Expert assessment of future vulnerability of the global peatland carbon sink
1.
Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Change 8, 907–913 (2018).
CAS Article Google Scholar
2.
IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).
3.
Xu, J., Morris, P. J., Liu, J. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena 160, 134–140 (2018).
Article Google Scholar
4.
Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).
Google Scholar
5.
Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).
CAS Article Google Scholar
6.
Frolking, S., Roulet, N. & Fuglestvedt, S. How northern peatlands influence the Earth’s radiative budget: sustained methane emission versus sustained carbon sequestration. J. Geophys. Res. 111, G01008 (2006).
Google Scholar
7.
IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
8.
Frolking, S. et al. Peatlands in the Earth’s 21st century climate system. Environ. Rev. 19, 371–396 (2011).
CAS Article Google Scholar
9.
Kleinen, T., Brovkin, V. & Schuldt, R. J. A dynamic model of wetland extent and peat accumulation: results for the Holocene. Biogeosciences 9, 235–248 (2012).
Article Google Scholar
10.
Müller, J. & Joos, F. Peatland area and carbon over the past 21 000 years – a global process based model investigation. Biogeosci. Discuss. Preprint at https://doi.org/10.5194/bg-2020-110 (2020).
11.
Todd-Brown, K. E. et al. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10, 1717–1736 (2013).
Article Google Scholar
12.
Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).
CAS Article Google Scholar
13.
Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2015).
CAS Article Google Scholar
14.
Miettinen, J., Shi, C. & Liew, S. C. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 6, 67–78 (2016).
Article Google Scholar
15.
Rommain, R. et al. A radiative forcing analysis of tropical peatlands before and after their conversion to agricultural plantations. Glob. Change Biol. 24, 5518–5533 (2018).
Article Google Scholar
16.
Page, S. E. & Baird, A. J. Peatlands and global change: response and resilience. Annu. Rev. Environ. Resour. 41, 35–57 (2016).
Article Google Scholar
17.
Warren, M., Frolking, S., Zhaohua, D. & Kurnianto, S. Impacts of land use, restoration, and climate change on tropical peat carbon stocks in the twenty-first century: implications for climate mitigation. Mitig. Adapt. Strateg. Glob. Chang. 22, 1041–1061 (2017).
Article Google Scholar
18.
Parish F. et al (eds) Assessment on Peatlands, Biodiversity and Climate Change: Main Report (Global Environment Centre and Wetlands International, 2008).
19.
Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1071 (2018).
CAS Article Google Scholar
20.
Nugent, K. A. et al. Prompt active restoration of peatlands substantially reduces climate impact. Environ. Res. Lett. 14, 124030 (2019).
CAS Article Google Scholar
21.
Günther, A. A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 11, 1644 (2020).
Article CAS Google Scholar
22.
Bossio, D. A. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).
Article Google Scholar
23.
Bonn, A. et al. (eds) Peatland Restoration and Ecosystems: Science, Policy, and Practice (Cambridge Univ. Press, 2016).
24.
Seppälä, M. Surface abrasion of palsas by wind action in Finnish Lapland. Geomorphology 52, 141–148 (2003).
Article Google Scholar
25.
Treat, C. et al. Widespread global peatland establishment and persistence over the last 130,000 y. Proc. Natl Acad. Sci. USA 116, 4822–4827 (2019).
CAS Article Google Scholar
26.
Beilman, D. W., MacDonald, G. M., Smith, L. C. & Reimer, P. J. Carbon accumulation in peatlands of West Siberia over the last 2000 years. Global Biogeochem. Cycles 23, GB1012 (2009).
Article CAS Google Scholar
27.
Loisel, J., Gallego-Sala, A. V. & Yu, Z. Global-scale pattern of peatland Sphagnum growth driven by photosynthetically active radiation and growing season length. Biogeosciences 9, 2737–2746 (2012).
CAS Article Google Scholar
28.
Charman, D. J. et al. Climate-related changes in peatland carbon accumulation during the last millennium. Biogeosciences 10, 929–944 (2013).
Article CAS Google Scholar
29.
Jauhiainen, J., Kerojoki, O., Silvennoinen, H., Limin, S. & Vasander, H. Heterotrophic respiration in drained tropical peat is greatly affected by temperature—a passive ecosystem cooling experiment. Environ. Res. Lett. 9, 105013 (2014).
Article CAS Google Scholar
30.
Wang, S., Zhuang, Q., Lähteenoja, O., Draper, F. C. & Cadillo-Quiroz, H. Potential shift from a carbon sink to a source in Amazonian peatlands under a changing climate. Proc. Natl Acad. Sci. USA 115, 12407–12412 (2018).
CAS Article Google Scholar
31.
Sjögersten, S. et al. Temperature response of ex-situ greenhouse gas emissions from tropical peatlands: interactions between forest type and peat moisture conditions. Geoderma 324, 47–55 (2018).
Article CAS Google Scholar
32.
Couwenberg, J., Dommain, R. & Joosten, H. Greenhouse gas fluxes from tropical peatlands in south-east Asia. Glob. Change Biol. 16, 1715–1732 (2010).
Article Google Scholar
33.
Carlson, K. M., Goodman, L. K. & May-Tobin, C. C. Modeling relationships between water table depth and peat soil carbon loss in Southeast Asian plantations. Environ. Res. Lett. 10, 074006 (2015).
Article CAS Google Scholar
34.
Hoyt, A. M. et al. CO2 emissions from an undrained tropical peatland: interacting influences of temperature, shading and water table depth. Glob. Change Biol. 25, 2885–2899 (2019).
Article Google Scholar
35.
Freeman, C., Ostle, N. & Kang, H. An enzymatic ‘latch’ on a global carbon store. Nature 409, 149 (2001).
CAS Article Google Scholar
36.
Lund, M., Christensen, T. R., Lindroth, A. & Schubert, P. Effects of drought conditions on the carbon dioxide dynamics in a temperate peatland. Environ. Res. Lett. 7, 045704 (2012).
Article Google Scholar
37.
Cobb, A. R. et al. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands. Proc. Natl Acad. Sci. USA 114, E5187–E5196 (2017).
CAS Google Scholar
38.
Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 86–90 (2017).
CAS Article Google Scholar
39.
Henman, J. & Poulter, B. Inundation of freshwater peatlands by sea level rise: uncertainty and potential carbon cycle feedbacks. J. Geophys. Res. Atmos. 113, G01011 (2008).
Article CAS Google Scholar
40.
Rogers, K. et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567, 91–96 (2019).
CAS Article Google Scholar
41.
Dommain, R., Couwenberg, J. & Joosten, H. Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quat. Sci. Rev. 30, 999–1010 (2011).
Article Google Scholar
42.
Packalen, M. S. & Finkelstein, S. A. Quantifying Holocene variability in carbon uptake and release since peat initiation in the Hudson Bay Lowlands, Canada. Holocene 24, 1063–1074 (2014).
Article Google Scholar
43.
Grundling P.-L. The role of sea-level rise in the formation of peatlands in Maputaland. Boletim Geológico (Ministerio dos Recursos Minerais e Energia, Direccao Geral de Geologia Mozambique) 43, 58–67 (2004).
44.
Kirwan, M. L. & Mudd, S. M. Response of salt-marsh carbon accumulation to climate change. Nature 489, 550–553 (2012).
CAS Article Google Scholar
45.
Briggs, J. et al. Influence of climate and hydrology on carbon in an early Miocene peatland. Earth Planet. Sci. Lett. 253, 445–454 (2007).
CAS Article Google Scholar
46.
Lähteenoja, O. et al. The large Amazonian peatland carbon sink in the subsiding Pastaza-Marañón foreland basin, Peru. Glob. Change Biol. 18, 164–178 (2012).
Article Google Scholar
47.
Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9, 1053–1071 (2012).
CAS Article Google Scholar
48.
Whittle, A. & Gallego-Sala, A. V. Vulnerability of the peatland carbon sink to sea-level rise. Sci. Rep. 6, 28758 (2016).
CAS Article Google Scholar
49.
Blankespoor, B., Dasgupta, S. & Laplante, B. Sea-level rise and coastal wetlands. Ambio 43, 996–1005 (2014).
Article Google Scholar
50.
Spencer, T. et al. Global coastal wetland change under sea-level rise and related stresses: the DIVA Wetland Change Model. Glob. Planet. Change 139, 15–30 (2016).
Article Google Scholar
51.
Zuidhoff, F. S. & Kolstrup, E. Changes in palsa distribution in relation to climate change in Laivadalen, northern Sweden, especially 1960–1997. Permafr. Periglac. Process. 11, 55–69 (2000).
Article Google Scholar
52.
Payette, S., Delwaide, A., Caccianiga, M. & Beauchemin, M. Accelerated thawing of subarctic peatland permafrost over the last 50 years. Geophys. Res. Lett. 31, L18208 (2004).
Article Google Scholar
53.
Borge, A. F., Westermann, S., Solheim, I. & Etzelmüller, B. Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years. Cryosphere 11, 1–16 (2017).
Article Google Scholar
54.
Cooper, M. D. A. et al. Limited contribution of permafrost carbon to methane release from thawing peatlands. Nat. Clim. Change 7, 507–511 (2017).
CAS Article Google Scholar
55.
Bubier, J., Moore, T., Bellisario, L., Comer, N. T. & Crill, P. M. Ecological controls on methane emissions from a Northern Peatland Complex in the zone of discontinuous permafrost, Manitoba, Canada. Global Biogeochem. Cycles 9, 455–470 (1995).
CAS Article Google Scholar
56.
Christensen, T. R. et al. Thawing sub-arctic permafrost: effects on vegetation and methane emissions. Geophys. Res. Lett. 31, L04501 (2004).
Article CAS Google Scholar
57.
Olefeldt, D., Turetsky, M. R., Crill, P. M. & McGuire, A. D. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones. Glob. Change Biol. 19, 589–603 (2013).
Article Google Scholar
58.
O’Donnell, J. A. et al. The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland. Ecosystems 15, 213–229 (2012).
Article CAS Google Scholar
59.
Jones, M. C. et al. Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands. Glob. Change Biol. 23, 1109–1127 (2017).
Article Google Scholar
60.
Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).
CAS Article Google Scholar
61.
Jones, M. C., Grosse, G., Jones, B. M. & Walter Anthony, K. Peat accumulation in drained thermokarst lake basins in continuous, ice‐rich permafrost, northern Seward Peninsula, Alaska. J. Geophys. Res. Biogeosci. 117, G00M07 (2012).
Google Scholar
62.
Walter Anthony, K. M. et al. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511, 452–456 (2014).
Article CAS Google Scholar
63.
Turetsky, M. R., Wieder, R. K., Vitt, D. H., Evans, R. J. & Scott, K. D. The disappearance of relict permafrost in boreal North America: effects on peatland carbon storage and fluxes. Glob. Change Biol. 13, 1922–1934 (2007).
Article Google Scholar
64.
Rossi, S. et al. FAOSTAT estimates of greenhouse gas emissions from biomass and peat fires. Climatic Change 135, 699–711 (2016).
CAS Article Google Scholar
65.
Page, S. E. et al. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61–65 (2002).
CAS Article Google Scholar
66.
Field, R. D. et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proc. Natl Acad. Sci. USA 113, 9204–9209 (2016).
CAS Article Google Scholar
67.
Gaveau, D. L. A. et al. Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires. Sci. Rep. 4, 6112 (2014).
CAS Article Google Scholar
68.
Lyu, Z. et al. The role of environmental driving factors in historical and projected carbon dynamics of wetland ecosystems in Alaska. Ecol. Appl. 28, 1377–1395 (2018).
Article Google Scholar
69.
Gibson, C. M. et al. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Commun. 9, 3041 (2018).
Article CAS Google Scholar
70.
Dadap, N. C., Cobb, A. R., Hoyt, A. M., Harvey, C. F. & Konings, A. G. Satellite soil moisture observations predict burned area in Southeast Asian peatlands. Environ. Res. Lett. 14, 094014 (2019).
Article Google Scholar
71.
Zaccone, C. et al. Smouldering fire signatures in peat and their implications for palaeoenvironmental reconstructions. Geochim. Cosmochim. Acta 137, 134–146 (2014).
CAS Article Google Scholar
72.
Kettridge, N. et al. Burned and unburned peat water repellency: implications for peatland evaporation following wildfire. J. Hydrol. 513, 335–341 (2014).
Article Google Scholar
73.
Koh, L. P., Miettinen, J., Liew, S. C. & Ghazoul, J. Remotely sensed evidence of tropical peatland conversion to oil palm. Proc. Natl Acad. Sci. USA 108, 5127–5132 (2011).
CAS Article Google Scholar
74.
Rooney, R. C., Bayley, S. E. & Schindler, D. W. Oil sands mining and reclamation cause massive loss of peatland and stored carbon. Proc. Natl Acad. Sci. USA 109, 4933–4937 (2012).
CAS Article Google Scholar
75.
Turunen, J. Development of Finnish peatland area and carbon storage 1950–2000. Boreal Environ. Res. 13, 319–334 (2008).
CAS Google Scholar
76.
Wild, B. et al. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost. Proc. Natl Acad. Sci. USA 116, 10280–10285 (2019).
CAS Article Google Scholar
77.
Hoyt, A. M., Chaussard, E., Seppalainen, S. S. & Harvey, C. F. Widespread subsidence and carbon emissions across Southeast Asian peatlands. Nat. Geosci. 13, 435–440 (2020).
CAS Article Google Scholar
78.
Tuittila, E.-S. et al. Methane dynamics of a restored cut-away peatland. Glob. Change Biol. 6, 569–581 (2000).
Article Google Scholar
79.
Waddington, J. M. & Day, S. M. Methane emissions from a peatland following restoration. J. Geophys. Res. Biogeosci. 112, G03018 (2007).
Article CAS Google Scholar
80.
Vet, R. et al. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos. Environ. 93, 3–100 (2014).
CAS Article Google Scholar
81.
Dentener, F. et al. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochem. Cycles 20, GB4003 (2006).
Article CAS Google Scholar
82.
Bubier, J. L., Moore, T. R. & Bledzki, L. A. Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Glob. Change Biol. 13, 1168–1186 (2007).
Article Google Scholar
83.
Juutinen, S. et al. Responses of mosses Sphagnum capillifolium and Polytrichum strictum to nitrogen deposition in a bog: height growth, ground cover, and CO2 exchange. Botany 94, 127–138 (2016).
CAS Article Google Scholar
84.
Wieder, R. K. et al. Experimental nitrogen addition alters structure and function of a boreal bog: critical load and thresholds revealed. Ecol. Monogr. 89, e01371 (2019).
Article Google Scholar
85.
Limpens, J. et al. Climatic modifiers of the response to nitrogen deposition in peat-forming Sphagnum mosses: a meta-analysis. New Phytol. 191, 496–507 (2011).
CAS Article Google Scholar
86.
Larmola, T. et al. Vegetation feedbacks of nutrient deposition lead to a weaker carbon sink in an ombrotrophic bog. Glob. Change Biol. 19, 3729–3739 (2013).
Article Google Scholar
87.
Pinsonneault, A. J., Moore, T. R. & Roulet, N. T. Effects of long-term fertilization on peat stoichiometry and associated microbial enzyme activity in an ombrotrophic bog. Biogeochemistry 129, 149–164 (2016).
CAS Article Google Scholar
88.
Bragazza, L. et al. Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc. Natl Acad. Sci. USA 103, 19386–19389 (2006).
CAS Article Google Scholar
89.
Juutinen, S. et al. Long-term nutrient addition increased CH4 emission from a bog through direct and indirect effects. Sci. Rep. 8, 3838 (2018).
Article CAS Google Scholar
90.
Olid, C., Nilsson, M. B., Eriksson, T. & Klaminder, J. The effects of temperature and nitrogen and sulfur additions on carbon accumulation in a nutrient-poor boreal mire: decadal effects assessed using 210Pb peat chronologies. J. Geophys. Res. Biogeosci. 119, 392–403 (2014).
CAS Article Google Scholar
91.
Alexandrov, G. A., Brovkin, V. A., Kleinen, T. & Yu, Z. The capacity of northern peatlands for long-term carbon sequestration. Biogeosciences 17, 47–54 (2020).
CAS Article Google Scholar
92.
Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
CAS Article Google Scholar
93.
Christensen, T. R., Arora, V. K., Gauss, M., Höglund-Isaksson, L. & Parmentier, F.-J. W. Tracing the climate signal: mitigation of anthropogenic methane emissions can outweigh a large Arctic natural emission increase. Sci. Rep. 9, 1146 (2019).
Article CAS Google Scholar
94.
Mach, K. J., Mastrandrea, M. D., Freeman, P. T. & Field, C. B. Unleashing expert judgment in assessment. Glob. Environ. Change 44, 1–14 (2017).
Article Google Scholar
95.
Schuur, E. A. G. et al. Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change 119, 359–374 (2013).
CAS Article Google Scholar
96.
Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P. & Cooke, R. M. Ice sheet contributions to future sea-level rise from structured expert judgment. Proc. Natl Acad. Sci. USA 116, 11195–11200 (2019).
CAS Article Google Scholar More