1.
Carlton, J. T. Pattern, process, and prediction in marine invasion ecology. Biol. Conserv. 78, 97–106. https://doi.org/10.1016/0006-3207(96)00020-1 (1996).
Article Google Scholar
2.
Stepien, C. A., Brown, J. E., Neilson, M. E. & Tumeo, M. A. Genetic diversity of invasive species in the Great Lakes versus their Eurasian source populations: insights for risk analysis. Risk Anal. 25, 1043–1060. https://doi.org/10.1111/j.1539-6924.2005.00655.x (2005).
Article PubMed Google Scholar
3.
Geller, J. B., Darling, J. A. & Carlton, J. T. Genetic perspectives on marine biological invasions. Annu. Rev. Mar. Sci. 2, 367–393. https://doi.org/10.1146/annurev.marine.010908.163745 (2010).
ADS Article Google Scholar
4.
Estoup, A. & Guillemaud, T. Reconstructing routes of invasion using genetic data: why, how and so what?. Mol. Ecol. 19, 4113–4130. https://doi.org/10.1111/j.1365-294X.2010.04773.x (2010).
Article PubMed Google Scholar
5.
Hudson, J., Viard, F., Roby, C. & Rius, M. Anthropogenic transport of species across native ranges: unpredictable genetic and evolutionary consequences. Biol. Lett. https://doi.org/10.1098/rsbl.2016.0620 (2016).
Article PubMed PubMed Central Google Scholar
6.
Carlton, J. T. Biological invasions and cryptogenic species. Ecology 77, 1653–1655. https://doi.org/10.2307/2265767 (1996).
Article Google Scholar
7.
Holland, B. S. Genetics of marine bioinvasions. Hydrobiologia 420, 63–71. https://doi.org/10.1023/a:1003929519809 (2000).
CAS Article Google Scholar
8.
Reitzel, A. M., Herrera, S., Layden, M. J., Martindale, M. Q. & Shank, T. M. Going where traditional markers have not gone before: utility of and promise for RAD sequencing in marine invertebrate phylogeography and population genomics. Mol. Ecol. 22, 2953–2970. https://doi.org/10.1111/mec.12228 (2013).
CAS Article PubMed PubMed Central Google Scholar
9.
Darling, J. A. et al. Recommendations for developing and applying genetic tools to assess and manage biological invasions in marine ecosystems. Mar. Pol. 85, 54–64. https://doi.org/10.1016/j.marpol.2017.08.014 (2017).
Article Google Scholar
10.
Palumbi, S. R. Genetic-divergence, reproductive isolation, and marine speciation. Annu. Rev. Ecol. Syst. 25, 547–572. https://doi.org/10.1146/annurev.ecolsys.25.1.547 (1994).
Article Google Scholar
11.
Kelly, R. P. & Palumbi, S. R. Genetic Structure among 50 species of the northeastern Pacific rocky intertidal community. PLoS ONE 5, 13. https://doi.org/10.1371/journal.pone.0008594 (2010).
CAS Article Google Scholar
12.
Boissin, E., Stohr, S. & Chenuil, A. Did vicariance and adaptation drive cryptic speciation and evolution of brooding in Ophioderma longicauda (Echinodermata: Ophiuroidea), a common Atlanto-Mediterranean ophiuroid?. Mol. Ecol. 20, 4737–4755. https://doi.org/10.1111/j.1365-294X.2011.05309.x (2011).
CAS Article PubMed Google Scholar
13.
Selkoe, K. A. & Toonen, R. J. Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Mar. Ecol. Prog. Ser. 436, 291–305. https://doi.org/10.3354/meps09238 (2011).
ADS Article Google Scholar
14.
Stewart, J. R. & Lister, A. M. Cryptic northern refugia and the origins of the modern biota. Trends Ecol. Evol. 16, 608–613. https://doi.org/10.1016/s0169-5347(01)02338-2 (2001).
Article Google Scholar
15.
Hewitt, G. M. Genetic consequences of climatic oscillations in the quaternary. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 359, 183–195. https://doi.org/10.1098/rstb.2003.1388 (2004).
CAS Article Google Scholar
16.
Provan, J. & Bennett, K. D. Phylogeographic insights into cryptic glacial refugia. Trends Ecol. Evol. 23, 564–571. https://doi.org/10.1016/j.tree.2008.06.010 (2008).
Article PubMed Google Scholar
17.
Carlton, J. T. & Geller, J. B. Ecological roulette—the global transport of nonindigenous marine organisms. Science 261, 78–82. https://doi.org/10.1126/science.261.5117.78 (1993).
ADS Article Google Scholar
18.
Ruiz, G. M., Fofonoff, P. W., Carlton, J. T., Wonham, M. J. & Hines, A. H. Invasion of coastal marine communities in North America: apparent patterns, processes, and biases. Annu. Rev. Ecol. Syst. 31, 481–531. https://doi.org/10.1146/annurev.ecolsys.31.1.481 (2000).
Article Google Scholar
19.
Molnar, J. L., Gamboa, R. L., Revenga, C. & Spalding, M. D. Assessing the global threat of invasive species to marine biodiversity. Front. Ecol. Environ. 6, 485–492. https://doi.org/10.1890/070064 (2008).
Article Google Scholar
20.
Morton, J. The habits of Cyclope neritea, a style-bearing stenoglossan gastropod. Proc. Malacol. Soc. Lond. 34, 96–105 (1960).
Google Scholar
21.
Gomoiu, M. T. Biologisches Studium der Arten Nassa reticulata L. und Cyclonassa neritea (L.) im Schwarzen Meer (rumänischer Küstenbereich). Rev. Roum. Biol. Ser. Zool. 9, 39–49 (1964).
Google Scholar
22.
Galindo, L. A., Puillandre, N., Utge, J., Lozouet, P. & Bouchet, P. The phylogeny and systematics of the Nassariidae revisited (Gastropoda, Buccinoidea). Mol. Phylogenet. Evol. 99, 337–353. https://doi.org/10.1016/j.ympev.2016.03.019 (2016).
Article PubMed Google Scholar
23.
Poppe, G. & Goto, Y. European Seashells Vol. 1 (Vera Christa Hemmen, Germany, 1991).
Google Scholar
24.
Gofas, S., Moreno, D. & Salas, C. Moluscos Marinos de Andalucía. (Servicio de Publicaciones e Intercambio Científico, Universidad de Málaga., 2011).
25.
WoRMS. http://www.marinespecies.org/aphia.php?p=taxdetails&id=246140, accessed 28 January 2019 (2019).
26.
Pérès, J. M. & Picard, J. Nouveau manuel de bionomie benthique. Recl. Trav. Stn. Mar. Endoume 31, 5–137 (1964).
Google Scholar
27.
Mars, P. Recherches sur quelques étangs du littoral méditerranéen français et leurs faunes malacologiques. Vie et milieu supp. 20, 359 (1966).
Google Scholar
28.
Zaouali, J. Influence des facteurs thermiques et halins sur la faune malacologique de quelques lagunes tunisiennes (lac lchkeul, lac de Bizerte, lac de Tunis, mer de Bou Grara. Rapp. Comm. Int. Mer Medit. 23, 99–101 (1975).
Google Scholar
29.
UNEP/MAP-RAC/SPA. Handbook for Interpreting Types of Marine Habitat for the Selection of Sites to be Included in the National Inventories of Natural Sites of Conservation Interest (Bellan-Santini D, Bellan G, Ghazi Bitar G, Harmelin J-G, Pergent ) 217 (2007).
30.
Russo, P. Lagoon malacofauna: results of malacological research in the Venice Lagoon. Boll. Malacol. 53, 49–62 (2017).
Google Scholar
31.
Nobre, A. Moluscos Marinhos de Portugal (Imprensa Portuguesa, Porto, 1931).
Google Scholar
32.
Grossu, A. V. Gastropoda Prosobranchia şi Opisthobranchia. Fauna Republicii Populare Române. Mollusca, Bucureşti, 3, fasc. 2, p 220. (1956).
33.
Parenzan, P. Carta d’identità delle conchiglie del Mediterraneo. Volume Primo. Gasteropodi. Bios Taras, Taranto, 283 (1970).
34.
Sauriau, P. G. Spread of cyclope-neritea (mollusca, gastropoda) along the north-eastern Atlantic coasts in relation to oyster culture and to climatic fluctuations. Mar. Biol. 109, 299–309. https://doi.org/10.1007/bf01319398 (1991).
Article Google Scholar
35.
Anistratenko, V., Khaliman, I. & Anistratenko, O. The Molluscs of the Sea of Azov, Naukova Dumka, p 186. ISBN: 978-966-00-1112-0. (2011).
36.
Revkov, N. et al. in BSC, State of the Environment of the Black Sea (20012006/7) 243–290. (Black Sea Commission Publications 2008-3, 2008).
37.
Gili, C. & Martinell, J. Phylogeny, speciation and species turnover. The case of the Mediterranean gastropods of genus Cyclope Risso, 1826. Lethaia 33, 236–250. https://doi.org/10.1080/00241160025100080 (2000).
Article Google Scholar
38.
Sabelli, B. & Taviani, M. In The Mediterranean Sea: Its History and Present Challenges (eds Goffredo, S. & Dubinsky, Z.) 285–306 (Springer, Dordrecht, 2014).
Google Scholar
39.
Borsa, P. et al. Infraspecific zoogeography of the Mediterranean: population genetic analysis on sixteen atlanto-mediterranean species (fishes and invertebrates). Vie Milieu 47, 295–305 (1997).
Google Scholar
40.
Bremer, J. R. A., Vinas, J., Mejuto, J., Ely, B. & Pla, C. Comparative phylogeography of Atlantic bluefin tuna and swordfish: the combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes. Mol. Phylogenet. Evol. 36, 169–187. https://doi.org/10.1016/j.ympev.2004.12.011 (2005).
CAS Article Google Scholar
41.
Patarnello, T., Volckaert, F. & Castilho, R. Pillars of Hercules: is the Atlantic-Mediterranean transition a phylogeographical break?. Mol. Ecol. 16, 4426–4444. https://doi.org/10.1111/j.1365-294X.2007.03477.x (2007).
Article PubMed Google Scholar
42.
Maggs, C. A. et al. Evaluating signatures of glacial refugia for north Atlantic benthic marine taxa. Ecology 89, S108–S122. https://doi.org/10.1890/08-0257.1 (2008).
Article PubMed Google Scholar
43.
Rolán, E. D. Especies más de moluscos mediterráneos introducidos en la bahía de O Grove. Thalassas 10, 135 (1992).
ADS Google Scholar
44.
Bachelet, G., Cazaux, C., Gantès, H. & Labourg, P. Contribution à l’étude de la faune marine de la région d’Arcachon. Bull. Cent. Etudes Rech. Sci. Biarritz IX, 45–64 (1980).
Google Scholar
45.
Bachelet, G. et al. Invasion of the eastern Bay of Biscay by the nassariid gastropod Cyclope neritea: origin and effects on resident fauna. Mar. Ecol. Prog. Ser. 276, 147–159. https://doi.org/10.3354/meps276147 (2004).
ADS Article Google Scholar
46.
Simon-Bouhet, B., Garcia-Meunier, P. & Viard, F. Multiple introductions promote range expansion of the mollusc Cyclope neritea (Nassariidae) in France: evidence from mitochondrial sequence data. Mol. Ecol. 15, 1699–1711. https://doi.org/10.1111/j.1365-294X.2006.02881.x (2006).
CAS Article PubMed Google Scholar
47.
Couceiro, L., Miguez, A., Ruiz, J. M. & Barreiro, R. Introduced status of Cyclope neritea (Gastropoda, Nassariidae) in the NW Iberian Peninsula confirmed by mitochondrial sequence data. Mar. Ecol. Prog. Ser. 354, 141–146. https://doi.org/10.3354/meps07257 (2008).
ADS CAS Article Google Scholar
48.
Simon-Bouhet, B., Daguin, C., Garcia-Meunier, P. & Viard, F. Polymorphic microsatellites for the study of newly established populations of the gastropod Cyclope neritea. Mol. Ecol. Notes 5, 121–123. https://doi.org/10.1111/j.1471-8286.2005.00857.x (2005).
CAS Article Google Scholar
49.
Aissaoui, C., Galindo, L. A., Puillandre, N. & Bouchet, P. The nassariids from the Gulf of Gabes revisited (Neogastropoda, Nassariidae). Mar. Biol. Res. 13, 370–389. https://doi.org/10.1080/17451000.2016.1273528 (2017).
Article Google Scholar
50.
Knowlton, N. & Jackson, J. Inbreeding and outbreeding in marine invertebrates. In The Natural History of Inbreeding and Outbreeding: Theoretical and Empirical Perspectives (ed. Thornhill, N. W.) 200–249 (University of Chicago Press, Chicago, 1993).
Google Scholar
51.
Cahill, A. E. & Levinton, J. S. Genetic differentiation and reduced genetic diversity at the northern range edge of two species with different dispersal modes. Mol. Ecol. 25, 515–526. https://doi.org/10.1111/mec.13497 (2016).
Article PubMed Google Scholar
52.
Cahill, A. E. & Viard, F. Genetic structure in native and non-native populations of the direct-developing gastropod Crepidula convexa. Mar. Biol. 161, 2433–2443. https://doi.org/10.1007/s00227-014-2519-2 (2014).
Article Google Scholar
53.
Boissin, E. et al. Contemporary genetic structure and postglacial demographic history of the black scorpionfish, Scorpaena porcus, in the Mediterranean and the Black Seas. Mol. Ecol. 25, 2195–2209. https://doi.org/10.1111/mec.13616 (2016).
CAS Article PubMed Google Scholar
54.
Simon-Bouhet, B. Expansion d’aire et processus d’introductions biologiques en milieu marin: le cas de Cyclope neritea (Nassariidae) sur les côtes françaises. Thèse de Doctorat, Université de La Rochelle, France, p. 248 (2006).
55.
Couceiro, L., Lopez, L., Ruiz, J. M. & Barreiro, R. Population structure and range expansion: the case of the invasive gastropod Cyclope neritea in northwest Iberian Peninsula. Integr. Zool. 7, 286–298. https://doi.org/10.1111/j.1749-4877.2012.00305.x (2012).
Article PubMed Google Scholar
56.
Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57, 573–583. https://doi.org/10.1641/b570707 (2007).
Article Google Scholar
57.
Boissin, E., Hoareau, T. B. & Berrebi, P. Effects of current and historic habitat fragmentation on the genetic structure of the sand goby Pomatoschistus minutus (Osteichthys, Gobiidae). Biol. J. Linn. Soc. 102, 175–198. https://doi.org/10.1111/j.1095-8312.2010.01565.x (2011).
Article Google Scholar
58.
Taviani, M. The Mediterranean benthos from Late Miocene up to Present: ten million years of dramatic climatic and geological vicissitudes. Biol. Mar. Mediterr. 9, 445–463 (2002).
Google Scholar
59.
Marino, I. A. M., Pujolar, J. M. & Zane, L. Reconciling deep calibration and demographic history: Bayesian inference of post glacial colonization patterns in Carcinus aestuarii (Nardo, 1847) and C. maenas (Linnaeus, 1758). PLoS ONE 6, 10. https://doi.org/10.1371/journal.pone.0028567 (2011).
CAS Article Google Scholar
60.
Grant, W. S., Liu, M., Gao, T. X. & Yanagimoto, T. Limits of Bayesian skyline plot analysis of mtDNA sequences to infer historical demographies in Pacific herring (and other species). Mol. Phylogenet. Evol. 65, 203–212. https://doi.org/10.1016/j.ympev.2012.06.006 (2012).
Article PubMed Google Scholar
61.
Silva, G., Horne, J. B. & Castilho, R. Anchovies go north and west without losing diversity: post-glacial range expansions in a small pelagic fish. J. Biogeogr. 41, 1171–1182. https://doi.org/10.1111/jbi.12275 (2014).
Article Google Scholar
62.
Albaina, N., Olsen, J. L., Couceiro, L., Ruiz, J. M. & Barreiro, R. Recent history of the European Nassarius nitidus (Gastropoda): phylogeographic evidence of glacial refugia and colonization pathways. Mar. Biol. 159, 1871–1884. https://doi.org/10.1007/s00227-012-1975-9 (2012).
Article Google Scholar
63.
Krijgsman, W. et al. Quaternary time scales for the Pontocaspian domain: interbasinal connectivity and faunal evolution. Earth Sci. Rev. 188, 1–40. https://doi.org/10.1016/j.earscirev.2018.10.013 (2018).
ADS Article Google Scholar
64.
Buyukmeric, Y. Postglacial floodings of the Marmara Sea: molluscs and sediments tell the story. Geomar. Lett. 36, 307–321. https://doi.org/10.1007/s00367-016-0446-6 (2016).
ADS Article Google Scholar
65.
Semikolennykh, D., Ignatov, E., Yanina T. & Arslanov, K. Malacofauna of the Kerch Strait during the Late Pleistocene-Holocene: paleogeographical analysis. In: IGCP 610 Fourth Plenary Conference and Field Trip, Tbilisi, Georgia, 2–9 October 2016, 149–152 (2016).
66.
Samadi, S., Lambourdiere, J., Hebert, P. & Boisselier-Dubayle, M. C. Polymorphic microsatellites for the study of adults, egg-masses and hatchlings of five Cerithium species (Gastropoda) from the Mediterranean sea. Mol. Ecol. Notes 1, 44–46. https://doi.org/10.1046/j.1471-8278.2000.00019.x (2001).
CAS Article Google Scholar
67.
Ribeiro, P. A., Branco, M., Hawkins, S. J. & Santos, A. M. Recent changes in the distribution of a marine gastropod, Patella rustica, across the Iberian Atlantic coast did not result in diminished genetic diversity or increased connectivity. J. Biogeogr. 37, 1782–1796. https://doi.org/10.1111/j.1365-2699.2010.02330.x (2010).
Article Google Scholar
68.
Cossu, P. et al. Surviving at the edge of a fragmented range: patterns of genetic diversity in isolated populations of the endangered giant Mediterranean limpet (Patella ferruginea). Mar. Biol. 164, 18. https://doi.org/10.1007/s00227-017-3080-6 (2017).
Article Google Scholar
69.
Dupont, L., Bernas, D. & Viard, F. Sex and genetic structure across age groups in populations of the European marine invasive mollusc, Crepidula fornicata L. (Gastropoda). Biol. J. Linn. Soc. 90, 365–374. https://doi.org/10.1111/j.1095-8312.2007.00731.x (2007).
Article Google Scholar
70.
Paterno, M. et al. A genome-wide approach to the phylogeography of the mussel Mytilus galloprovincialis in the Adriatic and the Black Seas. Front. Mar. Sci. 6, 16. https://doi.org/10.3389/fmars.2019.00566 (2019).
ADS Article Google Scholar
71.
Hare, M. P., Karl, S. A. & Avise, J. C. Anonymous nuclear DNA markers in the American oyster and their implications for the heterozygote deficiency phenomenon in marine bivalves. Mol. Biol. Evol. 13, 334–345. https://doi.org/10.1093/oxfordjournals.molbev.a025593 (1996).
CAS Article PubMed Google Scholar
72.
Johnson, M. S. & Black, R. The Wahlund effect and the geographical scale of variation in the intertidal limpet Siphonaria sp. Mar. Biol. 79, 295–302. https://doi.org/10.1007/bf00393261 (1984).
Article Google Scholar
73.
Mallet, A. L., Zouros, E., Gartnerkepkay, K. E., Freeman, K. R. & Dickie, L. M. Larval viability and heterozygote deficiency in populations of marine bivalves—evidence from pair matings of mussels. Mar. Biol. 87, 165–172. https://doi.org/10.1007/bf00539424 (1985).
Article Google Scholar
74.
Boissin, E., Hoareau, T. B., Feral, J. P. & Chenuil, A. Extreme selfing rates in the cosmopolitan brittle star species complex Amphipholis squamata: data from progeny-array and heterozygote deficiency. Mar. Ecol. Prog. Ser. 361, 151–159. https://doi.org/10.3354/meps07411 (2008).
ADS CAS Article Google Scholar
75.
Boissin, E., Egea, E., Feral, J. P. & Chenuil, A. Contrasting population genetic structures in Amphipholis squamata, a complex of brooding, self-reproducing sister species sharing life history traits. Mar. Ecol. Prog. Ser. 539, 165–177. https://doi.org/10.3354/meps11480 (2015).
ADS CAS Article Google Scholar
76.
Dudu, A., Georgescu, S. E., Suciu, R., Dinischiotu, A. & Costache, M. Microsatelitte DNA variation in the black sea beluga sturgeon (Huso huso). Rom. Biotech. Lett. 13, 3779–3783 (2008).
CAS Google Scholar
77.
Wilson, A. B. & Veraguth, I. E. The impact of Pleistocene glaciation across the range of a widespread European coastal species. Mol. Ecol. 19, 4535–4553. https://doi.org/10.1111/j.1365-294X.2010.04811.x (2010).
CAS Article PubMed Google Scholar
78.
Limborg, M. T. et al. Imprints from genetic drift and mutation imply relative divergence times across marine transition zones in a pan-European small pelagic fish (Sprattus sprattus). Heredity 109, 96–107. https://doi.org/10.1038/hdy.2012.18 (2012).
CAS Article PubMed PubMed Central Google Scholar
79.
Miralles, L., Juanes, F., Pardinas, A. F. & Garcia-Vazquez, E. Paleoclimate shaped bluefish structure in the northern hemisphere. Fisheries 39, 578–586. https://doi.org/10.1080/03632415.2014.976701 (2014).
Article Google Scholar
80.
Magoulas, A., Castilho, R., Caetano, S., Marcato, S. & Patarnello, T. Mitochondrial DNA reveals a mosaic pattern of phylogeographical structure in Atlantic and Mediterranean populations of anchovy (Engraulis encrasicolus). Mol. Phylogenet. Evol. 39, 734–746. https://doi.org/10.1016/j.ympev.2006.01.016 (2006).
CAS Article PubMed Google Scholar
81.
Durand, J. D., Blel, H., Shen, K. N., Koutrakis, E. T. & Guinand, B. Population genetic structure of Mugil cephalus in the Mediterranean and Black Seas: a single mitochondrial clade and many nuclear barriers. Mar. Ecol. Prog. Ser. 474, 243–261. https://doi.org/10.3354/meps10080 (2013).
ADS Article Google Scholar
82.
Pascual, M., Rives, B., Schunter, C. & Macpherson, E. Impact of life history traits on gene flow: a multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS ONE 12, 20. https://doi.org/10.1371/journal.pone.0176419 (2017).
CAS Article Google Scholar
83.
Anderson, E. C. & Dunham, K. K. The influence of family groups on inferences made with the program Structure. Mol. Ecol. Resour. 8, 1219–1229. https://doi.org/10.1111/j.1755-0998.2008.02355.x (2008).
CAS Article PubMed Google Scholar
84.
Peterman, W., Brocato, E. R., Semlitsch, R. D. & Eggert, L. S. Reducing bias in population and landscape genetic inferences: the effects of sampling related individuals and multiple life stages. PeerJ 4, 19. https://doi.org/10.7717/peerj.1813 (2016).
Article Google Scholar
85.
Waples, R. S. & Anderson, E. C. Purging putative siblings from population genetic data sets: a cautionary view. Mol. Ecol. 26, 1211–1224. https://doi.org/10.1111/mec.14022 (2017).
Article PubMed Google Scholar
86.
Fernandez, R., Lemer, S., McIntyre, E. & Giribet, G. Comparative phylogeography and population genetic structure of three widespread mollusc species in the Mediterranean and near Atlantic. Mar. Ecol. Evol. Perspect. 36, 701–715. https://doi.org/10.1111/maec.12178 (2015).
Article Google Scholar
87.
Selwyn, J. D. et al. Kin-aggregations explain chaotic genetic patchiness, a commonly observed genetic pattern, in a marine fish. PLoS ONE 11, 11. https://doi.org/10.1371/journal.pone.0153381 (2016).
CAS Article Google Scholar
88.
Highsmith, R. C. Floating and algal rafting as potential dispersal mechanisms in brooding invertebrates. Mar. Ecol. Prog. Ser. 25, 169–179. https://doi.org/10.3354/meps025169 (1985).
ADS Article Google Scholar
89.
Thiel, M. & Haye, P. A. In Oceanography and Marine Biology—An Annual Review Vol. 44 (eds Gibson, R. N. et al.) 323–429 (CRC Press-Taylor & Francis Group, Boca Raton, 2006).
Google Scholar
90.
Darras, H. & Aron, S. Introgression of mitochondrial DNA among lineages in a hybridogenetic ant. Biol. Lett. 11, 4. https://doi.org/10.1098/rsbl.2014.0971 (2015).
ADS Article Google Scholar
91.
Perea, S., Vukic, J., Sanda, R. & Doadrio, I. Ancient mitochondrial capture as factor promoting mitonuclear discordance in freshwater fishes: a case study in the genus Squalius (Actinopterygii, Cyprinidae) in Greece. PLoS ONE 11, 26. https://doi.org/10.1371/journal.pone.0166292 (2016).
CAS Article Google Scholar
92.
Markova, S., Dufresne, F., Manca, M. & Kotlik, P. Mitochondrial capture misleads about ecological speciation in the Daphnia pulex complex. PLoS ONE 8, 14. https://doi.org/10.1371/journal.pone.0069497 (2013).
CAS Article Google Scholar
93.
Rawson, P. D. & Hilbish, T. J. Asymmetric introgression of mitochondrial DNA among European populations of blue mussels (Mytilus spp.). Evolution 52, 100–108. https://doi.org/10.2307/2410924 (1998).
Article PubMed Google Scholar
94.
Azuma, N., Yamazaki, T. & Chiba, S. Mitochondrial and nuclear DNA analysis revealed a cryptic species and genetic introgression in Littorina sitkana (Mollusca, Gastropoda). Genetica 139, 1399–1408. https://doi.org/10.1007/s10709-012-9638-9 (2011).
CAS Article PubMed Google Scholar
95.
Rius, M. & Darling, J. A. How important is intraspecific genetic admixture to the success of colonising populations?. Trends Ecol. Evol. 29, 233–242. https://doi.org/10.1016/j.tree.2014.02.003 (2014).
Article PubMed Google Scholar
96.
Boissin, E., Hoareau, T. B., Postaire, B., Gravier-Bonnet, N. & Bourmaud, C. A. F. Cryptic diversity, low connectivity and suspected human-mediated dispersal among 17 widespread Indo-Pacific hydroid species of the south-western Indian Ocean. J. Biogeogr. 45, 2104–2117. https://doi.org/10.1111/jbi.13388 (2018).
Article Google Scholar
97.
Boero, F. et al. CoCoNet: towards coast to coast networks of marine protected areas (from the shore to the high and deep sea), coupled with sea-based wind energy potential. Scires-It 6, 1–95 (2016).
Google Scholar
98.
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010 (2013).
CAS Article PubMed PubMed Central Google Scholar
99.
Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452. https://doi.org/10.1093/bioinformatics/btp187 (2009).
CAS Article Google Scholar
100.
Bandelt, H. J., Forster, P. & Rohl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036 (1999).
CAS Article PubMed Google Scholar
101.
Nylander, J. MrAIC.pl. Program Distributed by the Author (Evolutionary Biology Centre, Uppsala University, Sweden, 2004).
Google Scholar
102.
Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, 6. https://doi.org/10.1371/journal.pcbi.1003537 (2014).
CAS Article Google Scholar
103.
Wilke, T., Schultheiss, R. & Albrecht, C. As time goes by: a simple fool’s guide to molecular clock approaches in invertebrates. Am. Malacol. Bull. 27, 25–45 (2009).
Article Google Scholar
104.
Stelbrink, B., Shirokaya, A. A., Foller, K., Wilke, T. & Albrecht, C. Origin and diversification of Lake Ohrid’s endemic acroloxid limpets: the role of geography and ecology. BMC Evol. Biol. 16, 13. https://doi.org/10.1186/s12862-016-0826-6 (2016).
Article Google Scholar
105.
Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x (2004).
CAS Article Google Scholar
106.
Panova, M., Makinen, T., Fokin, M., Andre, C. & Johannesson, K. Microsatellite cross-species amplification in the genus Littorina and detection of null alleles in Littorina saxatilis. J. Molluscan Stud. 74, 111–117. https://doi.org/10.1093/mollus/eym052 (2008).
Article Google Scholar
107.
GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations, Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France) (1996–2004).
108.
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).
MathSciNet MATH Google Scholar
109.
Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).
CAS Article PubMed PubMed Central Google Scholar
110.
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
CAS PubMed PubMed Central Google Scholar
111.
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).
CAS Article Google Scholar
112.
Earl, D. A. & Vonholdt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).
Article Google Scholar
113.
Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228 (1997).
CAS PubMed PubMed Central Google Scholar
114.
Jones, O. R. & Wang, J. L. COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 10, 551–555. https://doi.org/10.1111/j.1755-0998.2009.02787.x (2010).
Article PubMed Google Scholar
115.
Fu, Y. X. & Li, W. H. Statistical tests of neutrality of mutations. Genetics 133, 693–709 (1993).
CAS PubMed PubMed Central Google Scholar
116.
Ramos-Onsins, S. E. & Rozas, J. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 19, 2092–2100. https://doi.org/10.1093/oxfordjournals.molbev.a004034 (2002).
CAS Article PubMed Google Scholar More