More stories

  • in

    Antler cannibalism in reindeer

    1.
    McKintosh, E., Tabrizi, S. J. & Collinge, J. Prion diseases. J. Neuro. Virol. 9, 183–193 (2003).
    CAS  Google Scholar 
    2.
    Chen, C. & Dong, X. P. Epidemiological characteristics of human prion diseases. Infect. Dis. Poverty 5, 47 (2016).
    Article  Google Scholar 

    3.
    Huor, A. et al. The emergence of classical BSE from atypical/Nor98 scrapie. PNAS 116, 26853–26862 (2019).
    CAS  Article  Google Scholar 

    4.
    Prusiner, S. B. Prion diseases and the BSE crisis. Science 278, 245–251 (1997).
    CAS  Article  Google Scholar 

    5.
    Wadsworth, J. D. F. et al. The origin of the prion agent of kuru: molecular and biological strain typing. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 3747–3753 (2008).
    CAS  Article  Google Scholar 

    6.
    Liberski, P. P., Gajos, A., Sikorska, B. & Lindenbaum, S. Kuru, the first human prion disease. Viruses 11, 232 (2019).
    Article  Google Scholar 

    7.
    Haley, N. J. & Hoover, E. A. Chronic Wasting Disease of cervids: current knowledge and future perspectives. Annu. Rev. Anim. Biosci. 3, 305–325 (2015).
    CAS  Article  Google Scholar 

    8.
    Benestad, S. L., Mitchell, G., Simmons, M., Ytrehus, B. & Vikøren, T. First case of chronic wasting disease in Europe in a Norwegian free-ranging reindeer. Vet. Res. 47, 88 (2016).
    Article  Google Scholar 

    9.
    Becker, R. Deadly animal prion disease appears in Europe. Nature https://doi.org/10.1038/nature.2016.19759 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    10.
    Stokstad, E. Norway seeks to stamp out prion disease. Science 356, 12 (2017).
    ADS  CAS  Article  Google Scholar 

    11.
    Sutherland, W. J. et al. A 2018 horizon scan of emerging issues for global conservation and biological diversity. Trends Ecol. Evol. 33, 47–58 (2018).
    Article  Google Scholar 

    12.
    Nonno, R., Di Bari, M. A., Pirisinu, L., et al. Studies in bank voles reveal strain differences between chronic wasting disease prions from Norway and North America. Proc Natl Acad Sci USA in press, (2020).

    13.
    Sutcliffe, A. J. Similarity of bones and antlers gnawed by deer to human artefacts. Nature 246, 428–430 (1973).
    ADS  CAS  Article  Google Scholar 

    14.
    Gambín, P., Ceacero, F., Garcia, A. J., Landete-Castillejos, T. & Gallego, L. Patterns of antler consumption reveal osteophagia as a natural mineral resource in key periods for red deer (Cervus elaphus). Eur. J. Wildl. Res. 63, 39 (2017).
    Article  Google Scholar 

    15.
    Klaus, G. & Schmid, B. Geophagy at natural licks and mammal ecology: a review. Mammalia 62, 481–497 (1999).
    Google Scholar 

    16.
    Mahaney, W. C. & Krishnamani, R. Understanding geophagy in animals: standard procedures for sampling soils. J. Chem. Ecol. 29, 1503–1523 (2003).
    CAS  Article  Google Scholar 

    17.
    Bazely, D. R. Carnivorous herbivores: mineral nutrition and the balanced diet. Trends Ecol. Evol. 4, 155–156 (1989).
    Article  Google Scholar 

    18.
    Loe, L. E. et al. Antler growth as a cost of reproduction in female reindeer. Oecologia 189, 601–609 (2019).
    ADS  Article  Google Scholar 

    19.
    Clutton-Brock, T. H., Albon, S. D. & Harvey, P. H. Antlers, body size and breeding group size in the Cervidae. Nature 285, 565–567 (1980).
    ADS  Article  Google Scholar 

    20.
    Schaefer, J. A. & Mahoney, S. P. Antlers on female caribou: biogeography of the bones of contention. Ecology 82, 3556–3560 (2001).
    Article  Google Scholar 

    21.
    Angers, R. C. et al. Chronic wasting disease prions in elk antler velvet. Emerg. Infect. Dis. 15, 696–703 (2009).
    CAS  Article  Google Scholar 

    22.
    Nieto-Diaz, M. et al. Deer antler innervation and regeneration. Front Biosci. 17, 1389–1401 (2012).
    CAS  Article  Google Scholar 

    23.
    Guiroy, D. C. et al. Neuronal degeneration and neurofilament accumulation in the trigeminal ganglia in creutzfeldt-jakob disease. Ann Neurol. 25, 102–106 (1989).
    CAS  Article  Google Scholar 

    24.
    Rolf, H. J. & Enderle, A. Hard fallow deer antler: a living bone till antler casting?. Anat. Rec. 255, 69–77 (1999).
    CAS  Article  Google Scholar 

    25.
    Huor, A. et al. Infectivity in bone marrow from sporadic CJD patients. J. Pathol. 243, 273–278 (2017).
    Article  Google Scholar 

    26.
    Davenport, K. A. et al. PrPC expression and prion seeding activity in the alimentary tract and lymphoid tissue of deer. PLoS ONE 12, e0183927 (2017).
    Article  Google Scholar 

    27.
    Mysterud, A. et al. The demographic pattern of infection with chronic wasting disease in reindeer at an early epidemic stage. Ecosphere 10, e02931 (2019).
    Article  Google Scholar 

    28.
    Pirisinu, L. et al. A novel type of Chronic Wasting Disease detected in European moose (Alces alces) in Norway. Emerg. Infect. Dis. 24, 2210–2218 (2018).
    CAS  Article  Google Scholar 

    29.
    Vikøren, T. et al. First detection of Chronic Wasting Disease in a wild red deer (Cervus elaphus) in Europe. J. Wildl. Dis. 55, 970–972 (2019).
    Article  Google Scholar 

    30.
    Buschmann, A. et al. Atypical BSE in Germany – Proof of transmissibility and biochemical characterization. Vet. Microbiol. 117, 103–116 (2006).
    CAS  Article  Google Scholar 

    31.
    Benestad, S. L. et al. Cases of scrapie with unusal features in Norway and designation of a new type, Nor98. Vet. Rec. 153, 2002–2008 (2003).
    Article  Google Scholar 

    32.
    Estevez, J. A., Landete-Castillejos, T., García, A. J., Ceacero, F. & Gallego, L. Population management and bone structural effects in composition and radio-opacity of iberian red deer (Cervus elaphus hispanicus) antlers. Eur. J. Wildl. Res. 54, 215–223 (2008).
    Article  Google Scholar 

    33.
    Norman, G. Likert scales, levels of measurement and the “laws” of statistics. Adv. Health. Sci. Educ. 15, 625–632 (2019).
    Article  Google Scholar 

    34.
    Collinge, J. & Clarke, A. R. A general model of prion strains and their pathogenicity. Science 318, 930 (2007).
    ADS  CAS  Article  Google Scholar 

    35.
    Marion, M. S. et al. Experimental oral transmission of atypical scrapie to sheep. Emerg. Infect. Dis. 17, 848 (2011).
    Article  Google Scholar 

    36.
    Angers, R. C. et al. Prion strain mutation determined by prion protein conformational compatibility and primary structure. Science 328, 1154 (2010).
    ADS  CAS  Article  Google Scholar 

    37.
    Igel-Egalon, A., Béringue, V., Rezaei, H. & Sibille, P. Prion strains and transmission barrier phenomena. Pathogens 7, (2018).

    38.
    Le Dur, A. et al. Divergent prion strain evolution driven by PrPC expression level in transgenic mice. Nat. Commun. 8, 14170 (2017).
    ADS  Article  Google Scholar  More

  • in

    Picophytoplankton dynamics in a large temperate estuary and impacts of extreme storm events

    1.
    Johnson, P. W. & Sieburth, J. M. Chroococcoid cyanobacteria in the sea: A ubiquitous and diverse phototrophic biomass1. Limnol. Oceanogr. 24, 928–935 (1979).
    ADS  Article  Google Scholar 
    2.
    Waterbury, J. B., Watson, S. W., Guillard, R. L. & Brand, L. E. Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium. Nature 277, 293–294 (1979).
    ADS  Article  Google Scholar 

    3.
    Stockner, J. G. & Antia, N. J. Algal picoplankton from marine and freshwater ecosystems: A multidisciplinary perspective. Can. J. Fish. Aquat. Sci. 43, 2472–2503 (1986).
    Article  Google Scholar 

    4.
    Partensky, F., Blanchot, J. & Vaulot, D. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: A review. Bull. l’Institut Oceanogr. Monaco Spec. 19, 457–475 (1999).
    Google Scholar 

    5.
    Stal, L. J. & Staal, M. Nutrient control of cyanobacterial blooms in the Baltic Sea. Aquat. Microb. Ecol. 18, 165–173 (1999).
    Article  Google Scholar 

    6.
    Paczkowska, J. et al. Allochthonous matter: An important factor shaping the phytoplankton community in the Baltic Sea. J. Plankton Res. 39, 23–34 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Gaulke, A. K., Wetz, M. S. & Paerl, H. W. Picophytoplankton: A major contributor to planktonic biomass and primary production in a eutrophic, river-dominated estuary. Estuar. Coast. Shelf Sci. 90, 45–54 (2010).
    ADS  CAS  Article  Google Scholar 

    8.
    Wang, K., Wommack, K. E. & Chen, F. Abundance and distribution of Synechococcus spp. and cyanophages in the Chesapeake Bay. Appl. Environ. Microbiol. 77, 7459–7468 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Olson, R. J., Zettler, E. R. & DuRand, M. D. Phytoplankton analysis using flow cytometry. In Handbook of Methods in Aquatic Microbial Ecology 175–186 (Lewis Publishers, Boca Raton, 1993).

    10.
    Li, W. K. W. Cytometric diversity in marine ultraphytoplankton. Limnol. Oceanogr. 42, 874–880 (1997).
    ADS  CAS  Article  Google Scholar 

    11.
    Collier, J. L. Flow cytometry and the single cell in phycology. J. Phycol. 36, 628–644 (2000).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Liu, H., Jing, H., Wong, T. H. C. & Chen, B. Co-occurrence of phycocyanin- and phycoerythrin-rich Synechococcus in subtropical estuarine and coastal waters of Hong Kong. Environ. Microbiol. Rep. 6, 90–99 (2013).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    13.
    Rajaneesh, K. M. & Mitbavkar, S. Factors controlling the temporal and spatial variations in Synechococcus abundance in a monsoonal estuary. Mar. Environ. Res. 92, 133–143 (2013).
    Article  CAS  Google Scholar 

    14.
    Albrecht, M., Pröschold, T. & Schumann, R. Identification of cyanobacteria in a eutrophic coastal lagoon on the southern Baltic coast. Front. Microbiol. 8, 923 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    15.
    Caroppo, C. Ecology and biodiversity of picoplanktonic cyanobacteria in coastal and brackish environments. Biodivers. Conserv. 24, 949–971 (2015).
    Article  Google Scholar 

    16.
    Murrell, M. C. & Lores, E. M. Phytoplankton and zooplankton seasonal dynamics in a subtropical estuary: Importance of cyanobacteria. J. Plankton Res. 26, 371–382 (2004).
    Article  Google Scholar 

    17.
    Xia, X., Guo, W., Tan, S. & Liu, H. Synechococcus assemblages across the salinity gradient in a salt wedge estuary. Front. Microbiol. 8, 1254 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Phlips, E. J., Badylak, S. & Lynch, T. C. Blooms of the picoplanktonic cyanobacterium Synechococcus in Florida Bay, a subtropical inner-shelf lagoon. Limnol. Ocean. 44, 1166–1175 (1999).
    Article  Google Scholar 

    19.
    Weisse, T. Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. In Advances in Microbial Ecology, vol 13 (ed. Jones, J. G.) 327–370 (Springer US, New York, 1993).

    20.
    Tomas, C. R. Identifying marine phytoplankton (Academic Press, New York, 1997).
    Google Scholar 

    21.
    Gobler, C. J., Renaghan, M. J. & Buck, N. J. Impacts of nutrients and grazing mortality on the abundance of Aureococcus anophagefferens during a New York brown tide bloom. Limnol. Oceanogr. 47, 129–141 (2002).
    ADS  Article  Google Scholar 

    22.
    Vaquer, A., Troussellier, M., Courties, C. & Bibent, B. Standing stock and dynamics of picophytoplankton in the Thau Lagoon (northwest Mediterranean coast). Limnol. Oceanogr. 41, 1821–1828 (1996).
    ADS  Article  Google Scholar 

    23.
    Calvo-Diaz, A. & Moran, X. A. G. Seasonal dynamics of picoplankton in shelf waters of the southern Bay of Biscay. Aquat. Microb. Ecol. 42, 159–174 (2006).
    Article  Google Scholar 

    24.
    Worden, A. Z., Nolan, J. K. & Palenik, B. Assessing the dynamics and ecology of marine picophytoplankton: The importance of the eukaryotic component. Limnol. Ocean. 49, 168–179 (2004).
    CAS  Article  Google Scholar 

    25.
    O’Kelly, C. J., Sieracki, M. E., Thier, E. C. & Hobson, I. C. A transient bloom of Ostreococcus (Chlorophyta, Prasinophyceae) in West Neck Bay, Long Island, New York. J. Phycol. 39, 850–854 (2003).
    Article  Google Scholar 

    26.
    Péquin, B., Mohit, V., Poisot, T., Tremblay, R. & Lovejoy, C. Wind drives microbial eukaryote communities in a temperate closed lagoon. Aquat. Microb. Ecol. 78, 187–200 (2017).
    Article  Google Scholar 

    27.
    Bec, B. et al. Distribution of picophytoplankton and nanophytoplankton along an anthropogenic eutrophication gradient in French Mediterranean coastal lagoons. Aquat. Microb. Ecol. 63, 29–45 (2011).
    Article  Google Scholar 

    28.
    Stal, L. J. et al. BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea–-responses to a changing environment. Cont. Shelf Res. 23, 1695–1714 (2003).
    ADS  Article  Google Scholar 

    29.
    Chen, F., Wang, K., Kan, J., Suzuki, M. T. & Wommack, K. E. Diverse and unique picocyanobacteria in Chesapeake Bay, revealed by 16S–23S rRNA internal transcribed spacer sequences. Appl. Environ. Microbiol. 72, 2239–2243 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Paerl, H. W., Pinckney, J. L., Fear, J. M. & Peierls, B. L. Ecosystem responses to internal and watershed organic matter loading: Consequences for hypoxia in the eutrophying Neuse River Estuary, North Carolina, USA. Mar. Ecol. Prog. Ser. 166, 17–25 (1998).
    ADS  CAS  Article  Google Scholar 

    31.
    Peierls, B. L., Hall, N. S. & Paerl, H. W. Non-monotonic responses of phytoplankton biomass accumulation to hydrologic variability: A comparison of two coastal plain north carolina estuaries. Estuar. Coasts 35, 1376–1392 (2012).
    Article  Google Scholar 

    32.
    Paerl, H. W. et al. Two decades of tropical cyclone impacts on North Carolina’s estuarine carbon, nutrient and phytoplankton dynamics: Implications for biogeochemical cycling and water quality in a stormier world. Biogeochemistry 141, 307–332 (2018).
    ADS  CAS  Article  Google Scholar 

    33.
    Wetz, M. S., Paerl, H. W., Taylor, J. C. & Leonard, J. A. Environmental controls upon picophytoplankton growth and biomass in a eutrophic estuary. Aquat. Microb. Ecol. 63, 133–143 (2011).
    Article  Google Scholar 

    34.
    Apple, J. K., Strom, S. L., Palenik, B. & Brahamsha, B. Variability in protist grazing and growth on different marine Synechococcus isolates. Appl. Environ. Microbiol. 77, 3074–3084 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Zwirglmaier, K., Spence, E. D., Zubkov, M. V., Scanlan, D. J. & Mann, N. H. Differential grazing of two heterotrophic nanoflagellates on marine Synechococcus strains. Environ. Microbiol. 11, 1767–1776 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Paz-Yepes, J., Brahamsha, B. & Palenik, B. Role of a microcin-C-like biosynthetic gene cluster in allelopathic interactions in marine Synechococcus. Proc. Natl. Acad. Sci. 110, 12030–12035 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Wall, C., Rodgers, B., Gobler, C. & Peterson, B. Responses of loggerhead sponges Spechiospongia vesparium during harmful cyanobacterial blooms in a sub-tropical lagoon. Mar. Ecol. Prog. Ser. 451, 31–43 (2012).
    ADS  Article  Google Scholar 

    38.
    Hamilton, T. J., Paz-Yepes, J., Morrison, R. A., Palenik, B. & Tresguerres, M. Exposure to bloom-like concentrations of two marine Synechococcus cyanobacteria (strains CC9311 and CC9902) differentially alters fish behaviour. Conserv. Physiol. 2, cuo020 (2014).
    Article  Google Scholar 

    39.
    Bales, J. D. Effects of Hurricane Floyd inland flooding, September–October 1999, on tributaries to Pamlico Sound, North Carolina. Estuaries 26, 1319–1328 (2003).
    Article  Google Scholar 

    40.
    Paerl, H. W. et al. Recent increase in catastrophic tropical cyclone flooding in coastal North Carolina, USA: Long-term observations suggest a regime shift. Sci. Rep. 9, 10620 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    41.
    Osburn, C. L., Rudolph, J. C., Paerl, H. W., Hounshell, A. G. & Van Dam, B. R. Lingering carbon cycle effects of Hurricane Matthew in North Carolina’s coastal waters. Geophys. Res. Lett. 46, 2654–2661 (2019).
    ADS  CAS  Article  Google Scholar 

    42.
    Paerl, H. W., Rossignol, K. L., Hall, S. N., Peierls, B. L. & Wetz, M. S. Phytoplankton community indicators of short- and long-term ecological change in the anthropogenically and climatically impacted neuse river estuary, North Carolina, USA. Estuar. Coasts 33, 485–497 (2010).
    CAS  Article  Google Scholar 

    43.
    Six, C., Sherrard, R., Lionard, M., Roy, S. & Campbell, D. A. Photosystem II and pigment dynamics among ecotypes of the green alga Ostreococcus. Plant Physiol. 151, 379–390 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Bec, B., Husseini-Ratrema, J., Collos, Y., Souchu, P. & Vaquer, A. Phytoplankton seasonal dynamics in a Mediterranean coastal lagoon: Emphasis on the picoeukaryote community. J. Plankton Res. 27, 881–894 (2005).
    CAS  Article  Google Scholar 

    45.
    Mohan, A. P., Jyothibabu, R., Jagadeesan, L., Lallu, K. R. & Karnan, C. Summer monsoon onset-induced changes of autotrophic pico-and nanoplankton in the largest monsoonal estuary along the west coast of India. Environ. Monit. Assess. 188, 93 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    46.
    Paerl, H. W. et al. Microbial indicators of aquatic ecosystem change: Current applications to eutrophication studies. In FEMS Microbiology Ecology 46, 233–246 (Elsevier, Amsterdam, 2003).

    47.
    NC Weather Forecast Office Newport/Morehead City. Post Tropical Cyclone Report—Hurricane Florence. National Weather Service (2018).

    48.
    Welschmeyer, N. A. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 39, 1985–1992 (1994).
    ADS  CAS  Article  Google Scholar 

    49.
    Schlitzer, R. Ocean Data View. (2020).

    50.
    Mangiafico, S. S. Summary and analysis of extension program evaluation in R, version 1.15. 0. Rutgers Coop. Extension, New Brunswick, NJ https//rcompanion. org/handbook/.[Google Sch. (2016).

    51.
    Siegel, A. F. Robust regression using repeated medians. Biometrika 69, 242–244 (1982).
    MATH  Article  Google Scholar 

    52.
    R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. http://www.R-project.org/. R Foundation for Statistical Computing (2014).

    53.
    Oksanen, J. et al. Package vegan. R Packag ver 254, (2013).

    54.
    Dray, S. et al. Community ecology in the age of multivariate multiscale spatial analysis. Ecol. Monogr. 82, 257–275 (2012).
    Article  Google Scholar 

    55.
    Simpson, G. L. ggvegan: ‘ggplot2’ Plots for the ‘vegan’ Package. (2015).

    56.
    Rudolph, J. C., Arendt, C. A., Hounshell, A. G., Paerl, H. W. & Osburn, C. L. Use of geospatial, hydrologic, and geochemical modeling to determine the influence of wetland-derived organic matter in coastal waters in response to extreme weather events. Front. Mar. Sci. 7, (2020). https://doi.org/10.3389/fmars.2020.00018

    57.
    Ray, R. T., Haas, L. W. & Sieracki, M. E. Autotrophic picoplankton dynamics in a Chesapeake Bay sub-estuary. Mar. Ecol. Prog. Ser. 52, 273–285 (1989).
    ADS  Article  Google Scholar 

    58.
    Marshall, H. G. & Nesius, K. K. Seasonal relationships between phytoplankton composition, abundance, and primary productivity in three tidal rivers of the lower Chesapeake Bay. J. Elisha Mitchell Sci. Soc. 109, 141–151 (1993).
    Google Scholar 

    59.
    Larsson, J. et al. Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea. ISME J. 8, 1892–1903 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Berry, D. L. et al. Shifts in Cyanobacterial strain dominance during the onset of harmful algal blooms in Florida Bay, USA. Microb. Ecol. 70, 361–371 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    61.
    DeLong, J. P., Okie, J. G., Moses, M. E., Sibly, R. M. & Brown, J. H. Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. Proc. Natl. Acad. Sci. U. S. A. 107, 12941–12945 (2010).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Cabello-Yeves, P. J. et al. Novel Synechococcus genomes reconstructed from freshwater reservoirs. Front. Microbiol. 8, 1151 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    63.
    Grébert, T. et al. Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. Proc. Natl. Acad. Sci. U. S. A. 115, E2010–E2019 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    64.
    Stomp, M. et al. Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol. Lett. 10, 290–298 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Marsan, D., Place, A., Fucich, D. & Chen, F. Toxin-antitoxin systems in estuarine Synechococcus strain CB0101 and their transcriptomic responses to environmental stressors. Front. Microbiol. 8, 1213 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    66.
    Zborowsky, S. & Lindell, D. Resistance in marine cyanobacteria differs against specialist and generalist cyanophages. Proc. Natl. Acad. Sci. U. S. A. 116, 16899–16908 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Paerl, H. W., Hall, N. S., Peierls, B. L., Rossignol, K. L. & Joyner, A. R. Hydrologic variability and its control of phytoplankton community structure and function in two shallow, coastal, lagoonal ecosystems: The Neuse and New River estuaries, North Carolina, USA. Estuar. Coasts 37, 31–45 (2014).
    Article  Google Scholar 

    68.
    Rae, B. D., Förster, B., Badger, M. R. & Price, G. D. The CO2-concentrating mechanism of Synechococcus WH5701 is composed of native and horizontally-acquired components. Photosynth. Res. 109, 59–72 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    69.
    Cabello-Yeves, P. J. et al. Ecological and genomic features of two widespread freshwater picocyanobacteria. Environ. Microbiol. 20, 3757–3771 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Vörös, L., Callieri, C., V-Balogh, K. & Bertoni, R. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia 369–370, 117–125 (1998).
    Article  Google Scholar 

    71.
    Osburn, C. L. et al. Optical proxies for terrestrial dissolved organic matter in estuaries and coastal waters. Front. Mar. Sci. 2, 127 (2016).
    MathSciNet  Article  Google Scholar 

    72.
    Kirk, J. T. O. Light and Photosynthesis in Aquatic Ecosystems (Cambridge University Press, Cambridge, 2010).
    Google Scholar 

    73.
    Anderson, S. R., Diou-Cass, Q. P. & Harvey, E. L. Short-term estimates of phytoplankton growth and mortality in a tidal estuary. Limnol. Oceanogr. 63, 2411–2422 (2018).
    ADS  Article  Google Scholar 

    74.
    Brand, L. E., Sunda, W. G. & Guillard, R. R. L. Reduction of marine phytoplankton reproduction rates by copper and cadmium. J. Exp. Mar. Biol. Ecol. 96, 225–250 (1986).
    CAS  Article  Google Scholar 

    75.
    Bianchi, T. S. Biogeochemistry of Estuaries (Oxford University Press, Oxford, 2007).
    Google Scholar 

    76.
    Coclet, C. et al. Trace metal contamination as a toxic and structuring factor impacting ultraphytoplankton communities in a multicontaminated Mediterranean coastal area. Prog. Oceanogr. 163, 196–213 (2018).
    Article  Google Scholar 

    77.
    Delpy, F. et al. Pico- and nanophytoplankton dynamics in two coupled but contrasting coastal bays in the NW Mediterranean Sea (France). Estuar. Coasts 41, 2039–2055 (2018).
    CAS  Article  Google Scholar 

    78.
    CDM Smith. City of Raleigh—Neuse River Water Quality Sampling Report. (2014).

    79.
    Fuller, N. J. et al. Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the red sea. Appl. Environ. Microbiol. 69, 2430–2443 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Mackey, K. R. M. et al. Seasonal succession and spatial patterns of Synechococcus microdiversity in a salt marsh estuary revealed through 16S rRNA gene oligotyping. Front. Microbiol. 8, 1496 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    81.
    Gong, W. et al. Molecular insights into a dinoflagellate bloom. ISME J. 11, 439–452 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    82.
    Ning, X., Cloern, J. E. & Cole, B. E. Spatial and temporal variability of picocyanobacteria Synechococcus sp. San Francisco Bay. Limnol. Oceanogr. 45, 695–702 (2000).
    ADS  CAS  Article  Google Scholar 

    83.
    Li, W. K. W. Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnol. Ocean. 39, 169–175 (1994).
    CAS  Article  Google Scholar 

    84.
    Jardillier, L., Zubkov, M. V., Pearman, J. & Scanlan, D. J. Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic Ocean. ISME J. 4, 1180–1192 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    85.
    Morán, X. A. G. Annual cycle of picophytoplankton photosynthesis and growth rates in a temperate coastal ecosystem: A major contribution to carbon fluxes. Aquat. Microb. Ecol. 49, 267–279 (2007).
    Article  Google Scholar 

    86.
    Christaki, U., Vázquez-Domínguez, E., Courties, C. & Lebaron, P. Grazing impact of different heterotrophic nanoflagellates on eukaryotic (Ostreococcus tauri) and prokaryotic picoautotrophs (Prochlorococcus and Synechococcus). Environ. Microbiol. 7, 1200–1210 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    87.
    Gobler, C. J., Lonsdale, D. J. & Boyer, G. L. A Review of the causes, effects, and potential management of harmful brown tide blooms caused by Aureococcus anophagefferens (Hargraves et Sieburth). Estuaries 28, 726–749 (2005).
    Article  Google Scholar 

    88.
    Schoemann, V., Becquevort, S., Stefels, J., Rousseau, V. & Lancelot, C. Phaeocystis blooms in the global ocean and their controlling mechanisms: A review. J. Sea Res. 53, 43–66 (2005).
    ADS  CAS  Article  Google Scholar 

    89.
    Vaulot, D., Eikrem, W., Viprey, M. & Moreau, H. The diversity of small eukaryotic phytoplankton (≤ 3 μm) in marine ecosystems. FEMS Microbiol. Rev. 32, 795–820 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    90.
    Worden, A. Z. & Not, F. Ecology and diversity of picoeukaryotes. Microb. Ecol. Ocean. 2, 159–205 (2008).
    Article  Google Scholar 

    91.
    Paerl, R. W., Bertrand, E. M., Allen, A. E., Palenik, B. & Azam, F. Vitamin B1 ecophysiology of marine picoeukaryotic algae: Strain-specific differences and a new role for bacteria in vitamin cycling. Limnol. Oceanogr. 60, 215–228 (2015).
    ADS  CAS  Article  Google Scholar 

    92.
    Lovejoy, C. et al. Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in Arctic seas. J. Phycol. 43, 78–89 (2007).
    CAS  Article  Google Scholar 

    93.
    McKie-Krisberg, Z. M. & Sanders, R. W. Phagotrophy by the picoeukaryotic green alga Micromonas: Implications for Arctic Oceans. ISME J. 8, 1953–1961 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    94.
    Botebol, H. et al. Acclimation of a low iron adapted Ostreococcus strain to iron limitation through cell biomass lowering. Sci. Rep. 7, 327 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    95.
    Rodríguez, F. et al. Ecotype diversity in the marine picoeukaryote Ostreococcus (Chlorophyta, Prasinophyceae). Environ. Microbiol. 7, 853–859 (2005).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    96.
    Valdes-Weaver, L. M. et al. Long-term temporal and spatial trends in phytoplankton biomass and class-level taxonomic composition in the hydrologically variable Neuse-Pamlico estuarine continuum, North Carolina, USA. Limnol. Oceanogr. 51, 1410–1420 (2006).
    ADS  Article  Google Scholar 

    97.
    Wetz, M. S. & Paerl, H. W. Estuarine phytoplankton responses to hurricanes and tropical storms with different characteristics (trajectory, rainfall, winds). Estuar. Coasts 31, 419–429 (2008).
    CAS  Article  Google Scholar 

    98.
    Mojica, K. D. A., Huisman, J., Wilhelm, S. W. & Brussaard, C. P. D. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean. ISME J. 10, 500–513 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    99.
    Wang, K. & Chen, F. Prevalence of highly host-specific cyanophages in the estuarine environment. Environ. Microbiol. 10, 300–312 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    100.
    Waterbury, J. B. & Valois, F. W. Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater. Appl. Environ. Microbiol. 59, 3393–3399 (1993).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    101.
    Brussaard, C. P. D. Viral control of phytoplankton Ppopulations—a review. J. Eukaryot. Microbiol. 51, 125–138 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    102.
    Moore, L. R., Post, A. F., Rocap, G. & Chisholm, S. W. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol. Oceanogr. 47, 989–996 (2002).
    ADS  CAS  Article  Google Scholar 

    103.
    Moore, L. R., Ostrowski, M., Scanlan, D. J., Feren, K. & Sweetsir, T. Ecotypic variation in phosphorus-acquisition mechanisms within marine picocyanobacteria. Aquat. Microb. Ecol. 39, 257–269 (2005).
    Article  Google Scholar 

    104.
    Scanlan, D. J. et al. Ecological genomics of marine picocyanobacteria. Microbiol. Mol. Biol. Rev. 73, 249–299 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    105.
    Berg, G. M. B. M., Repeta, D. J. & LaRoche, J. The role of the picoeukaryote Aureococcus anophagefferens in cycling of marine high—molecular weight dissolved organic nitrogen. Limnol. Oceanogr. 48, 1825–1830 (2003).
    ADS  CAS  Article  Google Scholar 

    106.
    Martins, R., Fernandez, N., Beiras, R. & Vasconcelos, V. Toxicity assessment of crude and partially purified extracts of marine Synechocystis and Synechococcus cyanobacterial strains in marine invertebrates. Toxicon 50, 791–799 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    107.
    Gobler, C. J. et al. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc. Natl. Acad. Sci. U. S. A. 108, 4352–4357 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    108.
    Waterbury, J. B. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Photosynth. Picoplankt. 71–120 (1986).

    109.
    Easterling, D. R. et al. Precipitation change in the United States. (2017).

    110.
    Kossin, J. P. et al. Extreme storms. In Climate Science Special Report: Fourth National Climate Assessment, Volume I (eds. Wuebbles, D. J. et al.) 257–276 (U.S. Global Change Research Program, Washington, DC, 2017).

    111.
    Wuebbles, D. et al. CMIP5 climate model analyses: Climate extremes in the United States. Bull. Am. Meteorol. Soc. 95, 571–583 (2014).
    ADS  Article  Google Scholar 

    112.
    Kunkel, K. E. et al. North Carolina Climate Science Report. (2020).

    113.
    Yeo, S. K., Huggett, M. J., Eiler, A. & Rappé, M. S. Coastal bacterioplankton community dynamics in response to a natural disturbance. PLoS ONE 8, e56207 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    114.
    Montagna, P. A., Hu, X., Palmer, T. A. & Wetz, M. Effect of hydrological variability on the biogeochemistry of estuaries across a regional climatic gradient. Limnol. Oceanogr. 63, 2465–2478 (2018).
    ADS  CAS  Article  Google Scholar 

    115.
    Ares, Á. et al. Extreme storms cause rapid but short-lived shifts in nearshore subtropical bacterial communities. Environ. Microbiol. 22, 4571–4588 (2020).
    CAS  Article  Google Scholar 

    116.
    Marshall, H. G. Autotrophic picoplankton: their presence and significance in marine and freshwater ecosystems. Va. J. Sci. 53, (2002).

    117.
    Buitenhuis, E. T. et al. Picophytoplankton biomass distribution in the global ocean. Earth Syst. Sci. Data 4, 37–46 (2012).
    ADS  Article  Google Scholar 

    118.
    Stockner, J. G. Phototrophic picoplankton: An overview from marine and freshwater ecosystems. Limnol. Oceanogr. 33, 765–775 (1988).
    ADS  CAS  Google Scholar 

    119.
    Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).
    ADS  Article  Google Scholar 

    120.
    Flombaum, P. et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl. Acad. Sci. 110, 9824–9829 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    121.
    Hunter-Cevera, K. R. et al. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science 354, 326–329 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    122.
    Agusti, S., Lubián, L. M., Moreno-Ostos, E., Estrada, M. & Duarte, C. M. Projected changes in photosynthetic picoplankton in a warmer subtropical ocean. Front. Mar. Sci. 5, 506 (2019).
    Article  Google Scholar 

    123.
    Cloern, J. E. et al. Human activities and climate variability drive fast-paced change across the world’s estuarine-coastal ecosystems. Glob. Change Biol. 22, 513–529 (2016).
    ADS  Article  Google Scholar  More

  • in

    More than one million barriers fragment Europe’s rivers

    1.
    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. Camb. Phil. Soc. 94, 849–873 (2019).
    Google Scholar 
    2.
    Grizzetti, B. et al. Relationship between ecological condition and ecosystem services in European rivers, lakes and coastal waters. Sci. Total Environ. 671, 452–465 (2019).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    3.
    Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).
    ADS  CAS  PubMed  Google Scholar 

    4.
    Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).
    Google Scholar 

    5.
    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).
    CAS  Google Scholar 

    6.
    Carpenter, S. R., Stanley, E. H. & Zanden, M. J. V. State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annu. Rev. Environ. Resour. 36, 75–99 (2011).
    Google Scholar 

    7.
    Fuller, M. R., Doyle, M. W. & Strayer, D. L. Causes and consequences of habitat fragmentation in river networks: river fragmentation. Ann. NY Acad. Sci. 1355, 31–51 (2015).
    ADS  PubMed  PubMed Central  Google Scholar 

    8.
    Van Looy, K., Tormos, T. & Souchon, Y. Disentangling dam impacts in river networks. Ecol. Indic. 37, 10–20 (2014).
    Google Scholar 

    9.
    Kemp, P. & O’Hanley, J. Procedures for evaluating and prioritising the removal of fish passage barriers: a synthesis. Fish. Manag. Ecol. 17, 297–322 (2010).
    Google Scholar 

    10.
    Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502 (2011).
    Google Scholar 

    11.
    Lehner, B. et al. Global Reservoir and Dam Database version 1 (GRanDv1) https://doi.org/10.7927/H4N877QK (NASA Socioeconomic Data and Applications Center, 2011).

    12.
    Mulligan, M., Soesbergen, A. V. & Sáenz, L. GOODD, a global dataset of more than 38,000 georeferenced dams. Sci. Data 7, 31 (2020).
    PubMed  PubMed Central  Google Scholar 

    13.
    Garcia de Leaniz, C., Berkhuysen, A. & Belletti, B. Beware small dams, they can do damage too. Nature 570, 164 (2019).
    ADS  Google Scholar 

    14.
    Mantel, S. K., Rivers-Moore, N. & Ramulifho, P. Small dams need consideration in riverscape conservation assessments: small dams and riverscape conservation. Aqua. Conserv. Mar. Freshw. Ecosyst. 27, 748–754 (2017).
    Google Scholar 

    15.
    Lucas, M. C., Bubb, D. H., Jang, M.-H., Ha, K. & Masters, J. E. G. Availability of and access to critical habitats in regulated rivers: effects of low-head barriers on threatened lampreys. Freshw. Biol. 54, 621–634 (2009).
    Google Scholar 

    16.
    Birnie-Gauvin, K., Aarestrup, K., Riis, T. M. O., Jepsen, N. & Koed, A. Shining a light on the loss of rheophilic fish habitat in lowland rivers as a forgotten consequence of barriers, and its implications for management. Aqua. Conserv. Mar. Freshw. Ecosyst. 27, 1345–1349 (2017).
    Google Scholar 

    17.
    Magilligan, F. J., Nislow, K. H. & Renshaw, C. E. in Treatise on Geomorphology (ed. Shroder, J. F.) 794–808 (Academic Press, 2013).

    18.
    Petts, G. E. & Gurnell, A. M. Dams and geomorphology: research progress and future directions. Geomorphology 71, 27–47 (2005).
    ADS  Google Scholar 

    19.
    Bizzi, S. et al. On the control of riverbed incision induced by run-of-river power plant. Wat. Resour. Res. 51, 5023–5040 (2015).
    ADS  Google Scholar 

    20.
    Jones, P. E., Consuegra, S., Börger, L., Jones, J. & Garcia de Leaniz, C. Impacts of artificial barriers on the connectivity and dispersal of vascular macrophytes in rivers: a critical review. Freshw. Biol. 65, 1165–1180 (2020).
    Google Scholar 

    21.
    Carpenter-Bundhoo, L. et al. Effects of a low-head weir on multi-scaled movement and behavior of three riverine fish species. Sci. Rep. 10, 6817 (2020).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    22.
    Graf, W. L. Dam nation: a geographic census of American dams and their large-scale hydrologic impacts. Wat. Resour. Res. 35, 1305–1311 (1999).
    ADS  Google Scholar 

    23.
    Jones, J. et al. A comprehensive assessment of stream fragmentation in Great Britain. Sci. Total Environ. 673, 756–762 (2019).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Grizzetti, B. et al. Human pressures and ecological status of European rivers. Sci. Rep. 7, 205 (2017).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Mauch, C. & Zeller, T. (eds) Rivers in History: Perspectives on Waterways in Europe and North America (Univ. of Pittsburgh Press, 2008).

    26.
    Petts, G. E., Möller, H. & Roux, A. L. Historical Change of Large Alluvial Rivers: Western Europe 355 (John Wiley and Sons, 1989).

    27.
    Kemp, P. S. in Freshwater Fisheries Ecology (ed. Craig, J. F.) 717–769 (Wiley, 2015).

    28.
    European Environment Agency in European Waters—Assessment of Status and Pressures 85 (EEA, 2018).

    29.
    Garcia de Leaniz, C. et al. in From Sea to Source v2. Protection and Restoration of Fish Migration in Rivers Worldwide (eds Brink, K. et al.) 142–145 (World Fish Migration Foundation, 2018).

    30.
    Pistocchi, A. et al. Assessment of the Effectiveness of Reported Water Framework Directive Programmes of Measures. Part II—Development of a System of Europe-wide Pressure Indicators. Report No. EUR 28412 EN (Joint Research Centre, 2017).

    31.
    Garcia de Leaniz, C. Weir removal in salmonid streams: implications, challenges and practicalities. Hydrobiologia 609, 83–96 (2008).
    Google Scholar 

    32.
    Downward, S. & Skinner, K. Working rivers: the geomorphological legacy of English freshwater mills. Area 37, 138–147 (2005).
    Google Scholar 

    33.
    Sun, J., Galib, S. M. & Lucas, M. C. Are national barrier inventories fit for stream connectivity restoration needs? A test of two catchments. Wat. Environ. J. https://doi.org/10.1111/wej.12578 (2020).

    34.
    Atkinson, S. et al. An inspection-based assessment of obstacles to salmon, trout, eel and lamprey migration and river channel connectivity in Ireland. Sci. Total Environ. 719, 137215 (2020).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    35.
    European Environment Agency European Catchments and Rivers Network System (ECRINS) (EEA, 2012).

    36.
    Kristensen, P. & Globevnik, L. European small water bodies. Biol. Environ. 114B, 281–287 (2014).
    Google Scholar 

    37.
    Ferreira, T., Globevnik, L. & Schinegger, R. in Multiple Stressors in River Ecosystems 139–155 (Elsevier, 2019).

    38.
    Schwarz, U. Hydropower Pressure on European Rivers 36 (WWF, 2019).

    39.
    Schiemer, F. et al. The Vjosa River corridor: a model of natural hydro-morphodynamics and a hotspot of highly threatened ecosystems of European significance. Land. Ecol. 35, 953–968 (2020).
    Google Scholar 

    40.
    Duflo, E. & Pande, R. Dams. Q. J. Econ. 122, 601–646 (2007).
    Google Scholar 

    41.
    Grill, G., Ouellet Dallaire, C., Fluet Chouinard, E., Sindorf, N. & Lehner, B. Development of new indicators to evaluate river fragmentation and flow regulation at large scales: a case study for the Mekong River Basin. Ecol. Indic. 45, 148–159 (2014).
    Google Scholar 

    42.
    Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).
    Google Scholar 

    43.
    Tilt, B., Braun, Y. & He, D. Social impacts of large dam projects: a comparison of international case studies and implications for best practice. J. Environ. Manage. 90, S249–S257 (2009).
    PubMed  PubMed Central  Google Scholar 

    44.
    Schmitt, R. J. P., Bizzi, S., Castelletti, A. & Kondolf, G. M. Improved trade-offs of hydropower and sand connectivity by strategic dam planning in the Mekong. Nature Sust. 1, 96–104 (2018).
    Google Scholar 

    45.
    Weibel, D. & Peter, A. Effectiveness of different types of block ramps for fish upstream movement. Aquat. Sci. 75, 251–260 (2013).
    Google Scholar 

    46.
    Cote, D., Kehler, D. G., Bourne, C. & Wiersma, Y. F. A new measure of longitudinal connectivity for stream networks. Landsc. Ecol. 24, 101–113 (2009).
    Google Scholar 

    47.
    Tickner, D. et al. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. BioScience 70, 330–342 (2020).
    PubMed  PubMed Central  Google Scholar 

    48.
    Bódis, K., Monforti, F. & Szabó, S. Could Europe have more mini hydro sites? A suitability analysis based on continentally harmonized geographical and hydrological data. Renew. Sust. Energy Rev. 37, 794–808 (2014).
    Google Scholar 

    49.
    Huđek, H., Žganec, K. & Pusch, M. T. A review of hydropower dams in Southeast Europe—distribution, trends and availability of monitoring data using the example of a multinational Danube catchment subarea. Renew. Sust. Energy Rev. 117, 109434 (2020).
    Google Scholar 

    50.
    European Union Bringing Nature Back Into Our Lives. EU 2030 Biodiversity Strategy. https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1590574123338&uri=CELEX:52020DC0380 (European Commission, 2020).

    51.
    Wohl, E. Connectivity in rivers. Progr. Phys. Geog. Earth. Env. 41, 345–362 (2017).
    Google Scholar 

    52.
    Belletti, B. et al. Datasets for the AMBER Barrier Atlas of Europe. Table S1. Details of test rivers showing number of barriers present in current inventories (Atlas) and those encountered in the field. Table S3. Barrier Database sources. figshare https://doi.org/10.6084/m9.figshare.12629051 (2020).

    53.
    Jones, J. et al. Quantifying river fragmentation from local to continental scales: data management and modelling methods. Preprint at https://doi.org/10.22541/au.159612917.72148332 (2020).

    54.
    QGIS Geographic Information System https://qgis.org/en/site/ (Open Source Geospatial Foundation Project, 2010).

    55.
    Chao, A., Wang, Y. T. & Jost, L. Entropy and the species accumulation curve: a novel entropy estimator via discovery rates of new species. Methods Ecol. Evol. 4, 1091–1100 (2013).
    Google Scholar 

    56.
    Strahler, A. N. Quantitative analysis of watershed geomorphology. Trans. AGU 38, 913–920 (1957).
    Google Scholar 

    57.
    R: A Language And Environment For Statistical Computing Version 4.0.0 (2020-04-24) https://www.r-project.org/ (R Foundation for Statistical Computing, 2020).

    58.
    Signorell, A. et al. DescTools: tools for descriptive statistics. R package version 0.99.37 https://andrisignorell.github.io/DescTools/ (2020).

    59.
    Januchowski-Hartley, S. R. et al. Restoring aquatic ecosystem connectivity requires expanding inventories of both dams and road crossings. Front. Ecol. Environ. 11, 211–217 (2013).
    Google Scholar 

    60.
    Schmutz, S. & Moog, O. in Riverine Ecosystem Management 111–127 (Springer, 2018).

    61.
    European Environment Agency CORINE Land Cover (CLC) Version 20 https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-corine (2012).

    62.
    European Commission Global Human Settlement—GHS Population Grid https://ghsl.jrc.ec.europa.eu/ghs_pop.php (2015).

    63.
    European Environment Agency EU-DEM v1.1, https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1 (Copernicus Land Monitoring Service, 2016).

    64.
    Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).
    ADS  Google Scholar 

    65.
    Louppe, G., Wehenkel, L., Sutera, A. & Geurts, P. in Advances in Neural Information Processing Systems (eds Burges, C. J. C. et al.) 431–439 (Neural Information Processing Systems Foundation, 2013).

    66.
    National Inventory of Dams http://nid.usace.army.mil/ (2018).

    67.
    Yoshimura, C., Omura, T., Furumai, H. & Tockner, K. Present state of rivers and streams in Japan. River Res. Appl. 21, 93–112 (2005).
    Google Scholar 

    68.
    Brazil Dams Safety Report http://www.snisb.gov.br/portal/snisb/relatorio-anual-de-seguranca-de-barragem/2019/rsb19-v0.pdf (National Water Agency (ANA), Brazil, 2020).

    69.
    World Commission on Dams Dams and Development: A New Framework for Decision Making https://pubs.iied.org/pdfs/9126IIED.pdf (Earthscan Publications, 2000).

    70.
    International Rivers. The True Cost of Hydropower in China. https://www.internationalrivers.org/wp-content/uploads/sites/86/2020/06/truecostofhydro_en_small.pdf (2014).

    71.
    Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Trans. AGU 89, 93–94 (2008).
    ADS  Google Scholar  More

  • in

    Ecological niche partitioning in a fragmented landscape between two highly specialized avian flush-pursuit foragers in the Andean zone of sympatry

    1.
    Patterson, B. D., Stotz, D. F., Solari, S., Fitzpatrick, J. W. & Pacheco, V. Contrasting patterns of elevational zonation for birds and mammals in the Andes of southeastern Peru. J. Biogeogr. 25, 593–607 (1998).
    Article  Google Scholar 
    2.
    Cadena, C. D. et al. Latitude, elevational climatic zonation and speciation in New World vertebrates. Proc. R. Soc. B 279, 194–201 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Diamond, J. M. Distributional ecology of New Guinea birds: recent ecological and biogeographical theories can be tested on the bird communities of New Guinea. Science 179, 759–769 (1973).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Terborgh, J. & Weske, J. S. The role of competition in the distribution of Andean birds. Ecology 56, 562–576 (1975).
    Article  Google Scholar 

    5.
    Garcia-Moreno, J., Arctander, P. & Fjeldsa, J. Strong diversification at the treeline among Metallura hummingbirds. Auk 116, 702–711 (1999).
    Article  Google Scholar 

    6.
    Freeman, B. G. Competitive interactions upon secondary contact drive elevational divergence in tropical birds. Am. Nat. 186, 470–479 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Cadena, C. D. Testing the role of interspecific competition in the evolutionary origin of elevational zonation: an example with Buarremon Brush-finches (Aves, Emberizidae) in the neotropical mountains. Evolution 61, 1120–1136 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    8.
    Curson, J. & de Juana, E. Spectacled redstart (Myioborus melanocephalus), version 1.0. In Birds of the World (eds del Hoyo, J. et al.) (Cornell Lab of Ornithology, Ithaca, 2020). https://doi.org/10.2173/bow.spered1.01.
    Google Scholar 

    9.
    Harrod, W. D. & Mumme, R. L. Slate-throated redstart (Myioborus miniatus), version 1.0. In Birds of the World (ed. Schulenberg, T. S.) (Cornell Lab of Ornithology, Ithaca, 2020). https://doi.org/10.2173/bow.sltred.01.
    Google Scholar 

    10.
    Remsen, J. V. Jr. & Robinson, S. K. A classification scheme for foraging behavior of birds in terrestrial habitats. Stud. Avian Biol. 13, 144–160 (1990).
    Google Scholar 

    11.
    Jimenez, D. A bird forages through a tree. Elevation: 2263 m. Movie clip at https://macaulaylibrary.org/asset/201110671, added to IBC (Internet Bird Collection) on June 23, 2019; accessed on 26 July, 2020 through Slate-throated Redstart (Myioborus miniatus), version 1.0. (Harrod, W. D. & Mumme R. L.) in Birds of the World (ed. Schulenberg, T. S.); https://doi.org/10.2173/bow.sltred.01 (Cornell Lab of Ornithology, 2016)

    12.
    Jimenez, D. Bird looking for food. Elevation: 2663 m. Movie clip at IBC (Internet Bird Collection (https://macaulaylibrary.org/asset/201955691); Added to IBC on 23 June, 2016; accessed on 26 July, 2020 through Slate-throated Redstart (Myioborus miniatus), version 1.0. (Harrod, W. D. & Mumme R. L.) in Birds of the World (ed. Schulenberg, T. S.); https://doi.org/10.2173/bow.sltred.01 (Cornell Lab of Ornithology, 2016).

    13.
    Jablonski, P. G. A rare predator exploits prey escape behavior: the role of tail fanning and plumage contrast in foraging of the painted redstart (Myioborus pictus). Behav. Ecol. 10, 7–14 (1999).
    Article  Google Scholar 

    14.
    Jablonski, P. G. Searching for conspicuous versus cryptic prey: search rates of flush-pursuing versus substrate-gleaning birds. Condor 104, 657–661 (2002).
    Article  Google Scholar 

    15.
    Jablonski, P. G. et al. Habitat-specific sensory-exploitative signals in birds: propensity of dipteran prey to cause evolution of plumage variation in flush-pursuit birds. Evolution 60, 2633–2642 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Jablonski, P. G., Lee, S. D. & Jerzak, L. Innate plasticity of a predatory behavior: nonlearned context dependence of avian flush-displays. Behav. Ecol. 6, 925–932 (2006).
    Article  Google Scholar 

    17.
    Mumme, R. L. Scare tactics in a Neotropical warbler: white tail feathers enhance flush-pursuit foraging performance in the Slate-throated redstart (Myioborus miniatus). Auk 119, 1024–1035 (2002).
    Google Scholar 

    18.
    Mumme, R. L., Galatowitsch, M. L., Jablonski, P. G., Stawarczyk, T. M. & Cygan, J. P. Evolutionary significance of geographic variation in a plumage-based foraging adaptation: an experimental test in the Slate-throated redstart (Myioborus miniatus). Evolution 60, 1086–1097 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Perez-Eman, J. L., Mumme, R. L. & Jablonski, P. G. Phylogeography and adaptive plumage evolution in Central American subspecies of the slate-throated redstart (Myioborus miniatus). Ornithol. Monogr. 67, 90–102 (2010).
    Article  Google Scholar 

    20.
    Dawkins, R. The Extended Phenotype (Oxford University Press, Oxford, 1983).
    Google Scholar 

    21.
    Jablonski, P. G. & Lee, S. D. Effects of visual stimuli, substrate borne vibrations and air current stimuli on escape reactions in insect prey of flush-pursuing birds and their implications for evolution of flush-pursuers. Behaviour 143, 303–324 (2006).
    Article  Google Scholar 

    22.
    Jablonski, P. G. & Strausfeld, N. J. Exploitation by a recent avian predator of an ancient arthropod escape circuit: prey sensitivity and elements of the displays by predators. Brain Behav. Evol. 56, 94–106 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Jablonski, P. G. & Strausfeld, N. J. Exploitation of an ancient escape circuit by an avian predator: relationships between taxon-specific prey escape circuits and the sensitivity to visual cues from the predator. Brain Behav. Evol. 58, 218–240 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Boles, W. Black fantail (Rhipidura atra), version 1.0. In Birds of the World (eds del Hoyo, J. et al.) (Cornell Lab of Ornithology, Ithaca, 2020). https://doi.org/10.2173/bow.blafan1.01.
    Google Scholar 

    25.
    Boles, W. Dimorphic fantail (Rhipidura brachyrhyncha), version 1.0. In Birds of the World (eds del Hoyo, J. et al.) (Cornell Lab of Ornithology, Ithaca, 2020). https://doi.org/10.2173/bow.dimfan1.01.
    Google Scholar 

    26.
    Moeliker, K. Blue-headed crested-flycatcher (Trochocercus nitens), version 1.0. In Birds of the World (eds del Hoyo, J. et al.) (Cornell Lab of Ornithology, Ithaca, 2020). https://doi.org/10.2173/bow.bhcfly1.01.
    Google Scholar 

    27.
    Clement, P. African blue flycatcher (Elminia longicauda), version 1.0. In Birds of the World (eds del Hoyo, J. et al.) (Cornell Lab of Ornithology, Ithaca, 2020). https://doi.org/10.2173/bow.afbfly1.01.
    Google Scholar 

    28.
    Horak, D. et al. Forest structure determines spatial changes in avian communities along an elevational gradient in tropical Africa. J. Biogeogr. 46, 2466–2478 (2019).
    Article  Google Scholar 

    29.
    Curson, J., Quinn, D. & Beadle, D. New World Warblers (Christopher Helm, London, 1994).
    Google Scholar 

    30.
    Perez-Eman, J. L. Molecular phylogenetics and biogeography of the Neotropical redstarts (Myioborus, Aves, Parulidae). Mol. Phylogen. Evol. 37, 511–528 (2005).
    CAS  Article  Google Scholar 

    31.
    Ridgely, R. S. & Tudor, G. Birds of South America: Passerines (Christopher Helm, London, 2009).
    Google Scholar 

    32.
    Hilbie, C. & Block, N. L. Collared redstart (Myioborus torquatus), version 1.0. In Birds of the World (ed. Schulenberg, T. S.) (Cornell Lab of Ornithology, Ithaca, 2020). https://doi.org/10.2173/bow.colred1.01.
    Google Scholar 

    33.
    Curson, J., del Hoyo, J., Bonan, A., Collar, N. & Kirwan, G. M. Golden-fronted redstart (Myioborus ornatus), version 1.0. In Birds of the World (eds Billerman, S. M. et al.) (Cornell Lab of Ornithology, Ithaca, 2020). https://doi.org/10.2173/bow.gofred1.01.
    Google Scholar 

    34.
    Curson, J. White-fronted redstart (Myioborus albifrons), version 1.0. In Birds of the World (eds del Hoyo, J. et al.) (Cornell Lab of Ornithology, Ithaca, 2020). https://doi.org/10.2173/bow.whfred2.01.
    Google Scholar 

    35.
    Price, T. Speciation in Birds (Roberts and Company, Greenwood Village, 2008).
    Google Scholar 

    36.
    Cadena, C. D. & Loiselle, B. A. Limits to elevational distributions in two species of emberizine finches: disentangling the role of interspecific competition, autoecology, and geographic variation in the environment. Ecography 30, 491–504 (2007).
    Article  Google Scholar 

    37.
    Bussman, R. W. The montane forests of Reserva Biologica San Francisco (Zamora-Chinchipe, Ecuador) Vegetation zonation and natural regeneration. Erde 132, 9–25 (2001).
    Google Scholar 

    38.
    Bussman, R. W. The vegetation of reserva biologica San Francisco, Zamora-Chinchipe, Southern Ecuador—a phytosociological synthesis. In Conservacion de Bioriversidad an los Andes y la Amazonia. Conservation of Biodiversity in the Andes and the Amazon, Cusco, 24–28.09.2001. Memorias del Congreso—Congress Proceedings (eds Bussmann, R. W. & Lange, S.) 71–175 (INKA Cusco, Cuzco, 2002).
    Google Scholar 

    39.
    Ridgely, R. S. & Greenfield, P. J. The Birds of Ecuador (Cornell Univ. Press, Ithaca, 2001).
    Google Scholar 

    40.
    Google. Cascadas de Nambillo by Brian Driscoll. Google Street View, Jul 2018. Accessed 6 August 2020. https://goo.gl/maps/cTv5Cf34LvZV33yTA (2018).

    41.
    Google. Cabanas San Isidro by Daniel Zurita Arthos. Google Street View, Sep 2018.Accessed 6 August 2020. https://goo.gl/maps/NHqLxRMsngRwDbto8 (2018).

    42.
    Google. Milagrosa Waterfall by Elizabeth Clark. Google Street View, Mar 2018. Accessed 6 August 2020. https://goo.gl/maps/SfTW8J8xDVDnpBCC6 (2018).

    43.
    Shopland, J. M. Facultative following of mixed species flocks by two species of neotropical warbler. PhD Dissertation. University of Chicago (1985).

    44.
    Stiles, F. G. & Skutch, A. F. A Guide to the Birds of Costa Rica (Cornell Univ. Press, Ithaca, 1989).
    Google Scholar 

    45.
    Schulenberg, T. S., Stotz, D. F., Lane, D. F., O’Neill, J. P. & Parker, T. A. Birds of Peru (Princeton Univ. Press, Ithaca, 2010).
    Google Scholar 

    46.
    Sullivan, B. L. et al. eBird: a citizen-based bird observation network in the biological sciences. Biol. Conserv. 142, 2282–2292 (2009).
    Article  Google Scholar 

    47.
    eBird. eBird: An online database of bird distribution and abundance [web application]. eBird, Cornell Lab of Ornithology, Ithaca, New York. Available: http://www.ebird.org. Accessed 24 July 2020 (2017).

    48.
    Greeney, H. F. et al. Nesting ecology of the Spectacled Whitestart in Ecuador. Ornitol. Neotrop. 19, 335–344 (2008).
    Google Scholar 

    49.
    Merkord, C. L. Seasonality and Elevational Migration in an ANDEAN BIRD COMMUNITY. PhD Thesis, University of Missouri-Columbia, pp. 154 (2010)

    50.
    Nitta, B. Altitudinal Distribution and Niche Partitioning of Two Redstart Species in Monteverde (Parulidae). Digital Collections > Tropical Ecology Collection [Monteverde Institute], https://digital.lib.usf.edu/?m39.519 (2009).

    51.
    Shopland, J. M. Facultative following of mixed species flocks by two species of Neotropical warbler. Ph.D. Thesis, University of Chicago, Chicago (1985)

    52.
    Brehm, G., Sussenbach, D. & Fiedler, K. Unique elevational diversity patterns of geometrid moths in an Andean montane forest. Ecography 26, 456–466 (2003).
    Article  Google Scholar 

    53.
    Pyrcz, T. W., Wojtusiak, J. & Garlacz, R. Diversity and distribution patterns of Pronophilina butterflies (Lepidoptera: Nymphaliae: Satyrinae) along an altitudinal transect in North-Western Ecuador. Neotrop. Entomol. 38, 716–726 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Brehm, G. & Fiedler, K. Diversity and community structure of geometrid moths of disturbed habitat in a montane area in the Ecuadorian Andes. J. Res. Lepidoptera 38, 1–14 (2005).
    Google Scholar 

    55.
    Janzen, D. H. Sweep samples of tropical foliage insects: effects of seasons, vegetation types, elevation, time of day, and insularity. Ecology 54, 687–708 (1973).
    Article  Google Scholar 

    56.
    Hilt, N. & Fiedler, K. Diversity and composition of Arctiidae moth ensembles along a successional gradient in the Ecuadorian Andes. Divers. Distrib. 11, 387–398 (2005).
    Article  Google Scholar 

    57.
    Harmackova, L., Remesova, E. & Remes, V. Specialization and niche overlap across spatial scales: revealing ecological factors shaping species richness and coexistence in Australian songbirs. J. Anim. Ecol. 88, 1766–1776 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    58.
    Freeman, B. G., Class Freeman, A. M. & Hochachka, W. M. Asymmetric interspecific aggression in New Guinean songbirds that replace one another along an elevational gradient. Ibis 158, 726–737 (2016).
    Article  Google Scholar 

    59.
    Pyrcz, T. W. & Wojtusiak, J. The vertical distribution of pronophilinae butterflies (Nymphalidae, Satyrinae) along an elevational transect in Monte Zerpa (Cordillera de Merida, Venezuela) with remarks on their diversity and parapatric distribution. Glob. Ecol. Biogeogr. 11, 211–221 (2002).
    Article  Google Scholar 

    60.
    Brehm, G., Zeuss, D. & Colwell, R. K. Moth body size increases with elevation along a complete tropical elevational gradient for two hyperdiverse clades. Ecography 42, 632–642 (2019).
    Article  Google Scholar 

    61.
    Robbins, M. B. et al. Abra Maruncunca, dpto. Puno, Peru, revisited: vegetation cover and avifauna changes over a 30-year period. Bull. B.O.C 133, 31–51 (2013).
    Google Scholar 

    62.
    Pouds, J. A., Fogden, M. P. L. & Campbell, J. H. Biological response to climate change on a tropical mountain. Nature 398, 611–615 (1999).
    ADS  Article  CAS  Google Scholar 

    63.
    Swenson, J. J. et al. Plant and animal endemism in the eastern Andean slope: challenges to conservation. BMC Ecol. 12, 1. https://doi.org/10.1186/1472-6785-12-1 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    64.
    Valencia, R. Composition and structure of an Andean forest fragment in eastern Ecuador. In Biodiversity and Conservation of Neotropical Montane Forests (eds Churchill, S. et al.) 239–249 (New York Botanical Garden, New York, 1995).
    Google Scholar 

    65.
    Pollard, J. H. On distance estimators of density in randomly distributed forest. Biometrics 27, 991–1002 (1971).
    Article  Google Scholar 

    66.
    Levins, R. Evolution in Changing Environment (Princeton University Press, Princeton, 1968).
    Google Scholar 

    67.
    Pianka, E. R. Niche overlap and diffuse competition. Proc. Nat. Acad. Sci. U.S.A. 71, 2142–2145 (1974).
    ADS  Article  Google Scholar 

    68.
    Sokal, R. R. & Rohlf, F. J. Biometry (Freeman and Co., New York, 1997).
    Google Scholar 

    69.
    McLachlan, G. Discriminant Analysis and Statistical Pattern Recognition (Wiley, Hobolken, 2004).
    Google Scholar 

    70.
    StatSoft Inc. Electronic Statistics Textbook. http://www.statsoft.com/textbook/ (Tulsa, OK: StatSoft. WEB, 2013).

    71.
    Molga, M. Meteorologia rolnicza. PWRiL, Warszawa [in Polish; English translation: Agricultural meteorology. Warszawa: Centralny Instytut Informacji Naukowo-Technicznej i Ekonomicznej, translated by M. Widymski and L. Widymski. OCLC Number: 641437878, 1962], (1986).

    72.
    Nowakowski, J. J. Long-term variability of phenotypic traits in the Sedge Warbler (Acrocephalus schoenobaenus) population in the Biebrza Marshes—Adaptation to the changing environment [in Polish]. Dissertation and Monographs 168, 1–294 (Publishing House of the University of Warmia and Mazury, Olsztyn, 2011).

    73.
    Holm, S. A simple sequential rejective method procedure. Scand. J. Stat. 6, 65–70 (1979).
    MATH  Google Scholar 

    74.
    Nakagawa, S. A farewell to Bonferroni: the problems of low statistical power and publication bias. Behav. Ecol. 15, 1044–1045 (2004).
    Article  Google Scholar 

    75.
    Akaike, H. Information theory and an extension of the maximum likelihood principle. In 2nd Int Symposium on Information Theory (eds Petrov, B. N. & Csaki, F.) 267–281 (Akademia Kiado, Budapest, 1973).
    Google Scholar 

    76.
    Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical Information-Theoretic Approach (Springer, New York, 1998).
    Google Scholar  More

  • in

    Improving climate suitability for Bemisia tabaci in East Africa is correlated with increased prevalence of whiteflies and cassava diseases

    1.
    Kriticos, D. J., Sutherst, R. W., Brown, J. R., Adkins, S. A. & Maywald, G. F. Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. J. Appl. Ecol. 40(1), 111–124 (2003).
    Article  Google Scholar 
    2.
    Sutherst, R. W. et al. Pests under global change—meeting your future landlords? In Terrestrial Ecosystems in a Changing World (eds Canadell, J. G. et al.) 211–223 (Springer, Berlin, 2007).
    Google Scholar 

    3.
    Sutherst, R.W., Arthropods as disease vectors in a changing environment. In Ciba Foundation Symposium 175—Environmental Change and Human Health (Wiley, 2007), pp. 124–145.

    4.
    Vogl, G. et al. Modelling the spread of ragweed: Effects of habitat, climate change and diffusion. Eur. Phys. J. Spec. Top. 161, 167–173 (2008).
    Article  Google Scholar 

    5.
    Scherm, H., Climate change: can we predict the impacts on plant pathology and pest management?  Presented at the Annual Meeting of the Canadian-Phytopathological-Society, Montreal, Canada, 2003 (unpublished), pp. 267–273.

    6.
    Kocmankova, E. et al. Estimating the impact of climate change on the occurrence of selected pests at a high spatial resolution: A novel approach. J. Agric. Sci. 149, 185–195 (2011).
    Article  Google Scholar 

    7.
    Mardulyn, P. et al. Climate change and the spread of vector-borne diseases: Using approximate Bayesian computation to compare invasion scenarios for the bluetongue virus vector Culicoides imicola in Italy. Mol. Ecol. 22(9), 2456–2466 (2013).
    PubMed  Article  Google Scholar 

    8.
    Ziter, C., Robinson, E. A. & Newman, J. A. Climate change and voltinism in Californian insect pest species: Sensitivity to location, scenario and climate model choice. Glob. Change Biol. 18(9), 2771–2780 (2012).
    ADS  Article  Google Scholar 

    9.
    Estay, S. A., Lima, M. & Labra, F. A. Predicting insect pest status under climate change scenarios: Combining experimental data and population dynamics modelling. J. Appl. Entomol. 113, 491–499 (2009).
    Article  Google Scholar 

    10.
    Parmesan, C. et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583 (1999).
    ADS  CAS  Article  Google Scholar 

    11.
    Parmesan, C. et al. Empirical perspectives on species borders: From traditional biogeography to global change. Oikos 108(1), 58–75 (2005).
    Article  Google Scholar 

    12.
    Kerdelhue, C. et al. Quaternary history and contemporary patterns in a currently expanding species. BMC Evol. Biol. 9, 5 (2009).
    Article  CAS  Google Scholar 

    13.
    Battisti, A. et al. Expansion of geographic range in the pine processionary moth caused by increased winter temperature. Ecol. Appl. 15(6), 2084–2096 (2005).
    Article  Google Scholar 

    14.
    Rahmstorf, S. et al. Recent climate observations compared to projections. Science 316(5825), 709 (2007).
    ADS  CAS  PubMed  Article  Google Scholar 

    15.
    Mann, M. E. & Lees, J. M. Robust estimation of background noise and signal detection in climatic time series. Clim. Change 33(3), 409–445 (1996).
    ADS  Article  Google Scholar 

    16.
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
    Article  Google Scholar 

    17.
    Bloomfield, P. & Nychka, D. Climate spectra and detecting climate change. Clim. Change 21(3), 275–287 (1992).
    ADS  Article  Google Scholar 

    18.
    Rosenzweig, C. et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 453(7193), 353–357 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    19.
    Sutherst, R. W. et al. Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdiscip. Rev. Clim. Change 2(2), 220–237 (2011).
    Article  Google Scholar 

    20.
    FAOSTAT. Crop Production (Food and Agriculture Organization, Rome, 2015).
    Google Scholar 

    21.
    Nweke, F. I. New Challenges in the Cassava Transformation in Nigeria and Ghana (International Food Policy Research Institute, Washington, 2004).
    Google Scholar 

    22.
    Godfray, H. C. J. et al. Food security: The challenge of feeding 9 billion people. Science 327(5967), 812–818 (2010).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    El-Sharkawy, M. A. Cassava biology and physiology. Plant Mol. Biol. 56(4), 481–501 (2004).
    CAS  PubMed  Article  Google Scholar 

    24.
    Jarvis, A., Ramirez-Villegas, J., Herrera Campo, B. & Navarro-Racines, C. Is Cassava the answer to African climate change adaptation?. Trop. Plant Biol. 5(1), 9–29 (2012).
    Article  Google Scholar 

    25.
    Howeler, R., Lutaladio, N. & Thomas, G. Save and Grow: Cassava. A Guide to Sustainable Production Intensification (FAO, Rome, 2013).
    Google Scholar 

    26.
    Alicai, T. et al. Re-emergence of Cassava Brown Streak Disease in Uganda. Plant Dis. 91(1), 24–29 (2007).
    CAS  PubMed  Article  Google Scholar 

    27.
    Colvin, J., Omongo, C. A., Maruthi, M. N., Otim-Nape, G. W. & Thresh, J. M. Dual begomovirus infections and high Bemisia tabaci populations: Two factors driving the spread of a cassava mosaic disease pandemic. Plant. Pathol. 53, 577–584 (2004).
    Article  Google Scholar 

    28.
    Legg, J. P. et al. Spatio-temporal patterns of genetic change amongst populations of cassava Bemisia tabaci whiteflies driving virus pandemics in East and Central Africa. Virus Res. 186, 61–75 (2014).
    CAS  PubMed  Article  Google Scholar 

    29.
    Thresh, J. et al. African cassava mosaic virus disease: The magnitude of the problem. Afr. J. Root Tuber Crops 2(1/2), 13–19 (1997).
    Google Scholar 

    30.
    Tajebe, L. S. et al. Abundance, diversity and geographic distribution of cassava mosaic disease pandemic-associated Bemisia tabaci in Tanzania. J. Appl. Entomol. 5, 20 (2014).
    Google Scholar 

    31.
    Ndunguru, J. et al. Analyses of twelve new whole genome sequences of Cassava Brown Streak Viruses and Ugandan Cassava Brown Streak Viruses from East Africa: Diversity, supercomputing and evidence for further speciation. PLoS One 10(10), e0139321 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Basavaprabhu, L. P., Legg, J. P., Kanju, E. & Fauquet, C. M. Cassava brown streak disease: A threat to food security in Africa. J. Gen. Virol. 96(5), 956–968 (2015).
    Article  Google Scholar 

    33.
    Jeremiah, S. C. et al. The dynamics and environmental influence on interactions between Cassava Brown Streak Disease and the whitefly,. Phytopathology 105(5), 646–655 (2015).
    CAS  PubMed  Article  Google Scholar 

    34.
    Legg, J., Owor, B., Sseruwagi, P. & Ndunguru, J. Cassava mosaic virus disease in East and Central Africa: Epidemiology and management of a regional pandemic. Adv. Virus Res. 67, 355–418 (2006).
    CAS  PubMed  Article  Google Scholar 

    35.
    FAO, Cassava Diseases in central, eastern and southern Africa: Strategic programme framework 2010–2015. (2009).

    36.
    Zhou, X. et al. Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. J. Gen. Virol. 78(8), 2101–2111 (1997).
    CAS  PubMed  Article  Google Scholar 

    37.
    Legg, J. P., French, R., Rogan, D., Okao-Okuja, G. & Brown, J. K. A distinct Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodidae) genotype cluster is associated with the epidemic of severe cassava mosaic virus disease in Uganda. Mol. Ecol. 11(7), 1219–1229 (2002).
    CAS  PubMed  Article  Google Scholar 

    38.
    Garrett, K.A., Thomas-Sharma, S., Forbes, G.A., & Nopsa, J.H., Climate change and plant pathogen invasions. In Invasive Species and Global Climate Change (eds Ziska, L. H., Dukes, J. S.) 22 (2014).

    39.
    Tay, W. T. et al. The trouble with MEAM2: Implications of pseudogenes on species delimitation in the globally invasive Bemisia tabaci (Hemiptera: Aleyrodidae) cryptic species complex. Genome Biol. Evol. 9(10), 2732–2738 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Macfadyen, S. et al. Cassava whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in East African farming landscapes: A review of the factors determining abundance. Bull. Entomol. Res. 20, 1–18 (2018).
    Google Scholar 

    41.
    Sseruwagi, P., Sserubombwe, W., Legg, J., Ndunguru, J. & Thresh, J. Methods of surveying the incidence and severity of cassava mosaic disease and whitefly vector populations on cassava in Africa: A review. Virus Res. 100(1), 129–142 (2004).
    CAS  PubMed  Article  Google Scholar 

    42.
    Boykin, L. M. et al. Review and guide to a future naming system of African Bemisia tabaci species. Syst. Entomol. 20, 20 (2018).
    Google Scholar 

    43.
    Mugerwa, H. et al. African ancestry of New World, Bemisia tabaci-whitefly species. Sci. Rep. 8(1), 2734 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Boykin, L. M., Armstrong, K. F., Kubatko, L. & De Barro, P. J. Species delimitation and global biosecurity. Evol. Bioinform. 8(2), 1–37 (2011).
    Google Scholar 

    45.
    De Barro, P. J., Liu, S.-S., Boykin, L. M. & Dinsdale, A. B. Bemisia tabaci: A statement of species status. Annu. Rev. Entomol. 56, 1–19 (2011).
    PubMed  Article  CAS  Google Scholar 

    46.
    Boykin, L. M. Bemisia tabaci nomenclature: Lessons learned. Pest Manag. Sci. 70(10), 1454–1459 (2014).
    CAS  PubMed  Article  Google Scholar 

    47.
    Kalyebi, A. et al. African cassava whitefly, Bemisia tabaci, cassava colonization preferences and control implications. PLoS One 13(10), e0204862 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Herrera Campo, B., Hyman, G. & Bellotti, A. Threats to cassava production: Known and potential geographic distribution of four key biotic constraints. Food Secur. 3(3), 329–345 (2011).
    Article  Google Scholar 

    49.
    Webber, B. L. et al. Modelling horses for novel climate courses: Insights from projecting potential distributions of native and alien Australian acacias with correlative and mechanistic models. Div. Distrib. 17(5), 978–1000 (2011).
    Article  Google Scholar 

    50.
    Sutherst, R. W. & Bourne, A. S. Modelling non-equilibrium distributions of invasive species: A tale of two modelling paradigms. Biol. Invas. 11(6), 1231–1237 (2009).
    Article  Google Scholar 

    51.
    Ramos, R. S., Kumar, L., Shabani, F. & Picanço, M. C. Mapping global risk levels of Bemisia tabaci in areas of suitability for open field tomato cultivation under current and future climates. PLoS One 13(6), e0198925 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    52.
    Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151 (2008).
    Article  Google Scholar 

    53.
    Kriticos, D. J. et al. CLIMEX Version 4: Exploring the Effects of Climate on Plants, Animals and Diseases (CSIRO, Canberra, 2015).
    Google Scholar 

    54.
    Sutherst, R. W. & Maywald, G. F. A computerised system for matching climates in ecology. Agric. Ecosyst. Environ. 13, 281–299 (1985).
    Article  Google Scholar 

    55.
    Yonow, T., Hattingh, V. & de Villiers, M. CLIMEX modelling of the potential global distribution of the citrus black spot disease caused by Guignardia citricarpa and the risk posed to Europe. Crop Prot. 44, 18–28 (2013).
    Article  Google Scholar 

    56.
    Ireland, K. B., Hardy, G. E. S. J. & Kriticos, D. J. Combining inferential and deductive approaches to estimate the potential geographical range of the invasive plant pathogen, Phytophthora ramorum. PLoS One 8, 5 (2013).
    Google Scholar 

    57.
    Kriticos, D. J. et al. The potential global distribution of the brown marmorated stink bug, Halyomorpha halys, a critical threat to plant biosecurity. J. Pest Sci. 20, 20 (2017).
    Google Scholar 

    58.
    Macfadyen, S. & Kriticos, D. J. Modelling the geographical range of a species with a variable life-history. PLoS One 7(7), e40313 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Yonow, T. & Sutherst, R. W. The geographical distribution of the Queensland fruit fly, Bactrocera (Dacus) tryoni, in relation to climate. Aust. J. Agric. Res. 49, 935–953 (1998).
    Article  Google Scholar 

    60.
    De Villiers, M. et al. The potential distribution of Bactrocera dorsalis: Considering phenology and irrigation patterns. Bull. Entomol. Res. 106, 19–33 (2016).
    PubMed  Article  Google Scholar 

    61.
    De Villiers, M., Hattingh, V. & Kriticos, D. J. Combining field phenological observations with distribution data to model the potential range distribution of the fruit fly Ceratitis rosa Karsch (Diptera: Tephritidae). Bull. Entomol. Res. 103, 60–73 (2012).
    PubMed  Article  Google Scholar 

    62.
    Zalucki, M. P. & Furlong, M. J. Forecasting Helicoverpa populations in Australia: A comparison of regression based models and a bio-climatic based modelling approach. Insect Sci. 12(1), 45–56 (2005).
    Article  Google Scholar 

    63.
    Zalucki, M. P. & Van Klinken, R. D. Predicting population dynamics of weed biological control agents: Science or gazing into crystal balls?. Aust. J. Entomol. 45, 331–344 (2006).
    Article  Google Scholar 

    64.
    Kriticos, D. J., De Barro, P. J., Yonow, T., Ota, N. & Sutherst, R. W. The potential geographical distribution and phenology of Bemisia tabaci Middle East Asia Minor 1, considering irrigation and glasshouse production. Bull. Entomol. Res. 110(5), 567–576 (2020).
    CAS  PubMed  Article  Google Scholar 

    65.
    Kriticos, D. J. et al. CliMond: Global high resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol. 3, 53–64 (2012).
    Article  Google Scholar 

    66.
    Hutchinson, G.E., Presented at the Cold Spring Symposium on Quantitative Biology, Yale University, New Haven, Connecticutt, USA, 1957 (unpublished).

    67.
    Brown, J. H., Stevens, G. C. & Kaufman, D. M. The geographic range: Size, shape, boundaries, and internal structure. Annu. Rev. Ecol. Syst. 27, 597–623 (1996).
    Article  Google Scholar 

    68.
    Peterson, A. T., Soberon, J., Pearson, R. G. & Martinez-Meyer, E. Ecological Niches and Geographic Distributions (Princeton University Press, Princeton, 2011).
    Google Scholar 

    69.
    Davis, A. J., Jenkinson, L. S., Lawton, J. H., Shorrocks, B. & Wood, S. Making mistakes when predicting shifts in species range in response to global warming. Nature 391, 783–786 (1998).
    ADS  CAS  PubMed  Article  Google Scholar 

    70.
    Carter, R. N. & Prince, S. D. Epidemic models used to explain biogeographical distribution limits. Nature 293, 644–645 (1981).
    ADS  Article  Google Scholar 

    71.
    Alicai, T. et al. Expansion of the cassava brown streak pandemic in Uganda revealed by annual field survey data for 2004 to 2017. Sci. Data 6(1), 327 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    72.
    Macfadyen, S. et al. Landscape factors and how they influence whitefly pests in cassava fields across East Africa. Landsc. Ecol. 20, 20 (2020).
    Google Scholar 

    73.
    Shelford, V. E. The Ecology of North America (University of Illinois Press, Urbana, 1963).
    Google Scholar 

    74.
    Shelford, V. E. A comparison of the responses of animals in gradients of environmental factors with particular reference to the method of reaction of representatives of the various groups from protozoa to mammals. Science 48, 225–230 (1918).
    ADS  CAS  PubMed  Article  Google Scholar 

    75.
    Shelford, V. E. & Deere, E. O. The reactions of certain animals to gradients of evaporating power of air: A study in experimental ecology. Biol. Bull. 25, 79–120 (1913).
    Article  Google Scholar 

    76.
    van der Ploeg, R. R., Böhm, W. & Kirkham, M. B. On the origin of the theory of mineral nutrition of plants and the law of the minimum. Soil Sci. Soc. Am. J. 63, 1055–1062 (1999).
    Article  Google Scholar 

    77.
    Mitchell, T. D. & Jones, P. D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol. 25(6), 693–712 (2005).
    Article  Google Scholar 

    78.
    New, M., Hulme, M. & Jones, P. Representing twentieth-century space-time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Clim. 13(13), 2217–2238 (2000).
    ADS  Article  Google Scholar 

    79.
    Sseruwagi, P. et al. Colonization of non-cassava plant species by cassava whiteflies (Bemisia tabaci) in Uganda. Entomol. Exp. Appl. 119(2), 145–153 (2006).
    CAS  Article  Google Scholar 

    80.
    Otim-Nape, G., Alicai, T. & Thresh, J. Changes in the incidence and severity of cassava mosaic virus disease, varietal diversity and cassava production in Uganda. Ann. Appl. Biol. 138(3), 313–327 (2001).
    Article  Google Scholar 

    81.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2013).
    Google Scholar 

    82.
    Castle, S., Henneberry, T. & Toscano, N. Suppression of Bemisia tabaci (Homoptera: Aleyrodidae) infestations in cantaloupe and cotton with sprinkler irrigation. Crop Prot. 15(7), 657–663 (1996).
    Article  Google Scholar 

    83.
    Alemandri, V. et al. Three members of the Bemisia tabaci (Hemiptera: Aleyrodidae) cryptic species complex occur sympatrically in Argentine horticultural crops. J. Econ. Entomol. 108(2), 405–413 (2015).
    CAS  PubMed  Article  Google Scholar 

    84.
    Mitchell, J. et al., Detection of climate change and attribution of causes in IPCC 2001: Climate Change 2001. The Climate change Contribution of Working Group I to the Third Assessment Report of the Intergovemmental Panel on Climate Change, edited by J Houghton et al. (2001), Vol. 159.

    85.
    McQuaid, C. F. et al. Spatial dynamics and control of a crop pathogen with mixed-mode transmission. PLoS Comput. Biol. 13(7), e1005654 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    86.
    Fauquet, C. & Fargette, D. African cassava mosaic virus: Etiology, epidemiology and control. Plant Dis. 74(6), 404–411 (1990).
    Article  Google Scholar 

    87.
    Aregbesola, O. Z., Legg, J. P., Sigsgaard, L., Lund, O. S. & Rapisarda, C. Potential impact of climate change on whiteflies and implications for the spread of vectored viruses. J. Pest. Sci. 20, 20 (2018).
    Google Scholar 

    88.
    Hilje, L., Costa, H. S. & Stansly, P. A. Cultural practices for managing Bemisia tabaci and associated viral diseases. Crop Prot. 20(9), 801–812 (2001).
    Article  Google Scholar 

    89.
    Anderson, P. K. et al. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19(10), 535–544 (2004).
    PubMed  Article  Google Scholar 

    90.
    Chakraborty, S., Tiedemann, A. V. & Teng, P. S. Climate change: Potential impact on plant diseases. Environ. Pollut. 108(3), 317–326 (2000).
    CAS  PubMed  Article  Google Scholar 

    91.
    Jones, R. A. Plant virus emergence and evolution: Origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res. 141(2), 113–130 (2009).
    CAS  PubMed  Article  Google Scholar 

    92.
    Canto, T., Aranda, M. A. & Fereres, A. Climate change effects on physiology and population processes of hosts and vectors that influence the spread of hemipteran-borne plant viruses. Glob. Change Biol. 15(8), 1884–1894 (2009).
    ADS  Article  Google Scholar 

    93.
    Fargette, D., Jeger, M., Fauquet, C. & Fishpool, L. Analysis of temporal disease progress of African cassava mosaic virus. Phytopathology 84(1), 91–98 (1994).
    Article  Google Scholar 

    94.
    Pardey, P. G. et al. Right-sizing stem rust research. Science 340, 147–148 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    95.
    Dodson, B. Porous borders: Gender and migration in Southern Africa. S. Afr. Geogr. J. 82(1), 40–46 (2000).
    Article  Google Scholar 

    96.
    Ikome, F.N., Africa’s international borders as potential sources of conflict and future threats to peace and security (2012). More

  • in

    Multiple forms of hotspots of tetrapod biodiversity and the challenges of open-access data scarcity

    1.
    Gaston, K. J. & Blackburn, T. Pattern and Process in Macroecology (Blackwell Science, London, 2000).
    Google Scholar 
    2.
    Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227. https://doi.org/10.1038/35012228 (2000).
    CAS  Article  PubMed  Google Scholar 

    3.
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100 (2006).
    Article  Google Scholar 

    4.
    Lovejoy, T. E. & Hannah, L. E. E. Biodiversity and Climate Change: Transforming the Biosphere (Yale University Press, New Haven, 2019).
    Google Scholar 

    5.
    Grenyer, R. et al. Global distribution and conservation of rare and threatened vertebrates. Nature 444, 93–96. https://doi.org/10.1038/nature05237 (2006).
    ADS  CAS  Article  PubMed  Google Scholar 

    6.
    Rodrigues, A. S. L. et al. Spatially explicit trends in the global conservation status of vertebrates. PLoS ONE 9, e113934. https://doi.org/10.1371/journal.pone.0113934 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    7.
    Butchart, S. H. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168. https://doi.org/10.1126/science.1187512 (2010).
    ADS  CAS  Article  PubMed  Google Scholar 

    8.
    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406. https://doi.org/10.1126/science.1251817 (2014).
    ADS  CAS  Article  Google Scholar 

    9.
    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573. https://doi.org/10.1126/science.aaa4984 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    10.
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67. https://doi.org/10.1038/nature11148 (2012).
    ADS  CAS  Article  PubMed  Google Scholar 

    11.
    Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. & Worm, B. How many species are there on earth and in the ocean?. PLoS Biol. 9, e1001127. https://doi.org/10.1371/journal.pbio.1001127 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    12.
    Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61. https://doi.org/10.1126/science.1127609 (2006).
    ADS  CAS  Article  PubMed  Google Scholar 

    13.
    Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253. https://doi.org/10.1038/35012251 (2000).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858. https://doi.org/10.1038/35002501 (2000).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Reid, W. V. Biodiversity hotspots. Trends Ecol. Evol. 13, 275–280. https://doi.org/10.1016/S0169-5347(98)01363-9 (1998).
    CAS  Article  PubMed  Google Scholar 

    16.
    Myers, N. Biodiversity hotspots revisited. Bioscience 53, 916–917. https://doi.org/10.1641/0006-3568(2003)053[0916:BHR]2.0.CO;2 (2003).
    Article  Google Scholar 

    17.
    Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. in Biodiversity Hotspots (eds F. Zachos & J. Habel) 3–22 (Springer, Berlin, 2011).

    18.
    Böhm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385. https://doi.org/10.1016/j.biocon.2012.07.015 (2013).
    Article  Google Scholar 

    19.
    Marchese, C. Biodiversity hotspots: a shortcut for a more complicated concept. Glob. Ecol. Conserv. 3, 297–309. https://doi.org/10.1016/j.gecco.2014.12.008 (2015).
    Article  Google Scholar 

    20.
    Crossman, N. D., Bryan, B. A. & Summers, D. M. Identifying priority areas for reducing species vulnerability to climate change. Divers. Distrib. 18, 60–72. https://doi.org/10.1111/j.1472-4642.2011.00851.x (2012).
    Article  Google Scholar 

    21.
    Fagundes, C. K., Vogt, R. C., de Souza, R. A. & De Marco Jr, P. Vulnerability of turtles to deforestation in the Brazilian Amazon: indicating priority areas for conservation. Biol. Conserv. 226, 300–310. https://doi.org/10.1016/j.biocon.2018.08.009 (2018).
    Article  Google Scholar 

    22.
    Trombulak, S. C. in Landscape-scale Conservation Planning (eds Stephen C. Trombulak & Robert F. Baldwin) 303–324 (Springer Netherlands, 2010).

    23.
    Reddy, C. S., Faseela, V. S., Unnikrishnan, A. & Jha, C. S. Earth observation data for assessing biodiversity conservation priorities in South Asia. Biodivers. Conserv. 28, 2197–2219. https://doi.org/10.1007/s10531-018-1681-0 (2019).
    Article  Google Scholar 

    24.
    Schmitt, C. B. in Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas (eds Frank E. Zachos & Jan Christian Habel) 23–42 (Springer Berlin Heidelberg, 2011).

    25.
    Asaad, I., Lundquist, C. J., Erdmann, M. V. & Costello, M. J. Ecological criteria to identify areas for biodiversity conservation. Biol. Conserv. 213, 309–316. https://doi.org/10.1016/j.biocon.2016.10.007 (2017).
    Article  Google Scholar 

    26.
    McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156. https://doi.org/10.1371/journal.pone.0169156 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Whittaker, R. J. et al. Conservation biogeography: assessment and prospect. Divers. Distrib. 11, 3–23. https://doi.org/10.1111/j.1366-9516.2005.00143.x (2005).
    Article  Google Scholar 

    28.
    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549. https://doi.org/10.1146/annurev-ecolsys-112414-054400 (2015).
    Article  Google Scholar 

    29.
    Ondei, S., Brook, B. W. & Buettel, J. C. Nature’s untold stories: an overview on the availability and type of on-line data on long-term biodiversity monitoring. Biodivers. Conserv. 27, 2971–2987. https://doi.org/10.1007/s10531-018-1582-2 (2018).
    Article  Google Scholar 

    30.
    Schmeller, D. S. et al. Building capacity in biodiversity monitoring at the global scale. Biodivers. Conserv. 26, 2765–2790. https://doi.org/10.1007/s10531-017-1388-7 (2017).
    Article  Google Scholar 

    31.
    Amano, T. & Sutherland, W. J. Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security. Proc. R. Soc. B Biol. Sci. 280, 20122649. https://doi.org/10.1098/rspb.2012.2649 (2013).
    Article  Google Scholar 

    32.
    Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682. https://doi.org/10.1038/s41559-017-0332-2 (2017).
    Article  PubMed  Google Scholar 

    33.
    Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509. https://doi.org/10.1126/science.1194442 (2010).
    ADS  CAS  Article  Google Scholar 

    34.
    Meiri, S. et al. Extinct, obscure or imaginary: the lizard species with the smallest ranges. Divers. Distrib. 24, 262–273. https://doi.org/10.1111/ddi.12678 (2018).
    Article  Google Scholar 

    35.
    Hudson, L. N. et al. The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. Ecol. Evol. 4, 4701–4735. https://doi.org/10.1002/ece3.1303 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    36.
    Gaston, K. J. Biodiversity-congruence. Prog. Phys. Geogr. 20, 105–112 (1996).
    Article  Google Scholar 

    37.
    Orme, C. D. et al. Global hotspots of species richness are not congruent with endemism or threat. Nature 436, 1016–1019. https://doi.org/10.1038/nature03850 (2005).
    ADS  CAS  Article  PubMed  Google Scholar 

    38.
    Stark, G., Pincheira-Donoso, D. & Meiri, S. No evidence for the ‘rate-of-living’ theory across the tetrapod tree of life. Glob. Ecol. Biogeogr. 29, 857–884. https://doi.org/10.1111/geb.13069 (2020).
    Article  Google Scholar 

    39.
    Fletcher, R. & Fortin, M. Spatial Ecology and Conservation Modeling (Springer, Berlin, 2018).
    Google Scholar 

    40.
    Zhao, L., Li, J., Liu, H. & Qin, H. Distribution, congruence and hotspots of higher plants in China. Sci. Rep. 6, 19080. https://doi.org/10.1038/srep19080 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    41.
    Soberón, J. & Peterson, T. Biodiversity informatics: managing and applying primary biodiversity data. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 689–698. https://doi.org/10.1098/rstb.2003.1439 (2004).
    Article  PubMed  PubMed Central  Google Scholar 

    42.
    Neves, I. Q., da LuzMathias, M. & Bastos-Silveira, C. Mapping knowledge gaps of Mozambique’s terrestrial mammals. Sci. Rep. 9, 1–14. https://doi.org/10.1038/s41598-019-54590-4 (2019).
    CAS  Article  Google Scholar 

    43.
    Soriano, A. in Ecosystems of the world 8A. Natural grasslands. Introduction and Western Hemisphere (ed R Coupland) 367–407 (Elsevier: Amsterdam, 1991).

    44.
    Andrade, B. O. et al. Vascular plant species richness and distribution in the Río de la Plata grasslands. Bot. J. Linn. Soc. 188, 6. https://doi.org/10.1093/botlinnean/boy063 (2018).
    Article  Google Scholar 

    45.
    Grela, I. Geografía florística de las especies arbóreas de Uruguay: propuesta para la delimitación de dendrofloras, Universidad de la República. Facultad de Ciencias – PEDECIBA, (2004).

    46.
    Arballo, E. & Cravino, J. Aves del Uruguay, Manual Ornitológico. Editorial Hemisferio Sur, Montevideo 1 (1999).

    47.
    González, E. M. & Martínez-Lanfranco, J. A. in Mamíferos de Uruguay. Guía de campo e introducción a su estudio y conservación 321–327 (Banda Oriental, MNHN y Vida Silvestre Uruguay, 2010).

    48.
    Pincheira-Donoso, D. The untold story on the ecological and phylogenetic complexity of the Uruguayan reptile fauna. Zootaxa 2354, 67–68. https://doi.org/10.11646/zootaxa.2354.1.6 (2010).
    Article  Google Scholar 

    49.
    Núñez, D., Maneyro, R., Langone, J. & de Sa, R. O. Distribución geográfica de la fauna de anfibios del Uruguay. Smithsonian Herpetol. Inf. Serv. https://doi.org/10.5479/si.23317515.134.1 (2004).
    Article  Google Scholar 

    50.
    Grattarola, F. & Rodríguez-Tricot, L. Mammals of Paso Centurión, an area with relicts of Atlantic Forest in Uruguay. Neotrop. Biol. Conserv. 15, 267–283. https://doi.org/10.3897/neotropical.15.e53062 (2020).
    Article  Google Scholar 

    51.
    SISNAP. SNAP Information System. http://www.snap.gub.uy/sisnap (2020).

    52.
    Soutullo, A. & Gudynas, E. How effective is the MERCOSUR’s network of protected areas in representing South America’s ecoregions?. Oryx 40, 112–116. https://doi.org/10.1017/S0030605306000020 (2006).
    Article  Google Scholar 

    53.
    Baldi, G. et al. Nature representation in South American protected areas: country contrasts and conservation priorities. PeerJ 7, e7155. https://doi.org/10.7717/peerj.7155 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    54.
    Brazeiro, A. Eco-regiones de Uruguay: biodiversidad, presiones y conservación : aportes a la Estrategia Nacional de Biodiversidad. (Facultad de Ciencias, UDELAR, 2015).

    55.
    Canavero, A. et al. Amphibian diversity of Uruguay: Background knowledge, inventory completeness and sampling coverage. Boletín de la Sociedad Zoológica de Uruguay 19, 2–19 (2010).
    Google Scholar 

    56.
    Carreira, S. et al. Diversity of reptiles of Uruguay: knowledge and information gaps. Boletín de la Sociedad Zoológica de Uruguay 21, 9–29 (2012).
    Google Scholar 

    57.
    Soutullo, A., Clavijo, C. & Martínez-Lanfranco, J. Especies prioritarias para la conservación en Uruguay. Vertebrados, moluscos continentales y plantas vasculares. (SNAP/DINAMA/MVOTMA and DICYT/MEC, 2013).

    58.
    Grattarola, F. et al. Biodiversidata: An open-access biodiversity database for Uruguay. Biodivers. Data J. https://doi.org/10.3897/BDJ.7.e36226 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    59.
    Grattarola, F. et al. Biodiversidata: A novel dataset for the vascular plant species diversity in Uruguay. Biodivers. Data J. https://doi.org/10.3897/BDJ.8.e56850 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    60.
    Luck, G. W. A review of the relationships between human population density and biodiversity. Biol. Rev. 82, 607–645. https://doi.org/10.1111/j.1469-185X.2007.00028.x (2007).
    Article  PubMed  Google Scholar 

    61.
    Luck, G. W. & Smallbone, L. T. in Urban Ecology Ecological Reviews (ed Kevin J. Gaston) 88–119 (Cambridge University Press, Cambridge, 2010).

    62.
    Pardo, I. et al. Spatial congruence between taxonomic, phylogenetic and functional hotspots: true pattern or methodological artefact?. Divers. Distrib. 23, 209–220. https://doi.org/10.1111/ddi.12511 (2017).
    Article  Google Scholar 

    63.
    Peterson, A. T., Asase, A., Canhos, D. A. L., de Souza, S. & Wieczorek, J. Data leakage and loss in biodiversity informatics. Biodivers. Data J. https://doi.org/10.3897/BDJ.6.e26826 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    64.
    Lamoreux, J. F. et al. Global tests of biodiversity concordance and the importance of endemism. Nature 440, 212–214. https://doi.org/10.1038/nature04291 (2006).
    ADS  CAS  Article  PubMed  Google Scholar 

    65.
    Feng, J.-M., Zhang, Z. & Nan, R.-Y. Non-congruence among hotspots based on three common diversity measures in Yunnan, south-west China. Plant Ecol. Divers. 4, 353–361. https://doi.org/10.1080/17550874.2012.697204 (2011).
    Article  Google Scholar 

    66.
    Westgate, M. J., Barton, P. S., Lane, P. W. & Lindenmayer, D. B. Global meta-analysis reveals low consistency of biodiversity congruence relationships. Nat. Commun. 5, 3899. https://doi.org/10.1038/ncomms4899 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    67.
    Xu, H. et al. Biodiversity congruence and conservation strategies: a national test. Bioscience 58, 632–639. https://doi.org/10.1641/b580710 (2008).
    Article  Google Scholar 

    68.
    Brazeiro, A. et al. Prioridades Geográficas para la Conservación de la Biodiversidad Terrestre (Resumen Ejecutivo) (Facultad de Ciencias, Universidad de la República, Montevideo, Montevideo, 2008).
    Google Scholar 

    69.
    Oliveira, U. et al. The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity. Divers. Distrib. 22, 1232–1244. https://doi.org/10.1111/ddi.12489 (2016).
    Article  Google Scholar 

    70.
    Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl. Acad. Sci. 104, 13384–13389. https://doi.org/10.1073/pnas.0704469104 (2007).
    ADS  CAS  Article  PubMed  Google Scholar 

    71.
    Boakes, E. H., Fuller, R. A., McGowan, P. J. K. & Mace, G. M. Uncertainty in identifying local extinctions: the distribution of missing data and its effects on biodiversity measures. Biol. Lett. https://doi.org/10.1098/rsbl.2015.0824 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    72.
    Stropp, J. et al. Mapping ignorance: 300 years of collecting flowering plants in Africa. Glob. Ecol. Biogeogr. 25, 1085–1096. https://doi.org/10.1111/geb.12468 (2016).
    Article  Google Scholar 

    73.
    Di Minin, E. & Toivonen, T. Global protected area expansion: creating more than paper parks. Bioscience 65, 637–638. https://doi.org/10.1093/biosci/biv064 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    74.
    Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435. https://doi.org/10.1111/ele.12189 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    75.
    Ahrends, A. et al. Funding begets biodiversity. Divers. Distrib. 17, 191–200. https://doi.org/10.1111/j.1472-4642.2010.00737.x (2011).
    Article  Google Scholar 

    76.
    Hochkirch, A. et al. A strategy for the next decade to address data deficiency in neglected biodiversity. Conserv. Biol. https://doi.org/10.1111/cobi.13589 (2020).
    Article  PubMed  Google Scholar 

    77.
    Cabrera, M. R. & Carreira, S. A new, but probably extinct, species of Cnemidophorus (Squamata, Teiidae) from Uruguay. Herpetol. J. 19, 97–105 (2009).
    Google Scholar 

    78.
    Verrastro, L., Maneyro, R., Da Silva, C. M. & Farias, I. A new species of lizard of the L. wiegmannii group (Iguania: Liolaemidae) from the Uruguayan Savanna. Zootaxa 4294, 443–461. https://doi.org/10.11646/zootaxa.4294.4.4 (2017).
    Article  Google Scholar 

    79.
    Maneyro, R., Arrieta, D. & de Sá, R. O. A new toad (Anura: Bufonidae) from Uruguay. J. Herpetol. 38, 161–165. https://doi.org/10.1670/54-03A (2004).
    Article  Google Scholar 

    80.
    Maneyro, R., Naya, D. E. & Baldo, D. A new species of Melanophryniscus (Anura, Bufonidae) from Uruguay. Iheringia. Série Zoologia 98, 189–192. https://doi.org/10.1590/S0073-47212008000200003 (2008).
    Article  Google Scholar 

    81.
    Rosset, S. D. New Species of Odontophrynus Reinhardt and Lütken 1862 (Anura: Neobatrachia) from Brazil and Uruguay. J. Herpetol. 42, 134–144. https://doi.org/10.1670/07-088R1.1 (2008).
    Article  Google Scholar 

    82.
    Grattarola, F. et al. Primer registro de yaguarundí (Puma yagouaroundi) (Mammalia: Carnivora: Felidae) en Uruguay, con comentarios sobre monitoreo participativo. Boletín de la Sociedad Zoológica del Uruguay 25, 85–91 (2016).
    Google Scholar 

    83.
    Prigioni, C. M., Villalba, J. S., Sappa, A. & González, J. C. Confirmación de la presencia del mono aullador negro (Alouatta caraya) (Mammalia, Primates, Atelidae) en el Uruguay. Acta Zoológica Platense 1 (2018).

    84.
    Canavero, A., Naya, D. & Maneyro, R. Leptodactylus furnarius Sazima & Bokermann, 1978 (Anura: leptodactylidae). Cuadernos de Herpetología 15, 89 (2001).
    Google Scholar 

    85.
    Kwet, A. et al. First record of Hyla albopunctata Spix, 1824 (Anura: Hylidae) in Uruguay, with comments on the advertisement call. Boletín de la Asociación Herpetológica Española 13, 15–19 (2002).
    Google Scholar 

    86.
    Maneyro, R. & Beheregaray, M. First record of Physalaemus cuvieri Fitzinger, 1826 (Anura, Leiuperidae) in Uruguay, with comments on the anuran fauna along the borderline Uruguay-Brazil. Boletín de la Sociedad Zoológica del Uruguay 16, 36–41 (2007).
    Google Scholar 

    87.
    Azpiroz, A. B. & Menéndez, J. L. Three new species and novel distributional data for birds in Uruguay. Bull. Br. Ornithol. Club 128, 38–56 (2008).
    Google Scholar 

    88.
    Hernández, D. et al. Confirmación de la presencia del Tucán Grande Ramphastos toco (Piciformes: Ramphastidae) en Uruguay. Boletín de la Sociedad Zoológica del Uruguay 18, 35–38 (2009).
    Google Scholar 

    89.
    Rodríguez-Cajarville, M., Arballo, E. & Gambarotta, J. First documented records of Eastern Kingbird, Tyrannus tyrannus Linnaeus, 1758 (Aves: Tyrannidae) in Uruguay. Check List 13, 169–172. https://doi.org/10.15560/13.4.169 (2017).
    Article  Google Scholar 

    90.
    Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, 8221. https://doi.org/10.1038/ncomms9221 (2015).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    91.
    Sousa-Baena, M. S., Garcia, L. C. & Peterson, A. T. Completeness of digital accessible knowledge of the plants of Brazil and priorities for survey and inventory. Divers. Distrib. 20, 369–381. https://doi.org/10.1111/ddi.12136 (2014).
    Article  Google Scholar 

    92.
    Faith, D. et al. Bridging the biodiversity data gaps: recommendations to meet users’ data needs. Biodivers. Inf. https://doi.org/10.17161/bi.v8i2.4126 (2013).
    Article  Google Scholar 

    93.
    Grattarola, F. & Pincheira-Donoso, D. Biodiversidata: a collaborative initiative towards open data availability in Uruguay. Biodivers. Inf. Sci. Stand. 3, e37715. https://doi.org/10.3897/biss.3.37715 (2019).
    Article  Google Scholar 

    94.
    Grattarola, F. & Pincheira-Donoso, D. Data-sharing en Uruguay, la visión de los colectores y usuarios de datos. Boletín de la Sociedad Zoológica del Uruguay 28, 1–14. https://doi.org/10.26462/28.1.1 (2019).
    Article  Google Scholar 

    95.
    Griffin, E. in Data Science Landscape. Studies in Big Data Vol. 38 (eds U. Munshi & N. Verma) 183–198 (Springer, 2018).

    96.
    Freeman, B. & Peterson, A. T. Completeness of digital accessible knowledge of the birds of western Africa: priorities for survey. Condor https://doi.org/10.1093/condor/duz035 (2019).
    Article  Google Scholar 

    97.
    Amano, T., Lamming, J. D. L. & Sutherland, W. J. Spatial gaps in blobal biodiversity information and the role of citizen science. Bioscience 66, 393–400. https://doi.org/10.1093/biosci/biw022 (2016).
    Article  Google Scholar 

    98.
    Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 213, 280–294. https://doi.org/10.1016/j.biocon.2016.09.004 (2017).
    Article  Google Scholar 

    99.
    Grattarola, F. et al. Biodiversidata: An open-access biodiversity database for Uruguay. Zenodo https://doi.org/10.5281/zenodo.3685897 (2019).

    100.
    Grattarola, F. et al. Tetrápodos de Uruguay. Occurrence dataset. GBIF https://doi.org/10.15468/ozcrpu (2020).
    Article  Google Scholar 

    101.
    IUCN. The IUCN Red List of Threatened Species. http://www.iucnredlist.org (2020).

    102.
    Carreira, S. & Maneyro, R. Libro Rojo de los Anfibios y Reptiles del Uruguay. Biología y conservación de los Anfibios y Reptiles en peligro de extinción a nivel nacional. (DINAMA, 2019).

    103.
    Azpiroz, A. B., Jiménez, S. & Alfaro, M. Libro Rojo de las Aves del Uruguay. Biología y conservación de las aves en peligro de extinción a nivel nacional Categorías “Extinto a Nivel Regional”, “En Peligro Crítico” y “En Peligro”. (DINAMA & DINARA, 2017).

    104.
    Dale, M. R. & Fortin, M.-J. Spatial Analysis: A Guide for Ecologists (Cambridge University Press, Cambridge, 2014).
    Google Scholar 

    105.
    Grattarola, F. GitHub repository https://github.com/bienflorencia/Multiple-forms-of-hotspots-of-tetrapod-biodiversity (2020).

    106.
    Dutilleul, P., Clifford, P., Richardson, S. & Hemon, D. Modifying the t test for assessing the correlation between two spatial processes. Biometrics 49, 305–314. https://doi.org/10.2307/2532625 (1993).
    Article  Google Scholar 

    107.
    Vallejos, R., Osorio, F. & Bevilacqua, M. Spatial Relationships Between Two Georeferenced Variables: with Applications in R (Springer, Berlin, 2018).
    Google Scholar 

    108.
    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67. https://doi.org/10.1890/13-0133.1 (2014).
    Article  Google Scholar 

    109.
    Chao, A. et al. Quantifying sample completeness and comparing diversities among assemblages. Ecol. Res. 35, 292–314. https://doi.org/10.1111/1440-1703.12102 (2020).
    Article  Google Scholar 

    110.
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456. https://doi.org/10.1111/2041-210x.12613 (2016).
    Article  Google Scholar 

    111.
    Kusumoto, B. et al. Global distribution of coral diversity: biodiversity knowledge gradients related to spatial resolution. Ecol. Res. 35, 315–326. https://doi.org/10.1111/1440-1703.12096 (2020).
    Article  Google Scholar 

    112.
    Yang, W., Ma, K. & Kreft, H. Geographical sampling bias in a large distributional database and its effects on species richness–environment models. J. Biogeogr. 40, 1415–1426. https://doi.org/10.1111/jbi.12108 (2013).
    Article  Google Scholar 

    113.
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101. https://doi.org/10.1038/nature09329 (2010).
    ADS  CAS  Article  PubMed  Google Scholar 

    114.
    Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x (2001).
    Article  Google Scholar 

    115.
    Oksanen, J. et al. Package ‘vegan’. Community ecology package, version 2 (2013). More

  • in

    Temporal changes in reproductive success and optimal breeding decisions in a long-distance migratory bird

    1.
    Siikamäki, P. Limitation of reproductive success by food availability and timing of breeding in pied flycatchers. Ecology 79, 1789–1796. https://doi.org/10.1890/0012-9658(1998)079[1789:LORSBF]2.0.CO;2 (1998).
    Article  Google Scholar 
    2.
    Post, E., Bøving, P. S., Pedersen, C. & MacArthur, M. A. Synchrony between caribou calving and plant phenology in depredated and non-depredated populations. Can. J. Zool. 81, 1709–1714. https://doi.org/10.1139/z03-172 (2003).
    Article  Google Scholar 

    3.
    Both, C. & Visser, M. E. The effect of climate change on the correlation between avian life-history traits. Glob. Change Biol. 11, 1606–1613. https://doi.org/10.1111/j.1365-2486.2005.01038.x (2005).
    ADS  Article  Google Scholar 

    4.
    Visser, M. E., Holleman, L. J. M. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172. https://doi.org/10.1007/s00442-005-0299-6 (2006).
    ADS  Article  PubMed  Google Scholar 

    5.
    Reed, T. E., Jenouvrier, S. & Visser, M. E. Phenological mismatch strongly affects individual fitness but not population demography in a woodland passerine. J. Anim. Ecol. 82, 131–144. https://doi.org/10.1111/j.1365-2656.2012.02020.x (2013).
    Article  PubMed  Google Scholar 

    6.
    Rowe, L., Ludwig, D. & Schluter, D. Time condition and the seasonal decline of avian clutch size. Am. Nat. 143, 698–722. https://doi.org/10.1086/285627 (1994).
    Article  Google Scholar 

    7.
    Bêty, J., Gauthier, G. & Giroux, J.-F. Body condition, migration and timing of reproduction in snow geese: a test of the condition-dependent model of optimal clutch size. Am. Nat. 162, 110–121. https://doi.org/10.1086/375680 (2003).
    Article  PubMed  Google Scholar 

    8.
    Drent, R. H., Fox, A. D. & Stahl, J. Travelling to breed. J. Ornithol. 147, 122–134. https://doi.org/10.1007/s10336-006-0066-4 (2006).
    Article  Google Scholar 

    9.
    Both, C. et al. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc. R. Soc. B. 277, 1259–1266. https://doi.org/10.1098/rspb.2009.1525 (2010).
    Article  PubMed  Google Scholar 

    10.
    Verhulst, S. & Nilsson, J. -Å. The timing of birds’ breeding seasons: a review of experiments that manipulated timing of breeding. Phil. Trans. R. Soc. B. 363, 399–410. https://doi.org/10.1098/rstb.2007.2146 (2008).
    Article  PubMed  Google Scholar 

    11.
    Descamps, S., Bêty, J., Love, O. P. & Gilchrist, H. G. Individual optimization of reproduction in a long-lived migratory bird: a test of the condition-dependent model of laying date and clutch size. Funct. Ecol. 25, 671–681. https://doi.org/10.1111/j.1365-2435.2010.01824.x (2011).
    Article  Google Scholar 

    12.
    Lepage, D., Gauthier, G. & Menu, S. Reproductive consequences of egg-laying decisions in snow geese. J. Anim. Ecol. 69, 414–427. https://doi.org/10.1046/j.1365-2656.2000.00404.x (2000).
    Article  Google Scholar 

    13.
    Jean-Gagnon, F. et al. The impact of sea ice conditions on breeding decisions is modulated by body condition in an arctic partial capital breeder. Oecologia 186, 1–10. https://doi.org/10.1007/s00442-017-4002-5 (2018).
    ADS  Article  PubMed  Google Scholar 

    14.
    Durant, J. M., Hjermann, D. O., Ottersen, G. & Stenseth, N. C. Climate and the match or mismatch between predator requirements and resource availability. Clim. Res. 33, 271–283. https://doi.org/10.3354/cr033271 (2007).
    Article  Google Scholar 

    15.
    Both, C., Van Asch, M., Bijlsma, R. G., Van Den Burg, A. B. & Visser, M. E. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations?. J. Anim. Ecol. 78, 73–83. https://doi.org/10.1111/j.1365-2656.2008.01458.x (2009).
    Article  PubMed  Google Scholar 

    16.
    Ross, M. V., Alisauskas, R. T., Douglas, D. C. & Kellett, D. K. Decadal declines in avian herbivore reproduction: density-dependent nutrition and phenological mismatch in the Arctic. Ecology 98, 1869–1883. https://doi.org/10.1002/ecy.1856 (2017).
    Article  PubMed  Google Scholar 

    17.
    Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803. https://doi.org/10.1126/science.1157174 (2008).
    ADS  CAS  Article  PubMed  Google Scholar 

    18.
    Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A. & Merilä, J. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 17, 167–178. https://doi.org/10.1111/j.1365-294X.2007.03413.x (2008).
    CAS  Article  PubMed  Google Scholar 

    19.
    Visser, M. E., van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. Lond. B. 265, 1867–1870. https://doi.org/10.1098/rspb.1998.0514 (1998).
    Article  Google Scholar 

    20.
    Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298. https://doi.org/10.1038/35077063 (2001).
    ADS  CAS  Article  PubMed  Google Scholar 

    21.
    Ross, M. V., Alisauskas, R. T., Douglas, D. C., Kellett, D. K. & Drake, K. L. Density-dependent and phenological mismatch effects on growth and survival in lesser snow and Ross’s goslings. J. Avian Biol. 49, e01748. https://doi.org/10.1111/jav.01748 (2018).
    Article  Google Scholar 

    22.
    Gauthier, G. et al. Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra. Phil. Trans. R. Soc. B. 368, 20120482–20120482. https://doi.org/10.1098/rstb.2012.0482 (2013).
    Article  PubMed  Google Scholar 

    23.
    Lepage, D., Gauthier, G. & Reed, A. Seasonal variation in growth of greater snow goose goslings: the role of food supply. Oecologia 114, 226–235. https://doi.org/10.1007/s004420050440 (1998).
    ADS  Article  PubMed  Google Scholar 

    24.
    Doiron, M., Gauthier, G. & Lévesque, E. Trophic mismatch and its effects on the growth of young in an Arctic herbivore. Glob. Change Biol. 21, 4364–4376. https://doi.org/10.1111/gcb.13057 (2015).
    ADS  Article  Google Scholar 

    25.
    Reséndiz-Infante, C., Gauthier, G. & Souchay, G. Consequences of a changing environment on the breeding phenology and reproductive success components in a long-distance migratory bird. Pop. Ecol. 62, 284–296. https://doi.org/10.1002/1438-390X.12046 (2020).
    Article  Google Scholar 

    26.
    Lecomte, N., Careau, V., Gauthier, G. & Giroux, J.-F. Predator behaviour and predation risk in the heterogeneous arctic environment. J. Anim. Ecol. 77, 439–447. https://doi.org/10.1111/j.1365-2656.2008.01354.x (2008).
    Article  PubMed  Google Scholar 

    27.
    Findlay, C. & Cooke, F. Synchrony in the lesser snow goose (Anser caerulescens caerulescens) II. The adaptive value of reproductive synchrony. Evolution 36, 786–799. https://doi.org/10.2307/2407892 (1982).
    Article  PubMed  Google Scholar 

    28.
    Bêty, J., Gauthier, G., Giroux, J.-F. & Korpimäki, E. Are goose nesting success and lemming cycles linked? Interplay between nest density and predators. Oikos 93, 388–400. https://doi.org/10.1034/j.1600-0706.2001.930304.x (2001).
    Article  Google Scholar 

    29.
    Dickey, M.-H., Gauthier, G. & Cadieux, M.-C. Climatic effects on the breeding phenology and reproductive success of an arctic-nesting goose species. Glob. Change Biol. 14, 1973–1985. https://doi.org/10.1111/j.1365-2486.2008.01622.x (2008).
    ADS  Article  Google Scholar 

    30.
    Juhasz, C.-C., Shipley, B., Gauthier, G., Berteaux, D. & Lecomte, N. Direct and indirect effects of regional and local climatic factors on trophic interactions in the Arctic tundra. J. Anim. Ecol. 89, 704–715. https://doi.org/10.1111/1365-2656.13104 (2019).
    Article  PubMed  Google Scholar 

    31.
    Bêty, J., Gauthier, G., Korpimaki, E. & Giroux, J.-F. Shared predators and indirect trophic interactions: lemming cycles and arctic-nesting geese. J. Anim. Ecol. 71, 88–98. https://doi.org/10.1046/j.0021-8790.2001.00581.x (2002).
    Article  Google Scholar 

    32.
    Iles, D. T., Rockwell, R. F. & Koons, D. N. Reproductive success of a keystone herbivore is more variable and responsive to climate in habitats with lower resource diversity. J. Anim. Ecol. 87, 1182–1191. https://doi.org/10.1111/1365-2656.12837 (2018).
    Article  PubMed  Google Scholar 

    33.
    Lohman, M. G. et al. Changes in behavior are unable to disrupt a trophic cascade involving a specialist herbivore and its food plant. Ecol. Evol. 9, 5281–5291. https://doi.org/10.1002/ece3.5118 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    34.
    Aubry, L. M. et al. Climate change, phenology, and habitat degradation: drivers of gosling body condition and juvenile survival in lesser snow geese. Glob. Change Biol. 19, 149–160. https://doi.org/10.1111/gcb.12013 (2013).
    ADS  Article  Google Scholar 

    35.
    Massé, H., Rochefort, L. & Gauthier, G. Carrying capacity of wetland habitats used by breeding greater snow geese. J. Wildl. Manage. 65, 271–281. https://doi.org/10.2307/3802906 (2001).
    Article  Google Scholar 

    36.
    Valéry, L., Cadieux, M.-C. & Gauthier, G. Spatial heterogeneity of primary production as both cause and consequence of foraging patterns of an expanding Greater Snow Goose colony. Ecoscience 17, 9–19. https://doi.org/10.2980/17-1-3279 (2010).
    Article  Google Scholar 

    37.
    Gienapp, P., Postma, E. & Visser, M. E. Why breeding time has not responded to selection for earlier breeding in a songbird population. Evolution 60, 2381–2388. https://doi.org/10.1111/j.0014-3820.2006.tb01872.x (2006).
    Article  PubMed  Google Scholar 

    38.
    Van Wijk, R. E. et al. Individually tracked geese follow peaks of temperature acceleration during spring migration. Oikos 121, 655–664. https://doi.org/10.1111/j.1600-0706.2011.20083.x (2012).
    Article  Google Scholar 

    39.
    Gauthier, G., Bêty, J. & Hobson, K. A. Are greater snow geese capital breeders? New evidence from a stable-isotope model. Ecology 84, 3250–3264. https://doi.org/10.1890/02-0613 (2003).
    Article  Google Scholar 

    40.
    Lameris, T. K. et al. Arctic geese tune migration to a warming climate but still suffer from a phenological mismatch. Curr. Biol. 28, 1–7. https://doi.org/10.1016/j.cub.2018.05.077 (2018).
    CAS  Article  Google Scholar 

    41.
    Shutler, D., Clark, R. G., Fehr, C. & Diamond, A. W. Time and recruitment costs as currencies in manipulation studies on the costs of reproduction. Ecology 87, 2938–2946. https://doi.org/10.1890/0012-9658(2006)87[2938:TARCAC]2.0.CO;2 (2006).
    Article  PubMed  Google Scholar 

    42.
    Rockwell, R. F., Cooch, E. G., Thompson, C. B. & Cooke, F. Age and reproductive success in female lesser snow geese: experience, senescence and the cost of philopatry. J. Anim. Ecol. 62, 323–333. https://doi.org/10.2307/5363 (1993).
    Article  Google Scholar 

    43.
    Souchay, G., Gauthier, G. & Pradel, R. To breed or not: a novel approach to estimate breeding propensity and potential trade-offs in an Arctic-nesting species. Ecology 95, 2745–2756. https://doi.org/10.1890/13-1277.1 (2014).
    Article  Google Scholar 

    44.
    Bêty, J., Giroux, J.-F. & Gauthier, G. Individual variation in timing of migration: causes and reproductive consequences in greater snow geese (Anser caerulescens atlanticus). Behav. Ecol. Sociobiol. 57, 1–8. https://doi.org/10.1007/s00265-004-0840-3 (2004).
    Article  Google Scholar 

    45.
    Gauthier, G., Giroux, J.-F., Reed, A., Béchet, A. & Bélanger, L. Interactions between land use habitat use and population increase in greater snow geese: what are the consequences for natural wetlands?. Glob. Change Biol. 11, 856–868. https://doi.org/10.1111/j.1365-2486.2005.00944.x (2005).
    ADS  Article  Google Scholar 

    46.
    Cooke, F., Rockwell, R. F. & Lank, D. B. The Snow Geese of La Perouse Bay. Natural Selection in the Wild (Oxford University Press, Oxford, 1995).
    Google Scholar 

    47.
    Reed, A., Hughes, R. J. & Boyd, H. Patterns of distribution and abundance of greater snow geese on Bylot Island Nunavut Canada 1983–1998. Wildfowl 53, 53–65 (2002).
    Google Scholar 

    48.
    Mainguy, J., Gauthier, G., Giroux, J.-F. & Bêty, J. Gosling growth and survival in relation to brood movements in greater snow geese (Chen caerulescens atlantica). Auk 123, 1077–1089. https://doi.org/10.2307/25150221 (2006).
    Article  Google Scholar 

    49.
    Menu, S., Gauthier, G. & Reed, A. Survival of juvenile greater snow geese immediately after banding. J. Field Ornithol. 72, 282–290. https://doi.org/10.1648/0273-8570-72.2.282 (2001).
    Article  Google Scholar 

    50.
    Schubert, C. A. & Cooke, F. Egg-laying intervals in the lesser snow goose. Wilson Bull. 105, 414–426 (1993).
    Google Scholar  More

  • in

    Publisher Correction: Social value shift in favour of biodiversity conservation in the United States

    Affiliations

    Human Dimensions of Natural Resources Department, Colorado State University, Fort Collins, CO, USA
    Michael J. Manfredo, Tara L. Teel & Richard E. W. Berl

    School of Environment and Natural Resources, The Ohio State University, Columbus, OH, USA
    Jeremy T. Bruskotter

    Department of Psychology, University of Michigan, Ann Arbor, MI, USA
    Shinobu Kitayama

    Authors
    Michael J. Manfredo

    Tara L. Teel

    Richard E. W. Berl

    Jeremy T. Bruskotter

    Shinobu Kitayama

    Corresponding author
    Correspondence to Michael J. Manfredo. More