More stories

  • in

    Difference of ecological half-life and transfer coefficient in aquatic invertebrates between high and low radiocesium contaminated streams

    Study site
    The study sites were located approximately 20–75 km from the Fukushima Daiichi Nuclear Power Plant in Fukushima Prefecture, Japan (Fig. 1). According to an aircraft radioactivity survey reported by the Ministry of Education, Culture, Sports, Sciences, and Technology of Japan19, the air dose rate in this region was 0.3–3.2 μSv/h, and the deposition of cesium-134 and cesium-137 ranged from less than 64,000 to 940,000 Bq/m2 (Table 1) in June 2011. The study catchment area is mostly forested and dominated with deciduous trees. Other areas in the region are also forested as well, with Japanese cedar and cypress plantations used for timber production. A field survey was conducted at one headwater tributary (A) of the Nagase River and three headwater tributaries (B, C, and D) of the Kido River. The substrate of these sites was consisted with sand, cobble and rocks. Geological feature of the soil on all the sites was the same, biotite granite. Streams at sites B, C and D were covered with riparian forests and it was difficult for sunlight to penetrate directly. Stream width of site A was wider than sites B, C and D, so sunlight could penetrate through the forest cover and contact the stream surface only along the middle of the stream.
    Figure 1

    Study site in Fukushima Prefecture, Japan. Square: sampling sites, circle: FDNPP (Fukushima Daiichi Nuclear Power Plant). This map was generated by using software program Microsoft Paint Windows 10.

    Full size image

    Table 1 Air dose rate and the deposition of Cs according to an aircraft radioactivity survey by MEXT (2011), averaged value of dose rate 1-m above the ground on the sampling date from 2013 to 2019 (n = 23) and five environmental factors on four sites on the sampling date from 2013 to 2019 (n = 23).
    Full size table

    Sampling
    The air dose rate at 1- m above the ground was measured with a γ survey meter at the sampling site (TCS-172 NaI scintillation counter; ALOKA). The electrical conductivity (EC) of the streams was measured using a portable compact twin conductivity meter (B-173; Horiba); pH was measured using a portable compact twin pH meter (B-212; Horiba), and the dissolved oxygen (DO) was measured using a portable DO meter (DO-5509; Lutron). Stream velocity was measured using a portable meter (V-303, VC-301, KENEK). All parameters were measured at all sites on all sampling dates.
    Sand substrate, litter and algae were sampled from stream riffles at a depth of 10-15 cm from July 2013 to April 2019, as was reported in previous studies13. The sand substrate was sampled in each riffle to a depth of 5- cm. When sand was not immediately visible in the stream substrate, stones were removed and the sand underneath the stones was sampled. Litter shed in the water was collected after gentle hand-rinsing. Leaf litter forms the base of stream food webs. Periphytic algae were collected by brushing the pebbles or rocks with a toothbrush. These algae are also primary producers at the base of stream food webs. Prior to brushing, we gently hand-rinsed the stone surface to remove other organic matter and aquatic invertebrates in the periphyton.
    Aquatic invertebrates from thirteen groups (Perlidae Gen. spp., Nemouridae Gen. spp., Ephemera japonica, Ephemerellidae Gen. spp., Heptageniidae Gen. spp., Hydropsychidae Gen. spp., Stenopsychi spp., Rhyacophilidae Gen. spp., Epiophlebia superstes, Lanthus fujiacus, Tipulidae Gen. spp., and Corydalidae Gen. spp., Geothelphusa dehaani,) were qualitatively sampled from riffles at a depth of 10-15 cm at the four sites from July 2013 to April 2019. At each site, a D-frame net with a 1-mm mesh was placed downstream of the sampling area on the substrate in water. We then disturbed the substrate upstream of the net, allowing insects to drift into the D-frame net. The sampled aquatic invertebrates were identified to family level in the field and then frozen.
    Three bricks (210 × 100 × 60 mm) were placed separately within the stream riffle at a depth of 10–20 cm on August 25, 2014 at each of the four sites. Then, periphytic algae growing on the bricks were collected by brushing the substrate with a toothbrush. Before brushing, we gently hand-rinsed the brick surface in running water to remove other organic matter from the periphytic algae. The sampling was carried out eight times: in October and December 2014; March, May, June, July and November 2015; and April 2016. Stream velocity of right side, upper reaches side and left side of each brick were measured and averaged. This averaged value was used as the stream velocity of each periphytic algae sample.
    Radiocesium analysis
    Radiocesium was analysed according to the methods in previous studies10,20. Samples of sand substrate and litter were dried at 75 °C in an oven. Thereafter, samples of sand were placed in a sieve (mesh size 2 mm; Iida, Japan), and the sand that passed through the sieve was used, meaning that the sand substrate in this study included silt granules. Samples of algae were concentrated via evaporation and dried in an oven at 75 °C. Samples of aquatic invertebrates were also dried in an oven at 75 °C. All samples were homogenized and packed into 100-ml polystyrene containers (U-8). Gamma-ray spectrometric measurements were performed on each sample. The radioactive concentrations of cesium-134 (604 keV) and cesium-137 (662 keV) were measured using an HPGe coaxial detector system (GEM40P4-76, Seiko EG and G, Tokyo, Japan) at the Forestry and Forest Products Research Institute (FFPRI) with a time of 36,000 s or longer. Data with a standard error of  More

  • in

    Controlling biodiversity impacts of future global hydropower reservoirs by strategic site selection

    1.
    Bogdanov, D. et al. Radical transformation pathway towards sustainable electricity via evolutionary steps. Nat. Commun. 10, 1077. https://doi.org/10.1038/s41467-019-08855-1 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 
    2.
    UNEP. Green Energy Choices: The benefits, risks and trade-offs of low-carbon technologies for electricity production. Report of the International Resource Panel (2016).

    3.
    United Nations. Transforming our world: The 2030 agenda for sustainable development—A/RES/70/1. (2015).

    4.
    Intergovernmental Panel on Climate Change. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. (2018).

    5.
    Gernaat, D. E. H. J., Bogaart, P. W., Vuuren, D. P. V., Biemans, H. & Niessink, R. High-resolution assessment of global technical and economic hydropower potential. Nature Energy 2, 821–828. https://doi.org/10.1038/s41560-017-0006-y (2017).
    ADS  Article  Google Scholar 

    6.
    IEA. Hydropower. (Paris, 2020).

    7.
    Intergovernmental Panel on Climate Change. Hydropower. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (2011).

    8.
    Almeida, R. M. et al. Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning. Nat. Commun. 10, 4281. https://doi.org/10.1038/s41467-019-12179-5 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    9.
    Fuso Nerini, F. et al. Mapping synergies and trade-offs between energy and the sustainable development goals. Nat. Energy 3, 10–15. https://doi.org/10.1038/s41560-017-0036-5 (2018).
    ADS  Article  Google Scholar 

    10.
    Muller, M. Hydropower dams can help mitigate the global warming impact of wetlands. Nature 566, 315–317. https://doi.org/10.1038/d41586-019-00616-w (2019).
    CAS  Article  PubMed  Google Scholar 

    11.
    Pehl, M. et al. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling. Nat. Energy 2, 939–945. https://doi.org/10.1038/s41560-017-0032-9 (2017).
    ADS  CAS  Article  Google Scholar 

    12.
    Wu, H. et al. Effects of dam construction on biodiversity: a review. J. Clean. Prod. 221, 480–489. https://doi.org/10.1016/j.jclepro.2019.03.001 (2019).
    Article  Google Scholar 

    13.
    Turgeon, K., Turpin, C., Gregory-Eaves, I. & Lawler, J. Dams have varying impacts on fish communities across latitudes: a quantitative synthesis. Ecol. Lett. 22, 1501–1516. https://doi.org/10.1111/ele.13283 (2019).
    Article  PubMed  Google Scholar 

    14.
    Gracey, E. O. & Verones, F. Impacts from hydropower production on biodiversity in an LCA framework—review and recommendations. Int. J. Life Cycle Assess. 21, 412–428. https://doi.org/10.1007/s11367-016-1039-3 (2016).
    Article  Google Scholar 

    15.
    Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502. https://doi.org/10.1890/100125 (2011).
    Article  Google Scholar 

    16.
    Dorber, M., May, R. & Verones, F. Modeling net land occupation of hydropower reservoirs in Norway for use in life cycle assessment. Environ. Sci. Technol. 52, 2375–2384. https://doi.org/10.1021/acs.est.7b05125 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    17.
    Strachan, I. B. et al. Does the creation of a boreal hydroelectric reservoir result in a net change in evaporation?. J. Hydrol. 540, 886–899. https://doi.org/10.1016/j.jhydrol.2016.06.067 (2016).
    ADS  Article  Google Scholar 

    18.
    Mekonnen, M. M. & Hoekstra, A. Y. The blue water footprint of electricity from hydropower. Hydrol. Earth Syst. Sci. 16, 179–187. https://doi.org/10.5194/hess-16-179-2012 (2012).
    ADS  Article  Google Scholar 

    19.
    Poff, N. L. & Zimmerman, J. K. H. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshw. Biol. 55, 194–205. https://doi.org/10.1111/j.1365-2427.2009.02272.x (2010).
    Article  Google Scholar 

    20.
    Gillespie, B. R., Desmet, S., Kay, P., Tillotson, M. R. & Brown, L. E. A critical analysis of regulated river ecosystem responses to managed environmental flows from reservoirs. Freshw. Biol. 60, 410–425. https://doi.org/10.1111/fwb.12506 (2015).
    Article  Google Scholar 

    21.
    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573. https://doi.org/10.1126/science.aaa4984 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    22.
    Hermoso, V., Clavero, M. & Green, A. J. Don’t let damage to wetlands cancel out the benefits of hydropower. Nature 568, 171–171. https://doi.org/10.1038/d41586-019-01140-7 (2019).
    CAS  Article  PubMed  Google Scholar 

    23.
    McAllister, D. E., Craig, J. F., Davidson, N., Delany, S. & Seddon, M. Biodiversity impacts of large dams. Background Paper Nr. 1 – Prepared for IUCN/UNEP/WCD (2001).

    24.
    Crook, D. A. et al. Human effects on ecological connectivity in aquatic ecosystems: Integrating scientific approaches to support management and mitigation. Sci. Total Environ. 534, 52–64. https://doi.org/10.1016/j.scitotenv.2015.04.034 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    25.
    Alho, C. J. Environmental effects of hydropower reservoirs on wild mammals and freshwater turtles in Amazonia: a review. Oecologia Australis 15, 593–604 (2011).
    Article  Google Scholar 

    26.
    Kitzes, J. & Shirley, R. Estimating biodiversity impacts without field surveys: a case study in northern Borneo. Ambio 45, 110–119. https://doi.org/10.1007/s13280-015-0683-3 (2016).
    CAS  Article  PubMed  Google Scholar 

    27.
    Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26. https://doi.org/10.1016/j.tree.2011.08.006 (2012).
    Article  PubMed  Google Scholar 

    28.
    Secretariat of the Convention on Biological Diversity. Global Biodiversity Outlook 4. (Montreal, 2014).

    29.
    Bennett, E. M. et al. Linking biodiversity, ecosystem services, and human well-being: three challenges for designing research for sustainability. Curr. Opin. Environ. Sustain. 14, 76–85. https://doi.org/10.1016/j.cosust.2015.03.007 (2015).
    Article  Google Scholar 

    30.
    Opoku, A. Biodiversity and the built environment: Implications for the sustainable development goals (SDGs). Resour. Conserv. Recycl. 141, 1–7. https://doi.org/10.1016/j.resconrec.2018.10.011 (2019).
    Article  Google Scholar 

    31.
    Blicharska, M. et al. Biodiversity’s contributions to sustainable development. Nat. Sustain. 2, 1083–1093. https://doi.org/10.1038/s41893-019-0417-9 (2019).
    Article  Google Scholar 

    32.
    Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129. https://doi.org/10.1126/science.aac7082 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    33.
    Nilsson, M., Griggs, D. & Visbeck, M. Policy: map the interactions between sustainable development goals. Nature 534, 320–322. https://doi.org/10.1038/534320a (2016).
    ADS  Article  PubMed  Google Scholar 

    34.
    Bhaduri, A. et al. Achieving sustainable development goals from a water perspective. Front. Environ. Sci. 4, 64. https://doi.org/10.3389/fenvs.2016.00064 (2016).
    Article  Google Scholar 

    35.
    Liu, J. et al. Nexus approaches to global sustainable development. Nat. Sustain. 1, 466–476. https://doi.org/10.1038/s41893-018-0135-8 (2018).
    Article  Google Scholar 

    36.
    Shin, S. et al. High resolution modeling of river-floodplain-reservoir inundation dynamics in the Mekong River Basin. Water Resour. Res. 56, e2019WR026449. https://doi.org/10.1029/2019wr026449 (2020).
    ADS  Article  Google Scholar 

    37.
    Schmitt, R. J. P., Bizzi, S., Castelletti, A. & Kondolf, G. M. Improved trade-offs of hydropower and sand connectivity by strategic dam planning in the Mekong. Nat. Sustain. 1, 96–104. https://doi.org/10.1038/s41893-018-0022-3 (2018).
    Article  Google Scholar 

    38.
    Pokhrel, Y., Shin, S., Lin, Z., Yamazaki, D. & Qi, J. Potential disruption of flood dynamics in the Lower Mekong River Basin due to upstream flow regulation. Sci. Rep. 8, 17767. https://doi.org/10.1038/s41598-018-35823-4 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Ashraf, F. B. et al. Changes in short term river flow regulation and hydropeaking in Nordic rivers. Sci. Rep. 8, 17232. https://doi.org/10.1038/s41598-018-35406-3 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Barbarossa, V. et al. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc. Natl. Acad. Sci. 117, 3648. https://doi.org/10.1073/pnas.1912776117 (2020).
    ADS  CAS  Article  PubMed  Google Scholar 

    41.
    Scherer, L. & Pfister, S. Hydropower’s biogenic carbon footprint. PLoS ONE 11, e0161947. https://doi.org/10.1371/journal.pone.0161947 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    42.
    Scherer, L. & Pfister, S. Global water footprint assessment of hydropower. Renew. Energy 99, 711–720. https://doi.org/10.1016/j.renene.2016.07.021 (2016).
    Article  Google Scholar 

    43.
    Evans, A., Strezov, V. & Evans, T. J. Assessment of sustainability indicators for renewable energy technologies. Renew. Sustain. Energy Rev. 13, 1082–1088. https://doi.org/10.1016/j.rser.2008.03.008 (2009).
    Article  Google Scholar 

    44.
    Laborde, A., Habit, E., Link, O. & Kemp, P. Strategic methodology to set priorities for sustainable hydropower development in a biodiversity hotspot. Sci. Total Environ. 714, 136735. https://doi.org/10.1016/j.scitotenv.2020.136735 (2020).
    ADS  CAS  Article  PubMed  Google Scholar 

    45.
    Haga, C. et al. Scenario analysis of renewable energy-biodiversity nexuses using a forest landscape model. Front. Ecol. Evol. 8, 155. https://doi.org/10.3389/fevo.2020.00155 (2020).
    ADS  Article  Google Scholar 

    46.
    Zarfl, C. et al. Future large hydropower dams impact global freshwater megafauna. Sci. Rep. 9, 18531. https://doi.org/10.1038/s41598-019-54980-8 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    47.
    Gibon, T., Hertwich, E. G., Arvesen, A., Singh, B. & Verones, F. Health benefits, ecological threats of low-carbon electricity. Environ. Res. Lett. 12, 034023. https://doi.org/10.1088/1748-9326/aa6047 (2017).
    ADS  CAS  Article  Google Scholar 

    48.
    Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800. https://doi.org/10.1016/j.rse.2011.02.019 (2011).
    ADS  Article  Google Scholar 

    49.
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086 (2017).
    Article  Google Scholar 

    50.
    Dorber, M., Mattson, K. R., Sandlund, O. T., May, R. & Verones, F. Quantifying net water consumption of Norwegian hydropower reservoirs and related aquatic biodiversity impacts in life cycle assessment. Environ. Impact Assess. Rev. 76, 36–46. https://doi.org/10.1016/j.eiar.2018.12.002 (2019).
    Article  Google Scholar 

    51.
    Verones, F. et al. LCIA framework and cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative. J. Clean. Prod. 161, 957–967 (2017).
    Article  Google Scholar 

    52.
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
    ADS  CAS  Article  Google Scholar 

    53.
    Critical Ecosystem Partnership Fund. Biodiversity Hotspot Shapefile. https://www.cepf.net/our-work/biodiversity-hotspots/hotspots-defined (2016).

    54.
    Le Blanc, D. Towards integration at last? The sustainable development goals as a network of targets. Sustain. Dev. 23, 176–187. https://doi.org/10.1002/sd.1582 (2015).
    Article  Google Scholar 

    55.
    Mutel, C. et al. Overview and recommendations for regionalized life cycle impact assessment. Int. J. Life Cycle Assess. 24, 856–865. https://doi.org/10.1007/s11367-018-1539-4 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    56.
    Popescu, V. D. et al. Quantifying biodiversity trade-offs in the face of widespread renewable and unconventional energy development. Sci. Rep. 10, 7603. https://doi.org/10.1038/s41598-020-64501-7 (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Oliver, T. H. How much biodiversity loss is too much?. Science 353, 220. https://doi.org/10.1126/science.aag1712 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    58.
    Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: the bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50. https://doi.org/10.1146/annurev-environ-042911-093511 (2012).
    Article  Google Scholar 

    59.
    Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12, 7–21. https://doi.org/10.1038/s41561-018-0262-x (2019).
    ADS  CAS  Article  Google Scholar 

    60.
    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288. https://doi.org/10.1126/science.aaf2201 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    61.
    Eloranta, A. P., Finstad, A. G., Helland, I. P., Ugedal, O. & Power, M. Hydropower impacts on reservoir fish populations are modified by environmental variation. Sci. Total Environ. 618, 313–322. https://doi.org/10.1016/j.scitotenv.2017.10.268 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    62.
    Worrall, T. P. et al. The identification of hydrological indices for the characterization of macroinvertebrate community response to flow regime variability. Hydrol. Sci. J. 59, 645–658. https://doi.org/10.1080/02626667.2013.825722 (2014).
    CAS  Article  Google Scholar 

    63.
    Holt, C. R., Pfitzer, D., Scalley, C., Caldwell, B. A. & Batzer, D. P. Macroinvertebrate community responses to annual flow variation from river regulation: an 11-year study. River Res. Appl. 31, 798–807. https://doi.org/10.1002/rra.2782 (2015).
    Article  Google Scholar 

    64.
    International Organisation for Standardization. ISO 14044:2006 Environmental management—Life cycle assessment—Principles and framework (2006).

    65.
    Jolliet, O. et al. Global guidance on environmental life cycle impact assessment indicators: impacts of climate change, fine particulate matter formation, water consumption and land use. Int. J. Life Cycle Assess 23, 2189–2207. https://doi.org/10.1007/s11367-018-1443-y (2018).
    CAS  Article  Google Scholar 

    66.
    Hirsch, P. E., Schillinger, S., Weigt, H. & Burkhardt-Holm, P. A hydro-economic model for water level fluctuations: combining limnology with economics for sustainable development of hydropower. PLoS ONE 9, e114889–e114889. https://doi.org/10.1371/journal.pone.0114889 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    67.
    Gagnon, L., Bélanger, C. & Uchiyama, Y. Life-cycle assessment of electricity generation options: the status of research in year 2001. Energy Policy 30, 1267–1278. https://doi.org/10.1016/s0301-4215(02)00088-5 (2002).
    Article  Google Scholar 

    68.
    George, M. W., Hotchkiss, R. H. & Huffaker, R. Reservoir sustainability and sediment management. J. Water Resour. Plann. Manag. https://doi.org/10.1061/(asce)wr.1943-5452.0000720 (2017).
    Article  Google Scholar 

    69.
    Yüksel, I. Hydropower for sustainable water and energy development. Renew. Sustain. Energy Rev. 14, 462–469. https://doi.org/10.1016/j.rser.2009.07.025 (2010).
    Article  Google Scholar 

    70.
    Hertwich, E. G. Addressing biogenic greenhouse gas emissions from hydropower in LCA. Environ. Sci. Technol. 47, 9604–9611. https://doi.org/10.1021/es401820p (2013).
    ADS  CAS  Article  PubMed  Google Scholar 

    71.
    Bakken, T. H., Modahl, I. S., Raadal, H. L., Bustos, A. A. & Arnoy, S. Allocation of water consumption in multipurpose reservoirs. Water Policy 18, 932–947. https://doi.org/10.2166/wp.2016.009 (2016).
    Article  Google Scholar 

    72.
    Hanafiah, M. M., Xenopoulos, M. A., Pfister, S., Leuven, R. S. E. W. & Huijbregts, M. A. J. Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction. Environ. Sci. Technol. 45, 5272–5278. https://doi.org/10.1021/es1039634 (2011).
    ADS  CAS  Article  PubMed  Google Scholar 

    73.
    Tendall, D. M., Hellweg, S., Pfister, S., Huijbregts, M. A. J. & Gaillard, G. Impacts of river water consumption on aquatic biodiversity in life cycle assessment—a proposed method, and a case study for Europe. Environ. Sci. Technol. 48, 3236–3244. https://doi.org/10.1021/es4048686 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    74.
    Wang, J. et al. Assessing the water and carbon footprint of hydropower stations at a national scale. Sci. Total Environ. 676, 595–612. https://doi.org/10.1016/j.scitotenv.2019.04.148 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    75.
    Bakken, T. H., Modahl, I. S., Engeland, K., Raadal, H. L. & Arnøy, S. The life-cycle water footprint of two hydropower projects in Norway. J. Clean. Prod. 113, 241–250. https://doi.org/10.1016/j.jclepro.2015.12.036 (2016).
    Article  Google Scholar 

    76.
    Song, C., Gardner, K. H., Klein, S. J. W., Souza, S. P. & Mo, W. Cradle-to-grave greenhouse gas emissions from dams in the United States of America. Renew. Sustain. Energy Rev. 90, 945–956. https://doi.org/10.1016/j.rser.2018.04.014 (2018).
    Article  Google Scholar 

    77.
    Aung, T. S., Fischer, T. B. & Azmi, A. S. Are large-scale dams environmentally detrimental? Life-cycle environmental consequences of mega-hydropower plants in Myanmar. Int. J. Life Cycle Assess. 25, 1749–1766. https://doi.org/10.1007/s11367-020-01795-9 (2020).
    CAS  Article  Google Scholar 

    78.
    Moran, E. F., Lopez, M. C., Moore, N., Müller, N. & Hyndman, D. W. Sustainable hydropower in the 21st century. Proc. Natl. Acad. Sci. 115, 11891. https://doi.org/10.1073/pnas.1809426115 (2018).
    CAS  Article  PubMed  Google Scholar 

    79.
    United Nation Environmental Program. Green energy choices: The benefits, risks, and trade-offs of low-carbon technologies for electricity production. (2016).

    80.
    Edenhofer, O. et al. IPCC special report on renewable energy sources and climate change mitigation. (Prepared By Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, 2011).

    81.
    Laranjeiro, T., May, R. & Verones, F. Impacts of onshore wind energy production on birds and bats: recommendations for future life cycle impact assessment developments. Int. J. Life Cycle Assess 23, 2007–2023. https://doi.org/10.1007/s11367-017-1434-4 (2018).
    CAS  Article  Google Scholar 

    82.
    Bakken, T. H., Killingtveit, Å., Engeland, K., Alfredsen, K. & Harby, A. Water consumption from hydropower plants—review of published estimates and an assessment of the concept. Hydrol. Earth Syst. Sci. 17, 3983–4000. https://doi.org/10.5194/hess-17-3983-2013 (2013).
    ADS  Article  Google Scholar 

    83.
    Dorber, M., Kuipers, K. & Verones, F. Global characterization factors for terrestrial biodiversity impacts of future land inundation in life cycle assessment. Sci. Total Environ. 712, 134582. https://doi.org/10.1016/j.scitotenv.2019.134582 (2020).
    ADS  CAS  Article  PubMed  Google Scholar 

    84.
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51, 933. https://doi.org/10.1641/0006-3568(2001)051[0933:teotwa]2.0.co;2 (2001).
    Article  Google Scholar 

    85.
    Kuipers, K. J. J., Hellweg, S. & Verones, F. Potential consequences of regional species loss for global species richness: a quantitative approach for estimating global extinction probabilities. Environ. Sci. Technol. 53, 4728–4738. https://doi.org/10.1021/acs.est.8b06173 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    86.
    University of Montana. MODIS Global Evapotranspiration Project (MOD16), http://www.ntsg.umt.edu/project/modis/mod16.php.

    87.
    Mu, Q., Heinsch, F. A., Zhao, M. & Running, S. W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 111, 519–536. https://doi.org/10.1016/j.rse.2007.04.015 (2007).
    ADS  Article  Google Scholar 

    88.
    Xenopoulos, M. A. & Lodge, D. M. Going with the flow: using species-discharge relationships to forecast losses in fish biodiversity. Ecology 87, 1907–1914. https://doi.org/10.1890/0012-9658(2006)87[1907:gwtfus]2.0.co;2 (2006).
    Article  PubMed  Google Scholar 

    89.
    Abell, R. et al. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58(5), 403–414 (2008).
    Article  Google Scholar 

    90.
    Myhre, G. et al. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2013).

    91.
    Verones, F. et al. LC-IMPACT: A regionalized life cycle damage assessment method. J. Ind. Ecol. 24, 1201–1219. https://doi.org/10.1111/jiec.13018 (2020).
    Article  Google Scholar 

    92.
    Thematic Mapping API. World Borders Dataset. http://thematicmapping.org/downloads/world_borders.php (2009).

    93.
    ESRI. ArcGis Desktop—ArcMap Version 10.8. https://desktop.arcgis.com/en/arcmap/ (2020). More

  • in

    Differential longitudinal establishment of human fecal bacterial communities in germ-free porcine and murine models

    Identifying core microbiotas in the human donors
    To compare the establishment of human fecal bacterial communities in HMA mice and piglets, we inoculated GF mice and piglets maintained in gnotobiotic isolators with fecal matter from four separate human donors. The donors selected had diverse microbial communities (Fig. 1) and represented different stages of human development (see “Methods” for donor information). All animals in a given isolator (for both mice and piglets) were inoculated with the inocula obtained from a single donor. Both recipient species of animals were inoculated twice during the study—the initial round of inoculations were performed after weaning and the second round of inoculations occurred two weeks after the first round of inoculations. All inocula were prepared at the same time under the same conditions and both mice and piglets were fed the exact same sterile solid diet.
    Fig. 1: Box-whisker plots comparing the alpha diversity of the inoculum aliquots among the different donors using the Shannon index.

    Statistical comparisons were performed using the Wilcoxon rank-sum test. Boxes with different letters indicate statistically significant differences (p  More

  • in

    Brazil’s Amazon Soy Moratorium reduced deforestation

    1.
    Schwartzman, S. & Zimmerman, B. Conservation alliances with indigenous peoples of the Amazon. Conserv. Biol. 19, 721–727 (2005).
    Google Scholar 
    2.
    Fearnside, P. M. Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv. Biol. 19, 680–688 (2005).
    Google Scholar 

    3.
    Malhi, Y. et al. Climate change, deforestation, and the fate of the amazon. Science 319, 169–172 (2008).
    ADS  CAS  PubMed  Google Scholar 

    4.
    Nepstad, D. et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344, 1118–1123 (2014).
    ADS  CAS  PubMed  Google Scholar 

    5.
    Assunção, J., Gandour, C. & Rocha, R. Deforestation slowdown in the Brazilian Amazon: prices or policies? Environ. Dev. Econ. 20, 697–722 (2015).
    Google Scholar 

    6.
    Assunção, J., Gandour, C. & Rocha, R. DETERring Deforestation in the Amazon: Environmental Monitoring and Law Enforcement (Climate Policy Initiative, 2017).

    7.
    Cisneros, E., Zhou, S. L. & Börner, J. Naming and shaming for conservation: evidence from the Brazilian Amazon. PLoS ONE 10, e0136402 (2015).
    PubMed  PubMed Central  Google Scholar 

    8.
    Arima, E. Y., Barreto, P., Araújo, E. & Soares-Filho, B. Public policies can reduce tropical deforestation: lessons and challenges from Brazil. Land Use Policy 41, 465–473 (2014).
    Google Scholar 

    9.
    Soares-Filho, B. et al. Role of Brazilian Amazon protected areas in climate change mitigation. Proc. Natl Acad. Sci. USA 107, 10821–10826 (2010).
    ADS  CAS  PubMed  Google Scholar 

    10.
    Soares-Filho, B. et al. Cracking Brazil’s Forest Code. Science 344, 363–364 (2014).
    ADS  CAS  PubMed  Google Scholar 

    11.
    Assunção, J. & Rocha, R. Getting Greener by Going Black: The Priority Municipalities in Brazil (Climate Policy Initiative, 2014).

    12.
    Assunção, J., Gandour, C., Rocha, R. & Rocha, R. The effect of rural credit on deforestation: evidence from the Brazilian Amazon. Econ. J. 130, 290–330 (2020).
    Google Scholar 

    13.
    Gibbs, H. K. et al. Brazil’s soy moratorium. Science 347, 377–378 (2015).
    ADS  CAS  PubMed  Google Scholar 

    14.
    Nepstad, D. C., Stickler, C. M. & Almeida, O. T. Globalization of the Amazon soy and beef industries: opportunities for conservation. Conserv. Biol. 20, 1595–1603 (2006).
    PubMed  Google Scholar 

    15.
    Gibbs, H. K. et al. Did ranchers and slaughterhouses respond to zero-deforestation agreements in the Brazilian Amazon? Brazil’s zero-deforestation pacts. Conserv. Lett. 9, 32–42 (2016).
    Google Scholar 

    16.
    Monitoramento do Desmatamento da Floresta Amazônica Brasileira por Satélite (INPE, 2018); http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes

    17.
    Eating up the Amazon (Greenpeace, 2006); https://www.greenpeace.org/usa/wp-content/uploads/legacy/Global/usa/report/2010/2/eating-up-the-amazon.pdf

    18.
    Soy Moratorium Announcement (ABIOVE, ANEC, 2006).

    19.
    Rudorff, B. F. T. et al. Remote sensing images to detect soy plantations in the Amazon biome—the Soy Moratorium Initiative. Sustainability 4, 1074–1088 (2012).
    Google Scholar 

    20.
    Trase Yearbook 2018: Sustainability in Forest-Risk Supply Chains: Spotlight on Brazilian Soy (Trase, 2018).

    21.
    Zu Ermgassen, E. K. H. J. et al. Using supply chain data to monitor zero deforestation commitments: an assessment of progress in the Brazilian soy sector. Environ. Res. Lett. 15, 035003 (2020).
    ADS  Google Scholar 

    22.
    Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change 8, 109–116 (2018).
    ADS  Google Scholar 

    23.
    Soy Moratorium: 2016/2017 Crop Year (ABIOVE, Agrosatelite, GTS, INPE, 2017).

    24.
    Rudorff, B. F. T. et al. The Soy Moratorium in the Amazon biome monitored by remote sensing images. Remote Sens. 3, 185–202 (2011).
    ADS  Google Scholar 

    25.
    Miranda, J., Börner, J., Kalkuhl, M. & Soares-Filho, B. Land speculation and conservation policy leakage in Brazil. Environ. Res. Lett. 14, 045006 (2019).
    ADS  Google Scholar 

    26.
    Ferrante, L. & Fearnside, P. M. Brazil’s new president and ‘ruralists’ threaten Amazonia’s environment, traditional peoples and the global climate. Environ. Conserv. 46, 261–263 (2019).
    Google Scholar 

    27.
    Abessa, D., Famá, A. & Buruaem, L. The systematic dismantling of Brazilian environmental laws risks losses on all fronts. Nat. Ecol. Evol. 3, 510–511 (2019).
    PubMed  Google Scholar 

    28.
    Dauvergne, P. & Lister, J. The prospects and limits of eco-consumerism: shopping our way to less deforestation? Organ. Environ. 23, 132–154 (2010).
    Google Scholar 

    29.
    Macedo, M. N. et al. Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc. Natl Acad. Sci. USA 109, 1341–1346 (2012).
    ADS  CAS  PubMed  Google Scholar 

    30.
    Kastens, J. H., Brown, J. C., Coutinho, A. C., Bishop, C. R. & Esquerdo, J. C. D. M. Soy moratorium impacts on soybean and deforestation dynamics in Mato Grosso, Brazil. PLoS ONE 12, e0176168 (2017).
    PubMed  PubMed Central  Google Scholar 

    31.
    Svahn, J., Brunner, D. & Harding, T. Did the Soy Moratorium Reduce Deforestation in the Brazilian Amazon? A Counterfactual Analysis of the Impact of the Soy Moratorium on Deforestation in the Amazon Biome. MSc thesis, Norwegian School of Economics (2018).

    32.
    West, T. A. P., Börner, J. & Fearnside, P. M.Climatic benefits from the 2006–2017 avoided deforestation in Amazonian Brazil. Front. For. Glob. Change 2, 52 (2019).
    Google Scholar 

    33.
    Sy, V. D. et al. Land use patterns and related carbon losses following deforestation in South America. Environ. Res. Lett. 10, 124004 (2015).
    ADS  Google Scholar 

    34.
    Moratatória da Soja: Monitoramento por Imagens de Satélites dos Plantios de Soja no Bioma Amazonia (ABIOVE & Agrosatélite, 2018); https://abiove.org.br/wp-content/uploads/2019/05/30012019-165924-portugues.pdf

    35.
    Alix-Garcia, J., Rausch, L. L., L’Roe, J., Gibbs, H. K. & Munger, J. Avoided deforestation linked to environmental registration of properties in the Brazilian Amazon: environmental registration in the Amazon. Conserv. Lett. 11, e12414 (2018).
    Google Scholar 

    36.
    Burgess, R., Costa, F. J. M. & Olken, B. A. Wilderness Conservation and the Reach of the State: Evidence from National Borders in the Amazon Working Paper 24861 (2018); https://doi.org/10.3386/w24861

    37.
    Silva Junior, C. H. L. et al. Fire responses to the 2010 and 2015/2016 Amazonian droughts. Front. Earth Sci. 7, 97 (2019).
    ADS  Google Scholar 

    38.
    Rudorff, B. F. T. & Risso, J. Geospatial Analyses of the Annual Crops Dynamic in the Brazilian Cerrado Biome: 2000 to 2014 (Agrosatélite Applied Geotechnology, 2015).

    39.
    Gollnow, F., Hissa, L., de, B. V., Rufin, P. & Lakes, T. Property-level direct and indirect deforestation for soybean production in the Amazon region of Mato Grosso, Brazil. Land Use Policy 78, 377–385 (2018).
    Google Scholar 

    40.
    Zalles, V. et al. Near doubling of Brazil’s intensive row crop area since 2000. Proc. Natl Acad. Sci. USA 116, 428–435 (2019).
    ADS  CAS  PubMed  Google Scholar 

    41.
    Arima, E. Y., Richards, P., Walker, R. & Caldas, M. M. Statistical confirmation of indirect land use change in the Brazilian Amazon. Environ. Res. Lett. 6, 024010 (2011).
    ADS  Google Scholar 

    42.
    Börner, J., Wunder, S., Wertz-Kanounnikoff, S., Hyman, G. & Nascimento, N. Forest law enforcement in the Brazilian Amazon: costs and income effects. Glob. Environ. Change 29, 294–305 (2014).
    Google Scholar 

    43.
    Sills, E. O. et al. Estimating the impacts of local policy innovation: the synthetic control method applied to tropical deforestation. PLoS ONE 10, e0132590 (2015).
    PubMed  PubMed Central  Google Scholar 

    44.
    Börner, J., Kis-Katos, K., Hargrave, J. & König, K. Post-crackdown effectiveness of field-based forest law enforcement in the Brazilian Amazon. PLoS ONE 10, e0121544 (2015).
    PubMed  PubMed Central  Google Scholar 

    45.
    L’Roe, J., Rausch, L., Munger, J. & Gibbs, H. K. Mapping properties to monitor forests: landholder response to a large environmental registration program in the Brazilian Amazon. Land Use Policy 57, 193–203 (2016).
    Google Scholar 

    46.
    Azevedo, A. A. et al. Limits of Brazil’s Forest Code as a means to end illegal deforestation. Proc. Natl Acad. Sci. USA 114, 7653–7658 (2017).
    ADS  CAS  PubMed  Google Scholar 

    47.
    Brown, J. C. & Koeppe, M. in Environment and the Law in Amazonia: A Plurilateral Encounter (eds Cooper, J. M. & Hunefeldt, C.) 110–126 (Sussex Academic Press, 2013).

    48.
    Lambin, E. F. et al. Effectiveness and synergies of policy instruments for land use governance in tropical regions. Glob. Environ. Change 28, 129–140 (2014).
    Google Scholar 

    49.
    Garrett, R. D., Carlson, K. M., Rueda, X. & Noojipady, P. Assessing the potential additionality of certification by the Round Table on Responsible Soybeans and the Roundtable on Sustainable Palm Oil. Environ. Res. Lett. 11, 045003 (2016).
    ADS  Google Scholar 

    50.
    Le Polain de Waroux, Y. et al. The restructuring of South American soy and beef production and trade under changing environmental regulations. World Dev. 121, 188–202 (2019).
    Google Scholar 

    51.
    Heilmayr, R., Carlson, K. M. & Benedict, J. J. Deforestation spillovers from oil palm sustainability certification. Environ. Res. Lett. 15, 075002 (2020).
    ADS  CAS  Google Scholar 

    52.
    Dou, Y., da Silva, R. F. B., Yang, H. & Liu, J. Spillover effect offsets the conservation effort in the Amazon. J. Geogr. Sci. 28, 1715–1732 (2018).
    Google Scholar 

    53.
    Moffette, F. & Gibbs, H. Agricultural displacement and deforestation leakage in the Brazilian Legal Amazon. Land Econ. (in the press).

    54.
    Baylis, K. et al. Mainstreaming impact evaluation in nature conservation. Conserv. Lett. 9, 58–64 (2016).
    Google Scholar 

    55.
    Noojipady, P. et al. Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome. Environ. Res. Lett. 12, 025004 (2017).
    ADS  Google Scholar 

    56.
    Rausch, L. L. et al. Soy expansion in Brazil’s Cerrado. Conserv. Lett. 12, e12671 (2019).
    Google Scholar 

    57.
    S. Garcia, A. et al. Assessing land use/cover dynamics and exploring drivers in the Amazon’s Arc of Deforestation through a hierarchical, multi-scale and multi-temporal classification approach. Remote Sens. Appl. Soc. Environ. 15, 100233 (2019).
    Google Scholar 

    58.
    Richards, P. D., Walker, R. T. & Arima, E. Y. Spatially complex land change: the indirect effect of Brazil’s agricultural sector on land use in Amazonia. Glob. Environ. Change 29, 1–9 (2014).
    PubMed  PubMed Central  Google Scholar 

    59.
    Richards, P. What drives indirect land use change? How Brazil’s agriculture sector influences frontier deforestation. Ann. Assoc. Am. Geogr. 105, 1026–1040 (2015).
    PubMed  PubMed Central  Google Scholar 

    60.
    Silva, C. A. & Lima, M. Soy Moratorium in Mato Grosso: deforestation undermines the agreement. Land Use Policy 71, 540–542 (2018).
    Google Scholar 

    61.
    Rausch, L. & Gibbs, H. Property arrangements and soy governance in the Brazilian state of Mato Grosso: implications for deforestation-free production. Land 5, 7 (2016).
    Google Scholar 

    62.
    Garrett, R. D. et al. Intensification in agriculture–forest frontiers: land use responses to development and conservation policies in Brazil. Glob. Environ. Change 53, 233–243 (2018).
    Google Scholar 

    63.
    Koch, N., zu Ermgassen, E. K. H. J., Wehkamp, J., Oliveira Filho, F. J. B. & Schwerhoff, G.Agricultural productivity and forest conservation: evidence from the Brazilian Amazon. Am. J. Agric. Econ. 101, 919–940 (2019).
    Google Scholar 

    64.
    Le Polain de Waroux, Y., Garrett, R. D., Heilmayr, R. & Lambin, E. F. Land-use policies and corporate investments in agriculture in the Gran Chaco and Chiquitano. Proc. Natl Acad. Sci. USA 113, 4021–4026 (2016).
    ADS  CAS  PubMed  Google Scholar 

    65.
    Garrett, R. D. et al. Criteria for effective zero-deforestation commitments. Glob. Environ. Change 54, 135–147 (2019).
    Google Scholar 

    66.
    Soterroni, A. C. et al. Expanding the Soy Moratorium to Brazil’s Cerrado. Sci. Adv. 5, eaav7336 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    67.
    Governo alega ameaça à soberania nacional e apoia fim da Moratória da Soja. Aprosoja http://www.aprosoja.com.br/comunicacao/noticia/governo-alega-ameaca-a-soberania-nacional-e-apoia-fim-da-moratoria-da-soja (2019).

    68.
    Barona, E., Ramankutty, N., Hyman, G. & Coomes, O. T. The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ. Res. Lett. 5, 024002 (2010).
    ADS  Google Scholar 

    69.
    Project MapBiomas—Collection 2.3 of Brazilian Land Cover & Use Map Series (MapBiomas, 2018); http://mapbiomas.org/

    70.
    Richards, P. D., Myers, R. J., Swinton, S. M. & Walker, R. T. Exchange rates, soybean supply response, and deforestation in South America. Glob. Environ. Change 22, 454–462 (2012).
    Google Scholar 

    71.
    Wing, C., Simon, K. & Bello-Gomez, R. A. Designing difference in difference studies: best practices for public health policy research. Annu. Rev. Public Health 39, 453–469 (2018).
    PubMed  Google Scholar 

    72.
    Freyaldenhoven, S., Hansen, C. & Shapiro, J. M. Pre-event trends in the panel event-study design. Am. Econ. Rev. 109, 3307–3338 (2019).
    Google Scholar 

    73.
    Lechner, M. The estimation of causal effects by difference-in-difference methods estimation of spatial panels. Found. Trends Econom. 4, 165–224 (2010).
    MATH  Google Scholar 

    74.
    Clarke, D. Estimating Difference-in-Differences in the Presence of Spillovers MPRA Paper 81604 (Univ, Library of Munich, 2017).

    75.
    Zu Ermgassen, E. K. H. J. et al. Using supply chain data to monitor zero deforestation commitments: an assessment of progress in the Brazilian soy sector. Environ. Res. Lett. 15, 035003 (2019).
    ADS  Google Scholar 

    76.
    Alix-Garcia, J. M., Shapiro, E. N. & Sims, K. R. E. Forest conservation and slippage: evidence from Mexico’s National Payments for Ecosystem Services program. Land Econ. 88, 613–638 (2012).
    Google Scholar 

    77.
    Hertel, T. W. Economic perspectives on land use change and leakage. Environ. Res. Lett. 13, 075012 (2018).
    ADS  Google Scholar 

    78.
    Hertel, T. W., West, T. A. P., Börner, J. & Villoria, N. B. A review of global–local–global linkages in economic land-use/cover change models. Environ. Res. Lett. 14, 053003 (2019).
    ADS  Google Scholar  More

  • in

    Optofluidic Raman-activated cell sorting for targeted genome retrieval or cultivation of microbial cells with specific functions

    1.
    Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 
    2.
    Blainey, P. C., Mosier, A. C., Potanina, A., Francis, C. A. & Quake, S. R. Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS ONE 6, e16626 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Thomas, T., Gilbert, J. & Meyer, F. Metagenomics -– a guide from sampling to data analysis. Microb. Inform. Exp. 2, 3 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    4.
    Horgan, R. P. & Kenny, L. C. ‘Omic’ technologies: genomics, transcriptomics, proteomics and metabolomics. Obstet. Gynaecol 13, 189–195 (2011).
    Google Scholar 

    5.
    Prosser, J. I. Dispersing misconceptions and identifying opportunities for the use of ‘omics’ in soil microbial ecology. Nat. Rev. Microbiol. 13, 439–446 (2015).
    CAS  PubMed  Article  Google Scholar 

    6.
    Yu, F. B. et al. Microfluidic-based mini-metagenomics enables discovery of novel microbial lineages from complex environmental samples. eLife 6, e26580 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Mukherjee, S. et al. Genomes OnLine database (GOLD) v.7: updates and new features. Nucleic Acids Res 47, D649–D659 (2019).
    CAS  PubMed  Article  Google Scholar 

    8.
    Woyke, T., Doud, D. F. R. & Schulz, F. The trajectory of microbial single-cell sequencing. Nat. Methods 14, 1045–1054 (2017).
    CAS  PubMed  Article  Google Scholar 

    9.
    Berry, D. & Loy, A. Stable-isotope probing of human and animal microbiome function. Trends Microbiol 26, 999–1007 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Manefield, M., Whiteley, A. S., Griffiths, R. I. & Bailey, M. J. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl. Environ. Microbiol. 68, 5367–5373 (2002).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Dumont, M. G. & Murrell, J. C. Stable isotope probing—linking microbial identity to function. Nat. Rev. Microbiol. 3, 499–504 (2005).
    CAS  PubMed  Article  Google Scholar 

    12.
    Wilhelm, R. C., Singh, R., Eltis, L. D. & Mohn, W. W. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J 13, 413–429 (2019).
    CAS  PubMed  Article  Google Scholar 

    13.
    Wang, Y., Huang, W. E., Cui, L. & Wagner, M. Single cell stable isotope probing in microbiology using Raman microspectroscopy. Curr. Opin. Biotechnol. 41, 34–42 (2016).
    CAS  PubMed  Article  Google Scholar 

    14.
    Haider, S. et al. Raman microspectroscopy reveals long-term extracellular activity of chlamydiae. Mol. Microbiol 77, 687–700 (2010).
    CAS  PubMed  Article  Google Scholar 

    15.
    Huang, W. E. et al. Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ. Microbiol. 9, 1878–1889 (2007).
    CAS  PubMed  Article  Google Scholar 

    16.
    Wagner, M. Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu. Rev. Microbiol. 63, 411–429 (2009).
    CAS  PubMed  Article  Google Scholar 

    17.
    Berry, D. et al. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc. Natl Acad. Sci. USA 112, E194–E203 (2015).
    CAS  PubMed  Article  Google Scholar 

    18.
    Malmstrom, R. R. & Eloe-Fadrosh, E. A. Advancing genome-resolved metagenomics beyond the shotgun. mSystems 4, e00118–e00119 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Neufeld, J. D. et al. DNA stable-isotope probing. Nat. Protoc. 2, 860–866 (2007).
    CAS  PubMed  Article  Google Scholar 

    20.
    Jing, X. et al. Raman-activated cell sorting and metagenomic sequencing revealing carbon-fixing bacteria in the ocean. Environ. Microbiol. 20, 2241–2255 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Wang, Y. et al. Raman activated cell ejection for isolation of single cells. Anal. Chem. 85, 10697–10701 (2013).
    CAS  PubMed  Article  Google Scholar 

    22.
    Singer, E., Wagner, M. & Woyke, T. Capturing the genetic makeup of the active microbiome in situ. ISME J 11, 1949–1963 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Huang, W. E., Ward, A. D. & Whiteley, A. S. Raman tweezers sorting of single microbial cells. Environ. Microbiol. Rep 1, 44–49 (2009).
    CAS  PubMed  Article  Google Scholar 

    24.
    Lee, K. S. et al. An automated Raman-based platform for the sorting of live cells by functional properties. Nat. Microbiol. 4, 1035–1048 (2019).
    CAS  PubMed  Article  Google Scholar 

    25.
    Lee, K. S., Wagner, M. & Stocker, R. Raman-based sorting of microbial cells to link functions to their genes. Microb. Cell 7, 62–65 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Premvardhan, L., Bordes, L., Beer, A., Büchel, C. & Robert, B. Carotenoid structures and environments in trimeric and oligomeric fucoxanthin chlorophyll a/c2 proteins from resonance Raman spectroscopy. J. Phys. Chem. B 113, 12565–12574 (2009).
    CAS  PubMed  Article  Google Scholar 

    27.
    Takano, H. The regulatory mechanism underlying light-inducible production of carotenoids in nonphototrophic bacteria. Biosci. Biotechnol. Biochem. 80, 1264–1273 (2016).
    CAS  PubMed  Article  Google Scholar 

    28.
    Wagstaff, K., Cardie, C., Rogers, S. & Schrödl, S. Constrained k-means clustering with background knowledge. in Proc. 18th International Conference on Machine Learning (eds Brodley, C. E. & Danyluk, A. P.) 577–584 (Morgan Kaufmann, 2001).

    29.
    Kanungo, T. et al. An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Patt. Anal. Mach. Intell. 24, 881–892 (2002).
    Article  Google Scholar 

    30.
    Rinke, C. et al. Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nat. Protoc. 9, 1038–1048 (2014).
    CAS  PubMed  Article  Google Scholar 

    31.
    Bonner, W. A., Hulett, H. R., Sweet, R. G. & Herzenberg, L. A. Fluorescence activated cell sorting. Rev. Sci. Instrum. 43, 404–409 (1972).
    CAS  PubMed  Article  Google Scholar 

    32.
    Ha, B. H., Lee, K. S., Jung, J. H. & Sung, H. J. Three-dimensional hydrodynamic flow and particle focusing using four vortices Dean flow. Microfluid. Nanofluid. 17, 647–655 (2014).
    CAS  Article  Google Scholar 

    33.
    Chu, H., Doh, I. & Cho, Y.-H. A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes. Lab Chip 9, 686–691 (2009).
    CAS  PubMed  Article  Google Scholar 

    34.
    Gao, C. et al. Single-cell bacterial transcription measurements reveal the importance of dimethylsulfoniopropionate (DMSP) hotspots in ocean sulfur cycling. Nat. Commun. 11, 1942 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Kitzinger, K. et al. Single cell analyses reveal contrasting life strategies of the two main nitrifiers in the ocean. Nat. Commun. 11, 767 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Majed, N., Chernenko, T., Diem, M. & Gu, A. Z. Identification of functionally relevant populations in enhanced biological phosphorus removal processes based on intracellular polymers profiles and insights into the metabolic diversity and heterogeneity. Environ. Sci. Technol. 46, 5010–5017 (2012).
    CAS  PubMed  Article  Google Scholar 

    37.
    Fernando, E. Y. et al. Resolving the individual contribution of key microbial populations to enhanced biological phosphorus removal with Raman–FISH. ISME J 13, 1933–1946 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Milucka, J. et al. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491, 541–546 (2012).
    CAS  PubMed  Article  Google Scholar 

    39.
    Hatzenpichler, R. et al. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal–bacterial consortia. Proc. Natl Acad. Sci. USA 113, E4069–E4078 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Schiessl, K. T. et al. Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nat. Commun. 10, 762 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Gleizer, S. et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell 179, 1255–1263 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Dong, T. G., Ho, B. T., Yoder-Himes, D. R. & Mekalanos, J. J. Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc. Natl Acad. Sci. USA 110, 2623–2628 (2013).
    CAS  PubMed  Article  Google Scholar 

    43.
    Dolinšek, J., Lagkouvardos, I., Wanek, W., Wagner, M. & Daims, H. Interactions of nitrifying bacteria and heterotrophs: identification of a Micavibrio-like putative predator of Nitrospira spp. Appl. Environ. Microbiol. 79, 2027–2037 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Pätzold, R. et al. In situ mapping of nitrifiers and anammox bacteria in microbial aggregates by means of confocal resonance Raman microscopy. J. Microbiol. Methods 72, 241–248 (2008).
    PubMed  Article  CAS  Google Scholar 

    45.
    Wei, L. & Min, W. Electronic preresonance stimulated Raman scattering microscopy. J. Phys. Chem. Lett. 9, 4294–4301 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Gruber-Vodicka, H. R. et al. Paracatenula, an ancient symbiosis between thiotrophic Alphaproteobacteria and catenulid flatworms. Proc. Natl Acad. Sci. USA. 108, 12078–12083 (2011).
    CAS  PubMed  Article  Google Scholar 

    47.
    Lenz, R., Enders, K., Stedmon, C. A., MacKenzie, D. M. A. & Nielsen, T. G. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar. Pollut. Bull. 100, 82–91 (2015).
    CAS  PubMed  Article  Google Scholar 

    48.
    Gillibert, R. et al. Raman tweezers for small microplastics and nanoplastics identification in seawater. Environ. Sci. Technol. 53, 9003–9013 (2019).
    CAS  PubMed  Article  Google Scholar 

    49.
    Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 9, 7843 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Zhang, P. et al. Raman-activated cell sorting based on dielectrophoretic single-cell trap and release. Anal. Chem. 87, 2282–2289 (2015).
    CAS  PubMed  Article  Google Scholar 

    51.
    McIlvenna, D. et al. Continuous cell sorting in a flow based on single cell resonance Raman spectra. Lab Chip 16, 1420–1429 (2016).
    CAS  PubMed  Article  Google Scholar 

    52.
    Folick, A., Min, W. & Wang, M. C. Label-free imaging of lipid dynamics using coherent anti-stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy. Curr. Opin. Genet. Dev. 21, 585–590 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Hiramatsu, K. et al. High-throughput label-free molecular fingerprinting flow cytometry. Sci. Adv. 5, eaau0241 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    54.
    Suzuki, Y. et al. Label-free chemical imaging flow cytometry by high-speed multicolor stimulated Raman scattering. Proc. Natl Acad. Sci. USA 116, 15842–15848 (2019).
    CAS  PubMed  Article  Google Scholar 

    55.
    Nitta, N. et al. Raman image-activated cell sorting. Nat. Commun. 11, 3452 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Eek, K. M., Sessions, A. L. & Lies, D. P. Carbon-isotopic analysis of microbial cells sorted by flow cytometry. Geobiology 5, 85–95 (2007).
    CAS  Article  Google Scholar 

    57.
    Dyksma, S. et al. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME J 10, 1939–1953 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Ling, L., Zhou, F., Huang, L. & Li, Z.-Y. Optical forces on arbitrary shaped particles in optical tweezers. J. Appl. Phys. 108, 073110 (2010).
    Article  CAS  Google Scholar 

    59.
    Bonessi, D., Bonin, K. & Walker, T. Optical forces on particles of arbitrary shape and size. J. Opt. A Pure Appl. Opt. 9, S228–S234 (2007).
    Article  Google Scholar 

    60.
    Ashkin, A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 61, 569–582 (1992).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Novotny, L., Bian, R. X. & Xie, X. S. Theory of nanometric optical tweezers. Phys. Rev. Lett. 79, 645–648 (1997).
    CAS  Article  Google Scholar 

    62.
    Dholakia, K. & Reece, P. Optical micromanipulation takes hold. Nano Today 1, 18–27 (2006).
    Article  Google Scholar 

    63.
    Kim, S., Kang, I., Seo, J.-H. & Cho, J.-C. Culturing the ubiquitous freshwater actinobacterial acI lineage by supplying a biochemical ‘helper’ catalase. ISME J 13, 2252–2263 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Li, T. et al. Simultaneous analysis of microbial identity and function using NanoSIMS. Environ. Microbiol. 10, 580–588 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Huang, W. E., Griffiths, R. I., Thompson, I. P., Bailey, M. J. & Whiteley, A. S. Raman microscopic analysis of single microbial cells. Anal. Chem. 76, 4452–4458 (2004).
    CAS  PubMed  Article  Google Scholar 

    66.
    McDonald, J. C. et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40 (2000).
    CAS  PubMed  Article  Google Scholar 

    67.
    Schuster, K. C., Reese, I., Urlaub, E., Gapes, J. R. & Lendl, B. Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy. Anal. Chem. 72, 5529–5534 (2000).
    CAS  PubMed  Article  Google Scholar 

    68.
    Dochow, S. et al. Quartz microfluidic chip for tumour cell identification by Raman spectroscopy in combination with optical traps. Anal. Bioanal. Chem. 405, 2743–2746 (2013).
    CAS  PubMed  Article  Google Scholar 

    69.
    Kodinariya, T. M. & Makwana, P. R. Review on determining number of Cluster in K-Means Clustering. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 1, 90–95 (2013).
    Google Scholar 

    70.
    Bjerg, J. T. et al. Long-distance electron transport in individual, living cable bacteria. Proc. Natl Acad. Sci. USA. 115, 5786–5791 (2018).
    CAS  PubMed  Article  Google Scholar 

    71.
    Zhao, J., Lui, H., McLean, D. I. & Zeng, H. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl. Spectrosc. 61, 1225–1232 (2007).
    CAS  PubMed  Article  Google Scholar 

    72.
    Beier, B. D. & Berger, A. J. Method for automated background subtraction from Raman spectra containing known contaminants. Analyst 134, 1198–1202 (2009).
    CAS  PubMed  Article  Google Scholar 

    73.
    Hehemann, J.-H. et al. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes. Nat. Commun. 7, 12860 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Taheri-Araghi, S. et al. Cell-size control and homeostasis in bacteria. Curr. Biol. 25, 385–391 (2015).
    CAS  PubMed  Article  Google Scholar 

    75.
    Mazutis, L. et al. Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 8, 870–891 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Wang, Y. et al. Reverse and multiple stable isotope probing to study bacterial metabolism and interactions at the single cell level. Anal. Chem. 88, 9443–9450 (2016).
    CAS  PubMed  Article  Google Scholar 

    77.
    Yuan, X. et al. Effect of laser irradiation on cell function and its implications in Raman spectroscopy. Appl. Environ. Microbiol. 84, e02508–e02517 (2018).
    CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    Limits to food production from the sea

    1.
    van Zanten, H. H. E., van Ittersum, M. K. & de Boer, I. J. M. Glob. Food Secur. 21, 18–22 (2019).
    Article  Google Scholar 
    2.
    Duarte, C. M. et al. Bioscience 59, 967–976 (2009).
    Article  Google Scholar 

    3.
    Marra, J. Nature 436, 175–176 (2005).
    ADS  CAS  Article  Google Scholar 

    4.
    Costello, C. et al. Nature https://doi.org/10.1038/s41586-020-2616-y (2020).

    5.
    Jouray, J.-B., Blasiak, R., Nörström, A. V., Österblom, H. & Nyström, M. One Earth 2, 43–54 (2020).
    Article  Google Scholar 

    6.
    Costello, C. et al. The Future of Food from the Sea (World Resources Institute, 2019).

    7.
    Pharo, P. & Oppenheim, J. Growing Better: Ten Critical Transitions to Transform Food and Land Use (The Food and Land Use Coalition, 2019).

    8.
    Gentry, R. R. et al. Nat. Ecol. Evol. 1, 1317–1324 (2017).
    Article  Google Scholar 

    9.
    Froehlich, H. E., Afflerbach, J. C., Frazier, M. & Halpern, B. S. Curr. Biol. 29, 3087–3093 (2019).
    CAS  Article  Google Scholar 

    10.
    Field, C., Behrenfeld, M., Randerson, J. & Falkowski, P. Science 281, 237–240 (1998).
    ADS  CAS  Article  Google Scholar 

    11.
    Shurin, J., Gruner, D. & Hillebrand, H. Proc. Royal Soc. B 273, 1–9 (2006).
    Article  Google Scholar 

    12.
    Tucker, M. A. & Rogers, T. L. Proc. Royal Soc. B 281, 20142103 (2014).
    Article  Google Scholar 

    13.
    Kolding, J., Bundy, A., van Zwieten, P. A. M. & Plank, M. J. ICES J. Mar. Sci. 73, 1697–1713 (2016).
    Article  Google Scholar 

    14.
    Rossiter, W., King, G. & Johnson, B. Am. Midl. Nat. 177, 1–14 (2017).
    Article  Google Scholar 

    15.
    Chapin, F. S., Matson, P. A. & Mooney, H. A. Principles of Terrestrial Ecosystem Ecology (Springer, 2002).

    16.
    Stebbins, G. L. Ann. Missouri Bot. Gard. 68, 75–86 (1981).
    Article  Google Scholar 

    17.
    Cyr, H. & Pace, M. Nature 361, 148–150 (1993).
    ADS  Article  Google Scholar 

    18.
    Cebrian, J. & Lartigue, J. Ecol. Monogr. 74, 237–259 (2004).
    Article  Google Scholar 

    19.
    Humphreys, W. F. J. Anim. Ecol. 48, 427–453 (1979).
    Article  Google Scholar 

    20.
    Conti, L. & Scardi, M. Mar. Ecol. Prog. Ser. 410, 233–244 (2010).
    ADS  Article  Google Scholar 

    21.
    Robinson, J. & Bodmer, R. J. Wildl. Manage. 63, 1–13 (1999).
    Article  Google Scholar 

    22.
    Greater North Sea Ecoregion — Fisheries Overview (ICES, 2018).

    23.
    Oesterheld, M., Sala, O. E. & McNaughton, S. J. Nature 356, 234–236 (1992).
    ADS  CAS  Article  Google Scholar 

    24.
    Coe, M. J., Cumming, D. H. & Phillipson, J. Oecologia 22, 341–354 (1976).
    ADS  CAS  Article  Google Scholar 

    25.
    Niedertscheider, M. et al. Environ. Res. Lett. 11, 014008 (2016).
    ADS  Article  Google Scholar 

    26.
    Fry, J. P., Mailloux, N. A., Love, D. C., Milli, M. C. & Cao, L. Environ. Res. Lett. 13, 024017 (2018).
    ADS  Article  Google Scholar 

    27.
    Kemp, W., Brooks, M. & Hood, R. Mar. Ecol. Prog. Ser. 223, 73–87 (2001).
    ADS  Article  Google Scholar 

    28.
    Smil, V. Annu. Rev. Energy Environ. 25, 53–88 (2000).
    Article  Google Scholar 

    29.
    Cordell, D., Drangert, J.-O. & White, S. Glob. Environ. Chang. 19, 292–305 (2009).
    Article  Google Scholar 

    30.
    Zhou, S. & Flynn, P. Clim. Change 71, 203–220 (2005).
    ADS  CAS  Article  Google Scholar 

    31.
    Nicol, S., Foster, J. & Kawaguchi, S. Fish Fish. 13, 30–40 (2012).
    Article  Google Scholar 

    32.
    McCauley, D. J. et al. Ecol. Lett. 21, 439–454 (2018).
    Article  Google Scholar 

    33.
    Bar-On, Y. M., Phillips, R. & Milo, R. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).
    CAS  Article  Google Scholar 

    34.
    Ytrestøyl, T., Aas, T. S. & Åsgård, T. Aquaculture 448, 365–374 (2015).
    Article  Google Scholar 

    35.
    Ryther, J. H. Science 166, 72–76 (1969).
    ADS  CAS  Article  Google Scholar 

    36.
    McNaughton, S. J., Oesterheld, M., Frank, D. A. & Williams, K. J. Nature 341, 142–144 (1989).
    ADS  CAS  Article  Google Scholar  More

  • in

    Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences

    1.
    Donnelly, C. A. et al. Four principles to make evidence synthesis more useful for policy. Nature 558, 361–364 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    McKinnon, M. C., Cheng, S. H., Garside, R., Masuda, Y. J. & Miller, D. C. Sustainability: map the evidence. Nature 528, 185–187 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Rubin, D. B. For objective causal inference, design trumps analysis. Ann. Appl. Stat. 2, 808–840 (2008).
    MathSciNet  MATH  Article  Google Scholar 

    4.
    Peirce, C. S. & Jastrow, J. On small differences in sensation. Mem. Natl Acad. Sci. 3, 73–83 (1884).

    5.
    Fisher, R. A. Statistical methods for research workers. (Oliver and Boyd, 1925).

    6.
    Angrist, J. D. & Pischke, J.-S. Mostly harmless econometrics: an empiricist’s companion. (Princeton University Press, 2008).

    7.
    de Palma, A. et al. Challenges with inferring how land-use affects terrestrial biodiversity: study design, time, space and synthesis. in Next Generation Biomonitoring: Part 1 163–199 (Elsevier Ltd., 2018).

    8.
    Sagarin, R. & Pauchard, A. Observational approaches in ecology open new ground in a changing world. Front. Ecol. Environ. 8, 379–386 (2010).
    Article  Google Scholar 

    9.
    Shadish, W. R., Cook, T. D. & Campbell, D. T. Experimental and quasi-experimental designs for generalized causal inference. (Houghton Mifflin, 2002).

    10.
    Rosenbaum, P. R. Design of observational studies. vol. 10 (Springer, 2010).

    11.
    Light, R. J., Singer, J. D. & Willett, J. B. By design: Planning research on higher education. By design: Planning research on higher education. (Harvard University Press, 1990).

    12.
    Ioannidis, J. P. A. Why most published research findings are false. PLOS Med. 2, e124 (2005).
    PubMed  PubMed Central  Article  Google Scholar 

    13.
    Open Science Collaboration. Estimating the reproducibility of psychological science. Science 349, aac4716 (2015).
    Article  CAS  Google Scholar 

    14.
    John, L. K., Loewenstein, G. & Prelec, D. Measuring the prevalence of questionable research practices with incentives for truth telling. Psychol. Sci. 23, 524–532 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Kerr, N. L. HARKing: hypothesizing after the results are known. Personal. Soc. Psychol. Rev. 2, 196–217 (1998).
    CAS  Article  Google Scholar 

    16.
    Zhao, Q., Keele, L. J. & Small, D. S. Comment: will competition-winning methods for causal inference also succeed in practice? Stat. Sci. 34, 72–76 (2019).
    MATH  Article  Google Scholar 

    17.
    Friedman, J., Hastie, T. & Tibshirani, R. The Elements of Statistical Learning. vol. 1 (Springer series in statistics, 2001).

    18.
    Underwood, A. J. Beyond BACI: experimental designs for detecting human environmental impacts on temporal variations in natural populations. Mar. Freshw. Res. 42, 569–587 (1991).
    Article  Google Scholar 

    19.
    Stewart-Oaten, A. & Bence, J. R. Temporal and spatial variation in environmental impact assessment. Ecol. Monogr. 71, 305–339 (2001).
    Article  Google Scholar 

    20.
    Eddy, T. D., Pande, A. & Gardner, J. P. A. Massive differential site-specific and species-specific responses of temperate reef fishes to marine reserve protection. Glob. Ecol. Conserv. 1, 13–26 (2014).
    Article  Google Scholar 

    21.
    Sher, A. A. et al. Native species recovery after reduction of an invasive tree by biological control with and without active removal. Ecol. Eng. 111, 167–175 (2018).
    Article  Google Scholar 

    22.
    Imbens, G. W. & Rubin, D. B. Causal Inference in Statistics, Social, and Biomedical Sciences. (Cambridge University Press, 2015).

    23.
    Greenhalgh, T. How to read a paper: the basics of Evidence Based Medicine. (John Wiley & Sons, Ltd, 2019).

    24.
    Salmond, S. S. Randomized Controlled Trials: Methodological Concepts and Critique. Orthopaedic Nursing 27, (2008).

    25.
    Geijzendorffer, I. R. et al. How can global conventions for biodiversity and ecosystem services guide local conservation actions? Curr. Opin. Environ. Sustainability 29, 145–150 (2017).
    Article  Google Scholar 

    26.
    Dimick, J. B. & Ryan, A. M. Methods for evaluating changes in health care policy. JAMA 312, 2401 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Ding, P. & Li, F. A bracketing relationship between difference-in-differences and lagged-dependent-variable adjustment. Political Anal. 27, 605–615 (2019).
    Article  Google Scholar 

    28.
    Christie, A. P. et al. Simple study designs in ecology produce inaccurate estimates of biodiversity responses. J. Appl. Ecol. 56, 2742–2754 (2019).
    Article  Google Scholar 

    29.
    Watson, M. et al. An analysis of the quality of experimental design and reliability of results in tribology research. Wear 426–427, 1712–1718 (2019).
    Article  CAS  Google Scholar 

    30.
    Kilkenny, C. et al. Survey of the quality of experimental design, statistical analysis and reporting of research using animals. PLoS ONE 4, e7824 (2009).

    31.
    Christie, A. P. et al. The challenge of biased evidence in conservation. Conserv, Biol. 13577, https://doi.org/10.1111/cobi.13577 (2020).

    32.
    Christie, A. P. et al. Poor availability of context-specific evidence hampers decision-making in conservation. Biol. Conserv. 248, 108666 (2020).
    Article  Google Scholar 

    33.
    Moscoe, E., Bor, J. & Bärnighausen, T. Regression discontinuity designs are underutilized in medicine, epidemiology, and public health: a review of current and best practice. J. Clin. Epidemiol. 68, 132–143 (2015).
    Article  Google Scholar 

    34.
    Goldenhar, L. M. & Schulte, P. A. Intervention research in occupational health and safety. J. Occup. Med. 36, 763–778 (1994).
    CAS  PubMed  PubMed Central  Google Scholar 

    35.
    Junker, J. et al. A severe lack of evidence limits effective conservation of the World’s primates. BioScience https://doi.org/10.1093/biosci/biaa082 (2020).

    36.
    Altindag, O., Joyce, T. J. & Reeder, J. A. Can Nonexperimental Methods Provide Unbiased Estimates of a Breastfeeding Intervention? A Within-Study Comparison of Peer Counseling in Oregon. Evaluation Rev. 43, 152–188 (2019).
    Article  Google Scholar 

    37.
    Chaplin, D. D. et al. The Internal And External Validity Of The Regression Discontinuity Design: A Meta-Analysis Of 15 Within-Study Comparisons. J. Policy Anal. Manag. 37, 403–429 (2018).
    Article  Google Scholar 

    38.
    Cook, T. D., Shadish, W. R. & Wong, V. C. Three conditions under which experiments and observational studies produce comparable causal estimates: New findings from within-study comparisons. J. Policy Anal. Manag. 27, 724–750 (2008).
    Article  Google Scholar 

    39.
    Ioannidis, J. P. A. et al. Comparison of evidence of treatment effects in randomized and nonrandomized studies. J. Am. Med. Assoc. 286, 821–830 (2001).
    CAS  Article  Google Scholar 

    40.
    dos Santos Ribas, L. G., Pressey, R. L., Loyola, R. & Bini, L. M. A global comparative analysis of impact evaluation methods in estimating the effectiveness of protected areas. Biol. Conserv. 246, 108595 (2020).
    Article  Google Scholar 

    41.
    Benson, K. & Hartz, A. J. A Comparison of Observational Studies and Randomized, Controlled Trials. N. Engl. J. Med. 342, 1878–1886 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Smokorowski, K. E. et al. Cautions on using the Before-After-Control-Impact design in environmental effects monitoring programs. Facets 2, 212–232 (2017).
    Article  Google Scholar 

    43.
    França, F. et al. Do space-for-time assessments underestimate the impacts of logging on tropical biodiversity? An Amazonian case study using dung beetles. J. Appl. Ecol. 53, 1098–1105 (2016).
    Article  Google Scholar 

    44.
    Duvendack, M., Hombrados, J. G., Palmer-Jones, R. & Waddington, H. Assessing ‘what works’ in international development: meta-analysis for sophisticated dummies. J. Dev. Effectiveness 4, 456–471 (2012).
    Article  Google Scholar 

    45.
    Sutherland, W. J. et al. Building a tool to overcome barriers in research-implementation spaces: The Conservation Evidence database. Biol. Conserv. 238, 108199 (2019).
    Article  Google Scholar 

    46.
    Gusenbauer, M. & Haddaway, N. R. Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Res. Synth. Methods 11, 181–217 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Konno, K. & Pullin, A. S. Assessing the risk of bias in choice of search sources for environmental meta‐analyses. Res. Synth. Methods 11, 698–713 (2020).
    PubMed  PubMed Central  Google Scholar 

    48.
    Butsic, V., Lewis, D. J., Radeloff, V. C., Baumann, M. & Kuemmerle, T. Quasi-experimental methods enable stronger inferences from observational data in ecology. Basic Appl. Ecol. 19, 1–10 (2017).

    49.
    Brownstein, N. C., Louis, T. A., O’Hagan, A. & Pendergast, J. The role of expert judgment in statistical inference and evidence-based decision-making. Am. Statistician 73, 56–68 (2019).
    MathSciNet  Article  Google Scholar 

    50.
    Hahn, J., Todd, P. & Klaauw, W. Identification and estimation of treatment effects with a regression-discontinuity design. Econometrica 69, 201–209 (2001).
    Article  Google Scholar 

    51.
    Slavin, R. E. Best evidence synthesis: an intelligent alternative to meta-analysis. J. Clin. Epidemiol. 48, 9–18 (1995).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Slavin, R. E. Best-evidence synthesis: an alternative to meta-analytic and traditional reviews. Educ. Researcher 15, 5–11 (1986).
    Article  Google Scholar 

    53.
    Shea, B. J. et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ (Online) 358, 1–8 (2017).
    Google Scholar 

    54.
    Sterne, J. A. C. et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 355, i4919 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    55.
    Guyatt, G. et al. GRADE guidelines: 11. Making an overall rating of confidence in effect estimates for a single outcome and for all outcomes. J. Clin. Epidemiol. 66, 151–157 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    56.
    Davies, G. M. & Gray, A. Don’t let spurious accusations of pseudoreplication limit our ability to learn from natural experiments (and other messy kinds of ecological monitoring). Ecol. Evolution 5, 5295–5304 (2015).
    Article  Google Scholar 

    57.
    Lortie, C. J., Stewart, G., Rothstein, H. & Lau, J. How to critically read ecological meta-analyses. Res. Synth. Methods 6, 124–133 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    58.
    Gutzat, F. & Dormann, C. F. Exploration of concerns about the evidence-based guideline approach in conservation management: hints from medical practice. Environ. Manag. 66, 435–449 (2020).
    Article  Google Scholar 

    59.
    Greenhalgh, T. Will COVID-19 be evidence-based medicine’s nemesis? PLOS Med. 17, e1003266 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    61.
    Gurevitch, J. & Hedges, L. V. Statistical issues in ecological meta‐analyses. Ecology 80, 1142–1149 (1999).
    Article  Google Scholar 

    62.
    Stone, J. C., Glass, K., Munn, Z., Tugwell, P. & Doi, S. A. R. Comparison of bias adjustment methods in meta-analysis suggests that quality effects modeling may have less limitations than other approaches. J. Clin. Epidemiol. 117, 36–45 (2020).
    PubMed  Article  Google Scholar 

    63.
    Rhodes, K. M. et al. Adjusting trial results for biases in meta-analysis: combining data-based evidence on bias with detailed trial assessment. J. R. Stat. Soc.: Ser. A (Stat. Soc.) 183, 193–209 (2020).
    MathSciNet  CAS  Article  Google Scholar 

    64.
    Efthimiou, O. et al. Combining randomized and non-randomized evidence in network meta-analysis. Stat. Med. 36, 1210–1226 (2017).
    MathSciNet  PubMed  Article  Google Scholar 

    65.
    Welton, N. J., Ades, A. E., Carlin, J. B., Altman, D. G. & Sterne, J. A. C. Models for potentially biased evidence in meta-analysis using empirically based priors. J. R. Stat. Soc. Ser. A (Stat. Soc.) 172, 119–136 (2009).
    Article  Google Scholar 

    66.
    Turner, R. M., Spiegelhalter, D. J., Smith, G. C. S. & Thompson, S. G. Bias modelling in evidence synthesis. J. R. Stat. Soc.: Ser. A (Stat. Soc.) 172, 21–47 (2009).
    MathSciNet  Article  Google Scholar 

    67.
    Shackelford, G. E. et al. Dynamic meta-analysis: a method of using global evidence for local decision making. bioRxiv 2020.05.18.078840, https://doi.org/10.1101/2020.05.18.078840 (2020).

    68.
    Sutherland, W. J., Pullin, A. S., Dolman, P. M. & Knight, T. M. The need for evidence-based conservation. Trends Ecol. evolution 19, 305–308 (2004).
    Article  Google Scholar 

    69.
    Ioannidis, J. P. A. Meta-research: Why research on research matters. PLOS Biol. 16, e2005468 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    70.
    LaLonde, R. J. Evaluating the econometric evaluations of training programs with experimental data. Am. Econ. Rev. 76, 604–620 (1986).

    71.
    Long, Q., Little, R. J. & Lin, X. Causal inference in hybrid intervention trials involving treatment choice. J. Am. Stat. Assoc. 103, 474–484 (2008).
    MathSciNet  CAS  MATH  Article  Google Scholar 

    72.
    Thomson Reuters. ISI Web of Knowledge. http://www.isiwebofknowledge.com (2019).

    73.
    Stroup, W. W. Generalized linear mixed models: modern concepts, methods and applications. (CRC press, 2012).

    74.
    Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evolution 24, 127–135 (2009).
    Article  Google Scholar 

    75.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2019).

    76.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    77.
    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002).

    78.
    Stan Development Team. RStan: the R interface to Stan. R package version 2.19.3 (2020). More

  • in

    Shorebirds wintering in Southeast Asia demonstrate trans-Himalayan flights

    1.
    Newton, I. The Migration Ecology of Birds (Academic Press, Cambridge, 2008).
    Google Scholar 
    2.
    Alerstam, T. Bird Migration (Cambridge University Press, Cambridge, 1990).
    Google Scholar 

    3.
    Alerstam, T. Detours in bird migration. J. Theor. Biol. 209, 319–331 (2001).
    CAS  PubMed  Article  Google Scholar 

    4.
    Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: Evolution and determinants. Oikos 103, 247–260 (2003).
    Article  Google Scholar 

    5.
    Alves, J. A., Dias, M. P., Méndez, V., Katrínardóttir, B. & Gunnarsson, T. Very rapid long-distance sea crossing by a migratory bird. Sci. Rep. 6, 38154 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Schmaljohann, H., Liechti, F. & Bruderer, B. Songbird migration across the Sahara: The non-stop hypothesis rejected!. Proc. R. Soc. B 274, 735–739 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Gill, R. E. Jr. et al. Extreme endurance flights by landbirds crossing the Pacific Ocean: Ecological corridor rather than barrier?. Proc. R. Soc. B. 276, 447–457 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    8.
    Léandri-Breton, D. J., Lamarre, J. F. & Bêty, J. Seasonal variation in migration strategies used to cross ecological barriers in a nearctic migrant wintering in Africa. J. Avian Biol. 50, e02101 (2019).
    Article  Google Scholar 

    9.
    Donald, C. H. Bird migration across Himalayas. J. Bombay Nat. Hist. Soc. 51, 269–271 (1953).
    Google Scholar 

    10.
    Kinnear, N. B. On the birds collected by Mr. A.F.R. Wollaston during the first Mount Everest Expedition. Ibis 64, 495–526 (1922).
    Article  Google Scholar 

    11.
    Ali, S. & Ripley, S. D. Compact Handbook of the Birds of India and Pakistan Together with those of Bangladesh, Nepal, Bhutan and Sri Lanka. 2nd edn. (Oxford University Press, Oxford, 1987)

    12.
    Balachandran, S., Katti, T. & Manakadan, R. Indian Bird Migration Atlas (Bombay Natural History Society & Oxford University Press, Oxford, 2018).
    Google Scholar 

    13.
    Prins, H. H. T. & Namgail, T. Bird Migration Across the Himalayas: Wetland Functioning amidst Mountains and Glaciers (Cambridge University Press, Cambridge, 2017).
    Google Scholar 

    14.
    Kanai, Y., Minton, J. & Nagendran, M. Migration of Demoiselle Cranes in Asia based on satellite tracking and field work. Glob. Environ. Res. 4, 143–153 (2000).
    Google Scholar 

    15.
    Parr, N. et al. High altitude flights by Ruddy Shelduck Tadorna ferruginea during trans-Himalayan migrations. J. Avian Biol. 48, 1310–1315 (2017).
    Article  Google Scholar 

    16.
    Namgail, T. et al. Himalayan Thoroughfare: Migratory Routes of Ducks over the Rooftop of the World. In Bird Migration Across the Himalayas: Wetland Functioning amidst Mountains and Glaciers (eds. Prins, H. H. T. & Namgail, T.) 30–44 (Cambridge University Press, Cambridge, 2017).

    17.
    Hawkes, L. A. et al. The trans-Himalayan flights of Bar-headed Geese (Anser indicus). Proc. Natl. Acad. Sci. U. S. A. 108, 9516–9518 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Hawkes, L. A. et al. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus. Proc. R. Soc. B 280, 20122114 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Veen, J. et al. An Atlas of Movements of Southwest Siberian Waterbirds (Wetlands International, Wageningen, 2005).
    Google Scholar 

    20.
    Pavlov, D. S. Migrations of Birds of Eastern Europe and Northern Asia Gruiformes and Charadriiformes (in Russian). (Academy of Sciences of the USSR, 1985).

    21.
    McClure, H. E. Migration and Survival of the Birds of Asia. (US Army Medical Component SEATO Medical Project, 1974).

    22.
    Delany, D., Williams, C., Sulston, C., Norton, J. & Garbutt, D. Wader migration across the Himalayas. In Bird Migration Across the Himalayas: Wetland Functioning Amidst Mountains and Glaciers (eds. Prins, H. H. T. & Namgail, T.) 82–97 (Cambridge University Press, Cambridge, 2017).

    23.
    Bamford, M., Watkins, D., Bancroft, W., Tischler, G. & Wahl, J. Migratory Shorebirds of the East Asian—Australasian Flyway: Population Estimates and Internationally Important Sites. (Wetlands International, Oceania, 2008).

    24.
    Cao, W. H. et al. Tracking the migration of Whimbrels along the East Asian-Australasian Flyway (in Chinese). Chin. J. Zool. 54, 775–783. https://doi.org/10.13859/j.cjz.201906000 (2019).
    Article  Google Scholar 

    25.
    Higgins, P. J. & Davies, S. J. J. F. Handbook of Australian, New Zealand and Antarctic Birds. Volumes 3: Snipe to Pigeons. (Oxford University Press, Oxford, 1996).

    26.
    Gan, J., Tan, M. & Li, D. Migratory Birds of Sungei Buloh Wetland Reserve. 2nd edn. (Singapore National Parks Board, Singapore, 2012).

    27.
    Zhang, F. Y. & Yang, R. L. China Bird Migration Research (in Chinese). (Beijing Forestry Press, Beijing, 1997).

    28.
    Wells, D. R. The Birds of Thai-Malay Peninsula, Volume 1: Non Passerines. (Academic Press, Cambridge, 1999).

    29.
    Yatim, S. H. Short notes on band recovery of waders in 1991/1992. J. Wildlife Parks 11, 58–59 (1991).
    Google Scholar 

    30.
    Chia, A. A. ‘Ringing’ endorsement for Singapore migrant’s flight of wonder. Nat. Watch. 21, 17 (2013).
    Google Scholar 

    31.
    Standen, R. & Londo, I. Sumatran-flagged Common Redshank seen on the breeding grounds. Tattler 37, 7–8 (2015).
    Google Scholar 

    32.
    Bellio, M. & Kaluthota, C. Australian Curlew Sandpiper on passage through Sri Lanka. Wader Study 110, 66 (2006).
    Google Scholar 

    33.
    Tiwari, J. K. An Australian ringed bird seen in Kutch, India. Tattler 31, 19 (2013).
    Google Scholar 

    34.
    Zöckler, C., Moses, S. & Lwin, S. T. The importance of the Myeik mangroves and mudflats, Tanintharyi, Myanmar for migratory waders and other waterbirds. Wader Study 126, 129–141 (2019).
    Article  Google Scholar 

    35.
    Ratanakorn, P. et al. Satellite tracking on the flyways of Brown-headed Gulls and their potential role in the spread of highly pathogenic avian influenza H5N1 virus. PLoS ONE 7, e49939 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Hayman, P., Marchant, J. & Prater, A. J. Shorebirds. (Croom Helm, 1986).

    37.
    Summers, R. W., Underhill, L. G. & Prys-Jones, R. P. Why do young waders in southern Africa delay their first return migration to the breeding grounds?. Ardea 83, 351–357 (1995).
    Google Scholar 

    38.
    Battley, P. F. et al. Interacting roles of breeding geography and early-life settlement in godwit migration timing. Front. Ecol. Evol. 8, 52 (2020).
    Article  Google Scholar 

    39.
    Kuang, F. et al. Seasonal and population differences in migration of Whimbrels in the East Asian–Australasian Flyway. Avian Res. 11, 24 (2020).
    Article  Google Scholar 

    40.
    Dolnik, V. R. Bird migration across arid and mountainous regions of Middle Asia and Kazakhstan. In Bird Migration (ed. Gwinner E.) 368–386 (Springer, New York, 1990).

    41.
    Senner, N. R. et al. High-altitude shorebird migration in the absence of topographical barriers: Avoiding high air temperatures and searching for profitable winds. Proc. R. Soc. B. 285, 20180569 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    42.
    Alerstam, T. et al. A polar system of intercontinental bird migration. Proc. Biol. Sci. 274, 2523–2530 (2007).
    PubMed  PubMed Central  Google Scholar 

    43.
    Duijns, S. et al. Long-distance migratory shorebirds travel faster towards their breeding grounds, but fly faster post breeding. Sci. Rep. 9, 9420 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Lague, S. L. et al. Divergent respiratory and cardiovascular responses to hypoxia in bar-headed geese and Andean birds. J. Exp. Biol. 220, 4186–4194 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Parr, N., Wilkes, M. & Hawkes, L. A. Natural climbers: Insights from avian physiology at high altitude. High Alt. Med. Biol. 20, 427–437 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Scott, G. R. Elevated performance: The unique physiology of birds that fly at high altitudes. J. Exp. Biol. 214, 2455–2462 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Landys-Ciannelli, M. M., Jukema, J. & Piersma, T. Blood parameter changes during stopover in a long-distance migratory shorebird, the bar-tailed godwit Limosa lapponica taymyrensis. J. Avian Biol. 33, 451–455 (2002).
    Article  Google Scholar 

    48.
    Guglielmo, C. G., Haunerland, N. H., Hochachka, P. W. & Williams, T. D. Seasonal dynamics of flight muscle fatty acid binding protein and catabolic enzymes in a migratory shorebird. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, 1405–1413 (2002).
    Article  Google Scholar 

    49.
    Piersma, T., Gudmundsson, G. A. & Lilliendahl, K. Rapid changes in the size of different functional organ and muscle groups during refueling in a long-distance migrating shorebird. Physiol. Biochem. Zool. 72, 405–415 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Lu, X. The Birds of Qinghai-Tibet Plateau of China (in Chinese). (Hunan Science and Technology Press, Hunan, 2018).

    51.
    Liu, N. F., Bao, X. K. & Liao, J. C. Bird Classification and Distribution on Qinghai-Tibet Plateau (in Chinese). (Beijing Science Press, Beijing, 2013).

    52.
    Clark, N. A. et al. The use of light-level geolocators to study wader movements. Wader Study 117, 173–178 (2010).
    Google Scholar 

    53.
    Minton, C. et al. Geolocator studies on Ruddy Turnstones Arenaria interpres and Greater Sandplovers Charadrius leschenaultii in the East Asian-Australasia Flyway reveal widely different migration strategies. Wader Study 118, 87–96 (2011).
    Google Scholar 

    54.
    Buxton, N. Redshanks in the Western Isles of Scotland. Ringing Migr. 9, 146–152 (1988).
    Article  Google Scholar 

    55.
    Burton, N. H. K. Winter site-fidelity and survival of Redshank Tringa totanus at Cardiff, south Wales. Bird Study 47, 102–112 (2000).
    Article  Google Scholar 

    56.
    Lisovski, S. et al. Light-level geolocator analyses: A user’s guide. J. Anim. Ecol. 89, 221–236. https://doi.org/10.1111/1365-2656.13036 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    57.
    Lisovski, S., Sumner, M. & Wotherspoon, S. TwGeos: Basic data processing for light-level geolocation archival tags. GitHub repository. https://github.com/slisovski/TwGeos. (2016).

    58.
    Lisovski, S. Define movements in light-level geolocator data. GitHub repository: https://github.com/slisovski/invMovement. (2019).

    59.
    Wotherspoon, S.J., Sumner, D.A., Lisovski, S. R Package SGAT: Solar/Satellite Geolocation for Animal Tracking. GitHub repository. https://github.com/SWotherspoon/SGAT. (2013).

    60.
    Battley, P. F. & Conklin, J. R. Geolocator wetness data accurately detect periods of migratory flight in two species of shorebird. Wader Study 124, 112–119 (2017).
    Article  Google Scholar 

    61.
    Rappole, J. H. & Tipton, A. R. New harness design for attachment of radio transmitters to small passerines. J. Field Ornithol. 62, 335–337 (1991).
    Google Scholar 

    62.
    Phillips, R. A., Xavier, J. C. & Croxall, J. P. Effects of satellite transmitters on Albatrosses and Petrels. Auk 120(4), 1082–1090 (2003).
    Article  Google Scholar 

    63.
    Davidson, N. C. & Evans, P. R. Prebreeding accumulation of fat and muscle protein by Arctic-breeding shorebirds. Proc. Int. Ornithol. Congr. 19, 342–352 (1988).
    Google Scholar 

    64.
    Kranstauber, B., Smolla, M. & Scharf, A. K. Move: Visualizing and Analyzing Animal Track Data. R package version 3.3.0. https://CRAN.R-project.org/package=move. (2020).

    65.
    Dodge, S. et al. The environmental-data automated track annotation (Env-DATA) system: Linking animal tracks with environmental data. Mov. Ecol. 1(1), 3 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    66.
    Safi, K. et al. Flying with the wind: Scale dependency of speed and direction measurements in modelling wind support in avian flight. Mov. Ecol. 1(1), 4 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    67.
    Amante, C. & Eakins, B.W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. (2009). https://doi.org/10.7289/V5C8276M

    68.
    BirdLife International and Handbook of the Birds of the World. Bird species distribution maps of the world. Version 2018.1. http://datazone.birdlife.org/species/requestdis (2018).

    69.
    R Core Team. R: A Language of Environment and Statistical Computing, Vienna Austria. https://www.R-project.org (2019). More