1.
Bogdanov, D. et al. Radical transformation pathway towards sustainable electricity via evolutionary steps. Nat. Commun. 10, 1077. https://doi.org/10.1038/s41467-019-08855-1 (2019).
ADS CAS Article PubMed PubMed Central Google Scholar
2.
UNEP. Green Energy Choices: The benefits, risks and trade-offs of low-carbon technologies for electricity production. Report of the International Resource Panel (2016).
3.
United Nations. Transforming our world: The 2030 agenda for sustainable development—A/RES/70/1. (2015).
4.
Intergovernmental Panel on Climate Change. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. (2018).
5.
Gernaat, D. E. H. J., Bogaart, P. W., Vuuren, D. P. V., Biemans, H. & Niessink, R. High-resolution assessment of global technical and economic hydropower potential. Nature Energy 2, 821–828. https://doi.org/10.1038/s41560-017-0006-y (2017).
ADS Article Google Scholar
6.
IEA. Hydropower. (Paris, 2020).
7.
Intergovernmental Panel on Climate Change. Hydropower. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (2011).
8.
Almeida, R. M. et al. Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning. Nat. Commun. 10, 4281. https://doi.org/10.1038/s41467-019-12179-5 (2019).
ADS CAS Article PubMed PubMed Central Google Scholar
9.
Fuso Nerini, F. et al. Mapping synergies and trade-offs between energy and the sustainable development goals. Nat. Energy 3, 10–15. https://doi.org/10.1038/s41560-017-0036-5 (2018).
ADS Article Google Scholar
10.
Muller, M. Hydropower dams can help mitigate the global warming impact of wetlands. Nature 566, 315–317. https://doi.org/10.1038/d41586-019-00616-w (2019).
CAS Article PubMed Google Scholar
11.
Pehl, M. et al. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling. Nat. Energy 2, 939–945. https://doi.org/10.1038/s41560-017-0032-9 (2017).
ADS CAS Article Google Scholar
12.
Wu, H. et al. Effects of dam construction on biodiversity: a review. J. Clean. Prod. 221, 480–489. https://doi.org/10.1016/j.jclepro.2019.03.001 (2019).
Article Google Scholar
13.
Turgeon, K., Turpin, C., Gregory-Eaves, I. & Lawler, J. Dams have varying impacts on fish communities across latitudes: a quantitative synthesis. Ecol. Lett. 22, 1501–1516. https://doi.org/10.1111/ele.13283 (2019).
Article PubMed Google Scholar
14.
Gracey, E. O. & Verones, F. Impacts from hydropower production on biodiversity in an LCA framework—review and recommendations. Int. J. Life Cycle Assess. 21, 412–428. https://doi.org/10.1007/s11367-016-1039-3 (2016).
Article Google Scholar
15.
Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502. https://doi.org/10.1890/100125 (2011).
Article Google Scholar
16.
Dorber, M., May, R. & Verones, F. Modeling net land occupation of hydropower reservoirs in Norway for use in life cycle assessment. Environ. Sci. Technol. 52, 2375–2384. https://doi.org/10.1021/acs.est.7b05125 (2018).
ADS CAS Article PubMed Google Scholar
17.
Strachan, I. B. et al. Does the creation of a boreal hydroelectric reservoir result in a net change in evaporation?. J. Hydrol. 540, 886–899. https://doi.org/10.1016/j.jhydrol.2016.06.067 (2016).
ADS Article Google Scholar
18.
Mekonnen, M. M. & Hoekstra, A. Y. The blue water footprint of electricity from hydropower. Hydrol. Earth Syst. Sci. 16, 179–187. https://doi.org/10.5194/hess-16-179-2012 (2012).
ADS Article Google Scholar
19.
Poff, N. L. & Zimmerman, J. K. H. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshw. Biol. 55, 194–205. https://doi.org/10.1111/j.1365-2427.2009.02272.x (2010).
Article Google Scholar
20.
Gillespie, B. R., Desmet, S., Kay, P., Tillotson, M. R. & Brown, L. E. A critical analysis of regulated river ecosystem responses to managed environmental flows from reservoirs. Freshw. Biol. 60, 410–425. https://doi.org/10.1111/fwb.12506 (2015).
Article Google Scholar
21.
Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573. https://doi.org/10.1126/science.aaa4984 (2015).
ADS CAS Article PubMed Google Scholar
22.
Hermoso, V., Clavero, M. & Green, A. J. Don’t let damage to wetlands cancel out the benefits of hydropower. Nature 568, 171–171. https://doi.org/10.1038/d41586-019-01140-7 (2019).
CAS Article PubMed Google Scholar
23.
McAllister, D. E., Craig, J. F., Davidson, N., Delany, S. & Seddon, M. Biodiversity impacts of large dams. Background Paper Nr. 1 – Prepared for IUCN/UNEP/WCD (2001).
24.
Crook, D. A. et al. Human effects on ecological connectivity in aquatic ecosystems: Integrating scientific approaches to support management and mitigation. Sci. Total Environ. 534, 52–64. https://doi.org/10.1016/j.scitotenv.2015.04.034 (2015).
ADS CAS Article PubMed Google Scholar
25.
Alho, C. J. Environmental effects of hydropower reservoirs on wild mammals and freshwater turtles in Amazonia: a review. Oecologia Australis 15, 593–604 (2011).
Article Google Scholar
26.
Kitzes, J. & Shirley, R. Estimating biodiversity impacts without field surveys: a case study in northern Borneo. Ambio 45, 110–119. https://doi.org/10.1007/s13280-015-0683-3 (2016).
CAS Article PubMed Google Scholar
27.
Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26. https://doi.org/10.1016/j.tree.2011.08.006 (2012).
Article PubMed Google Scholar
28.
Secretariat of the Convention on Biological Diversity. Global Biodiversity Outlook 4. (Montreal, 2014).
29.
Bennett, E. M. et al. Linking biodiversity, ecosystem services, and human well-being: three challenges for designing research for sustainability. Curr. Opin. Environ. Sustain. 14, 76–85. https://doi.org/10.1016/j.cosust.2015.03.007 (2015).
Article Google Scholar
30.
Opoku, A. Biodiversity and the built environment: Implications for the sustainable development goals (SDGs). Resour. Conserv. Recycl. 141, 1–7. https://doi.org/10.1016/j.resconrec.2018.10.011 (2019).
Article Google Scholar
31.
Blicharska, M. et al. Biodiversity’s contributions to sustainable development. Nat. Sustain. 2, 1083–1093. https://doi.org/10.1038/s41893-019-0417-9 (2019).
Article Google Scholar
32.
Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129. https://doi.org/10.1126/science.aac7082 (2016).
ADS CAS Article PubMed Google Scholar
33.
Nilsson, M., Griggs, D. & Visbeck, M. Policy: map the interactions between sustainable development goals. Nature 534, 320–322. https://doi.org/10.1038/534320a (2016).
ADS Article PubMed Google Scholar
34.
Bhaduri, A. et al. Achieving sustainable development goals from a water perspective. Front. Environ. Sci. 4, 64. https://doi.org/10.3389/fenvs.2016.00064 (2016).
Article Google Scholar
35.
Liu, J. et al. Nexus approaches to global sustainable development. Nat. Sustain. 1, 466–476. https://doi.org/10.1038/s41893-018-0135-8 (2018).
Article Google Scholar
36.
Shin, S. et al. High resolution modeling of river-floodplain-reservoir inundation dynamics in the Mekong River Basin. Water Resour. Res. 56, e2019WR026449. https://doi.org/10.1029/2019wr026449 (2020).
ADS Article Google Scholar
37.
Schmitt, R. J. P., Bizzi, S., Castelletti, A. & Kondolf, G. M. Improved trade-offs of hydropower and sand connectivity by strategic dam planning in the Mekong. Nat. Sustain. 1, 96–104. https://doi.org/10.1038/s41893-018-0022-3 (2018).
Article Google Scholar
38.
Pokhrel, Y., Shin, S., Lin, Z., Yamazaki, D. & Qi, J. Potential disruption of flood dynamics in the Lower Mekong River Basin due to upstream flow regulation. Sci. Rep. 8, 17767. https://doi.org/10.1038/s41598-018-35823-4 (2018).
ADS CAS Article PubMed PubMed Central Google Scholar
39.
Ashraf, F. B. et al. Changes in short term river flow regulation and hydropeaking in Nordic rivers. Sci. Rep. 8, 17232. https://doi.org/10.1038/s41598-018-35406-3 (2018).
ADS CAS Article PubMed PubMed Central Google Scholar
40.
Barbarossa, V. et al. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc. Natl. Acad. Sci. 117, 3648. https://doi.org/10.1073/pnas.1912776117 (2020).
ADS CAS Article PubMed Google Scholar
41.
Scherer, L. & Pfister, S. Hydropower’s biogenic carbon footprint. PLoS ONE 11, e0161947. https://doi.org/10.1371/journal.pone.0161947 (2016).
CAS Article PubMed PubMed Central Google Scholar
42.
Scherer, L. & Pfister, S. Global water footprint assessment of hydropower. Renew. Energy 99, 711–720. https://doi.org/10.1016/j.renene.2016.07.021 (2016).
Article Google Scholar
43.
Evans, A., Strezov, V. & Evans, T. J. Assessment of sustainability indicators for renewable energy technologies. Renew. Sustain. Energy Rev. 13, 1082–1088. https://doi.org/10.1016/j.rser.2008.03.008 (2009).
Article Google Scholar
44.
Laborde, A., Habit, E., Link, O. & Kemp, P. Strategic methodology to set priorities for sustainable hydropower development in a biodiversity hotspot. Sci. Total Environ. 714, 136735. https://doi.org/10.1016/j.scitotenv.2020.136735 (2020).
ADS CAS Article PubMed Google Scholar
45.
Haga, C. et al. Scenario analysis of renewable energy-biodiversity nexuses using a forest landscape model. Front. Ecol. Evol. 8, 155. https://doi.org/10.3389/fevo.2020.00155 (2020).
ADS Article Google Scholar
46.
Zarfl, C. et al. Future large hydropower dams impact global freshwater megafauna. Sci. Rep. 9, 18531. https://doi.org/10.1038/s41598-019-54980-8 (2019).
ADS CAS Article PubMed PubMed Central Google Scholar
47.
Gibon, T., Hertwich, E. G., Arvesen, A., Singh, B. & Verones, F. Health benefits, ecological threats of low-carbon electricity. Environ. Res. Lett. 12, 034023. https://doi.org/10.1088/1748-9326/aa6047 (2017).
ADS CAS Article Google Scholar
48.
Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800. https://doi.org/10.1016/j.rse.2011.02.019 (2011).
ADS Article Google Scholar
49.
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086 (2017).
Article Google Scholar
50.
Dorber, M., Mattson, K. R., Sandlund, O. T., May, R. & Verones, F. Quantifying net water consumption of Norwegian hydropower reservoirs and related aquatic biodiversity impacts in life cycle assessment. Environ. Impact Assess. Rev. 76, 36–46. https://doi.org/10.1016/j.eiar.2018.12.002 (2019).
Article Google Scholar
51.
Verones, F. et al. LCIA framework and cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative. J. Clean. Prod. 161, 957–967 (2017).
Article Google Scholar
52.
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
ADS CAS Article Google Scholar
53.
Critical Ecosystem Partnership Fund. Biodiversity Hotspot Shapefile. https://www.cepf.net/our-work/biodiversity-hotspots/hotspots-defined (2016).
54.
Le Blanc, D. Towards integration at last? The sustainable development goals as a network of targets. Sustain. Dev. 23, 176–187. https://doi.org/10.1002/sd.1582 (2015).
Article Google Scholar
55.
Mutel, C. et al. Overview and recommendations for regionalized life cycle impact assessment. Int. J. Life Cycle Assess. 24, 856–865. https://doi.org/10.1007/s11367-018-1539-4 (2019).
CAS Article PubMed PubMed Central Google Scholar
56.
Popescu, V. D. et al. Quantifying biodiversity trade-offs in the face of widespread renewable and unconventional energy development. Sci. Rep. 10, 7603. https://doi.org/10.1038/s41598-020-64501-7 (2020).
ADS CAS Article PubMed PubMed Central Google Scholar
57.
Oliver, T. H. How much biodiversity loss is too much?. Science 353, 220. https://doi.org/10.1126/science.aag1712 (2016).
ADS CAS Article PubMed Google Scholar
58.
Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: the bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50. https://doi.org/10.1146/annurev-environ-042911-093511 (2012).
Article Google Scholar
59.
Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12, 7–21. https://doi.org/10.1038/s41561-018-0262-x (2019).
ADS CAS Article Google Scholar
60.
Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288. https://doi.org/10.1126/science.aaf2201 (2016).
ADS CAS Article PubMed Google Scholar
61.
Eloranta, A. P., Finstad, A. G., Helland, I. P., Ugedal, O. & Power, M. Hydropower impacts on reservoir fish populations are modified by environmental variation. Sci. Total Environ. 618, 313–322. https://doi.org/10.1016/j.scitotenv.2017.10.268 (2018).
ADS CAS Article PubMed Google Scholar
62.
Worrall, T. P. et al. The identification of hydrological indices for the characterization of macroinvertebrate community response to flow regime variability. Hydrol. Sci. J. 59, 645–658. https://doi.org/10.1080/02626667.2013.825722 (2014).
CAS Article Google Scholar
63.
Holt, C. R., Pfitzer, D., Scalley, C., Caldwell, B. A. & Batzer, D. P. Macroinvertebrate community responses to annual flow variation from river regulation: an 11-year study. River Res. Appl. 31, 798–807. https://doi.org/10.1002/rra.2782 (2015).
Article Google Scholar
64.
International Organisation for Standardization. ISO 14044:2006 Environmental management—Life cycle assessment—Principles and framework (2006).
65.
Jolliet, O. et al. Global guidance on environmental life cycle impact assessment indicators: impacts of climate change, fine particulate matter formation, water consumption and land use. Int. J. Life Cycle Assess 23, 2189–2207. https://doi.org/10.1007/s11367-018-1443-y (2018).
CAS Article Google Scholar
66.
Hirsch, P. E., Schillinger, S., Weigt, H. & Burkhardt-Holm, P. A hydro-economic model for water level fluctuations: combining limnology with economics for sustainable development of hydropower. PLoS ONE 9, e114889–e114889. https://doi.org/10.1371/journal.pone.0114889 (2014).
ADS CAS Article PubMed PubMed Central Google Scholar
67.
Gagnon, L., Bélanger, C. & Uchiyama, Y. Life-cycle assessment of electricity generation options: the status of research in year 2001. Energy Policy 30, 1267–1278. https://doi.org/10.1016/s0301-4215(02)00088-5 (2002).
Article Google Scholar
68.
George, M. W., Hotchkiss, R. H. & Huffaker, R. Reservoir sustainability and sediment management. J. Water Resour. Plann. Manag. https://doi.org/10.1061/(asce)wr.1943-5452.0000720 (2017).
Article Google Scholar
69.
Yüksel, I. Hydropower for sustainable water and energy development. Renew. Sustain. Energy Rev. 14, 462–469. https://doi.org/10.1016/j.rser.2009.07.025 (2010).
Article Google Scholar
70.
Hertwich, E. G. Addressing biogenic greenhouse gas emissions from hydropower in LCA. Environ. Sci. Technol. 47, 9604–9611. https://doi.org/10.1021/es401820p (2013).
ADS CAS Article PubMed Google Scholar
71.
Bakken, T. H., Modahl, I. S., Raadal, H. L., Bustos, A. A. & Arnoy, S. Allocation of water consumption in multipurpose reservoirs. Water Policy 18, 932–947. https://doi.org/10.2166/wp.2016.009 (2016).
Article Google Scholar
72.
Hanafiah, M. M., Xenopoulos, M. A., Pfister, S., Leuven, R. S. E. W. & Huijbregts, M. A. J. Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction. Environ. Sci. Technol. 45, 5272–5278. https://doi.org/10.1021/es1039634 (2011).
ADS CAS Article PubMed Google Scholar
73.
Tendall, D. M., Hellweg, S., Pfister, S., Huijbregts, M. A. J. & Gaillard, G. Impacts of river water consumption on aquatic biodiversity in life cycle assessment—a proposed method, and a case study for Europe. Environ. Sci. Technol. 48, 3236–3244. https://doi.org/10.1021/es4048686 (2014).
ADS CAS Article PubMed Google Scholar
74.
Wang, J. et al. Assessing the water and carbon footprint of hydropower stations at a national scale. Sci. Total Environ. 676, 595–612. https://doi.org/10.1016/j.scitotenv.2019.04.148 (2019).
ADS CAS Article PubMed Google Scholar
75.
Bakken, T. H., Modahl, I. S., Engeland, K., Raadal, H. L. & Arnøy, S. The life-cycle water footprint of two hydropower projects in Norway. J. Clean. Prod. 113, 241–250. https://doi.org/10.1016/j.jclepro.2015.12.036 (2016).
Article Google Scholar
76.
Song, C., Gardner, K. H., Klein, S. J. W., Souza, S. P. & Mo, W. Cradle-to-grave greenhouse gas emissions from dams in the United States of America. Renew. Sustain. Energy Rev. 90, 945–956. https://doi.org/10.1016/j.rser.2018.04.014 (2018).
Article Google Scholar
77.
Aung, T. S., Fischer, T. B. & Azmi, A. S. Are large-scale dams environmentally detrimental? Life-cycle environmental consequences of mega-hydropower plants in Myanmar. Int. J. Life Cycle Assess. 25, 1749–1766. https://doi.org/10.1007/s11367-020-01795-9 (2020).
CAS Article Google Scholar
78.
Moran, E. F., Lopez, M. C., Moore, N., Müller, N. & Hyndman, D. W. Sustainable hydropower in the 21st century. Proc. Natl. Acad. Sci. 115, 11891. https://doi.org/10.1073/pnas.1809426115 (2018).
CAS Article PubMed Google Scholar
79.
United Nation Environmental Program. Green energy choices: The benefits, risks, and trade-offs of low-carbon technologies for electricity production. (2016).
80.
Edenhofer, O. et al. IPCC special report on renewable energy sources and climate change mitigation. (Prepared By Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, 2011).
81.
Laranjeiro, T., May, R. & Verones, F. Impacts of onshore wind energy production on birds and bats: recommendations for future life cycle impact assessment developments. Int. J. Life Cycle Assess 23, 2007–2023. https://doi.org/10.1007/s11367-017-1434-4 (2018).
CAS Article Google Scholar
82.
Bakken, T. H., Killingtveit, Å., Engeland, K., Alfredsen, K. & Harby, A. Water consumption from hydropower plants—review of published estimates and an assessment of the concept. Hydrol. Earth Syst. Sci. 17, 3983–4000. https://doi.org/10.5194/hess-17-3983-2013 (2013).
ADS Article Google Scholar
83.
Dorber, M., Kuipers, K. & Verones, F. Global characterization factors for terrestrial biodiversity impacts of future land inundation in life cycle assessment. Sci. Total Environ. 712, 134582. https://doi.org/10.1016/j.scitotenv.2019.134582 (2020).
ADS CAS Article PubMed Google Scholar
84.
Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51, 933. https://doi.org/10.1641/0006-3568(2001)051[0933:teotwa]2.0.co;2 (2001).
Article Google Scholar
85.
Kuipers, K. J. J., Hellweg, S. & Verones, F. Potential consequences of regional species loss for global species richness: a quantitative approach for estimating global extinction probabilities. Environ. Sci. Technol. 53, 4728–4738. https://doi.org/10.1021/acs.est.8b06173 (2019).
ADS CAS Article PubMed Google Scholar
86.
University of Montana. MODIS Global Evapotranspiration Project (MOD16), http://www.ntsg.umt.edu/project/modis/mod16.php.
87.
Mu, Q., Heinsch, F. A., Zhao, M. & Running, S. W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 111, 519–536. https://doi.org/10.1016/j.rse.2007.04.015 (2007).
ADS Article Google Scholar
88.
Xenopoulos, M. A. & Lodge, D. M. Going with the flow: using species-discharge relationships to forecast losses in fish biodiversity. Ecology 87, 1907–1914. https://doi.org/10.1890/0012-9658(2006)87[1907:gwtfus]2.0.co;2 (2006).
Article PubMed Google Scholar
89.
Abell, R. et al. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58(5), 403–414 (2008).
Article Google Scholar
90.
Myhre, G. et al. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2013).
91.
Verones, F. et al. LC-IMPACT: A regionalized life cycle damage assessment method. J. Ind. Ecol. 24, 1201–1219. https://doi.org/10.1111/jiec.13018 (2020).
Article Google Scholar
92.
Thematic Mapping API. World Borders Dataset. http://thematicmapping.org/downloads/world_borders.php (2009).
93.
ESRI. ArcGis Desktop—ArcMap Version 10.8. https://desktop.arcgis.com/en/arcmap/ (2020). More