1.
Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: The Great Acceleration. Anthr. Rev. 2, 81–98 (2015).
Google Scholar
2.
Steffen, W., Grinevald, J., Crutzen, P. & McNeill, J. The Anthropocene: conceptual and historical perspectives. Phil. Trans. R. Soc. A 369, 842–867 (2011).
PubMed Google Scholar
3.
Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).
CAS PubMed Google Scholar
4.
McInerney, F. A. & Wing, S. L. The Paleocene-Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39, 489–516 (2011).
CAS Google Scholar
5.
Herrero, C., García-Olivares, A. & Pelegrí, J. L. Impact of anthropogenic CO2 on the next glacial cycle. Clim. Change 122, 283–298 (2014).
CAS Google Scholar
6.
Clark, P. U. et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Change 6, 360–369 (2016).
Google Scholar
7.
Berger, A. & Loutre, M. F. An exceptionally long interglacial ahead? Science 297, 1287–1288 (2002).
CAS PubMed Google Scholar
8.
Burke, K. D. et al. Pliocene and Eocene provide best analogues for near-future climates. Proc. Natl Acad. Sci. USA 115, 13288–13293 (2018).
CAS PubMed Google Scholar
9.
Fisichelli, N. A., Schuurman, G. W. & Hoffman, C. H. Is ‘resilience’ maladaptive? Towards an accurate lexicon for climate change adaptation. Environ. Manag. 57, 753–758 (2016).
Google Scholar
10.
Prober, S. M., Doerr, V. A. J., Broadhurst, L. M., Williams, K. J. & Dickson, F. Shifting the conservation paradigm: a synthesis of options for renovating nature under climate change. Ecol. Monogr. 89, e01333 (2019).
Google Scholar
11.
Scheffers, B. R. & Pecl, G. Persecuting, protecting or ignoring biodiversity under climate change. Nat. Clim. Change 9, 581–586 (2019).
Google Scholar
12.
Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).
PubMed Google Scholar
13.
Hughes, F. M. R., Adams, W. M. & Stroh, P. A. When is open-endedness desirable in restoration projects? Restor. Ecol. 20, 291–295 (2012).
Google Scholar
14.
Williams, J. W. & Burke, K. in Climate Change and Biodiversity: Transforming the Biosphere (eds Lovejoy, T & Hannah, L.) 128–141 (Yale Univ. Press, 2019).
15.
Webb, T. III. Is vegetation in equilibrium with climate? How to interpret late-Quaternary pollen data. Vegetatio 67, 75–91 (1986).
Google Scholar
16.
Blonder, B. et al. Predictability in community dynamics. Ecol. Lett. 20, 293–306 (2017).
PubMed Google Scholar
17.
Svenning, J.-C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).
PubMed Google Scholar
18.
Huntley, B. et al. Climatic disequilibrium threatens conservation priority forests. Conserv. Lett. 11, e12349 (2018).
Google Scholar
19.
Bertrand, R. et al. Ecological constraints increase the climatic debt in forests. Nat. Commun. 7, 12643 (2016).
CAS PubMed PubMed Central Google Scholar
20.
Zimova, M., Mills, L. S. & Nowak, J. J. High fitness costs of climate change-induced camouflage mismatch. Ecol. Lett. 19, 299–307 (2016).
PubMed Google Scholar
21.
Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–885 (2019).
PubMed PubMed Central Google Scholar
22.
Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to Quaternary climate change. Science 292, 673–679 (2001).
CAS PubMed Google Scholar
23.
Ratajczak, Z. et al. Abrupt change in ecological systems: inference and diagnosis. Trends Ecol. Evol. 33, 513–526 (2018).
PubMed Google Scholar
24.
Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
CAS PubMed Google Scholar
25.
Williams, J. W., Blois, J. L. & Shuman, B. N. Extrinsic and intrinsic forcing of abrupt ecological change: case studies from the late Quaternary. J. Ecol. 99, 664–677 (2011).
Google Scholar
26.
Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).
CAS PubMed Google Scholar
27.
Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).
CAS PubMed Google Scholar
28.
Scheffer, M., Hirota, M., Holmgren, M., Van Nes, E. H. & Chapin, F. S. Thresholds for boreal biome transitions. Proc. Natl Acad. Sci. USA 109, 21384–21389 (2012).
CAS PubMed Google Scholar
29.
Boettiger, C. & Hastings, A. Tipping points: from patterns to predictions. Nature 493, 157–158 (2013).
CAS PubMed Google Scholar
30.
Boettiger, C., Ross, N. & Hastings, A. Early warning signals: the charted and uncharted territories. Theor. Ecol. 6, 255–264 (2013).
Google Scholar
31.
Lenton, T. M. et al. Climate tipping points — too risky to bet against. Nature 575, 593–595 (2019).
Google Scholar
32.
Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. R. Soc. B 275, 2743–2748 (2008).
PubMed Google Scholar
33.
Dakos, V., Carpenter, S. R., van Nes, E. H. & Scheffer, M. Resilience indicators: prospects and limitations for early warnings of regime shifts. Phil. Trans. R. Soc. B 370, 20130263 (2014).
Google Scholar
34.
IPCC in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Summary for Policymakers (Cambridge Univ. Press, 2013).
35.
Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
PubMed Google Scholar
36.
Kudo, G. & Ida, T. Y. Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology 94, 2311–2320 (2013).
Google Scholar
37.
Körner, C. & Basler, D. Phenology under global warming. Science 327, 1461–1462 (2010).
PubMed Google Scholar
38.
Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).
CAS PubMed Google Scholar
39.
Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
CAS PubMed Google Scholar
40.
Lenoir, J., Gégout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th Century. Science 320, 1768–1771 (2008).
CAS PubMed PubMed Central Google Scholar
41.
Bellemare, J. & Deeg, C. Horticultural escape and naturalization of Magnolia tripetala in western Massachusetts: biogeographic context and possible relationship to recent climate change. Rhodora 117, 371–383 (2015).
Google Scholar
42.
Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).
CAS PubMed Google Scholar
43.
Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).
CAS PubMed Google Scholar
44.
Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Change Biol. 13, 1860–1872 (2007).
Google Scholar
45.
Albright, T. P. et al. Heat waves measured with MODIS land surface temperature data predict changes in avian community structure. Remote Sens. Environ. 115, 245–254 (2011).
Google Scholar
46.
Cazelles, K. et al. Homogenization of freshwater lakes: recent compositional shifts in fish communities are explained by gamefish movement and not climate change. Glob. Change Biol. 25, 4222–4233 (2019).
Google Scholar
47.
Guo, F., Lenoir, J. & Bonebrake, T. C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315 (2018).
PubMed PubMed Central Google Scholar
48.
Abatzoglou, J. T., Dobrowski, S. Z. & Parks, S. A. Multivariate climate departures have outpaced univariate changes across global lands. Sci. Rep. 10, 3891 (2020).
CAS PubMed PubMed Central Google Scholar
49.
VanDerWal, J. et al. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat. Clim. Change 3, 239–243 (2013).
Google Scholar
50.
Ordonez, A., Williams, J. W. & Svenning, J. C. Mapping climatic mechanisms likely to favour the emergence of novel communities. Nat. Clim. Change 6, 1104–1109 (2016).
Google Scholar
51.
Hof, C., Levinsky, I., Araújo, M. B. & Rahbek, C. Rethinking species’ ability to cope with rapid climate change. Glob. Change Biol. 17, 2987–2990 (2011).
Google Scholar
52.
Brown, S. C., Wigley, T. M. L., Otto-Bliesner, B. L., Rahbek, C. & Fordham, D. A. Persistent Quaternary climate refugia are hospices for biodiversity in the Anthropocene. Nat. Clim. Change 10, 244–248 (2020).
Google Scholar
53.
Buizert, C. et al. Greenland temperature response to climate forcing during the last deglaciation. Science 345, 1177–1180 (2014).
CAS PubMed Google Scholar
54.
Steffensen, J. P. et al. High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 321, 680–684 (2008).
CAS PubMed Google Scholar
55.
Jackson, S. T. & Overpeck, J. T. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26 (Suppl.), 194–220 (2000).
Google Scholar
56.
Prentice, I. C., Bartlein, P. J. & Webb, T. III. Vegetation and climate change in eastern North America since the last glacial maximum. Ecology 72, 2038–2056 (1991).
Google Scholar
57.
Giesecke, T., Brewer, S., Finsinger, W., Leydet, M. & Bradshaw, R. H. W. Patterns and dynamics of European vegetation change over the last 15,000 years. J. Biogeogr. 44, 1441–1456 (2017).
Google Scholar
58.
Ordonez, A. & Williams, J. W. Climatic and biotic velocities for woody taxa distributions over the last 16 000 years in eastern North America. Ecol. Lett. 16, 773–781 (2013).
PubMed Google Scholar
59.
Williams, J. W., Post, D. M., Cwynar, L. C., Lotter, A. F. & Levesque, A. J. Rapid and widespread vegetation responses to past climate change in the North Atlantic region. Geology 30, 971–974 (2002).
CAS Google Scholar
60.
Tinner, W. & Lotter, A. F. Central European vegetation response to abrupt climate change at 8.2 ka. Geology 29, 551–554 (2001).
Google Scholar
61.
Juggins, S. Quantitative reconstructions in paleolimnology: new paradigm or sick science? Quat. Sci. Rev. 64, 20–32 (2013).
Google Scholar
62.
Ammann, B. et al. Responses to rapid warming at Termination 1a at Gerzensee (Central Europe): primary succession, albedo, soils, lake development, and ecological interactions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 111–131 (2013).
Google Scholar
63.
Ammann, B., von Grafenstein, U. & van Raden, U. J. Biotic responses to rapid warming about 14,685 yr BP: introduction to a case study at Gerzensee (Switzerland). Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 3–12 (2013).
Google Scholar
64.
Cotto, O. et al. A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming. Nat. Commun. 8, 15399 (2017).
CAS PubMed PubMed Central Google Scholar
65.
Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012).
CAS PubMed Google Scholar
66.
Hui, C., Roura-Pascual, N., Brotons, L., Robinson, R. A. & Evans, K. L. Flexible dispersal strategies in native and non-native ranges: environmental quality and the ‘good–stay, bad–disperse’ rule. Ecography 35, 1024–1032 (2012).
Google Scholar
67.
Grubb, P. J. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol. Rev. 52, 107–145 (1977).
Google Scholar
68.
Jackson, S. T., Betancourt, J. L., Booth, R. K. & Gray, S. T. Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions. Proc. Natl Acad. Sci. USA 106, 19685–19692 (2009).
CAS PubMed Google Scholar
69.
Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390 (2019).
CAS PubMed Google Scholar
70.
Stevens-Rumann, C. S. et al. Evidence for declining forest resilience to wildfires under climate change. Ecol. Lett. 21, 243–252 (2018).
PubMed Google Scholar
71.
Keeley, J. E., van Mantgem, P. & Falk, D. A. Fire, climate and changing forests. Nat. Plants 5, 774–775 (2019).
PubMed Google Scholar
72.
Raffa, K. F., Powell, E. N. & Townsend, P. A. Temperature-driven range expansion of an irruptive insect heightened by weakly coevolved plant defenses. Proc. Natl Acad. Sci. USA 110, 2193–2198 (2013).
CAS PubMed Google Scholar
73.
Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
CAS PubMed Google Scholar
74.
Feeley, K. J. et al. Upslope migration of Andean trees. J. Biogeogr. 38, 783–791 (2011).
Google Scholar
75.
Ricklefs, R. E. & Latham, R. E. Intercontinental correlation of geographical ranges suggests stasis in ecological traits of relict genera of temperature perennial herbs. Am. Nat. 139, 1305–1321 (1992).
Google Scholar
76.
McCain, C. M. & King, S. R. B. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).
Google Scholar
77.
Pither, J., Pickles, B. J., Simard, S. W., Ordonez, A. & Williams, J. W. Below-ground biotic interactions moderated the postglacial range dynamics of trees. New Phytol. 220, 1148–1160 (2018).
PubMed Google Scholar
78.
Lawler, J. J. & Olden, J. D. Reframing the debate over assisted colonization. Front. Ecol. Environ. 9, 569–574 (2011).
Google Scholar
79.
Schwartz, M. W. et al. Managed relocation: integrating the scientific, regulatory, and ethical challenges. BioScience 62, 732–743 (2012).
Google Scholar
80.
Van der Veken, S., Hermy, M., Vellend, M., Knapen, A. & Verheyen, K. Garden plants get a head start on climate change. Front. Ecol. Environ. 6, 212–216 (2008).
Google Scholar
81.
Svenning, J.-C. & Skov, F. Limited filling of the potential range in European tree species. Ecol. Lett. 7, 565–573 (2004).
Google Scholar
82.
Sax, D. F., Early, R. & Bellemare, J. Niche syndromes, species extinction risks, and management under climate change. Trends Ecol. Evol. 28, 517–523 (2013).
PubMed Google Scholar
83.
Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).
PubMed Google Scholar
84.
Norberg, J., Urban, M. C., Vellend, M., Klausmeier, C. A. & Loeuille, N. Eco-evolutionary responses of biodiversity to climate change. Nat. Clim. Change 2, 747–751 (2012).
Google Scholar
85.
Wheeler, H. C., Høye, T. T., Schmidt, N. M., Svenning, J.-C. & Forchhammer, M. C. Phenological mismatch with abiotic conditions—implications for flowering in Arctic plants. Ecology 96, 775–787 (2015).
PubMed Google Scholar
86.
Beard, K. H., Kelsey, K. C., Leffler, A. J. & Welker, J. M. The missing angle: ecosystem consequences of phenological mismatch. Trends Ecol. Evol. 34, 885–888 (2019).
PubMed Google Scholar
87.
Chamberlain, C. J., Cook, B. I., de Cortazar Atauri, I. G. & Wolkovich, E. M. Rethinking false spring risk. Glob. Change Biol. 25, 2209–2220 (2019).
Google Scholar
88.
Wolkovich, E. M., Cook, B. I., McLauchlan, K. K. & Davies, T. J. Temporal ecology in the Anthropocene. Ecol. Lett. 17, 1365–1379 (2014).
CAS PubMed Google Scholar
89.
Pagel, J. et al. Mismatches between demographic niches and geographic distributions are strongest in poorly dispersed and highly persistent plant species. Proc. Natl Acad. Sci. USA 117, 3663–3669 (2020).
CAS PubMed Google Scholar
90.
Komatsu, K. J. et al. Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proc. Natl Acad. Sci. USA 116, 17867–17873 (2019).
CAS PubMed Google Scholar
91.
Fadrique, B. et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564, 207–212 (2018).
CAS PubMed Google Scholar
92.
Talluto, M. V., Boulangeat, I., Vissault, S., Thuiller, W. & Gravel, D. Extinction debt and colonization credit delay range shifts of eastern North American trees. Nat. Ecol. Evol. 1, 0182 (2017).
Google Scholar
93.
Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).
Google Scholar
94.
Bertrand, R. et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517–520 (2011).
CAS PubMed PubMed Central Google Scholar
95.
Bocsi, T. et al. Plants’ native distributions do not reflect climatic tolerance. Divers. Distrib. 22, 615–624 (2016).
Google Scholar
96.
Early, R. & Sax, D. F. Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Glob. Ecol. Biogeogr. 23, 1356–1365 (2014).
Google Scholar
97.
Perret, D. L., Leslie, A. B. & Sax, D. F. Naturalized distributions show that climatic disequilibrium is structured by niche size in pines (Pinus L.). Glob. Ecol. Biogeogr. 28, 429–441 (2019).
Google Scholar
98.
Blonder, B. et al. Linking environmental filtering and disequilibrium to biogeography with a community climate framework. Ecology 96, 972–985 (2015).
PubMed Google Scholar
99.
Knight, C. A. et al. Community assembly and climate mismatch in Late-Quaternary eastern North American pollen assemblages. Am. Nat. 195, 166–180 (2020).
PubMed Google Scholar
100.
Butterfield, B. J., Anderson, R. S., Holmgren, C. A. & Betancourt, J. L. Extinction debt and delayed colonization have had comparable but unique effects on plant community–climate lags since the Last Glacial Maximum. Glob. Ecol. Biogeogr. 28, 1067–1077 (2019).
Google Scholar
101.
Graham, R. W. et al. Timing and causes of a middle Holocene mammoth extinction on St. Paul Island, Alaska. Proc. Natl Acad. Sci. USA 113, 9310–9314 (2016).
CAS PubMed Google Scholar
102.
Woods, K. D. & Davis, M. B. Paleoecology of range limits: beech in the Upper Peninsula of Michigan. Ecology 70, 681–696 (1989).
Google Scholar
103.
Jackson, S. T. et al. Inferring local to regional changes in forest composition from Holocene macrofossils and pollen of a small lake in central Upper Michigan. Quat. Sci. Rev. 98, 60–73 (2014).
Google Scholar
104.
Seeley, M., Goring, S. & Williams, J. W. Testing hypotheses about environmental and dispersal controls on Fagus grandifolia distributions in the upper Midwest Great Lakes region. J. Biogeogr. 46, 405–419 (2019).
Google Scholar
105.
Birks, H. J. B. & Birks, H. H. Biological responses to rapid climate change at the Younger Dryas—Holocene transition at Kråkenes, western Norway. Holocene 18, 19–30 (2008).
Google Scholar
106.
Ammann, B. et al. Vegetation responses to rapid warming and to minor climatic fluctuations during the Late-Glacial Interstadial (GI-1) at Gerzensee (Switzerland). Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 40–59 (2013).
Google Scholar
107.
Svenning, J.-C. & Skov, F. Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? Ecol. Lett. 10, 453–460 (2007).
PubMed Google Scholar
108.
Sandel, B. et al. The influence of late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).
CAS PubMed Google Scholar
109.
Feng, G. et al. Species and phylogenetic endemism in angiosperm trees across the Northern Hemisphere are jointly shaped by modern climate and glacial–interglacial climate change. Glob. Ecol. Biogeogr. 28, 1393–1402 (2019).
Google Scholar
110.
Richardson, D. M. et al. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93–107 (2000).
Google Scholar
111.
Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332 (2001).
Google Scholar
112.
Hui, C. & Richardson, D. M. Invasion Dynamics (Oxford Univ. Press, 2017).
113.
Kowarik, I. in Plant Invasions. General Aspects and Special Problems (eds Pysek, P. et al.) 15–39 (SPB Academic Publishing, 1995).
114.
Bruce, K. A., Cameron, G. N. & Harcombe, P. A. Initiation of a new woodland type on the Texas Coastal Prairie by the Chinese tallow tree (Sapium sebiferum (L.) Roxb.). Bull. Torrey Bot. Club 122, 215–225 (1995).
Google Scholar
115.
Castro, S. A., Figueroa, J. A., Muñoz-Schick, M. & Jaksic, F. M. Minimum residence time, biogeographical origin, and life cycle as determinants of the geographical extent of naturalized plants in continental Chile. Divers. Distrib. 11, 183–191 (2005).
Google Scholar
116.
Hoffmann, J. H. & Moran, V. C. The invasive weed Sesbania punicea in South Africa and prospects for its biological control. S. Afr. J. Sci. 84, 740–472 (1988).
Google Scholar
117.
Byers, J. E. et al. Invasion expansion: time since introduction best predicts global ranges of marine invaders. Sci. Rep. 5, 12436 (2015).
CAS PubMed PubMed Central Google Scholar
118.
Phillips, M. L., Murray, B. R., Leishman, M. R. & Ingram, R. The naturalization to invasion transition: are there introduction-history correlates of invasiveness in exotic plants of Australia? Austral Ecol. 35, 695–703 (2010).
Google Scholar
119.
Scott, J. K. & Panetta, F. D. Predicting the Australian weed status of southern African plants. J. Biogeogr. 20, 87–93 (1993).
Google Scholar
120.
Arroyo, M. T. K., Rozzi, R., Simonetti, J. A., Marquet, P. & Sallaberry, M. in Hotspots: Earth’s Biologically Richest and Most Endangered Terrestrial Ecosystems (eds Mittermeier, R. A. et al.) 161–171 (Cemex, Conservation International, 1999).
121.
Zarnetske, P. L., Skelly, D. K. & Urban, M. C. Biotic multipliers of climate change. Science 336, 1516–1518 (2012).
CAS PubMed Google Scholar
122.
Ordonez, A. & Williams, J. W. Projected climate reshuffling based on multivariate climate-availability, climate-analog, and climate-velocity analyses: implications for community disaggregation. Clim. Change 119, 659–675 (2013).
Google Scholar
123.
Zohner, C. M. et al. Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proc. Natl Acad. Sci. USA 117, 12192–12200 (2020).
CAS PubMed Google Scholar
124.
Renner, S. S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165–182 (2018).
Google Scholar
125.
Turner, M. G. et al. Climate change, ecosystems, and abrupt change: science priorities. Phil. Trans. R. Soc. B 375, 20190105 (2020).
PubMed Google Scholar
126.
Rietkerk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).
CAS PubMed Google Scholar
127.
Calder, W. J. & Shuman, B. N. Extensive wildfires, climate change, and an abrupt state change in subalpine ribbon forests, Colorado. Ecology 98, 2585–2600 (2017).
PubMed Google Scholar
128.
Shuman, B. N., Marsicek, J., Oswald, W. W. & Foster, D. R. Predictable hydrological and ecological responses to Holocene North Atlantic variability. Proc. Natl Acad. Sci. USA 116, 5985–5990 (2019).
CAS PubMed Google Scholar
129.
Allison, T. D., Moeller, R. E. & Davis, M. B. Pollen in laminated sediments provides evidence of mid-Holocene forest pathogen outbreak. Ecology 67, 1101–1105 (1986).
Google Scholar
130.
Ramiadantsoa, T., Stegner, M. A., Williams, J. W. & Ives, A. R. The potential role of intrinsic processes in generating abrupt and quasi-synchronous tree declines during the Holocene. Ecology 100, e02579 (2019).
PubMed Google Scholar
131.
Seddon, A. W. R., Froyd, C. A., Witkowski, A. & Willis, K. J. A quantitative framework for analysis of regime shifts in a Galápagos coastal lagoon. Ecology 95, 3046–3055 (2014).
Google Scholar
132.
Gray, S. T., Betancourt, J. L., Jackson, S. J. & Eddy, R. G. Role of multidecadal climatic variability in a range extension of pinyon pine. Ecology 87, 1124–1130 (2006).
PubMed Google Scholar
133.
Lyford, M. E., Jackson, S. T., Betancourt, J. L. & Gray, S. T. Influence of landscape structure and climate variability on a late Holocene plant migration. Ecol. Monogr. 73, 567–583 (2003).
Google Scholar
134.
Tinner, W. & Lotter, A. F. Holocene expansions of Fagus silvatica and Abies alba in Central Europe: where are we after eight decades of debate? Quat. Sci. Rev. 25, 526–549 (2006).
Google Scholar
135.
Saltré, F. A. et al. Climate or migration: what limited European beech post-glacial colonization? Glob. Ecol. Biogeogr. 22, 1217–1227 (2013).
Google Scholar
136.
Ruosch, M. et al. Past and future evolution of Abies alba forests in Europe – comparison of a dynamic vegetation model with palaeo data and observations. Glob. Change Biol. 22, 727–740 (2016).
Google Scholar
137.
Danz, N. P., Frelich, L. E., Reich, P. B. & Niemi, G. J. Do vegetation boundaries display smooth or abrupt spatial transitions along environmental gradients? Evidence from the prairie–forest biome boundary of historic Minnesota, USA. J. Veg. Sci. 24, 1129–1140 (2013).
Google Scholar
138.
Grimm, E. C. Fire and other factors controlling the Big Woods vegetation of Minnesota in the mid-nineteenth century. Ecol. Monogr. 54, 291–311 (1984).
Google Scholar
139.
Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).
CAS PubMed Google Scholar
140.
Thomson, J. A. et al. Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem. Glob. Change Biol. 21, 1463–1474 (2015).
Google Scholar
141.
Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 38, 1699–1712 (2015).
PubMed Google Scholar
142.
Hansen, W. D. & Turner, M. G. Origins of abrupt change? Postfire subalpine conifer regeneration declines nonlinearly with warming and drying. Ecol. Monogr. 89, e01340 (2019).
Google Scholar
143.
Bestelmeyer, B. T. et al. Analysis of abrupt transitions in ecological systems. Ecosphere 2, 129 (2011).
Google Scholar
144.
Lenton, T. M. Early warning of climate tipping points. Nat. Clim. Change 1, 201–209 (2011).
Google Scholar
145.
Hastings, A. & Wysham, D. B. Regime shifts in ecological systems can occur with no warning. Ecol. Lett. 13, 464–472 (2010).
PubMed Google Scholar
146.
Boettiger, C. & Hastings, A. Quantifying limits to detection of early warning for critical transitions. J. R. Soc. Interface 9, 2527–2539 (2012).
PubMed PubMed Central Google Scholar
147.
Millar, C. I., Stephenson, N. L. & Stephens, S. L. Climate change and forests of the future: managing in the face of uncertainty. Ecol. Appl. 17, 2145–2151 (2007).
PubMed Google Scholar
148.
Choi, Y. D. Restoration ecology to the future: a call for new paradigm. Restor. Ecol. 15, 351–353 (2007).
Google Scholar
149.
Corlett, R. T. Restoration, reintroduction, and rewilding in a changing world. Trends Ecol. Evol. 31, 453–462 (2016).
PubMed Google Scholar
150.
Sprugel, D. G. Disturbance, equilibrium, and environmental variability: what is ‘Natural’ vegetation in a changing environment? Biol. Conserv. 58, 1–18 (1991).
Google Scholar
151.
Perino, A. et al. Rewilding complex ecosystems. Science 364, eaav5570 (2019).
CAS PubMed Google Scholar
152.
Jackson, S. T. & Hobbs, R. J. Ecological restoration in the light of ecological history. Science 325, 567–569 (2009).
CAS PubMed Google Scholar
153.
Radeloff, V. C. et al. The rise of novelty in ecosystems. Ecol. Appl. 25, 2051–2068 (2015).
PubMed Google Scholar
154.
Truitt, A. M. et al. What is novel about novel ecosystems: managing change in an ever-changing world. Environ. Manag. 55, 1217–1226 (2015).
Google Scholar
155.
Murcia, C. et al. A critique of the ‘novel ecosystem’ concept. Trends Ecol. Evol. 29, 548–553 (2014).
PubMed Google Scholar
156.
Ricciardi, A. & Simberloff, D. Assisted colonization is not a viable conservation strategy. Trends Ecol. Evol. 24, 248–253 (2009).
PubMed Google Scholar
157.
Svenning, J.-C. Proactive conservation and restoration of botanical diversity in the Anthropocene’s “rambunctious garden”. Am. J. Bot. 105, 963–966 (2018).
PubMed Google Scholar
158.
Jepson, P. Recoverable Earth: a twenty-first century environmental narrative. Ambio 48, 123–130 (2019).
PubMed Google Scholar
159.
Hoegh-Guldberg, O. et al. Assisted colonization and rapid climate change. Science 321, 345–346 (2008).
CAS PubMed Google Scholar
160.
van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).
PubMed Google Scholar
161.
Willis, K. J. & MacDonald, G. M. Long-term ecological records and their relevance to climate change predictions for a warmer world. Annu. Rev. Ecol. Evol. Syst. 42, 267–287 (2011).
Google Scholar
162.
Farley, S. S., Dawson, A., Goring, S. J. & Williams, J. W. Situating ecology as a big data science: Current advances, challenges, and solutions. BioScience 68, 563–576 (2018).
Google Scholar
163.
Brown, T. B. et al. Using phenocams to monitor our changing Earth: toward a global phenocam network. Front. Ecol. Environ. 14, 84–93 (2016).
Google Scholar
164.
Clark, J. S. et al. Ecological forecasts: an emerging imperative. Science 293, 657–660 (2001).
CAS PubMed Google Scholar
165.
Dietze, M. C. et al. Iterative near-term ecological forecasting: needs, opportunities, and challenges. Proc. Natl Acad. Sci. USA 115, 1424–1432 (2018).
CAS PubMed Google Scholar
166.
Dietze, M. C. Ecological Forecasting (Princeton Univ. Press, 2017).
167.
Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015).
CAS PubMed Google Scholar
168.
Thomas, S. M., Griffiths, S. W. & Ormerod, S. J. Adapting streams for climate change using riparian broadleaf trees and its consequences for stream salmonids. Freshw. Biol. 60, 64–77 (2015).
Google Scholar
169.
Greenwood, O., Mossman, H. L., Suggitt, A. J., Curtis, R. J. & Maclean, I. M. D. Using in situ management to conserve biodiversity under climate change. J. Appl. Ecol. 53, 885–894 (2016).
PubMed PubMed Central Google Scholar
170.
Carpenter, S. R. & Turner, M. G. Hares and tortoises: interactions of fast and slow variables in ecosystems. Ecosystems 3, 495–497 (2000).
Google Scholar
171.
Harris, I., Jones, P., Osborn, T. & Lister, D. Updated high-resolution grids of monthly climatic observations–the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).
Google Scholar
172.
Bureau of Reclamation Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections: Release of Hydrology Projections, Comparison with Preceding Information, and Summary of User Needs (US Department of the Interior, Bureau of Reclamation, Technical Services Center, 2014).
173.
Delcourt, H. R. & Delcourt, P. A. Quaternary Ecology: A Paleoecological Perspective (Chapman & Hall, 1991).
174.
IPCC in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 1–32 (Cambridge Univ. Press, 2014).
175.
Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).
CAS PubMed Google Scholar
176.
McDowell, P. F., Webb, T. III & Bartlein, P. J. in The Earth as Transformed by Human Action (eds Turner, B. L. II et al.) 143–162 (Cambridge Univ. Press, 1990).
177.
Delcourt, P. A. & Delcourt, H. R. Long-Term Forest Dynamics of the Temperate Zone: A Case Study of Late-Quaternary Forests in Eastern North America (Springer-Verlag, 1987).
178.
Turner, M. G., Dale, V. H. & Gardner, R. H. Predicting across scales: theory development and testing. Landsc. Ecol. 3, 245–252 (1989).
Google Scholar
179.
Kidwell, S. M. Biology in the Anthropocene: challenges and insights from young fossil records. Proc. Natl Acad. Sci. USA 12, 4922–4929 (2015).
Google Scholar
180.
National Research Council Abrupt Climate Change: Inevitable Surprises (National Academy Press, 2002).
181.
Rahmstorf, S. in Encyclopedia of Ocean Sciences (eds Steele, J. et al.) 1–6 (Academic Press, 2001).
182.
Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).
CAS PubMed Google Scholar
183.
Staver, A. C., Archibald, S. & Levin, S. Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states. Ecology 92, 1063–1072 (2011).
PubMed Google Scholar
184.
Andersen, T., Carstensen, J., Hernández-Garcia, E. & Duarte, C. M. Ecological thresholds and regime shifts: approaches to identification. Trends Ecol. Evol. 24, 49–57 (2009).
PubMed Google Scholar
185.
Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).
Google Scholar
186.
Claussen, M. Late Quaternary vegetation-climate feedbacks. Clim. Past 5, 203–216 (2009).
Google Scholar
187.
Liu, Z., Notaro, M. & Gallimore, R. Indirect vegetation-soil moisture feedback with application to Holocene North Africa climate. Glob. Change Biol. 16, 1733–1743 (2010).
Google Scholar More