Defining intraspecific conservation units in the endemic Cuban Rock Iguanas (Cyclura nubila nubila)
1.
Convention on Biological Diversity. https://www.cbd.int/doc/meetings/cop-bureau/cop-bur-2007/cop-bur-2007-10-14-en.pdf (2007).
2.
Coates, D. J., Byrne, M. & Moritz, C. Genetic diversity and conservation units: dealing with species-population continuum in the age of genomics. Front. Ecol. Evol. 6, 165. https://doi.org/10.3389/fevo.2018.00165 (2018).
Article Google Scholar
3.
Ralls, K., Ballou, J. D., Dudash, M. R., Eldridge, M. D. B. & Fenster, C. B. Call for a paradigm shift in the genetic management of fragmented populations. Conserv. Lett. 11, 1–6 (2018).
Article Google Scholar
4.
Ryder, O. A. Species conservation and systematics: the dilemma of subspecies. Trends Ecol. Evol. 1, 9–10 (1986).
Article Google Scholar
5.
Moritz, C. Defining evolutionary significant units. Trends Ecol. Evol. 9, 373–375 (1994).
CAS PubMed Article Google Scholar
6.
Waples, R. S. Pacific salmon, Oncorhynchus spp., and the definition of “species” under the Endangered Species Act. Marine Fish. Rev. 53, 11–22 (1991).
Google Scholar
7.
Funk, W. C., McKay, J. K., Hohenlohe, P. A. & Allendorf, F. W. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27, 489–496 (2012).
PubMed PubMed Central Article Google Scholar
8.
Green, D. M. Designatable units for status assessment of endangered species. Conserv. Biol. 19, 1813–1820 (2005).
Article Google Scholar
9.
Brodie, J. F., Redford, K. H. & Doak, D. F. Ecological function analysis: incorporating species roles into conservation. Trends Ecol. Evol. 33, 840–850 (2018).
PubMed Article Google Scholar
10.
Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).
Article Google Scholar
11.
Decker, E., Linke, S., Hermoso, V. & Geist, J. Incorporating ecological functions in conservation decision making. Ecol. Evol. 7, 8273–8281 (2017).
PubMed PubMed Central Article Google Scholar
12.
Leclerc, C., Villéger, S., Marino, C. & Bellard, C. Global changes threaten functional and taxonomic diversity of insular species worldwide. Divers. Distrib. 26, 402–414 (2020).
Article Google Scholar
13.
Zipkin, E. F., DiRenzo, G. V., Ray, J. M., Rossman, S. & Lips, K. P. Tropical snake diversity collapses after widespread amphibian loss. Science 367, 814–816 (2020).
ADS CAS PubMed Article Google Scholar
14.
Hedges, S. B. & Woods, C. A. Caribbean hot spot. Nature 364, 375. https://doi.org/10.1038/364375a0 (1993).
ADS Article Google Scholar
15.
Heinicke, M. P., Duellman, W. E. & Hedges, S. B. Major Caribbean and Central American frog faunas originated by ancient oceanic dispersal. Proc. Natl. Acad. Sci. 104, 10092–10097 (2007).
ADS CAS PubMed Article Google Scholar
16.
ITWG (Iguana Taxonomy Working Group). A checklist of the iguanas of the world (Iguanidae; Iguaninae). Herpetol. Conserv. Biol. 11, 4–46 (2016).
17.
Henderson, R. W. Consequences of predator introductions and habitat destruction on amphibians and reptiles in the post-Columbus West Indies. Caribb. J. Sci. 28, 1–10 (1992).
Google Scholar
18.
Alberts, A. C. Developing recovery strategies for West Indian Rock Iguanas. Endangered Species UPDATA 16, 107–110 (1999).
Google Scholar
19.
Hartley, L. M., Glor, R. E., Sproston, A. L., Powell, R. & Parmer-Lee, J. S. Jr. Germination rates of seeds consumed by two species of Rock Iguanas (Cyclura spp.) in the Dominican Republic. Caribb. J. Sci. 36, 149–151 (2000).
Google Scholar
20.
Malone, C. L., Wheeler, T., Taylor, J. F. & Davis, S. K. Phylogeography of the Caribbean rock Iguana (Cyclura): implications for conservation and insights on the biogeographic history of the West Indies. Mol. Phylog. Evol. 17, 269–279 (2000).
CAS Article Google Scholar
21.
Alberts, A. C. et al. (eds) Iguanas-Biology and Conservation (University of California Press, California, 2004).
Google Scholar
22.
US Fish and Wildlife Report. Caribbean Iguana Conservation Workshop. Exploring a region-wide approach to recovery. San Juan, Puerto Rico. https://www.fws.gov/international/pdf/Caribbean-Iguana-Workshop-Proceedings.pdf (2013).
23.
González-Rossell, A. Ecologia y conservación de la iguana (Cyclura nubila nubila) en Cuba. Dissertation, Universitat d’Alacant (Alcalá de Henares, España, 2018).
24.
Rodríguez-Schettino, L. (ed.) The Iguanid lizards of Cuba (Florida University Press, Gainesville, 1999).
Google Scholar
25.
Day, M. Cyclura nubila. The IUCN Red List of Threatened Species; e.T6030A12338655. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.1996.RLTS.T6030A12338655.en (1996)
26.
Knapp, C. R. & Malone, C. L. Patterns of reproductive success and genetic variability in a translocated iguana population. Herpetologica 59, 195–202 (2003).
Article Google Scholar
27.
Malone, C. L., Knapp, C. R., Taylor, J. F. & Davis, S. K. Genetic consequences of Pleistocene fragmentation: isolation, drift, and loss of diversity in rock iguanas (Cyclura). Conserv. Genet. 4, 1–15 (2003).
CAS Article Google Scholar
28.
An, J., Sommer, J., Shore, G. D. & Williamson, J. E. Characterization of 20 microsatellite marker loci in the West Indian Rock Iguana (Cyclura nubila). Conserv. Genet. 5, 121–125 (2004).
CAS Article Google Scholar
29.
Wildlife Conservation Society. Global Conservation Strategy. Mesoamerica and Western Caribbean. https://www.wcs.org/about-us/2020-strategy (2020).
30.
Critical Ecosystem Partnership Fund (CEPF). The Caribben Islands Biodiversity Hotspot. https://www.cepf.net/sites/default/files/final_caribbean_ep.pdf (2010).
31.
Waples, R. S. & Do, C. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol. Appl. 3, 244–262 (2010).
PubMed Article Google Scholar
32.
Soltis, P. S. & Soltis, D. E. Applying the bootstrap in phylogeny reconstruction. Stat. Sci. 18, 256–267 (2003).
MathSciNet MATH Article Google Scholar
33.
Sites, J. W., Davis, S. K., Guerra, T., Iverson, J. B. & Snell, H. L. Character congruence and phylogenetic signal in molecular and morphological data sets: a case study in the living iguanas (Squamata, Iguanidae). Mol. Biol. Evol. 13, 1087–1105 (1996).
CAS PubMed Article Google Scholar
34.
Starostova, Z., Rehak, I. & Frynta, D. New haplotypes of Cyclura nubila nubila from Cuba changed the phylogenetic tree of rock iguanas: a challenge for conservation strategies?. Amphib-reptil 31, 134–143 (2010).
Article Google Scholar
35.
Allendorf, F. W. & Luikart, G. Conservation and the Genetics of Populations (Wiley-Blackwell, New York, 2006).
Google Scholar
36.
England, P. R., Cornuet, J. M., Berthier, P., Tallmon, D. A. & Luikart, G. Estimating effective population size from linkage disequilibrium: severe bias in small samples. Conserv. Genet. 7, 303–308 (2007).
Article Google Scholar
37.
Sunny, A., Monroy-Vilchis, O., Fajardo, V. & Aguilera-Reyes, U. Genetic diversity and structure of an endemic and critically endangered stream river salamander (Caudata: Ambystoma leorae) in Mexico. Conserv. Genet. 15, 49–59 (2014).
CAS Article Google Scholar
38.
Franklin, I. R. & Frankham, R. How large must populations be to retain evolutionary potential?. Anim. Conserv. 1, 79–70 (1998).
Article Google Scholar
39.
Vázquez-Domínguez, E., Suárez-Atilano, M., Booth, W., González-Baca, C. & Cuarón, A. D. Genetic evidence of a recent successful colonization of introduced species on islands: Boa constrictor imperator on Cozumel Island. Biol. Invasions 14, 2101–2116 (2012).
Article Google Scholar
40.
Frankham, R., Ballou, J. & Briscoe, D. Introduction to Conservation Genetics (Cambridge University Press, Cambridge, 2005).
Google Scholar
41.
Iturralde-Vinent, M. A. Meso-Cenozoic Caribbean paleogeography: Implications for the historical biogeography of the region. Int. Geol. Rev. 48, 791–827 (2006).
Article Google Scholar
42.
Iturralde-Vinent, M. A. & MacPhee, R. D. E. Paleogeography of the Caribbean region: Implications for Cenozoic Biogeography. Bull. Am. Mus. Nat. Hist. 238, 1–95 (1999).
Google Scholar
43.
Rodríguez, A. Biogeographic origin and radiation of Cuban Eleutherodactylus frogs of the auriculatus species group, inferred from mitochondrial and nuclear gene sequences. Mol. Phylog. Evol. 54, 179–186 (2010).
Article Google Scholar
44.
Cobos, M. E. & Bosch, R. A. Recent and future threats to the endangered Cuban toad Peltophryne longinasus: potential additive impacts of climate change and habitat loss. Oryx 52, 116–125 (2018).
Article Google Scholar
45.
Robertson, J. M. et al. Identifying evolutionarily significant units and prioritizing populations for management of islands. West. N. Am. Nat. 7, 397–411 (2014).
Google Scholar
46.
Burton, F. J. Revision to species of Cyclura nubila lewisi, the Grand Cayman Blue Iguana. Caribb. J. Sci. 40, 198–203 (2004).
Google Scholar
47.
Dinerstein, E. & Olson, D. M. A Conservation Assessment of the Terrestrial Ecoregions of Latin America and the Caribbean (The World Bank in Association with WWF, Washington, 1995).
Google Scholar
48.
Wasser, S. K. et al. Assigning African elephant DNA to geographic region of origin: applications to the ivory trade. Proc. Natl. Acad. Sci. 101, 14847–14852 (2004).
ADS CAS PubMed Article Google Scholar
49.
Zhang, H. et al. Molecular tracing of confiscated pangolin scales for conservation and illegal trade monitoring in Southeast Asia. Global Ecol. Conserv. 4, 412–422 (2015).
Google Scholar
50.
Shaney, K. J. et al. A suite of potentially amplifiable microsatellite loci for reptiles of conservation concern from Africa and Asia. Conserv. Genet. Res. 8, 307–311 (2016).
Article Google Scholar
51.
de Miranda, E. B. P. The plight of reptiles as ecological actors in the tropics. Front. Ecol. Evol. 5, 159. https://doi.org/10.3389/fevo.2017.00159 (2017).
Article Google Scholar
52.
Beovides-Casas, K. & Mancina, C. A. Natural history and morphometry of the Cuban iguana (Cyclura nubila Gray, 1831) in Cayo Sijú Cuba. Anim. Biodiv. Conserv. 29, 1–8 (2006).
Google Scholar
53.
HACC. Guidelines for use of live amphibians and reptiles in field and laboratory research. Revised by the Herpetological Animal Care and Use Committee of the American Society of Ichthyologists and Herpetologists (Committee Chair: Steven J. Beaupre, Members: Elliott R. Jacobson, Harvey B. Lillywhite, and Kelly Zamudio) (2014).
54.
Chatterji, S. & Pachter, L. Reference based annotation with GeneMapper. Genome Biol. 7, 29. https://doi.org/10.1186/gb-2006-7-4-r29 (2006).
CAS Article Google Scholar
55.
Arévalo, E., Davis, S. K. & Sites, J. W. Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in central Mexico. Syst. Biol. 43, 387–418 (1994).
Article Google Scholar
56.
Kearse, M., Moir, R., Wilson, M. & Stones-Havas, S. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
PubMed PubMed Central Article Google Scholar
57.
Raymond, M. & Rousset, F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Heredity 86, 248–249 (1995).
Article Google Scholar
58.
Rice, W. R. Analysing tables of statistical test. Evolution 43, 223–225 (1989).
PubMed Article Google Scholar
59.
Van Oosterhout, C., Hutchinson, W. F., Willis, D. P. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping error in microsatellites data. Mol. Ecol. Notes 4, 535–538 (2004).
Article CAS Google Scholar
60.
Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).
CAS PubMed PubMed Central Google Scholar
61.
Peakall, R. & Smouse, P. E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).
Article Google Scholar
62.
Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers”. Bioinformatics 24, 1403–1405 (2008).
CAS Article Google Scholar
63.
Do, C. et al. NeEstimator V2: Sre-implementation of software for estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. 14, 209–214 (2014).
CAS Article Google Scholar
64.
Chybicki, I. J. & Burczyk, J. Simultaneous estimation of null alleles and inbreeding coefficients. J. Heredity 100, 106–113 (2009).
CAS Article Google Scholar
65.
Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).
CAS PubMed PubMed Central Google Scholar
66.
Garza, J. C. & Williamson, E. G. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10, 305–318 (2001).
CAS PubMed Article Google Scholar
67.
Foll, M. & Gaggiotti, O. E. Identifying the environmental factors that determine the genetic structure of populations. Genetics 174, 875–891 (2006).
CAS PubMed PubMed Central Article Google Scholar
68.
Goudet, J. FSTAT (Version 1.2): a computer program to calculate F-Statisitics. J. Heredity 86, 485–486 (1995).
Article Google Scholar
69.
Nei, M. Genetic distance between populations. Am. Nat. 106, 283–292 (1972).
Article Google Scholar
70.
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
CAS PubMed PubMed Central Google Scholar
71.
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
CAS PubMed Article Google Scholar
72.
Earl, D. A. & von Holdt, B. M. Structure-harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv. Genet. Res. 4, 359–361 (2012).
Article Google Scholar
73.
Excoffier, L., Laval, G. & Schneider, S. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50 (2005).
CAS Article Google Scholar
74.
Kalinowski, S. T., Wagner, A. P. & Taper, M. L. ML-Relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol. Ecol. Notes 6, 576–579 (2006).
CAS Article Google Scholar
75.
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
CAS PubMed Article Google Scholar
76.
Leigh, J. W. & Bryant, D. PopART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
Article Google Scholar
77.
Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Ecol. Biol. 16, 37–48 (1999).
CAS Article Google Scholar
78.
Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 110. Virus Evol. https://doi.org/10.1093/ve/vey016 (2018).
Article PubMed PubMed Central Google Scholar
79.
Blankers, T. et al. Contrasting global-scale evolutionary radiations: Phylogeny, diversification, and morphological evolution in the major clades of iguanian lizards. Biol. J. Linn. Soc. 108, 127–143 (2012).
Article Google Scholar
80.
Pyron, R. A., Burbrink, F. T. & Wiens, J. J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13, 93. https://doi.org/10.1186/1471-2148-13-93 (2013).
CAS Article PubMed PubMed Central Google Scholar
81.
Carroll, R. L. Vertebrate Paleontology and Evolution (WH Freeman, New York, 1988).
Google Scholar
82.
Townsend, T. M. et al. Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Mol. Phylogen. Evol. 61, 363–380 (2011).
Article Google Scholar
83.
MacLeod, A. Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana. Proc. R. Soc. B 282, 20150425. https://doi.org/10.1098/rspb.2015.0425 (2015).
Article PubMed Google Scholar More
