More stories

  • in

    An integrated approach of remote sensing and geospatial analysis for modeling and predicting the impacts of climate change on food security

    Ortiz-Bobea, A., Ault, T. R., Carrillo, C. M., Chambers, R. G. & Lobell, D. B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Chang. 11, 306–312 (2021).Article 
    ADS 

    Google Scholar 
    Garajeh, M. K. & Feizizadeh, B. A comparative approach of data-driven split-window algorithms and MODIS products for land surface temperature retrieval. Appl. Geomat. 13, 715–733 (2021).Article 

    Google Scholar 
    Alizadeh-Choobari, O., Ahmadi-Givi, F., Mirzaei, N. & Owlad, E. Climate change and anthropogenic impacts on the rapid shrinkage of Lake Urmia. Int. J. Climatol. 36, 4276–4286 (2016).Article 

    Google Scholar 
    Rembold, F., Kerdiles, H., Lemoine, G. & Perez-Hoyos, A. Impact of El Niño on agriculture in Southern Africa for the 2015/2016 main season. Joint Research Centre (JRC) MARS Bulletin–Global Outlook Series. European Commission, Brussels (2016).Zampieri, M., Ceglar, A., Dentener, F. & Toreti, A. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ. Res. Lett. 12, 064008 (2017).Article 
    ADS 

    Google Scholar 
    Toté, C. et al. Evaluation of the SPOT/VEGETATION Collection 3 reprocessed dataset: Surface reflectances and NDVI. Remote Sens. Environ. 201, 219–233 (2017).Article 
    ADS 

    Google Scholar 
    Solomon, N. et al. Environmental impacts and causes of conflict in the Horn of Africa: A review. Earth Sci. Rev. 177, 284–290 (2018).Article 
    ADS 

    Google Scholar 
    Dresse, A., Fischhendler, I., Nielsen, J. Ø. & Zikos, D. Environmental peacebuilding: Towards a theoretical framework. Coop. Confl. 54, 99–119 (2019).Article 

    Google Scholar 
    Vos, R., Jackson, J., James, S. & Sánchez, M. V. Refugees and Conflict-Affected People: Integrating Displaced Communities into Food Systems. 2020 Global Food Policy Report, 46–53 (2020).Zulfiqar, F., Navarro, M., Ashraf, M., Akram, N. A. & Munné-Bosch, S. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sci. 289, 110270 (2019).Article 
    CAS 

    Google Scholar 
    Viana, C. M. & Rocha, J. Evaluating dominant land use/land cover changes and predicting future scenario in a rural region using a memoryless stochastic method. Sustainability 12, 4332 (2020).Article 

    Google Scholar 
    Vasile, A. J., Popescu, C., Ion, R. A. & Dobre, I. From conventional to organic in Romanian agriculture—Impact assessment of a land use changing paradigm. Land Use Policy 46, 258–266 (2015).Article 

    Google Scholar 
    Veloso, A. et al. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 199, 415–426 (2017).Article 
    ADS 

    Google Scholar 
    Samasse, K., Hanan, N. P., Tappan, G. & Diallo, Y. Assessing cropland area in West Africa for agricultural yield analysis. Remote Sens. 10, 1785 (2018).Article 
    ADS 

    Google Scholar 
    Van Esse, H. P., Reuber, T. L. & van der Does, D. Genetic modification to improve disease resistance in crops. New Phytol. 225, 70–86 (2020).Article 

    Google Scholar 
    FAO. The Future of Food and Agriculture—Trends and Challenges (FAO, 2017).
    Google Scholar 
    Müller, B. et al. Modelling food security: Bridging the gap between the micro and the macro scale. Glob. Environ. Chang. 63, 102085 (2020).Article 

    Google Scholar 
    Food and Agriculture Organization of the United Nations. Forest Management and Conservation Agriculture: Experiences of Smallholder Farmers in the Eastern Region of Paraguay (FAO, 2013).
    Google Scholar 
    FAO Food Price Index. World Food Situation (FAO, 2021).
    Google Scholar 
    Sishodia, R. P., Ray, R. L. & Singh, S. K. Applications of remote sensing in precision agriculture: A review. Remote Sens. 12, 3136 (2020).Article 
    ADS 

    Google Scholar 
    Weiss, M., Jacob, F. & Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 236, 111402 (2020).Article 
    ADS 

    Google Scholar 
    Feizizadeh, B., Garajeh, M. K., Blaschke, T. & Lakes, T. An object based image analysis applied for volcanic and glacial landforms mapping in Sahand Mountain, Iran. CATENA 198, 105073 (2021).Article 

    Google Scholar 
    Wen, W., Timmermans, J., Chen, Q. & van Bodegom, P. M. A review of remote sensing challenges for food security with respect to salinity and drought threats. Remote Sens. 13, 6 (2020).Article 
    ADS 

    Google Scholar 
    Feizizadeh, B., Omarzadeh, D., Kazemi Garajeh, M., Lakes, T. & Blaschke, T. Machine learning data-driven approaches for land use/cover mapping and trend analysis using Google Earth Engine. J. Environ. Plan. Manag. https://doi.org/10.1080/09640568.2021.2001317 (2021).Article 

    Google Scholar 
    Westerveld, J. J. et al. Forecasting transitions in the state of food security with machine learning using transferable features. Sci. Total Environ. 786, 147366 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Anderson, R., Bayer, P. E. & Edwards, D. Climate change and the need for agricultural adaptation. Curr. Opin. Plant Biol. 56, 197–202 (2020).Article 

    Google Scholar 
    Baniya, B., Tang, Q., Xu, X., Haile, G. G. & Chhipi-Shrestha, G. Spatial and temporal variation of drought based on satellite derived vegetation condition index in Nepal from 1982–2015. Sensors 19, 430 (2019).Article 
    ADS 

    Google Scholar 
    Kubitza, C., Krishna, V. V., Schulthess, U. & Jain, M. Estimating adoption and impacts of agricultural management practices in developing countries using satellite data. A scoping review. Agron. Sustain. Dev. 40, 1–21 (2020).Article 

    Google Scholar 
    Lees, T., Tseng, G., Atzberger, C., Reece, S. & Dadson, S. Deep learning for vegetation health forecasting: a case study in Kenya. Remote Sens. 14, 698 (2022).Article 
    ADS 

    Google Scholar 
    Khanian, M., Serpoush, B. & Gheitarani, N. Balance between place attachment and migration based on subjective adaptive capacity in response to climate change: The case of Famenin County in Western Iran. Clim. Dev. 11, 69–82 (2019).Article 

    Google Scholar 
    Khanian, M., Marshall, N., Zakerhaghighi, K., Salimi, M. & Naghdi, A. Transforming agriculture to climate change in Famenin County, West Iran through a focus on environmental, economic and social factors. Weather Clim. Extremes 21, 52–64 (2018).Article 

    Google Scholar 
    Leroux, L. et al. Crop monitoring using vegetation and thermal indices for yield estimates: Case study of a rainfed cereal in semi-arid West Africa. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 9, 347–362 (2015).Article 
    ADS 

    Google Scholar 
    Sun, J. et al. Multilevel deep learning network for county-level corn yield estimation in the us corn belt. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 13, 5048–5060 (2020).Article 
    ADS 

    Google Scholar 
    Tian, H. et al. An LSTM neural network for improving wheat yield estimates by integrating remote sensing data and meteorological data in the Guanzhong Plain, PR China. Agric. Forest Meteorol. 310, 108629 (2021).Article 
    ADS 

    Google Scholar 
    Weng, Y., Chang, S., Cai, W. & Wang, C. Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China. Appl. Energy 236, 514–525 (2019).Article 
    ADS 

    Google Scholar 
    Rojas, O., Rembold, F., Royer, A. & Negre, T. Real-time agrometeorological crop yield monitoring in Eastern Africa. Agron. Sustain. Dev. 25, 63–77 (2005).Article 

    Google Scholar 
    Rembold, F. et al. ASAP: A new global early warning system to detect anomaly hot spots of agricultural production for food security analysis. Agric. Syst. 168, 247–257 (2019).Article 

    Google Scholar 
    Gohar, A. A., Cashman, A. & El-bardisy, H. A. H. Modeling the impacts of water-land allocation alternatives on food security and agricultural livelihoods in Egypt: Welfare analysis approach. Environ. Dev. 39, 100650 (2021).Article 

    Google Scholar 
    Mekonnen, A., Tessema, A., Ganewo, Z. & Haile, A. Climate change impacts on household food security and farmers adaptation strategies. J. Agric. Food Res. 6, 100197 (2021).Article 

    Google Scholar 
    Hervas, A. Mapping oil palm-related land use change in Guatemala, 2003–2019: Implications for food security. Land Use Policy 109, 105657 (2021).Article 

    Google Scholar 
    Viana, C. M., Freire, D., Abrantes, P., Rocha, J. & Pereira, P. Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Sci. Total Environ. 806, 150718 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Bazzana, D., Foltz, J. & Zhang, Y. Impact of climate smart agriculture on food security: An agent-based analysis. Food Policy 111, 102304 (2022).Article 

    Google Scholar 
    Parven, A. et al. Impacts of disaster and land-use change on food security and adaptation: Evidence from the delta community in Bangladesh. Int. J. Disaster Risk Reduct. 78, 103119 (2022).Article 

    Google Scholar 
    Mohajane, M. et al. Land use/land cover (LULC) using landsat data series (MSS, TM, ETM+ and OLI) in Azrou Forest, in the Central Middle Atlas of Morocco. Environments 5, 131 (2018).Article 

    Google Scholar 
    Duarte, L., Teodoro, A. C., Sousa, J. J. & Pádua, L. QVigourMap: A GIS open source application for the creation of canopy vigour maps. Agronomy 11, 952 (2021).Article 

    Google Scholar 
    Tavares, P. A., Beltrão, N. E. S., Guimarães, U. S. & Teodoro, A. C. Integration of sentinel-1 and sentinel-2 for classification and LULC mapping in the urban area of Belém, eastern Brazilian Amazon. Sensors 19, 1140 (2019).Article 
    ADS 

    Google Scholar 
    Atuoye, K. N., Luginaah, I., Hambati, H. & Campbell, G. Who are the losers? Gendered-migration, climate change, and the impact of large scale land acquisitions on food security in coastal Tanzania. Land Use Policy 101, 105154 (2021).Article 

    Google Scholar 
    Yang, S., Gu, L., Li, X., Jiang, T. & Ren, R. Crop classification method based on optimal feature selection and hybrid CNN-RF networks for multi-temporal remote sensing imagery. Remote Sens. 12, 3119 (2020).Article 
    ADS 

    Google Scholar 
    Milojevic-Dupont, N. & Creutzig, F. Machine learning for geographically differentiated climate change mitigation in urban areas. Sustain. Cities Soc. 64, 102526 (2021).Article 

    Google Scholar 
    Santos, D. et al. Spectral analysis to improve inputs to random forest and other boosted ensemble tree-based algorithms for detecting NYF Pegmatites in Tysfjord, Norway. Remote Sens. 14, 3532 (2022).Article 
    ADS 

    Google Scholar 
    Hitouri, S. et al. Hybrid machine learning approach for gully erosion mapping susceptibility at a watershed scale. ISPRS Int. J. Geo Inf. 11, 401 (2022).Article 

    Google Scholar 
    Alvarez-Mendoza, C. I., Teodoro, A., Freitas, A. & Fonseca, J. Spatial estimation of chronic respiratory diseases based on machine learning procedures—An approach using remote sensing data and environmental variables in quito, Ecuador. Appl. Geogr. 123, 102273 (2020).Article 

    Google Scholar 
    Teodoro, A., Pais-Barbosa, J., Gonçalves, H., Veloso-Gomes, F. & Taveira-Pinto, F. Identification of beach features/patterns through image classification techniques applied to remotely sensed data. Int. J. Remote Sens. 32, 7399–7422 (2011).Article 

    Google Scholar 
    Saleem, M. H., Potgieter, J. & Arif, K. M. Automation in agriculture by machine and deep learning techniques: A review of recent developments. Precis. Agric. 22, 2053–2091 (2021).Article 

    Google Scholar 
    Carrasco, L., O’Neil, A. W., Morton, R. D. & Rowland, C. S. Evaluating combinations of temporally aggregated Sentinel-1, Sentinel-2 and Landsat 8 for land cover mapping with Google Earth Engine. Remote Sens. 11, 288 (2019).Article 
    ADS 

    Google Scholar 
    Kumar, L. & Mutanga, O. Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sens. 10, 1509 (2018).Article 
    ADS 

    Google Scholar 
    Kakooei, M., Nascetti, A. & Ban, Y. in IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium 6836–6839 (IEEE).Castillo, E., Iglesias, A. & Ruiz-Cobo, R. Functional Equations in Applied Sciences (Elsevier, 2004).MATH 

    Google Scholar 
    Zhao, G., Gao, H. & Cai, X. Estimating lake temperature profile and evaporation losses by leveraging MODIS LST data. Remote Sens. Environ. 251, 112104 (2020).Article 
    ADS 

    Google Scholar 
    Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800 (2011).Article 
    ADS 

    Google Scholar 
    Monteith, J. L. in Symposia of the society for experimental biology 205–234 (Cambridge University Press (CUP) Cambridge).Kidd, C. et al. So, how much of the Earth’s surface is covered by rain gauges?. Bull. Am. Meteorol. Soc. 98, 69–78 (2017).Article 
    ADS 

    Google Scholar 
    Huffman, G. J. et al. NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). In Algorithm Theoretical Basis Document (ATBD) Version 4 (2015).Zhang, W., Cao, H. & Liang, Y. Plant uptake and soil fractionation of five ether-PFAS in plant-soil systems. Sci. Total Environ. 771, 144805 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Jiang, S. et al. Effects of clouds and aerosols on ecosystem exchange, water and light use efficiency in a humid region orchard. Sci. Total Environ. 811, 152377 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Ghimire, C., Bruijnzeel, L., Lubczynski, M. & Bonell, M. Negative trade-off between changes in vegetation water use and infiltration recovery after reforesting degraded pasture land in the Nepalese Lesser Himalaya. Hydrol. Earth Syst. Sci. 18, 4933–4949 (2014).Article 
    ADS 

    Google Scholar 
    Zhang, J., Chen, H., Fu, Z. & Wang, K. Effects of vegetation restoration on soil properties along an elevation gradient in the karst region of southwest China. Agric. Ecosyst. Environ. 320, 107572 (2021).Article 
    CAS 

    Google Scholar 
    Yan, W. Y., Shaker, A. & El-Ashmawy, N. Urban land cover classification using airborne LiDAR data: A review. Remote Sens. Environ. 158, 295–310 (2015).Article 
    ADS 

    Google Scholar 
    LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhang, C. et al. Joint deep learning for land cover and land use classification. Remote Sens. Environ. 221, 173–187 (2019).Article 
    ADS 

    Google Scholar 
    Interdonato, R., Ienco, D., Gaetano, R. & Ose, K. DuPLO: A DUal view Point deep Learning architecture for time series classificatiOn. ISPRS J. Photogramm. Remote. Sens. 149, 91–104 (2019).Article 
    ADS 

    Google Scholar 
    Nyamekye, C., Ghansah, B., Agyapong, E. & Kwofie, S. Mapping changes in artisanal and small-scale mining (ASM) landscape using machine and deep learning algorithms—a proxy evaluation of the 2017 ban on ASM in Ghana. Environ. Chall. 3, 100053 (2021).Article 

    Google Scholar 
    Rahmati, O. et al. Land subsidence modelling using tree-based machine learning algorithms. Sci. Total Environ. 672, 239–252 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980 (2014).Gupta, A. A comprehensive guide on deep learning optimizers. Analytics Vidhya. Dostopno na: https://www.analyticsvidhya.com/blog/2021/10/acomprehensive-guide-on-deep-learningoptimizers/#:~:text=An%20optimizer%20is%20a%20function,loss%20and%20improve%20the%20accuracy [22 May 2022] (2021).Reddy, V. K. & AV, R. K. Multi-channel neuro signal classification using Adam-based coyote optimization enabled deep belief network. Biomed. Signal Process. Control 77, 103774 (2022).Article 

    Google Scholar 
    Pulatov, B., Linderson, M.-L., Hall, K. & Jönsson, A. M. Modeling climate change impact on potato crop phenology, and risk of frost damage and heat stress in northern Europe. Agric. For. Meteorol. 214, 281–292 (2015).Article 
    ADS 

    Google Scholar 
    Parker, L., Pathak, T. & Ostoja, S. Climate change reduces frost exposure for high-value California orchard crops. Sci. Total Environ. 762, 143971 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Svystun, T., Lundströmer, J., Berlin, M., Westin, J. & Jönsson, A. M. Model analysis of temperature impact on the Norway spruce provenance specific bud burst and associated risk of frost damage. For. Ecol. Manage. 493, 119252 (2021).Article 

    Google Scholar 
    Kheybari, S., Rezaie, F. M. & Farazmand, H. Analytic network process: An overview of applications. Appl. Math. Comput. 367, 124780 (2020).MATH 

    Google Scholar 
    Saaty, T. The Analytic Hierarchy Process: Planning, Priority Setting Resource Allocation (McGraw-Hill, 1980).MATH 

    Google Scholar 
    Saaty, T. L. & Ozdemir, M. S. The Encyclicon-Volume 1: A Dictionary of Decisions with Dependence and Feedback Based on the Analytic Network Process (RWS Publications, 2021).
    Google Scholar 
    Saaty, T. L. Fundamentals of the analytic network process—Dependence and feedback in decision-making with a single network. J. Syst. Sci. Syst. Eng. 13, 129–157 (2004).Article 
    ADS 

    Google Scholar 
    Chung, K. L. Markov Chains with Stationary Transition Probabilities 5–11 (Springer, 1960).
    Google Scholar 
    Mokarram, M., Pourghasemi, H. R., Hu, M. & Zhang, H. Determining and forecasting drought susceptibility in southwestern Iran using multi-criteria decision-making (MCDM) coupled with CA–Markov model. Sci. Total Environ. 781, 146703 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Maleki, T., Koohestani, H. & Keshavarz, M. Can climate-smart agriculture mitigate the Urmia Lake tragedy in its eastern basin?. Agric. Water Manag. 260, 107256 (2022).Article 

    Google Scholar 
    Rahmani, J. & Danesh-Yazdi, M. Quantifying the impacts of agricultural alteration and climate change on the water cycle dynamics in a headwater catchment of Lake Urmia Basin. Agric. Water Manag. 270, 107749 (2022).Article 

    Google Scholar 
    Schmidt, M., Gonda, R. & Transiskus, S. Environmental degradation at Lake Urmia (Iran): Exploring the causes and their impacts on rural livelihoods. GeoJournal 86, 2149–2163 (2021).Article 

    Google Scholar 
    Eimanifar, A. & Mohebbi, F. Urmia Lake (northwest Iran): A brief review. Saline Syst. 3, 1–8 (2007).Article 

    Google Scholar 
    Shadkam, S., Ludwig, F., van Oel, P., Kirmit, Ç. & Kabat, P. Impacts of climate change and water resources development on the declining inflow into Iran’s Urmia Lake. J. Great Lakes Res. 42, 942–952 (2016).Article 

    Google Scholar 
    Chaudhari, S., Felfelani, F., Shin, S. & Pokhrel, Y. Climate and anthropogenic contributions to the desiccation of the second largest saline lake in the twentieth century. J. Hydrol. 560, 342–353 (2018).Article 
    ADS 

    Google Scholar 
    Khazaei, B. et al. Climatic or regionally induced by humans? Tracing hydro-climatic and land-use changes to better understand the Lake Urmia tragedy. J. Hydrol. 569, 203–217 (2019).Article 
    ADS 

    Google Scholar 
    Schulz, S., Darehshouri, S., Hassanzadeh, E., Tajrishy, M. & Schüth, C. Climate change or irrigated agriculture—What drives the water level decline of Lake Urmia. Sci. Rep. 10, 1–10 (2020).Article 

    Google Scholar 
    Azarnivand, A., Hashemi-Madani, F. S. & Banihabib, M. E. Extended fuzzy analytic hierarchy process approach in water and environmental management (case study: Lake Urmia Basin, Iran). Environ. Earth Sci. 73, 13–26 (2015).Article 
    ADS 

    Google Scholar 
    Bonham-Carter, G. F. & Bonham-Carter, G. Geographic Information Systems for Geoscientists: Modelling with GIS (Elsevier, 1994).
    Google Scholar 
    Garajeh, M. K. et al. An automated deep learning convolutional neural network algorithm applied for soil salinity distribution mapping in Lake Urmia, Iran. Sci. Total Environ. 778, 146253 (2021).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Bioclimatic atlas of the terrestrial Arctic

    Box, J. E. et al. Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 14, 045010 (2019).ADS 
    CAS 

    Google Scholar 
    Previdi, M., Smith, K. L. & Polvani, L. M. Arctic amplification of climate change: a review of underlying mechanisms. Environ. Res. Lett. 16, 093003 (2021).ADS 
    CAS 

    Google Scholar 
    Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 1–10 (2022).ADS 

    Google Scholar 
    Stroeve, J. & Notz, D. Changing state of Arctic sea ice across all seasons. Environ. Res. Lett. 13, 103001 (2018).ADS 

    Google Scholar 
    Kopec, B. G., Feng, X., Michel, F. A. & Posmentier, E. S. Influence of sea ice on Arctic precipitation. Proc. Natl. Acad. Sci. 113, 46–51 (2016).ADS 
    CAS 

    Google Scholar 
    Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J. & Romanovsky, V. E. The changing thermal state of permafrost. Nat. Rev. Earth Environ. 3, 10–23 (2022).ADS 

    Google Scholar 
    Overland, J. et al. The urgency of Arctic change. Polar Sci. 21, 6–13 (2019).ADS 

    Google Scholar 
    Post, E. et al. The polar regions in a 2 °C warmer world. Sci. Adv. 5, eaaw9883 (2019).ADS 
    CAS 

    Google Scholar 
    Ciavarella, A. et al. Prolonged Siberian heat of 2020 almost impossible without human influence. Clim. Change 166, 9 (2021).ADS 

    Google Scholar 
    Dobricic, S., Russo, S., Pozzoli, L., Wilson, J. & Vignati, E. Increasing occurrence of heat waves in the terrestrial Arctic. Environ. Res. Lett. 15, 024022 (2020).ADS 

    Google Scholar 
    Graham, R. M. et al. Increasing frequency and duration of Arctic winter warming events. Geophys. Res. Lett. 44, 6974–6983 (2017).ADS 

    Google Scholar 
    Knight, J. & Harrison, S. The impacts of climate change on terrestrial Earth surface systems. Nat. Clim. Change 3, 24–29 (2013).ADS 

    Google Scholar 
    Pearson, R. G. et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Change 3, 673–677 (2013).ADS 

    Google Scholar 
    Beck, P. S. A. et al. Changes in forest productivity across Alaska consistent with biome shift. Ecol. Lett. 14, 373–379 (2011).
    Google Scholar 
    Reichle, L. M., Epstein, H. E., Bhatt, U. S., Raynolds, M. K. & Walker, D. A. Spatial Heterogeneity of the Temporal Dynamics of Arctic Tundra Vegetation. Geophys. Res. Lett. 45, 9206–9215 (2018).ADS 

    Google Scholar 
    Sturm, M., Racine, C. & Tape, K. Increasing shrub abundance in the Arctic. Nature 411, 546–547 (2001).ADS 
    CAS 

    Google Scholar 
    Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).ADS 

    Google Scholar 
    Phoenix, G. K. & Bjerke, J. W. Arctic browning: extreme events and trends reversing arctic greening. Glob. Change Biol. 22, 2960–2962 (2016).ADS 

    Google Scholar 
    Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).ADS 
    CAS 

    Google Scholar 
    Jentsch, A., Kreyling, J. & Beierkuhnlein, C. A new generation of climate-change experiments: events, not trends. Front. Ecol. Environ. 5, 365–374 (2007).
    Google Scholar 
    Virkkala, A.-M. et al. Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties. Glob. Change Biol. 27, 4040–4059 (2021).CAS 

    Google Scholar 
    Elith, J. & Leathwick, J. R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
    Google Scholar 
    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).ADS 

    Google Scholar 
    Rienecker, M. M. et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 24, 3624–3648 (2011).ADS 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).
    Google Scholar 
    Karger, D. N., Schmatz, D. R., Dettling, G. & Zimmermann, N. E. High-resolution monthly precipitation and temperature time series from 2006 to 2100. Sci. Data 7, 248 (2020).
    Google Scholar 
    Vega, G. C., Pertierra, L. R. & Olalla-Tárraga, M. Á. MERRAclim, a high-resolution global dataset of remotely sensed bioclimatic variables for ecological modelling. Sci. Data 4, 170078 (2017).
    Google Scholar 
    Niittynen, P., Heikkinen, R. K. & Luoto, M. Snow cover is a neglected driver of Arctic biodiversity loss. Nat. Clim. Change 8, 997–1001 (2018).ADS 

    Google Scholar 
    Slatyer, R. A., Umbers, K. D. L. & Arnold, P. A. Ecological responses to variation in seasonal snow cover. Conserv. Biol. 36, e13727 (2022).
    Google Scholar 
    Serreze, M. C. et al. Arctic rain on snow events: bridging observations to understand environmental and livelihood impacts. Environ. Res. Lett. 16, 105009 (2021).ADS 

    Google Scholar 
    López, J., Way, D. A. & Sadok, W. Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Glob. Change Biol. 27, 1704–1720 (2021).ADS 

    Google Scholar 
    Ennos, A. R. Wind as an ecological factor. Trends Ecol. Evol. 12, 108–111 (1997).CAS 

    Google Scholar 
    Muñoz-Sabater, J. et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349–4383 (2021).ADS 

    Google Scholar 
    Boussetta, S. et al. ECLand: The ECMWF Land Surface Modelling System. Atmosphere 12, 723 (2021).ADS 
    CAS 

    Google Scholar 
    Munõz-Sabater, J. ERA5-Land hourly data from 1981 to present. ECMWF https://doi.org/10.24381/cds.e2161bac (2019). Munõz-Sabater, J. ERA5-Land hourly data from 1950 to 1980. ECMWF https://doi.org/10.24381/cds.e2161bac (2021).Hoyer, S. & Hamman, J. xarray: N-D labeled Arrays and Datasets in Python. J. Open Res. Softw. 5, 10 (2017).
    Google Scholar 
    Sen, P. K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).MATH 

    Google Scholar 
    Theil, H. A rank-invariant method of linear and polynomial regression analysis I, II and III. Indag. Math. 173 (1950).Hussain, M. M. & Mahmud, I. pyMannKendall: a python package for non parametric Mann Kendall family of trend tests. J. Open Source Softw. 4, 1556 (2019).ADS 

    Google Scholar 
    Aalto, J. et al. High-resolution analysis of observed thermal growing season variability over northern Europe. Clim. Dyn. 58, 1477–1493 (2022).
    Google Scholar 
    Zhou, B., Zhai, P., Chen, Y. & Yu, R. Projected changes of thermal growing season over Northern Eurasia in a 1.5 °C and 2 °C warming world. Environ. Res. Lett. 13, 035004 (2018).ADS 

    Google Scholar 
    Barichivich, J., Briffa, K. R., Osborn, T. J., Melvin, T. M. & Caesar, J. Thermal growing season and timing of biospheric carbon uptake across the Northern Hemisphere. Glob. Biogeochem. Cycles 26 (2012).Wu, F., Jiang, Y., Wen, Y., Zhao, S. & Xu, H. Spatial synchrony in the start and end of the thermal growing season has different trends in the mid-high latitudes of the Northern Hemisphere. Environ. Res. Lett. 16, 124017 (2021).ADS 

    Google Scholar 
    Ruosteenoja, K., Räisänen, J., Venäläinen, A. & Kämäräinen, M. Projections for the duration and degree days of the thermal growing season in Europe derived from CMIP5 model output. Int. J. Climatol. 36, 3039–3055 (2016).
    Google Scholar 
    Niittynen, P. & Luoto, M. The importance of snow in species distribution models of arctic vegetation. Ecography 41, 1024–1037 (2018).
    Google Scholar 
    McMaster, G. S. & Wilhelm, W. W. Growing degree-days: one equation, two interpretations. Agric. For. Meteorol. 87, 291–300 (1997).ADS 

    Google Scholar 
    Körner, C. Plant adaptation to cold climates. F1000Research 5, F1000 Faculty Rev-2769 (2016).Niittynen, P. et al. Fine-scale tundra vegetation patterns are strongly related to winter thermal conditions. Nat. Clim. Change 10, 1143–U134 (2020).ADS 

    Google Scholar 
    Cohen, J., Ye, H. & Jones, J. Trends and variability in rain-on-snow events. Geophys. Res. Lett. 42, 7115–7122 (2015).ADS 

    Google Scholar 
    Mooney, P. A. & Li, L. Near future changes to rain-on-snow events in Norway. Environ. Res. Lett. 16, 064039 (2021).ADS 

    Google Scholar 
    Preece, C., Callaghan, T. V. & Phoenix, G. K. Impacts of winter icing events on the growth, phenology and physiology of sub-arctic dwarf shrubs. Physiol. Plant. 146, 460–472 (2012).CAS 

    Google Scholar 
    Putkonen, J. & Roe, G. Rain-on-snow events impact soil temperatures and affect ungulate survival. Geophys. Res. Lett. 30, (2003).Treharne, R., Bjerke, J. W. & Tømmervik, H. & Phoenix, G. K. Development of new metrics to assess and quantify climatic drivers of extreme event driven Arctic browning. Remote Sens. Environ. 243, 111749 (2020).ADS 

    Google Scholar 
    Bokhorst, S. et al. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community. Physiol. Plant. 140, 128–140 (2010).CAS 

    Google Scholar 
    Russo, S., Sillmann, J. & Fischer, E. M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 10, 124003 (2015).ADS 

    Google Scholar 
    Alduchov, O. A. & Eskridge, R. E. Improved Magnus Form Approximation of Saturation Vapor Pressure. J. Appl. Meteorol. Climatol. 35, 601–609 (1996).ADS 

    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).
    Google Scholar 
    Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).ADS 
    CAS 

    Google Scholar 
    De Frenne, P. et al. Forest microclimates and climate change: Importance, drivers and future research agenda. Glob. Change Biol. 27, 2279–2297 (2021).ADS 

    Google Scholar 
    Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11, 4621 (2020).ADS 
    CAS 

    Google Scholar 
    Berner, L. T., Jantz, P., Tape, K. D. & Goetz, S. J. Tundra plant above-ground biomass and shrub dominance mapped across the North Slope of Alaska. Environ. Res. Lett. 13, 035002 (2018).ADS 

    Google Scholar 
    Walker, D. A. et al. Phytomass, LAI, and NDVI in northern Alaska: Relationships to summer warmth, soil pH, plant functional types, and extrapolation to the circumpolar Arctic. J. Geophys. Res. Atmospheres 108, (2003).Williams, C. M., Henry, H. A. L. & Sinclair, B. J. Cold truths: how winter drives responses of terrestrial organisms to climate change. Biol. Rev. 90, 214–235 (2015).
    Google Scholar 
    Peng, S. et al. Change in snow phenology and its potential feedback to temperature in the Northern Hemisphere over the last three decades. Environ. Res. Lett. 8, 014008 (2013).ADS 

    Google Scholar 
    Wheeler, J. A. et al. Increased spring freezing vulnerability for alpine shrubs under early snowmelt. Oecologia 175, 219–229 (2014).ADS 
    CAS 

    Google Scholar 
    Zhu, L., Ives, A. R., Zhang, C., Guo, Y. & Radeloff, V. C. Climate change causes functionally colder winters for snow cover-dependent organisms. Nat. Clim. Change 9, 886–893 (2019).ADS 

    Google Scholar 
    Vitasse, Y. et al. ‘Hearing’ alpine plants growing after snowmelt: ultrasonic snow sensors provide long-term series of alpine plant phenology. Int. J. Biometeorol. 61, 349–361 (2017).ADS 

    Google Scholar 
    Kling, M. M. & Ackerly, D. D. Global wind patterns and the vulnerability of wind-dispersed species to climate change. Nat. Clim. Change 10, 868–875 (2020).ADS 

    Google Scholar 
    Dial, R. J., Maher, C. T., Hewitt, R. E. & Sullivan, P. F. Sufficient conditions for rapid range expansion of a boreal conifer. Nature 608, 546–551 (2022).ADS 
    CAS 

    Google Scholar 
    Nathan, R. et al. Mechanisms of long-distance dispersal of seeds by wind. Nature 418, 409–413 (2002).ADS 
    CAS 

    Google Scholar 
    Sakai, A. Mechanism of Desiccation Damage of Conifers Wintering in Soil-Frozen Areas. Ecology 51, 657–664 (1970).
    Google Scholar 
    Wilson, J. W. Notes on Wind and its Effects in Arctic-Alpine Vegetation. J. Ecol. 47, 415–427 (1959).
    Google Scholar 
    Rantanen, M. et al. Bioclimatic atlas of the terrestrial Arctic, figshare, https://doi.org/10.6084/m9.figshare.c.6216368 (2023).Räisänen, J. Snow conditions in northern Europe: the dynamics of interannual variability versus projected long-term change. The Cryosphere 15, 1677–1696 (2021).ADS 

    Google Scholar 
    Xu, J., Ma, Z., Yan, S. & Peng, J. Do ERA5 and ERA5-land precipitation estimates outperform satellite-based precipitation products? A comprehensive comparison between state-of-the-art model-based and satellite-based precipitation products over mainland China. J. Hydrol. 605, 127353 (2022).
    Google Scholar 
    Behrangi, A., Singh, A., Song, Y. & Panahi, M. Assessing Gauge Undercatch Correction in Arctic Basins in Light of GRACE Observations. Geophys. Res. Lett. 46, 11358–11366 (2019).ADS 

    Google Scholar 
    Menne, M. J., Williams, C. N., Gleason, B. E., Rennie, J. J. & Lawrimore, J. H. The Global Historical Climatology Network Monthly Temperature Dataset, Version 4. J. Clim. 31, 9835–9854 (2018).ADS 

    Google Scholar 
    Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E. & Houston, T. G. An Overview of the Global Historical Climatology Network-Daily Database. J. Atmospheric Ocean. Technol. 29, 897–910 (2012).ADS 

    Google Scholar 
    Atlaskin, E. & Vihma, T. Evaluation of NWP results for wintertime nocturnal boundary-layer temperatures over Europe and Finland. Q. J. R. Meteorol. Soc. 138, 1440–1451 (2012).ADS 

    Google Scholar 
    Lindsay, R., Wensnahan, M., Schweiger, A. & Zhang, J. Evaluation of Seven Different Atmospheric Reanalysis Products in the Arctic. J. Clim. 27, 2588–2606 (2014).ADS 

    Google Scholar 
    Wang, C., Graham, R. M., Wang, K., Gerland, S. & Granskog, M. A. Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: effects on sea ice thermodynamics and evolution. The Cryosphere 13, 1661–1679 (2019).ADS 

    Google Scholar 
    Wesslén, C. et al. The Arctic summer atmosphere: an evaluation of reanalyses using ASCOS data. Atmospheric Chem. Phys. 14, 2605–2624 (2014).ADS 

    Google Scholar  More

  • in

    A new technique to study nutrient flow in host-parasite systems by carbon stable isotope analysis of amino acids and glucose

    Kuris, A. M. et al. Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454, 515–518. https://doi.org/10.1038/nature06970 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. & Jetz, W. Homage to Linnaeus: How many parasites? How many hosts?. Proc. Natl. Acad. Sci. 105, 11482–11489 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Lafferty, K. D., Dobson, A. & Kuris, A. M. Parasites dominate food web links. Proc. Natl. Acad. Sci. 103, 11211–11216 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Amundsen, P. A. et al. Food web topology and parasites in the pelagic zone of a subarctic lake. J. Anim. Ecol. 78, 563–572. https://doi.org/10.1111/j.1365-2656.2008.01518.x (2009).Article 

    Google Scholar 
    Thompson, R. M., Mouritsen, K. N. & Poulin, R. Importance of parasites and their life cycle characteristics in determining the structure of a large marine food web. J. Anim. Ecol. 74, 77–85. https://doi.org/10.1111/j.1365-2656.2004.00899.x (2005).Article 

    Google Scholar 
    Thieltges, D. W. et al. Parasites as prey in aquatic food webs: Implications for predator infection and parasite transmission. Oikos 122, 1473–1482. https://doi.org/10.1111/j.1600-0706.2013.00243.x (2013).Article 

    Google Scholar 
    Sato, T. et al. Nematomorph parasites drive energy flow through a riparian ecosystem. Ecology 92, 201–207 (2011).Article 

    Google Scholar 
    Lafferty, K. D. & Kuris, A. M. Trophic strategies, animal diversity and body size. Trends Ecol. Evol. 17, 507–513 (2002).Article 

    Google Scholar 
    Goedknegt, M. A. et al. Trophic relationship between the invasive parasitic copepod Mytilicola orientalis and its native blue mussel (Mytilus edulis) host. Parasitology 145, 814–821. https://doi.org/10.1017/S0031182017001779 (2018).Article 
    CAS 

    Google Scholar 
    Timi, J. T. & Poulin, R. Why ignoring parasites in fish ecology is a mistake. Int. J. Parasitol. 50, 755–761. https://doi.org/10.1016/j.ijpara.2020.04.007 (2020).Article 

    Google Scholar 
    Barber, I. & Svensson, P. A. Effects of experimental Schistocephalus solidus infections on growth, morphology and sexual development of female three-spined sticklebacks Gasterosteus aculeatus. Parasitology 126, 359–367. https://doi.org/10.1017/s0031182002002925 (2003).Article 
    CAS 

    Google Scholar 
    Scharsack, J. P., Koch, K. & Hammerschmidt, K. Who is in control of the stickleback immune system: Interactions between Schistocephalus solidus and its specific vertebrate host. Proc. Biol. Sci. 274, 3151–3158. https://doi.org/10.1098/rspb.2007.1148 (2007).Article 

    Google Scholar 
    Hopkins, C. A. Studies on cestode metabolism. I. glycogen metabolism in Schistocephalus solidus In vivo. J. Parasitol. 36, 384–390 (1950).Article 
    CAS 

    Google Scholar 
    Körting, W. & Barrett, J. Carbohydrate catabolism in the plerocercoids of Schistocephalus solidus (Cestoda: Pseudophyllidea). Int. J. Parasitol. 7, 411–417 (1977).Article 

    Google Scholar 
    Hebert, F. O., Grambauer, S., Barber, I., Landry, C. R. & Aubin-Horth, N. Major host transitions are modulated through transcriptome-wide reprogramming events in Schistocephalus solidus, a threespine stickleback parasite. Mol. Ecol. 26, 1118–1130. https://doi.org/10.1111/mec.13970 (2017).Article 
    CAS 

    Google Scholar 
    Berger, C. S. et al. The parasite Schistocephalus solidus secretes proteins with putative host manipulation functions. Parasites Vectors 14, 436. https://doi.org/10.1186/s13071-021-04933-w (2021).Article 
    CAS 

    Google Scholar 
    Jolles, J. W., Mazue, G. P. F., Davidson, J., Behrmann-Godel, J. & Couzin, I. D. Schistocephalus parasite infection alters sticklebacks’ movement ability and thereby shapes social interactions. Sci. Rep. 10, 12282. https://doi.org/10.1038/s41598-020-69057-0 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Scharsack, J. P. et al. Climate change facilitates a parasite’s host exploitation via temperature-mediated immunometabolic processes. Glob. Change Biol. 27, 94–107. https://doi.org/10.1111/gcb.15402 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Kochneva, A., Borvinskaya, E. & Smirnov, L. Zone of interaction between the parasite and the host: Protein profile of the body cavity fluid of Gasterosteus aculeatus L. infected with the Cestode Schistocephalus solidus (Muller, 1776). Acta Parasitol. 66, 569–583. https://doi.org/10.1007/s11686-020-00318-8 (2021).Article 
    CAS 

    Google Scholar 
    Barber, I. & Scharsack, J. P. The three-spined stickleback-Schistocephalus solidus system: An experimental model for investigating host-parasite interactions in fish. Parasitology 137, 411–424. https://doi.org/10.1017/S0031182009991466 (2010).Article 
    CAS 

    Google Scholar 
    Weber, J. N., Steinel, N. C., Shim, K. C. & Bolnick, D. I. Recent evolution of extreme cestode growth suppression by a vertebrate host. Proc. Natl. Acad. Sci. U. S. A. 114, 6575–6580. https://doi.org/10.1073/pnas.1620095114 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Sabadel, A. J. M., Stumbo, A. D. & MacLeod, C. D. Stable-isotope analysis: A neglected tool for placing parasites in food webs. J. Helminthol. 93, 1–7. https://doi.org/10.1017/S0022149X17001201 (2019).Article 
    CAS 

    Google Scholar 
    Hayes, J. M. Factors controlling 13C contents of sedimentary organic compounds: Principles and evidence. Mar. Geol. 113, 111–125 (1993).Article 
    ADS 
    CAS 

    Google Scholar 
    France, R. L. Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnol. Oceanogr. 40, 1310–1313 (1995).Article 
    ADS 

    Google Scholar 
    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods and assumptions. Ecology 83, 703–718 (2002).Article 

    Google Scholar 
    O’Connell, T. C. ‘Trophic’ and ‘source’ amino acids in trophic estimation: A likely metabolic explanation. Oecologia 184, 317–326. https://doi.org/10.1007/s00442-017-3881-9 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    McMahon, K. W., Fogel, M. L., Elsdon, T. S. & Thorrold, S. R. Carbon isotope fractionation of amino acids in fish muscle reflects biosynthesis and isotopic routing from dietary protein. J. Anim. Ecol. 79, 1132–1141. https://doi.org/10.1111/j.1365-2656.2010.01722.x (2010).Article 

    Google Scholar 
    Liu, H.-z, Luo, L. & Cai, D.-l. Stable carbon isotopic analysis of amino acids in a simplified food chain consisting of the green alga Chlorella spp., the calanoid copepod Calanus sinicus, and the Japanese anchovy (Engraulis japonicus). Can. J. Zool. 96, 23–30. https://doi.org/10.1139/cjz-2016-0170 (2018).Article 
    CAS 

    Google Scholar 
    Wang, Y. V. et al. Know your fish: A novel compound-specific isotope approach for tracing wild and farmed salmon. Food Chem. 256, 380–389. https://doi.org/10.1016/j.foodchem.2018.02.095 (2018).Article 
    CAS 

    Google Scholar 
    Whiteman, J. P., Kim, S. L., McMahon, K. W., Koch, P. L. & Newsome, S. D. Amino acid isotope discrimination factors for a carnivore: Physiological insights from leopard sharks and their diet. Oecologia 188, 977–989. https://doi.org/10.1007/s00442-018-4276-2 (2018).Article 
    ADS 

    Google Scholar 
    Rogers, M., Bare, R., Gray, A., Scott-Moelder, T. & Heintz, R. Assessment of two feeds on survival, proximate composition, and amino acid carbon isotope discrimination in hatchery-reared Chinook salmon. Fish. Res. 219, 105303. https://doi.org/10.1016/j.fishres.2019.06.001 (2019).Article 

    Google Scholar 
    Choy, K., Smith, C. I., Fuller, B. T. & Richards, M. P. Investigation of amino acid δ13C signatures in bone collagen to reconstruct human palaeodiets using liquid chromatography–isotope ratio mass spectrometry. Geochim. Cosmochim. Acta 74, 6093–6111. https://doi.org/10.1016/j.gca.2010.07.025 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mamm. Sci. 26, 509–572. https://doi.org/10.1111/j.1748-7692.2009.00354.x (2010).Article 
    CAS 

    Google Scholar 
    Raghavan, M., McCullagh, J. S., Lynnerup, N. & Hedges, R. E. Amino acid delta13C analysis of hair proteins and bone collagen using liquid chromatography/isotope ratio mass spectrometry: Paleodietary implications from intra-individual comparisons. Rapid Commun. Mass Spectrom. 24, 541–548. https://doi.org/10.1002/rcm.4398 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Honch, N. V., McCullagh, J. S. & Hedges, R. E. Variation of bone collagen amino acid delta13C values in archaeological humans and fauna with different dietary regimes: Developing frameworks of dietary discrimination. Am. J. Phys. Anthropol. 148, 495–511. https://doi.org/10.1002/ajpa.22065 (2012).Article 

    Google Scholar 
    Mora, A. et al. High-resolution palaeodietary reconstruction: Amino acid δ 13 C analysis of keratin from single hairs of mummified human individuals. Quatern. Int. 436, 96–113. https://doi.org/10.1016/j.quaint.2016.10.018 (2017).Article 

    Google Scholar 
    Matos, M. P. V., Konstantynova, K. I., Mohr, R. M. & Jackson, G. P. Analysis of the (13)C isotope ratios of amino acids in the larvae, pupae and adult stages of Calliphora vicina blow flies and their carrion food sources. Anal. Bioanal. Chem. 410, 7943–7954. https://doi.org/10.1007/s00216-018-1416-9 (2018).Article 
    CAS 

    Google Scholar 
    Bontempo, L. et al. Bulk and compound-specific stable isotope ratio analysis for authenticity testing of organically grown tomatoes. Food Chem. 318, 126426. https://doi.org/10.1016/j.foodchem.2020.126426 (2020).Article 
    CAS 

    Google Scholar 
    Gaye-Siessegger, J., McCullagh, J. S. & Focken, U. The effect of dietary amino acid abundance and isotopic composition on the growth rate, metabolism and tissue delta13C of rainbow trout. Br. J. Nutr. 105, 1764–1771. https://doi.org/10.1017/S0007114510005696 (2011).Article 
    CAS 

    Google Scholar 
    Newsome, S. D., Fogel, M. L., Kelly, L. & del Rio, C. M. Contributions of direct incorporation from diet and microbial amino acids to protein synthesis in Nile tilapia. Funct. Ecol. 25, 1051–1062. https://doi.org/10.1111/j.1365-2435.2011.01866.x (2011).Article 

    Google Scholar 
    Larsen, T. et al. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting. PLoS ONE 8, e73441. https://doi.org/10.1371/journal.pone.0073441 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Thieltges, D. W., Goedknegt, M. A., O’Dwyer, K., Senior, A. M. & Kamiya, T. Parasites and stable isotopes: A comparative analysis of isotopic discrimination in parasitic trophic interactions. Oikos 128, 1329–1339. https://doi.org/10.1111/oik.06086 (2019).Article 

    Google Scholar 
    Layman, C. A. et al. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. Camb. Philos. Soc. 87, 545–562. https://doi.org/10.1111/j.1469-185X.2011.00208.x (2011).Article 

    Google Scholar 
    Wang, Y. V., Wan, A. H. L., Krogdahl, A., Johnson, M. & Larsen, T. (13)C values of glycolytic amino acids as indicators of carbohydrate utilization in carnivorous fish. PeerJ 7, e7701. https://doi.org/10.7717/peerj.7701 (2019).Article 

    Google Scholar 
    Hesse, T. et al. Insights into amino acid fractionation and incorporation by compound-specific carbon isotope analysis of three-spined sticklebacks. Sci. Rep. 12, 11690. https://doi.org/10.1038/s41598-022-15704-7 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Riekenberg, P. M. et al. Stable nitrogen isotope analysis of amino acids as a new tool to clarify complex parasite–host interactions within food webs. Oikos 130, 1650–1664. https://doi.org/10.1111/oik.08450 (2021).Article 
    CAS 

    Google Scholar 
    Carleton, S. A. & Del Rio, C. M. Growth and catabolism in isotopic incorporation: A new formulation and experimental data. Funct. Ecol. 24, 805–812. https://doi.org/10.1111/j.1365-2435.2010.01700.x (2010).Article 

    Google Scholar 
    Perga, M. E. & Gerdeaux, D. ‘Are fish what they eat’ all year round?. Oecologia 144, 598–606. https://doi.org/10.1007/s00442-005-0069-5 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Grey, J. Trophic fractionation and the effects of diet switch on the carbon stable isotopic ‘signatures’ of pelagic consumers. SIL Proc. 1922–2010(27), 3187–3191. https://doi.org/10.1080/03680770.1998.11898266 (2000).Article 

    Google Scholar 
    Danfaer, A. Nutrient metabolism and utilization in the liver. Livest. Prod. Sci. 39, 115–127 (1994).Article 

    Google Scholar 
    Read, C. P. & Simmons, J. E. Biochemistry and physiology of tapeworms. Physiol. Rev. 43, 263–305 (1963).Article 
    CAS 

    Google Scholar 
    Nachev, M. et al. Understanding trophic interactions in host-parasite associations using stable isotopes of carbon and nitrogen. Parasites Vectors 10, 1–9. https://doi.org/10.1186/s13071-017-2030-y (2017).Article 
    CAS 

    Google Scholar 
    Kanaya, G. et al. Application of stable isotopic analyses for fish host–parasite systems: An evaluation tool for parasite-mediated material flow in aquatic ecosystems. Aquat. Ecol. 53, 217–232. https://doi.org/10.1007/s10452-019-09684-6 (2019).Article 
    CAS 

    Google Scholar 
    Gilbert, B. M. et al. You are how you eat: differences in trophic position of two parasite species infecting a single host according to stable isotopes. Parasitol. Res. 119, 1393–1400. https://doi.org/10.1007/s00436-020-06619-1 (2020).Article 

    Google Scholar 
    Gilbert, B. M. et al. Stable isotope analysis spills the beans about spatial variance in trophic structure in a fish host—Parasite system from the Vaal River System, South Africa. Int. J. Parasitol. Parasites Wildl. 12, 134–141. https://doi.org/10.1016/j.ijppaw.2020.05.011 (2020).Article 

    Google Scholar 
    Felig, P. The glucose-alanine cycle. Metabolism 22, 179–207 (1973).Article 
    CAS 

    Google Scholar 
    Dale, R. A. Catabolism of threonine in mammals by coupling of L-threonine 3-dehydrogenase with 2-amino-3-oxobutyrate-CoA ligase. Biochem. Biophys. Acta. 544, 496–503 (1978).Article 
    CAS 

    Google Scholar 
    Jordan, P. M. & Akhtar, M. The mechanism of action of serine Transhydroxymethylase. Biochem. J. 116, 277–286 (1970).Article 
    CAS 

    Google Scholar 
    Linstead, D. J., Klein, R. A. & Cross, G. A. M. Threonine catabolism in Trypanosoma brucei. J. Gen. Microbiol. 101, 243–251 (1977).Article 
    CAS 

    Google Scholar 
    Hare, P. E., Fogel, M. L., Stafford, T. W. Jr., Mitchell, A. D. & Hoering, T. C. The isotopic composition of carbon and nitrogen in individual amino acids isolated from modern and fossil proteins. J. Archaeol. Sci. 18, 277–292 (1991).Article 

    Google Scholar 
    Petzke, K. J., Boeing, H., Klaus, S. & Metges, C. C. Carbon and nitrogen stable isotopic composition of hair protein and amino acids can be used as biomarkers for animal-derived dietary protein intake in humans. J. Nutr. 135, 1515–1520 (2005).Article 
    CAS 

    Google Scholar 
    McMahon, K. W., Polito, M. J., Abel, S., McCarthy, M. D. & Thorrold, S. R. Carbon and nitrogen isotope fractionation of amino acids in an avian marine predator, the gentoo penguin (Pygoscelis papua). Ecol. Evol. 5, 1278–1290. https://doi.org/10.1002/ece3.1437 (2015).Article 

    Google Scholar 
    Fuller, B. T. & Petzke, K. J. The dietary protein paradox and threonine (15) N-depletion: Pyridoxal-5’-phosphate enzyme activity as a mechanism for the delta (15) N trophic level effect. Rapid Commun. Mass Spectrom. 31, 705–718. https://doi.org/10.1002/rcm.7835 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Bowyer, A. et al. Structure and function of the l-threonine dehydrogenase (TkTDH) from the hyperthermophilic archaeon Thermococcus kodakaraensis. J. Struct. Biol. 168, 294–304. https://doi.org/10.1016/j.jsb.2009.07.011 (2009).Article 
    CAS 

    Google Scholar 
    Kikuchi, G., Motokawa, Y., Yoshida, T. & Hiraga, K. Glycine cleavage system: Reaction mechanism, physiological significance and hyperglycinemia. Proc. Jpn. Acad. https://doi.org/10.2183/pjab/84.246 (2008).Article 

    Google Scholar 
    Locasale, J. W. Serine, glycine and one-carbon units: Cancer metabolism in full circle. Nat. Rev. Cancer 13, 572–583. https://doi.org/10.1038/nrc3557 (2013).Article 
    CAS 

    Google Scholar 
    Kalhan, S. C. & Hanson, R. W. Resurgence of serine: An often neglected but indispensable amino Acid. J. Biol. Chem. 287, 19786–19791. https://doi.org/10.1074/jbc.R112.357194 (2012).Article 
    CAS 

    Google Scholar 
    Larsen, T., Wang, Y. V. & Wan, A. H. L. Tracing the Trophic fate of aquafeed macronutrients with carbon isotope ratios of amino acids. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.813961 (2022).Article 

    Google Scholar 
    Sweeting, C. J., Polunin, N. V. & Jennings, S. Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Commun. Mass Spectrom. 20, 595–601. https://doi.org/10.1002/rcm.2347 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Tarallo, A., Bailey, C., Agnisola, C. & D’Onofrio, G. A theoretical evaluation of the respiration rate partition in the Gasterosteus aculeatus-Schistocephalus solidus host-parasite system. Int. Aquat. Res. 13, 185. https://doi.org/10.22034/IAR.2021.1924974.1142 (2021).Article 

    Google Scholar 
    Takizawa, Y. et al. A new insight into isotopic fractionation associated with decarboxylation in organisms: Implications for amino acid isotope approaches in biogeoscience. Progress Earth Planet. Sci. https://doi.org/10.1186/s40645-020-00364-w (2020).Article 

    Google Scholar 
    Ron-Harel, N. et al. T cell activation depends on extracellular alanine. Cell Rep. 28, 3011-3021.e4. https://doi.org/10.1016/j.celrep.2019.08.034 (2019).Article 
    CAS 

    Google Scholar 
    Wang, W. et al. Glycine metabolism in animals and humans: Implications for nutrition and health. Amino Acids 45, 463–477. https://doi.org/10.1007/s00726-013-1493-1 (2013).Article 
    CAS 

    Google Scholar 
    Mathis, D. & Shoelson, S. E. Immunometabolism: An emerging frontier. Nat. Rev. Immunol. 11, 81. https://doi.org/10.1038/nri2922 (2011).Article 
    CAS 

    Google Scholar 
    Guo, C. et al. Live Edwardsiella tarda vaccine enhances innate immunity by metabolic modulation in zebrafish. Fish Shellfish Immunol. 47, 664–673. https://doi.org/10.1016/j.fsi.2015.09.034 (2015).Article 
    CAS 

    Google Scholar 
    Peuss, R. et al. Adaptation to low parasite abundance affects immune investment and immunopathological responses of cavefish. Nat. Ecol. Evol. 4, 1416–1430. https://doi.org/10.1038/s41559-020-1234-2 (2020).Article 

    Google Scholar 
    Smyth, J. D. Fertilization of Schistocephalus solidus in vitro. Exp. Parasitol. 3, 64–71 (1954).Article 
    CAS 

    Google Scholar 
    Schärer, L. & Wedekind, C. Lifetime reproductive output in a hermaphrodite cestode when reproducing alone or in pairs. Evol. Ecol. 13, 381–394 (1999).Article 

    Google Scholar 
    McCullagh, J. S. Mixed-mode chromatography/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 24, 483–494. https://doi.org/10.1002/rcm.4322 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Dunn, P. J., Honch, N. V. & Evershed, R. P. Comparison of liquid chromatography-isotope ratio mass spectrometry (LC/IRMS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) for the determination of collagen amino acid delta13C values for palaeodietary and palaeoecological reconstruction. Rapid Commun. Mass Spectrom. 25, 2995–3011. https://doi.org/10.1002/rcm.5174 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Fry, B., Carter, J. F., Yamada, K., Yoshida, N. & Juchelka, D. Position-specific (13) C/(12) C analysis of amino acid carboxyl groups—Automated flow-injection-analysis based on reaction with ninhydrin. Rapid Commun. Mass Spectrom. https://doi.org/10.1002/rcm.8126 (2018).Article 

    Google Scholar 
    Marks, R. G. H., Jochmann, M. A., Brand, W. A. & Schmidt, T. C. How to couple LC-IRMS with HRMS─A proof-of-concept study. Anal Chem 94, 2981–2987 (2022).Article 
    CAS 

    Google Scholar 
    Sun, Y. et al. A method for stable carbon isotope measurement of underivatized individual amino acids by multi-dimensional high-performance liquid chromatography and elemental analyzer/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 34, e8885. https://doi.org/10.1002/rcm.8885 (2020).Article 
    CAS 

    Google Scholar 
    Werner, R. A. & Brand, W. A. Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun. Mass Spectrom. 15, 501–519. https://doi.org/10.1002/rcm.258 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Köster, D., Villalobos, I. M. S., Jochmann, M. A., Brand, W. A. & Schmidt, T. C. New concepts for the determination of oxidation efficiencies in liquid chromatography-isotope ratio mass spectrometry. Anal. Chem. 91, 5067–5073. https://doi.org/10.1021/acs.analchem.8b05315 (2019).Article 
    CAS 

    Google Scholar 
    Boschker, H. T., Moerdijk-Poortvliet, T. C., van Breugel, P., Houtekamer, M. & Middelburg, J. J. A versatile method for stable carbon isotope analysis of carbohydrates by high-performance liquid chromatography/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 22, 3902–3908. https://doi.org/10.1002/rcm.3804 (2008).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Synthesis of heat-resistant and water/oil-repellent aromatic polyketones bearing tetrakis(nonafluorobutyl)-p-terphenylene units

    Hou J, Sun J, Fang Q. A fluorinated low dielectric polymer at high frequency derived from allylphenol and benzocyclobutene by a facile route. Eur Polym J. 2022;163:110943–9.Article 
    CAS 

    Google Scholar 
    Qiu Z, Wu S, Li Z, Zhang S, Xing W, Liu S. Sulfonated Poly(arylene-co-naphthalimide)s Synthesized by Copolymerization of Primarily Sulfonated Monomer and Fluorinated Naphthalimide Dichlorides as Novel Polymers for Proton Exchange Membranes. Macromolecules 2006;39:6425–32.Article 
    CAS 

    Google Scholar 
    Schönberger F, Chromik A, Kerres J. Synthesis and characterization of novel (sulfonated) poly(arylene ether)s with pendent trifluoromethyl groups. Polymer 2009;50:2010–24.Article 

    Google Scholar 
    Chen JC, Liu YC, Ju JJ, Chiang CJ, Chern YT. Synthesis, characterization and hydrolysis of aromatic polyazomethines containing non-coplanar biphenyl structures. Polymer 2011;52:954–64.Article 
    CAS 

    Google Scholar 
    Liaw DJ, Huang CC, Chen WH. Color lightness and highly organosoluble fluorinated polyamides, polyimides and poly(amide–imide)s based on noncoplanar 2,2’-dimethyl-4,4’-biphenylene units. Polymer 2006;47:2337–48.Article 
    CAS 

    Google Scholar 
    Shohbuke E, Kobayashi Y, Okubayashi S. Effects of acrylate monomers containing alkyl groups on water and oil repellent treatments of polyester fabrics. Colloids. Surf. A: Physicochem Eng Asp. 2021;631:127632–9.Article 
    CAS 

    Google Scholar 
    Sun Y, Zhao X, Liu R, Chen G, Zhou X. Synthesis and characterization of fluorinated polyacrylate as water and oil repellent and soil release finishing agent for polyester fabric. Prog Org Coat. 2018;123:306–13.Article 
    CAS 

    Google Scholar 
    Tang W, Huang Y, Qing FL. Synthesis and characterization of fluorinated polyacrylate graft copolymers capable as water and oil repellent finishing agents. J Appl Polym Sci. 2011;119:84–92.Article 
    CAS 

    Google Scholar 
    Jiang J, Zhang G, Wang Q, Zhang Q, Zhan X, Chen F. Novel Fluorinated Polymers Containing Short Perfluorobutyl Side Chains and Their Super Wetting Performance on Diverse Substrates. ACS Appl Mater Interfaces. 2016;8:10513–23.Article 
    CAS 

    Google Scholar 
    Honda K, Morita M, Otsuka H, Takahara A. Molecular Aggregation Structure and Surface Properties of Poly(fluoroalkyl acrylate) Thin Films. Macromolecules 2005;38:5699–705.Article 
    CAS 

    Google Scholar 
    Shaver AT, Yin K, Borjigin H, Zhang W, Choudhury SR, Baer E, Mecham SJ, Riffle JS, McGrath JE. Fluorinated poly(arylene ether ketone)s for high temperature dielectrics. Polymer 2016;83:199–204.Article 
    CAS 

    Google Scholar 
    Attwood TE, Dawson PC, Freeman JL, Hoy LRJ, Rose JB, Staniland PA. Synthesis and properties of polyaryletherketones. Polymer. 1981;22:1096–103.Article 
    CAS 

    Google Scholar 
    Yonezawa N, Okamoto A. Synthesis of Wholly Aromatic Polyketones. Polym J. 2009;41:899–928.Article 
    CAS 

    Google Scholar 
    Maeyama K, Ito S. Synthesis of aromatic poly(ether ketone)s bearing 9,9-dialkylfuorene-2,7-diyl units through nucleophilic aromatic substitution polymerization. Polym Bull.2018;75:5763–76.Article 
    CAS 

    Google Scholar 
    Blundell DJ, Osborn BN. The morphology of poly(aryl-ether-ether ketone). Polymer 1983;24:953–8.Article 
    CAS 

    Google Scholar 
    Maeyama K, Hikiji I, Ogura K, Okamoto A, Ogino K, Saito H, Yonezawa N. Synthesis of Optically Active Aromatic Poly(ether ketone)s via Nucleophilic Aromatic Substitution Polymerization. Polym J. 2005;37:707–10.Article 
    CAS 

    Google Scholar 
    Liu Q, Zhang S, Wang Z, Chen Y, Jian X. Effect of pendent phenyl and bis-phthalazinone moieties on the properties of N-heterocyclic poly(aryl ether ketone ketone)s. Polymer 2020;198:122525–34.Article 
    CAS 

    Google Scholar 
    Eaton PE, Carlson GR, Lee JT. Phosphorus Pentoxide-Methanesulfonic Acid. A Convenient Alternative to Polyphosphoric Acid. J Org Chem. 1973;38:4071–3.Article 
    CAS 

    Google Scholar 
    Nowacki B, Iamazaki E, Cirpan A, Karasz F, Atvars TDZ, Akcelrud L. Highly efficient polymer blends from a polyfluorene derivative and PVK for LEDs. Polymer 2009;50:6057–64.Article 
    CAS 

    Google Scholar 
    Wang TQ, Zhao SL, Zhang WM, Lin HX, Cui YM. Synthesis, X-ray crystal structure, and optical properties of novel 9,9-diethyl-1,2-diaryl-1,9-dihydrofluoreno[2,3-d]imidazoles. Monatsh Chem. 2016;147:1991–9.Article 
    CAS 

    Google Scholar 
    Chen J, Onogi S, Hsieh YC, Hsiao CC, Higashibayashi S, Sakurai H, Wu YT. Palladium-Catalyzed Arylation of Methylene-Bridged Polyarenes: Synthesis and Structures of 9-Arylfluorene Derivatives. Adv Synth Catal. 2012;354:1551–8.Article 
    CAS 

    Google Scholar 
    Manuel S, Anne S, Larissa AC, Stefan M. Uniform shape monodisperse single chain nanocrystals by living aqueous catalytic polymerization. Nat Commun.2019;10:2592.Article 

    Google Scholar 
    Lee KS, Lee JS. Synthesis of Highly Fluorinated Poly(arylene ether sulfide) for Polymeric Optical Waveguides. Chem Mater. 2006;18:4519–25.Article 
    CAS 

    Google Scholar 
    Natarajan P, Vagicherla VD, Vijayan MT. A mild oxidation of deactivated naphthalenes and anthracenes to corresponding para-quinones by N-bromosuccinimide. Tetrahedron Lett. 2014;55:3511–5.Article 
    CAS 

    Google Scholar 
    Faury T, Dumur F, Clair S, Abel M, Porte L, Gigmes D. Side functionalization of diboronic acid precursors for covalent organic frameworks. Cryst Eng Comm. 2013;15:2067–75.Article 
    CAS 

    Google Scholar 
    Shaposhnikova VV, Tkachenko AS, Zvukova ND, Peregudov AS, Klemenkova ZS, Ponomarev AF, Il´yasov VK, Lachinov AN, Salazkin SN. New possibilities for the effective influence on the charge transport in poly(arylene ether ketones) without using phthalide-containing fragments in the polymer chains. Rus Chem Bull Int Ed. 2016;65:502–6.Article 
    CAS 

    Google Scholar 
    Owens DK, Wendt RC. Estimation of the Surface Free Energy of Polymers. J Appl Polym Sci. 1969;13:1741–7.Article 
    CAS 

    Google Scholar 
    Fox HW, Zisman WA. The spreading of liquids on low energy surfaces. I. Polytetrafluoroethylene. J Colloid Sci. 1950;5:514–31.Article 
    CAS 

    Google Scholar  More

  • in

    Author Correction: Measuring the world’s cropland area

    Authors and AffiliationsStatistics Division, Food and Agriculture Organization of the United Nations, Rome, ItalyFrancesco N. Tubiello, Giulia Conchedda, Leon Casse & Giorgia De SantisDigitization and Informatics Division, Food and Agriculture Organization of the United Nations, Rome, ItalyHao Pengyu & Chen ZhongxinInternational Institute for Applied Systems Analysis, Laxenburg, AustriaSteffen FritzGeospatial Unit, Land and Water Division, Food and Agriculture Organization of the United Nations, Rome, ItalyDouglas MuchoneyAuthorsFrancesco N. TubielloGiulia ConcheddaLeon CasseHao PengyuChen ZhongxinGiorgia De SantisSteffen FritzDouglas MuchoneyCorresponding authorCorrespondence to
    Francesco N. Tubiello. More

  • in

    Sleep deprivation among adolescents in urban and indigenous-rural Mexican communities

    Our main objective was to test the SJH (positing that adolescents living in “traditional”, non-industrial environments will more closely fulfil their “biological/natural” sleep requirements25,26) by comparing sleep deprivation among adolescents in rural and urban societies. The SJH argues that adolescent “biological/natural” sleep quotas and circadian cycles can be ascertained from free days, when sleep patterns are minimally shaped by social commitments5,37. Therefore, we predicted that sleep deprivation would be rare in the more rural agricultural settings of Puebla and Campeche but more frequent among participants in Mexico City. Likewise, we predicted that we would not see sleep deprivation on free days among any of the rural participants.Our predictions were not supported, instead, we found that short sleep quotas during school nights are common in both rural agricultural settings, with over 75% of adolescents in each group sleeping  More

  • in

    Localized coevolution between microbial predator and prey alters community-wide gene expression and ecosystem function

    Ehrlich PR, Raven PH. Butterflies and plants: a study in coevolution. Evolution. 1964;18:586–608.Article 

    Google Scholar 
    Marston MF, Pierciey FJ Jr, Shepard A, Gearin G, Qi J, Yandava C, et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc Natl Acad Sci USA. 2012;109:4544–9.Article 
    CAS 

    Google Scholar 
    Hall AR, Scanlan PD, Buckling A. Bacteria-phage coevolution and the emergence of generalist pathogens. Am Nat. 2011;177:44–53.Article 

    Google Scholar 
    Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC, Leggat W, et al. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can J Bot. 1998;76:1052–71.CAS 

    Google Scholar 
    Schluter D. The ecology of adaptive radiation. Oxford, UK: University Press; 2000.Buckling A, Maclean CR, Brockhurst MA, Colegrave N. The Beagle in a bottle. Nature. 2009;457:824–9.Article 
    CAS 

    Google Scholar 
    Thompson JN. The coevolutionary process. Chicago, USA: University of Chicago Press; 1994.Vallina SM, Follows MJ, Dutkiewicz S, Montoya JM, Cermeno P, Loreau M. Global relationship between phytoplankton diversity and productivity in the ocean. Nat Commun. 2014;5:4299.Article 
    CAS 

    Google Scholar 
    Jürgens K, Matz C. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie Van Leeuwenhoek. 2002;81:413–34.Article 

    Google Scholar 
    Wildschutte H, Wolfe DM, Tamewitz A, Lawrence JG. Protozoan predation, diversifying selection, and the evolution of antigenic diversity in Salmonella. Proc Natl Acad Sci USA. 2004;101:10644–9.Article 
    CAS 

    Google Scholar 
    Thompson JN. The geographic mosaic of coevolution. Chicago, USA: University of Chicago Press; 2005.Hahn MW, Höfle MG. Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol Ecol. 2001;35:113–21.Article 
    CAS 

    Google Scholar 
    Fuhrman JA, Noble RT. Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol Oceanogr. 1995;40:1236–42.Article 

    Google Scholar 
    Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser. 1983;10:257–63.Article 

    Google Scholar 
    Lankau RA, Strauss SY. Mutual feedbacks maintain both genetic and species diversity in a plant community. Science. 2007;317:1561–3.Article 
    CAS 

    Google Scholar 
    Hogle SL, Hepolehto I, Ruokolainen L, Cairns J, Hiltunen T. Effects of phenotypic variation on consumer coexistence and prey community structure. Ecol Lett. 2022:25;307–19.Yoshida T, Jones LE, Ellner SP, Fussmann GF, Hairston NG Jr. Rapid evolution drives ecological dynamics in a predator-prey system. Nature. 2003;424:303–6.Article 
    CAS 

    Google Scholar 
    McClean D, McNally L, Salzberg LI, Devine KM, Brown SP, Donohue I. Single gene locus changes perturb complex microbial communities as much as apex predator loss. Nat Commun. 2015;6:8235.Article 

    Google Scholar 
    Gómez P, Paterson S, De Meester L, Liu X, Lenzi L, Sharma MD, et al. Local adaptation of a bacterium is as important as its presence in structuring a natural microbial community. Nat Commun. 2016;7:12453.Article 

    Google Scholar 
    Middelboe M, Holmfeldt K, Riemann L, Nybroe O, Haaber J. Bacteriophages drive strain diversification in a marine Flavobacterium: Implications for phage resistance and physiological properties. Environ Microbiol. 2009;11:1971–82.Article 
    CAS 

    Google Scholar 
    Lennon JT, Martiny JBH. Rapid evolution buffers ecosystem impacts of viruses in a microbial food web. Ecol Lett. 2008;11:1178–88.Article 

    Google Scholar 
    Cairns J, Jokela R, Hultman J, Tamminen M, Virta M, Hiltunen T. Construction and characterization of synthetic bacterial community for experimental ecology and evolution. Front Genet. 2018;9:312.Article 

    Google Scholar 
    Pascual-García A, Bell T. Community-level signatures of ecological succession in natural bacterial communities. Nat Commun. 2020;11:2386.Article 

    Google Scholar 
    Rivett DW, Bell T. Abundance determines the functional role of bacterial phylotypes in complex communities. Nat Microbiol. 2018;3:767–72.Article 
    CAS 

    Google Scholar 
    Cairns J, Moerman F, Fronhofer EA, Altermatt F, Hiltunen T. Evolution in interacting species alters predator life-history traits, behaviour and morphology in experimental microbial communities. Proc Biol Sci. 2020;287:20200652.
    Google Scholar 
    Cooke DP, Wedge DC, Lunter G. A unified haplotype-based method for accurate and comprehensive variant calling. Nat Biotechnol. 2021;39:885–92.Article 
    CAS 

    Google Scholar 
    Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6:80–92.Article 
    CAS 

    Google Scholar 
    Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.Article 
    CAS 

    Google Scholar 
    Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol. 2017;34:2115–22.Article 
    CAS 

    Google Scholar 
    Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–14.Article 
    CAS 

    Google Scholar 
    Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47:W81–7.Article 
    CAS 

    Google Scholar 
    Good BH, McDonald MJ, Barrick JE, Lenski RE, Desai MM. The dynamics of molecular evolution over 60,000 generations. Nature. 2017;551:45–50.Article 

    Google Scholar 
    Timonen J, Mannerström H, Vehtari A, Lähdesmäki H. lgpr: an interpretable nonparametric method for inferring covariate effects from longitudinal data. Bioinformatics. 2021;37:1860–7.Article 
    CAS 

    Google Scholar 
    Willis AD, Martin BD. Estimating diversity in networked ecological communities. Biostatistics. 2022;23:207–22.Article 

    Google Scholar 
    Willis A, Bunge J, Whitman T. Improved detection of changes in species richness in high diversity microbial communities. J R Stat Soc C. 2017;66:963–77.Article 

    Google Scholar 
    Anderson MJ. A new method for non‐parametric multivariate analysis of variance. Austral Ecol. 2001:26;32–46.Anderson MJ. Distance-based tests for homogeneity of multivariate dispersions. Biometrics. 2006;62:245–53.Article 

    Google Scholar 
    Martin BD, Witten D, Willis AD. Modeling microbial abundances and dysbiosis with beta-binomial regression. Ann Appl Stat. 2020;14:94–115.Article 

    Google Scholar 
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.Article 

    Google Scholar 
    Zhang Y, Thompson KN, Huttenhower C, Franzosa EA. Statistical approaches for differential expression analysis in metatranscriptomics. Bioinformatics. 2021;37:i34–41.Article 
    CAS 

    Google Scholar 
    Abdi H, Williams LJ, Valentin D, Bennani-Dosse M. STATIS and DISTATIS: optimum multitable principal component analysis and three way metric multidimensional scaling. WIREs Comp Stat. 2012;4:124–67.Charrad M, Ghazzali N, Boiteau V, Niknafs A. NbClust: an R package for determining the relevant number of clusters in a data set. J Stat Softw. 2014;61:1–36.Article 

    Google Scholar 
    Zhu A, Ibrahim JG, Love MI. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics. 2019;35:2084–92.Article 
    CAS 

    Google Scholar 
    Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.Article 
    CAS 

    Google Scholar 
    Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.Article 
    CAS 

    Google Scholar 
    Wichman HA, Badgett MR, Scott LA, Boulianne CM, Bull JJ. Different trajectories of parallel evolution during viral adaptation. Science. 1999;285:422–4.Article 
    CAS 

    Google Scholar 
    Lieberman TD, Michel J-B, Aingaran M, Potter-Bynoe G, Roux D, Davis MR Jr, et al. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat Genet. 2011;43:1275–80.Article 
    CAS 

    Google Scholar 
    Lebeuf-Taylor E, McCloskey N, Bailey SF, Hinz A, Kassen R. The distribution of fitness effects among synonymous mutations in a gene under directional selection. Elife. 2019;8:e45952.Article 

    Google Scholar 
    Bailey SF, Hinz A, Kassen R. Adaptive synonymous mutations in an experimentally evolved Pseudomonas fluorescens population. Nat Commun. 2014;5:4076.Article 
    CAS 

    Google Scholar 
    Mukherjee S, Jemielita M, Stergioula V, Tikhonov M, Bassler BL. Photosensing and quorum sensing are integrated to control Pseudomonas aeruginosa collective behaviors. PLoS Biol. 2019;17:e3000579.Article 
    CAS 

    Google Scholar 
    Segura A, Hurtado A, Duque E, Ramos JL. Transcriptional phase variation at the flhB gene of Pseudomonas putida DOT-T1E is involved in response to environmental changes and suggests the participation of the flagellar export system in solvent tolerance. J Bacteriol. 2004;186:1905–9.Article 
    CAS 

    Google Scholar 
    Lee X, Reimmann C, Greub G, Sufrin J, Croxatto A. The Pseudomonas aeruginosa toxin L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth and induces encystment in Acanthamoeba castellanii. Microbes Infect. 2012;14:268–72.Article 
    CAS 

    Google Scholar 
    Montagnes DJS, Barbosa AB, Boenigk J, Davidson K, Jürgens K, Macek M, et al. Selective feeding behaviour of key free-living protists: avenues for continued study. Aquat Micro Ecol. 2008;53:83–98.Article 

    Google Scholar 
    Collins K, editor. Tetrahymena thermophila. New York: Academic Press, Elsevier; 2012.Ruehle MD, Orias E, Pearson CG. Tetrahymena as a unicellular model eukaryote: genetic and genomic tools. Genetics. 2016;203:649–65.Article 
    CAS 

    Google Scholar 
    Plum K, Tarkington J, Zufall RA. Experimental evolution in Tetrahymena. Microorganisms. 2022;10:1–11.Heard E, Martienssen RA. Transgenerational epigenetic inheritance: myths and mechanisms. Cell. 2014;157:95–109.Article 
    CAS 

    Google Scholar 
    Jones ML, Rivett DW, Pascual-García A, Bell T. Relationships between community composition, productivity and invasion resistance in semi-natural bacterial microcosms. Elife. 2021;10:1–25.Kertesz MA. Riding the sulfur cycle-metabolism of sulfonates and sulfate esters in gram-negative bacteria. FEMS Microbiol Rev. 2000;24:135–75.CAS 

    Google Scholar 
    Park C, Shin B, Park W. Protective role of bacterial alkanesulfonate monooxygenase under oxidative stress. Appl Environ Microbiol. 2020;86:1–14.Shatalin K, Shatalina E, Mironov A, Nudler E. H2S: a universal defense against antibiotics in bacteria. Science. 2011;334:986–90.Article 
    CAS 

    Google Scholar 
    Ong C-LY, Beatson SA, Totsika M, Forestier C, McEwan AG, Schembri MA. Molecular analysis of type 3 fimbrial genes from Escherichia coli, Klebsiella and Citrobacter species. BMC Microbiol. 2010;10:183.Article 

    Google Scholar 
    McNally L, Brown SP. Building the microbiome in health and disease: niche construction and social conflict in bacteria. Philos Trans R Soc Lond B Biol Sci. 2015;370:1–8.Scheuerl T, Cairns J, Becks L, Hiltunen T. Predator coevolution and prey trait variability determine species coexistence. Proc Biol Sci. 2019;286:20190245.
    Google Scholar 
    Koskella B, Brockhurst MA. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev. 2014;38:916–31.Article 
    CAS 

    Google Scholar 
    Wilhelm Scherer H. Sulfur in soils. J Plant Nutr Soil Sci. 2009;172:326–35.Article 

    Google Scholar 
    Kaya K. Chemistry and biochemistry of taurolipids. Prog Lipid Res. 1992;31:87–108.Article 
    CAS 

    Google Scholar 
    Fukami T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst. 2015;46:1–23.Article 

    Google Scholar 
    Debray R, Herbert RA, Jaffe AL, Crits-Christoph A, Power ME, Koskella B. Priority effects in microbiome assembly. Nat Rev Microbiol. 2022;20:109–21.Article 
    CAS 

    Google Scholar 
    Price TD, Qvarnström A, Irwin DE. The role of phenotypic plasticity in driving genetic evolution. Proc Biol Sci. 2003;270:1433–40.Article 

    Google Scholar  More

  • in

    Acclimatization of a coral-dinoflagellate mutualism at a CO2 vent

    Steffen, W. Introducing the Anthropocene: The human epoch. Ambio 50, 1784–1787 (2021).Article 

    Google Scholar 
    Keys, P. W. et al. Anthropocene risk. Nat. Sustain. 2, 667–673 (2019).Article 

    Google Scholar 
    Bell, G. Evolutionary rescue and the limits of adaptation. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120080 (2013).Article 

    Google Scholar 
    Byrne, M. & Przeslawski, R. Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integr. Comp. Biol. 53, 582–596 (2013).Article 
    CAS 

    Google Scholar 
    Feely, R. A. et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362–366 (2004).Article 
    CAS 

    Google Scholar 
    Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).Article 

    Google Scholar 
    Hill, T. S. & Hoogenboom, M. O. The indirect effects of ocean acidification on corals and coral communities. Coral Reefs https://doi.org/10.1007/s00338-022-02286-z (2022).Biagi, E. et al. Patterns in microbiome composition differ with ocean acidification in anatomic compartments of the Mediterranean coral Astroides calycularis living at CO2 vents. Sci. Total Environ. 724, 138048 (2020).Article 
    CAS 

    Google Scholar 
    Chen, B. et al. Microbiome community and complexity indicate environmental gradient acclimatisation and potential microbial interaction of endemic coral holobionts in the South China Sea. Sci. Total Environ. 765, 142690 (2021).Article 
    CAS 

    Google Scholar 
    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).Article 
    CAS 

    Google Scholar 
    Wood, R. The ecological evolution of reefs. Annu. Rev. Ecol. Syst. 29, 179–206 (1998).Article 

    Google Scholar 
    Drake, J. L. et al. How corals made rocks through the ages. Glob. Chang. Biol. 26, 31–53 (2020).Article 

    Google Scholar 
    Stanley, G. D. Photosymbiosis and the evolution of modern coral reefs. Science 312, 857–858 (2006).Article 
    CAS 

    Google Scholar 
    Kitahara, M. V., Cairns, S. D., Stolarski, J., Blair, D. & Miller, D. J. A comprehensive phylogenetic analysis of the scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data. PLoS One. 5, e11490 (2010).Article 

    Google Scholar 
    Dubinsky, Z. & Jokiel, P. Ratio of energy and nutrient fluxes regulates symbiosis between zooxanthellae and corals. Pac. Sci. 48, 313–324 (1994).
    Google Scholar 
    Falkowski, P. G., Dubinsky, Z., Muscatine, L. & Porter, J. W. Light and the bioenergetics of a symbiotic coral. Bioscience 34, 705–709 (1984).Article 
    CAS 

    Google Scholar 
    Frankowiak, K., Roniewicz, E. & Stolarski, J. Photosymbiosis in Late Triassic scleractinian corals from the Italian Dolomites. PeerJ 9, e11062 (2021).Article 

    Google Scholar 
    Davy, S. K., Allemand, D. & Weis, V. M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–261 (2012).Article 
    CAS 

    Google Scholar 
    Kremer, P. Ingestion and elemental budgets for Linuche unguiculata, a scyphomedusa with zooxanthellae. J. Mar. Biol. Assoc. UK. 85, 613–625 (2005).Article 

    Google Scholar 
    Welsh, D. T., Dunn, R. J. K. & Meziane, T. Oxygen and nutrient dynamics of the upside down jellyfish (Cassiopea sp.) and its influence on benthic nutrient exchanges and primary production. Hydrobiologia 635, 351–362 (2009).Article 
    CAS 

    Google Scholar 
    Muscatine, L., McCloskey, L. R. & Marian, R. E. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr. 26, 601–611 (1981).Article 
    CAS 

    Google Scholar 
    Ferrier‐Pagès, C. & Leal, M. C. Stable isotopes as tracers of trophic interactions in marine mutualistic symbioses. Ecol. Evol. 9, 723–740 (2019).Article 

    Google Scholar 
    Teixidó, N. et al. Ocean acidification causes variable trait shifts in a coral species. Glob. Chang. Biol. 26, 6813–6830 (2020).Article 

    Google Scholar 
    Fantazzini, P. et al. Gains and losses of coral skeletal porosity changes with ocean acidification acclimation. Nat. Commun. 6, 7785 (2015).Article 
    CAS 

    Google Scholar 
    Prada, F. et al. Coral micro- and macro-morphological skeletal properties in response to life-long acclimatization at CO2 vents in Papua New Guinea. Sci. Rep. 11, 19927 (2021).Article 
    CAS 

    Google Scholar 
    Kerrison, P., Hall-Spencer, J. M., Suggett, D. J., Hepburn, L. J. & Steinke, M. Assessment of pH variability at a coastal CO2 vent for ocean acidification studies. Estuar. Coast. Shelf Sci. 94, 129–137 (2011).Article 
    CAS 

    Google Scholar 
    Johnson, V. R., Russell, B. D., Fabricius, K. E., Brownlee, C. & Hall-Spencer, J. M. Temperate and tropical brown macroalgae thrive, despite decalcification, along natural CO2 gradients. Glob. Chang. Biol. 18, 2792–2803 (2012).Article 

    Google Scholar 
    Caroselli, E. et al. Low and variable pH decreases recruitment efficiency in populations of a temperate coral naturally present at a CO2 vent. Limnol. Oceanogr. 64, 1059–1069 (2019).Article 
    CAS 

    Google Scholar 
    González-Delgado, S. & Hernández, J. C. The importance of natural acidified systems in the study of ocean acidification: what have we learned? Adv. Mar. Biol. 80, 57–99 (2018).Article 

    Google Scholar 
    Capaccioni, B., Tassi, F., Vaselli, O., Tedesco, D. & Poreda, R. Submarine gas burst at Panarea Island (southern Italy) on 3 November 2002: A magmatic versus hydrothermal episode. J. Geophys. Res. 112, B05201 (2007).
    Google Scholar 
    Reggi, M. et al. Biomineralization in mediterranean corals: The role of the intraskeletal organic matrix. Cryst. Growth Des. 14, 4310–4320 (2014).Article 
    CAS 

    Google Scholar 
    Prada, F. et al. Ocean warming and acidification synergistically increase coral mortality. Sci. Rep. 7, 1–10 (2017).Article 

    Google Scholar 
    Goffredo, S. et al. Biomineralization control related to population density under ocean acidification. Nat. Clim. Chang. 4, 593–597 (2014).Article 
    CAS 

    Google Scholar 
    Wall, M. et al. Linking internal carbonate chemistry regulation and calcification in corals growing at a Mediterranean CO2 vent. Front. Mar. Sci. 6, 699 (2019).Article 

    Google Scholar 
    Zohary, T., Erez, J., Gophen, M., Berman-Frank, I. & Stiller, M. Seasonality of stable carbon isotopes within the pelagic food web of Lake Kinneret. Limnol. Oceanogr. 39, 1030–1043 (1994).Article 
    CAS 

    Google Scholar 
    Xu, S. et al. Spatial variations in the trophic status of Favia palauensis corals in the South China Sea: Insights into their different adaptabilities under contrasting environmental conditions. Sci. China Earth Sci. 64, 839–852 (2021).Article 

    Google Scholar 
    Horwitz, R., Borell, E. M., Yam, R., Shemesh, A. & Fine, M. Natural high pCO2 increases autotrophy in Anemonia viridis (Anthozoa) as revealed from stable isotope (C, N) analysis. Sci. Rep. 5, 1–9 (2015).Article 

    Google Scholar 
    Chen, B., Zou, D., Zhu, M. & Yang, Y. Effects of CO2 levels and light intensities on growth and amino acid contents in red seaweed Gracilaria lemaneiformis. Aquac. Res. 48, 2683–2690 (2017).Article 
    CAS 

    Google Scholar 
    Winters, G., Beer, S., Zvi, B., Brickner, I. & Loya, Y. Spatial and temporal photoacclimation of Stylophora pistillata: zooxanthella size, pigmentation, location and clade. Mar. Ecol. Prog. Ser. 384, 107–119 (2009).Article 

    Google Scholar 
    Fitt, W. K., McFarland, F. K., Warner, M. E. & Chilcoat, G. C. Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol. Oceanogr. 45, 677–685 (2000).Article 
    CAS 

    Google Scholar 
    Wangpraseurt, D., Larkum, A. W. D., Ralph, P. J. & Kühl, M. Light gradients and optical microniches in coral tissues. Front. Microbiol. 3, 1–9 (2012).Article 

    Google Scholar 
    Krief, S. et al. Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim. Cosmochim. Acta. 74, 4988–5001 (2010).Article 
    CAS 

    Google Scholar 
    Scucchia, F., Malik, A., Zaslansky, P., Putnam, H. M. & Mass, T. Combined responses of primary coral polyps and their algal endosymbionts to decreasing seawater pH. Proc. R. Soc. B Biol. Sci. 288, 20210328 (2021).Article 
    CAS 

    Google Scholar 
    Anthony, K. R. N., Connolly, S. R. & Willis, B. L. Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnol. Oceanogr. 47, 1417–1429 (2002).Article 

    Google Scholar 
    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580.e6 (2018).Article 
    CAS 

    Google Scholar 
    Howells, E. J. et al. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat. Clim. Chang. 2, 116–120 (2012).Article 

    Google Scholar 
    Brading, P. et al. Differential effects of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium (Dinophyceae). Limnol. Oceanogr. 56, 927–938 (2011).Article 
    CAS 

    Google Scholar 
    Takahashi, T., Broecker, W. S. & Langer, S. Redfield ratio based on chemical data from isopycnal surfaces. J. Geophys. Res. 90, 6907 (1985).Article 
    CAS 

    Google Scholar 
    Xu, Z. et al. Changes of carbon to nitrogen ratio in particulate organic matter in the marine mesopelagic zone: A case from the South China Sea. Mar. Chem. 231, 103930 (2021).Article 
    CAS 

    Google Scholar 
    Crawford, D. W. et al. Low particulate carbon to nitrogen ratios in marine surface waters of the Arctic. Glob. Biogeochem. Cycles. 29, 2021–2033 (2015).Article 
    CAS 

    Google Scholar 
    Kikumoto, R. et al. Nitrogen isotope chemostratigraphy of the Ediacaran and Early Cambrian platform sequence at Three Gorges, South China. Gondwana Res. 25, 1057–1069 (2014).Article 
    CAS 

    Google Scholar 
    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).Article 
    CAS 

    Google Scholar 
    Benavides, M., Bednarz, V. N. & Ferrier-Pagès, C. Diazotrophs: Overlooked key players within the coral symbiosis and tropical reef ecosystems? Front. Mar. Sci. 4, 10 (2017).Article 

    Google Scholar 
    Wannicke, N., Frey, C., Law, C. S. & Voss, M. The response of the marine nitrogen cycle to ocean acidification. Glob. Chang. Biol. 24, 5031–5043 (2018).Article 

    Google Scholar 
    Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol. 70, 317–340 (2016).Article 
    CAS 

    Google Scholar 
    Palladino, G. et al. Metagenomic shifts in mucus, tissue and skeleton of the coral Balanophyllia europaea living along a natural CO2 gradient. ISME Commun. 2, 65 (2022).Article 

    Google Scholar 
    Muscatine, L. et al. Stable isotopes (δ13C and δ15N) of organic matrix from coral skeleton. Proc. Natl Acad. Sci. 102, 1525–1530 (2005).Article 
    CAS 

    Google Scholar 
    Lesser, M. P. et al. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar. Ecol. Prog. Ser. 346, 143–152 (2007).Article 
    CAS 

    Google Scholar 
    Alamaru, A., Loya, Y., Brokovich, E., Yam, R. & Shemesh, A. Carbon and nitrogen utilization in two species of Red Sea corals along a depth gradient: Insights from stable isotope analysis of total organic material and lipids. Geochim. Cosmochim. Acta. 73, 5333–5342 (2009).Article 
    CAS 

    Google Scholar 
    Lesser, M. P., Mazel, C. H., Gorbunov, M. Y. & Falkowski, P. G. Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305, 997–1000 (2004).Article 
    CAS 

    Google Scholar 
    Lesser, M. P., Morrow, K. M., Pankey, S. M. & Noonan, S. H. C. Diazotroph diversity and nitrogen fixation in the coral Stylophora pistillata from the Great Barrier Reef. ISME J. 12, 813–824 (2018).Article 
    CAS 

    Google Scholar 
    Marcelino, V. R., Morrow, K. M., Oppen, M. J. H., Bourne, D. G. & Verbruggen, H. Diversity and stability of coral endolithic microbial communities at a naturally high pCO2 reef. Mol. Ecol. 26, 5344–5357 (2017).Article 
    CAS 

    Google Scholar 
    Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 23, 490–497 (2015).Article 

    Google Scholar 
    Santos, H. F. et al. Climate change affects key nitrogen-fixing bacterial populations on coral reefs. ISME J. 8, 2272–2279 (2014).Article 

    Google Scholar 
    Olson, N. D., Ainsworth, T. D., Gates, R. D. & Takabayashi, M. Diazotrophic bacteria associated with Hawaiian Montipora corals: Diversity and abundance in correlation with symbiotic dinoflagellates. J. Exp. Mar. Bio. Ecol. 371, 140–146 (2009).Article 
    CAS 

    Google Scholar 
    Zheng, X. et al. Effects of ocean acidification on carbon and nitrogen fixation in the hermatypic coral Galaxea fascicularis. Front. Mar. Sci. 8, 644965 (2021).Article 

    Google Scholar 
    Lewis, E. & Wallace, D. Program developed for CO2 system calculations. Ornl/Cdiac-105 1–21 (1998).Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. Part A. Oceanogr. Res. Pap. 34, 1733–1743 (1987).Article 
    CAS 

    Google Scholar 
    Dickson, A. G. Thermodynamics of the dissociation of boric acid in potassium chloride solutions from 273.15 to 318.15 K. J. Chem. Eng. Data. 35, 253–257 (1990).Article 
    CAS 

    Google Scholar 
    Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicx, R. M. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18, 897–907 (1973).Article 
    CAS 

    Google Scholar 
    Ivancic, I. & Degobbis, D. An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method. Water Res. 18, 1143–1147 (1984).Article 
    CAS 

    Google Scholar 
    Parson, T. R., Maita, Y. & Llli, C. M. A manual of chemical & biological methods for seawater analysis. (Elsevier, 1984). https://doi.org/10.1016/C2009-0-07774-5Schreiber, U. Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: an overview. in Chlorophyll a Fluorescence 1367, 279–319 (Springer Netherlands, 2004).Grover, R., Maguer, J. F., Reynaud-Vaganay, S. & Ferrier-Pagès, C. Uptake of ammonium by the scleractinian coral Stylophora pistillata: Effect of feeding, light, and ammonium concentrations. Limnol. Oceanogr. 47, 782–790 (2002).Article 

    Google Scholar 
    Tremblay, P., Grover, R., Maguer, J. F., Hoogenboom, M. & Ferrier-Pagès, C. Carbon translocation from symbiont to host depends on irradiance and food availability in the tropical coral Stylophora pistillata. Coral Reefs. 33, 1–13 (2014).Article 

    Google Scholar 
    Pupier, C. A. et al. Productivity and carbon fluxes depend on species and symbiont density in soft coral symbioses. Sci. Rep. 9, 17819 (2019).Article 

    Google Scholar 
    Ritchie, R. J. Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica 46, 115–126 (2008).Article 
    CAS 

    Google Scholar 
    Goffredo, S., Arnone, S. & Zaccanti, F. Sexual reproduction in the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Mar. Ecol. Prog. Ser. 229, 83–94 (2002).Article 

    Google Scholar 
    Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl Acad. Sci. 110, 1387–1392 (2013).Article 
    CAS 

    Google Scholar 
    Moore, R. B. Highly organized structure in the non-coding region of the psbA minicircle from clade C Symbiodinium. Int. J. Syst. Evol. Microbiol. 53, 1725–1734 (2003).Article 
    CAS 

    Google Scholar 
    LaJeunesse, T. C. & Thornhill, D. J. Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS One. 6, e29013 (2011).Article 
    CAS 

    Google Scholar 
    LaJeunesse, T. C. et al. Revival of Philozoon Geddes for host-specialized dinoflagellates, ‘zooxanthellae’, in animals from coastal temperate zones of northern and southern hemispheres. Eur. J. Phycol. 57, 166–180 (2022).Article 

    Google Scholar 
    Anderson, M. J. PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance. Wiley StatsRef: Statistics Reference Online (2005). More