More stories

  • in

    Using stable isotopes to analyse extinction risks and reintroduction opportunities of native species in invaded ecosystems

    1.
    Lovell, S. J., Stone, S. F. & Fernandez, L. The economic impacts of aquatic invasive species: a review of the literature. Agric. Resour. Econ. Rev. 35(1), 195–208 (2006).
    Article  Google Scholar 
    2.
    Ehrenfeld, J. G. Ecosystem consequences of biological invasions. Ann. Rev. Ecol. Evol. Syst. 41, 59–80 (2010).
    Article  Google Scholar 

    3.
    Dunham, J. B., Adams, S. B., Schroeter, R. E. & Novinger, D. C. Non-native invasions in aquatic ecosystems: toward an understanding of brook trout invasions and potential impacts on inland cutthroat trout in western North America. Rev. Fish Biol. Fish. 12(4), 373–391 (2002).
    Article  Google Scholar 

    4.
    Balzani, P. et al. Stable isotope analysis of trophic niche in two co-occurring native and invasive terrapins, Emys orbicularis and Trachemys scripta elegans. Biol. Invasions 18(12), 3611–3621 (2016).
    Article  Google Scholar 

    5.
    Haubrock, P. J. et al. Control and eradication efforts of aquatic non-native fish species in Lake Caicedo Yuso-Arreo. Manag. Biol. Invasions 9, 267–278 (2018).
    Article  Google Scholar 

    6.
    Preston, D. L., Henderson, J. S. & Johnson, P. T. Community ecology of invasions: direct and indirect effects of multiple invasive species on aquatic communities. Ecology 93(6), 1254–1261 (2012).
    PubMed  Article  Google Scholar 

    7.
    Gallardo, B., Clavero, M., Sánchez, M. I. & Vilà, M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Change Biol. 22(1), 151–163 (2016).
    ADS  Article  Google Scholar 

    8.
    Pejchar, L. & Mooney, H. A. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 24(9), 497–504 (2009).
    PubMed  Article  Google Scholar 

    9.
    Simberloff, D. & Von Holle, B. Positive interactions of nonindigenous species: invasional meltdown?. Biol. Invasions 1(1), 21–32 (1999).
    Article  Google Scholar 

    10.
    Beisel, J. N. The elusive model of a biological invasion process: time to take differences among aquatic and terrestrial ecosystems into account? (2001).

    11.
    Ricciardi, A. & Cohen, J. The invasiveness of an introduced species does not predict its impact. Biol. Invasions 9(3), 309–315 (2007).
    Article  Google Scholar 

    12.
    Strayer, D. L. Non-native species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshw. Biol. 55, 152–174 (2010).
    Article  Google Scholar 

    13.
    Früh, D., Stoll, S. & Haase, P. Physicochemical and morphological degradation of stream and river habitats increases invasion risk. Biol. Invasions 14(11), 2243–2253 (2012).
    Article  Google Scholar 

    14.
    Höckendorff, S., Früh, D., Hormel, N., Haase, P. & Stoll, S. Biotic interactions under climate warming: temperature-dependent and species-specific effects of the oligochaete Chaetogaster limnaei on snails. Freshw. Sci. 34, 1304–1311 (2015).
    Article  Google Scholar 

    15.
    Leung, B. & Mandrak, N. E. The risk of establishment of aquatic invasive species: joining invasibility and propagule pressure. Proc. R. Soc. B Biol. Sci. 274(1625), 2603–2609 (2007).
    Article  Google Scholar 

    16.
    Copp, G. H., Garthwaite, R. & Gozlan, R. E. Risk identification and assessment of non-native freshwater fishes: a summary of concepts and perspectives on protocols for the UK. J. Appl. Ichthyol. 21(4), 371–373 (2005).
    Article  Google Scholar 

    17.
    Copp, G. H. et al. European non-native species in aquaculture risk analysis scheme—a summary of assessment protocols and decision support tools for use of non-native species in aquaculture. Fish. Manag. Ecol. 23(1), 1–11 (2016).
    Article  Google Scholar 

    18.
    Bacher, S. et al. Socio-economic impact classification of non-native taxa (SEICAT). Methods Ecol. Evol. 9(1), 159–168 (2018).
    Article  Google Scholar 

    19.
    Roy, H. E. et al. Developing a framework of minimum standards for the risk assessment of non-native species. J. Appl. Ecol. 55(2), 526–538 (2018).
    Article  Google Scholar 

    20.
    Moustakas, A. & Katsanevakis, S. Data mining and methods for early detection, horizon scanning, modelling, and risk assessment of invasive species. Front. Appl. Math. Stat. 4, 5 (2018).
    Article  Google Scholar 

    21.
    Dick, J. T. et al. Invader relative impact potential: a new metric to understand and predict the ecological impacts of existing, emerging and future invasive non-native species. J. Appl. Ecol. 54(4), 1259–1267 (2017).
    Article  Google Scholar 

    22.
    Cuthbert, R. N., Dickey, J. W., Coughlan, N. E., Joyce, P. W. & Dick, J. T. The functional response ratio (FRR): advancing comparative metrics for predicting the ecological impacts of invasive non-native species. Biol. Invasions 1–5 (2019).

    23.
    Haubrock, P. J. et al. Predatory functional responses under increasing temperatures of two life stages of an invasive gecko. Sci. Rep. 10(1), 1–10 (2020).
    Article  CAS  Google Scholar 

    24.
    Vonesh, J., McCoy, M., Altwegg, R., Landi, P. & Measey, J. Functional responses can’t unify invasion ecology. Biol. Invasions 19(5), 1673–1676 (2017).
    Article  Google Scholar 

    25.
    Dick, J. T. et al. Fictional responses from Vonesh et al. Biol. Invasions 19(5), 1677–1678 (2017).
    Article  Google Scholar 

    26.
    Vander Zanden, M. J., Casselman, J. M. & Rasmussen, J. B. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401(6752), 464 (1999).
    ADS  Article  CAS  Google Scholar 

    27.
    Haubrock, P. J. et al. Shared histories of co-evolution may affect trophic interactions in a freshwater community dominated by non-native species. Front. Ecol. Evol. 7, 355 (2019).
    Article  Google Scholar 

    28.
    Stellati, L. et al. Living with non-natives: suboptimal ecological condition in semiaquatic snakes inhabiting a hot spot of allodiversity. Acta Oecol. 100, 103466 (2019).
    Article  Google Scholar 

    29.
    Huckembeck, S. et al. Feeding ecology and basal food sources that sustain the Paradoxal frog Pseudis minuta: a multiple approach combining stomach content, prey availability, and stable isotopes. Hydrobiologia 740(1), 253–264 (2014).
    Article  Google Scholar 

    30.
    Middelburg, J. J. Stable isotopes dissect aquatic food webs from the top to the bottom. Biogeosciences. 11, 2357–2371 (2014).
    ADS  Article  Google Scholar 

    31.
    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER–stable isotope bayesian ellipses in R. J. Anim. Ecol. 80(3), 595–602 (2011).
    Article  Google Scholar 

    32.
    Parnell, A. C. et al. Bayesian stable isotope mixing models. Environmetrics 24(6), 387–399 (2013).
    MathSciNet  Google Scholar 

    33.
    Haubrock, P. J. et al. Predicting the effects of reintroducing a native predator (European eel, Anguilla anguilla) into a freshwater community dominated by non-native species using a multidisciplinary approach. Manag. Biol. Invasions 10(1), 171–191 (2019).
    Article  Google Scholar 

    34.
    Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83(3), 703–718 (2002).
    Article  Google Scholar 

    35.
    Füreder, L., Gherardi, F., Holdich, D., Reynolds, J., Sibley, P. & Souty-Grosset, C. Austropotamobius pallipes. The IUCN Red List of Threatened Species. e.T2430A9438817. https://doi.org/10.2305/IUCN.UK.2010-3.RLTS.T2430A9438817.en. (2010).

    36.
    Pike, C., Crook, V. & Gollock, M. Anguilla anguilla. The IUCN Red List of Threatened Species e.T60344A152845178. https://doi.org/10.2305/IUCN.UK.2020-2.RLTS.T60344A152845178.en. (2020).

    37.
    González-Mozo, M. E., Chicote, A., Rico, E. & Montes, C. Limnological characterization of an evaporite karstic lake in Spain (Arreo Lake). Trends Ecol. Evol. 19(9), 470–474 (2004).
    Article  Google Scholar 

    38.
    Asensio, R. Actuaciones de descaste de cangrejos alóctonos en el lago de Caicedo Yuso – Arreo para los años 2014 y 2015. PROYECTO TREMEDAL “LIFE11 NAT/ES/707”. URA/Arabako Foru Aldundia/HAZI. (2015).

    39.
    Alonso de Santocildes, G., Criado, A., Manzanos, A. & A.P. Monteoliva. Fish sampling in inland lakes: methodological approach and case study, Arreo Lake (Álava). IV Jornadas Ibéricas de Ictiología (2012).

    40.
    Losos, J. B. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11(10), 995–1003 (2008).
    PubMed  Article  Google Scholar 

    41.
    Pauli, J. N., Steffan, S. A. & Newsome, S. D. It is time for IsoBank. BioScience 65(3), 229–230 (2015).
    Article  Google Scholar 

    42.
    Pauli, J. N. et al. Opinion: Why we need a centralized repository for isotopic data. Proc. Natl. Acad. Sci. 114(12), 2997–3001 (2017).
    CAS  PubMed  Article  Google Scholar 

    43.
    Gratwicke, B. & Marshall, B. E. The relationship between the exotic predators Micropterus salmoides and Serranochromis robustus and native stream fishes in Zimbabwe. J. Fish Biol. 58(1), 68–75 (2001).
    Article  Google Scholar 

    44.
    Maezono, Y. & Miyashita, T. Community-level impacts induced by introduced largemouth bass and bluegill in farm ponds in Japan. Biol. Conserv. 109(1), 111–121 (2003).
    Article  Google Scholar 

    45.
    Yonekura, R., Kita, M. & Yuma, M. Species diversity in native fish community in Japan: comparison between non-invaded and invaded ponds by exotic fish. Ichthyol. Res. 51(2), 176–179 (2004).
    Article  Google Scholar 

    46.
    Maezono, Y., Kobayashi, R., Kusahara, M. & Miyashita, T. Direct and indirect effects of exotic bass and bluegill on exotic and native organisms in farm ponds. Ecol. Appl. 15(2), 638–650 (2005).
    Article  Google Scholar 

    47.
    Almeida, D., Gomes-Lopes, A., Muñoz-López, M., Merino-Aquirre, R. & Miranda, R. Ecología de la agresión interespecífica en el pez sol Lepomis gibbosus y efectos sobre la fauna autóctona. In Posters from the Symposium on non-native freshwater species introduction in the Iberian Peninsula, Pamplona, Spain. http://www.unav.es/centro/especiesinvasoras/ (2009).

    48.
    Froese, R., & Pauly, D. (2010). www.FishBase.de. Accessed November 19th, 2019.

    49.
    Oficialdegui, F. J., Sánchez, M. I. & Clavero, M. One century away from home: how the red swamp crayfish took over the world. Rev. Fish Biol. Fish. 1–15 (2020).

    50.
    Fletcher, A. R., Morison, A. K. & Hume, D. J. Effects of carp, Cyprinus carpio L., on communities of aquatic vegetation and turbidity of waterbodies in the lower Goulburn River basin. Mar. Freshw. Res. 36(3), 311–327 (1985).
    Article  Google Scholar 

    51.
    Pompei, L., Franchi, E., Giannetto, D. & Lorenzoni, M. Growth and reproductive properties of Tench, Tinca tinca Linnaeus, 1758 in Trasimeno Lake (Umbria, Italy). Knowl. Manag. Aquat. Ecosyst. 406 (2012).

    52.
    Angeler, D. G., Sánchez-Carrillo, S., García, G. & Alvarez-Cobelas, M. The influence of Procambarus clarkii (Cambaridae, Decapoda) on water quality and sediment characteristics in a Spanish floodplain wetland. Hydrobiologia 464(1–3), 89–98 (2001).
    Article  Google Scholar 

    53.
    Jastrebski, C. J. & Robinson, B. W. Natural selection and the evolution of replicated trophic polymorphisms in pumpkinseed sunfish (Lepomis gibbosus). Evol. Ecol. Res. 6(2), 285–305 (2004).
    Google Scholar 

    54.
    Gherardi, F. & Barbaresi, S. Feeding opportunism of the red swamp crayfish Procambarus clarkii, an invasive species. Freshw. Crayfish 16, 77–85 (2008).
    Google Scholar 

    55.
    Wolfram-Wais, A., Wolfram, G., Auer, B., Mikschi, E. & Hain, A. Feeding habits of two introduced fish species (Lepomis gibbosus, Pseudorasbora parva) in Neusiedler See (Austria), with special reference to chironomid larvae (Diptera: Chironomidae). Shallow Lakes 98, 123–129 (1999).
    Article  Google Scholar 

    56.
    Fell, P. E. et al. Does invasion of oligohaline tidal marshes by reed grass, Phragmites australis (Cav.) Trin. ex Steud., affect the availability of prey resources for the mummichog, Fundulus heteroclitus L.?. J. Exper. Mar. Biol. Ecol. 222(1–2), 59–77 (1998).
    Article  Google Scholar 

    57.
    Bedford, A. P. & Powell, I. Long-term changes in the invertebrates associated with the litter of Phragmites australis in a managed reedbed. Hydrobiologia 549(1), 267–285 (2005).
    Article  Google Scholar 

    58.
    Chambers, R. M., Meyerson, L. A. & Saltonstall, K. Expansion of Phragmites australis into tidal wetlands of North America. Aquat. Bot. 64(3–4), 261–273 (1999).
    Article  Google Scholar 

    59.
    Gratton, C. & Denno, R. F. Restoration of arthropod assemblages in a Spartina salt marsh following removal of the invasive plant Phragmites australis. Restoration Ecology. 13(2), 358–372 (2005).
    Article  Google Scholar 

    60.
    Gherardi, F. et al. A review of allodiversity in Lake Naivasha, Kenya: developing conservation actions to protect East African lakes from the negative impacts of non-native species. Biol. Conserv. 144(11), 2585–2596 (2011).
    Article  Google Scholar 

    61.
    Stiers, I., Crohain, N., Josens, G. & Triest, L. Impact of three aquatic invasive species on native plants and macroinvertebrates in temperate ponds. Biol. Invasions 13(12), 2715–2726 (2011).
    Article  Google Scholar 

    62.
    Barbaresi, S., Tricarico, E. & Gherardi, F. Factors inducing the intense burrowing activity of the red-swamp crayfish, Procambarus clarkii, an invasive species. Naturwissenschaften 91(7), 342–345 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    63.
    Britton, J. R. et al. From introduction to fishery dominance: the initial impacts of the invasive carp Cyprinus carpio in Lake Naivasha, Kenya, 1999 to 2006. J. Fish Biol. 71, 239–257. https://doi.org/10.1111/j.1095-8649.2007.01669.x (2007).
    Article  Google Scholar 

    64.
    Anton-Pardo, M., Hlaváč, D., Másílko, J., Hartman, P. & Adámek, Z. Natural diet of mirror andscaly carp (Cyprinus carpio) phenotypes in earth ponds. Folia Zool. 63, 229–237. https://doi.org/10.25225/fozo.v63.i4.a1.2014 (2014).
    Article  Google Scholar 

    65.
    Hauser, C. E. & McCarthy, M. A. Streamlining ‘search and destroy’: cost-effective surveillance for invasive species management. Ecol. Lett. 12(7), 683–692 (2009).
    PubMed  Article  Google Scholar 

    66.
    Rinella, M. J., Maxwell, B. D., Fay, P. K., Weaver, T. & Sheley, R. L. Control effort exacerbates invasive-species problem. Ecol. Appl. 19(1), 155–162 (2009).
    PubMed  Article  Google Scholar 

    67.
    Jourdan, J. et al. Reintroduction of freshwater macroinvertebrates: challenges and opportunities. Biol. Rev. 94(2), 368–387 (2019).
    PubMed  Article  Google Scholar 

    68.
    Haase, P., & Pilotto, F. A method for the reintroduction of entire benthic invertebrate communities in formerly degraded streams. Limnologica, 77, 125689 (2019).
    Article  Google Scholar 

    69.
    Feunteun, E. Management and restoration of European eel population (Anguilla anguilla): an impossible bargain. Ecol. Eng. 18(5), 575–591 (2002).
    Article  Google Scholar 

    70.
    Clavero, M. & Hermoso, V. Historical data to plan the recovery of the European eel. J. Appl. Ecol. 52(4), 960–968 (2015).
    Article  Google Scholar 

    71.
    Benndorf, J. Possibilities and limits for controlling eutrophication by biomanipulation. Int. Rev. Hydrobiol. 80, 519–534. https://doi.org/10.1002/iroh.19950800404 (1995).
    CAS  Article  Google Scholar 

    72.
    Aquiloni, L. et al. Biological control of invasive populations of crayfish: the European eel (Anguilla anguilla) as a predator of Procambarus clarkii. Biol. Invasions 12, 3817–3824. https://doi.org/10.1007/s10530-010-9774-z (2010).
    Article  Google Scholar 

    73.
    McCord JW American eel. South Carolina State Documents Depository (2005)

    74.
    Schiphouwer, M. E. et al. Risk assessment of the alien smallmouth bass (Micropterusdolomieu). Rep. Environ. Sci. 527, 1–60 (2017).
    Google Scholar 

    75.
    Costantini, M. L. et al. The role of alien fish (the centrarchid Micropterus salmoides) in lake food webs highlighted by stable isotope analysis. Freshw. Biol. 63, 1130–1142. https://doi.org/10.1111/fwb.13122 (2018).
    CAS  Article  Google Scholar 

    76.
    Laffaille, P., Caraguel, J. M. & Legault, A. Temporal patterns in the upstream migration of European glass eels (Anguilla anguilla) at the Couesnon estuarine dam. Estuarine Coast. Shelf Sci. 73(1–2), 81–90 (2007).
    ADS  Article  Google Scholar 

    77.
    Prigge, E. Factors challenging the European eel (Anguilla anguilla) stock recovery in continental waters (Doctoral dissertation, Christian-Albrechts Universität Kiel) (2013).

    78.
    Catford, J. A., Jansson, R. & Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15(1), 22–40 (2009).
    Article  Google Scholar 

    79.
    Marchi, M. et al. Resistance and re-organization of an ecosystem in response to biological invasion: some hypotheses. Ecol. Modell. 222(16), 2992–3001 (2011).
    Article  Google Scholar 

    80.
    Martínez-Torres, L., Gonzáles-Tapia, J. R. & Ramóm-Luch, C. Batimetría y propuesta de cartografía geológica del lago de Arreo (Diapiro de salinas de Añana, Álava) Eusko Jkaskuntza. Cuadernos de Sección. Historia 20, 123–134 (1992).
    Google Scholar 

    81.
    Camacho, A., Borja, C., Valero-Garcés, B., Sahuquillo, M., Cirujano, S., Soria, J. M., Rico, E., De la Hera, A., Santamans, A. C., García deDomingo, A., Chicote, A. & Gosálvez, R. U. 3190 Lagos ylagunas kársticas sobre yesos. In: Ministerio de Medio Ambiente,y Medio Rural y Marino Bases ecológicas preliminares para laconservación de los tipos de hábitat de interés comunitario en España. Madrid, Spain, 37 pp (2009).

    82.
    Vitoria-Gasteiz, L. Biodiversity Strategy of the Basque Autonomous Community 2030 and First Action Plan 2020; Servicio Central de Publicaciones del Gobierno Vasco (2016).

    83.
    Choi, W. J., Ro, H. M. & Chang, S. X. Carbon isotope composition of Phragmites australis in a constructed saline wetland. Aquat. Bot. 82(1), 27–38 (2005).
    Article  Google Scholar 

    84.
    Bergamino, L., Dalu, T. & Richoux, N. B. Evidence of spatial and temporal changes in sources of organic matter in estuarine sediments: stable isotope and fatty acid analyses. Hydrobiologia 732(1), 133–145 (2014).
    CAS  Article  Google Scholar 

    85.
    Kullman, M. A., Kidd, K. A., Podemski, C. L., Paterson, M. J. & Blanchfield, P. J. Assimilation of freshwater salmonid aquaculture waste by native aquatic biota. Can. J. Fish. Aquat. Sci. 66(11), 1965–1975 (2009).
    CAS  Article  Google Scholar 

    86.
    Tonn, W. M., Klatt, P. H., Paszkowski, C. A., Gingras, B. A. & Wilcox, K. Trophic Relations of the Red-Necked Grebe on Lakes in the Western Boreal Forest: A Stable-Isotope Analysis (2004).

    87.
    Jardine, T. D. et al. Understanding and overcoming baseline isotopic variability in running waters. River Res. Appl. 30(2), 155–165 (2014).
    Article  Google Scholar 

    88.
    Tran, T. N. Q., Jackson, M. C., Sheath, D., Verreycken, H. & Britton, J. R. Patterns of trophic niche divergence between invasive and native fishes in wild communities are predictable from mesocosm studies. J. Anim. Ecol. 84(4), 1071–1080 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    89.
    Dörner, H. et al. Piscivory and trophic position of Anguilla anguilla in two lakes: importance of macrozoobenthos density. J. Fish Biol. 74(9), 2115–2131 (2009).
    PubMed  Article  Google Scholar 

    90.
    Quezada-Romegialli, C. et al. tRophicPosition, an R package for the Bayesian estimation of trophic position from consumer stable isotope ratios. Methods Ecol. Evol. 9(6), 1592–1599 (2018).
    Article  Google Scholar 

    91.
    Layman, C. A. et al. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol. Rev. 87(3), 545–562 (2012).
    PubMed  Article  Google Scholar 

    92.
    Layman, C. A., Arrington, D. A., Montaña, C. G. & Post, D. M. Can stable isotope ratios provide for community-wide measures of trophic structure?. Ecology 88(1), 42–48 (2007).
    Article  Google Scholar 

    93.
    Swanson, H. K. et al. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 96(2), 318–324 (2015).
    PubMed  Article  Google Scholar  More

  • in

    The antipredator benefits of postural camouflage in peppered moth caterpillars

    1.
    Ruxton, G. D., Allen, W. L., Sherratt, T. N. & Speed, M. P. Avoiding Attack. The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry (Oxford University Press, Oxford, 2018).
    Google Scholar 
    2.
    Skelhorn, J., Rowland, H. M. & Ruxton, G. D. The evolution and ecology of masquerade. Biol. J. Linn. Soc. 99, 1–8 (2010).
    Article  Google Scholar 

    3.
    Stevens, M. & Merilaita, S. Animal Camouflage: Mechanisms and Function (Cambridge University Press, Cambridge, 2011).
    Google Scholar 

    4.
    Stevens, M. & Ruxton, G. D. The key role of behaviour in animal camouflage. Biol. Rev. 94, 116–134. https://doi.org/10.1111/brv.12438 (2019).
    Article  Google Scholar 

    5.
    Stevens, M., Troscianko, J., Wilson-Aggarwal, J. K. & Spottiswoode, C. N. Improvement of individual camouflage through background choice in ground-nesting birds. Nat. Ecol. Evol. 1, 1325–1333. https://doi.org/10.1038/s41559-017-0256-x (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    6.
    Lovell, P. G., Ruxton, G. D., Langridge, K. V. & Spencer, K. A. Egg-laying substrate selection for optimal camouflage by quail. Curr. Biol. 23, 260–264. https://doi.org/10.1016/j.cub.2012.12.031 (2013).
    CAS  Article  PubMed  Google Scholar 

    7.
    Sargent, T. D. Background selections of geometrid and noctuid moths. Science 154, 1674. https://doi.org/10.1126/science.154.3757.1674 (1966).
    ADS  Article  Google Scholar 

    8.
    Kang, C. K., Moon, J. Y., Lee, S. I. & Jablonski, P. G. Camouflage through an active choice of a resting spot and body orientation in moths. J. Evol. Biol. 25, 1695–1702 (2012).
    Article  Google Scholar 

    9.
    Skelhorn, J., Rowland, H. M., Delf, J., Speed, M. P. & Ruxton, G. D. Density-dependent predation influences the evolution and behavior of masquerading prey. Proc. Natl. Acad. Sci. U.S.A. 108, 6532–6536. https://doi.org/10.1073/pnas.1014629108 (2011).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    10.
    Eacock, A. et al. Adaptive colour change and background choice behaviour in peppered moth caterpillars is mediated by extraocular photoreception. Commun. Biol. 2, 286. https://doi.org/10.1038/s42003-019-0502-7 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    11.
    Skelhorn, J. et al. Size-dependent misclassification of masquerading prey. Behav. Ecol. 21, 1344–1348. https://doi.org/10.1093/beheco/arq159 (2010).
    Article  Google Scholar 

    12.
    Eacock, A., Rowland, H. M., Edmonds, N. & Saccheri, I. J. Colour change of twig-mimicking peppered moth larvae is a continuous reaction norm that increases camouflage against avian predators. PeerJ 5, e3999. https://doi.org/10.7717/peerj.3999 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    13.
    Ruxton, G. D. & Stevens, M. The evolutionary ecology of decorating behaviour. Biol. Lett. 11, 20150325. https://doi.org/10.1098/rsbl.2015.0325 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    14.
    Liu, M., Blamires, S. J., Liao, C. & Min Tso, I. Evidence of bird dropping masquerading by a spider to avoid predators. Sci. Rep. 4, 5058. https://doi.org/10.1038/srep05058 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Konstantinov, A. S., Prathapan, K. D. & Vencl, F. V. Hiding in plain sight: leaf beetles (Chrysomelidae: Galerucinae) use feeding damage as a masquerade decoy. Biol. J. Linn. Soc. 123, 311–320. https://doi.org/10.1093/biolinnean/blx149 (2018).
    Article  Google Scholar 

    16.
    Poulton, E. B. The Colours of Animals: Their Meaning and Use. Especially Considered in the Case of Insects (Kegan Paul, Trench Trubner & Co, London, 1890).
    Google Scholar 

    17.
    Cott, H. B. Adaptive Coloration in Animals (Methuen, London, 1940).
    Google Scholar 

    18.
    Cooper, W. E. J. & Sherbrooke, W. C. Choosing between a rock and a hard place: camouflage in the round-tailed horned lizard Phrynosoma modestum. Curr. Zool. 58, 541–548 (2012).
    Article  Google Scholar 

    19.
    Pianka, E. R. Lizards: Windows to the Evolution of Diversity (University of California Press, Berkeley, 2006).
    Google Scholar 

    20.
    Zhang, S. et al. Crypsis via leg clustering: twig masquerading in a spider. R. Soc. Open Sci. 2, 150007. https://doi.org/10.1098/rsos.150007 (2015).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    21.
    Skelhorn, J. Masquerade. Curr. Biol. 25, R643–R644. https://doi.org/10.1016/j.cub.2015.02.069 (2015).
    CAS  Article  PubMed  Google Scholar 

    22.
    Cestari, C., Gonçalves, C. S. & Sazima, I. Use flexibility of perch types by the branch-camouflaged Common Potoo (Nyctibius griseus): why this bird may occasionally dare to perch on artificial substrates. Wilson J. Ornithol. 130, 191–199 (2018).
    Article  Google Scholar 

    23.
    Hanlon, R. T., Forsythe, J. W. & Joneschild, D. E. Crypsis, conspicuousness, mimicry and polyphenism as antipredator defences of foraging octopuses on Indo-Pacific coral reefs, with a method of quantifying crypsis from video tapes. Biol. J. Linn. Soc. 66, 1–22 (1999).
    Article  Google Scholar 

    24.
    Barbosa, A., Allen, J. J., Mäthger, L. M. & Hanlon, R. T. Cuttlefish use visual cues to determine arm postures for camouflage. Proc. Biol. Sci. 279, 84–90. https://doi.org/10.1098/rspb.2011.0196 (2012).
    Article  PubMed  Google Scholar 

    25.
    Panetta, D., Buresch, K. & Hanlon, R. T. Dynamic masquerade with morphing three-dimensional skin in cuttlefish. Biol. Lett. https://doi.org/10.1098/rsbl.2017.0070 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    26.
    Suzuki, T. N. & Sakurai, R. Bent posture improves the protective value of bird dropping masquerading by caterpillars. Anim. Behav. 105, 79–84. https://doi.org/10.1016/j.anbehav.2015.04.009 (2015).
    Article  Google Scholar 

    27.
    Dockery, M., Meneely, J. & Costen, P. Avoiding detection by predators: the tactics used by Biston betularia larvae. Br. J. Entomol. Nat. Hist. 22, 247–253 (2009).
    Google Scholar 

    28.
    Galler, S., Litzlbauer, J., Kröss, M. & Grassberger, H. The highly efficient holding function of the mollusc catch muscle is not based on decelerated myosin head cross-bridge cycles. Proc. R. Soc. B Biol. Sci. 277, 803–808. https://doi.org/10.1098/rspb.2009.1618 (2010).
    Article  Google Scholar 

    29.
    Gally, M., Silva, A. S. F. L. & Zina, J. Death feigning in Physalaemus kroyeri (Reinhardt and Lütken, 1862) (Anura, Leiuperidae). Herpetol. Notes 5, 133–135 (2012).
    Google Scholar 

    30.
    Levesque, K. R., Levesque, K. R., Fortin, M. & Mauffette, Y. Temperature and food quality effects on growth, consumption and post-ingestive utilization efficiencies of the forest tent caterpillar Malacosoma disstria (Lepidoptera: Lasiocampidae). Bull. Entomol. Res. 92, 127–136. https://doi.org/10.1079/ber2002153 (2002).
    CAS  Article  PubMed  Google Scholar 

    31.
    Skelhorn, J., Rowland, H. M., Speed, M. P. & Ruxton, G. D. Masquerade: camouflage without crypsis. Science 327, 51 (2010).
    ADS  CAS  Article  Google Scholar 

    32.
    Skelhorn, J. & Ruxton, G. D. Mimicking multiple models: polyphenetic masqueraders gain additional benefits from crypsis. Behav. Ecol. 22, 60–65. https://doi.org/10.1093/beheco/arq166 (2011).
    Article  Google Scholar 

    33.
    Skelhorn, J. & Ruxton, G. D. Context-dependent misclassification of masquerading prey. Evol. Ecol. 25, 751–761. https://doi.org/10.1007/s10682-010-9435-9 (2011).
    Article  Google Scholar 

    34.
    Ewert, J. P. The neural basis of visually guided behavior. Sci. Am. 230, 34–42. https://doi.org/10.1038/scientificamerican0374-34 (1974).
    CAS  Article  PubMed  Google Scholar 

    35.
    Scholl, B. J. Objects and attention: the state of the art. Cognition 80, 1–46. https://doi.org/10.1016/S0010-0277(00)00152-9 (2001).
    CAS  Article  PubMed  Google Scholar 

    36.
    Miller, C. T. & Bee, M. A. Receiver psychology turns 20: Is it time for a broader approach?. Anim. Behav. 83, 331–343. https://doi.org/10.1016/j.anbehav.2011.11.025 (2012).
    Article  PubMed  Google Scholar 

    37.
    Snowden, R., Thompson, P. & Troscianko, T. Basic Vision: An Introduction to Visual Perception (Oxford University Press, Oxford, 2012).
    Google Scholar 

    38.
    Opell, B. D. & Eberhard, W. G. Resting postures of orb-weaving uloborid spiders (Araneae, Uloboridae). J. Arachnol. 11, 369–376 (1983).
    Google Scholar 

    39.
    Skelhorn, J. & Ruxton, G. D. Size-dependent microhabitat selection by masquerading prey. Behav. Ecol. 24, 89–97 (2012).
    Article  Google Scholar 

    40.
    Hill, G. E. & McGraw, K. J. Bird Coloration, Volume 1: Mechanisms and Measurements (Harvard University Press, Cambridge, 2006).
    Google Scholar 

    41.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    42.
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Article  Google Scholar 

    43.
    Boggs, C. L. & Niitepõld, K. Effects of larval dietary restriction on adult morphology, with implications for flight and life history. Entomol. Exp. Appl. 159, 189–196. https://doi.org/10.1111/eea.12420 (2016).
    Article  Google Scholar 

    44.
    Johnson, H., Solensky, M. J., Satterfield, D. A. & Davis, A. K. Does skipping a meal matter to a butterfly’s appearance? Effects of larval food stress on wing morphology and color in monarch butterflies. PLoS ONE 9, e93492. https://doi.org/10.1371/journal.pone.0093492 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    45.
    Kingsolver, J. G., Shlichta, J. G., Ragland, G. J. & Massie, K. R. Thermal reaction norms for caterpillar growth depend on diet. Evol. Ecol. Res. 8, 703–715 (2006).
    Google Scholar 

    46.
    Grayson, J., Edmunds, M., Evans, E. H. & Britton, G. Carotenoids and colouration of poplar hawkmoth caterpillars (Laothoe populi). Biol. J. Linn. Soc. 42, 457–465. https://doi.org/10.1111/j.1095-8312.1991.tb00574.x (1991).
    Article  Google Scholar 

    47.
    Core Team, R. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).
    Google Scholar 

    48.
    Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. 159, 1-XI, https://doi.org/10.1016/j.anbehav.2019.11.002 (2020)

    49.
    U. K. Government, Guidance to the operation of the Animals (Scientific Procedures) 1986. ScotPIL manual—avian species. (2009). More

  • in

    Urban fragmentation leads to lower floral diversity, with knock-on impacts on bee biodiversity

    1.
    Tisdale, H. The process of urbanization. Soc. Forces 20, 311–316 (1942).
    Article  Google Scholar 
    2.
    McKinney, M. L. Urbanization, biodiversity, and conservation. Bioscience 52, 883–890 (2002).
    Article  Google Scholar 

    3.
    Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    5.
    Turrini, T., Sanders, D. & Knop, E. Effects of urbanization on direct and indirect interactions in a tri-trophic system. Ecol. Appl. 26, 664–675 (2016).
    Article  Google Scholar 

    6.
    Theodorou, P. et al. Genome-wide single nucleotide polymorphism scan suggests adaptation to urbanization in an important pollinator, the red-tailed bumblebee (Bombus lapidarius L.). Proc. R. Soc. B Biol. Sci. 285, 20172806 (2018).
    Article  Google Scholar 

    7.
    Thompson, K. A., Renaudin, M. & Johnson, M. T. J. Urbanization drives the evolution of parallel clines in plant populations. Proc. R. Soc. B Biol. Sci. 283, 20162180 (2016).
    Article  Google Scholar 

    8.
    Theodorou, P., Baltz, L. M., Paxton, R. J. & Soro, A. Urbanisation is associated with shifts in bumblebee body size, with cascading effects on pollination. Evol. Appl. 10, 1–16 (2020).
    Google Scholar 

    9.
    Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals?. Oikos 120, 321–326 (2011).
    Article  Google Scholar 

    10.
    Potts, S. G., Vulliamy, B., Dafni, A., Nee’man, G. & Willmer, P. Linking bees and flowers: how do floral communities structure pollinator communities?. Ecology 84, 2628–2642 (2003).
    Article  Google Scholar 

    11.
    Steffan-Dewenter, I. & Tscharntke, T. Succession of bee communities on fallows. Ecography 24, 83–93 (2001).
    Article  Google Scholar 

    12.
    Fründ, J., Linsenmair, K. E. & Blüthgen, N. Pollinator diversity and specialization in relation to flower diversity. Oikos 119, 1581–1590 (2010).
    Article  Google Scholar 

    13.
    Ebeling, A., Klein, A. M., Schumacher, J., Weisser, W. W. & Tscharntke, T. How does plant richness affect pollinator richness and temporal stability of flower visits?. Oikos 117, 1808–1815 (2008).
    Article  Google Scholar 

    14.
    Theodorou, P. et al. The structure of flower visitor networks in relation to pollination across an agricultural to urban gradient. Funct. Ecol. 31, 838–847 (2017).
    Article  Google Scholar 

    15.
    Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Ghazoul, J. Floral diversity and the facilitation of pollination. J. Ecol. 94, 295–304 (2006).
    Article  Google Scholar 

    17.
    Clough, Y. et al. Density of insect-pollinated grassland plants decreases with increasing surrounding land-use intensity. Ecol. Lett. 17, 1168–1177 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Lundgren, R., Totland, Ø. & Lázaro, A. Experimental simulation of pollinator decline causes community-wide reductions in seedling diversity and abundance. Ecology 97, 1420–1430 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Papanikolaou, A. D. et al. Wild bee and floral diversity co-vary in response to the direct and indirect impacts of land use. Ecosphere 8, e02008 (2017).
    Article  Google Scholar 

    20.
    Brosi, B. J. & Briggs, H. M. Single pollinator species losses reduce floral fidelity and plant reproductive function. Proc. Natl. Acad. Sci. U. S. A. 110, 13044–13048 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Vázquez, D. P., Blüthgen, N., Cagnolo, L. & Chacoff, N. P. Uniting pattern and process in plant–animal mutualistic networks: a review. Ann. Bot. 103, 1445–1457 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Albrecht, J. et al. Plant and animal functional diversity drive mutualistic network assembly across an elevational gradient. Nat. Commun. 9, 3177 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Kremen, C. et al. Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol. Lett. 10, 299–314 (2007).
    PubMed  Article  Google Scholar 

    24.
    Harrison, T. & Winfree, R. Urban drivers of plant-pollinator interactions. Funct. Ecol. 29, 879–888 (2015).
    Article  Google Scholar 

    25.
    Baldock, K. C. R. et al. Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. R. Soc. B Biol. Sci. 282, 20142849 (2015).
    Article  Google Scholar 

    26.
    Bates, A. J. et al. Changing bee and hoverfly pollinator assemblages along an urban–rural gradient. PLoS ONE 6, e23459 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Fortel, L. et al. Decreasing abundance, increasing diversity and changing structure of the wild bee community (Hymenoptera: Anthophila) along an urbanization gradient. PLoS ONE 9, e104679 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    28.
    Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 576 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Buchholz, S., Gathof, A. K., Grossmann, A. J., Kowarik, I. & Fischer, L. K. Wild bees in urban grasslands: urbanisation, functional diversity and species traits. Landsc. Urban Plan. 196, 103731 (2020).
    Article  Google Scholar 

    30.
    Hung, K. J., Ascher, J. S., Davids, J. A. & Holway, D. A. Ecological filtering in scrub fragments restructures the taxonomic and functional composition of native bee assemblages. Ecology 100, e02654 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Buchholz, S. & Egerer, M. H. Functional ecology of wild bees in cities: towards a better understanding of trait-urbanization relationships. Biodivers. Conserv. 29, 2779–2801 (2020).
    Article  Google Scholar 

    32.
    Cane, J. H., Minckley, R. L., Kervin, L. J., Roulston, T. H. & Williams, N. M. Complex responses within a desert bee guild (Hymenoptera: Apiformes) to urban habitat fragmentation. Ecol. Appl. 16, 632–644 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    33.
    Banaszak-Cibicka, W. & Żmihorski, M. Wild bees along an urban gradient: winners and losers. J. Insect Conserv. 16, 331–343 (2011).
    Article  Google Scholar 

    34.
    Neame, L. A., Griswold, T. & Elle, E. Pollinator nesting guilds respond differently to urban habitat fragmentation in an oak-savannah ecosystem. Insect Conserv. Divers. 6, 57–66 (2013).
    Article  Google Scholar 

    35.
    Fitch, G. et al. Does urbanization favour exotic bee species? Implications for the conservation of native bees in cities. Biol. Lett. 15, 20190574 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    36.
    Knapp, S., Kühn, I., Schweiger, O. & Klotz, S. Challenging urban species diversity: contrasting phylogenetic patterns across plant functional groups in Germany. Ecol. Lett. 11, 1054–1064 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    37.
    Kühn, I., Brandl, R. & Klotz, S. The flora of German cities is naturally species rich. Evol. Ecol. Res. 6, 749–764 (2004).
    Google Scholar 

    38.
    Knapp, S., Winter, M. & Klotz, S. Increasing species richness but decreasing phylogenetic richness and divergence over a 320-year period of urbanization. J. Appl. Ecol. 54, 1152–1160 (2016).
    Article  Google Scholar 

    39.
    Lososová, Z. et al. Patterns of plant traits in annual vegetation of man-made habitats in central Europe. Perspect. Plant Ecol. Evol. Syst. 8, 69–81 (2006).
    Article  Google Scholar 

    40.
    Pysek, P. Alien and native species in Central European urban floras: a quantitative comparison. J. Biogeogr. 25, 155–163 (1998).
    Article  Google Scholar 

    41.
    Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Ollerton, J. Pollinator diversity: distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376 (2017).
    Article  Google Scholar 

    43.
    Schleuning, M., Fründ, J. & García, D. Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant–animal interactions. Ecography 38, 380–392 (2014).
    Article  Google Scholar 

    44.
    Mallinger, R. E., Gaines-Day, H. R. & Gratton, C. Do managed bees have negative effects on wild bees?: A systematic review of the literature. PLoS ONE 12, e0189268 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    45.
    Potts, S. G. et al. Role of nesting resources in organising diverse bee communities in a Mediterranean landscape. Ecol. Entomol. 30, 78–85 (2005).
    Article  Google Scholar 

    46.
    Pardee, G. L. & Philpott, S. M. Native plants are the bee’s knees: local and landscape predictors of bee richness and abundance in backyard gardens. Urban Ecosyst. 17, 641–659 (2014).
    Article  Google Scholar 

    47.
    Ballare, K. M., Neff, J. L., Ruppel, R. & Jha, S. Multi-scalar drivers of biodiversity: local management mediates wild bee community response to regional urbanization. Ecol. Appl. 29, e01869 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    48.
    Torné-Noguera, A. et al. Determinants of spatial distribution in a bee community: nesting resources, flower resources, and body size. PLoS ONE 9, e97255 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Fetridge, E. D., Ascher, J. S. & Langellotto, G. A. The bee fauna of residential gardens in a suburb of New York City (Hymenoptera: Apoidea). Ann. Entomol. Soc. Am. 101, 1067–1077 (2008).
    Article  Google Scholar 

    51.
    Stang, M., Klinkhamer, P. G. L. & van der Meijden, E. Size constraints and flower abundance determine the number of interactions in a plant–flower visitor web. Oikos 112, 111–121 (2006).
    Article  Google Scholar 

    52.
    Scolozzi, R. & Geneletti, D. A multi-scale qualitative approach to assess the impact of urbanization on natural habitats and their connectivity. Environ. Impact Assess. Rev. 36, 9–22 (2012).
    Article  Google Scholar 

    53.
    Cheptou, P.-O., Hargreaves, A. L., Bonte, D. & Jacquemyn, H. Adaptation to fragmentation: evolutionary dynamics driven by human influences. Philos. Trans. R. Soc. B Biol. Sci. 372, 2 (2017).
    Google Scholar 

    54.
    Hennig, E. I. & Ghazoul, J. Plant–pollinator interactions within the urban environment. Perspect. Plant Ecol. Evol. Syst. 13, 137–150 (2011).
    Article  Google Scholar 

    55.
    Winfree, R., Aguilar, R., Vázquez, D. P., LeBuhn, G. & Aizen, M. A. A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90, 2068–2076 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    56.
    Quantum GIS Development Team. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project. Available at: http://qgis.osgeo.org. (2014).

    57.
    Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596 (2007).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Westphal, C. et al. Measuring bee diversity in different European habitats and biogeographical regions. Ecol. Monogr. 78, 653–671 (2008).
    Article  Google Scholar 

    59.
    Amiet, F. & Gesellschaft, S. E. Insecta Helvetica. A, Fauna: 12. Hymenoptera. Apidae.-T. 1. Allgemeiner Teil, Gattungsschlüssel, Gattungen Apis, Bombus und Psithyrus. (Musée d’Histoire naturelle, 1996).

    60.
    Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Fauna Helvetica 6. Apidae 3: Halictus, Lasioglossum. Fauna Helv. 6. Apidae 3 Halictus, Lasioglossum (2001).

    61.
    Amiet, F., Müller, A. & Neumeyer, R. Apidae 2: Colletes, Dufourea, Hylaeus, Nomia, Nomioides, Rhophitoides, Rophites, Sphecodes, Systropha. 4 (Schweizerische Entomologische Gesellschaft, 1999).

    62.
    Hebert, P. D. N., Cywinska, A., Ball, S. L. & de Waard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 270, 313–321 (2003).
    CAS  Article  Google Scholar 

    63.
    Bäßler, M., Jäger, J. E. & Werner, K. Rothmaler, W. (Begr.): Exkursionsflora von Deutschland. Bd.2: Gefäßpflanzen. 17.Aufl (Berlin: Spektrum, 1999).

    64.
    Jäger, J. E., Wesche, K., Ritz, C., Müller, F. & Welk, E. Rothmaler – Exkursionsflora von Deutschland, Gefäßpflanzen: Atlasband (Springer-Verlag, 2013).

    65.
    Westrich, P. Die Wildbienen Deutschlands (Verlag Eugen Ulmer, 2018).

    66.
    Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).
    ADS  Article  Google Scholar 

    67.
    Botta-Dukát, Z. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J. Veg. Sci. 16, 533–540 (2005).
    Article  Google Scholar 

    68.
    Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).
    PubMed  Article  Google Scholar 

    69.
    Rader, R., Bartomeus, I., Tylianakis, J. M. & Lalibert, E. The winners and losers of land use intensification: pollinator community disassembly is non-random and alters functional diversity. Divers. Distrib. 20, 908–917 (2014).
    Article  Google Scholar 

    70.
    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).
    Article  Google Scholar 

    71.
    Bartoń, K. MuMIn: Multi-Model Inference. R package version 1.15.1 (2013).

    72.
    Burnham, K. P. & Anderson, D. R. Multimodel inference. Sociol. Methods Res. 33, 261–304 (2004).
    MathSciNet  Article  Google Scholar 

    73.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    74.
    Legendre, P., Galzin, R. & Harmelin-Vivien, M. L. Relating behavior to habitat: solutions to the fourth-corner problem. Ecology 78, 547–562 (1997).
    Google Scholar 

    75.
    Wang, Y., Naumann, U., Eddelbuettel, D., Wilshire, J. & Warton, D. mvabund: Statistical Methods for Analysing Multivariate Abundance Data. R package version 4.1.3 (2020).

    76.
    Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).
    Article  Google Scholar 

    77.
    Shipley, B. Confirmatory path analysis in a generalized multilevel context. Ecology 90, 363–368 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    78.
    Sobel, M. E. Sociological methodology. In: Sociological Methodology (ed. Leinhart, S.) 290–312 (1982).

    79.
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R (Springer, New York, 2009).
    Google Scholar 

    80.
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    81.
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. http://www.r-project.org (2016). More

  • in

    Author Correction: Circumpolar projections of Antarctic krill growth potential

    Affiliations

    Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
    Devi Veytia, Stuart Corney & Sophie Bestley

    Australian Antarctic Division, Department of Agriculture, Water and the Environment, Kingston, Tasmania, Australia
    Klaus M. Meiners & So Kawaguchi

    Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania, Australia
    Klaus M. Meiners, So Kawaguchi & Sophie Bestley

    British Antarctic Survey, Cambridge, UK
    Eugene J. Murphy

    Authors
    Devi Veytia

    Stuart Corney

    Klaus M. Meiners

    So Kawaguchi

    Eugene J. Murphy

    Sophie Bestley

    Corresponding author
    Correspondence to Devi Veytia. More

  • in

    In-situ quantification of microscopic contributions of individual cells to macroscopic wood deformation with synchrotron computed tomography

    Deformation measurement accuracy
    To evaluate the accuracy of ICT, synthetic deformation fields were added to the R-specimen datasets (Fig. 3a). For this purpose, constant strain was simultaneously introduced in both R and L directions ((varepsilon_{RR}),({ }varepsilon_{LL})). Absolute accuracy (hat{varepsilon }) was measured by adding synthetic deformation to the reference state #1 (#1 + synthetic), and then measuring with ICT strain of #1 + synthetic with respect to #1. Differential accuracy ({Delta }hat{varepsilon }) was measured by adding synthetic deformation to the deformed state #2 (#2 + synthetic), measuring with ICT strain of #2 + synthetic with respect to the reference state #1, and finally subtracting the ICT measured strain between #2 and #1.
    Figure 3 shows ICT strain estimates for tracheids and wood rays. The accuracy is highest along the cell-cross section (RT for tracheids, LT for wood rays) and lowest in the cell longitudinal direction (L for tracheids, R for wood rays). Due to the tubular cell geometry (Fig. 2b,c) of both cell types, tracking is more challenging in the longitudinal cell axis, for which symmetry reduces the available landmarks (for instance, wood pits in Fig. 2) and deformation tracking accuracy. Absolute accuracy is limited by both cell segmentation and deformation parametrization. Differential accuracy is further influenced by experimental uncertainties between #1 and #2 acquisitions, such as vibration artifacts and sample relaxation strains. While absolute and differential accuracy are similar in cell-cross sections, differential accuracy is reduced with respect to absolute accuracy along the longitudinal cell axis. The sensitivity limit for strain measurements in tracheids is (varepsilon_{RR})  More

  • in

    Phylogenetic relationship of Paramignya trimera and its relatives: an evidence for the wide sexual compatibility

    Collecting plant specimens
    In the present study, 10 accessions assigned to 4 genera Atalantia, Luvunga, Paramignya, and Severinia were collected from different sites in Khanh Hoa and Lam Dong provinces of Vietnam (Fig. 1). Of these, six accessions of P. trimera (Oliv.) Burkill were collected at different sites in Khanh Hoa provinces including Ninh Van (PT1.NV, PT2.NV), Ninh Hoa (PT1.NH, PT2.NH), Dien Khanh (PT1.DK, PT2.DK); 1 accession of A. buxifolia (Poir.) Oliv. ex Benth collected in Van Ninh (PA.VN); 1 accession of S. monophylla (Lour.) Tanaka collected in Don Duong, Lam Dong province (PC.DD); two accessions of L. scandens (Roxb.), Wight, collected in Di Linh (PR.DL) and Cat Tien (PR.CT) in Lam Dong province (Fig. 1). The list of the collected accessions and information was summarized in Table 1.
    Figure 1

    Map of the sampling sites. Accessions of species P. trimera (Oliv.) Burkill, A. buxifolia (Poir.) Oliv. ex Benth, S. monophylla (Lour.) Tanaka, and L. scandens (Roxb.), Wight were collected at sites displayed as circles in the map. The map was created by using ArcGIS 10.3 using the color rendering and grouping tools built-in and Paintbrush version 2.5 (20190914) on mac OS Catalina.

    Full size image

    Table 1 List of the collected accessions and information.
    Full size table

    Taxonomic treatment
    P. trimera (Oliv.) Burkill distributes in the high land areas in Khanh Hoa, Lam Dong provinces of Vietnam. P. trimera is scrambling shrub or erect, long, and curved spines, non-hairy stem. Leaves simple, typical narrow oblong, lamina 1.0–1.5 cm wide, 5–12 cm long; short petiole 0.5 cm long, leaf sub-vein 8–10 pairs; inflorescences axillary, fasciculate, peduncle 3–4 mm long, separate; calyx 3 lobes, 4 mm long; corolla 3; stamens 5, separate; ovaries 3, only 1 ovule, 2 locules in the ovary; globose fruit, 1.5–2.5 cm in diameter, 2 seeded. flowering time from May-Aug., fruiting Sep-Dec. Roots, leaves and stems were used as traditional medicine to treat liver diseases and cancers (Figs. 2, 4a).
    Figure 2

    The typical morphology and anatomy of Paramignya trimera (Oliv.) Burkill. Woody shrub 1–4 m or above (a); A flowering tree (b); Typical trimerous flowers (c); Green fruits (d); Ripen fruits (d); Opened ripen fruit with two seeds encapsulated by mucus endocarp (e).

    Full size image

    A. buxifolia (Poir.) Oliv. ex Benth distributed mainly in Van Ninh (Khanh Hoa) with several local names such as “Xao cua ga” or “Quyt gai” are medium climbing shrubs, up to 3 m tall; branches grayish brown, branchlets green; spikes axillary 0.5–1.2 cm or sometimes unarmed, apex yellowish; leaves simple, 2.5–3.5 cm wide, 3.5–4.5 mm long, petiole 4–8 mm, leaf blade ovate, obovate, elliptic, glabrous, coriaceous, midvein slightly ridged, apex rounded to obtuse at tip; inflorescences axillary, 1 to several flowers. Flowers 5 merous, petals white, 3–4 mm, stamens 10, calyx persistent. Fruit bluish black when ripe, globose, slightly oblate, or subellipsoid, 7–10 mm in diam., smooth, 1 or 2 seeded. Flowering from May-Aug., fruiting Sep-Dec. Roots, leaves and stems were used as traditional medicine to treat cough, lung diseases and kidney disorders (Fig. 4b).
    S. monophylla (Lour.) Tanaka found in Don Duong (Lam Dong) was thorny shrub or small tree; spikes axillary 1–1.5 cm; leaves simple, ovate, apex round or retuse at tip, coriaceous, glabrous, round at base, short petiole; Inflorescences 4–6-flowered; calyx ca. 3.5–5 mm long; petals 4, petals white, oblong, obtuse, glabrous, stamens 8–10; filaments ca. 12 mm long, glabrous; anthers ca. 5 mm long, linear; ovary ca. 2.5 × 1.5 mm, long-ovoid, glabrous, 3-locular; style ca. 7 mm long, continuous with ovary, cylindric, glandular, glabrous; stigma capitate ca. 2.5 mm broad, glandular. Fruits yellow to orange, globose 1.5–2.0 cm in diameter, 1–2 seeded; flowering time from May-Aug., fruiting Sep-Dec. This species was used effectively for cough, expectorant, fever, anti-inflammatory, sciatica treatment and prevent aging of skin cells, roots and leaves used for skin disease, burning leaves to kill mosquitoes and insects (Fig. 2c).
    L. scandens (Roxb.), Wight was discovered in Lam Dong of Vietnam with the local name “Xao leo”. L. scandens is woody climber or scrambling shrub; rough tufted from the ground with strong axillary sharp straight or slightly recurved spines. Leaves compound, digitately trifoliate or bifoliolate or simple; petioles 2–6 cm long, glabrous; lamina ca. 6.0–18.0 × 2.5–4.0 cm, variable, oblong-elliptic or oblanceolate, cuneate at base, shortly acuminate at apex, coriaceous, glabrous; secondary nerves 15 pairs; branches brown puberulent. No information from flowering time has been described. According to traditional experience, this plant is used to treat rheumatism, liver disease and ascites (Fig. 2d).
    Phylogenetic relation analysis
    The phylogenetic tree from ITS sequences included 3 groups (Fig. 5a). The first monophyletic group was only S. monophylla (PC.DD) as an out group. The second monophyletic group included 2 accessions of L. scandens (PR.DL and PR.CT). The third group was paraphyletic group with 9 accessions clustered in 2 sub-groups. The first sub-group included only P. trimera, whereas the second sub-group included 3 accessions P. trimera nested with P. confertifolia and A. buxifolia. In addition, in the second sub-group, the accessions of P. trimera collected in Dien Khanh, Vietnam (PT1.DK) and P. confertifolia from Mensong, China were in the same monophyletic clade whereas A. buxifolia (PA.VN) was clearly separated from others.
    The unrooted tree from matK sequences included 3 groups in which the first monophyletic group were 2 species P. lobata and P. scandens (Australia), the second monophyletic group included only P. confertifolia (China) and the third group (paraphyletic group) included 3 sub-groups (Fig. 5b). The first sub-group included all accessions of P. trimera, the second sub-group included only S. monophylla and the third sub-group included L. scandens and A. buxifolia.
    The unrooted tree from rbcL sequences included 2 main groups in which the first group included 3 species P. scandens, P. monophylla and P. lobata (Australia) and the second group (paraphilic group) included 5 species P. trimera, P. confertifolia (China), S. monophylla (Japan), A. buxifolia, and L. scandens (Fig. 5c). In this group, some accessions of P. trimera were nested in the paraphylic sub-groups because they did not share an immediate common ancestor.
    The pattern of the phylogenetic tree constructed from the concatenated sequences was similar to that of ITS sequences (Fig. 5d). The tree included one monophyletic group with only L. scandens and one paraphyletic group with the accessions of P. trimera nested within P. confertifolia, A. buxifolia and S. monophylla.
    Genetic distance analysis
    The overall genetic distances for ITS, matK, rbcL and concatenated sequences were 0.11 ± 0.01, 0.29 ± 0.02, rbcL 0.48 ± 0.05 and 0.05 ± 0.0, respectively (Table 2). An overlap between the maximum intraspecific distances and the minimum interspecific distances were observed in the cases of ITS, rbcL and concatenated sequences (Table 2, Fig. 6a,c,d). In case of matK, a clear barcode gap was found between the maximum intraspecific distance (0.0028) and the minimum interspecific distance (0.0056). The histogram and ranked pairwise (K2P) distances demonstrated a significant difference in the cases of matK and rbcL (Fig. 6b,c).
    Table 2 Intraspecific and interspecific distances across all data.
    Full size table More

  • in

    Defining intraspecific conservation units in the endemic Cuban Rock Iguanas (Cyclura nubila nubila)

    1.
    Convention on Biological Diversity. https://www.cbd.int/doc/meetings/cop-bureau/cop-bur-2007/cop-bur-2007-10-14-en.pdf (2007).
    2.
    Coates, D. J., Byrne, M. & Moritz, C. Genetic diversity and conservation units: dealing with species-population continuum in the age of genomics. Front. Ecol. Evol. 6, 165. https://doi.org/10.3389/fevo.2018.00165 (2018).
    Article  Google Scholar 

    3.
    Ralls, K., Ballou, J. D., Dudash, M. R., Eldridge, M. D. B. & Fenster, C. B. Call for a paradigm shift in the genetic management of fragmented populations. Conserv. Lett. 11, 1–6 (2018).
    Article  Google Scholar 

    4.
    Ryder, O. A. Species conservation and systematics: the dilemma of subspecies. Trends Ecol. Evol. 1, 9–10 (1986).
    Article  Google Scholar 

    5.
    Moritz, C. Defining evolutionary significant units. Trends Ecol. Evol. 9, 373–375 (1994).
    CAS  PubMed  Article  Google Scholar 

    6.
    Waples, R. S. Pacific salmon, Oncorhynchus spp., and the definition of “species” under the Endangered Species Act. Marine Fish. Rev. 53, 11–22 (1991).
    Google Scholar 

    7.
    Funk, W. C., McKay, J. K., Hohenlohe, P. A. & Allendorf, F. W. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27, 489–496 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    8.
    Green, D. M. Designatable units for status assessment of endangered species. Conserv. Biol. 19, 1813–1820 (2005).
    Article  Google Scholar 

    9.
    Brodie, J. F., Redford, K. H. & Doak, D. F. Ecological function analysis: incorporating species roles into conservation. Trends Ecol. Evol. 33, 840–850 (2018).
    PubMed  Article  Google Scholar 

    10.
    Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).
    Article  Google Scholar 

    11.
    Decker, E., Linke, S., Hermoso, V. & Geist, J. Incorporating ecological functions in conservation decision making. Ecol. Evol. 7, 8273–8281 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Leclerc, C., Villéger, S., Marino, C. & Bellard, C. Global changes threaten functional and taxonomic diversity of insular species worldwide. Divers. Distrib. 26, 402–414 (2020).
    Article  Google Scholar 

    13.
    Zipkin, E. F., DiRenzo, G. V., Ray, J. M., Rossman, S. & Lips, K. P. Tropical snake diversity collapses after widespread amphibian loss. Science 367, 814–816 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    14.
    Hedges, S. B. & Woods, C. A. Caribbean hot spot. Nature 364, 375. https://doi.org/10.1038/364375a0 (1993).
    ADS  Article  Google Scholar 

    15.
    Heinicke, M. P., Duellman, W. E. & Hedges, S. B. Major Caribbean and Central American frog faunas originated by ancient oceanic dispersal. Proc. Natl. Acad. Sci. 104, 10092–10097 (2007).
    ADS  CAS  PubMed  Article  Google Scholar 

    16.
    ITWG (Iguana Taxonomy Working Group). A checklist of the iguanas of the world (Iguanidae; Iguaninae). Herpetol. Conserv. Biol. 11, 4–46 (2016).

    17.
    Henderson, R. W. Consequences of predator introductions and habitat destruction on amphibians and reptiles in the post-Columbus West Indies. Caribb. J. Sci. 28, 1–10 (1992).
    Google Scholar 

    18.
    Alberts, A. C. Developing recovery strategies for West Indian Rock Iguanas. Endangered Species UPDATA 16, 107–110 (1999).
    Google Scholar 

    19.
    Hartley, L. M., Glor, R. E., Sproston, A. L., Powell, R. & Parmer-Lee, J. S. Jr. Germination rates of seeds consumed by two species of Rock Iguanas (Cyclura spp.) in the Dominican Republic. Caribb. J. Sci. 36, 149–151 (2000).
    Google Scholar 

    20.
    Malone, C. L., Wheeler, T., Taylor, J. F. & Davis, S. K. Phylogeography of the Caribbean rock Iguana (Cyclura): implications for conservation and insights on the biogeographic history of the West Indies. Mol. Phylog. Evol. 17, 269–279 (2000).
    CAS  Article  Google Scholar 

    21.
    Alberts, A. C. et al. (eds) Iguanas-Biology and Conservation (University of California Press, California, 2004).
    Google Scholar 

    22.
    US Fish and Wildlife Report. Caribbean Iguana Conservation Workshop. Exploring a region-wide approach to recovery. San Juan, Puerto Rico. https://www.fws.gov/international/pdf/Caribbean-Iguana-Workshop-Proceedings.pdf (2013).

    23.
    González-Rossell, A. Ecologia y conservación de la iguana (Cyclura nubila nubila) en Cuba. Dissertation, Universitat d’Alacant (Alcalá de Henares, España, 2018).

    24.
    Rodríguez-Schettino, L. (ed.) The Iguanid lizards of Cuba (Florida University Press, Gainesville, 1999).
    Google Scholar 

    25.
    Day, M. Cyclura nubila. The IUCN Red List of Threatened Species; e.T6030A12338655. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.1996.RLTS.T6030A12338655.en (1996)

    26.
    Knapp, C. R. & Malone, C. L. Patterns of reproductive success and genetic variability in a translocated iguana population. Herpetologica 59, 195–202 (2003).
    Article  Google Scholar 

    27.
    Malone, C. L., Knapp, C. R., Taylor, J. F. & Davis, S. K. Genetic consequences of Pleistocene fragmentation: isolation, drift, and loss of diversity in rock iguanas (Cyclura). Conserv. Genet. 4, 1–15 (2003).
    CAS  Article  Google Scholar 

    28.
    An, J., Sommer, J., Shore, G. D. & Williamson, J. E. Characterization of 20 microsatellite marker loci in the West Indian Rock Iguana (Cyclura nubila). Conserv. Genet. 5, 121–125 (2004).
    CAS  Article  Google Scholar 

    29.
    Wildlife Conservation Society. Global Conservation Strategy. Mesoamerica and Western Caribbean. https://www.wcs.org/about-us/2020-strategy (2020).

    30.
    Critical Ecosystem Partnership Fund (CEPF). The Caribben Islands Biodiversity Hotspot. https://www.cepf.net/sites/default/files/final_caribbean_ep.pdf (2010).

    31.
    Waples, R. S. & Do, C. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol. Appl. 3, 244–262 (2010).
    PubMed  Article  Google Scholar 

    32.
    Soltis, P. S. & Soltis, D. E. Applying the bootstrap in phylogeny reconstruction. Stat. Sci. 18, 256–267 (2003).
    MathSciNet  MATH  Article  Google Scholar 

    33.
    Sites, J. W., Davis, S. K., Guerra, T., Iverson, J. B. & Snell, H. L. Character congruence and phylogenetic signal in molecular and morphological data sets: a case study in the living iguanas (Squamata, Iguanidae). Mol. Biol. Evol. 13, 1087–1105 (1996).
    CAS  PubMed  Article  Google Scholar 

    34.
    Starostova, Z., Rehak, I. & Frynta, D. New haplotypes of Cyclura nubila nubila from Cuba changed the phylogenetic tree of rock iguanas: a challenge for conservation strategies?. Amphib-reptil 31, 134–143 (2010).
    Article  Google Scholar 

    35.
    Allendorf, F. W. & Luikart, G. Conservation and the Genetics of Populations (Wiley-Blackwell, New York, 2006).
    Google Scholar 

    36.
    England, P. R., Cornuet, J. M., Berthier, P., Tallmon, D. A. & Luikart, G. Estimating effective population size from linkage disequilibrium: severe bias in small samples. Conserv. Genet. 7, 303–308 (2007).
    Article  Google Scholar 

    37.
    Sunny, A., Monroy-Vilchis, O., Fajardo, V. & Aguilera-Reyes, U. Genetic diversity and structure of an endemic and critically endangered stream river salamander (Caudata: Ambystoma leorae) in Mexico. Conserv. Genet. 15, 49–59 (2014).
    CAS  Article  Google Scholar 

    38.
    Franklin, I. R. & Frankham, R. How large must populations be to retain evolutionary potential?. Anim. Conserv. 1, 79–70 (1998).
    Article  Google Scholar 

    39.
    Vázquez-Domínguez, E., Suárez-Atilano, M., Booth, W., González-Baca, C. & Cuarón, A. D. Genetic evidence of a recent successful colonization of introduced species on islands: Boa constrictor imperator on Cozumel Island. Biol. Invasions 14, 2101–2116 (2012).
    Article  Google Scholar 

    40.
    Frankham, R., Ballou, J. & Briscoe, D. Introduction to Conservation Genetics (Cambridge University Press, Cambridge, 2005).
    Google Scholar 

    41.
    Iturralde-Vinent, M. A. Meso-Cenozoic Caribbean paleogeography: Implications for the historical biogeography of the region. Int. Geol. Rev. 48, 791–827 (2006).
    Article  Google Scholar 

    42.
    Iturralde-Vinent, M. A. & MacPhee, R. D. E. Paleogeography of the Caribbean region: Implications for Cenozoic Biogeography. Bull. Am. Mus. Nat. Hist. 238, 1–95 (1999).
    Google Scholar 

    43.
    Rodríguez, A. Biogeographic origin and radiation of Cuban Eleutherodactylus frogs of the auriculatus species group, inferred from mitochondrial and nuclear gene sequences. Mol. Phylog. Evol. 54, 179–186 (2010).
    Article  Google Scholar 

    44.
    Cobos, M. E. & Bosch, R. A. Recent and future threats to the endangered Cuban toad Peltophryne longinasus: potential additive impacts of climate change and habitat loss. Oryx 52, 116–125 (2018).
    Article  Google Scholar 

    45.
    Robertson, J. M. et al. Identifying evolutionarily significant units and prioritizing populations for management of islands. West. N. Am. Nat. 7, 397–411 (2014).
    Google Scholar 

    46.
    Burton, F. J. Revision to species of Cyclura nubila lewisi, the Grand Cayman Blue Iguana. Caribb. J. Sci. 40, 198–203 (2004).
    Google Scholar 

    47.
    Dinerstein, E. & Olson, D. M. A Conservation Assessment of the Terrestrial Ecoregions of Latin America and the Caribbean (The World Bank in Association with WWF, Washington, 1995).
    Google Scholar 

    48.
    Wasser, S. K. et al. Assigning African elephant DNA to geographic region of origin: applications to the ivory trade. Proc. Natl. Acad. Sci. 101, 14847–14852 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    49.
    Zhang, H. et al. Molecular tracing of confiscated pangolin scales for conservation and illegal trade monitoring in Southeast Asia. Global Ecol. Conserv. 4, 412–422 (2015).
    Google Scholar 

    50.
    Shaney, K. J. et al. A suite of potentially amplifiable microsatellite loci for reptiles of conservation concern from Africa and Asia. Conserv. Genet. Res. 8, 307–311 (2016).
    Article  Google Scholar 

    51.
    de Miranda, E. B. P. The plight of reptiles as ecological actors in the tropics. Front. Ecol. Evol. 5, 159. https://doi.org/10.3389/fevo.2017.00159 (2017).
    Article  Google Scholar 

    52.
    Beovides-Casas, K. & Mancina, C. A. Natural history and morphometry of the Cuban iguana (Cyclura nubila Gray, 1831) in Cayo Sijú Cuba. Anim. Biodiv. Conserv. 29, 1–8 (2006).
    Google Scholar 

    53.
    HACC. Guidelines for use of live amphibians and reptiles in field and laboratory research. Revised by the Herpetological Animal Care and Use Committee of the American Society of Ichthyologists and Herpetologists (Committee Chair: Steven J. Beaupre, Members: Elliott R. Jacobson, Harvey B. Lillywhite, and Kelly Zamudio) (2014).

    54.
    Chatterji, S. & Pachter, L. Reference based annotation with GeneMapper. Genome Biol. 7, 29. https://doi.org/10.1186/gb-2006-7-4-r29 (2006).
    CAS  Article  Google Scholar 

    55.
    Arévalo, E., Davis, S. K. & Sites, J. W. Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in central Mexico. Syst. Biol. 43, 387–418 (1994).
    Article  Google Scholar 

    56.
    Kearse, M., Moir, R., Wilson, M. & Stones-Havas, S. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    57.
    Raymond, M. & Rousset, F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Heredity 86, 248–249 (1995).
    Article  Google Scholar 

    58.
    Rice, W. R. Analysing tables of statistical test. Evolution 43, 223–225 (1989).
    PubMed  Article  Google Scholar 

    59.
    Van Oosterhout, C., Hutchinson, W. F., Willis, D. P. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping error in microsatellites data. Mol. Ecol. Notes 4, 535–538 (2004).
    Article  CAS  Google Scholar 

    60.
    Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).
    CAS  PubMed  PubMed Central  Google Scholar 

    61.
    Peakall, R. & Smouse, P. E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).
    Article  Google Scholar 

    62.
    Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers”. Bioinformatics 24, 1403–1405 (2008).
    CAS  Article  Google Scholar 

    63.
    Do, C. et al. NeEstimator V2: Sre-implementation of software for estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. 14, 209–214 (2014).
    CAS  Article  Google Scholar 

    64.
    Chybicki, I. J. & Burczyk, J. Simultaneous estimation of null alleles and inbreeding coefficients. J. Heredity 100, 106–113 (2009).
    CAS  Article  Google Scholar 

    65.
    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).
    CAS  PubMed  PubMed Central  Google Scholar 

    66.
    Garza, J. C. & Williamson, E. G. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10, 305–318 (2001).
    CAS  PubMed  Article  Google Scholar 

    67.
    Foll, M. & Gaggiotti, O. E. Identifying the environmental factors that determine the genetic structure of populations. Genetics 174, 875–891 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Goudet, J. FSTAT (Version 1.2): a computer program to calculate F-Statisitics. J. Heredity 86, 485–486 (1995).
    Article  Google Scholar 

    69.
    Nei, M. Genetic distance between populations. Am. Nat. 106, 283–292 (1972).
    Article  Google Scholar 

    70.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    71.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Article  Google Scholar 

    72.
    Earl, D. A. & von Holdt, B. M. Structure-harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv. Genet. Res. 4, 359–361 (2012).
    Article  Google Scholar 

    73.
    Excoffier, L., Laval, G. & Schneider, S. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50 (2005).
    CAS  Article  Google Scholar 

    74.
    Kalinowski, S. T., Wagner, A. P. & Taper, M. L. ML-Relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol. Ecol. Notes 6, 576–579 (2006).
    CAS  Article  Google Scholar 

    75.
    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
    CAS  PubMed  Article  Google Scholar 

    76.
    Leigh, J. W. & Bryant, D. PopART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
    Article  Google Scholar 

    77.
    Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Ecol. Biol. 16, 37–48 (1999).
    CAS  Article  Google Scholar 

    78.
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 110. Virus Evol. https://doi.org/10.1093/ve/vey016 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    79.
    Blankers, T. et al. Contrasting global-scale evolutionary radiations: Phylogeny, diversification, and morphological evolution in the major clades of iguanian lizards. Biol. J. Linn. Soc. 108, 127–143 (2012).
    Article  Google Scholar 

    80.
    Pyron, R. A., Burbrink, F. T. & Wiens, J. J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13, 93. https://doi.org/10.1186/1471-2148-13-93 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    81.
    Carroll, R. L. Vertebrate Paleontology and Evolution (WH Freeman, New York, 1988).
    Google Scholar 

    82.
    Townsend, T. M. et al. Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Mol. Phylogen. Evol. 61, 363–380 (2011).
    Article  Google Scholar 

    83.
    MacLeod, A. Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana. Proc. R. Soc. B 282, 20150425. https://doi.org/10.1098/rspb.2015.0425 (2015).
    Article  PubMed  Google Scholar  More

  • in

    Effects of disturbances by forest elephants on diversity of trees and insects in tropical rainforests on Mount Cameroon

    Study area
    Mount Cameroon (South-Western Province, Cameroon) is the highest mountain in West/Central Africa. This active volcano rises from the Gulf of Guinea seashore up to 4095 m asl. Its southwestern slope represents the only complete altitudinal gradient of primary forests from lowland up to the timberline (~ 2200 m asl.) in the Afrotropics. Belonging to the biodiversity hotspot, Mount Cameroon harbour numerous endemics45,46,47. With  > 12,000 mm of yearly precipitation, foothills of Mount Cameroon belong among the globally wettest places42. Most precipitation occur during the wet season (June–September;  > 2000 mm monthly), whilst the dry season (late December–February) usually lacks any strong rains42. Since 2009, most of its forests have become protected by the Mount Cameroon National Park.
    Volcanism is the strongest natural disturbance on Mount Cameroon with the frequency of eruptions every ten to thirty years. Remarkably, on the studied southwestern slope, two eruptions in 1982 and 1999 created a continuous strip of bare lava rocks (in this study referred as ‘the lava flow’) interrupting the forests on the southwestern slope from above the timberline down to the seashore (Fig. 1a).
    A small population of forest elephants (Loxodonta cyclotis) strongly affects forests above ca. 800 m asl. on the southwestern slope28,45. It is highly isolated from the nearest populations of the Korup NP and the Banyang-Mbo Wildlife Sanctuary, as well as from much larger metapopulations in the Congo Basin48. It has been estimated to ~ 130 individuals with a patchy local distribution28. On the southwestern slope, they concentrate around three crater lakes representing the only available water sources during the high dry season, although their local elevational range covers the gradient from lowlands to montane grasslands just above the timberline28. They rarely (if ever) cross the old lava flows, representing natural obstacles dividing forests of the southwestern slope to two blocks with different dynamics. As a result, forests on the western side of the longest lava flow have an open structure, with numerous extensive clearings and ‘elephant pastures’, whereas eastern forests are characteristic by undisturbed dense canopy (Fig. 1). To our knowledge, the two forest blocks are not influenced by any extensive human activities, nor differ in any significant environmental conditions28,45. Hereafter, we refer the forests west and east from the lava flow as disturbed and undisturbed, respectively. Effects of forest elephant disturbances on communities of trees and insects were investigated at four localities, two in an upland forest (1100 m asl.), and two in a montane forest (1850 m asl.).
    Tree diversity and forest structure
    At each of four sampling sites, eight circular plots (20 m radius, ~ 150 m from each other) were established in high canopy forests (although sparse in the undisturbed sites), any larger clearings were avoided. In the disturbed forest sites, the plots were previously used for a study of elevational diversity patterns40,42. In the undisturbed forest sites, plots were established specifically for this study.
    To assess the tree diversity in both disturbed and undisturbed forest plots, all living and dead trees with diameter at breast height (DBH, 1.3 m) ≥ 10 cm were identified to (morpho)species (see40 for details). To study impact of elephant disturbances on forest structure, each plot was characterized by twelve descriptors. Besides tree species richness, living and dead trees with DBH ≥ 10 cm were counted. Consequently, DBH and basal area of each tree were measured and averaged per plot (mean DBH and mean basal area). Height of each tree was estimated and averaged per plot (mean height), together with the tallest tree height (maximum height) per plot. From these measurements, two additional indices were computed for each tree: stem slenderness index (SSI) was calculated as a ratio between tree height and DBH, and tree volume was estimated from the tree height and basal area49. Both measurements were then averaged per plot (mean SSI and mean tree volume). Finally, following Grote50, proxies of shrub, lower canopy, and higher canopy coverages per plot were estimated by summing the DBH of three tree height categories: 0–8 m (shrubs), 8–16 m (lower canopy), > 16 m (higher canopy).
    Insect sampling
    Butterflies and moths (Lepidoptera) were selected as the focal insect groups because they belong into one of the species richest insect orders, with relatively well-known ecology and taxonomy, and with well-standardized quantitative sampling methods. Moreover, they strongly differ in their habitat use29. In conclusion, butterflies51 and moths52 are often used as efficient bioindicators of changes in tropical forest ecosystems, especially useful if both groups are combined in a single study. Within each sampling plot, fruit-feeding lepidopterans were sampled by five bait traps (four in understory and one in canopy per sampling, i.e. 40 traps per sampling site, and 160 traps in total) baited by fermented bananas (see Maicher et al.42 for details). All fruit-feeding butterflies and moths (hereinafter referred as butterflies and fruit-feeding moths) were killed (this is necessary to avoid repetitive counting of the same individuals53) daily for ten consecutive days and identified to (morpho)species.
    Additionally, moths were attracted by light at three ‘mothing plots’ per sampling site, established out of the sampling plots described above. These plots were selected to characterize the local heterogeneity of forest habitats and separated by a few hundred meters from each other. To keep the necessary standardisation, all mothing plots at both types of forest were established in semi-open patches, avoiding both dense forest and larger openings. Moths were attracted by a single light (see Maicher et al.42 for details) during each of six complete nights per elevation (i.e., two nights per plot). Six target moth groups (Lymantriinae, Notodontidae, Lasiocampidae, Sphingidae, Saturniidae, and Eupterotidae; hereafter referred as light-attracted moths) were collected manually, killed, and later identified into (morpho)species. The three lepidopteran datasets (butterflies, and fruit-feeding and light-attracted moths) were extracted from Maicher et al.42 for the disturbed forest plots, whilst the described sampling was performed in the undisturbed forest plots specifically for this study. Voucher specimens were deposited in the Nature Education Centre, Jagiellonian University, Kraków, Poland.
    To partially cover the seasonality54, the insect sampling was repeated during transition from wet to dry season (November/December), and transition from dry to wet season (April/May) in all disturbed and undisturbed forest plots.
    Diversity analyses
    To check sampling completeness of all focal groups, the sampling coverages were computed to evaluate our data quality using the iNEXT package55 in R 3.5.156. For all focal groups in all seasons and at all elevations, the sampling coverages were always ≥ 0.84 (mostly even ≥ 0.90), indicating a sufficient coverage of the sampled communities (Supplementary Table S1). Therefore, observed species richness was used in all analyses57.
    Effects of disturbance on species richness were analysed separately for each focal group by Generalized Estimated Equations (GEE) using the geepack package58. For trees, species richness from individual plots were used as a ‘sample’ with an independent covariance structure, with disturbance, elevation, and their interaction treated as explanatory variables. For lepidopterans, because of the temporal pseudo-replicative sampling design, species richness from a sampling day (butterflies and fruit-feeding moths) or night (light-attracted moths) at individual plot was used as a ‘sample’ with the first-order autoregressive relationship AR(1) covariance structure (i.e. repeated measurements design). Disturbance, season, elevation, disturbance × season, and disturbance × elevation were treated as explanatory variables. All models were conducted with Poisson distribution and log-link function. Pairwise post-hoc comparisons of the estimated marginal means were compared by Wald χ2 tests. Additionally, species richness of individual families of trees, butterflies, and light-attracted moths were analysed by Redundancy Analyses (RDA), a multivariate analogue of regression, based on the length of gradients in the data59. All families with  > 5 species were included in three RDA models, separately for the studied groups (the subfamily name Lymantriinae is used, because they are the only group of the hyperdiverse Erebidae family of the light-attracted moths). Fruit-feeding moth families were not analyzed because 83% of their specimens belonged to Erebidae and all other families were therefore minor in the sampled data. Species richness of individual families per plot were used as response variables, whilst interaction of disturbance and elevation were applied as factorial explanatory variable (for butterflies and light-attracted moths, the temporal variation was treated by adding season as a covariate).
    Differences in composition of communities between the disturbed and undisturbed forests were analysed by multivariate ordination methods59, separately for each focal group. Firstly, the main patterns in species composition of individual plots were visualized by Non-Metric Multidimensional Scaling (NMDS) in Primer-E v660. NMDSs were generated using Bray–Curtis similarity, computed from square-root transformed species abundances per plot. Subsequently, influence of disturbance on community composition of each focal group was tested by constrained partial Canonical Correspondence Analyses (CCA) with log‐transformed species’ abundances as response variables and elevation as covariate59. Significance of all partial CCAs were tested by Monte Carlo permutation tests with 9999 permutations.
    Finally, differences in the forest structure descriptors between the disturbed and undisturbed forests were analysed by partial Redundancy Analysis (RDA). Prior to the analysis, preliminary checking of the multicollinearity table among the structure descriptors was investigated. Only forest structure descriptors with pairwise collinearity More