Evaluating insect-host interactions as a driver of species divergence in palm flower weevils
1.
Zhang, Z.-Q. Phylum Arthropoda von Siebold, 1848. In Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (ed. Zhang, Z. -Q.), 3148, 99–103 (Zootaxa, 2011).
2.
Stork, N. E., McBroom, J., Gely, C. & Hamilton, A. J. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proc. Natl Acad. Sci. 112, 7519–7523 (2015).
CAS PubMed Article PubMed Central Google Scholar
3.
Futuyma, D. J. & Agrawal, A. A. Macroevolution and the biological diversity of plants and herbivores. Proc. Natl Acad. Sci. 106, 18054–18061 (2009).
CAS PubMed Article PubMed Central Google Scholar
4.
Farrell, B. D. ‘“Inordinate Fondness”’ explained: why are there so many beetles? Science 281, 555–559 (1998).
CAS PubMed Article PubMed Central Google Scholar
5.
Thompson, J. N., Segraves, K. A. & Althoff, D. M. Coevolution and macroevolution. In Evolutionary Developmental Biology (eds Nuno de la Rosa, L. & Müller, G.) 1–13 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-33038-9_125-1.
6.
Janz, N. Ehrlich and Raven revisited: mechanisms underlying codiversification of plants and enemies. Annu. Rev. Ecol. Evol. Syst. 42, 71–89 (2011).
Article Google Scholar
7.
Maron, J. L., Agrawal, A. A. & Schemske, D. W. Plant–herbivore coevolution and plant speciation. Ecology 100, 1–11 (2019).
Google Scholar
8.
Forister, M. L. et al. The global distribution of diet breadth in insect herbivores. Proc. Natl Acad. Sci. 112, 442–447 (2015).
CAS PubMed Article PubMed Central Google Scholar
9.
Matsubayashi, K. W., Ohshima, I. & Nosil, P. Ecological speciation in phytophagous insects. Entomol. Exp. Appl. 134, 1–27 (2010).
Article Google Scholar
10.
Becerra, J. X. On the factors that promote the diversity of herbivorous insects and plants in tropical forests. Proc. Natl Acad. Sci. USA 112, 6098–6103 (2015).
CAS PubMed Article Google Scholar
11.
Schuman, M. C., Van Dam, N. M., Beran, F. & Harpole, W. S. How does plant chemical diversity contribute to biodiversity at higher trophic levels? Curr. Opin. Insect Sci. 14, 46–55 (2016).
PubMed Article Google Scholar
12.
Ehrlich, P. R. & Raven, P. H. Butterflies and plants: a study in coevolution. Evolution 18, 586–608 (1964).
Article Google Scholar
13.
McKenna, D. D. et al. The evolution and genomic basis of beetle diversity. Proc. Natl. Acad. Sci. 201909655 https://doi.org/10.1073/pnas.1909655116 (2019).
14.
Kopp, M. & Gavrilets, S. Multilocus genetics and the coevolution of quantitative traits. Evolution 60, 1321–1336 (2006).
CAS PubMed Article PubMed Central Google Scholar
15.
Yoder, J. B. & Nuismer, S. L. When does coevolution promote diversification? Am. Nat. 176, 802–817 (2010).
PubMed Article PubMed Central Google Scholar
16.
Wang, I. J. & Bradburd, G. S. Isolation by environment. Mol. Ecol. 23, 5649–5662 (2014).
PubMed Article PubMed Central Google Scholar
17.
Hembry, D. H. & Althoff, D. M. Diversification and coevolution in brood pollination mutualisms: windows into the role of biotic interactions in generating biological diversity. Am. J. Bot. 103, 1783–1792 (2016).
PubMed PubMed Central Article Google Scholar
18.
Liu, M., Zhang, J., Chen, Y., Compton, S. G. & Chen, X. Y. Contrasting genetic responses to population fragmentation in a coevolving fig and fig wasp across a mainland-island archipelago. Mol. Ecol. 22, 4384–4396 (2013).
PubMed Article PubMed Central Google Scholar
19.
Tian, E. et al. Lack of genetic isolation by distance, similar genetic structuring but different demographic histories in a fig-pollinating wasp mutualism. Mol. Ecol. 24, 5976–5991 (2015).
PubMed Article PubMed Central Google Scholar
20.
Bain, A. et al. Geographic structuring into vicariant species-pairs in a wide-ranging, high-dispersal plant–insect mutualism: the case of Ficus racemosa and its pollinating wasps. Evol. Ecol. 30, 663–684 (2016).
Article Google Scholar
21.
Smith, C. I., Godsoe, W. K. W., Tank, S., Yoder, J. B. & Pellmyr, O. Distinguishing coevolution from covicariance in an obligate pollination mutualism: asynchronous divergence in Joshua tree and its pollinators. Evolution 62, 2676–2687 (2008).
PubMed Article Google Scholar
22.
Smith, C. I. et al. Comparative phylogeography of a coevolved community: concerted population expansions in Joshua trees and four Yucca moths. PLoS ONE 6, e25628 (2011).
23.
Espíndola, A., Carstens, B. C. & Alvarez, N. Comparative phylogeography of mutualists and the effect of the host on the genetic structure of its partners. Biol. J. Linn. Soc. 113, 1021–1035 (2014).
Article Google Scholar
24.
Hembry, D. H. et al. Non-congruent colonizations and diversification in a coevolving pollination mutualism on oceanic islands. Proc. R. Soc. B Biol. Sci. 280, 20130361 (2013).
Article Google Scholar
25.
Thompson, J. N. The Geographic Mosaic of Coevolution (The University of Chicago Press, 2005).
26.
Noblick, L. R. A revision of the genus Syagrus (Arecaceae). Phytotaxa 294, 1–262 (2017).
Article Google Scholar
27.
Meerow, A. W. et al. Phylogeny and historical biogeography of the cocosoid palms (Areaceae, Arecoideae, Cocoseae) inferred from sequences of six WRKY gene family loci. Cladistics 31, 509–534 (2015).
Article Google Scholar
28.
Silberbauer-Gottsberger, I., Vanin, S. A. & Gottsberger, G. Interactions of the Cerrado palms Butia paraguayensis and Syagrus petraea with parasitic and pollinating insects. Sociobiology 60, 306–316 (2013).
Article Google Scholar
29.
Núñez-Avellaneda, L. A. & Rojas-Robles, R. Biología reproductiva y ecología de la polinización de la palma milpesos Oenocarpus bataua en los Andes colombianos. Caldasia 30, 101–125 (2008).
Google Scholar
30.
Núñez-Avellaneda, L. A., Isaza, C. & Galeano, G. Ecología de la polinización de tres especies de Oenocarpus (Arecaceae) simpátricas en la Amazonia colombiana. Rev. Biol. Trop. 63, 35–55 (2015).
Article Google Scholar
31.
de Medeiros, B. A. S., Núñez-Avellaneda, L. A., Hernandez, A. M. & Farrell, B. D. Flower visitors of the licuri palm (Syagrus coronata): brood pollinators coexist with a diverse community of antagonists and mutualists. Biol. J. Linn. Soc. 126, 666–687 (2019).
Article Google Scholar
32.
Barbosa, C. M. et al. Reproductive biology of Syagrus coronata (Arecaceae): sex‐biased insect visitation and the unusual case of scent emission by peduncular bracts. Plant Biol. https://doi.org/10.1111/plb.13162 (2020).
33.
McKenna, D. D. et al. Morphological and molecular perspectives on the phylogeny, evolution, and classification of weevils (Coleoptera: Curculionoidea): Proceedings from the 2016 International Weevil Meeting. Diversity 10, 64 (2018).
Article Google Scholar
34.
Souza, M. C. P., Moura, F., Silva, J. V. & Almeida, C. Phylogeography of the palm Syagrus coronata (Martius) Beccari (Arecaceae): distribution in the “Caatinga” and Atlantic forest domains. Rev. Bras. Bot. 41, 849–857 (2018).
Article Google Scholar
35.
Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7, e37135 (2012).
CAS PubMed PubMed Central Article Google Scholar
36.
de Medeiros, B. A. S. & Farrell, B. D. Whole-genome amplification in double-digest RADseq results in adequate libraries but fewer sequenced loci. PeerJ 6, e5089 (2018).
PubMed PubMed Central Article CAS Google Scholar
37.
Rubin, B. E. R., Ree, R. H. & Moreau, C. S. Inferring phylogenies from RAD sequence data. PLoS ONE 7, e33394 (2012).
CAS PubMed PubMed Central Article Google Scholar
38.
Feder, J. L. et al. Genome-wide congealing and rapid transitions across the speciation continuum during speciation with gene flow. J. Hered. 105, 810–820 (2014).
Article Google Scholar
39.
Struck, T. H. et al. Finding evolutionary processes hidden in cryptic species. Trends Ecol. Evol. 33, 153–163 (2017).
PubMed Article Google Scholar
40.
Bradburd, G. S., Ralph, P. L. & Coop, G. M. Disentangling the effects of geographic and ecological isolation on genetic differentiation. Evolution 67, 3258–3273 (2013).
PubMed Article PubMed Central Google Scholar
41.
Bradburd, G. S. BEDASSLE 2.0. https://github.com/gbradburd/bedassle (2020).
42.
Weiblen, G. D. & Treiber, E. L. Evolutionary origins and diversification of mutualism. in Mutualism (ed. Bronstein, J. L.) 37–56 (Oxford University Press, 2015). https://doi.org/10.1093/acprof:oso/9780199675654.003.0003.
43.
Kaur, K. M., Malé, P. -J. G., Spence, E., Gomez, C. & Frederickson, M. E. Using text-mined trait data to test for cooperate-and-radiate co-evolution between ants and plants. PLOS Comput. Biol. 15, e1007323 (2019).
CAS PubMed PubMed Central Article Google Scholar
44.
Kawakita, A., Okamoto, T., Goto, R. & Kato, M. Mutualism favours higher host specificity than does antagonism in plant-herbivore interaction. Proc. R. Soc. B Biol. Sci. 277, 2765–2774 (2010).
Article Google Scholar
45.
Guerrero-Olaya, N. Y. & Núñez-Avellaneda, L. A. Ecología de la polinización de Syagrus smithii (Arecaceae), una palma cantarofila de la Amazonia Colombiana. Rev. Peru. Biol. 24, 43–54 (2017).
Article Google Scholar
46.
Thompson, J. N. & Fernandez, C. C. Temporal dynamics of antagonism and mutualism in a geographically variable plant-insect interaction. Ecology 87, 103–112 (2006).
PubMed Article PubMed Central Google Scholar
47.
Uhl, N. W. & Moore, H. E. The protection of pollen and ovules in palms. Principes 17, 111–150 (1973).
Google Scholar
48.
McKenna, D. D. et al. The evolution and genomic basis of beetle diversity. Proc. Natl Acad. Sci. USA 116, 24729–24737 (2019).
CAS PubMed Article PubMed Central Google Scholar
49.
Hazzouri, K. M. et al. The genome of pest Rhynchophorus ferrugineus reveals gene families important at the plant-beetle interface. Commun. Biol. 3, 323 (2020).
50.
Vertacnik, K. L. & Linnen, C. R. Evolutionary genetics of host shifts in herbivorous insects: insights from the age of genomics. Ann. N. Y. Acad. Sci. 1389, 186–212 (2017).
PubMed Article Google Scholar
51.
Forbes, A. A. et al. Revisiting the particular role of host shifts in initiating insect speciation. Evolution 71, 1126–1137 (2017).
PubMed Article Google Scholar
52.
Althoff, D. M., Segraves, K. A. & Johnson, M. T. J. Testing for coevolutionary diversification: linking pattern with process. Trends Ecol. Evol. 29, 82–89 (2014).
PubMed Article Google Scholar
53.
Hembry, D. H., Yoder, J. B. & Goodman, K. R. Coevolution and the diversification of life. Am. Nat. 184, 425–438 (2014).
PubMed Article Google Scholar
54.
Jermy, T. Evolution of insect‐plant relationships—a devil’s advocate approach. Entomol. Exp. Appl. 66, 3–12 (1993).
Article Google Scholar
55.
Jermy, T. Evolution of insect/host plant relationships. Am. Nat. 124, 609–630 (1984).
Article Google Scholar
56.
Brand, P. et al. The evolution of sexual signaling is linked to odorant receptor tuning in perfume-collecting orchid bees. Nat. Commun. 11, 244 (2020).
57.
Wardhaugh, C. W. How many species of arthropods visit flowers? Arthropod Plant Interact. 9, 547–565 (2015).
Article Google Scholar
58.
Eaton, D. A. R. PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics 30, 1844–1849 (2014).
CAS PubMed Article PubMed Central Google Scholar
59.
Eaton, D. A. R. & Overcast, I. ipyrad. https://ipyrad.readthedocs.io (2019).
60.
Anbutsu, H. et al. Small genome symbiont underlies cuticle hardness in beetles. Proc. Natl. Acad. Sci. 201712857 https://doi.org/10.1073/pnas.1712857114 (2017).
61.
Xiao, Y. et al. The genome draft of coconut (Cocos nucifera). Gigascience 6, 1–11 (2017).
CAS PubMed PubMed Central Article Google Scholar
62.
de Medeiros, B. A. S. Matrix condenser. https://github.com/brunoasm/matrix_condenser (2019).
63.
Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).
CAS PubMed Article Google Scholar
64.
Legendre, P., Lapointe, F. -J. & Casgrain, P. Modeling brain evolution from behavior: a permutational regression approach. Evolution 48, 1487–1499 (1994).
PubMed Article Google Scholar
65.
Lichstein, J. W. Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecol. 188, 117–131 (2007).
Article Google Scholar
66.
Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).
Article Google Scholar
67.
Galili, T. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 31, 3718–3720 (2015).
CAS PubMed PubMed Central Article Google Scholar
68.
Winter, D. J. MMOD: an R library for the calculation of population differentiation statistics. Mol. Ecol. Resour. 12, 1158–1160 (2012).
CAS PubMed Article Google Scholar
69.
Jombart, T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
CAS PubMed Article Google Scholar
70.
Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).
CAS PubMed PubMed Central Article Google Scholar
71.
Hedrick, P. W. A standardized genetic differentiation measure. Evolution 59, 1633–1638 (2005).
CAS PubMed Article PubMed Central Google Scholar
72.
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
CAS PubMed PubMed Central Article Google Scholar
73.
Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinform. 15, 356 (2014).
Article Google Scholar
74.
Meisner, J. & Albrechtsen, A. Inferring population structure and admixture proportions in low-depth NGS data. Genetics 210, 719–731 (2018).
PubMed PubMed Central Article Google Scholar
75.
Meisner, J. & Albrechtsen, A. Testing for Hardy–Weinberg equilibrium in structured populations using genotype or low-depth next generation sequencing data. Mol. Ecol. Resour. 19, 1144–1152 (2019).
CAS PubMed Article PubMed Central Google Scholar
76.
Lee, C., Abdool, A. & Huang, C. H. PCA-based population structure inference with generic clustering algorithms. BMC Bioinform. 10, 1–13 (2009).
Google Scholar
77.
Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H. & Bustamante, C. D. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 5, e1000695 (2009).
78.
Hey, J. & Nielsen, R. Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167, 747–760 (2004).
CAS PubMed PubMed Central Article Google Scholar
79.
Excoffier, L. & Foll, M. fastsimcoal: a continuous-time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics 27, 1332–1334 (2011).
CAS PubMed Article PubMed Central Google Scholar
80.
Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. & Foll, M. Robust demographic inference from genomic and SNP data. PLoS Genet. 9, e1003905 (2013).
81.
Oppold, A. -M. & Pfenninger, M. Direct estimation of the spontaneous mutation rate by short-term mutation accumulation lines in Chironomus riparius. Evol. Lett. 1, 86–92 (2017).
PubMed PubMed Central Article Google Scholar
82.
Guillot, G., Schilling, R. L., Porcu, E. & Bevilacqua, M. Validity of covariance models for the analysis of geographical variation. Methods Ecol. Evol. 5, 329–335 (2014).
Article Google Scholar
83.
Pebesma, E. Simple features for R: standardized support for spatial vector data. R J. 10, 439–446 (2018).
Article Google Scholar
84.
GBIF.org. GBIF ocurrence download. https://doi.org/10.15468/dl.lprfwo (2019).
85.
Chamberlain, S. et al. rgbif: interface to the Global Biodiversity Information Facility API. https://cran.r-project.org/package=rgbif (2019).
86.
Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).
Article Google Scholar
87.
Hijmans, R. J. raster: Geographic Data Analysis and Modeling. https://cran.r-project.org/package=raster (2019).
88.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Article Google Scholar
89.
Vieira, F. G., Lassalle, F., Korneliussen, T. S. & Fumagalli, M. Improving the estimation of genetic distances from next-generation sequencing data. Biol. J. Linn. Soc. 117, 139–149 (2016).
Article Google Scholar
90.
Dray, S. & Dufour, A. B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).
Article Google Scholar
91.
Gabry, J. shinystan: interactive visual and numerical diagnostics and posterior analysis for Bayesian models. https://mc-stan.org/users/interfaces/shinystan (2018).
92.
Stan Development Team. RStan: the R interface to Stan. https://mc-stan.org/ (2019).
93.
de Medeiros, B. A. S. & Vanin, S. A. Systematic revision and morphological phylogenetic analysis of Anchylorhynchus Schoenherr, 1836 (Coleoptera, Curculionidae: Derelomini). Zootaxa 4839, 1–98 (2020).
Article Google Scholar
94.
Bondar, G. G. Notas Entomológicas da Baía. VI. Rev. Entomol. 11, 842–861 (1940).
Google Scholar
95.
Bondar, G. G. Notas Entomológicas da Baía. VIII. Rev. Entomol. 12, 427–470 (1941).
Google Scholar
96.
Bondar, G. G. Notas Entomológicas da Baía. IX. Rev. Entomol. 13, 1–38 (1942).
Google Scholar More