1.
Belden, L. K. et al. Panamanian frog species host unique skin bacterial communities. Front. Microbiol. 6, 1171 (2015).
PubMed PubMed Central Article Google Scholar
2.
Jani, A. J. & Briggs, C. J. Host and aquatic environment shape the amphibian skin microbiome but effects on downstream resistance to the pathogen Batrachochytrium dendrobatidis are variable. Front. Microbiol. 9, 487 (2018).
PubMed PubMed Central Article Google Scholar
3.
McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA 110, 3229–3236 (2013).
ADS CAS PubMed Article PubMed Central Google Scholar
4.
Woodhams, D. C., Bletz, M., Kueneman, J. & McKenzie, V. Managing amphibian disease with skin microbiota. Trends Microbiol. 24, 161–164 (2016).
CAS PubMed Article PubMed Central Google Scholar
5.
Flechas, S. V. et al. Current and predicted distribution of the pathogenic fungus Batrachochytrium dendrobatidis in Colombia, a hotspot of amphibian biodiversity. Biotropica 49, 685–694 (2017).
Article Google Scholar
6.
Rollins-Smith, L. A. & Conlon, J. M. Antimicrobial peptide defenses against chytridiomycosis, an emerging infectious disease of amphibian populations. Dev. Comp. Immunol. 29, 589–598 (2005).
CAS PubMed Article PubMed Central Google Scholar
7.
Jiménez, R. R. & Sommer, S. The amphibian microbiome: natural range of variation, pathogenic dysbiosis, and role in conservation. Biodiv. Conserv. 26, 763–786 (2017).
Article Google Scholar
8.
Bletz, M. C. et al. Host ecology rather than host phylogeny drives amphibian skin microbial community structure in the biodiversity hotspot of Madagascar. Front. Microbiol. 8, 1530 (2017).
PubMed PubMed Central Article Google Scholar
9.
Romano-Bertrand, S., Licznar-Fajardo, P., Parer, S. & Jumas-Bilak, E. Impact de l’environnement sur les microbiotes: focus sur l’hospitalisation et les microbiotes cutanés et chirurgicaux. Revue Francophone des Laboratoires 469, 75–82 (2015).
Article Google Scholar
10.
Woodhams, D. C. et al. Host-associated microbiomes are predicted by immune system complexity and climate. Genome Biol. 21, 23 (2020).
PubMed PubMed Central Article Google Scholar
11.
Cheng, Y. et al. The Tasmanian devil microbiome—implications for conservation and management. Microbiome 3, 1–11 (2015).
Article Google Scholar
12.
Lemieux-Labonté, V., Tromas, N., Shapiro, B. J. & Lapointe, F. J. Environment and host species shape the skin microbiome of captive neotropical bats. PeerJ 4, e2430 (2016).
13.
Grice, E. A. & Segre, J. A. The skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011).
CAS PubMed PubMed Central Article Google Scholar
14.
Daskin, J. H., Bell, S. C., Schwarzkopf, L. & Alford, R. A. Cool temperatures reduce antifungal activity of symbiotic bacteria of threatened amphibians–implications for disease management and patterns of decline. PLoS ONE 9, e100378 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
15.
Duellman, W. E. & Trueb, L. Integumentary, Sensory, and Visceral Systems. Biology of Amphibians (McGraw-Hill, New York, 1986).
Google Scholar
16.
Bataille, A. et al. Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation. Proc. R. Soc. B Biol. Sci. 282, 20143127 (2015).
Article Google Scholar
17.
Longo, A. V., Savage, A. E., Hewson, I. & Zamudio, K. R. Seasonal and ontogenetic variation of skin microbial communities and relationships to natural disease dynamics in declining amphibians. R. Soc. Open Sci. 2, 140377 (2015).
ADS PubMed PubMed Central Article CAS Google Scholar
18.
Kueneman, J. G. et al. The amphibian skin-associated microbiome across species, space and life history stages. Mol. Ecol. 23, 1238–1250 (2014).
PubMed Article Google Scholar
19.
Kueneman, J. G. et al. Community richness of amphibian skin bacteria correlates with bioclimate at the global scale. Nat. Ecol. Evol. 3, 381–389 (2019).
PubMed Article Google Scholar
20.
Rollins-Smith, L. A., Ramsey, J. P., Pask, J. D., Reinert, L. K. & Woodhams, D. C. Amphibian immune defenses against chytridiomycosis: impacts of changing environments. Integr. Comp. Biol. 51, 552–562 (2011).
21.
Sanchez, E. et al. Cutaneous bacterial communities of a poisonous salamander: a perspective from life stages, body parts and environmental conditions. Microb. Ecol. 73, 455–465 (2017).
CAS PubMed Article Google Scholar
22.
Antwis, R. E. et al. Ex situ diet influences the bacterial community associated with the skin of red-eyed tree frogs (Agalychnis callidryas). PLoS ONE 9, e85563 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
23.
Jani, A. J. & Briggs, C. J. The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proc. Natl. Acad. Sci. USA 111, E5049–E5058 (2014).
ADS CAS PubMed Article Google Scholar
24.
Medina, D. et al. Variation in metabolite profiles of amphibian skin bacterial communities across elevations in the Neotropics. Microb. Ecol. 74, 227–238 (2017).
CAS PubMed Article Google Scholar
25.
Loudon, A. H. et al. Vertebrate hosts as islands: dynamics of selection, immigration, loss, persistence, and potential function of bacteria on salamander skin. Front. Microbiol. 7, 333 (2016).
PubMed PubMed Central Article Google Scholar
26.
Bates, K. A. et al. Amphibian chytridiomycosis outbreak dynamics are linked with host skin bacterial community structure. Nat. Commun. 9, 1–11 (2018).
ADS CAS Article Google Scholar
27.
Woodhams, D. C. et al. Interacting symbionts and immunity in the amphibian skin mucosome predict disease risk and probiotic effectiveness. PLoS ONE 9, e96375 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
28.
Costa, S., Lopes, I., Proença, D. N., Ribeiro, R. & Morais, P. V. Diversity of cutaneous microbiome of Pelophylax perezi populations inhabiting different environments. Sci. Total Environ. 572, 995–1004 (2016).
ADS CAS PubMed Article Google Scholar
29.
Sabino-Pinto, J. et al. Composition of the cutaneous bacterial community in Japanese amphibians: effects of captivity, host species, and body region. Microb. Ecol. 72, 460–469 (2016).
PubMed Article Google Scholar
30.
Kueneman, J. G. et al. Inhibitory bacteria reduce fungi on early life stages of endangered Colorado boreal toads (Anaxyrus boreas). ISME J. 10, 934–944 (2016).
PubMed Article PubMed Central Google Scholar
31.
Becker, C. G., Longo, A. V., Haddad, C. F. B. & Zamudio, K. R. Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome. Proc. R. Soc. B Biol. Sci. 284, 20170582 (2017).
Article Google Scholar
32.
Belasen, A. M., Bletz, M. C., Leite, D. D. S., Toledo, L. F. & James, T. Y. Long-term habitat fragmentation is associated with reduced MHC IIB diversity and increased infections in amphibian hosts. Front. Ecol. Evol. 6, 236 (2019).
Article Google Scholar
33.
Greenspan, S. E. et al. Arthropod–bacteria interactions influence assembly of aquatic host microbiome and pathogen defense. Proc. R. Soc. B 286, 20190924 (2019).
CAS PubMed Article Google Scholar
34.
Becker, C. G. et al. Low-load pathogen spillover predicts shifts in skin microbiome and survival of a terrestrial-breeding amphibian. Proc. Roy. Soc. B 286, 20191114 (2019).
Article Google Scholar
35.
Christian, K., Weitzman, C., Rose, A., Kaestli, M. & Gibb, K. Ecological patterns in the skin microbiota of frogs from tropical Australia. Ecol. Evol. 8, 10510–10519 (2018).
PubMed PubMed Central Article Google Scholar
36.
McKenzie, V. J., Bowers, R. M., Fierer, N., Knight, R. & Lauber, C. L. Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME J. 6, 588–596 (2012).
CAS PubMed Article Google Scholar
37.
Walke, J. B. et al. Amphibian skin may select for rare environmental microbes. ISME J. 8, 2207–2217 (2014).
CAS PubMed PubMed Central Article Google Scholar
38.
Varela, B. J., Lesbarrères, D., Ibáñez, R. & Green, D. M. Environmental and host effects on skin bacterial community composition in Panamanian frogs. Front. Microbiol. 9, 298 (2018).
PubMed PubMed Central Article Google Scholar
39.
Loudon, A. H. et al. Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus). ISME J. 8, 830–840 (2014).
CAS PubMed Article Google Scholar
40.
Toledo, L. F. & Batista, R. F. Integrative study of Brazilian anurans: geographic distribution, size, environment, taxonomy, and conservation. Biotropica 44, 785–792 (2012).
Article Google Scholar
41.
Haddad, C. F. B. et al. Guide to the Amphibians of the Antic Forest: Diversity and Biology (Anolisbooks, São Paulo, 2013).
Google Scholar
42.
Toledo, L. F., Becker, C. G., Haddad, C. F. & Zamudio, K. R. Rarity as an indicator of endangerment in Neotropical frogs. Biol. Conserv. 179, 54–62 (2014).
Article Google Scholar
43.
Sasso, T. et al. Environmental DNA characterization of amphibian communities in the Brazilian Atlantic forest: potential application for conservation of a rich and threatened fauna. Biol. Conserv. 215, 225–232 (2017).
Article Google Scholar
44.
Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J. & Hirota, M. M. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142, 1141–1153 (2009).
Article Google Scholar
45.
Ledru, M. P., Montade, V., Blanchard, G. & Hély, C. Long-term spatial changes in the distribution of the Brazilian Atlantic Forest. Biotropica 48, 159–169 (2016).
Article Google Scholar
46.
Joly, C. A., Metzger, J. P. & Tabarelli, M. Experiences from the Brazilian Atlantic F orest: ecological findings and conservation initiatives. New Phytol. 204, 459–473 (2014).
PubMed Article PubMed Central Google Scholar
47.
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
ADS CAS Article Google Scholar
48.
Eterovick, P. C. et al. Amphibian declines in Brazil: an overview 1. Biotropica 37, 166–179 (2005).
Article Google Scholar
49.
Becker, C. G., Fonseca, C. R., Haddad, C. F. B., Batista, R. F. & Prado, P. I. Habitat split and the global decline of amphibians. Science 318, 1775–1777 (2007).
ADS CAS PubMed Article PubMed Central Google Scholar
50.
Both, C. et al. Widespread occurrence of the American bullfrog, Lithobates catesbeianus (Shaw, 1802) (Anura: Ranidae), Brazil. S. Am. J. Herpetol. 6, 127–134 (2011).
Article Google Scholar
51.
Carvalho, T., Becker, C. G. & Toledo, L. F. Historical amphibian declines and extinctions in Brazil linked to chytridiomycosis. Proc. R. Soc. B Biol. Sci. 284, 20162254 (2017).
Article Google Scholar
52.
Haddad, C. F., Toledo, L. F. & Prado, C. P. Anfíbios da Mata Atlântica: guia dos anfíbios anuros da Mata Atlântica. Editora Neotropica (2008).
53.
Carnaval, A. C. O. Q., Toledo, L. F., Haddad, C. F. B. & Britto, F. B. (2005). Chytrid fungus infects high-altitude stream-dwelling Hylodes magalhaesi (Leptodactylidae) in the Brazilian Atlantic rainforest. Froglog 70, 3–4 (2005).
54.
Carnaval, A. C. O., Puschendorf, R., Peixoto, O. L., Verdade, V. K. & Rodrigues, M. T. Amphibian chytrid fungus broadly distributed in the Brazilian Atlantic Rain Forest. EcoHealth 3, 41–48 (2006).
Article Google Scholar
55.
Toledo, L. F., Britto, F. B., Araújo, O. G., Giasson, L. M. & Haddad, C. F. The occurrence of Batrachochytrium dendrobatidis in Brazil and the inclusion of 17 new cases of infection. S. Am. J. Herpetol. 1, 185–191 (2006).
Article Google Scholar
56.
Toledo, L. F., Haddad, C. F. B., Carnaval, A. C. O. Q. & Britto, F. B. A Brazilian anuran (Hylodes magalhaesi: Leptodactylidae) infected by Batrachochytrium dendrobatidis: a conservation concern. Amphib. Reptile Conserv. 4, 17–21 (2006).
Google Scholar
57.
de Oliveira Ramalho, A. C., De Paula, C. D., Catao-Dias, J. L., Vilarinho, B. & Brandao, R. A. First record of Batrachochytrium dendrobatidis in two endemic Cerrado hylids, Bokermannohyla pseudopseudis and Bokermannohyla sapiranga, with comments on chytridiomycosis spreading in Brazil. North West. J. Zool. 9, 145–150 (2013).
Google Scholar
58.
Rodriguez, D., Becker, C. G., Pupin, N. C., Haddad, C. F. B. & Zamudio, K. R. Long-term endemism of two highly divergent lineages of the amphibian-killing fungus in the Atlantic F orest of B razil. Mol. Ecol. 23, 774–787 (2014).
CAS PubMed Article Google Scholar
59.
Preuss, J. F., Lambertini, C., da Silva Leite, D., Toledo, L. F. & Lucas, E. M. Batrachochytrium dendrobatidis in near threatened and endangered amphibians in the southern Brazilian Atlantic Forest. North West. J. Zool 11, 360–362 (2015).
Google Scholar
60.
Preuss, J. F., Lambertini, C., Leite, D. D. S., Toledo, L. F. & Lucas, E. M. Crossing the threshold: an amphibian assemblage highly infected with Batrachochytrium dendrobatidis in the southern Brazilian Atlantic forest. Stud. Neotrop. Fauna E 51, 68–77 (2016).
Article Google Scholar
61.
Valencia-Aguilar, A., Toledo, L. F., Vital, M. V. & Mott, T. Seasonality, environmental factors, and host behavior linked to disease risk in stream-dwelling tadpoles. Herpetologica 72, 98–106 (2016).
Article Google Scholar
62.
Becker, C. G., Rodriguez, D., Lambertini, C., Toledo, L. F. & Haddad, C. F. Historical dynamics of Batrachochytrium dendrobatidis in Amazonia. Ecography 39, 954–960 (2016).
Article Google Scholar
63.
Skerratt, L. F. et al. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4, 125–134 (2007).
Article Google Scholar
64.
Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).
ADS CAS PubMed Article Google Scholar
65.
Bataille, A., Lee-Cruz, L., Tripathi, B. & Waldman, B. Skin bacterial community reorganization following metamorphosis of the fire-bellied toad (Bombina orientalis). Microb. Ecol. 75, 505–514 (2018).
CAS PubMed Article Google Scholar
66.
Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).
ADS CAS PubMed Article Google Scholar
67.
Scheele, B. C. et al. Response to Comment on “Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity”. Science 367, eaay2905 (2020).
CAS PubMed Article Google Scholar
68.
Woodhams, D. C. et al. Antifungal isolates database of amphibian skin-associated bacteria and function against emerging fungal pathogens: ecological archives E096–059. Ecology 96, 595 (2015).
Article Google Scholar
69.
Harris, R. N. et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 3, 818–824 (2009).
CAS PubMed Article PubMed Central Google Scholar
70.
Muletz-Wolz, C. R. et al. Inhibition of fungal pathogens across genotypes and temperatures by amphibian skin bacteria. Front. Microbiol. 8, 1551 (2017).
PubMed PubMed Central Article Google Scholar
71.
Niederle, M. V. et al. Skin-associated lactic acid bacteria from North American bullfrogs as potential control agents of Batrachochytrium dendrobatidis. PLoS ONE 14, e0223020 (2019).
CAS PubMed PubMed Central Article Google Scholar
72.
Becker, M. H. et al. Composition of symbiotic bacteria predicts survival in Panamanian golden frogs infected with a lethal fungus. Proc. R. Soc. B Biol. Sci. 282, 20142881 (2015).
Article CAS Google Scholar
73.
Rebollar, E. A. et al. Skin bacterial diversity of Panamanian frogs is associated with host susceptibility and presence of Batrachochytrium dendrobatidis. ISME J. 10, 1682–1695 (2016).
CAS PubMed PubMed Central Article Google Scholar
74.
Longo, A. V. & Zamudio, K. R. Environmental fluctuations and host skin bacteria shift survival advantage between frogs and their fungal pathogen. ISME 11, 349–361 (2017).
Article Google Scholar
75.
Longo, A. V. & Zamudio, K. R. Temperature variation, bacterial diversity and fungal infection dynamics in the amphibian skin. Mol. Ecol. 26, 4787–4797 (2017).
PubMed Article PubMed Central Google Scholar
76.
Lambertini, C. et al. Biotic and abiotic determinants of Batrachochytrium dendrobatidis infections in amphibians of the Brazilian Atlantic Forest. Fung. Ecol. 49, 100995 (2021).
Article Google Scholar
77.
Becker, C. G. et al. Variation in phenotype and virulence among enzootic and panzootic amphibian chytrid lineages. Fung. Ecol. 26, 45–50 (2017).
Article Google Scholar
78.
Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103, 626–631 (2006).
ADS CAS PubMed Article Google Scholar
79.
Lozupone, C. A. & Knight, R. Global patterns in bacterial diversity. Proc. Natl. Acad. Sci. USA 104, 11436–11440 (2007).
ADS CAS PubMed Article Google Scholar
80.
Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).
ADS CAS PubMed Article Google Scholar
81.
Boyle, A. H. D. et al. Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis. Aquat. Organ. 73, 175–192 (2007).
PubMed Article Google Scholar
82.
Boyle, D. G., Boyle, D. B., Olsen, V., Morgan, J. A. T. & Hyatt, A. D. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis. Aquat. Organ. 60, 141–148 (2004).
CAS PubMed Article PubMed Central Google Scholar
83.
Lambertini, C., Rodriguez, D., Brito, F. B., Leite, D. S. & Toledo, L. F. Diagnóstico do fungo Quitrídio: Batrachochytrium dendrobatidis. Herpetol. Bras. 2, 12–17 (2013).
Google Scholar
84.
Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Envrion. Microbiol. 79, 5112–5120 (2013).
CAS Article Google Scholar
85.
Bletz, M. C. et al. Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nat. Commun. 7, 13699 (2016).
ADS CAS PubMed PubMed Central Article Google Scholar
86.
Kriger, K. M. & Hero, J. M. The chytrid fungus Batrachochytrium dendrobatidis is non-randomly distributed across amphibian breeding habitats. Divers. Distrib. 13, 781–788 (2007).
Article Google Scholar
87.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. J. R. Meteorol. Soc. 25, 1965–78 (2005).
Article Google Scholar
88.
Kwon, S., Park, S., Lee, B. & Yoon, S. In-depth analysis of interrelation between quality scores and real errors in illumina reads. In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 635–638 (2013).
89.
Rideout, J. R. et al. Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences. PeerJ 2, e545 (2014).
PubMed PubMed Central Article Google Scholar
90.
Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. MSystems 2, e00191–16 (2017).
91.
Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).
CAS PubMed Article Google Scholar
92.
Caporaso, J. G. et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267 (2010).
CAS PubMed Article Google Scholar
93.
Team, R. C. R: A Language and Environment for Statistical Computing. (2013).
94.
Wickham, H. Ggplot: Using the Grammar of Graphics with R. (2009)
95.
Calcagno, V., Calcagno, M. V., Java, S. & Suggests, M. A. S. S. Package ‘glmulti’ (2020).
96.
Bates, K. A. et al. Captivity and infection by the fungal pathogen Batrachochytrium salamandrivorans perturb the amphibian skin microbiome. Front. Microbiol. 10, 1834 (2019).
PubMed PubMed Central Article Google Scholar
97.
Lin, D., Foster, D. P. & Ungar, L. H. VIF regression: a fast regression algorithm for large data. J. Am. Stat. Assoc. 106, 232–247 (2011).
MathSciNet CAS MATH Article Google Scholar
98.
Kruskal, J. B. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29, 115–129 (1964).
MathSciNet MATH Article Google Scholar
99.
Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27, 326–349 (1957).
Article Google Scholar
100.
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P. & Minchin, P. R. In 2012: Vegan: Community Ecology Package. R Package Version 2.0-5 (eds. Hara, O. et al.) (2014).
101.
De Caceres, M., Jansen, F. & De Caceres, M. M. Indicspecies: relationship between species and groups of sites. R package Version 1, (2016).
102.
Longo, A. V., Burrowes, P. A. & Zamudio, K. R. Genomic studies of disease-outcome in host–pathogen dynamics. Am. Zool. 54, 427–438 (2014).
Google Scholar
103.
Assis, A. B. D., Barreto, C. C. & Navas, C. A. Skin microbiota in frogs from the Brazilian Atlantic forest: species, forest type, and potential against pathogens. PLoS ONE 12, e0179628 (2017).
PubMed PubMed Central Article CAS Google Scholar
104.
Estrada, A. et al. Skin bacterial communities of neotropical treefrogs vary with local environmental conditions at the time of sampling. PeerJ 7, e7044 (2019).
PubMed PubMed Central Article Google Scholar
105.
Muletz-Wolz, C. R., Fleischer, R. C. & Lips, K. R. Fungal disease and temperature alter skin microbiome structure in an experimental salamander system. Mol. Ecol. 28, 2917–2931 (2019).
CAS PubMed Google Scholar
106.
Xu, L. L. et al. Changes in the community structure of the symbiotic microbes of wild amphibians from the eastern edge of the Tibetan Plateau. Microbiol. Open 9, e1004 (2020).
Article Google Scholar
107.
Puschendorf, R. et al. Environmental refuge from disease-driven amphibian extinction. Conserv. Biol. 25, 956–964 (2011).
PubMed Article Google Scholar
108.
Whitfield, S. M., Kerby, J., Gentry, L. R. & Donnelly, M. A. Temporal variation in infection prevalence by the amphibian chytrid fungus in three species of frogs at La Selva, Costa Rica. Biotropica 44, 779–784 (2012).
Article Google Scholar
109.
Ruggeri, J. et al. Seasonal variation in population abundance and chytrid infection in stream-dwelling frogs of the Brazilian Atlantic forest. PLoS ONE 10, e0130554 (2015).
PubMed PubMed Central Article CAS Google Scholar
110.
Longo, A. V., Burrowes, P. A. & Joglar, R. L. Seasonality of Batrachochytrium dendrobatidis infection in direct-developing frogs suggests a mechanism for persistence. Dis. Aquat. Organ. 92, 253–260 (2010).
PubMed Article PubMed Central Google Scholar
111.
Ellison, S., Knapp, R. A., Sparagon, W., Swei, A. & Vredenburg, V. T. Reduced skin bacterial diversity correlates with increased pathogen infection intensity in an endangered amphibian host. Mol. Ecol. 28, 127–140 (2019).
PubMed Article PubMed Central Google Scholar
112.
Piovia-Scott, J. et al. Greater species richness of bacterial skin symbionts better suppresses the amphibian fungal pathogen Batrachochytrium dendrobatidis. Microb. Ecol. 74, 217–226 (2017).
PubMed Article PubMed Central Google Scholar
113.
Flechas, S. V. et al. Surviving chytridiomycosis: differential anti-Batrachochytrium dendrobatidis activity in bacterial isolates from three lowland species of Atelopus. PLoS ONE 7, e44832 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
114.
Muletz, C. R., Myers, J. M., Domangue, R. J., Herrick, J. B. & Harris, R. N. Soil bioaugmentation with amphibian cutaneous bacteria protects amphibian hosts from infection by Batrachochytrium dendrobatidis. Biol. Conserv. 152, 119–126 (2012).
Article Google Scholar
115.
Woodhams, D. C., Ramsey, J. P. & Rollins-Smith, L. A. Effects of cold temperature on antimicrobial peptide synthesis and release in northern leopard frogs, Rana pipiens. Integr. Comp. Biol. 45, 1099–1099 (2005).
Google Scholar
116.
Bovo, R. P. et al. Physiological responses of Brazilian amphibians to an enzootic infection of the chytrid fungus Batrachochytrium dendrobatidis. Dis. Aquat. Organ. 117, 245–252 (2016).
PubMed Article PubMed Central Google Scholar
117.
Familiar López, M., Rebollar, E. A., Harris, R. N., Vredenburg, V. T. & Hero, J. M. Temporal variation of the skin bacterial community and Batrachochytrium dendrobatidis infection in the terrestrial cryptic frog Philoria loveridgei. Front. Microbiol. 8, 2535 (2017).
PubMed PubMed Central Article Google Scholar More