boundary and 0 after the bifurcation leading to meta-population extinction. For the spatially explicit Fig. 6(b.i) fixed NBM, and Fig. 6(c.i) rewiring NBM cases, we observe that the persistence–extinction transition boundary is not as sharp as for the all-to-all connected case. For comparison, the transition boundary for the all-to-all case is indicated by a yellow curve in these figures. For the fixed NBM case, starting from lower (delta) and d values, the transition becomes more uncertain as we increase the value of (delta)—which can be seen by the presence of lighter colored regimes corresponding to low, non-zero persistence probabilities. This ambiguity between persistence and extinction increases even further for higher (delta). These results suggest that for high (delta), and d values, species extinction is possible for the fixed NBM case contrary to the all-to-all connected network, where extinction is impossible in the similar parameter regime. The reasoning behind these results is quite straightforward considering how (P_{mathrm{per}}) is estimated. For high (delta) and d values, there is a proportion of connectivity configurations which lead to species extinction following the mechanism discussed in “Influence of patch density and network rewiring rates on persistence” section. Due to these configurations, we obtain (0< P_{mathrm{per}} < 1) in this case. This effect is even more pronounced for the rewiring network, where the blue (extinction) regimes extend to even higher (delta) and d values, thereby comparatively reducing the regimes of persistence in the parameter space. These results are quite contrary to the all-to-all connected system where the persistence is ensured with (P_{mathrm{per}} = 1) along the entire range of d values for high (delta). The dynamical differences between the all-to-all connected and NBMs are even more conspicuous in the corresponding (mathrm{SE}(P_{mathrm{per}})) calculations, see Fig. 7(b.i),(c.i). For the parameter regimes where (P_{mathrm{per}} = 1 (0)), the (mathrm{SE}(P_{mathrm{per}})) values are either zero or very small. For (0< P_{mathrm{per}} < 1), (mathrm{SE}(P_{mathrm{per}})) exhibit higher values implying a higher variability in the (P_{mathrm{per}}) estimates for NBMs. This comparison also highlights the differences between the fixed and rewiring NBMs. In correspondence to (P_{mathrm{per}}) estimates, fixed NBM results exhibit a higher variability for high (delta) and high d values, as compared to the rewiring NBM case. This is due to the fact that in these ranges of high variability for fixed NBM, the rewiring NBM predicts extinction of the meta-population. It is quite natural that a meta-population with a local finite growth rate r and a biomass loss during dispersal, cannot sustain a population for ever increasing dispersal rates. For lower (delta) regimes, all three connectivity scenarios follow this reasoning. For higher (delta), the all-to-all connected system can sustain the meta-population for arbitrary high (d rightarrow infty) values with (P_{mathrm{per}} = 1). In comparison, our NBM implementations yield reasonable estimates of (P_{mathrm{per}} < 1) in high (delta) and d ranges. Additionally, rewiring NBMs show a higher likelihood of extinction than the fixed NBM—which highlights the fact that, everything else being constant, it is highly likely for a meta-population to exhibit extinction depending on the changes in underlying connectivity alone, which here, correspond to different NPC realizations. Heterogeneous patches Results for the heterogeneous patch case are shown in the bottom row of Fig. 6 for (a.ii) all-to-all connected, (b.ii) fixed NBM, and (c.ii) rewiring NBM. Here we investigate these three configurations for different patch areas (beta _i) (in) [0.3, 0.7], and consequently different patch carrying capacities, (K_i in [K_{min },K_{max }]), assigned to the patches in increments of (left( K_{max }-K_{min }right) /N). For our calculations in Fig. 6(a.ii),(b.ii),(c.ii), we chose (K_{min }=1.5), (K_{max }=3.5), and (N=20). We observe that the results for heterogeneous patches are quite similar to the results with identical carrying capacities. The similarity in the transition boundary can be explained by looking at the eigenspectrum in Eq. (4). The eigenspectrum for the all-to-all connected system is independent of the patch carrying capacities for the extinction equilibrium and therefore, the extinction threshold is not affected by the dissimilarity in the carrying capacities. Accordingly, for the all-to-all connected cases in Fig. 6(a.i),(a.ii), there are no differences, and (P_{mathrm{per}}) behaves identically in both the homogeneous [Fig. 6(a.i)] and heterogeneous patch [Fig. 6(a.ii)] cases. Like for the homogeneous case, (mathrm{SE}(P_{mathrm{per}})) calculations in Fig. 7(a.ii) again show that the error values for the heterogeneous all-to-all connected case are uniformly vanishing in the entire considered ((d,delta )) plane. For the fixed NPC case [Fig. 6(b.i),(b.ii)], we observe some differences for the transition boundaries for higher (delta) values. The (P_{mathrm{per}}) estimates at the transition boundaries for high (delta) and d values are lower (lighter blue dots) in the heterogeneous case [Fig. 6(b.ii)] when compared to the homogeneous case [Fig. 6(b.i)], thereby signifying that in the heterogeneous case, more realizations in the ensemble close to the transition lead to extinction. At the same time, we observe that patch heterogeneity shifts the extinction threshold towards higher (delta) values, as compared to the homogeneous case. This implies that for the case of heterogeneous patches, we will observe species extinction for higher (delta) values where the homogeneous system still supports persistence. A similar pattern can be observed for the homogeneous [Fig. 6(c.i)] and heterogeneous [Fig. 6(c.ii)] rewiring SEMs. Similar to the homogeneous case, dynamical differences between all-to-all and SEMs are yet again more obvious in (mathrm{SE}(P_{mathrm{per}})) calculations in Fig. 7(b.ii),(c.ii). These observations suggest that unlike in the all-to-all connected case, patch heterogeneity appears to play an essential role in determining the extinction threshold for meta-populations as a function of d and (delta) in fixed, as well as rewiring NBMs. More

  • in

    Probing of heavy metals in the feathers of shorebirds of Central Asian Flyway wintering grounds

    1.
    Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103, 247–260. https://doi.org/10.1034/j.1600-0706.2003.12559.x (2003).
    Article  Google Scholar 
    2.
    Sampath, K. Studies on the ecology of shorebirds (Aves: Charadriifonnes) of the Great Vedaranyam Salt Swamp and the Pichavaram Mangroves of India. Ph.D. Thesis, submitted to Annamalai University, South India 202 (1989).

    3.
    Sampath, K. & Krishnamurthy, K. Shorebirds (Charadriiformes) of the Pichavaram Mangroves Tamilnadu, India. Wader Study Group Bull. 58, 24–27 (1990).
    Google Scholar 

    4.
    Balachandran, S. Avian Diversity in Coastal Wetlands of India and their Conservation Needs 155–163 (International Day for biological diversity, Marine biodiversity, 2012).
    Google Scholar 

    5.
    Sandilyan, S. & Kathiresan, K. Decline of mangroves–a threat of heavy metal poisoning in Asia. Ocean Coast. Manag. 102, 161–168 (2014).
    Article  Google Scholar 

    6.
    Pandiyan, J. & Asokan, S. Habitat use pattern of tidal mud and sand flats by shorebirds (Charadriiformes) wintering in southern India. J. Coast. Cons. 20(1), 1–11 (2015).
    Google Scholar 

    7.
    CAF Report. For a Preliminary List of Regional and National Activities That Contribute to Migratory Waterbird and Habitat Conservation in the CAF Region. https://www.cms.int/sites/default/files/document/CAF_action_plan_e_0.pdf (2005).

    8.
    Bamford, M., Watkins, D., Bancroft, W., Tischler, G. & Wahl, J. Migratory Shorebirds of the East Asian—Australasian Flyway Population Estimates and Internationally Important Sites (Wetlands International – Oceania, Canberra, 2008).
    Google Scholar 

    9.
    Agoramoorthy, G., Chen, F. A. & Hsu, M. J. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu India. Environ. Pollut 155(2), 320–326 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Agoramoorthy, G. & Pandiyan, J. Toxic pollution threatens migratory shorebirds in India. Environ. Sci. Pollut. Res. 23(15), 15771–15772 (2016).
    Article  Google Scholar 

    11.
    Salzano, R. & Angelone, M. Reactivity of urban environments towards legislative actions. The case of Roma (Italy). In E3S Web of Conferences.1, 22003 EDP Sciences (2013).

    12.
    Ullah, K., Hashmi, M. Z. & Malik, R. N. Heavy-metal levels in feathers of cattle egret and their surrounding environment: a case of the Punjab province, Pakistan. Arch. Environ. Contam. Toxicol. 66, 139–153 (2014).
    CAS  PubMed  Article  Google Scholar 

    13.
    Wilson, E. O. Threats to biodiversity. Am Sci. 261, 108–116 (1989).
    Article  Google Scholar 

    14.
    Huettmann, F. & Czech, B. The steady state economy for global shorebird and habitat conservation. Endang. Species Res. 2, 89–92 (2006).
    Article  Google Scholar 

    15.
    Taber, R. D. & Payne, N. F. Wildlife, Conservation, and Human Welfare: A United States and Canadian Perspective (Krieger Publishing Company, Malabar, Florida, 2003).
    Google Scholar 

    16.
    Rogers, D., Piersma, T., Lavaleye, M., Pearson, G. B. & de Goeij, P. Life Along Land’s Edge: Wildlife on the Shores of Roebuck Bay, Broome (Dept. of Conservation and Land Management, Western Kensington, 2003).
    Google Scholar 

    17.
    Custer, C. M., Custer, T. W., Michael, J. A., Alan, D. A. & David, E. W. Trace elements in Lesser Scaup (Aythyaaffinis) from the Mississippi flyway. Ecotoxicology 12, 47–54 (2003).
    CAS  PubMed  Article  Google Scholar 

    18.
    Johansen, P., Asmund, G. & Riget, F. High human exposure to lead through consumption of birds hunted with lead shot. Environ. Pollut. 127, 125–129 (2004).
    CAS  PubMed  Article  Google Scholar 

    19.
    Mansouri, N. E. et al. Research on the suitability of organosolv semi-chemical triticale fibres as reinforcement for recycled HDPE composites. Bio. Resources. 7(4), 5032–5047 (2012).
    Google Scholar 

    20.
    Syed, J. H. & Malik, R. N. Occurrence and source identification of organochlorine pesticides in the surrounding surface soils of the Ittehad Chemical Industries Kalashah Kaku, Pakistan. Environ. Earth Sci. 62(6), 1311–1321 (2011).
    CAS  Article  Google Scholar 

    21.
    Eqani, S. et al. Distribution and risk assessment of organochlorine contaminants in surface water from River Chenab, Pakistan. J. Environ. Monit. 14(6), 1645–1654 (2012).
    CAS  PubMed  Article  Google Scholar 

    22.
    Qadir, A. & Malik, R. N. Heavy metals in eight edible fish species from two polluted tributaries (Aik and Palkhu) of the River Chenab, Pakistan. Biol. Trace Elem. Res. 143, 1524–1540 (2011).
    CAS  PubMed  Article  Google Scholar 

    23.
    Hashmi, H. Z., Malik, R. N. & Shahbaz, M. Heavy metals in eggshells of cattle egret (Bubulcus ibis) and little egret (Egretta garzetta) from the Punjab province, Pakistan. Ecotoxicol Environ. Saf. 89, 158–165 (2013).
    CAS  PubMed  Article  Google Scholar 

    24.
    Shahbaz, M., Khan, S. & Tahir, M. I. The dynamic links between energy consumption, economic growth, financial development and trade in China: fresh evidence from multivariate framework analysis. Energy Econ. 40, 8–21 (2013).
    Article  Google Scholar 

    25.
    Kim, J. & Koo, T. H. Heavy metal concentrations in feathers of Korean shorebirds. Arch. Environ. Contam. Toxicol. 55, 122–128 (2008).
    CAS  PubMed  Article  Google Scholar 

    26.
    Boncompagni, E. et al. Egrets as monitors of trace metal contamination in wetland of Pakistan. Arch. Environ. Contam. Toxicol. 45, 399–406 (2003).
    CAS  PubMed  Article  Google Scholar 

    27.
    Nagajyoti, P. C., Lee, K. D. & Sreekanth, T. V. M. Heavy metals, occurrence and toxicity for plants: a review. Environ Chem. Lett. 8(3), 199–216 (2010).
    CAS  Article  Google Scholar 

    28.
    Jaishankar, M., Mathew, B. B., Shah, M. S., Murthy, K. T. P. & Gowda, S. K. R. Biosorption of few heavy metal ions using agricultural wastes. J. Environ. Pollut. Hum. Health. 2, 1–6 (2014).
    Google Scholar 

    29.
    Deng, H., Zhang, Z., Chang, C. & Wang, Y. Trace metal concentration in Great Tit (Parus major) and Greenfinch (Carduelissinica) at the Western Mountains of Beijing, China. Environ. Poll. 148, 620–626 (2007).
    CAS  Article  Google Scholar 

    30.
    Kim, J. & Koo, T. H. The use of feathers to monitor heavy metal contamination in herons, KOrea. Arch. Environ. Contam. Toxicol. 53, 435–441 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Burger, J. & Gochfeld, M. Effects of lead and exercise on endurance and learning in young herring gulls. Ecotoxicol. Environ. Saf. 57, 136–144 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Scheifler, R., Coeurdassier, M. & Morilhat, C. Lead concentrations in feathers and blood of common blackbirds (Turdusmerula) and in earthworm inhabiting unpolluted and moderately polluted urban areas. Sci Total Environ. 371, 197–205 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Burger, J. Heavy metals in avian eggshells: another excretion method. J. Ecotoxicol. Environ. Health 41(2), 207–220 (1994).
    CAS  Article  Google Scholar 

    34.
    Furness, R. W. Birds as monitors of environmental change 102–120 (Chapman, New Yok, 1993).
    Google Scholar 

    35.
    Bostan, N., Ashrif, M., Mumtaz, A. S. & Ahmad, I. Diagnosis of heavy metal contamination in agro-ecology of Gujranwala, Pakistan using cattle egret as bioindicator. Ecotoxicology 6, 247–251 (2007).
    Article  CAS  Google Scholar 

    36.
    Lee, C. S. L., Li, X., Shi, W., Cheung, S. C. & Thornton, I. Metal contamination in urban, suburban and country park soils of Hong Kong: a study based on GIS and multivariate statistics. Sci. Total Environ. 356, 45–61 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Balachandran, S., Sathiyaselvam, P. & Panda, S. Bird atlas of Chilka (ed. BNHS) 1–326 (BNHS, 2009).

    38.
    Sugathan, R. Observations on Spoon billed Sandpiper (Eurynorhynchus pygmaeus) in its wintering ground at Point Calimere, Thanjavur District, Tamil Nadu. J. Bombay Nat. Hist. Soc. 82(2), 407–409 (1985).
    Google Scholar 

    39.
    Spoon-billed Sandpiper Task Force. News Bull. No 19 (2018).

    40.
    Pandiyan, J. & Jagadheesan, R. Population characteristics of migratory shorebirds in the Point Calimere Wildlife Sanctuary, Tamil Nadu, India. J. Sci. Trans. Environ. Technov. 10(1), 31–36 (2016).
    Google Scholar 

    41.
    Manikannan, R. Diversity of Water birds in the point Calimere wildlife sanctuary, Tamil Nadu, India. Ph.D. thesis submitted to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India 264 (2011)

    42.
    Kathiresan, K. A review of studies on Pichavaram mangrove, southeast India. Hydrobiologia 430(1–3), 185–205 (2000).
    Article  Google Scholar 

    43.
    Godhantaraman, N. Seasonal variations in species composition, abundance, biomass and estimated production rates of tintinnids at tropical estuarine and mangrove waters, Parangipettai, southeast coast of India. J. Mar. Syst. 36, 161–171 (2002).
    Article  Google Scholar 

    44.
    Rajendran, N. & Kathiresan, K. How to increase juvenile shrimps in mangrove waters?. Wetlands Ecol. Manage. 12–3, 179–188 (2004).
    Article  Google Scholar 

    45.
    Nagarajan, R. & Thiyagesan, K. Waterbirds and substrate quality of the Pichavaram wetlands, southern India. Ibis. 138, 710–721 (1996).
    Article  Google Scholar 

    46.
    Burger, J. & Gochfeld, M. Metals in Laysan Albatrosses from Midway Atoll. Arch Environ Contamin. Toxicol. 38, 254–259 (2000).
    CAS  Article  Google Scholar 

    47.
    Dauwe, T., Bervoets, L., Blust, R., Pinxten, R. & Eens, M. Can excrements and feathers of nestling songbirds be used as a biomonitor for heavy metal pollution. Arch. Environ Contam Toxicol. 39, 541–546 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Nyholm, N. E. Y. Monitoring of terrestrial environmental metal pollution by means of free-living insectivorous birds. Ann. Chim. 85, 343–351 (1995).
    CAS  Google Scholar 

    49.
    Kim, J. & Oh, J. M. Monitoring of heavy metal contaminants using feathers of shorebirds Korea. J. Environ. Monit. 14, 651 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Dauwe, T. et al. Great and blue tit feathers as biomonitors for heavy metal pollution. Ecol. Ind. 1, 227–234 (2002).
    CAS  Article  Google Scholar 

    51.
    Sokal, R. R. & Rohlf, F. I. Biometry: The Principles and Practice of Statistics in Biological Research 1–776 (W.H. Freeman, New York, 2012).
    Google Scholar 

    52.
    Sandilyan, S. Habitat quality and waterbird utilization pattern of Pichavaram wetlands southern India. Ph.D. Thesis, Bharathidasan University, Tiruchirapalli, India 287 (2009)

    53.
    Loska, K. & Wiechuła, D. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 51(8), 723–773 (2003).
    ADS  CAS  PubMed  Article  Google Scholar 

    54.
    Balachandran, S. Avian Diversity in Coastal Wetlands of India and their Conservation Needs. International Day for biological diversity 155–163 (Uttar Pradesh State Biodiversity Board, Lucknow, 2012).
    Google Scholar 

    55.
    Worrall, D. H. Diet of the Dunlin Calidris alpina in the Severn estuary. Bird Study 31(3), 203–212 (1984).
    Article  Google Scholar 

    56.
    Pienkowski, M. W. Aspects of the ecology and behaviour of ringed and grey plovers charadrius hiaticula and pluvialis squatarola, Durham theses, Durham University. Durham E-Theses Online. http://etheses.dur.ac.uk/7868/ (1980).

    57.
    Hayman, P., Marchant, J., Prater, T. & Helm, C. Book for Shorebirds (1986)

    58.
    Higgins, P. J. & Davies, S. J. J. F. (eds) Handbook of Australian, New Zealand and Antarctic Birds Snipe to Pigeons (. Oxford University Press, Oxford, 1996).
    Google Scholar 

    59.
    Ali, S. The Book of Indian Birds 1–326 (Bombay Natural History Society and Oxford University Press, Oxford, Mumbai, 2002).
    Google Scholar 

    60.
    Everaarts, J. M. et al. Copper, zinc and cadmium in benthic organisms from the Java Sea and estuarine and coastal areas around East Java. Netherl. J. Sea Res. 23(4), 415–426 (1989).
    ADS  CAS  Article  Google Scholar 

    61.
    Philips, D. J. H. The common mussels Mytilus edulis as an indicator of pollution by zinc, cadmium, lead, and copper. Effects of environmental variables on uptake of metals. Mar. Biol. 38, 59–69 (1976).
    Article  Google Scholar 

    62.
    Michael, H. Trace metals in the tissues and shells of Tympanotonus Fuscatus var Radula from the Mangrove Swamps of the Bukuma Oil Field, Niger Delta. Eur. J. Sci. Res. 24(4), 468–547 (2008).
    Google Scholar 

    63.
    Howarth, D. M., Hulbert, A. J. & Horning, D. A comparative Study of Heavy Metal Accumulation in Tissues of the Crested Tern, Sterna bergii, Breeding near Industrialized and Non-Industrialized Areas. Austr. Wildl. Res. 8, 665–672 (1981).
    CAS  Article  Google Scholar 

    64.
    Zdziarski, J. M., Mattix, M. & Bush, R. M. Zinc toxicosis in diving ducks. J. Zool. Wildl. Med. 25, 438–445 (1994).
    Google Scholar 

    65.
    Vanderzee, J., Zwart, P. & Schotman, A. J. H. Zinc poisoning in a Nicobar pigeon. J. Zool. Anim. Med. 16, 68–69 (1985).
    Article  Google Scholar 

    66.
    Bamford, M., Watkins, D., Bancroft, W., Tischler, G. & Wahl, J. Migratory Shorebirds of the East Asian—Australasian Flyway; Population Estimates and Internationally Important Sites (Wetlands International – Oceania, Canberra, 2008).
    Google Scholar 

    67.
    Balachandaran. International Day for Biological diversity. Marin Diversity. 155–163 (2006).

    68.
    Jerez, S. et al. Concentration of trace elements in feathers of three Antarctic penguins: geographical and interspecific differences. Environ. Pollut. 159, 2412–2419 (2011).
    CAS  PubMed  Article  Google Scholar 

    69.
    Markowski, M. et al. Avian feathers as bioindicators of the exposure to heavy metal contamination of food. Bull. Environ. Contam. Toxicol. 91, 302–305 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Lim, H. C. & Posa, C. Distribution and prey of migratory shorebirds on the northern coastline of Singapore. Raffles Bull. Zool. 62, 701–717 (2014).
    Google Scholar 

    71.
    Battley, P. F., Rogers, D. I., Piersma, T. & Koolhaas, A. Behavioural evidence for heat-load problems in great knots in tropical Australia fuelling for long-distance flight. Emu. 103(2), 97–103 (2003).
    Article  Google Scholar 

    72.
    Hockey, B. A., & Rayner, M. Comparison of grammar-based and statistical language models trained on the same data. In Proceedings of the AAAI Workshop on Spoken Language Understanding (2005).

    73.
    Mado-Filho, G. M. et al. Heavy metals in benthic organisms from Todosos Santos Bay, Brazil. Braz. J. Biol. 68(1), 95–100 (2008).
    Article  Google Scholar 

    74.
    Flora, G., Deepesh, G. & Archana, T. Toxicity of lead: a review with recent updates. Interdiscip. Toxicol. 5(2), 47–58 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Metcheva, R., Yurukova, L., Teodorova, S. & Nikolova, E. The penguin feathers as bioindicator of Antarctic environmental state. Environ. Monit. Assess. 362, 259–265 (2006).
    CAS  Google Scholar 

    76.
    Goss-Custard, J. D. & Jones, R. E. The diets of redshank and curlew. Bird Study 23(3), 233–243 (1976).
    Article  Google Scholar 

    77.
    Dhanakumar, S., Solaraj, G. & Mohanraj, R. Heavy metal partitioning in sediments and bioaccumulation in commercial fish species of three major reservoirs of river Cauvery delta region India Ecotoxicol. Environ. Saf. 113, 145–151 (2015).
    CAS  Article  Google Scholar 

    78.
    Eagles-Smith, C. A., Suchanek, T. H., Colwell, A. E. & Anderson, N. L. Mercury trophic transfer in a eutrophic lake: the importance of habitat-specific foraging. Ecol. Appl. 18, A196–A212 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    79.
    Eagles-Smith, C. A., Suchanek, T. H., Colwell, A. E. & Moyle, P. B. Changes in fish diets and food web mercury bioaccumulation induced by an invasive planktivorous fish. Ecol. Appl. 18, A213–A226 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    80.
    Wyn, B., Kidd, K. A., Burgess, N. M. & Curry, R. A. Mercury bio-magnification in the food webs of acidic lakes in Kejimkujik National Park and National Historic Site, Nova Scotia. Can. J. Fish Aquat. Sci. 66, 1532–1545 (2009).
    CAS  Article  Google Scholar 

    81.
    Morel, F. M. M., Kraepiel, A. M. L. & Amyot, M. The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst. 29, 543–566 (1998).
    Article  Google Scholar 

    82.
    Wolfe, M., Schwarzbach, S. & Sulaiman, R. A. Effects of Mercury on wildlife: a comprehensive review. Toxicol. Chem. 17, 146–160 (1998).
    CAS  Article  Google Scholar 

    83.
    Eisler, R. Polycyclic Aromatic Hydrocarbon Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review (No. 11). Fish and Wildlife Service, US Department of the Interior. (1987).

    84.
    Arcas, J. Diet and prey selection of Common Sandpiper Actitis hypoleucos during winter. Int. J. Ornithol. 51(1), 203–213 (2004).
    Google Scholar 

    85.
    Zhang, L., Khaloo, S. S., Kuban, P. & Hauser, P. C. Analysis of electroplating baths by capillary electrophoresis with high voltage contactless conductivity detection. Meas. Sci. Technol. 17(12), 3317 (2006).
    ADS  CAS  Article  Google Scholar 

    86.
    Abdullah, M. et al. Avian feathers as a non-destructive bio-monitoring tool of trace metals signatures: a case study from severely contaminated areas. Chemosphere 119, 553–561 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    87.
    Astorga España, M. S., Rodríguez Rodríguez, E. M. & Díaz Romero, C. Manganese, nickel, selenium and cadmium in molluscs from the Magellan Strait, Chile. Food Addit. Contamin. 21(8), 768–773 (2004).
    Article  CAS  Google Scholar 

    88.
    Dange, S. & Manoj, K. Bioaccumulation of heavy metals in sediment, polychaetes (annelid) worms, mud skipper and mud crab at Purna River Estuary, Navsari, Gujarat, India. Int. J. Curr. Microbiol. Appl. Sci. 4(9), 571–575 (2015).
    CAS  Google Scholar 

    89.
    Honda, K., Lee, D. P. & Tatsukawa, R. Lead poisoning in swans in Japan. Environ. Pollut. 65(3), 209–218 (1990).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    90.
    Youssef, M. & El-Sorogy, A. Environmental assessment of heavy metal contamination in bottom sediments of Al-Kharrar lagoon, Rabigh, Red Sea, Saudi Arabia. Arab. J. Geosci. 9, 474 (2016).
    Article  CAS  Google Scholar 

    91.
    Youssef, M., Madkour, H., Mansour, A., Alharbi, W. & El-Taher, A. Invertebrate shells (mollusca, foraminifera) as pollution indicators, Red Sea Coast, Egypt. J. Afr. Earth Sci. 133, 74–85 (2017).
    ADS  CAS  Article  Google Scholar 

    92.
    Roginski, E. E. & Mertz, W. A biphasic response of rats to cobalt. J. Nutr. 107, 1537–1542 (1977).
    CAS  PubMed  Article  Google Scholar 

    93.
    Catsiki, V. A., Katsilieri, Ch. & Gialamas, V. Chromium distribution in benthic species from a gulf receiving tannery wastes (Gulf of Geras—Lesbos island, Greece). Sci. Total Environ. 145(2), 173–185 (1994).
    ADS  CAS  Article  Google Scholar 

    94.
    Ghani, A. Effect of chromium toxicity on growth, chlorophyll and some mineral nutrients of Brassica juncea L. Egypt. Acad. J. Biol. Sci. 2(1), 9–15 (2011).
    Google Scholar 

    95.
    Hon, M. et al. Speciation study of chromium, copper and nickel in coastal estuarine sediments polluted by domestic and industrial effluents. Mar. Pollut. Bull. 34(11), 949–959 (1997).
    Article  Google Scholar 

    96.
    Burger, J. et al. Mercury, lead, cadmium, arsenic, chromium and selenium in feathers of shorebirds during migrating through Delaware Bay, New Jersey: comparing the 1990s and 2011/2012. Toxics 3, 63–74 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    97.
    Janssens, E., Dauwe, T., Bervoets, L. & Eens, M. Inter and intraclutch variability in heavy metals in feathers of Great tit nestlings (Parus major) along a pollution gradient. Arch. Environ. Contam. Toxicol. 43, 323–329 (2002).
    CAS  PubMed  Article  Google Scholar 

    98.
    Burger, J. & Gochfeld, M. Metal levels in feathers of 12 species of seabirds from MidwayAtoll in the northern Pacific Ocean. Sci. Total Environ. 257, 37–52 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    99.
    Mullin, D. W., Graham, A., Schoenjahn, M. J. & Walter, G. H. Phylogeography of the are Australian endemic Grey Falcon Falco hypoleucos: implications for conservation. Bird Conserv. Int. 30, 447–455 (2020).
    Article  Google Scholar 

    100.
    Lacerda, L. D., Bidone, E. D., Guimaraes, A. F. & Pfeiffer, W. C. Mercury concentrations in fish from the Itacaiúnas-Parauapebas River system, Carajás region, Amazon. Anais Acad. Bras. Ciênc. 66(3), 373–379 (1994).
    CAS  Google Scholar  More

  • in

    Currently monitored microplastics pose negligible ecological risk to the global ocean

    1.
    Law, K. & Thompson, R. C. Microplastics in the seas—concern is rising about widespread contamination of the marine environment by microplastics. Science (80-.) 345, 144–145 (2014).
    ADS  CAS  Article  Google Scholar 
    2.
    Amaral-Zettler, L. A. et al. The biogeography of the plastisphere: implications for policy. Front. Ecol. Environ. 13, 541–546 (2015).
    Article  Google Scholar 

    3.
    Sussarellu, R. et al. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Natl. Acad. Sci. U. S. A. 113, 2430–2435 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Della Torre, C. et al. Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus. Environ. Sci. Technol. 48, 12302–12311 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    5.
    Cole, M. & Galloway, T. S. Ingestion of nanoplastics and microplastics by pacific oyster larvae. Environ. Sci. Technol. 49, 14625–14632 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    6.
    Cole, M. et al. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 47, 6646–6655 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    7.
    Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M. & Thompson, R. C. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ. Sci. Technol. 42, 5026–5031 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    Browne, M. A., Niven, S. J., Galloway, T. S., Rowland, S. J. & Thompson, R. C. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr. Biol. 23, 2388–2392 (2013).
    CAS  PubMed  Article  Google Scholar 

    9.
    Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M. B. & Janssen, C. R. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ. Pollut. 199, 10–17 (2015).
    PubMed  Article  CAS  Google Scholar 

    10.
    Green, D. S. Effects of microplastics on European flat oysters, Ostrea edulis and their associated benthic communities. Environ. Pollut. 216, 95–103 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Lenz, R., Enders, K. & Nielsen, T. G. Microplastic exposure studies should be environmentally realistic. Proc. Natl. Acad. Sci. U. S. A. 113, E4121–E4122 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Connors, K. A., Dyer, S. D. & Belanger, S. E. Advancing the quality of environmental microplastic research. Environ. Toxicol. Chem. 36, 1697–1703 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Burns, E. E. & Boxall, A. B. A. Microplastics in the aquatic environment: evidence for or against adverse impacts and major knowledge gaps. Environ. Toxicol. Chem. 37, 2776–2796 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Council, N. R. Risk Assessment in the Federal Government: managing the process. (1983).

    15.
    Suter II, G. W. Ecological Risk Assessment (CRC Press, Boca Raton, 2007).
    Google Scholar 

    16.
    Beiras, R. Marine Pollution. Sources, fate and effects of pollutants in coastal ecosystems. (Elsevier, 2018).

    17.
    Adam, V., Yang, T. & Nowack, B. Toward an ecotoxicological risk assessment of microplastics: comparison of available hazard and exposure data in freshwaters. Environ. Toxicol. Chem. 38, 436–447 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    US EPA. Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. PB85–227049. Environ. Prot. 105 (2010).

    19.
    European Commission. Common Implementation Strategy for the WFD (2000/60.EC), Guidance Document No . 27, Technical Guidance For Deriving Environmental Quality Standards. (2011). https://doi.org/10.2779/43816.

    20.
    de Lucia, G. A. et al. Amount and distribution of neustonic micro-plastic off the western Sardinian coast (Central-Western Mediterranean Sea). Mar. Environ. Res. 100, 10–16 (2014).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    21.
    Law, K. L. et al. Plastic accumulation in the North Atlantic subtropical gyre. Science (80-.) 329, 1185–1188 (2010).
    ADS  CAS  Article  Google Scholar 

    22.
    Goldstein, M. C., Rosenberg, M. & Cheng, L. Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect. Biol. Lett. 8, 817–820 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Carpenter, E. J. & Smith, K. L. Plastics on the Sargasso sea surface. Science (80-.) 175, 1240–1241 (1972).
    ADS  CAS  Article  Google Scholar 

    24.
    Doyle, M. J., Watson, W., Bowlin, N. M. & Sheavly, S. B. Plastic particles in coastal pelagic ecosystems of the Northeast Pacific ocean. Mar. Environ. Res. 71, 41–52 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Collignon, A. et al. Neustonic microplastic and zooplankton in the North Western Mediterranean Sea. Mar. Pollut. Bull. 64, 861–864 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Reisser, J. et al. Marine plastic pollution in waters around Australia: Characteristics, concentrations, and pathways. PLoS ONE 8 (2013).

    27.
    Law, K. L. et al. Distribution of surface plastic debris in the eastern Pacific ocean from an 11-year data set. Environ. Sci. Technol. 48, 4732–4738 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Collignon, A., Hecq, J. H., Galgani, F., Collard, F. & Goffart, A. Annual variation in neustonic micro- and meso-plastic particles and zooplankton in the Bay of Calvi (Mediterranean-Corsica). Mar. Pollut. Bull. 79, 293–298 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Cózar, A. et al. Plastic accumulation in the mediterranean sea. PLoS ONE 10, 1–12 (2015).
    Article  CAS  Google Scholar 

    30.
    Panti, C. et al. Occurrence, relative abundance and spatial distribution of microplastics and zooplankton NW of Sardinia in the Pelagos Sanctuary Protected Area Mediterranean Sea. Environ. Chem. 12, 618–626 (2015).
    CAS  Article  Google Scholar 

    31.
    Pedrotti, M. L. et al. Changes in the floating plastic pollution of the mediterranean sea in relation to the distance to land. PLoS ONE 11, 1–14 (2016).
    Article  CAS  Google Scholar 

    32.
    Suaria, G. et al. The Mediterranean Plastic Soup: Synthetic polymers in Mediterranean surface waters. Sci. Rep. 6 (2016).

    33.
    Isobe, A., Uchiyama-Matsumoto, K., Uchida, K. & Tokai, T. Microplastics in the Southern Ocean. Mar. Pollut. Bull. 114, 623–626 (2017).
    CAS  PubMed  Article  Google Scholar 

    34.
    Cózar, A. et al. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation. Sci. Adv. 3, 1–9 (2017).
    Article  CAS  Google Scholar 

    35.
    Jensen, L. H., Motti, C. A., Garm, A. L., Tonin, H. & Kroon, F. J. Sources, distribution and fate of microfibres on the Great Barrier Reef Australia. Sci. Rep. 9, 1–15 (2019).
    Article  CAS  Google Scholar 

    36.
    Mu, J. et al. Microplastics abundance and characteristics in surface waters from the Northwest Pacific, the Bering Sea, and the Chukchi Sea. Mar. Pollut. Bull. 143, 58–65 (2019).
    CAS  PubMed  Article  Google Scholar 

    37.
    Poulain, M. et al. Small microplastics as a main contributor to plastic mass balance in the north atlantic subtropical gyre. Environ. Sci. Technol. 53, 1157–1164 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    38.
    Ivar do Sul, J. A., Costa, M. F., Barletta, M. & Cysneiros, F. J. A. Pelagic microplastics around an archipelago of the Equatorial Atlantic. Mar. Pollut. Bull. 75, 305–309 (2013).
    CAS  PubMed  Article  Google Scholar 

    39.
    Desforges, J. P. W., Galbraith, M., Dangerfield, N. & Ross, P. S. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Mar. Pollut. Bull. 79, 94–99 (2014).
    CAS  PubMed  Article  Google Scholar 

    40.
    Lusher, A. L., Burke, A., O’Connor, I. & Officer, R. Microplastic pollution in the Northeast Atlantic Ocean: Validated and opportunistic sampling. Mar. Pollut. Bull. 88, 325–333 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Lusher, A. L., Tirelli, V., O’Connor, I. & Officer, R. Microplastics in Arctic polar waters: The first reported values of particles in surface and sub-surface samples. Sci. Rep. 5, 1–9 (2015).
    Article  CAS  Google Scholar 

    42.
    Enders, K., Lenz, R., Stedmon, C. A. & Nielsen, T. G. Abundance, size and polymer composition of marine microplastics ≥10 μm in the Atlantic Ocean and their modelled vertical distribution. Mar. Pollut. Bull. 100, 70–81 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Amélineau, F. et al. Microplastic pollution in the Greenland Sea: background levels and selective contamination of planktivorous diving seabirds. Environ. Pollut. 219, 1131–1139 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    44.
    Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 9, 1–9 (2019).
    Article  CAS  Google Scholar 

    45.
    Pabortsava, K. & Lampitt, R. S. High concentrations of plastic hidden beneath the surface of the Atlantic Ocean. Nat. Commun. 11, 1–11 (2020).
    Article  CAS  Google Scholar 

    46.
    Rist, S. et al. Quantification of plankton-sized microplastics in a productive coastal Arctic marine ecosystem. Environ. Pollut. 266, 115248 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Cózar, A. et al. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. U. S. A. 111, 10239–10244 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Zhao, S., Zhu, L., Wang, T. & Li, D. Suspended microplastics in the surface water of the Yangtze Estuary System, China: first observations on occurrence, distribution. Mar. Pollut. Bull. 86, 562–568 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Yamashita, R. & Tanimura, A. Floating plastic in the Kuroshio Current area, western North Pacific Ocean. Mar. Pollut. Bull. 54, 464–488 (2007).
    Article  CAS  Google Scholar 

    50.
    Kukulka, T., Proskurowski, G., Morét-Ferguson, S., Meyer, D. W. & Law, K. L. The effect of wind mixing on the vertical distribution of buoyant plastic debris. Geophys. Res. Lett. 39, 1–6 (2012).
    Article  Google Scholar 

    51.
    Isobe, A., Uchida, K., Tokai, T. & Iwasaki, S. East Asian seas: a hot spot of pelagic microplastics. Mar. Pollut. Bull. 101, 618–623 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Frias, J. P. G. L., Otero, V. & Sobral, P. Evidence of microplastics in samples of zooplankton from Portuguese coastal waters. Mar. Environ. Res. 95, 89–95 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Gouin, T. et al. Toward the development and application of an environmental risk assessment framework for microplastic. Environ. Toxicol. Chem. 38, 2087–2100 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Erni-Cassola, G., Zadjelovic, V., Gibson, M. I. & Christie-Oleza, J. A. Distribution of plastic polymer types in the marine environment A meta-analysis. J. Hazard. Mater. 369, 691–698 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Jeong, C. B. et al. Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana. Sci. Rep. 7, 1–11 (2017).
    ADS  Article  CAS  Google Scholar 

    56.
    Fernández, B. & Albentosa, M. Insights into the uptake, elimination and accumulation of microplastics in mussel. Environ. Pollut. 249, 321–329 (2019).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    57.
    Al-Sid-Cheikh, M. et al. Uptake, whole-body distribution, and depuration of nanoplastics by the scallop pecten maximus at environmentally realistic concentrations. Environ. Sci. Technol. 52, 14480–14486 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Baumann, L., Schmidt-Posthaus, H., Segner, H. & Wolf, J. C. Comment on ‘uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver’. Environ. Sci. Technol. 50, 12521–12522 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    González-Pleiter, M. et al. Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments. Environ. Sci. Nano 6, 1382–1392 (2019).
    Article  Google Scholar 

    60.
    Enfrin, M. et al. Release of hazardous nanoplastic contaminants due to microplastics fragmentation under shear stress forces. J. Hazard. Mater. 384, 121393 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Song, Y. K. et al. Large accumulation of micro-sized synthetic polymer particles in the sea surface microlayer. Environ. Sci. Technol. 48, 9014–9021 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Colton, J. B., Knapp, F. D. & Burns, B. R. Plastic particles in surface waters of the Northwestern Atlantic. Science (80-.) 185, 491–497 (1974).
    ADS  Article  Google Scholar 

    63.
    Ryan, P. G. The characteristics and distribution of plastic particles at the sea-surface off the southwestern Cape Province South Africa. Mar. Environ. Res. 25, 249–273 (1988).
    Article  Google Scholar 

    64.
    Cole, M. et al. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci. Rep. 4, 1–8 (2014).
    Google Scholar 

    65.
    Beer, S., Garm, A., Huwer, B., Dierking, J. & Nielsen, T. G. No increase in marine microplastic concentration over the last three decades—a case study from the Baltic Sea. Sci. Total Environ. 621, 1272–1279 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Sjollema, S. B., Redondo-Hasselerharm, P., Leslie, H. A., Kraak, M. H. S. & Vethaak, A. D. Do plastic particles affect microalgal photosynthesis and growth?. Aquat. Toxicol. 170, 259–261 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Gambardella, C. et al. Ecotoxicological effects of polystyrene microbeads in a battery of marine organisms belonging to different trophic levels. Mar. Environ. Res. 141, 313–321 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Gardon, T., Reisser, C., Soyez, C., Quillien, V. & Le Moullac, G. Microplastics affect energy balance and gametogenesis in the pearl oyster pinctada margaritifera. Environ. Sci. Technol. 52, 5277–5286 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    69.
    Durán, I. & Beiras, R. Acute water quality criteria for polycyclic aromatic hydrocarbons, pesticides, plastic additives, and 4-Nonylphenol in seawater. Environ. Pollut. 224, 384–391 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    70.
    van Straalen, N. M. & Denneman, C. A. J. Ecotoxicological evaluation of soil quality criteria. Ecotoxicol. Environ. Saf. 18, 241–251 (1989).
    PubMed  Article  Google Scholar 

    71.
    SCHEER. Scientific advice on Guidance document n°27: Technical guidance for deriving environmental quality standards. Scientific Committee on Health, Environmental and Emerging Risks (2017).

    72.
    Pfister, R., Schwarz, K. A., Janczyk, M. & Rick Daleand, J. B. F. Good things peak in pairs: a note on the bimodality coefficient. Front. Psychol. 4, 1–3 (2013).
    Google Scholar 

    73.
    Padfield, D. & Matheson, G. nls.multstart: Robust Non-Linear Regression using AIC Scores. R package version 1.0.0. (2018).

    74.
    Delignette-Muller, M. L. & Dutang, C. fitdistrplus: an R package for fitting distributions. J. Stat. Softw. 64, 1–34 (2015).
    Article  Google Scholar 

    75.
    R Core Team. R: A language and environment for statistical computing. R fundation, Vienna Austria (2019). More