Cyanobacterial blooms contribute to the diversity of antibiotic-resistance genes in aquatic ecosystems
1.
Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008).
CAS PubMed Article Google Scholar
2.
Ma, J. & Li, H. Preliminary discussion on eutrophication status of lakes, reservoirs and reivers in China and overseas. Resour. Environ. Yangtze Val. 11, 575–578 (2002).
CAS Google Scholar
3.
Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).
CAS PubMed Article Google Scholar
4.
Paerl, H. W. Transfer of N2 and CO2 fixation products from Anabaena oscillarioides to associated bacteria during inorganic carbon sufficiency and deficiency. J. Phycol. 20, 600–608 (1984).
CAS Article Google Scholar
5.
Danillo, O. A., Marli, F. F. & Alessandro, M. V. A metagenomic approach to cyanobacterial genomics. Front. Microbiol. 8, 809–824 (2017).
Article Google Scholar
6.
Schindler, W. D. Eutrophication and recovery in experimental lakes: Implications for lake management. Science 184, 897–899 (1974).
CAS PubMed Article Google Scholar
7.
Zhou, J. et al. Phycosphere microbial succession patterns and assembly mechanisms in a marine Dinoflagellate bloom. Appl. Environ. Microbiol. 85, e00349–19 (2019).
CAS PubMed PubMed Central Google Scholar
8.
Codd, G. A., Lindsay, J., Young, F. M., Morrison, L. F. & Metcalf, J. S. Harmful cyanobacteria. In: Harmful Cyanobacteria. Aquatic Ecology Series (eds Huisman J., Matthijs H. C. & Visser P. M.). Vol. 3, 1–23 (Springer Netherlands: Dordrecht, The Netherlands,2005).
9.
Christoffersen, K. & Kaas, H. Toxic cyanobacteria in water. A guide to their public health consequences, monitoring, and management. Limnol. Oceanogr. 45, 1212–1212 (2000).
Article Google Scholar
10.
Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
Article Google Scholar
11.
Zhu, Y. G. et al. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat. Microbiol. 2, 16270 (2017).
CAS PubMed Article PubMed Central Google Scholar
12.
Laxminarayan, R. et al. Antibiotic resistance—the need for global solutions. Lancet Infect. Dis. 13, 1057–1098 (2013).
PubMed Article PubMed Central Google Scholar
13.
El-Tahawy, A. T. A. The crisis of antibiotic-resistance in bacteria. Saudi. Med. J. 25, 837–842 (2004).
PubMed PubMed Central Google Scholar
14.
Tripathi, V. & Tripathi, P. in Perspectives in Environmental Toxicology. Environmental Science and Engineering. (ed. Kesari, K.) 183–201 (Springer, Cham: Cham, Switzerland, 2017).
15.
Gorokhova, E. et al. Bacteria-mediated effects of antibiotics on Daphnia nutrition. Environ. Sci. Technol. 49, 5779–5787 (2015).
CAS PubMed Article PubMed Central Google Scholar
16.
Willing, B. P., Russell, S. L. & Finlay, B. B. Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat. Rev. Microbiol. 9, 233–243 (2011).
CAS PubMed Article Google Scholar
17.
Garcia-Armisen, T. et al. Antimicrobial resistance of heterotrophic bacteria in sewage-contaminated rivers. Water Res. 45, 788–796 (2011).
CAS PubMed Article Google Scholar
18.
Czekalski, N., Sigdel, R., Birtel, J., Matthews, B. & Bürgmann, H. Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes. Environ. Int. 81, 45–55 (2015).
CAS PubMed Article Google Scholar
19.
Bondarczuk, K., Markowicz, A. & Piotrowska-Seget, Z. The urgent need for risk assessment on the antibiotic resistance spread via sewage sludge land application. Environ. Int. 87, 49–55 (2016).
CAS PubMed Article Google Scholar
20.
Holger, H. & Kornelia, S. Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environ. Microbiol. 9, 657–666 (2010).
Google Scholar
21.
Baquero, F., Martinez, J. L. & Canton, R. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 19, 260–265 (2008).
CAS PubMed Article PubMed Central Google Scholar
22.
Xi, C. et al. Prevalence of antibiotic resistance in drinking water treatment and distribution systems. Appl. Environ. Microbiol. 75, 5714–5718 (2009).
CAS PubMed PubMed Central Article Google Scholar
23.
Witte, W. Ecological impact of antibiotic use in animals on different complex microflora: environment. Int. J. Antimicrob. Agents 14, 321–325 (2000).
CAS PubMed Article PubMed Central Google Scholar
24.
Feng, J. L. et al. Identification and characterization of integron-associated antibiotic resistant Laribacter hongkongensis isolated from aquatic products in China. Int. J. Food Microbiol. 144, 337–341 (2011).
CAS PubMed Article PubMed Central Google Scholar
25.
Luo, Y. et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environ. Sci. Technol. 44, 7220–7225 (2010).
PubMed Article CAS PubMed Central Google Scholar
26.
Guo, Y. et al. The antibiotic resistome of free-living and particle-attached bacteria under a reservoir cyanobacterial bloom. Environ. Int. 117, 107–115 (2018).
CAS PubMed Article PubMed Central Google Scholar
27.
Song, H. et al. Allelopathic interactions of linoleic acid and nitric oxide increase the competitive ability of Microcystis aeruginosa. ISME J. 11, 1865–1876 (2017).
CAS PubMed PubMed Central Article Google Scholar
28.
Zhang, Z. et al. Alteration of dominant cyanobacteria in different bloom periods caused by abiotic factors and species interactions. J. Environ. Sci. 99, 1–9 (2021).
Article Google Scholar
29.
Zhang, Q. et al. The fungicide azoxystrobin perturbs the gut microbiota community and enriches antibiotic resistance genes in Enchytraeus crypticus. Environ. Int. 131, 104965 (2019).
CAS PubMed Article PubMed Central Google Scholar
30.
Zhu, D. et al. Antibiotics disturb the microbiome and increase the incidence of resistance genes in the gut of a common soil collembolan. Environ. Sci. Technol. 52, 3081–3090 (2018).
CAS PubMed Article Google Scholar
31.
Zhu, D. et al. Exposure of a soil collembolan to Ag nanoparticles and AgNO3 disturbs its associated microbiota and lowers the incidence of antibiotic resistance genes in the gut. Environ. Sci. Technol. 52, 12748–12756 (2018).
CAS PubMed Article Google Scholar
32.
Chen, Q. L. et al. Application of struvite alters the antibiotic resistome in soil, rhizosphere, and phyllosphere. Environ. Sci. Technol. 51, 8149–8157 (2017).
CAS PubMed Article Google Scholar
33.
Shi, K. et al. Long-term MODIS observations of cyanobacterial dynamics in Lake Taihu: Responses to nutrient enrichment and meteorological factors. Sci. Rep. 7, 40326 (2017).
CAS PubMed PubMed Central Article Google Scholar
34.
Zhang, M. et al. Feedback regulation between aquatic microorganisms and the bloom-forming cyanobacterium Microcystis aeruginosa. Appl. Environ. Microbiol. 85, e01362–19 (2019).
CAS PubMed PubMed Central Google Scholar
35.
Scheibner, M. V. et al. Impact of warming on phyto-bacterioplankton coupling and bacterial community composition in experimental mesocosms. Environ. Microbiol. 16, 718–733 (2014).
Article Google Scholar
36.
Woodhouse, J. N. et al. Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake. ISME J. 10, 1337–1351 (2016).
CAS PubMed Article Google Scholar
37.
Martin, U. et al. PHI-base: a new interface and further additions for the multi-species pathogen–host interactions database. Nucleic Acids Res. 45, 604–610 (2016).
Google Scholar
38.
Chen, H., Jing, L., Yao, Z., Meng, F. & Teng, Y. Prevalence, source and risk of antibiotic resistance genes in the sediments of Lake Tai (China) deciphered by metagenomic assembly: a comparison with other global lakes. Environ. Int. 127, 267–275 (2019).
CAS PubMed Article Google Scholar
39.
Zhang, Y., Sua, Y., Liu, Z., Yua, J. & Jina, M. Lipid biomarker evidence for determining the origin and distribution of organic matter in surface sediments of Lake Taihu, Eastern China. Ecol. Indic. 77, 397–408 (2017).
CAS Article Google Scholar
40.
Jothikumar, N., Kahler, A., Strockbine, N., Gladney, L. & Hill, V. R. Draft genome sequence of Buttiauxella agrestis, isolated from surface water. Genome Announc. 2, e01060–14 (2014).
PubMed PubMed Central Google Scholar
41.
Igbinosa, H. I. Antibiogram profiling and pathogenic status of Aeromonas species recovered from chicken. Saudi J. Biol. Sci. 21, 481–485 (2014).
CAS PubMed PubMed Central Article Google Scholar
42.
Nguyen, H. N. K. et al. Molecular characterization of antibiotic resistance in Pseudomonas and Aeromonas isolates from catfish of the Mekong Delta, Vietnam. Vet. Microbiol. 171, 397–405 (2014).
CAS PubMed Article Google Scholar
43.
Gaze, W. H. et al. Impacts of anthropogenic activity on the ecology of class 1 integrons and integron-associated genes in the environment. ISME J. 5, 1253–1261 (2011).
CAS PubMed PubMed Central Article Google Scholar
44.
Gillings, M. et al. The evolution of class 1 integrons and the rise of antibiotic resistance. J. Bacteriol. 190, 5095–5100 (2008).
CAS PubMed PubMed Central Article Google Scholar
45.
Partridge, S. R., Tsafnat, G., Coiera, E. & Iredell, J. R. Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol. Rev. 33, 757–784 (2009).
CAS PubMed Article Google Scholar
46.
Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).
CAS PubMed Article Google Scholar
47.
Louati, I. et al. Correction: structural diversity of bacterial communities associated with bloom-forming freshwater cyanobacteria differs according to the cyanobacterial genus. PLoS ONE 10, e0140614 (2015).
PubMed PubMed Central Article CAS Google Scholar
48.
Dias, E. et al. Assessing the antibiotic susceptibility of freshwater Cyanobacteria spp. Front. Microbiol. 6, 799 (2015).
PubMed PubMed Central Article Google Scholar
49.
Dias, E., Oliveira, M., Manageiro, V., Vasconcelos, V. & Caniça, M. Deciphering the role of cyanobacteria in water resistome: Hypothesis justifying the antibiotic resistance (phenotype and genotype) in Planktothrix genus. Sci. Total. Environ. 652, 447–454 (2018).
CAS PubMed Article Google Scholar
50.
Vaz-Moreira, I., Nunes, O. C. & Manaia, C. M. Bacterial diversity and antibiotic resistance in water habitats: searching the links with the human microbiome. FEMS Microbiol. Rev. 38, 761–778 (2014).
CAS PubMed Article PubMed Central Google Scholar
51.
Cox, G. & Wright, G. D. Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int. J. Med. Microbiol. 303, 287–292 (2013).
CAS PubMed Article PubMed Central Google Scholar
52.
Myklestad, S. M. in Marine Chemistry. The Handbook of Environmental Chemistry. (eds Wangersky, P. J.) Vol. 5 Series: Water Pollution, vol 5D. 111–148 (Springer: Berlin, Heidelberg, Germany, 2000).
53.
Pancrace, C. et al. Rearranged biosynthetic gene cluster and synthesis of Hassallidin E in Planktothrix serta PCC 8927. ACS Chem. Biol. 12, 1796–1804 (2017).
CAS PubMed Article PubMed Central Google Scholar
54.
Zhao, Y. et al. Feed additives shift gut microbiota and enrich antibiotic resistance in swine gut. Sci. Total. Environ. 621, 1224–1232 (2018).
CAS PubMed Article PubMed Central Google Scholar
55.
Peng, S., Feng, Y., Wang, Y., Guo, X. & Lin, X. Prevalence of antibiotic resistance genes in soils after continually applied with different animal manure for 30 years. J. Hazard. Mater. 340, 16–25 (2017).
CAS PubMed Article PubMed Central Google Scholar
56.
Szekeres, E. et al. Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals. Environ. Pollut. 225, 304–315 (2017).
CAS PubMed Article PubMed Central Google Scholar
57.
Zhu, L. et al. Bacterial Communities associated with four cyanobacterial genera display structural and functional differences: evidence from an experimental approach. Front. Microbiol. 7, 1662 (2016).
PubMed PubMed Central Google Scholar
58.
Dantas, G., Sommer, M. O. A., Oluwasegun, R. D. & Church, G. M. Bacteria subsisting on antibiotics. Science 320, 100–103 (2008).
CAS PubMed Article PubMed Central Google Scholar
59.
D’Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).
PubMed Article CAS PubMed Central Google Scholar
60.
Sun, D. L., Jiang, X., Wu, Q. L. & Zhou, N. Y. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Appl. Environ. Microbiol. 79, 5962 (2013).
CAS PubMed PubMed Central Article Google Scholar
61.
Ouyang, W. Y., Huang, F. Y., Zhao, Y., Li, H. & Su, J. Q. Increased levels of antibiotic resistance in urban stream of Jiulongjiang River, China. Appl. Microbiol. Biotechnol. 99, 5697–5707 (2015).
CAS PubMed Article PubMed Central Google Scholar
62.
Qian, H. F. et al. Bio-safety assessment of validamycin formulation on bacterial and fungal biomass in soil monitored by real-time PCR. B. Environ. Contam. Tox. 78, 239–244 (2007).
CAS Article Google Scholar More