More stories

  • in

    Defining intraspecific conservation units in the endemic Cuban Rock Iguanas (Cyclura nubila nubila)

    1.
    Convention on Biological Diversity. https://www.cbd.int/doc/meetings/cop-bureau/cop-bur-2007/cop-bur-2007-10-14-en.pdf (2007).
    2.
    Coates, D. J., Byrne, M. & Moritz, C. Genetic diversity and conservation units: dealing with species-population continuum in the age of genomics. Front. Ecol. Evol. 6, 165. https://doi.org/10.3389/fevo.2018.00165 (2018).
    Article  Google Scholar 

    3.
    Ralls, K., Ballou, J. D., Dudash, M. R., Eldridge, M. D. B. & Fenster, C. B. Call for a paradigm shift in the genetic management of fragmented populations. Conserv. Lett. 11, 1–6 (2018).
    Article  Google Scholar 

    4.
    Ryder, O. A. Species conservation and systematics: the dilemma of subspecies. Trends Ecol. Evol. 1, 9–10 (1986).
    Article  Google Scholar 

    5.
    Moritz, C. Defining evolutionary significant units. Trends Ecol. Evol. 9, 373–375 (1994).
    CAS  PubMed  Article  Google Scholar 

    6.
    Waples, R. S. Pacific salmon, Oncorhynchus spp., and the definition of “species” under the Endangered Species Act. Marine Fish. Rev. 53, 11–22 (1991).
    Google Scholar 

    7.
    Funk, W. C., McKay, J. K., Hohenlohe, P. A. & Allendorf, F. W. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27, 489–496 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    8.
    Green, D. M. Designatable units for status assessment of endangered species. Conserv. Biol. 19, 1813–1820 (2005).
    Article  Google Scholar 

    9.
    Brodie, J. F., Redford, K. H. & Doak, D. F. Ecological function analysis: incorporating species roles into conservation. Trends Ecol. Evol. 33, 840–850 (2018).
    PubMed  Article  Google Scholar 

    10.
    Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).
    Article  Google Scholar 

    11.
    Decker, E., Linke, S., Hermoso, V. & Geist, J. Incorporating ecological functions in conservation decision making. Ecol. Evol. 7, 8273–8281 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Leclerc, C., Villéger, S., Marino, C. & Bellard, C. Global changes threaten functional and taxonomic diversity of insular species worldwide. Divers. Distrib. 26, 402–414 (2020).
    Article  Google Scholar 

    13.
    Zipkin, E. F., DiRenzo, G. V., Ray, J. M., Rossman, S. & Lips, K. P. Tropical snake diversity collapses after widespread amphibian loss. Science 367, 814–816 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    14.
    Hedges, S. B. & Woods, C. A. Caribbean hot spot. Nature 364, 375. https://doi.org/10.1038/364375a0 (1993).
    ADS  Article  Google Scholar 

    15.
    Heinicke, M. P., Duellman, W. E. & Hedges, S. B. Major Caribbean and Central American frog faunas originated by ancient oceanic dispersal. Proc. Natl. Acad. Sci. 104, 10092–10097 (2007).
    ADS  CAS  PubMed  Article  Google Scholar 

    16.
    ITWG (Iguana Taxonomy Working Group). A checklist of the iguanas of the world (Iguanidae; Iguaninae). Herpetol. Conserv. Biol. 11, 4–46 (2016).

    17.
    Henderson, R. W. Consequences of predator introductions and habitat destruction on amphibians and reptiles in the post-Columbus West Indies. Caribb. J. Sci. 28, 1–10 (1992).
    Google Scholar 

    18.
    Alberts, A. C. Developing recovery strategies for West Indian Rock Iguanas. Endangered Species UPDATA 16, 107–110 (1999).
    Google Scholar 

    19.
    Hartley, L. M., Glor, R. E., Sproston, A. L., Powell, R. & Parmer-Lee, J. S. Jr. Germination rates of seeds consumed by two species of Rock Iguanas (Cyclura spp.) in the Dominican Republic. Caribb. J. Sci. 36, 149–151 (2000).
    Google Scholar 

    20.
    Malone, C. L., Wheeler, T., Taylor, J. F. & Davis, S. K. Phylogeography of the Caribbean rock Iguana (Cyclura): implications for conservation and insights on the biogeographic history of the West Indies. Mol. Phylog. Evol. 17, 269–279 (2000).
    CAS  Article  Google Scholar 

    21.
    Alberts, A. C. et al. (eds) Iguanas-Biology and Conservation (University of California Press, California, 2004).
    Google Scholar 

    22.
    US Fish and Wildlife Report. Caribbean Iguana Conservation Workshop. Exploring a region-wide approach to recovery. San Juan, Puerto Rico. https://www.fws.gov/international/pdf/Caribbean-Iguana-Workshop-Proceedings.pdf (2013).

    23.
    González-Rossell, A. Ecologia y conservación de la iguana (Cyclura nubila nubila) en Cuba. Dissertation, Universitat d’Alacant (Alcalá de Henares, España, 2018).

    24.
    Rodríguez-Schettino, L. (ed.) The Iguanid lizards of Cuba (Florida University Press, Gainesville, 1999).
    Google Scholar 

    25.
    Day, M. Cyclura nubila. The IUCN Red List of Threatened Species; e.T6030A12338655. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.1996.RLTS.T6030A12338655.en (1996)

    26.
    Knapp, C. R. & Malone, C. L. Patterns of reproductive success and genetic variability in a translocated iguana population. Herpetologica 59, 195–202 (2003).
    Article  Google Scholar 

    27.
    Malone, C. L., Knapp, C. R., Taylor, J. F. & Davis, S. K. Genetic consequences of Pleistocene fragmentation: isolation, drift, and loss of diversity in rock iguanas (Cyclura). Conserv. Genet. 4, 1–15 (2003).
    CAS  Article  Google Scholar 

    28.
    An, J., Sommer, J., Shore, G. D. & Williamson, J. E. Characterization of 20 microsatellite marker loci in the West Indian Rock Iguana (Cyclura nubila). Conserv. Genet. 5, 121–125 (2004).
    CAS  Article  Google Scholar 

    29.
    Wildlife Conservation Society. Global Conservation Strategy. Mesoamerica and Western Caribbean. https://www.wcs.org/about-us/2020-strategy (2020).

    30.
    Critical Ecosystem Partnership Fund (CEPF). The Caribben Islands Biodiversity Hotspot. https://www.cepf.net/sites/default/files/final_caribbean_ep.pdf (2010).

    31.
    Waples, R. S. & Do, C. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol. Appl. 3, 244–262 (2010).
    PubMed  Article  Google Scholar 

    32.
    Soltis, P. S. & Soltis, D. E. Applying the bootstrap in phylogeny reconstruction. Stat. Sci. 18, 256–267 (2003).
    MathSciNet  MATH  Article  Google Scholar 

    33.
    Sites, J. W., Davis, S. K., Guerra, T., Iverson, J. B. & Snell, H. L. Character congruence and phylogenetic signal in molecular and morphological data sets: a case study in the living iguanas (Squamata, Iguanidae). Mol. Biol. Evol. 13, 1087–1105 (1996).
    CAS  PubMed  Article  Google Scholar 

    34.
    Starostova, Z., Rehak, I. & Frynta, D. New haplotypes of Cyclura nubila nubila from Cuba changed the phylogenetic tree of rock iguanas: a challenge for conservation strategies?. Amphib-reptil 31, 134–143 (2010).
    Article  Google Scholar 

    35.
    Allendorf, F. W. & Luikart, G. Conservation and the Genetics of Populations (Wiley-Blackwell, New York, 2006).
    Google Scholar 

    36.
    England, P. R., Cornuet, J. M., Berthier, P., Tallmon, D. A. & Luikart, G. Estimating effective population size from linkage disequilibrium: severe bias in small samples. Conserv. Genet. 7, 303–308 (2007).
    Article  Google Scholar 

    37.
    Sunny, A., Monroy-Vilchis, O., Fajardo, V. & Aguilera-Reyes, U. Genetic diversity and structure of an endemic and critically endangered stream river salamander (Caudata: Ambystoma leorae) in Mexico. Conserv. Genet. 15, 49–59 (2014).
    CAS  Article  Google Scholar 

    38.
    Franklin, I. R. & Frankham, R. How large must populations be to retain evolutionary potential?. Anim. Conserv. 1, 79–70 (1998).
    Article  Google Scholar 

    39.
    Vázquez-Domínguez, E., Suárez-Atilano, M., Booth, W., González-Baca, C. & Cuarón, A. D. Genetic evidence of a recent successful colonization of introduced species on islands: Boa constrictor imperator on Cozumel Island. Biol. Invasions 14, 2101–2116 (2012).
    Article  Google Scholar 

    40.
    Frankham, R., Ballou, J. & Briscoe, D. Introduction to Conservation Genetics (Cambridge University Press, Cambridge, 2005).
    Google Scholar 

    41.
    Iturralde-Vinent, M. A. Meso-Cenozoic Caribbean paleogeography: Implications for the historical biogeography of the region. Int. Geol. Rev. 48, 791–827 (2006).
    Article  Google Scholar 

    42.
    Iturralde-Vinent, M. A. & MacPhee, R. D. E. Paleogeography of the Caribbean region: Implications for Cenozoic Biogeography. Bull. Am. Mus. Nat. Hist. 238, 1–95 (1999).
    Google Scholar 

    43.
    Rodríguez, A. Biogeographic origin and radiation of Cuban Eleutherodactylus frogs of the auriculatus species group, inferred from mitochondrial and nuclear gene sequences. Mol. Phylog. Evol. 54, 179–186 (2010).
    Article  Google Scholar 

    44.
    Cobos, M. E. & Bosch, R. A. Recent and future threats to the endangered Cuban toad Peltophryne longinasus: potential additive impacts of climate change and habitat loss. Oryx 52, 116–125 (2018).
    Article  Google Scholar 

    45.
    Robertson, J. M. et al. Identifying evolutionarily significant units and prioritizing populations for management of islands. West. N. Am. Nat. 7, 397–411 (2014).
    Google Scholar 

    46.
    Burton, F. J. Revision to species of Cyclura nubila lewisi, the Grand Cayman Blue Iguana. Caribb. J. Sci. 40, 198–203 (2004).
    Google Scholar 

    47.
    Dinerstein, E. & Olson, D. M. A Conservation Assessment of the Terrestrial Ecoregions of Latin America and the Caribbean (The World Bank in Association with WWF, Washington, 1995).
    Google Scholar 

    48.
    Wasser, S. K. et al. Assigning African elephant DNA to geographic region of origin: applications to the ivory trade. Proc. Natl. Acad. Sci. 101, 14847–14852 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    49.
    Zhang, H. et al. Molecular tracing of confiscated pangolin scales for conservation and illegal trade monitoring in Southeast Asia. Global Ecol. Conserv. 4, 412–422 (2015).
    Google Scholar 

    50.
    Shaney, K. J. et al. A suite of potentially amplifiable microsatellite loci for reptiles of conservation concern from Africa and Asia. Conserv. Genet. Res. 8, 307–311 (2016).
    Article  Google Scholar 

    51.
    de Miranda, E. B. P. The plight of reptiles as ecological actors in the tropics. Front. Ecol. Evol. 5, 159. https://doi.org/10.3389/fevo.2017.00159 (2017).
    Article  Google Scholar 

    52.
    Beovides-Casas, K. & Mancina, C. A. Natural history and morphometry of the Cuban iguana (Cyclura nubila Gray, 1831) in Cayo Sijú Cuba. Anim. Biodiv. Conserv. 29, 1–8 (2006).
    Google Scholar 

    53.
    HACC. Guidelines for use of live amphibians and reptiles in field and laboratory research. Revised by the Herpetological Animal Care and Use Committee of the American Society of Ichthyologists and Herpetologists (Committee Chair: Steven J. Beaupre, Members: Elliott R. Jacobson, Harvey B. Lillywhite, and Kelly Zamudio) (2014).

    54.
    Chatterji, S. & Pachter, L. Reference based annotation with GeneMapper. Genome Biol. 7, 29. https://doi.org/10.1186/gb-2006-7-4-r29 (2006).
    CAS  Article  Google Scholar 

    55.
    Arévalo, E., Davis, S. K. & Sites, J. W. Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in central Mexico. Syst. Biol. 43, 387–418 (1994).
    Article  Google Scholar 

    56.
    Kearse, M., Moir, R., Wilson, M. & Stones-Havas, S. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    57.
    Raymond, M. & Rousset, F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Heredity 86, 248–249 (1995).
    Article  Google Scholar 

    58.
    Rice, W. R. Analysing tables of statistical test. Evolution 43, 223–225 (1989).
    PubMed  Article  Google Scholar 

    59.
    Van Oosterhout, C., Hutchinson, W. F., Willis, D. P. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping error in microsatellites data. Mol. Ecol. Notes 4, 535–538 (2004).
    Article  CAS  Google Scholar 

    60.
    Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).
    CAS  PubMed  PubMed Central  Google Scholar 

    61.
    Peakall, R. & Smouse, P. E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).
    Article  Google Scholar 

    62.
    Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers”. Bioinformatics 24, 1403–1405 (2008).
    CAS  Article  Google Scholar 

    63.
    Do, C. et al. NeEstimator V2: Sre-implementation of software for estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. 14, 209–214 (2014).
    CAS  Article  Google Scholar 

    64.
    Chybicki, I. J. & Burczyk, J. Simultaneous estimation of null alleles and inbreeding coefficients. J. Heredity 100, 106–113 (2009).
    CAS  Article  Google Scholar 

    65.
    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).
    CAS  PubMed  PubMed Central  Google Scholar 

    66.
    Garza, J. C. & Williamson, E. G. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10, 305–318 (2001).
    CAS  PubMed  Article  Google Scholar 

    67.
    Foll, M. & Gaggiotti, O. E. Identifying the environmental factors that determine the genetic structure of populations. Genetics 174, 875–891 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Goudet, J. FSTAT (Version 1.2): a computer program to calculate F-Statisitics. J. Heredity 86, 485–486 (1995).
    Article  Google Scholar 

    69.
    Nei, M. Genetic distance between populations. Am. Nat. 106, 283–292 (1972).
    Article  Google Scholar 

    70.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    71.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Article  Google Scholar 

    72.
    Earl, D. A. & von Holdt, B. M. Structure-harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv. Genet. Res. 4, 359–361 (2012).
    Article  Google Scholar 

    73.
    Excoffier, L., Laval, G. & Schneider, S. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50 (2005).
    CAS  Article  Google Scholar 

    74.
    Kalinowski, S. T., Wagner, A. P. & Taper, M. L. ML-Relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol. Ecol. Notes 6, 576–579 (2006).
    CAS  Article  Google Scholar 

    75.
    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
    CAS  PubMed  Article  Google Scholar 

    76.
    Leigh, J. W. & Bryant, D. PopART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
    Article  Google Scholar 

    77.
    Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Ecol. Biol. 16, 37–48 (1999).
    CAS  Article  Google Scholar 

    78.
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 110. Virus Evol. https://doi.org/10.1093/ve/vey016 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    79.
    Blankers, T. et al. Contrasting global-scale evolutionary radiations: Phylogeny, diversification, and morphological evolution in the major clades of iguanian lizards. Biol. J. Linn. Soc. 108, 127–143 (2012).
    Article  Google Scholar 

    80.
    Pyron, R. A., Burbrink, F. T. & Wiens, J. J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13, 93. https://doi.org/10.1186/1471-2148-13-93 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    81.
    Carroll, R. L. Vertebrate Paleontology and Evolution (WH Freeman, New York, 1988).
    Google Scholar 

    82.
    Townsend, T. M. et al. Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Mol. Phylogen. Evol. 61, 363–380 (2011).
    Article  Google Scholar 

    83.
    MacLeod, A. Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana. Proc. R. Soc. B 282, 20150425. https://doi.org/10.1098/rspb.2015.0425 (2015).
    Article  PubMed  Google Scholar  More

  • in

    Effects of disturbances by forest elephants on diversity of trees and insects in tropical rainforests on Mount Cameroon

    Study area
    Mount Cameroon (South-Western Province, Cameroon) is the highest mountain in West/Central Africa. This active volcano rises from the Gulf of Guinea seashore up to 4095 m asl. Its southwestern slope represents the only complete altitudinal gradient of primary forests from lowland up to the timberline (~ 2200 m asl.) in the Afrotropics. Belonging to the biodiversity hotspot, Mount Cameroon harbour numerous endemics45,46,47. With  > 12,000 mm of yearly precipitation, foothills of Mount Cameroon belong among the globally wettest places42. Most precipitation occur during the wet season (June–September;  > 2000 mm monthly), whilst the dry season (late December–February) usually lacks any strong rains42. Since 2009, most of its forests have become protected by the Mount Cameroon National Park.
    Volcanism is the strongest natural disturbance on Mount Cameroon with the frequency of eruptions every ten to thirty years. Remarkably, on the studied southwestern slope, two eruptions in 1982 and 1999 created a continuous strip of bare lava rocks (in this study referred as ‘the lava flow’) interrupting the forests on the southwestern slope from above the timberline down to the seashore (Fig. 1a).
    A small population of forest elephants (Loxodonta cyclotis) strongly affects forests above ca. 800 m asl. on the southwestern slope28,45. It is highly isolated from the nearest populations of the Korup NP and the Banyang-Mbo Wildlife Sanctuary, as well as from much larger metapopulations in the Congo Basin48. It has been estimated to ~ 130 individuals with a patchy local distribution28. On the southwestern slope, they concentrate around three crater lakes representing the only available water sources during the high dry season, although their local elevational range covers the gradient from lowlands to montane grasslands just above the timberline28. They rarely (if ever) cross the old lava flows, representing natural obstacles dividing forests of the southwestern slope to two blocks with different dynamics. As a result, forests on the western side of the longest lava flow have an open structure, with numerous extensive clearings and ‘elephant pastures’, whereas eastern forests are characteristic by undisturbed dense canopy (Fig. 1). To our knowledge, the two forest blocks are not influenced by any extensive human activities, nor differ in any significant environmental conditions28,45. Hereafter, we refer the forests west and east from the lava flow as disturbed and undisturbed, respectively. Effects of forest elephant disturbances on communities of trees and insects were investigated at four localities, two in an upland forest (1100 m asl.), and two in a montane forest (1850 m asl.).
    Tree diversity and forest structure
    At each of four sampling sites, eight circular plots (20 m radius, ~ 150 m from each other) were established in high canopy forests (although sparse in the undisturbed sites), any larger clearings were avoided. In the disturbed forest sites, the plots were previously used for a study of elevational diversity patterns40,42. In the undisturbed forest sites, plots were established specifically for this study.
    To assess the tree diversity in both disturbed and undisturbed forest plots, all living and dead trees with diameter at breast height (DBH, 1.3 m) ≥ 10 cm were identified to (morpho)species (see40 for details). To study impact of elephant disturbances on forest structure, each plot was characterized by twelve descriptors. Besides tree species richness, living and dead trees with DBH ≥ 10 cm were counted. Consequently, DBH and basal area of each tree were measured and averaged per plot (mean DBH and mean basal area). Height of each tree was estimated and averaged per plot (mean height), together with the tallest tree height (maximum height) per plot. From these measurements, two additional indices were computed for each tree: stem slenderness index (SSI) was calculated as a ratio between tree height and DBH, and tree volume was estimated from the tree height and basal area49. Both measurements were then averaged per plot (mean SSI and mean tree volume). Finally, following Grote50, proxies of shrub, lower canopy, and higher canopy coverages per plot were estimated by summing the DBH of three tree height categories: 0–8 m (shrubs), 8–16 m (lower canopy), > 16 m (higher canopy).
    Insect sampling
    Butterflies and moths (Lepidoptera) were selected as the focal insect groups because they belong into one of the species richest insect orders, with relatively well-known ecology and taxonomy, and with well-standardized quantitative sampling methods. Moreover, they strongly differ in their habitat use29. In conclusion, butterflies51 and moths52 are often used as efficient bioindicators of changes in tropical forest ecosystems, especially useful if both groups are combined in a single study. Within each sampling plot, fruit-feeding lepidopterans were sampled by five bait traps (four in understory and one in canopy per sampling, i.e. 40 traps per sampling site, and 160 traps in total) baited by fermented bananas (see Maicher et al.42 for details). All fruit-feeding butterflies and moths (hereinafter referred as butterflies and fruit-feeding moths) were killed (this is necessary to avoid repetitive counting of the same individuals53) daily for ten consecutive days and identified to (morpho)species.
    Additionally, moths were attracted by light at three ‘mothing plots’ per sampling site, established out of the sampling plots described above. These plots were selected to characterize the local heterogeneity of forest habitats and separated by a few hundred meters from each other. To keep the necessary standardisation, all mothing plots at both types of forest were established in semi-open patches, avoiding both dense forest and larger openings. Moths were attracted by a single light (see Maicher et al.42 for details) during each of six complete nights per elevation (i.e., two nights per plot). Six target moth groups (Lymantriinae, Notodontidae, Lasiocampidae, Sphingidae, Saturniidae, and Eupterotidae; hereafter referred as light-attracted moths) were collected manually, killed, and later identified into (morpho)species. The three lepidopteran datasets (butterflies, and fruit-feeding and light-attracted moths) were extracted from Maicher et al.42 for the disturbed forest plots, whilst the described sampling was performed in the undisturbed forest plots specifically for this study. Voucher specimens were deposited in the Nature Education Centre, Jagiellonian University, Kraków, Poland.
    To partially cover the seasonality54, the insect sampling was repeated during transition from wet to dry season (November/December), and transition from dry to wet season (April/May) in all disturbed and undisturbed forest plots.
    Diversity analyses
    To check sampling completeness of all focal groups, the sampling coverages were computed to evaluate our data quality using the iNEXT package55 in R 3.5.156. For all focal groups in all seasons and at all elevations, the sampling coverages were always ≥ 0.84 (mostly even ≥ 0.90), indicating a sufficient coverage of the sampled communities (Supplementary Table S1). Therefore, observed species richness was used in all analyses57.
    Effects of disturbance on species richness were analysed separately for each focal group by Generalized Estimated Equations (GEE) using the geepack package58. For trees, species richness from individual plots were used as a ‘sample’ with an independent covariance structure, with disturbance, elevation, and their interaction treated as explanatory variables. For lepidopterans, because of the temporal pseudo-replicative sampling design, species richness from a sampling day (butterflies and fruit-feeding moths) or night (light-attracted moths) at individual plot was used as a ‘sample’ with the first-order autoregressive relationship AR(1) covariance structure (i.e. repeated measurements design). Disturbance, season, elevation, disturbance × season, and disturbance × elevation were treated as explanatory variables. All models were conducted with Poisson distribution and log-link function. Pairwise post-hoc comparisons of the estimated marginal means were compared by Wald χ2 tests. Additionally, species richness of individual families of trees, butterflies, and light-attracted moths were analysed by Redundancy Analyses (RDA), a multivariate analogue of regression, based on the length of gradients in the data59. All families with  > 5 species were included in three RDA models, separately for the studied groups (the subfamily name Lymantriinae is used, because they are the only group of the hyperdiverse Erebidae family of the light-attracted moths). Fruit-feeding moth families were not analyzed because 83% of their specimens belonged to Erebidae and all other families were therefore minor in the sampled data. Species richness of individual families per plot were used as response variables, whilst interaction of disturbance and elevation were applied as factorial explanatory variable (for butterflies and light-attracted moths, the temporal variation was treated by adding season as a covariate).
    Differences in composition of communities between the disturbed and undisturbed forests were analysed by multivariate ordination methods59, separately for each focal group. Firstly, the main patterns in species composition of individual plots were visualized by Non-Metric Multidimensional Scaling (NMDS) in Primer-E v660. NMDSs were generated using Bray–Curtis similarity, computed from square-root transformed species abundances per plot. Subsequently, influence of disturbance on community composition of each focal group was tested by constrained partial Canonical Correspondence Analyses (CCA) with log‐transformed species’ abundances as response variables and elevation as covariate59. Significance of all partial CCAs were tested by Monte Carlo permutation tests with 9999 permutations.
    Finally, differences in the forest structure descriptors between the disturbed and undisturbed forests were analysed by partial Redundancy Analysis (RDA). Prior to the analysis, preliminary checking of the multicollinearity table among the structure descriptors was investigated. Only forest structure descriptors with pairwise collinearity More

  • in

    Natural selection on traits and trait plasticity in Arabidopsis thaliana varies across competitive environments

    1.
    Tilman, D. Competition and biodiversity in spatially structured habitats. Ecology 75, 2–16 (1994).
    Article  Google Scholar 
    2.
    Matesanz, S., Gimeno, T. E., de la Cruz, M., Escudero, A. & Valladares, F. Competition may explain the fine-scale spatial patterns and genetic structure of two co-occurring plant congeners: Spatial genetic structure of congeneric plants. J. Ecol. 99, 838–848 (2011).
    CAS  Article  Google Scholar 

    3.
    Fridley, J. D., Grime, J. P. & Bilton, M. Genetic identity of interspecific neighbours mediates plant responses to competition and environmental variation in a species-rich grassland. J. Ecol. 95, 908–915 (2007).
    Article  Google Scholar 

    4.
    Baron, E., Richirt, J., Villoutreix, R., Amsellem, L. & Roux, F. The genetics of intra- and interspecific competitive response and effect in a local population of an annual plant species. Funct. Ecol. 29, 1361–1370 (2015).
    Article  Google Scholar 

    5.
    McGoey, B. V. & Stinchcombe, J. R. Interspecific competition alters natural selection on shade avoidance phenotypes in Impatiens capensis. New Phytol. 183, 880–891 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Vellend, M. The Consequences of genetic diversity in competitive communities. Ecology 87, 304–311 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Turkington, R. The growth, distribution and neighbours relationships of Trifolium repens in a permanent pasture. VI. Conditioning effects by neighbours. J. Ecol. 77, 734 (1989).
    Article  Google Scholar 

    8.
    Sultan, E. Phenotypic plasticity and plant adaptation. Acta Bot. Neerl. 44, 363–383 (1995).
    Article  Google Scholar 

    9.
    Via, S. et al. Adaptive phenotypic plasticity: Consensus and controversy. Trends Ecol. Evol. 10, 212–217 (1995).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Vermeulen, P. J. On selection for flowering time plasticity in response to density. New Phytol. 205, 429–439 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Geber, M. A. & Griffen, L. R. Inheritance and natural selection on functional traits. Int. J. Plant Sci. 164, S21–S42 (2003).
    Article  Google Scholar 

    12.
    Dudley, S. A. & Schmitt, J. Testing the adaptive plasticity hypothesis: Density-dependent selection on manipulated stem length in Impatiens capensis. Am. Nat. 147, 445–465 (1996).
    Article  Google Scholar 

    13.
    Boege, K. Induced responses to competition and herbivory: Natural selection on multi-trait phenotypic plasticity. Ecology 91, 2628–2637 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Munguía-Rosas, M. A., Ollerton, J., Parra-Tabla, V. & De-Nova, J. A. Meta-analysis of phenotypic selection on flowering phenology suggests that early flowering plants are favoured. Ecol. Lett. 14, 511–521 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Weis, A., Wadgymar, S., Sekor, M. & Franks, S. The shape of selection: Using alternative fitness functions to test predictions for selection on flowering time. Evol. Ecol. 28, 885–904 (2014).
    Article  Google Scholar 

    16.
    Juenger, T., Lennartsson, T. & Tuomi, J. The evolution of tolerance to damage in Gentianella campestris: Natural selection and the quantitative genetics of tolerance. Evol. Ecol. 14, 393 (2000).
    Article  Google Scholar 

    17.
    Kenney, A. M., McKay, J. K., Richards, J. H. & Juenger, T. E. Direct and indirect selection on flowering time, water-use efficiency (WUE, δ13 C), and WUE plasticity to drought in Arabidopsis thaliana. Ecol. Evol. 4, 4505–4521 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Leverett, L. D., Iv, G. F. S. & Donohue, K. The fitness benefits of germinating later than neighbors. Am. J. Bot. 105, 20–30 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Weinig, C., Johnston, J., German, Z. M. & Demink, L. M. Local and global costs of adaptive plasticity to density in Arabidopsis thaliana. Am. Nat. 167, 826–836 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Callahan, H. S. & Pigliucci, M. Shade-Induced plasticity and its ecological significance in wild populations of Arabidopsis thaliana. Ecology 83, 1965–1980 (2002).
    Article  Google Scholar 

    21.
    Manzano-Piedras, E., Marcer, A., Alonso-Blanco, C. & Picó, F. X. Deciphering the adjustment between environment and life history in annuals: Lessons from a geographically-explicit approach in Arabidopsis thaliana. PLoS ONE 9, e87836 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Sandring, S., Riihimäki, M.-A., Savolainen, O. & Ågren, J. Selection on flowering time and floral display in an alpine and a lowland population of Arabidopsis lyrata. J. Evol. Biol. 20, 558–567 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Weinig, C. Differing selection in alternative competitive environments: Shade-avoidance responses and germination timing. Evolution 54, 124–136 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).
    PubMed  Article  PubMed Central  Google Scholar 

    25.
    Pigliucci, M. & Kolodynska, A. Phenotypic plasticity to light intensity in Arabidopsis thaliana: Invariance of reaction norms and phenotypic integration. Evol. Ecol. 16, 27–47 (2002).
    Article  Google Scholar 

    26.
    Pigliucci, M. & Preston, K. A. Phenotypic Integration. Studying the Ecology and Evolution of Complex Phenotypes (Oxford University Press, Oxford, 2004).
    Google Scholar 

    27.
    Schlichting, C. D. Phenotypic integration and environmental change. Bioscience 39, 460–464 (1989).
    Article  Google Scholar 

    28.
    Brock, M. T. & Weinig, C. Plasticity and environment-specific covariances: An investigation of floral–vegetative and within flower correlations. Evolution 61, 2913–2924 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    29.
    Lind, M. I., Yarlett, K., Reger, J., Carter, M. J. & Beckerman, A. P. The alignment between phenotypic plasticity, the major axis of genetic variation and the response to selection. Proc. R. Soc. B Biol. Sci. 282, 20151651 (2015).
    Article  Google Scholar 

    30.
    Crespi, B. J. The evolution of maladaptation. Heredity 84, 623 (2000).
    PubMed  Article  Google Scholar 

    31.
    DeWitt, T. J. & Scheiner, S. M. Phenotypic Plasticity: Functional and Conceptual Approaches (Oxford University Press, Oxford, 2004).
    Google Scholar 

    32.
    Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692 (2010).
    CAS  PubMed  Article  Google Scholar 

    33.
    Scheiner, S. M. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 24, 35–68 (1993).
    Article  Google Scholar 

    34.
    Palacio-López, K., Beckage, B., Scheiner, S. & Molofsky, J. The ubiquity of phenotypic plasticity in plants: A synthesis. Ecol. Evol. 5, 3389–3400 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Turcotte, M. M. & Levine, J. M. Phenotypic plasticity and species coexistence. Trends Ecol. Evol. 31, 803–813 (2016).
    PubMed  Article  Google Scholar 

    36.
    Goldberg, D. E. & Barton, A. M. Patterns and consequences of interspecific competition in natural communities: A review of field experiments with plants. Am. Nat. 139, 771–801 (1992).
    Article  Google Scholar 

    37.
    Van Kleunen, M. & Fischer, M. Constraints on the evolution of adaptive phenotypic plasticity in plants: Research review. New Phytol. 166, 49–60 (2005).
    PubMed  Article  Google Scholar 

    38.
    Stinchcombe, J. R., Dorn, L. A. & Schmitt, J. Flowering time plasticity in Arabidopsis thaliana: A reanalysis of Westerman & Lawrence (1970): Flowering time plasticity in Arabidopsis. J. Evol. Biol. 17, 197–207 (2003).
    Article  Google Scholar 

    39.
    Scheiner, S. M. & Holt, R. D. The genetics of phenotypic plasticity. X. Variation versus uncertainty: Plasticity, variation, and uncertainty. Ecol. Evol. 2, 751–767 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Scheiner, S. M. Bet-hedging as a complex interaction among developmental instability, environmental heterogeneity, dispersal, and life-history strategy. Ecol. Evol. 4, 505–515 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13, 77–81 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Dechaine, J. M., Johnston, J. A., Brock, M. T. & Weinig, C. Constraints on the evolution of adaptive plasticity: Costs of plasticity to density are expressed in segregating progenies. New Phytol. 176, 874–882 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    43.
    Murren, C. J. et al. Constraints on the evolution of phenotypic plasticity: Limits and costs of phenotype and plasticity. Heredity 115, 293–301 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Auld, J. R., Agrawal, A. A. & Relyea, R. A. Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc. R. Soc. B Biol. Sci. 277, 503–511 (2010).
    Article  Google Scholar 

    45.
    Callahan, H. S., Maughan, H. & Steiner, U. K. Phenotypic plasticity, costs of phenotypes, and costs of plasticity. Ann. N. Y. Acad. Sci. 1133, 44–66 (2008).
    ADS  PubMed  Article  Google Scholar 

    46.
    Rausher, M. D. The measurement of selection on quantitative traits: Biases due to environmental covariances between traits and fitness. Evolution 46, 616–626 (1992).
    PubMed  Article  Google Scholar 

    47.
    Calsbeek, B., Lavergne, S., Patel, M. & Molofsky, J. Comparing the genetic architecture and potential response to selection of invasive and native populations of reed canary grass. Evol. Appl. 4, 726–735 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Siepielski, A. M. et al. Precipitation drives global variation in natural selection. Science 355, 959–962 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    49.
    Agrawal, A. F. & Whitlock, M. C. Environmental duress and epistasis: How does stress affect the strength of selection on new mutations?. Trends Ecol. Evol. 25, 450–458 (2010).
    PubMed  Article  Google Scholar 

    50.
    Arbuthnott, D. & Whitlock, M. C. Environmental stress does not increase the mean strength of selection. J. Evol. Biol. 31, 1599–1606 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    51.
    Osmond, M. M. & de Mazancourt, C. How competition affects evolutionary rescue. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120085 (2013).
    Article  Google Scholar 

    52.
    Wood, C. W. & Brodie, E. D. Evolutionary response when selection and genetic variation covary across environments. Ecol. Lett. 19, 1189–1200 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    Rowiński, P. K. & Rogell, B. Environmental stress correlates with increases in both genetic and residual variances: A meta-analysis of animal studies. Evolution 71, 1339–1351 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    54.
    Stanton, M. L., Roy, B. A. & Thiede, D. A. Evolution in stressful environments. I. Phenotypic variability, phenotypic selection, and response to selection in five distinct environmental stresses. Evolution 54, 93–111 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Weigelt, A., Steinlein, T. & Beyschlag, W. Does plant competition intensity rather depend on biomass or on species identity?. Basic Appl. Ecol. 3, 85–94 (2002).
    Article  Google Scholar 

    56.
    Dostál, P. Plant competitive interactions and invasiveness: Searching for the effects of phylogenetic relatedness and origin on competition intensity. Am. Nat. 177, 655–667 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    57.
    Gaudet, C. L. & Keddy, P. A. A comparative approach to predicting competitive ability from plant traits. Nature 334, 242–243 (1988).
    ADS  Article  Google Scholar 

    58.
    Goldberg, D. E. & Werner, P. A. Equivalence of competitors in plant communities: A null hypothesis and a field experimental approach. Am. J. Bot. 70, 1098–1104 (1983).
    Article  Google Scholar 

    59.
    Débarre, F. & Gandon, S. Evolution in heterogeneous environments: Between soft and hard selection. Am. Nat. 177, E84–E97 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    60.
    Kelley, J. L., Stinchcombe, J. R., Weinig, C. & Schmitt, J. Soft and hard selection on plant defence traits in Arabidopsis thaliana. Evol. Ecol. Res. 7, 287–302 (2005).
    Google Scholar 

    61.
    Austen, E. J., Rowe, L., Stinchcombe, J. R. & Forrest, J. R. K. Explaining the apparent paradox of persistent selection for early flowering. New Phytol. 215, 929–934 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    62.
    Lorts, C. M. & Lasky, J. R. Competition × drought interactions change phenotypic plasticity and the direction of selection on Arabidopsis traits. New Phytol. https://doi.org/10.1111/nph.16593 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    63.
    Franks, S. J., Sim, S. & Weis, A. E. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc. Natl. Acad. Sci. 104, 1278–1282 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Forrest, J. R. K. Plant size, sexual selection, and the evolution of protandry in dioecious plants. Am. Nat. 184, 338–351 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Wilczek, A. M. et al. Effects of genetic perturbation on seasonal life history plasticity. Science 323, 930–934 (2009).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Elzinga, J. A. et al. Time after time: Flowering phenology and biotic interactions. Trends Ecol. Evol. 22, 432–439 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    67.
    Mitchell-Olds, T. Genetic constraints on life-history evolution: Quantitative-trait loci influencing growth and flowering in Arabidopsis thaliana. Evolution 50, 140 (1996).
    PubMed  Article  PubMed Central  Google Scholar 

    68.
    Fournier-Level, A. et al. Paths to selection on life history loci in different natural environments across the native range of Arabidopsis thaliana. Mol. Ecol. 22, 3552–3566 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    69.
    Hall, M. C., Dworkin, I., Ungerer, M. C. & Purugganan, M. Genetics of microenvironmental canalization in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 104, 13717–13722 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Cho, L.-H., Yoon, J. & An, G. The control of flowering time by environmental factors. Plant J. 90, 708–719 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Pérez-Pérez, J. M., Serrano-Cartagena, J. & Micol, J. L. Genetic analysis of natural variations in the architecture of Arabidopsis thaliana vegetative leaves. Genetics 162, 24 (2002).
    Google Scholar 

    72.
    Samis, K. E., Stinchcombe, J. R. & Murren, C. J. Population climatic history predicts phenotypic responses in novel environments for Arabidopsis thaliana in North America. Am. J. Bot. 106, 1068–1080 (2019).
    PubMed  PubMed Central  Google Scholar 

    73.
    Taylor, M. A. et al. Large-effect flowering time mutations reveal conditionally adaptive paths through fitness landscapes in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 116, 17890–17899 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Donohue, K., Messiqua, D., Pyle, E. H., Heschel, M. S. & Schmitt, J. Evidence of adaptive divergence in plasticity: Density- and site-dependent selection on shade-avoidance responses in Impatiens capensis. Evolution 6, 13 (2000).
    Google Scholar 

    75.
    Huber, H. et al. Frequency and microenvironmental pattern of selection on plastic shade-avoidance traits in a natural population of Impatiens capensis. Am. Nat. 163, 548–563 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    76.
    Stinchcombe, J. R., Agrawal, A. F., Hohenlohe, P. A., Arnold, S. J. & Blows, M. W. Estimating nonlinear selection gradients using quadratic regression coefficients: Double or nothing?. Evolution 62, 2435–2440 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    77.
    Callahan, H. S., Dhanoolal, N. & Ungerer, M. C. Plasticity genes and plasticity costs: A new approach using an Arabidopsis recombinant inbred population. New Phytol. 166, 129–140 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    78.
    Arnold, P. A., Nicotra, A. B. & Kruuk, L. E. B. Sparse evidence for selection on phenotypic plasticity in response to temperature. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180185 (2019).
    Article  Google Scholar 

    79.
    Acasuso-Rivero, C., Murren, C. J., Schlichting, C. D. & Steiner, U. K. Adaptive phenotypic plasticity for life-history and less fitness-related traits. Proc. R. Soc. B Biol. Sci. 286, 20190653 (2019).
    Article  Google Scholar 

    80.
    Crispo, E. Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow. J. Evol. Biol. 21, 1460–1469 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    81.
    Scheiner, S. M. The genetics of phenotypic plasticity. XII. Temporal and spatial heterogeneity. Ecol. Evol. 3, 4596–4609 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    82.
    Hendry, A. P. Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. J. Hered. 107, 25–41 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    83.
    Fordyce, J. A. The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. J. Exp. Biol. 209, 2377–2383 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    84.
    Agrawal, A. A. Phenotypic plasticity in the interactions and evolution of species. Science 294, 321–326 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    85.
    Matesanz, S., Gianoli, E. & Valladares, F. Global change and the evolution of phenotypic plasticity in plants: Global change and plasticity. Ann. N. Y. Acad. Sci. 1206, 35–55 (2010).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    86.
    Valladares, F., Gianoli, E. & Gómez, J. M. Ecological limits to plant phenotypic plasticity. New Phytol. 176, 749–763 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    87.
    Callaway, R. M., Pennings, S. C. & Richards, C. L. Phenotypic plasticity and interactions among plants. Ecology 84, 1115–1128 (2003).
    Article  Google Scholar 

    88.
    Chevin, L.-M. & Hoffmann, A. A. Evolution of phenotypic plasticity in extreme environments. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160138 (2017).
    Article  Google Scholar 

    89.
    Pigliucci, M. Ecology and evolutionary biology of Arabidopsis. Arab. Book 1, e0003 (2002).
    Article  Google Scholar 

    90.
    Volis, S., Verhoeven, K. J. F., Mendlinger, S. & Ward, D. Phenotypic selection and regulation of reproduction in different environments in wild barley. J. Evol. Biol. 17, 1121–1131 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    91.
    Sgrò, C. M. & Hoffmann, A. A. Genetic correlations, tradeoffs and environmental variation. Heredity 93, 241–248 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    92.
    Reger, J., Lind, M. I., Robinson, M. R. & Beckerman, A. P. Predation drives local adaptation of phenotypic plasticity. Nat. Ecol. Evol. 2, 100–107 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    93.
    Gianoli, E. & Palacio-López, K. Phenotypic integration may constrain phenotypic plasticity in plants. Oikos 118, 1924–1928 (2009).
    Article  Google Scholar 

    94.
    Godoy, O., Valladares, F. & Castro-Díez, P. The relative importance for plant invasiveness of trait means, and their plasticity and integration in a multivariate framework. New Phytol. 195, 912–922 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    95.
    Crawford, K. M. & Whitney, K. D. Population genetic diversity influences colonization success. Mol. Ecol. 19, 1253–1263 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    96.
    Vasseur, F. et al. Climate as a driver of adaptive variations in ecological strategies in Arabidopsis thaliana. Ann. Bot. https://doi.org/10.1101/404210 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    97.
    Hovick, S. M. & Whitney, K. D. Propagule pressure and genetic diversity enhance colonization by a ruderal species: A multi-generation field experiment. Ecol. Monogr. 89, e01368sa (2019).
    Article  Google Scholar 

    98.
    Platt, A. et al. The scale of population structure in Arabidopsis thaliana. PLoS Genet. 6, e1000843 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    99.
    Roach, D. A. & Wulff, R. D. Maternal effects in plants. Annu. Rev. Ecol. Syst. 18, 209–235 (1987).
    Article  Google Scholar 

    100.
    McGlothlin, J. W. & Galloway, L. F. The contribution of maternal effects to selection response: An empirical test of competing models. Evolution 68, 549–558 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    101.
    Dechaine, J., Brock, M. & Weinig, C. Maternal environmental effects of competition influence evolutionary potential in rapeseed (Brassica rapa). Evol. Ecol. 29, 77–91 (2015).
    Article  Google Scholar 

    102.
    Beddows, A. R. Lolium Multiflorum Lam. J. Ecol. 61, 587–600 (1973).
    Article  Google Scholar 

    103.
    Vilà, M., Gómez, A. & Maron, J. L. Are alien plants more competitive than their native conspecifics? A test using Hypericum perforatum L. Oecologia 137, 211–215 (2003).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    104.
    Veiga, R. S. L. et al. Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana. Plant Cell Environ. 36, 1926–1937 (2013).
    PubMed  PubMed Central  Google Scholar 

    105.
    Scheiner, S. M. & Callahan, H. S. Measuring natural selection on phenotypic plasticity. Evolution 53, 1704–1713 (1999).
    PubMed  Article  PubMed Central  Google Scholar 

    106.
    Wender, N. J., Polisetty, C. R. & Donohue, K. Density-dependent processes influencing the evolutionary dynamics of dispersal: A functional analysis of seed dispersal in Arabidopsis thaliana (Brassicaceae). Am. J. Bot. 92, 960–971 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    107.
    Brachi, B., Aimé, C., Glorieux, C., Cuguen, J. & Roux, F. Adaptive value of phenological traits in stressful environments: Predictions based on seed production and laboratory natural election. PLoS ONE 7, e32069 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    108.
    Li, B., Suzuki, J.-I. & Hara, T. Latitudinal variation in plant size and relative growth rate in Arabidopsis thaliana. Oecologia 115, 293–301 (1998).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    109.
    Ågren, J., Oakley, C. G., McKay, J. K., Lovell, J. T. & Schemske, D. W. Genetic mapping of adaptation reveals fitness tradeoffs in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 110, 21077–21082 (2013).
    ADS  Article  CAS  Google Scholar 

    110.
    Sokal, R. R. & James, R. F. Biometry the Principles and Practice of Statistics in Biological Research (W.H. Freeman, New York, 1995).
    Google Scholar 

    111.
    Stinchcombe, J. R. et al. Testing for environmentally induced bias in phenotypic estimates of natural selection: Theory and practice. Am. Nat. 160, 13 (2002).
    Article  Google Scholar 

    112.
    Fischer, E. K., Ghalambor, C. K. & Hoke, K. L. Plasticity and evolution in correlated suites of traits. J. Evol. Biol. 29, 991–1002 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    113.
    Handelsman, C. A., Ruell, E. W., Torres-Dowdall, J. & Ghalambor, C. K. Phenotypic plasticity changes correlations of traits following experimental introductions of Trinidadian guppies (Poecilia reticulata). Integr. Comp. Biol. 54, 794–804 (2014).
    PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Dazomet application suppressed watermelon wilt by the altered soil microbial community

    Experimental design
    This study was conducted at Gaoqiao Scientific Research Base of the Hunan Academy of Agricultural Sciences in the city of Changsha (112°58′42ʺ E, 28°11′49ʺ N), Hunan Province in China in 2018 and 2019. The soil was sandy loam. The trial crop was watermelon cultivars zaojia 8424, which was provided by Xinjiang Farmer Seed Technology Co., Ltd. China. The dazomet was provided by Beijing Sino Green Agri-Biotech Co., Ltd. Six greenhouses (30 m × 6 m) with the same background, which were cultivated watermelon under monocropping system for five years, were selected. Three of them were treated with dazomet as three replicates, others were as control group. The routine cultivation managements in all the greenhouses were the same. Every March before transplanting the watermelon seedlings, 6 kg (98% C5H18N2S2) of dazomet were applied to one greenhouse, which was then tilled the soil by a rotary immediately after spraying. Controlling the depth of tillage soil 0–20 cm to ensure that dazomet was evenly mixed into the tillage layer. As soon as the soil temperature is above 8 °C, film mulching was set up to maintain the fumes of dazomet into the soil to kill most of the soil organisms, as well as to maintain the soil moisture content at approximately 40% for the germination and growth of weeds and pathogens. After 20 days, the film was uncovered and the greenhouse was kept ventilated. Then 15 days later, the watermelon seedlings nutrition bowl was cultivated and transplanted into the greenhouse. We planted the watermelon in the greenhouse with 50–60 cm plant spacing to enable pruning the climbing vines.
    We designed six different sampling times as following: 1 (March 6th, 2018, before dazomet treatment), 2 (April 24th, 2018, watermelon seedling stage), 3 (May 3rd, 2018, Fusarium wilt symptom appearance), 4 (March 6th, 2019, before dazomet treatment), 5 (April 22th, 2019, watermelon seedling stage), 6 (April 29th, 2019, Fusarium wilt symptom appearance). For each replicate, nine independent soil samples within depth of 0–20 cm in the shape of “S” from each greenhouse were pooled. Three greenhouses within same treatment regarded as three independent replicates. DAZ represents dazomet treatment group and CK represents the control group without dazomet application but using same conventional planting system. All the soil samples from greenhouses were packed into sealed sterile bags separately and brought back to the laboratory. After removing the plant roots and stones from the samples, we sieved them with a 20-μm mesh, and then divided each sample into three parts. Two of them were placed in sterile centrifuge tubes, stored at − 80 °C for sequencing analysis and Q-PCR test. While the other was used for measuring the soil properties, stored at room temperature. We have collected total of 36 samples in six different sampling times.
    Field disease investigation
    The incidence of Fusarium wilt was calculated during the whole watermelon onset period (Started from plants with rotted, discolored root and the vascular bundle became brown until the whole plant died). The disease incidence (%) = (number of infected plants/total number of surveys) × 100%.
    Determination of soil physical and chemical properties
    The soil characteristics are listed in Supplementary Table S1. Soil pH was determined in a soil: water ratio of 1:2.5 (wt./vol) using a pH meter (BPH-220, Bell Instrument Equipment Co. Ltd., Dalian, LN, China). To extract the water-soluble salts from the soil, samples of 1 mm sieved and air-dried soil weighing 20.00 g were placed in a 250 ml Erlenmeyer flask, 100 ml of distilled water was added (water: soil ratio of 5:1). Then put it into a dry triangular bottle after shaking for 5 min which was used for the determination of salt. A total of 30 ml of the soil leachate was placed in 50 ml of burnout solution. The solution temperature was measured, and then the conductivity of the solution was determined using a conductometer. The soil organic matter (SOM) was determined by oxidation with potassium dichromate by DF-101S heat collecting constant temperature magnetic stirrer (Gongyi yuhua instrument Co., Ltd, Gongyi, HN, China). Total P and K and available P and K concentrations in the soil were determined by ICP-AES (PerkinElmer 2100DV, PerkinElmer, Waltham, MA, USA) after the soils were digested using concentrated HNO3-HF-HClO4. Total nitrogen (N) and available nitrogen (AN) in the soil were determined by the Kjeldahl method and the alkali diffusion method, respectively (China Agricultural Technology Extension Service Center, 2014).
    Soil microbial diversity analysis
    Total genomic DNA was extracted from the soil samples using the E.Z.N.A Soil DNA kit (Omega Bio-tech, Norcross, GA, USA) according to manufacturer’s protocols. The final DNA concentration and purity were determined using a Nanodrop 2000 UV–Vis spectrophotometer (Thermo Scientific, Wilmington, DE, USA), and the DNA quality was checked by 1% agarose gel electrophoresis. Distinct regions of the 16S rRNA gene (V3-V4) and ITS1 were amplified by PCR (ABI Geneamp 9700, Applied Biosystems, Inc., Carlsbad, CA, USA) using specific primers (16S: 338F (5′-ACTCCTACGGGAGGCAGCAG-3′), 806R (5′-GGACTACHVGGGTWTCTAAT-3′); ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′), ITS2R (5′-GCTGCGTTCTTCATCGATGC-3′)), separately. The PCRs were conducted using the following programme: 3 min of denaturation at 95 °C, 27 cycles of 30 s at 95 °C for ITS1 rRNA gene/35 cycles of 30 s at 95 °C for 16S rRNA gene, 30 s of annealing at 55 °C, and 45 s of elongation at 72 °C with a final extension at 72 °C for 10 min, 10 °C ∞. PCR products were extracted from a 2% agarose gel and further purified using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA), followed by quantification using the QuantiFluor-ST kit (Promega, Madison, MI, USA) according to the manufacturer’s protocol.
    Purified amplicons were pooled in equimolar amounts and sequenced (paired-end; 2 × 300 bp) on an Illumina MiSeq platform (Illumina, San Diego, CA, USA) according to the standard protocols of the Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China). The raw reads were deposited into the NCBI Sequence Read Archive (SRA) database (Accession Number: SRP268536).
    Quantitative detection of FON by real-time PCR
    Distinct regions of the FON rRNA genes were amplified by PCR (Bio-Rad T100 Thermal Cycler, Bio-Rad Laboratories, Inc. Hercules, CA, USA) using specific primers (Fonq-F(5′- GTTGCTTACGGTTCTAACTGTGC -3′), Fonp1-R(5′- CTGGTACGGAATGGCCGATCAG -3′)) . Then the PCR products were used as templates to construct the standard curve of the fluorescence quantitative PCR (Bio-Rad iQ5 Optical Module, Bio-Rad Laboratories, Inc. Hercules, CA, USA) using primers (Fonq-F(5′- GTTGCTTACGGTTCTAACTGTGC -3′), Fonq-R(5′- GGTACTTGGAAGGAATTGTGGG -3′)). A 1446 bp DNA fragments containing the qPCR target sequence was amplified from soil DNA by conventional PCR (initial incubation at 94 °C for 4 min, followed by 18 cycles of 94 °C 40 s, 60 °C 40 s, 72 °C 70 s, and a final extension at 72 °C for 10 min). The PCR products were used as templates to construct the standard curve of the fluorescence quantitative PCR (reaction consisted of an initial incubation at 95 °C for 1 min, followed by 40 cycles of 95 °C 15 s, 60 °C 30 s, 72 °C 30 s). The fluorescence intensity was monitored every 0.5 °C between 65 °C-95°C to making standard melting curve13.
    Data analysis
    Raw FASTQ files were demultiplexed, quality-filtered by Trimmomatic and merged by FLASH with the following criteria: (i) The reads were truncated at any site receiving an average quality score  0.95. One-way ANOVA test was used to analyze significant differences of two groups. Differences between two groups were analyzed by student’s t test. Correlation heatmap analysis of the correlation coefficient between environmental factors and selected species was determined by MeV (Multi Experiment Viewer) software (http://mev.tm4.org).
    Other statistical analysis was performed using SPSS version 20.0 (SPSS Inc., Chicago, IL, USA). The figures of the microbial diversity indices and relative abundance of functional profiles were prepared using Microsoft Office 2010 (Microsoft Corporation, Redmond, WA, USA)and Adobe Illustrator CS5 (Adobe Systems Incorporated, San Jose, CA, USA) (https://www.adobe.com/cn/products/illustrator.html). More

  • in

    Acclimation temperature affects thermal reaction norms for energy reserves in Drosophila

    1.
    Cossins, A. R. & Bowler, K. Temperature Biology of Animals (Chapman and Hall, London, 1987).
    Google Scholar 
    2.
    Hochachka, P. W. & Somero, G. N. Biochemical Adaptation (Oxford University Press, Oxford, 2002).
    Google Scholar 

    3.
    Wilmer, P., Stone, G. & Johnston, I. Environmental Physiology of Animals (Blackwell Publishing, Oxford, 2005).
    Google Scholar 

    4.
    Huey, R. B., Berrigan, D., Gilchrist, G. W. & Herron, J. C. Testing the adaptive significance of acclimation: a strong inference approach. Am. Zool. 39, 323–336 (1999).
    Article  Google Scholar 

    5.
    IUPS Thermal Commission. Glossary of terms for thermal physiology. Third edition. J. Therm. Biol. 28, 75–106 (2003).
    Article  Google Scholar 

    6.
    Hazel, J. R. Influence of thermal acclimation on membrane lipid composition of rainbow trout liver. Am. J. Physiol. 236, R91-101 (1979).
    CAS  PubMed  Google Scholar 

    7.
    Overgaard, J. et al. Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster. J. Insect Physiol. 54, 619 (2008).
    CAS  PubMed  Article  Google Scholar 

    8.
    Moon, T. W. & Hochachka, P. W. Temperature and enzyme activity in poikilotherms. Biochem. J. 123, 695–705 (1971).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Storey, K. B. & Storey, J. M. Biochemical strategies of overwintering in the gall gly larva, Eurosta solidaginis: effect of low temperature acclimation on the activities of enzymes of intermediary metabolism. J. Comp. Physiol. 144, 191–199 (1981).
    CAS  Article  Google Scholar 

    10.
    Tomanek, L. & Somero, G. N. Evolutionary and acclimation-induced variation in the heat-shock responses of congeneric marine snails (genus Tegula) from different thermal habitats: implications for limits of thermotolerance and biogeography. J. Exp. Biol. 202, 2925–2936 (1999).
    CAS  PubMed  Google Scholar 

    11.
    Colinet, H., Overgaard, J., Com, E. & Sørensen, J. G. Proteomic profiling of thermal acclimation in Drosophila melanogaster. Insect Biochem. Mol. Biol. 43, 352–365 (2013).
    CAS  PubMed  Article  Google Scholar 

    12.
    Lagerspetz, K. Y. H. & Vainio, L. A. Thermal behaviour of crustaceans. Biol. Rev. 81, 237–258 (2006).
    PubMed  Article  Google Scholar 

    13.
    Bowler, K. Acclimation, heat shock and hardening. J. Therm. Biol. 30, 125–130 (2005).
    Article  Google Scholar 

    14.
    Loeschcke, V. & Sørensen, J. G. Acclimation, heat shock and hardening—a response from evolutionary biology. J. Therm. Biol. 30, 255–257 (2005).
    Article  Google Scholar 

    15.
    Collier, R. J., Baumgard, L. H., Zimbelman, R. B. & Xiao, Y. Heat stress: physiology of acclimation and adaptation. Anim. Front. 9, 12–19 (2019).
    PubMed  Article  Google Scholar 

    16.
    Collier, R. J. et al. Use of gene expression microarrays for evaluating environmental stress tolerance at the cellular level in cattle. J. Anim. Sci. 84, E1-13 (2006).
    PubMed  Article  Google Scholar 

    17.
    Kristensen, T. N., Kjeldal, H., Schou, M. F. & Nielsen, J. L. Proteomic data reveal a physiological basis for costs and benefits associated with thermal acclimation. J. Exp. Biol. 219, 969–976 (2016).
    PubMed  Article  Google Scholar 

    18.
    MacMillan, H. A. et al. Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome. Sci. Rep. 6, 28999 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Ghalambor, C. K., McKay, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).
    Article  Google Scholar 

    20.
    Yao, C. L. & Somero, G. N. The impact of acute temperature stress on hemocytes of invasive and native mussels (Mytilus galloprovincialis and Mytilus californianus): DNA damage, membrane integrity, apoptosis and signaling pathways. J. Exp. Biol. 215, 4267–4277 (2012).
    CAS  PubMed  Article  Google Scholar 

    21.
    Huey, R. B. & Stevenson, R. D. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am. Zool. 19, 357–366 (1979).
    Article  Google Scholar 

    22.
    Huey, R. B. & Kingsolver, J. G. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4, 131–135 (1989).
    CAS  PubMed  Article  Google Scholar 

    23.
    Angilletta, M. J., Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27, 249–268 (2002).
    Article  Google Scholar 

    24.
    Schulte, P. M., Healy, T. M. & Fangue, N. A. Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr. Comp. Biol. 51, 691–702 (2011).
    PubMed  Article  Google Scholar 

    25.
    Deere, J. A. & Chown, S. L. Testing the beneficial acclimation hypothesis and its alternatives for locomotor performance. Am. Nat. 168, 630–644 (2006).
    PubMed  Article  Google Scholar 

    26.
    Gibert, P. & Huey, R. B. Chill-coma temperature in Drosophila: effects of developmental temperature, latitude, and phylogeny. Physiol. Biochem. Zool. 74, 429–434 (2001).
    CAS  PubMed  Article  Google Scholar 

    27.
    Ayrinhac, A. et al. Cold adaptation in geographical populations of Drosophila melanogaster: phenotypic plasticity is more important than genetic variability. Funct. Ecol. 18, 700–706 (2004).
    Article  Google Scholar 

    28.
    Lachenicht, M. W., Clusella-Trullas, S., Boardman, L., Le Roux, C. & Terblanche, J. S. Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae). J. Insect Physiol. 56, 822–830 (2010).
    CAS  PubMed  Article  Google Scholar 

    29.
    Colinet, H. & Hoffmann, A. A. Comparing phenotypic effects and molecular correlates of developmental, gradual and rapid cold acclimation responses in Drosophila melanogaster. Funct. Ecol. 26, 84–93 (2012).
    Article  Google Scholar 

    30.
    Kellermann, V., van Heerwaarden, B. & Sgrò, C. M. How important is thermal history? Evidence for lasting effects of developmental temperature on upper thermal limits in Drosophila melanogaster. Proc. Biol. Sci. 31, 20170447 (2017).
    Google Scholar 

    31.
    Schou, M. F. et al. Metabolic and functional characterization of effects of developmental temperature in Drosophila melanogaster. Am. J. Physiol. Regul. Integr. Comp. Physiol. 312, R211–R222 (2017).
    PubMed  Article  Google Scholar 

    32.
    Klepsatel, P., Girish, T. N., Dircksen, H. & Gáliková, M. Reproductive fitness of Drosophila is maximised by optimal developmental temperature. J. Exp. Biol. 222, jeb202184 (2019).
    PubMed  Article  Google Scholar 

    33.
    Frazier, M. R., Harrison, J. F., Kirkton, S. D. & Roberts, S. P. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology. J. Exp. Biol. 211, 2116–2122 (2008).
    PubMed  Article  Google Scholar 

    34.
    Kristensen, T. N. et al. Costs and benefits of cold acclimation in field-released Drosophila. Proc. Natl. Acad. Sci. USA 105, 216–221 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    35.
    Zamudio, K. R., Huey, R. B. & Crill, W. D. Bigger isn’t always better: body size, developmental and parental temperature and male territorial success in Drosophila melanogaster. Anim. Behav. 49, 671–677 (1995).
    Article  Google Scholar 

    36.
    Zwaan, B. J., Bijlsma, R. & Hoekstra, R. F. On the developmental theory of ageing. II. The effect of developmental temperature on longevity in relation to adult body size in D. melanogaster. Heredity 68, 123–130 (1992).
    CAS  PubMed  Article  Google Scholar 

    37.
    Gibert, P., Huey, R. B. & Gilchrist, G. W. Locomotor performance of Drosophila melanogaster: interactions among developmental and adult temperatures, age, and geography. Evolution 55, 205–209 (2001).
    CAS  PubMed  Article  Google Scholar 

    38.
    Rion, S. & Kawecki, T. J. Evolutionary biology of starvation resistance: what we have learned from Drosophila. J. Evol. Biol. 20, 1655–1664 (2007).
    CAS  PubMed  Article  Google Scholar 

    39.
    Sokolova, I. M. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr. Comp. Biol. 53, 597–608 (2013).
    PubMed  Article  Google Scholar 

    40.
    Klepsatel, P., Gáliková, M., Xu, Y. & Kühnlein, R. P. Thermal stress depletes energy reserves in Drosophila. Sci. Rep. 6, 33667 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Klepsatel, P., Wildridge, D. & Gáliková, M. Temperature induces changes in Drosophila energy stores. Sci. Rep. 9, 5239 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Leroi, A. M., Bennett, A. F. & Lenski, R. E. Temperature acclimation and competitive fitness: an experimental test of the beneficial acclimation assumption. Proc. Natl. Acad. Sci. USA 91, 1917–1921 (1994).
    ADS  CAS  PubMed  Article  Google Scholar 

    43.
    Beller, M., Thiel, K., Thul, P. J. & Jäckle, H. Lipid droplets: a dynamic organelle moves into focus. FEBS Lett. 584, 2176–2182 (2010).
    CAS  PubMed  Article  Google Scholar 

    44.
    Olzmann, J. A. & Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 20, 137–155 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Arrese, E. L. & Soulages, J. L. Insect fat body: energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–255 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Giesy, J. P. & Graney, R. L. Recent developments in and intercomparisons of acute and chronic bioassays and bioindicators. Hydrobiologia 188(189), 21–60 (1989).
    Article  Google Scholar 

    47.
    Smolders, R., Bervoets, L., De Coen, W. & Blust, R. Cellular energy allocation in zebra mussels exposed along a pollution gradient: linking cellular effects to higher levels of biological organization. Environ. Pollut. 129, 99–112 (2004).
    CAS  PubMed  Article  Google Scholar 

    48.
    Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, Oxford, 2009).
    Google Scholar 

    49.
    Schuler, M. S., Cooper, B. S., Storm, J. J., Sears, M. W. & Angilletta, M. J. Isopods failed to acclimate their thermal sensitivity of locomotor performance during predictable or stochastic cooling. PLoS ONE 6, e20905 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Ferguson, L. V., Heinrichs, D. E. & Sinclair, B. J. Paradoxical acclimation responses in the thermal performance of insect immunity. Oecologia 181, 77–85 (2016).
    ADS  PubMed  Article  Google Scholar 

    51.
    MacLean, H. J. et al. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180548 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    52.
    Johnson, T. & Bennett, A. The thermal acclimation of burst escape performance in fish: an integrated study of molecular and cellular physiology and organismal performance. J. Exp. Biol. 198, 2165–2175 (1995).
    CAS  PubMed  Google Scholar 

    53.
    Seebacher, F., Ducret, V., Little, A. G. & Adriaenssens, B. Generalist-specialist trade-off during thermal acclimation. R. Soc. Open. Sci. 2, 140251 (2015).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    da Silva, C. R. B., Riginos, C. & Wilson, R. S. An intertidal fish shows thermal acclimation despite living in a rapidly fluctuating environment. J. Comp. Physiol. B 189, 385–398 (2019).
    PubMed  Article  Google Scholar 

    55.
    Kingsolver, J. G. & Huey, R. B. Selection and evolution of morphological and physiological plasticity in thermally varying environments. Am. Zool. 38, 545–560 (1998).
    Article  Google Scholar 

    56.
    Woods, H. A. & Harrison, J. F. The beneficial acclimation hypothesis versus acclimation of specific traits: physiological change in water-stressed Manduca sexta caterpillars. Physiol. Biochem. Zool. 74, 32–44 (2001).
    CAS  PubMed  Article  Google Scholar 

    57.
    Gabriel, W. & Lynch, M. The selective advantage of reaction norms for environmental tolerance. J. Evol. Biol. 5, 41–59 (1992).
    Article  Google Scholar 

    58.
    Cooper, B. S., Czarnoleski, M. & Angilletta, M. J. Acclimation of thermal physiology in natural populations of Drosophila melanogaster: a test of an optimality model. J. Evol. Biol. 23, 2346–2355 (2010).
    CAS  PubMed  Article  Google Scholar 

    59.
    Nilsson-Örtman, V. & Johansson, F. The rate of seasonal changes in temperature alters acclimation of performance under climate change. Am. Nat. 190, 743–761 (2017).
    PubMed  Article  Google Scholar 

    60.
    Shah, A. A., Funk, W. C. & Ghalambor, C. K. Thermal acclimation ability varies in temperate and tropical aquatic insects from different elevations. Integr. Comp. Biol. 57, 977–987 (2017).
    PubMed  Article  Google Scholar 

    61.
    Angilletta, M. J., Condon, C. & Youngblood, J. P. Thermal acclimation of flies from three populations of Drosophila melanogaster fails to support the seasonality hypothesis. J. Therm. Biol. 81, 25–32 (2019).
    PubMed  Article  Google Scholar 

    62.
    Hoffmann, A. A. & Watson, M. Geographical variation in the acclimation responses of Drosophila to temperature extremes. Am. Nat. 142, S93–S113 (1993).
    PubMed  Article  Google Scholar 

    63.
    Bubliy, O. A., Riihimaa, A., Norry, F. M. & Loeschcke, V. Variation in resistance and acclimation to low-temperature stress among three geographical strains of Drosophila melanogaster. J. Therm. Biol. 27, 337–344 (2002).
    Article  Google Scholar 

    64.
    Chown, S. L. Physiological variation in insects: hierarchical levels and implications. J. Insect Physiol. 47, 649–660 (2001).
    CAS  PubMed  Article  Google Scholar 

    65.
    Terblanche, J. S., Sinclair, B. J., Klok, C. J., McFarlane, M. L. & Chown, S. L. The effects of acclimation on thermal tolerance, desiccation resistance and metabolic rate in Chirodica chalcoptera (Coleoptera: Chrysomelidae). J. Insect Physiol. 51, 1013–1023 (2005).
    CAS  PubMed  Article  Google Scholar 

    66.
    Woods, H. A. & Harrison, J. F. Interpreting rejections of the beneficial acclimation hypothesis: when is physiological plasticity adaptive?. Evolution 56, 1863–1866 (2002).
    PubMed  Article  Google Scholar 

    67.
    Somero, G. N. Comparative physiology: a ‘crystal ball’ for predicting consequences of global change. Am. J. Physiol. Regul. I(301), R1–R14 (2011).
    ADS  Google Scholar 

    68.
    Abele, D., Heise, K., Pörtner, H. O. & Puntarulo, S. Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J. Exp. Biol. 205, 1831–1841 (2002).
    CAS  PubMed  Google Scholar 

    69.
    Martinez, E., Menze, M. A. & Agosta, S. J. Reduced mitochondrial efficiency explains mismatched growth and metabolic rate at supraoptimal temperatures. Physiol. Biochem. Zool. 90, 294–298 (2017).
    PubMed  Article  Google Scholar 

    70.
    Kukal, O. & Dawson, T. E. Temperature and food quality influences feeding behavior, assimilation efficiency and growth rate of arctic woolly-bear caterpillars. Oecologia 79, 526–532 (1989).
    ADS  PubMed  Article  Google Scholar 

    71.
    Butterworth, F. M. Adipose tissue of Drosophila melanogaster. V. Genetic and experimental studies of an extrinsic influence on the rate of cell death in the larval fat body. Dev. Biol. 28, 311–325 (1972).
    CAS  PubMed  Article  Google Scholar 

    72.
    Aguila, J. R., Suszko, J., Gibbs, A. G. & Hoshizaki, D. K. The role of larval fat cells in adult Drosophila melanogaster. J. Exp. Biol. 210, 956–963 (2007).
    PubMed  Article  Google Scholar 

    73.
    Gáliková, M., Klepsatel, P., Xu, Y. & Kuhnlein, R. P. The obesity-related Adipokinetic hormone controls feeding and expression of neuropeptide regulators of Drosophila metabolism. Eur. J. Lipid Sci. Technol. 119, 1600138 (2017).
    Article  CAS  Google Scholar 

    74.
    Gáliková, M., Klepsatel, P., Münch, J. & Kühnlein, R. P. Spastic paraplegia-linked phospholipase PAPLA1 is necessary for development, reproduction, and energy metabolism in Drosophila. Sci Rep. 7, 46516 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    75.
    Tennessen, J. M., Barry, W. E., Cox, J. & Thummel, C. S. Methods for studying metabolism in Drosophila. Methods 68, 105–115 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Gáliková, M. et al. Energy homeostasis control in Drosophila Adipokinetic hormone mutants. Genetics 201, 665–683 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    77.
    Waner, S. & Constenoble, S. Finite Mathematics and Applied Calculus 7th edn. (Cengage Learning, Boston, MA, 2017).
    Google Scholar 

    78.
    Bruce, P. S. Introductory Statistics and Analytics: A Resampling Perspective (Wiley, Hoboken, 2014).
    Google Scholar  More

  • in

    Impact of a recolonizing, cross-border carnivore population on ungulate harvest in Scandinavia

    1.
    Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control, and competition. Am. Nat. 94, 421–425 (1960).
    Article  Google Scholar 
    2.
    Messier, F. Ungulate population models with predation: A case study with the North American moose. Ecology 75, 478–488 (1994).
    Article  Google Scholar 

    3.
    Solberg, E. J., Saether, B., Strand, O. & Loison, A. Dynamics of a harvested moose population in a variable environment. J. Anim. Ecol. 68, 186–204 (2002).
    Article  Google Scholar 

    4.
    Lavsund, S., Nygrén, T. & Solberg, E. Status of moose populations and challenges to moose management in Fennoscandia. Alces 39, 109–130 (2003).
    Google Scholar 

    5.
    Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    6.
    Linnell, J. D. C. et al. The challenges and opportunities of coexisting with wild ungulates in the human-dominated landscapes of Europe’s Anthropocene. Biol. Conserv. 244, 108500 (2020).
    Article  Google Scholar 

    7.
    Carter, N. H. & Linnell, J. D. C. Co-adaptation is key to coexisting with large carnivores. Trends Ecol. Evol. 31, 575–578 (2016).
    PubMed  Article  Google Scholar 

    8.
    Ikeda, T. et al. Effects of culling intensity on diel and seasonal activity patterns of sika deer (Cervus nippon). Sci. Rep. 9, 1–8 (2019).
    ADS  Article  CAS  Google Scholar 

    9.
    Yovovich, V., Allen, M. L., Macaulay, L. T. & Wilmers, C. C. Using spatial characteristics of apex carnivore communication and reproductive behaviors to predict responses to future human development. Biodivers. Conserv. 29, 2589–2603 (2020).
    Article  Google Scholar 

    10.
    van Eeden, L. M. et al. Carnivore conservation needs evidence-based livestock protection. PLoS Biol. 16, 1–8 (2018).
    Google Scholar 

    11.
    Nilsen, E. B. et al. Moose harvesting strategies in the presence of wolves. J. Appl. Ecol. 42, 389–399 (2005).
    Article  Google Scholar 

    12.
    Gervasi, V. et al. Predicting the potential demographic impact of predators on their prey: A comparative analysis of two carnivore-ungulate systems in Scandinavia. J. Anim. Ecol. 81, 443–454 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    13.
    Bassi, E., Gazzola, A., Bongi, P., Scandura, M. & Apollonio, M. Relative impact of human harvest and wolf predation on two ungulate species in Central Italy. Ecol. Res. 35, 662–674 (2020).
    Article  Google Scholar 

    14.
    Gaillard, J.-M., Festa-Bianchet, M. & Yoccoz, N. G. Population dynamics of large herbivores: Variable recruitment with constant adult survival. Trends Ecol. Evol. 13, 58–63 (1998).
    CAS  PubMed  Article  Google Scholar 

    15.
    Caughley, G. Analysis of Vertebrate Populations (Wiley, New York, 1977).
    Google Scholar 

    16.
    Sæther, B.-E., Engen, S. & Solberg, E. J. Optimal harvest of age-structured populations of moose Alces alces in a fluctuating environment. Wildl. Biol. 7, 171–179 (2001).
    Article  Google Scholar 

    17.
    Wikenros, C., Sand, H., Bergström, R., Liberg, O. & Chapron, G. Response of moose hunters to predation following wolf return in Sweden. PLoS One 10, e0119957 (2015).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    18.
    Storaas, T., Gundersen, H., Henriksen, H. & Andreassen, H. The economic value of moose—a review. Alces 37, 9–107 (2001).
    Google Scholar 

    19.
    Boman, M., Mattsson, L., Ericsson, G. & Kriström, B. Moose hunting values in Sweden now and two decades ago: The Swedish hunters revisited. Environ. Resour. Econ. 50, 515–530 (2011).
    Article  Google Scholar 

    20.
    Eurostat & Commission, E. Agriculture, Forestry and Fishery Statistics 2013. (Artemis Information Management, 2017).

    21.
    Gill, R. M. A. A review of damage by mammals in north temperate forests: 3. Impact on trees and forests. Forestry 65, 363–388 (1992).
    Article  Google Scholar 

    22.
    Liberg, O., Bergström, R., Kindberg, J. & von Essen, H. Ungulates and their management in Sweden. In European Ungulates and Their Management in the 21st Century (eds Apollonio, M. et al.) 37–70 (Cambridge University Press, Cambridge, 2010).
    Google Scholar 

    23.
    Edenius, L., Ericsson, G., Kempe, G., Bergström, R. & Danell, K. The effects of changing land use and browsing on aspen abundance and regeneration: A 50-year perspective from Sweden. J. Appl. Ecol. 48, 301–309 (2011).
    Article  Google Scholar 

    24.
    Jonzén, N. et al. Sharing the bounty-Adjusting harvest to predator return in the Scandinavian human-wolf-bear-moose system. Ecol. Modell. 265, 140–148 (2013).
    Article  Google Scholar 

    25.
    Fryxell, J. M., Packer, C., McCann, K., Solberg, E. J. & Saether, B.-E. Resource management cycles and the sustainability of harvested wildlife populations. Science 328, 903–906 (2010).
    ADS  MathSciNet  CAS  PubMed  MATH  Article  Google Scholar 

    26.
    Sylvén, S. Moose harvest strategy to maximize yield value for multiple goal management—a simulation study. Agric. Syst. 49, 277–298 (1995).
    Article  Google Scholar 

    27.
    Sand, H., Zimmermann, B., Wabakken, P., Andren, H. & Pedersen, H. C. Using GPS technology and GIS cluster analyses to estimate kill rates in wolf-ungulate ecosystems. Wildl. Soc. Bull. 33, 914–925 (2005).
    Article  Google Scholar 

    28.
    Sand, H. et al. Summer kill rates and predation pattern in a wolf-moose system: Can we rely on winter estimates?. Oecologia 156, 53–64 (2008).
    ADS  PubMed  Article  Google Scholar 

    29.
    Sand, H. Life history patterns in female moose (Alces alces): The relationship between age, body size, fecundity and environmental conditions. Oecologia 106, 212–220 (1996).
    ADS  PubMed  Article  Google Scholar 

    30.
    Ericsson, G., Wallin, K., Ball, J. P. & Broberg, M. Age-related reproductive effort and senscence in free-ranging moose, Alces alces. Ecology 82, 1613–1620 (2001).
    Article  Google Scholar 

    31.
    Sandström, C., Di Gasper, S. W. & Öhman, K. Conflict resolution through ecosystem-based management: The case of Swedish moose management. Int. J. Commons 7, 549–570 (2013).
    Article  Google Scholar 

    32.
    Dressel, S., Johansson, M., Ericsson, G. & Sandström, C. Perceived adaptive capacity within a multi-level governance setting: The role of bonding, bridging, and linking social capital. Environ. Sci. Policy 104, 88–97 (2020).
    Article  Google Scholar 

    33.
    Tallian, A. et al. Competition between apex predators? Brown bears decrease wolf kill rate on two continents. Proc. R. Soc. B Biol. Sci. 284, 20162368 (2017).
    Article  Google Scholar 

    34.
    Grøtan, V., Sæther, B. E., Lillegård, M., Solberg, E. J. & Engen, S. Geographical variation in the influence of density dependence and climate on the recruitment of Norwegian moose. Oecologia 161, 685–695 (2009).
    ADS  PubMed  Article  Google Scholar 

    35.
    Ueno, M., Solberg, E. J., Iijima, H., Rolandsen, C. M. & Gangsei, L. E. Performance of hunting statistics as spatiotemporal density indices of moose (Alces alces) in Norway. Ecosphere 5, 1–20 (2014).
    Article  Google Scholar 

    36.
    Beschta, R. L. & Ripple, W. J. Large predators and trophic cascades in terrestrial ecosystems of the western United States. Biol. Conserv. 142, 2401–2414 (2009).
    Article  Google Scholar 

    37.
    Ausilio, G. Recolonization of Wolves in Sweden—Does it Affect Moose Browsing Damage on Scots Pine? (Lund University, Lund, 2018).
    Google Scholar 

    38.
    Gicquel, M., Sand, H., Månsson, J., Wallgren, M. & Wikenros, C. Does recolonization of wolves affect moose browsing damage on young Scots pine?. For. Ecol. Manag. 20, 20 (2020).
    Google Scholar 

    39.
    Sand, H., Cederlund, G. & Danell, K. Geographical and latitudinal variation in growth patterns and adult body size of Swedish moose (Alces alces). Oecologia 102, 433–442 (1995).
    ADS  PubMed  Article  Google Scholar 

    40.
    Melis, C. et al. Predation has a greater impact in less productive environments: Variation in roe deer, Capreolus capreolus, population density across Europe. Glob. Ecol. Biogeogr. 18, 724–734 (2009).
    Article  Google Scholar 

    41.
    Zimmermann, B. Predatory behaviour of wolves in Scandinavia. (PdD thesis, Faculty of Applied Ecology and Agricultural Sciences, Høgskolan i Hedmark, 2014).

    42.
    Zimmermann, B. et al. Predator-dependent functional response in wolves: From food limitation to surplus killing. J. Anim. Ecol. 84, 102–112 (2015).
    PubMed  Article  Google Scholar 

    43.
    Mattisson, J. et al. Home range size variation in a recovering wolf population: Evaluating the effect of environmental, demographic, and social factors. Oecologia 173, 813–825 (2013).
    ADS  PubMed  Article  Google Scholar 

    44.
    Kuijper, D. P. J. et al. Paws without claws? Ecological effects of large carnivores in anthropogenic landscapes. Proc. R. Soc. B Biol. Sci. 283, 20161625 (2016).
    Article  Google Scholar 

    45.
    Darimont, C. T., Fox, C. H., Bryan, H. M. & Reimchen, T. E. The unique ecology of human predators. Science 349, 858–860 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    46.
    Brodie, J. et al. Relative influence of human harvest, carnivores, and weather on adult female elk survival across western North America. J. Appl. Ecol. 50, 295–305 (2013).
    Article  Google Scholar 

    47.
    Esseen, P.-A., Ehnström, B., Ericson, L. & Sjöberg, K. Boreal forest. Ecol. Bull. 46, 16–47 (1997).
    Google Scholar 

    48.
    Zimmermann, B., Nelson, L., Wabakken, P., Sand, H. & Liberg, O. Behavioral responses of wolves to roads: Scale-dependent ambivalence. Behav. Ecol. 25, 1353–1364 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Wabakken, P., Sand, H., Liberg, O. & Bjärvall, A. The recovery, distribution, and population dynamics of wolves on the Scandinavian peninsula, 1978–1998. Can. J. Zool. 79, 710–725 (2001).
    Article  Google Scholar 

    50.
    Wabakken, P., Svensson, L., Maartmann, E., Åkesson, M. & Flagstad, Ø. Bestandsovervåking av Ulv Vinteren 2017–2018/Inventering av Varg Vintern 2017–2018. (2018).

    51.
    Sand, H., Eklund, A., Zimmermann, B., Wikenros, C. & Wabakken, P. Prey selection of Scandinavian wolves: Single large or several small?. PLoS One 11, 1–17 (2016).
    Google Scholar 

    52.
    Liberg, O. et al. Monitoring of wolves in Scandinavia. Hystrix 23, 29–34 (2012).
    Google Scholar 

    53.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2018).
    Google Scholar 

    54.
    van Rij, J., Wieling, M., Baayen, R. & van Rijn, H. itsadug: Interpreting Time Series and Autocorrelated Data Using GAMMs. R package version 2.4. (2020).

    55.
    Lenth, R. emmeans: Estimated Marginal Means, Aka Least-Squares Means (2020). More

  • in

    Impacts of low-head hydropower plants on cyprinid-dominated fish assemblages in Lithuanian rivers

    The meso-scale habitat simulation model MesoHABSIM21 was used to assess the impact of low-head HPPs on fish populations. MesoHABSIM is a physical habitat modelling system developed for e-flow assessment and river channel restoration planning. It describes the utility of instream habitat conditions for aquatic fauna, allowing to simulate change in habitat quality and quantity in response to alterations of flow and river hydromorphology. Meso-scale habitats are defined as geomorphic units (GUs, such as pools, riflles, rapids, glides22) that can be used by species and life stages for a significant part of their diurnal routine23. A meso-habitat can be considered suitable or optimal when the configuration of hydraulic patterns, together with the attributes that provide shelter, create favourable conditions for survival and development of animals. MesoHABSIM approach is based on the aggregation of three models24:
    1.
    A hydromorphological model that describes the spatial mosaic of fish-relevant hydro-morphological features.

    2.
    A biological model describing the relationship between the presence and abundance of fish and the physical environment of the river.

    3.
    A habitat model quantifying the amounts, frequency and duration of the available habitat depending on the flow regime and local river morphology.

    For the modelling, the time series of daily water discharge data in natural and altered (downstream HPPs) conditions were created for wet, normal and dry years in order to describe the habitat suitability in all possible hydrological conditions. Conditional habitat suitability criteria (CHSC) were developed to define the relationship between fish distribution and physical environment. Physical spatial measurements of river hydraulic and fish shelter attributes (current velocity, depth, discharge, sediments, woody debris, boulders, etc.) were conducted on a scale of mesohabitat during field surveys. SimStream plugin of QGIS25 was used to organize collected data for mesohabitat modelling.
    Hydrological data and hydromorphological surveys
    The daily time series of discharge data of three water gauging stations (WGSs; Bartuva-Skuodas, Venta-Leckava and Mūša-Ustukiai) were taken from the hydrological yearbook of the Lithuanian Hydrometeorological Service for the periods of 1970–2000 (period before construction of HPPs) and of 2001–2015 (period after construction). The WGSs are located downstream the selected HPPs, and their data were used for the assessment of the altered discharge conditions and the impact of HPPs on fish communities. Two additional WGSs of Minija River-Kartena (for the Bartuva and Venta rivers) and Nemunėlis River-Tabokinė (for the Mūša River) were chosen for the restoration of natural conditions of river discharge at case study sites according to the analogy method26. The selection of a river analogue was based on the same hydrological region, similar catchment area, similarity in physico-geographical and hydrometeorological characteristics, and absence of anthropogenic structures which interrupt the continuity of the river, e.g. dams. The regression equation between case study river and river-analogue was prepared using daily water discharge data of 1970–2000 (period before construction of HPPs). The natural regime of investigated rivers after construction of HPPs (2001–2015) was restored using regression equations. In this way, we obtain the annual hydrographs of the investigated rivers in natural and altered conditions. In order to evaluate the habitat suitability in all possible hydrological conditions, hydrographs were prepared for wet, normal and dry hydrological years (probability of 5, 50 and 95%, respectively), according to average discharge data in the period of 2001–2015.
    Four different discharge values (from minimal to average) were defined for hydromorphological measurements in each site of the selected river. These discharges represented the minimum, average and maximum low flow discharges of 30 consecutive days (Q30_min, Q30_ave, Q30_max) in the warm period (May–September), and multi-annual mean water discharge (Qannual_mean) in 1970–2000 (before HPPs construction). According to the Lithuanian law, environmental flow (Qenv) is defined at each HPP as 80% or 95% probability of the mean minimum discharge of 30 consecutive days of the warm period11. A Laser Rangefinder (distance, inclination, azimuthal measurements) connected via Bluetooth with the field tablet was used for the mapping of hydromorphological units (HMUs, also called mesohabitats). The maps of HMUs polygons were digitized in the .shp format using MapStream plugin of QGIS25,27. The length of an analysed river reach was defined as 20 times the mean river width28. The depth and flow velocity measurements in each defined HMU were done using a propeller-type flow meter mounted on a wading rod. Depending on the polygon area, from 5 to 30 measurements were carried out in each HMU, while the measurement density (point/m2) was kept as constant as possible in each case study considering its size (on average one point per 6 m2 in the Bartuva, 20 m2 in the Mūša and 25 m2 in the Venta rivers).
    The presence/absence of fish shelters and vegetation were assessed visually (see21 for details). All measurements were carried out as close as it is possible to four defined discharges (minimum low flow (Q30_min), average low flow (Q30_ave), maximum low flow (Q30_max) and annual mean (Qannual_mean)) of each selected case study (Table 1).
    Fish data and conditional habitat suitability criteria
    Four Cyprinidae fish species, which are common in cyprinid-dominated lowland rivers of Lithuania20, but differ in rheophily and reproduction habitat were selected for the assessment of HPPs impact: lithophilic rheophilic schneider Alburnoides bipunctatus and dace Leuciscus leuciscus, phyto-lithophilic eurytopic roach Rutilus rutilus, and diadromous lithophilic eurytopic vimba Vimba vimba (fish guilds according to29). Based on the classification of fish species in European rivers according to their overall resistance to habitat degradation30, the selected species also represent different guilds of tolerance capacity: schneider is intolerant species, dace and vimba are intermediate, and roach is tolerant31. These four species are all benthopelagic, and in this respect they are similar, but due to their different preferences for rheophilic conditions, spawning habitat and overall habitat quality, it was expected that their response to changes in flow conditions should also be different. Currently access for diadromous vimba to most rivers is limited by dams; therefore, habitat availability for vimba was modelled only in the Venta River, which is still accessible for this species and contains its spawning grounds.
    To define conditional habitat suitability criteria (CHSC)21, the river monitoring database for 2008–2015 was used. Data on the physical, chemical and hydrological characteristics of river sites was collected by the Lithuanian Environmental Protection Agency (EPA). Fish monitoring and assessment of hydromorphological characteristics of the site at the time of sampling was carried out by the Nature Research Centre under agreement with EPA. Standardized single-pass electric fishing took place in mid-July–September on river sections with a minimum length of at least 10 times the wetted width (but not less than 50 m) using backpack pulse current electrofisher (type IG200-2; HANS GRASSL GmbH) with a maximum output of 800 V and a maximum power of 10.0 kW per pulse.
    For CHSC construction, only river sites in natural conditions (from good to high ecological status according to the European Water Framework Directive) with a catchment area of 100–5000 km2 and sampled by wading were selected from the database. In total, 245 river sites were selected. 160 sites in 75 rivers (2/3 of the selected sites) were randomly selected and used to build CHSC. The remaining 85 locations in 53 rivers (1/3 of all locations) were used for calibration. Once the locations were selected, their depth and current velocity were classified into intervals of 0.15 m and 0.15 m s-1 following the MesoHABSIM protocol (up to 0.15, 0.15–0.3, 0.3–0.45, etc.). The preference of schneider, dace and roach for depth and current velocity was determined by their frequency of occurrence in each of the intervals. In order to minimize the impact of random catches, species were considered present only when the number of individuals exceeded 25th percentile of the number of individuals in all places where they were found. Species were considered abundant when the number of individuals was greater than the median abundance in all places where they were found. A species was considered present in a particular interval of depth or current velocity only when its frequency of occurrence was  > 40%. Accordingly, a species was considered abundant only in those groups of depth and velocity where the number of individuals was greater than the median in more than 50% of the sites. The preference for the type of substrate and shelters was determined according to the analysis of these environmental variables in the river sites where the species should be present based on the criteria of depth and current velocity. According to the geomorphological and ecological definition of mesohabitat21,22, 10 m2 was considered the minimum surface that an HMU must have to be considered a suitable (species present) or optimal (species abundant) habitat for fish. When tested on an independent dataset (85 sites), CHSC were considered satisfactory for the presence of species when the species were present in  > 60% of the sites meeting the criteria (total accuracy  > 0.6). CHSC were considered satisfactory for the abundance of species when the species were present in  > 60% of the sites meeting the abundance criteria and the abundance of individuals was higher than the median in at least 50% of these sites.
    CHSC for vimba were selected by an expert judgement, analysing common features of the river sites where this species was observed. Migration of vimba to the majority of former spawning grounds is currently restricted by dams. Therefore, this species is constantly found in a limited number of rivers, in which vimba is present not only during spawning in spring, but is also common in specific habitats in summer and autumn.
    For the validation of CHSC for schneider, dace and roach, a single-pass electric fishing was performed in 42 HMUs of 4 natural rivers (Minija, Dubysa, Šventoji and Merkys), in river stretches with a length of 150–400 m, a maximum depth up to 1.5 m, and a catchment size of 315–3040 km2, during the low flow season, with high transparency of water. Fish were sampled by wading by a team of 3 persons using a backpack pulse current unit of a similar type as for fish monitoring (IG200-2D; HANS GRASSL GmbH). CHSC verification for vimba was carried out only in 14 out of 42 HMUs, since this species is constantly found in only one of the natural rivers selected for verification. A single-pass electric fishing was also conducted in all HMUs which were identified in the studied river stretches below HPPs at the low flow. Fish sampling was accomplished by wading and using pulse current backpack electric fishing gear. A single-pass electric fishing strategy was used, as the CHSC criteria were also developed based on single-pass sampling data. Studies show that in most cases species composition and rank abundance of common species do not change significantly after the first pass32,33,34.
    To assess the predictive performance of CHSC, correctly classified instances, sensitivity, specificity, and true skill statistic were calculated based on confusion matrix analysis35.
    Assessment of HPPs impact
    The habitat area available for the species was modelled at different discharges of rivers. The impact of HPPs on habitat availability was assessed based on the comparison of the modelled available habitat area (i) at reference conditions during a dry year, (ii) under HPPs functioning in dry, normal and wet years, and (iii) at environmental Qenv. The flow value that exceeded 97% of the time at reference conditions (Q97)36 during a dry year and the corresponding area of species habitat (expressed in m2, hereafter, the minimum threshold area) were used as common denominators. Deviation of temporal availability of suitable habitats for modelled fish species due to HPPs functioning at different flows was assessed based on relative increase in the cumulative continuous duration of days when the area of the habitat falls below the minimum threshold values (hereafter, the stress days alteration; SDA). SDA analysis is based on the assumption that minimum habitat availability is a limiting factor for fish species, and events occurring rarely in nature create stress to aquatic fauna and shape the community. Therefore, for the selected minimum habitat threshold (expressed in m2), the number of habitat stress days that occur under those conditions was calculated and used as a benchmark for comparative analysis using the SDA metric, (see e.g.28,36,37 for details). Finally, we normalize SDA values between 0 and 1 by using the index of temporal habitat availability (ITH) as it is described by Rinaldi et al.28.
    The relative abundance of fish species that are common in the cyprinid-dominated rivers of Lithuania (the frequency of occurrence in the natural river sites is  > 50%) was also compared in river reaches with natural (42 sites, 85 fishing occasions) and regulated (below HPPs; 20 sites, 39 fishing occasions) flows, which met at least good water quality criteria and fell within the same range of catchment size and slope as the rivers selected for modelling did. The sites were selected from the same river monitoring database for 2008–2015, which was used for selection of sites for CHSC development. The significance of identified differences was assessed using the Mann–Whitney U test. More

  • in

    A horizontally acquired expansin gene increases virulence of the emerging plant pathogen Erwinia tracheiphila

    1.
    Shi, S. et al. Effects of selected root exudate components on soil bacterial communities. FEMS Microbiol. Ecol. 77(3), 600–610 (2011).
    CAS  PubMed  Article  Google Scholar 
    2.
    Lindow, S. E. & Brandl, M. T. Microbiology of the Phyllosphere. Appl. Environ. Microbiol. 69(4), 1875–1883 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Miwa, H. & Okazaki, S. How effectors promote beneficial interactions. Curr. Opin. Plant Biol. 38, 148–154 (2017).
    CAS  PubMed  Article  Google Scholar 

    4.
    Cosgrove, D. J. Microbial expansins. Annu. Rev. Microbiol. 71(1), 479–497 (2017).
    CAS  PubMed  Article  Google Scholar 

    5.
    Georgelis, N., Nikolaidis, N. & Cosgrove, D. J. Biochemical analysis of expansin-like proteins from microbes. Carbohyd. Polym. 100, 17–23 (2014).
    CAS  Article  Google Scholar 

    6.
    Nikolaidis, N., Doran, N. & Cosgrove, D. J. Plant expansins in bacteria and fungi: Evolution by horizontal gene transfer and independent domain fusion. Mol. Biol. Evol. 31(2), 376–386 (2013).
    PubMed  Article  CAS  Google Scholar 

    7.
    Chase, W. R. et al. Global cellulose biomass, horizontal gene transfers and domain fusions drive microbial expansin evolution. New Phytol. 226(3), 921–938 (2020).
    CAS  PubMed  Article  Google Scholar 

    8.
    Cosgrove, D. J. Loosening of plant cell walls by expansins. Nature 407(6802), 321–326 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    9.
    Sampedro, J. & Cosgrove, D. J. The expansin superfamily. Genome Biol. 6(12), 242 (2005).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    10.
    Cosgrove, D. J. Plant expansins: Diversity and interactions with plant cell walls. Curr. Opin. Plant Biol. 25, 162–172 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Chen, F. & Bradford, K. J. Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiol. 124(3), 1265–1274 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Brummell, D. A. et al. Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11(11), 2203–2216 (1999).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Cho, H.-T. & Cosgrove, D. J. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 97(17), 9783–9788 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    14.
    Li, Y. et al. Plant expansins are a complex multigene family with an ancient evolutionary origin. Plant Physiol. 128(3), 854–864 (2002).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Cosgrove, D. J. et al. The growing world of expansins. Plant Cell Physiol. 43(12), 1436–1444 (2002).
    CAS  PubMed  Article  Google Scholar 

    16.
    Georgelis, N., Nikolaidis, N. & Cosgrove, D. J. Bacterial expansins and related proteins from the world of microbes. Appl. Microbiol. Biotechnol. 99(9), 3807–3823 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Kerff, F. et al. Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. Proc. Natl. Acad. Sci. 105(44), 16876–16881 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    18.
    Brotman, Y. et al. Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol. 147(2), 779–789 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Saloheimo, M. et al. Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur. J. Biochem. 269(17), 4202–4211 (2002).
    CAS  PubMed  Article  Google Scholar 

    20.
    Kende, H. et al. Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol. Biol. 55(3), 311–314 (2004).
    CAS  PubMed  Article  Google Scholar 

    21.
    Tancos, M. A. et al. Plant-like bacterial expansins play contrasting roles in two tomato vascular pathogens. Mol. Plant Pathol. 19(5), 1210–1221 (2018).
    CAS  PubMed  Article  Google Scholar 

    22.
    Narváez-Barragán, D. A. et al. Expansin-like Exl1 from Pectobacterium is a virulence factor required for host infection, and induces a defence plant response involving ROS, and jasmonate, ethylene and salicylic acid signalling pathways in Arabidopsis thaliana. Sci. Rep. 10(1), 1–14 (2020).
    Article  CAS  Google Scholar 

    23.
    Chalupowicz, L. et al. Differential contribution of Clavibacter michiganensis ssp. michiganensis virulence factors to systemic and local infection in tomato. Mol. Plant Pathol. 18(3), 336–346 (2017).
    CAS  PubMed  Article  Google Scholar 

    24.
    Laine, M. J. et al. The cellulase encoded by the native plasmid of Clavibacter michiganensis ssp. sepedonicus plays a role in virulence and contains an expansin-like domain. Physiol. Mol. Plant Pathol. 57(5), 221–233 (2000).
    CAS  Article  Google Scholar 

    25.
    Hwang, I. S. et al. Functional characterization of two cellulase genes in the Gram-positive pathogenic bacterium Clavibacter michiganensis for wilting in tomato. Mol. Plant Microbe Interact. 32(4), 491–501 (2019).
    CAS  PubMed  Article  Google Scholar 

    26.
    Hwang, I. S. et al. Multiple plasmid-borne virulence genes of Clavibacter michiganensis ssp. capsici critical for disease development in pepper. New Phytol. 217(3), 1177–1189 (2018).
    CAS  PubMed  Article  Google Scholar 

    27.
    Olarte-Lozano, M. et al. PcExl1 a novel acid expansin-like protein from the plant pathogen Pectobacterium carotovorum, binds cell walls differently to BsEXLX1. PLoS ONE 9(4), e95638 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    28.
    Jahr, H. et al. The endo-β-1,4-glucanase CelA of Clavibacter michiganensis subsp. michiganensis is a pathogenicity determinant required for induction of bacterial wilt of tomato. Mol. Plant-Microbe Interact. 13(7), 703–714 (2000).
    CAS  PubMed  Article  Google Scholar 

    29.
    Shapiro, L. R. et al. Draft genome sequence of Erwinia tracheiphila, an economically important bacterial pathogen of cucurbits. genomeA 3(3), e00482-15 (2015).
    PubMed  Article  Google Scholar 

    30.
    Shapiro, L. R. et al. Draft genome sequence of an Erwinia tracheiphila isolate from an infected muskmelon (Cucumis melo). Microbiol. Res. Announcements 7(17), e01058-e1118 (2018).
    Google Scholar 

    31.
    Shapiro, L. A to ZYMV Guide to Erwinia tracheiphila Infection: An Ecological and Molecular Study Infection: An Ecological and Molecular Study (The Pennsylvania State University, State College, 2012).
    Google Scholar 

    32.
    Shapiro, L. R. et al. An introduced crop plant is driving diversification of the virulent bacterial pathogen Erwinia tracheiphila. mBio 9(5), e01307-18 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Shapiro, L.R. and K.E. Mauck, Chemically-mediated interactions among cucurbits, insects and microbes. in Chemical Ecology of Insects 55–90 (ed. J. Tabata). (CRC Press, 2018).

    34.
    Smith, E. F. An Introduction to Bacterial Diseases of Plants (W.B. Saunders Company, Philadelphia, 1920).
    Google Scholar 

    35.
    Shapiro, L. R. et al. Horizontal gene acquisitions, mobile element proliferation, and genome decay in the host-restricted plant pathogen Erwinia tracheiphila. Genome Biol. Evol. 8(3), 649–664 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    36.
    Moran, N. A. & Plague, G. R. Genomic changes following host restriction in bacteria. Curr. Opin. Genet. Dev. 14(6), 627–633 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Rand, F. V. & Enlows, E. M. A. Transmission and control of bacterial wilt of cucurbits. J. Agric. Res. 6(4), 7–434 (1916).
    Google Scholar 

    38.
    Rand, F. V. & Cash, L. C. Some insect relations of Bacillus tracheiphilus Erw. Sm. Phytopathology 10, 133–140 (1920).
    Google Scholar 

    39.
    de Mackiewicz, D. et al. Herbaceous weeds are not ecologically important reservoirs of Erwinia tracheiphila. Plant Dis. 82(5), 521–529 (1998).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Shapiro, L. et al. Dynamics of short-and long-term association between a bacterial plant pathogen and its arthropod vector. Sci. Rep. 4, 4155 (2014).
    CAS  Google Scholar 

    41.
    Garcia-Salazar, C. et al. ELISA versus immunolocalization to determine the association of Erwinia tracheiphila in Acalymma vittatum (Coleoptera: Chrysomelidae). Environ. Entomol. 29, 542–550 (2000).
    Article  Google Scholar 

    42.
    Fleischer, S. J. et al. Serological estimates of the seasonal dynamics of Erwinia tracheiphila in Acalymma vittata (Coleoptera: Chrysomelidae). Environ. Entomol. 28, 470–476 (1999).
    Article  Google Scholar 

    43.
    Sasu, M. et al. Floral transmission of Erwinia tracheiphila by cucumber beetles in a wild Cucurbita pepo. Environ. Entomol. 39(1), 140–148 (2010).
    CAS  PubMed  Article  Google Scholar 

    44.
    Shapiro, L. R. et al. Disease interactions in a shared host plant: Effects of pre-existing viral infection on cucurbit plant defense responses and resistance to bacterial wilt disease. PLoS ONE 8(10), e77393 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Shapiro, L. et al. Pathogen effects on vegetative and floral odours mediate vector attraction and host exposure in a complex pathosystem. Ecol. Lett. 15(12), 1430–1438 (2012).
    PubMed  Article  Google Scholar 

    46.
    Sasu, M. A. et al. Indirect costs of a nontarget pathogen mitigate the direct benefits of a virus-resistant transgene in wild Cucurbita. Proc. Natl. Acad. Sci. 106(45), 19067–19071 (2009).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Marchler-Bauer, A. et al. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 45(D1), D200–D203 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Lombard, V. et al. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42(D1), D490–D495 (2013).
    MathSciNet  PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Aziz, R. et al. The RAST server: Rapid annotations using subsystems technology. BMC Genom. 9(1), 75 (2008).
    Article  CAS  Google Scholar 

    50.
    Armenteros, J. J. A. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).
    Article  CAS  Google Scholar 

    51.
    Thomas, C. M. & Nielsen, K. M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 3(9), 711 (2005).
    CAS  PubMed  Article  Google Scholar 

    52.
    Zhaxybayeva, O. & Doolittle, W. F. Lateral gene transfer. Curr. Biol. 21(7), R242–R246 (2011).
    CAS  PubMed  Article  Google Scholar 

    53.
    Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784), 299–304 (2000).
    ADS  CAS  Article  Google Scholar 

    54.
    Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).
    CAS  PubMed  Article  Google Scholar 

    55.
    Polz, M. F., Alm, E. J. & Hanage, W. P. Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet. 29(3), 170–175 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Zhaxybayeva, O. et al. Phylogenetic analyses of cyanobacterial genomes: Quantification of horizontal gene transfer events. Genome Res. 16(9), 1099–1108 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Danchin, E. G. et al. Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proc. Natl. Acad. Sci. 107(41), 17651–17656 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    58.
    Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480(7376), 241–244 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    59.
    Halpern, M. et al. Transfer of Pseudomonas flectens Johnson 1956 to Phaseolibacter gen. nov., in the family Enterobacteriaceae, as Phaseolibacter flectens gen. nov., comb. nov. Int. J. Syst. Evolut. Microbiol. 63(1), 268–273 (2013).
    Article  Google Scholar 

    60.
    Mensi, I. et al. Breaking dogmas: The plant vascular pathogen Xanthomonas albilineans is able to invade non-vascular tissues despite its reduced genome. R. Soc. Open Biol. 4(2), 130116 (2014).
    Article  CAS  Google Scholar 

    61.
    Vrisman, C. M. et al. Differential colonization dynamics of cucurbit hosts by Erwinia tracheiphila. Phytopathology 106(7), 684–692 (2016).
    CAS  PubMed  Article  Google Scholar 

    62.
    Saile, E. et al. Role of extracellular polysaccharide and endoglucanase in root invasion and colonization of tomato plants by Ralstonia solanacearum. Phytopathology 87(12), 1264–1271 (1997).
    CAS  PubMed  Article  Google Scholar 

    63.
    Czajkowski, R. et al. Systemic colonization of potato plants by a soilborne, green fluorescent protein-tagged strain of Dickeya sp. biovar 3. Phytopathology. 100(2), 134–142 (2010).
    CAS  PubMed  Article  Google Scholar 

    64.
    Cosgrove, D. J. Catalysts of plant cell wall loosening. F1000Research (2016). https://doi.org/10.12688/f1000research.7180.1.
    Article  PubMed  PubMed Central  Google Scholar 

    65.
    Malinovsky, F. G., Fangel, J. U. & Willats, W. G. The role of the cell wall in plant immunity. Front. Plant Sci. 5, 178 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    66.
    Bahar, O., Goffer, T. & Burdman, S. Type IV pili are required for virulence, twitching motility, and biofilm formation of Acidovorax avenae subsp. citrulli. Mol. Plant Microbe Interact. 22(8), 909–920 (2009).
    CAS  PubMed  Article  Google Scholar 

    67.
    Burdman, S. et al. Involvement of type IV pili in pathogenicity of plant pathogenic bacteria. Genes 2(4), 706–735 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Cursino, L. et al. Identification of an operon, Pil–Chp, that controls twitching motility and virulence in Xylella fastidiosa. Mol. Plant Microbe Interact. 24(10), 1198–1206 (2011).
    CAS  PubMed  Article  Google Scholar 

    69.
    Bahar, O., Levi, N. & Burdman, S. The cucurbit pathogenic bacterium Acidovorax citrulli requires a polar flagellum for full virulence before and after host-tissue penetration. Mol. Plant Microbe Interact. 24(9), 1040–1050 (2011).
    CAS  PubMed  Article  Google Scholar 

    70.
    Ewald, P. W. Evolution of Infectious Disease (Oxford University Press, Oxford, 1993).
    Google Scholar 

    71.
    Mackinnon, M. & Read, A. F. Virulence in malaria: An evolutionary viewpoint. Philos. Trans. R. Soc. B Biol. Sci. 359(1446), 965–986 (2004).
    Article  Google Scholar 

    72.
    Hinnebusch, B. J. et al. Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273(5273), 367 (1996).
    ADS  CAS  PubMed  Article  Google Scholar 

    73.
    Yao, C., Zehnder, G., Bauske, E. & Kloepper, J. Relationship between cucumber beetle (Coleoptera: Chrysomelidae) density and incidence of bacterial wilt of cucurbits. J. Econ. Entomol. 89(2), 510–514 (1996).
    Article  Google Scholar 

    74.
    Pasek, S., Risler, J.-L. & Brézellec, P. Gene fusion/fission is a major contributor to evolution of multi-domain bacterial proteins. Bioinformatics 22(12), 1418–1423 (2006).
    CAS  PubMed  Article  Google Scholar 

    75.
    Yang, S. & Bourne, P. E. The evolutionary history of protein domains viewed by species phylogeny. PLoS ONE 4(12), e8378 (2009).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    76.
    Boutilier, M. S. et al. Water filtration using plant xylem. PLoS ONE 9(2), e89934 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    77.
    Pérez-Donoso, A. G. et al. Cell wall-degrading enzymes enlarge the pore size of intervessel pit membranes in healthy and Xylella fastidiosa-infected grapevines. Plant Physiol. 152(3), 1748–1759 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    78.
    Yadeta, K. & B. Thomma. The xylem as battleground for plant hosts and vascular wilt pathogens. Front. Plant Sci. 4, 97 (2013). https://doi.org/10.3389/fpls.2013.00097.
    Article  PubMed  PubMed Central  Google Scholar 

    79.
    Secchi, F., Pagliarani, C. & Zwieniecki, M. A. The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress. Plant Cell Environ. 40(6), 858–871 (2017).
    CAS  PubMed  Article  Google Scholar 

    80.
    Christman, M. A. & Sperry, J. S. Single-vessel flow measurements indicate scalariform perforation plates confer higher flow resistance than previously estimated. Plant Cell Environ. 33(3), 431–443 (2010).
    PubMed  Article  Google Scholar 

    81.
    Roper, M. C. Pantoea stewartii subsp. stewartii: Lessons learned from a xylem-dwelling pathogen of sweet corn. Mol. Plant Pathol. 12(7), 628–637 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    Foley, J. A. et al. Global consequences of land use. Science 309(5734), 570–574 (2005).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    83.
    Nasaruddin, A. S. et al. First report of Dickeya dianthicola causing blackleg on potato in Texas. Plant Dis. 103(8), 2121 (2019).
    Article  Google Scholar 

    84.
    Cai, W. et al. Draft genome sequences of two Dickeya dianthicola isolates from potato. Genome Announcements 6(11), e00115-e118 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    85.
    Ma, X. et al. Pectobacterium and Dickeya responsible for potato blackleg disease in New York State in 2016. Plant Dis. 102(9), 1834–1840 (2018).
    CAS  PubMed  Article  Google Scholar 

    86.
    Bae, C. et al. Infection processes of xylem-colonizing pathogenic bacteria: Possible explanations for the scarcity of qualitative disease resistance genes against them in crops. Theor. Appl. Genet. 128(7), 1219–1229 (2015).
    CAS  PubMed  Article  Google Scholar 

    87.
    Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. 97(12), 6640–6645 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    88.
    Altschul, S. F. et al. Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410 (1990).
    CAS  Article  Google Scholar 

    89.
    Katoh, K. et al. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30(14), 3059–3066 (2002).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    90.
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15), 1972–1973 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    91.
    Abascal, F., Zardoya, R. & Posada, D. ProtTest: Selection of best-fit models of protein evolution. Bioinformatics 21(9), 2104–2105 (2005).
    CAS  PubMed  Article  Google Scholar 

    92.
    Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006).
    CAS  PubMed  Article  Google Scholar 

    93.
    Miller, M.A., W. Pfeiffer, & T. Schwartz. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. in Proceedings of the Gateway Computing Environments Workshop (CGE). (New Orleans, LA, 2010).

    94.
    Sukumaran, J. & Holder, M. T. DendroPy: A Python library for phylogenetic computing. Bioinformatics 26, 1569–1571 (2010).
    CAS  PubMed  Article  Google Scholar 

    95.
    R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2015). https://www.r-project.org/.

    96.
    Yu, G. et al. ggtree: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8(1), 28–36 (2017).
    Article  Google Scholar 

    97.
    Guy, L., Kultima, J. R. & Andersson, S. G. genoPlotR: Comparative gene and genome visualization in R. Bioinformatics 26(18), 2334–2335 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    98.
    Philippe, N. et al. Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid 51(3), 246–255 (2004).
    MathSciNet  CAS  PubMed  Article  Google Scholar 

    99.
    Lagendijk, E. L. et al. Genetic tools for tagging Gram-negative bacteria with mCherry for visualization in vitro and in natural habitats, biofilm and pathogenicity studies. FEMS Microbiol. Lett. 305(1), 81–90 (2010).
    CAS  PubMed  Article  Google Scholar 

    100.
    Franklin, N. C. Genetic fusions for operon analysis. Annu. Rev. Genet. 12(1), 193–221 (1978).
    CAS  PubMed  Article  Google Scholar 

    101.
    Machin, D., Cheung, Y. B. & Parmar, M. Survival Analysis: A Practical Approach (Wiley, New York, 2006).
    Google Scholar  More