1.
Ramankutty, N. & Foley, J. A. Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob. Biogeochem. Cycles 13, 997–1027 (1999).
ADS CAS Article Google Scholar
2.
Krausmann, F. et al. Growth in global materials use, GDP and population during the 20th century. Ecol. Econ. 68, 2696–2705 (2009).
Article Google Scholar
3.
Matthews, E. The Weight of Nations: Material Outflows from Industrial Economies (World Resources Inst., 2000).
4.
Smil, V. Harvesting the Biosphere: What We Have Taken from Nature (MIT Press, 2013).
5.
Smil, V. Making the Modern World: Materials and Dematerialization (John Wiley & Sons, 2013).
6.
Haff, P. K. Technology as a geological phenomenon: implications for human well-being. Geol. Soc. Lond. Spec. Publ. 395, 301–309 (2014).
ADS Article Google Scholar
7.
Zalasiewicz, J. et al. Scale and diversity of the physical technosphere: a geological perspective. Anthropocene Rev. 4, 9–22 (2017).
Article Google Scholar
8.
Zalasiewicz, J., Waters, C. N., Williams, M. & Summerhayes, C. The Anthropocene as a Geological Time Unit: A Guide to the Scientific Evidence and Current Debate (Cambridge Univ. Press, 2018).
9.
Stephens, L. et al. Archaeological assessment reveals Earth’s early transformation through land use. Science 365, 897–902 (2019).
ADS CAS PubMed Article PubMed Central Google Scholar
10.
Erb, K.-H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).
ADS CAS PubMed Article Google Scholar
11.
Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).
CAS PubMed Article Google Scholar
12.
Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).
ADS CAS PubMed Article Google Scholar
13.
Reddington, C. L. et al. Air quality and human health improvements from reductions in deforestation-related fire in Brazil. Nat. Geosci. 8, 768–771 (2015).
ADS CAS Article Google Scholar
14.
Ceballos, G. & Ehrlich, P. R. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002).
ADS CAS PubMed Article Google Scholar
15.
WWF. Living Planet Report–2018: Aiming Higher (WWF, 2018).
16.
Bar-On, Y. M. & Milo, R. Towards a quantitative view of the global ubiquity of biofilms. Nat. Rev. Microbiol. 17, 199–200 (2019).
CAS PubMed Article Google Scholar
17.
Pauliuk, S. & Hertwich, E. G. Socioeconomic metabolism as paradigm for studying the biophysical basis of human societies. Ecol. Econ. 119, 83–93 (2015).
Article Google Scholar
18.
Haberl, H. et al. Contributions of sociometabolic research to sustainability science. Nat. Sustainability 2, 173–184 (2019).
Article Google Scholar
19.
Fischer-Kowalski, M. et al. Methodology and indicators of economy-wide material flow accounting. J. Ind. Ecol. 15, 855–876 (2011).
Article Google Scholar
20.
Krausmann, F., Schandl, H., Eisenmenger, N., Giljum, S. & Jackson, T. Material flow accounting: measuring global material use for sustainable development. Annu. Rev. Environ. Resour. 42, 647–675 (2017).
Article Google Scholar
21.
Krausmann, F. et al. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. Proc. Natl Acad. Sci. USA 114, 1880–1885 (2017).
CAS PubMed Article Google Scholar
22.
Krausmann, F., Lauk, C., Haas, W. & Wiedenhofer, D. From resource extraction to outflows of wastes and emissions: the socioeconomic metabolism of the global economy, 1900–2015. Glob. Environ. Change 52, 131–140 (2018).
PubMed PubMed Central Article Google Scholar
23.
Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: the great acceleration. Anthropocene Rev. 2, 81–98 (2015).
Article Google Scholar
24.
Vitousek, P. M., Ehrlich, P. R., Ehrlich, A. H. & Matson, P. A. Human appropriation of the products of photosynthesis. Bioscience 36, 368–373 (1986).
Article Google Scholar
25.
Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in Earth’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 12942–12947 (2007).
ADS CAS PubMed Article Google Scholar
26.
Haberl, H., Erb, K.-H. & Krausmann, F. Human appropriation of net primary production: patterns, trends, and planetary boundaries. Annu. Rev. Environ. Resour. 39, 363–391 (2014).
Article Google Scholar
27.
Vitousek, P. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).
CAS Article Google Scholar
28.
Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).
ADS CAS PubMed Article Google Scholar
29.
Crutzen, P. J. in Earth System Science in the Anthropocene (eds. Ehlers, E. & Kraft, T.) 13–18 (Springer, 2006).
30.
Steffen, W., Crutzen, J. & McNeill, J. R. The Anthropocene: are humans now overwhelming the great forces of Nature? Ambio 36, 614–621 (2007).
CAS PubMed Article PubMed Central Google Scholar
31.
Lewis, S. L. & Maslin, M. A. Defining the Anthropocene. Nature 519, 171–180 (2015).
ADS CAS PubMed Article PubMed Central Google Scholar
32.
Waters, C. N. et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351, aad2622 (2016).
PubMed Article CAS PubMed Central Google Scholar
33.
Krausmann, F. et al. Economy-wide Material Flow Accounting. Introduction and Guide Version 1, Social Ecology Working Paper 151 (Alpen-Adria Univ., 2015).
34.
Miatto, A., Schandl, H., Fishman, T. & Tanikawa, H. Global patterns and trends for non-metallic minerals used for construction. J. Ind. Ecol. 21, 924–937 (2017).
Article Google Scholar
35.
Cooper, A. H., Brown, T. J., Price, S. J., Ford, J. R. & Waters, C. N. Humans are the most significant global geomorphological driving force of the 21st century. Anthropocene Rev. 5, 222–229 (2018).
Article Google Scholar
36.
Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment 2010: Main Report (FAO, 2010).
37.
Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Chang. 5, 470–474 (2015).
ADS Article Google Scholar
38.
Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).
ADS Article Google Scholar
39.
Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).
ADS Article Google Scholar
40.
Food and Agriculture Organization of the United Nations FAOSTAT http://faostat.fao.org.
41.
Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717 (2018).
ADS CAS Article Google Scholar
42.
Haverd, V. et al. A new version of the CABLE land surface model (Subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis. Geosci. Model Dev. 11, 2995–3026 (2018).
ADS CAS Article Google Scholar
43.
Melton, J. R. & Arora, V. K. Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0. Geosci. Model Dev. 9, 323–361 (2016).
ADS CAS Article Google Scholar
44.
Lawrence, D. M. et al. The community land model version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).
ADS Article Google Scholar
45.
Tian, H. et al. North American terrestrial CO2 uptake largely offset by CH4 and N2O emissions: toward a full accounting of the greenhouse gas budget. Clim. Change 129, 413–426 (2015).
ADS CAS PubMed Article PubMed Central Google Scholar
46.
Meiyappan, P., Jain, A. K. & House, J. I. Increased influence of nitrogen limitation on CO2 emissions from future land use and land use change. Glob. Biogeochem. Cycles 29, 1524–1548 (2015).
ADS CAS Article Google Scholar
47.
Mauritsen, T. et al. Developments in the MPI-M Earth System Model version1.2 (MPI-ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst. 11, 998–1038 (2019).
ADS PubMed PubMed Central Article Google Scholar
48.
Clark, D. B. et al. The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics. Geosci. Model Dev. 4, 701–722 (2011).
ADS Article Google Scholar
49.
Poulter, B., Frank, D. C., Hodson, E. L. & Zimmermann, N. E. Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO2 airborne fraction. Biogeosciences 8, 2027–2036 (2011).
ADS CAS Article Google Scholar
50.
Smith, B. et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11, 2027–2054 (2014).
ADS Article Google Scholar
51.
Lienert, S. & Joos, F. A Bayesian ensemble data assimilation to constrain model parameters and land-use carbon emissions. Biogeosciences 15, 2909–2930 (2018).
ADS CAS Article Google Scholar
52.
Zaehle, S. & Friend, A. D. Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates. Glob. Biogeochem. Cycles 24, GB1005 (2010).
ADS Google Scholar
53.
Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Glob. Biogeochem. Cycles 19, GB1015 (2005).
ADS Article CAS Google Scholar
54.
Goll, D. S. et al. Carbon–nitrogen interactions in idealized simulations with JSBACH (version 3.10). Geosci. Model Dev. 10, 2009–2030 (2017).
ADS CAS Article Google Scholar
55.
Walker, A. P. et al. The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxylation rate (V cmax) on global gross primary production. New Phytol. 215, 1370–1386 (2017).
CAS PubMed Article Google Scholar
56.
Kato, E., Kinoshita, T., Ito, A., Kawamiya, M. & Yamagata, Y. Evaluation of spatially explicit emission scenario of land-use change and biomass burning using a process-based biogeochemical model. J. Land Use Sci. 8, 104–122 (2013).
Article Google Scholar
57.
Tang, Z. et al. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA 115, 4033–4038 (2018).
PubMed Article Google Scholar
58.
Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).
CAS PubMed Article Google Scholar
59.
Heldal, M., Norland, S. & Tumyr, O. X-ray microanalytic method for measurement of dry matter and elemental content of individual bacteria. Appl. Environ. Microbiol. 50, 1251–1257 (1985).
CAS PubMed PubMed Central Article Google Scholar
60.
von Stockar, U. & Liu, J. Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth. Biochim. Biophys. Acta 1412, 191–211 (1999).
Article Google Scholar
61.
Guo, L., Lin, H., Fan, B., Cui, X. & Chen, J. Impact of root water content on root biomass estimation using ground penetrating radar: evidence from forward simulations and field controlled experiments. Plant Soil 371, 503–520 (2013).
CAS Article Google Scholar
62.
Glass, S. V. & Zelinka, S. L. in Wood Handbook: Wood as an Engineering Material Vol. 190, 4.1–4.19 (US Department of Agriculture, 2010).
63.
Loveys, B. R. et al. Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow-growing plant species. Glob. Change Biol. 9, 895–910 (2003).
ADS Article Google Scholar
64.
Sheremetev, S. N. Herbs on the Soil Moisture Gradient (Water Relations and the Structural-Functional Organization) (KMK, 2005).
65.
Michaletz, S. T. & Johnson, E. A. A heat transfer model of crown scorch in forest fires. Can. J. For. Res. 36, 2839–2851 (2006).
Article Google Scholar
66.
Messier, J., McGill, B. J. & Lechowicz, M. J. How do traits vary across ecological scales? A case for trait-based ecology. Ecol. Lett. 13, 838–848 (2010).
PubMed Article Google Scholar
67.
Boucher, F. C., Thuiller, W., Arnoldi, C., Albert, C. H. & Lavergne, S. Unravelling the architecture of functional variability in wild populations of Polygonum viviparum L. Funct. Ecol. 27, 382–391 (2013).
PubMed PubMed Central Article Google Scholar
68.
Dahlin, K. M., Asner, G. P. & Field, C. B. Environmental and community controls on plant canopy chemistry in a Mediterranean-type ecosystem. Proc. Natl Acad. Sci. USA 110, 6895–6900 (2013).
ADS CAS PubMed Article Google Scholar
69.
Kattge, J. et al. TRY–a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).
ADS Article Google Scholar
70.
Lebigot, E. O. Uncertainties: a Python package for calculations with uncertainties. https://pythonhosted.org/uncertainties/ (2010).
71.
Wiedenhofer, D., Fishman, T., Lauk, C., Haas, W. & Krausmann, F. Integrating material stock dynamics into economy-wide material flow accounting: concepts, modelling, and global application for 1900–2050. Ecol. Econ. 156, 121–133 (2019).
Article Google Scholar More