More stories

  • in

    Brazil’s Amazon Soy Moratorium reduced deforestation

    1.
    Schwartzman, S. & Zimmerman, B. Conservation alliances with indigenous peoples of the Amazon. Conserv. Biol. 19, 721–727 (2005).
    Google Scholar 
    2.
    Fearnside, P. M. Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv. Biol. 19, 680–688 (2005).
    Google Scholar 

    3.
    Malhi, Y. et al. Climate change, deforestation, and the fate of the amazon. Science 319, 169–172 (2008).
    ADS  CAS  PubMed  Google Scholar 

    4.
    Nepstad, D. et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344, 1118–1123 (2014).
    ADS  CAS  PubMed  Google Scholar 

    5.
    Assunção, J., Gandour, C. & Rocha, R. Deforestation slowdown in the Brazilian Amazon: prices or policies? Environ. Dev. Econ. 20, 697–722 (2015).
    Google Scholar 

    6.
    Assunção, J., Gandour, C. & Rocha, R. DETERring Deforestation in the Amazon: Environmental Monitoring and Law Enforcement (Climate Policy Initiative, 2017).

    7.
    Cisneros, E., Zhou, S. L. & Börner, J. Naming and shaming for conservation: evidence from the Brazilian Amazon. PLoS ONE 10, e0136402 (2015).
    PubMed  PubMed Central  Google Scholar 

    8.
    Arima, E. Y., Barreto, P., Araújo, E. & Soares-Filho, B. Public policies can reduce tropical deforestation: lessons and challenges from Brazil. Land Use Policy 41, 465–473 (2014).
    Google Scholar 

    9.
    Soares-Filho, B. et al. Role of Brazilian Amazon protected areas in climate change mitigation. Proc. Natl Acad. Sci. USA 107, 10821–10826 (2010).
    ADS  CAS  PubMed  Google Scholar 

    10.
    Soares-Filho, B. et al. Cracking Brazil’s Forest Code. Science 344, 363–364 (2014).
    ADS  CAS  PubMed  Google Scholar 

    11.
    Assunção, J. & Rocha, R. Getting Greener by Going Black: The Priority Municipalities in Brazil (Climate Policy Initiative, 2014).

    12.
    Assunção, J., Gandour, C., Rocha, R. & Rocha, R. The effect of rural credit on deforestation: evidence from the Brazilian Amazon. Econ. J. 130, 290–330 (2020).
    Google Scholar 

    13.
    Gibbs, H. K. et al. Brazil’s soy moratorium. Science 347, 377–378 (2015).
    ADS  CAS  PubMed  Google Scholar 

    14.
    Nepstad, D. C., Stickler, C. M. & Almeida, O. T. Globalization of the Amazon soy and beef industries: opportunities for conservation. Conserv. Biol. 20, 1595–1603 (2006).
    PubMed  Google Scholar 

    15.
    Gibbs, H. K. et al. Did ranchers and slaughterhouses respond to zero-deforestation agreements in the Brazilian Amazon? Brazil’s zero-deforestation pacts. Conserv. Lett. 9, 32–42 (2016).
    Google Scholar 

    16.
    Monitoramento do Desmatamento da Floresta Amazônica Brasileira por Satélite (INPE, 2018); http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes

    17.
    Eating up the Amazon (Greenpeace, 2006); https://www.greenpeace.org/usa/wp-content/uploads/legacy/Global/usa/report/2010/2/eating-up-the-amazon.pdf

    18.
    Soy Moratorium Announcement (ABIOVE, ANEC, 2006).

    19.
    Rudorff, B. F. T. et al. Remote sensing images to detect soy plantations in the Amazon biome—the Soy Moratorium Initiative. Sustainability 4, 1074–1088 (2012).
    Google Scholar 

    20.
    Trase Yearbook 2018: Sustainability in Forest-Risk Supply Chains: Spotlight on Brazilian Soy (Trase, 2018).

    21.
    Zu Ermgassen, E. K. H. J. et al. Using supply chain data to monitor zero deforestation commitments: an assessment of progress in the Brazilian soy sector. Environ. Res. Lett. 15, 035003 (2020).
    ADS  Google Scholar 

    22.
    Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change 8, 109–116 (2018).
    ADS  Google Scholar 

    23.
    Soy Moratorium: 2016/2017 Crop Year (ABIOVE, Agrosatelite, GTS, INPE, 2017).

    24.
    Rudorff, B. F. T. et al. The Soy Moratorium in the Amazon biome monitored by remote sensing images. Remote Sens. 3, 185–202 (2011).
    ADS  Google Scholar 

    25.
    Miranda, J., Börner, J., Kalkuhl, M. & Soares-Filho, B. Land speculation and conservation policy leakage in Brazil. Environ. Res. Lett. 14, 045006 (2019).
    ADS  Google Scholar 

    26.
    Ferrante, L. & Fearnside, P. M. Brazil’s new president and ‘ruralists’ threaten Amazonia’s environment, traditional peoples and the global climate. Environ. Conserv. 46, 261–263 (2019).
    Google Scholar 

    27.
    Abessa, D., Famá, A. & Buruaem, L. The systematic dismantling of Brazilian environmental laws risks losses on all fronts. Nat. Ecol. Evol. 3, 510–511 (2019).
    PubMed  Google Scholar 

    28.
    Dauvergne, P. & Lister, J. The prospects and limits of eco-consumerism: shopping our way to less deforestation? Organ. Environ. 23, 132–154 (2010).
    Google Scholar 

    29.
    Macedo, M. N. et al. Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc. Natl Acad. Sci. USA 109, 1341–1346 (2012).
    ADS  CAS  PubMed  Google Scholar 

    30.
    Kastens, J. H., Brown, J. C., Coutinho, A. C., Bishop, C. R. & Esquerdo, J. C. D. M. Soy moratorium impacts on soybean and deforestation dynamics in Mato Grosso, Brazil. PLoS ONE 12, e0176168 (2017).
    PubMed  PubMed Central  Google Scholar 

    31.
    Svahn, J., Brunner, D. & Harding, T. Did the Soy Moratorium Reduce Deforestation in the Brazilian Amazon? A Counterfactual Analysis of the Impact of the Soy Moratorium on Deforestation in the Amazon Biome. MSc thesis, Norwegian School of Economics (2018).

    32.
    West, T. A. P., Börner, J. & Fearnside, P. M.Climatic benefits from the 2006–2017 avoided deforestation in Amazonian Brazil. Front. For. Glob. Change 2, 52 (2019).
    Google Scholar 

    33.
    Sy, V. D. et al. Land use patterns and related carbon losses following deforestation in South America. Environ. Res. Lett. 10, 124004 (2015).
    ADS  Google Scholar 

    34.
    Moratatória da Soja: Monitoramento por Imagens de Satélites dos Plantios de Soja no Bioma Amazonia (ABIOVE & Agrosatélite, 2018); https://abiove.org.br/wp-content/uploads/2019/05/30012019-165924-portugues.pdf

    35.
    Alix-Garcia, J., Rausch, L. L., L’Roe, J., Gibbs, H. K. & Munger, J. Avoided deforestation linked to environmental registration of properties in the Brazilian Amazon: environmental registration in the Amazon. Conserv. Lett. 11, e12414 (2018).
    Google Scholar 

    36.
    Burgess, R., Costa, F. J. M. & Olken, B. A. Wilderness Conservation and the Reach of the State: Evidence from National Borders in the Amazon Working Paper 24861 (2018); https://doi.org/10.3386/w24861

    37.
    Silva Junior, C. H. L. et al. Fire responses to the 2010 and 2015/2016 Amazonian droughts. Front. Earth Sci. 7, 97 (2019).
    ADS  Google Scholar 

    38.
    Rudorff, B. F. T. & Risso, J. Geospatial Analyses of the Annual Crops Dynamic in the Brazilian Cerrado Biome: 2000 to 2014 (Agrosatélite Applied Geotechnology, 2015).

    39.
    Gollnow, F., Hissa, L., de, B. V., Rufin, P. & Lakes, T. Property-level direct and indirect deforestation for soybean production in the Amazon region of Mato Grosso, Brazil. Land Use Policy 78, 377–385 (2018).
    Google Scholar 

    40.
    Zalles, V. et al. Near doubling of Brazil’s intensive row crop area since 2000. Proc. Natl Acad. Sci. USA 116, 428–435 (2019).
    ADS  CAS  PubMed  Google Scholar 

    41.
    Arima, E. Y., Richards, P., Walker, R. & Caldas, M. M. Statistical confirmation of indirect land use change in the Brazilian Amazon. Environ. Res. Lett. 6, 024010 (2011).
    ADS  Google Scholar 

    42.
    Börner, J., Wunder, S., Wertz-Kanounnikoff, S., Hyman, G. & Nascimento, N. Forest law enforcement in the Brazilian Amazon: costs and income effects. Glob. Environ. Change 29, 294–305 (2014).
    Google Scholar 

    43.
    Sills, E. O. et al. Estimating the impacts of local policy innovation: the synthetic control method applied to tropical deforestation. PLoS ONE 10, e0132590 (2015).
    PubMed  PubMed Central  Google Scholar 

    44.
    Börner, J., Kis-Katos, K., Hargrave, J. & König, K. Post-crackdown effectiveness of field-based forest law enforcement in the Brazilian Amazon. PLoS ONE 10, e0121544 (2015).
    PubMed  PubMed Central  Google Scholar 

    45.
    L’Roe, J., Rausch, L., Munger, J. & Gibbs, H. K. Mapping properties to monitor forests: landholder response to a large environmental registration program in the Brazilian Amazon. Land Use Policy 57, 193–203 (2016).
    Google Scholar 

    46.
    Azevedo, A. A. et al. Limits of Brazil’s Forest Code as a means to end illegal deforestation. Proc. Natl Acad. Sci. USA 114, 7653–7658 (2017).
    ADS  CAS  PubMed  Google Scholar 

    47.
    Brown, J. C. & Koeppe, M. in Environment and the Law in Amazonia: A Plurilateral Encounter (eds Cooper, J. M. & Hunefeldt, C.) 110–126 (Sussex Academic Press, 2013).

    48.
    Lambin, E. F. et al. Effectiveness and synergies of policy instruments for land use governance in tropical regions. Glob. Environ. Change 28, 129–140 (2014).
    Google Scholar 

    49.
    Garrett, R. D., Carlson, K. M., Rueda, X. & Noojipady, P. Assessing the potential additionality of certification by the Round Table on Responsible Soybeans and the Roundtable on Sustainable Palm Oil. Environ. Res. Lett. 11, 045003 (2016).
    ADS  Google Scholar 

    50.
    Le Polain de Waroux, Y. et al. The restructuring of South American soy and beef production and trade under changing environmental regulations. World Dev. 121, 188–202 (2019).
    Google Scholar 

    51.
    Heilmayr, R., Carlson, K. M. & Benedict, J. J. Deforestation spillovers from oil palm sustainability certification. Environ. Res. Lett. 15, 075002 (2020).
    ADS  CAS  Google Scholar 

    52.
    Dou, Y., da Silva, R. F. B., Yang, H. & Liu, J. Spillover effect offsets the conservation effort in the Amazon. J. Geogr. Sci. 28, 1715–1732 (2018).
    Google Scholar 

    53.
    Moffette, F. & Gibbs, H. Agricultural displacement and deforestation leakage in the Brazilian Legal Amazon. Land Econ. (in the press).

    54.
    Baylis, K. et al. Mainstreaming impact evaluation in nature conservation. Conserv. Lett. 9, 58–64 (2016).
    Google Scholar 

    55.
    Noojipady, P. et al. Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome. Environ. Res. Lett. 12, 025004 (2017).
    ADS  Google Scholar 

    56.
    Rausch, L. L. et al. Soy expansion in Brazil’s Cerrado. Conserv. Lett. 12, e12671 (2019).
    Google Scholar 

    57.
    S. Garcia, A. et al. Assessing land use/cover dynamics and exploring drivers in the Amazon’s Arc of Deforestation through a hierarchical, multi-scale and multi-temporal classification approach. Remote Sens. Appl. Soc. Environ. 15, 100233 (2019).
    Google Scholar 

    58.
    Richards, P. D., Walker, R. T. & Arima, E. Y. Spatially complex land change: the indirect effect of Brazil’s agricultural sector on land use in Amazonia. Glob. Environ. Change 29, 1–9 (2014).
    PubMed  PubMed Central  Google Scholar 

    59.
    Richards, P. What drives indirect land use change? How Brazil’s agriculture sector influences frontier deforestation. Ann. Assoc. Am. Geogr. 105, 1026–1040 (2015).
    PubMed  PubMed Central  Google Scholar 

    60.
    Silva, C. A. & Lima, M. Soy Moratorium in Mato Grosso: deforestation undermines the agreement. Land Use Policy 71, 540–542 (2018).
    Google Scholar 

    61.
    Rausch, L. & Gibbs, H. Property arrangements and soy governance in the Brazilian state of Mato Grosso: implications for deforestation-free production. Land 5, 7 (2016).
    Google Scholar 

    62.
    Garrett, R. D. et al. Intensification in agriculture–forest frontiers: land use responses to development and conservation policies in Brazil. Glob. Environ. Change 53, 233–243 (2018).
    Google Scholar 

    63.
    Koch, N., zu Ermgassen, E. K. H. J., Wehkamp, J., Oliveira Filho, F. J. B. & Schwerhoff, G.Agricultural productivity and forest conservation: evidence from the Brazilian Amazon. Am. J. Agric. Econ. 101, 919–940 (2019).
    Google Scholar 

    64.
    Le Polain de Waroux, Y., Garrett, R. D., Heilmayr, R. & Lambin, E. F. Land-use policies and corporate investments in agriculture in the Gran Chaco and Chiquitano. Proc. Natl Acad. Sci. USA 113, 4021–4026 (2016).
    ADS  CAS  PubMed  Google Scholar 

    65.
    Garrett, R. D. et al. Criteria for effective zero-deforestation commitments. Glob. Environ. Change 54, 135–147 (2019).
    Google Scholar 

    66.
    Soterroni, A. C. et al. Expanding the Soy Moratorium to Brazil’s Cerrado. Sci. Adv. 5, eaav7336 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    67.
    Governo alega ameaça à soberania nacional e apoia fim da Moratória da Soja. Aprosoja http://www.aprosoja.com.br/comunicacao/noticia/governo-alega-ameaca-a-soberania-nacional-e-apoia-fim-da-moratoria-da-soja (2019).

    68.
    Barona, E., Ramankutty, N., Hyman, G. & Coomes, O. T. The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ. Res. Lett. 5, 024002 (2010).
    ADS  Google Scholar 

    69.
    Project MapBiomas—Collection 2.3 of Brazilian Land Cover & Use Map Series (MapBiomas, 2018); http://mapbiomas.org/

    70.
    Richards, P. D., Myers, R. J., Swinton, S. M. & Walker, R. T. Exchange rates, soybean supply response, and deforestation in South America. Glob. Environ. Change 22, 454–462 (2012).
    Google Scholar 

    71.
    Wing, C., Simon, K. & Bello-Gomez, R. A. Designing difference in difference studies: best practices for public health policy research. Annu. Rev. Public Health 39, 453–469 (2018).
    PubMed  Google Scholar 

    72.
    Freyaldenhoven, S., Hansen, C. & Shapiro, J. M. Pre-event trends in the panel event-study design. Am. Econ. Rev. 109, 3307–3338 (2019).
    Google Scholar 

    73.
    Lechner, M. The estimation of causal effects by difference-in-difference methods estimation of spatial panels. Found. Trends Econom. 4, 165–224 (2010).
    MATH  Google Scholar 

    74.
    Clarke, D. Estimating Difference-in-Differences in the Presence of Spillovers MPRA Paper 81604 (Univ, Library of Munich, 2017).

    75.
    Zu Ermgassen, E. K. H. J. et al. Using supply chain data to monitor zero deforestation commitments: an assessment of progress in the Brazilian soy sector. Environ. Res. Lett. 15, 035003 (2019).
    ADS  Google Scholar 

    76.
    Alix-Garcia, J. M., Shapiro, E. N. & Sims, K. R. E. Forest conservation and slippage: evidence from Mexico’s National Payments for Ecosystem Services program. Land Econ. 88, 613–638 (2012).
    Google Scholar 

    77.
    Hertel, T. W. Economic perspectives on land use change and leakage. Environ. Res. Lett. 13, 075012 (2018).
    ADS  Google Scholar 

    78.
    Hertel, T. W., West, T. A. P., Börner, J. & Villoria, N. B. A review of global–local–global linkages in economic land-use/cover change models. Environ. Res. Lett. 14, 053003 (2019).
    ADS  Google Scholar  More

  • in

    Optofluidic Raman-activated cell sorting for targeted genome retrieval or cultivation of microbial cells with specific functions

    1.
    Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 
    2.
    Blainey, P. C., Mosier, A. C., Potanina, A., Francis, C. A. & Quake, S. R. Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS ONE 6, e16626 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Thomas, T., Gilbert, J. & Meyer, F. Metagenomics -– a guide from sampling to data analysis. Microb. Inform. Exp. 2, 3 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    4.
    Horgan, R. P. & Kenny, L. C. ‘Omic’ technologies: genomics, transcriptomics, proteomics and metabolomics. Obstet. Gynaecol 13, 189–195 (2011).
    Google Scholar 

    5.
    Prosser, J. I. Dispersing misconceptions and identifying opportunities for the use of ‘omics’ in soil microbial ecology. Nat. Rev. Microbiol. 13, 439–446 (2015).
    CAS  PubMed  Article  Google Scholar 

    6.
    Yu, F. B. et al. Microfluidic-based mini-metagenomics enables discovery of novel microbial lineages from complex environmental samples. eLife 6, e26580 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Mukherjee, S. et al. Genomes OnLine database (GOLD) v.7: updates and new features. Nucleic Acids Res 47, D649–D659 (2019).
    CAS  PubMed  Article  Google Scholar 

    8.
    Woyke, T., Doud, D. F. R. & Schulz, F. The trajectory of microbial single-cell sequencing. Nat. Methods 14, 1045–1054 (2017).
    CAS  PubMed  Article  Google Scholar 

    9.
    Berry, D. & Loy, A. Stable-isotope probing of human and animal microbiome function. Trends Microbiol 26, 999–1007 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Manefield, M., Whiteley, A. S., Griffiths, R. I. & Bailey, M. J. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl. Environ. Microbiol. 68, 5367–5373 (2002).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Dumont, M. G. & Murrell, J. C. Stable isotope probing—linking microbial identity to function. Nat. Rev. Microbiol. 3, 499–504 (2005).
    CAS  PubMed  Article  Google Scholar 

    12.
    Wilhelm, R. C., Singh, R., Eltis, L. D. & Mohn, W. W. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J 13, 413–429 (2019).
    CAS  PubMed  Article  Google Scholar 

    13.
    Wang, Y., Huang, W. E., Cui, L. & Wagner, M. Single cell stable isotope probing in microbiology using Raman microspectroscopy. Curr. Opin. Biotechnol. 41, 34–42 (2016).
    CAS  PubMed  Article  Google Scholar 

    14.
    Haider, S. et al. Raman microspectroscopy reveals long-term extracellular activity of chlamydiae. Mol. Microbiol 77, 687–700 (2010).
    CAS  PubMed  Article  Google Scholar 

    15.
    Huang, W. E. et al. Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ. Microbiol. 9, 1878–1889 (2007).
    CAS  PubMed  Article  Google Scholar 

    16.
    Wagner, M. Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu. Rev. Microbiol. 63, 411–429 (2009).
    CAS  PubMed  Article  Google Scholar 

    17.
    Berry, D. et al. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc. Natl Acad. Sci. USA 112, E194–E203 (2015).
    CAS  PubMed  Article  Google Scholar 

    18.
    Malmstrom, R. R. & Eloe-Fadrosh, E. A. Advancing genome-resolved metagenomics beyond the shotgun. mSystems 4, e00118–e00119 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Neufeld, J. D. et al. DNA stable-isotope probing. Nat. Protoc. 2, 860–866 (2007).
    CAS  PubMed  Article  Google Scholar 

    20.
    Jing, X. et al. Raman-activated cell sorting and metagenomic sequencing revealing carbon-fixing bacteria in the ocean. Environ. Microbiol. 20, 2241–2255 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Wang, Y. et al. Raman activated cell ejection for isolation of single cells. Anal. Chem. 85, 10697–10701 (2013).
    CAS  PubMed  Article  Google Scholar 

    22.
    Singer, E., Wagner, M. & Woyke, T. Capturing the genetic makeup of the active microbiome in situ. ISME J 11, 1949–1963 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Huang, W. E., Ward, A. D. & Whiteley, A. S. Raman tweezers sorting of single microbial cells. Environ. Microbiol. Rep 1, 44–49 (2009).
    CAS  PubMed  Article  Google Scholar 

    24.
    Lee, K. S. et al. An automated Raman-based platform for the sorting of live cells by functional properties. Nat. Microbiol. 4, 1035–1048 (2019).
    CAS  PubMed  Article  Google Scholar 

    25.
    Lee, K. S., Wagner, M. & Stocker, R. Raman-based sorting of microbial cells to link functions to their genes. Microb. Cell 7, 62–65 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Premvardhan, L., Bordes, L., Beer, A., Büchel, C. & Robert, B. Carotenoid structures and environments in trimeric and oligomeric fucoxanthin chlorophyll a/c2 proteins from resonance Raman spectroscopy. J. Phys. Chem. B 113, 12565–12574 (2009).
    CAS  PubMed  Article  Google Scholar 

    27.
    Takano, H. The regulatory mechanism underlying light-inducible production of carotenoids in nonphototrophic bacteria. Biosci. Biotechnol. Biochem. 80, 1264–1273 (2016).
    CAS  PubMed  Article  Google Scholar 

    28.
    Wagstaff, K., Cardie, C., Rogers, S. & Schrödl, S. Constrained k-means clustering with background knowledge. in Proc. 18th International Conference on Machine Learning (eds Brodley, C. E. & Danyluk, A. P.) 577–584 (Morgan Kaufmann, 2001).

    29.
    Kanungo, T. et al. An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Patt. Anal. Mach. Intell. 24, 881–892 (2002).
    Article  Google Scholar 

    30.
    Rinke, C. et al. Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nat. Protoc. 9, 1038–1048 (2014).
    CAS  PubMed  Article  Google Scholar 

    31.
    Bonner, W. A., Hulett, H. R., Sweet, R. G. & Herzenberg, L. A. Fluorescence activated cell sorting. Rev. Sci. Instrum. 43, 404–409 (1972).
    CAS  PubMed  Article  Google Scholar 

    32.
    Ha, B. H., Lee, K. S., Jung, J. H. & Sung, H. J. Three-dimensional hydrodynamic flow and particle focusing using four vortices Dean flow. Microfluid. Nanofluid. 17, 647–655 (2014).
    CAS  Article  Google Scholar 

    33.
    Chu, H., Doh, I. & Cho, Y.-H. A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes. Lab Chip 9, 686–691 (2009).
    CAS  PubMed  Article  Google Scholar 

    34.
    Gao, C. et al. Single-cell bacterial transcription measurements reveal the importance of dimethylsulfoniopropionate (DMSP) hotspots in ocean sulfur cycling. Nat. Commun. 11, 1942 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Kitzinger, K. et al. Single cell analyses reveal contrasting life strategies of the two main nitrifiers in the ocean. Nat. Commun. 11, 767 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Majed, N., Chernenko, T., Diem, M. & Gu, A. Z. Identification of functionally relevant populations in enhanced biological phosphorus removal processes based on intracellular polymers profiles and insights into the metabolic diversity and heterogeneity. Environ. Sci. Technol. 46, 5010–5017 (2012).
    CAS  PubMed  Article  Google Scholar 

    37.
    Fernando, E. Y. et al. Resolving the individual contribution of key microbial populations to enhanced biological phosphorus removal with Raman–FISH. ISME J 13, 1933–1946 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Milucka, J. et al. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491, 541–546 (2012).
    CAS  PubMed  Article  Google Scholar 

    39.
    Hatzenpichler, R. et al. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal–bacterial consortia. Proc. Natl Acad. Sci. USA 113, E4069–E4078 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Schiessl, K. T. et al. Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nat. Commun. 10, 762 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Gleizer, S. et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell 179, 1255–1263 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Dong, T. G., Ho, B. T., Yoder-Himes, D. R. & Mekalanos, J. J. Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc. Natl Acad. Sci. USA 110, 2623–2628 (2013).
    CAS  PubMed  Article  Google Scholar 

    43.
    Dolinšek, J., Lagkouvardos, I., Wanek, W., Wagner, M. & Daims, H. Interactions of nitrifying bacteria and heterotrophs: identification of a Micavibrio-like putative predator of Nitrospira spp. Appl. Environ. Microbiol. 79, 2027–2037 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Pätzold, R. et al. In situ mapping of nitrifiers and anammox bacteria in microbial aggregates by means of confocal resonance Raman microscopy. J. Microbiol. Methods 72, 241–248 (2008).
    PubMed  Article  CAS  Google Scholar 

    45.
    Wei, L. & Min, W. Electronic preresonance stimulated Raman scattering microscopy. J. Phys. Chem. Lett. 9, 4294–4301 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Gruber-Vodicka, H. R. et al. Paracatenula, an ancient symbiosis between thiotrophic Alphaproteobacteria and catenulid flatworms. Proc. Natl Acad. Sci. USA. 108, 12078–12083 (2011).
    CAS  PubMed  Article  Google Scholar 

    47.
    Lenz, R., Enders, K., Stedmon, C. A., MacKenzie, D. M. A. & Nielsen, T. G. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar. Pollut. Bull. 100, 82–91 (2015).
    CAS  PubMed  Article  Google Scholar 

    48.
    Gillibert, R. et al. Raman tweezers for small microplastics and nanoplastics identification in seawater. Environ. Sci. Technol. 53, 9003–9013 (2019).
    CAS  PubMed  Article  Google Scholar 

    49.
    Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 9, 7843 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Zhang, P. et al. Raman-activated cell sorting based on dielectrophoretic single-cell trap and release. Anal. Chem. 87, 2282–2289 (2015).
    CAS  PubMed  Article  Google Scholar 

    51.
    McIlvenna, D. et al. Continuous cell sorting in a flow based on single cell resonance Raman spectra. Lab Chip 16, 1420–1429 (2016).
    CAS  PubMed  Article  Google Scholar 

    52.
    Folick, A., Min, W. & Wang, M. C. Label-free imaging of lipid dynamics using coherent anti-stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy. Curr. Opin. Genet. Dev. 21, 585–590 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Hiramatsu, K. et al. High-throughput label-free molecular fingerprinting flow cytometry. Sci. Adv. 5, eaau0241 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    54.
    Suzuki, Y. et al. Label-free chemical imaging flow cytometry by high-speed multicolor stimulated Raman scattering. Proc. Natl Acad. Sci. USA 116, 15842–15848 (2019).
    CAS  PubMed  Article  Google Scholar 

    55.
    Nitta, N. et al. Raman image-activated cell sorting. Nat. Commun. 11, 3452 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Eek, K. M., Sessions, A. L. & Lies, D. P. Carbon-isotopic analysis of microbial cells sorted by flow cytometry. Geobiology 5, 85–95 (2007).
    CAS  Article  Google Scholar 

    57.
    Dyksma, S. et al. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME J 10, 1939–1953 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Ling, L., Zhou, F., Huang, L. & Li, Z.-Y. Optical forces on arbitrary shaped particles in optical tweezers. J. Appl. Phys. 108, 073110 (2010).
    Article  CAS  Google Scholar 

    59.
    Bonessi, D., Bonin, K. & Walker, T. Optical forces on particles of arbitrary shape and size. J. Opt. A Pure Appl. Opt. 9, S228–S234 (2007).
    Article  Google Scholar 

    60.
    Ashkin, A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 61, 569–582 (1992).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Novotny, L., Bian, R. X. & Xie, X. S. Theory of nanometric optical tweezers. Phys. Rev. Lett. 79, 645–648 (1997).
    CAS  Article  Google Scholar 

    62.
    Dholakia, K. & Reece, P. Optical micromanipulation takes hold. Nano Today 1, 18–27 (2006).
    Article  Google Scholar 

    63.
    Kim, S., Kang, I., Seo, J.-H. & Cho, J.-C. Culturing the ubiquitous freshwater actinobacterial acI lineage by supplying a biochemical ‘helper’ catalase. ISME J 13, 2252–2263 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Li, T. et al. Simultaneous analysis of microbial identity and function using NanoSIMS. Environ. Microbiol. 10, 580–588 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Huang, W. E., Griffiths, R. I., Thompson, I. P., Bailey, M. J. & Whiteley, A. S. Raman microscopic analysis of single microbial cells. Anal. Chem. 76, 4452–4458 (2004).
    CAS  PubMed  Article  Google Scholar 

    66.
    McDonald, J. C. et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40 (2000).
    CAS  PubMed  Article  Google Scholar 

    67.
    Schuster, K. C., Reese, I., Urlaub, E., Gapes, J. R. & Lendl, B. Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy. Anal. Chem. 72, 5529–5534 (2000).
    CAS  PubMed  Article  Google Scholar 

    68.
    Dochow, S. et al. Quartz microfluidic chip for tumour cell identification by Raman spectroscopy in combination with optical traps. Anal. Bioanal. Chem. 405, 2743–2746 (2013).
    CAS  PubMed  Article  Google Scholar 

    69.
    Kodinariya, T. M. & Makwana, P. R. Review on determining number of Cluster in K-Means Clustering. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 1, 90–95 (2013).
    Google Scholar 

    70.
    Bjerg, J. T. et al. Long-distance electron transport in individual, living cable bacteria. Proc. Natl Acad. Sci. USA. 115, 5786–5791 (2018).
    CAS  PubMed  Article  Google Scholar 

    71.
    Zhao, J., Lui, H., McLean, D. I. & Zeng, H. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl. Spectrosc. 61, 1225–1232 (2007).
    CAS  PubMed  Article  Google Scholar 

    72.
    Beier, B. D. & Berger, A. J. Method for automated background subtraction from Raman spectra containing known contaminants. Analyst 134, 1198–1202 (2009).
    CAS  PubMed  Article  Google Scholar 

    73.
    Hehemann, J.-H. et al. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes. Nat. Commun. 7, 12860 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Taheri-Araghi, S. et al. Cell-size control and homeostasis in bacteria. Curr. Biol. 25, 385–391 (2015).
    CAS  PubMed  Article  Google Scholar 

    75.
    Mazutis, L. et al. Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 8, 870–891 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Wang, Y. et al. Reverse and multiple stable isotope probing to study bacterial metabolism and interactions at the single cell level. Anal. Chem. 88, 9443–9450 (2016).
    CAS  PubMed  Article  Google Scholar 

    77.
    Yuan, X. et al. Effect of laser irradiation on cell function and its implications in Raman spectroscopy. Appl. Environ. Microbiol. 84, e02508–e02517 (2018).
    CAS  PubMed  PubMed Central  Google Scholar  More