Late Quaternary range shifts of marcescent oaks unveil the dynamics of a major biogeographic transition in southern Europe
1.
Hufkens, K., Scheunders, P. & Ceulemans, R. Ecotones in vegetation ecology: Methodologies and definitions revisited. Ecol. Res. 24, 977–986 (2009).
Article Google Scholar
2.
De Dios, R. S., Benito-Garzón, M. & Sainz-Ollero, H. Hybrid zones between two European oaks: A plant community approach. Plant Ecol. 187, 109–125 (2006).
Article Google Scholar
3.
Anderson, E. & Stebbins, G. L. Jr. Hybridization as an evolutionary stimulus. Evolution 8, 378–388 (1954).
Article Google Scholar
4.
Arnold, M. L. Natural hybridization as an evolutionary process. Annu. Rev. Ecol. Syst. 23, 237–261 (1992).
Article Google Scholar
5.
Risser, P. G. Ecotones at local to regional scales from around the world. Ecol. Appl. 3, 367–368 (1993).
PubMed Article PubMed Central Google Scholar
6.
Weaver, J. E. & Albertson, F. W. Grasslands of the Great Plains (Johnsen Pub Co, Lincoln, 1956).
Google Scholar
7.
Rivas-Martínez, S., Penas, A., del Río, S., González, T. & Rivas-Sáenz, S. Bioclimatology of the Iberian Peninsula and the Balearic Islands. In The Vegetation of the Iberian Peninsula (ed. Loidi, J.) 29–80 (Springer, Berlin, 2017).
Google Scholar
8.
García-Mijangos, I., Campos, J. A., Biurrun, I., Herrera, M. & Loidi, J. Marcescent forests of the Iberian Peninsula floristic and climatic characterization. In Warm-Temperate Deciduous Forests around the Northern Hemisphere (eds Box, E. O. & Fujiwara, K.) 119–138 (Springer, Berlin, 2015).
Google Scholar
9.
Tschan, G. F. & Denk, T. Trichome types, foliar indumentum and epicuticular wax in the Mediterranean gall oaks, Quercus subsection Galliferae (Fagaceae): Implications for taxonomy, ecology and evolution. Bot. J. Linn. Soc. 169, 611–644 (2012).
Article Google Scholar
10.
Otto, C. & Nilsson, L. M. Why do beech and oak trees retain leaves until spring?. Oikos 37, 387–390 (1981).
CAS Article Google Scholar
11.
De Dios, R. S., Benito-Garzón, M. & Sainz-Ollero, H. Present and future extension of the Iberian submediterranean territories as determined from the distribution of marcescent oaks. Plant Ecol. 204, 189–205 (2009).
Article Google Scholar
12.
Greenwood, D. R. Leaf form and the reconstruction of past climates. New Phytol. 166, 355–357 (2005).
PubMed Article PubMed Central Google Scholar
13.
Svenning, J. C. Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecol. Lett. 6, 646–653 (2003).
Article Google Scholar
14.
Rodríguez-Sánchez, F. & Arroyo, J. In Climate change, ecology and systematics Vol. 78 (eds T. R. Hodkinson, M. B. Jones, S. Waldren, & J. A. Parnell) Ch. 13, 280–303 (Cambridge University Press, 2011).
15.
Lowe, J. J. & Walker, M. J. Reconstructing Quaternary Environments (Longman, London, 1984).
Google Scholar
16.
Carrión, J. S. et al. Expected trends and surprises in the Lateglacial and Holocene vegetation history of the Iberian Peninsula and Balearic Islands. Rev. Palaeobot. Palynol. 162, 458–475 (2010).
Article Google Scholar
17.
Muthreich, F., Zimmermann, B., Birks, H. J. B., Vila-Viçosa, C. M. & Seddon, A. W. R. Chemical variations in Quercus pollen as a tool for taxonomic identification: Implications for long-term ecological and biogeographical research. J. Biogeogr. https://doi.org/10.1111/jbi.13817 (2020).
Article Google Scholar
18.
Tzedakis, P. Vegetation change through glacial—Interglacial cycles: A long pollen sequence perspective. Phil. Trans. R. Soc. Lond. B 345, 403–432 (1994).
ADS Article Google Scholar
19.
Svenning, J.-C., Fløjgaard, C., Marske, K. A., Nógues-Bravo, D. & Normand, S. Applications of species distribution modeling to paleobiology. Quatern. Sci. Rev. 30, 2930–2947 (2011).
ADS Article Google Scholar
20.
Maguire, K. C., Nieto-Lugilde, D., Fitzpatrick, M. C., Williams, J. W. & Blois, J. L. Modeling species and community responses to past, present, and future episodes of climatic and ecological change. Ann. Rev. Ecol. Evol. System. 46, 343–368 (2015).
Article Google Scholar
21.
Forester, B. R., DeChaine, E. G. & Bunn, A. G. Integrating ensemble species distribution modelling and statistical phylogeography to inform projections of climate change impacts on species distributions. Divers. Distrib. 19, 1480–1495 (2013).
Article Google Scholar
22.
Benito-Garzón, M., Sánchez de Dios, R. & Sáinz Ollero, H. Predictive modelling of tree species distributions on the Iberian Peninsula during the Last Glacial Maximum and Mid-Holocene. Ecography 30, 120–134 (2007).
Article Google Scholar
23.
Ward, A. Fog at North Front, Gibraltar. Meteorol. Mag 81, 272–279 (1952).
Google Scholar
24.
Wheeler, D. Factors governing sunshine in south-west Iberia: A review of Western Europe’s sunniest region. Weather 56, 189–197 (2001).
ADS Article Google Scholar
25.
Médail, F. & Diadema, K. Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J. Biogeogr. 36, 1333–1345 (2009).
Article Google Scholar
26.
Walas, Ł et al. Past, present, and future geographic range of an oro-Mediterranean Tertiary relict: The juniperus drupacea case study. Reg. Environ. Change 19, 1507–1520 (2019).
Article Google Scholar
27.
Blanco-Castro, E. et al. Los bosques ibéricos. Una interpretación geobotánica, 597 (Editorial Planeta, Barcelona, Spain, 2005).
28.
Díaz-González, T. E. & Penas, Á. The High Mountain Area of Northwestern Spain: The Cantabrian Range, the Galician-Leonese Mountains and the Bierzo Trench. In The Vegetation of the Iberian Peninsula (ed. Loidi, J.) 251–321 (Springer, Berlin, 2017).
Google Scholar
29.
Amigo, J., Rodríguez-Guitián, M. A., Honrado, J. J. P. & Alves, P. The Lowlands and Midlands of Northwestern Atlantic Iberia. In The Vegetation of the Iberian Peninsula (ed. Loidi, J.) 191–250 (Springer, Berlin, 2017).
Google Scholar
30.
Vila-Viçosa, C. et al. Syntaxonomic update on the relict groves of Mirbeck’s oak (Quercus canariensis Willd. and Q. marianica C. Vicioso) in southern Iberia. Plant Biosyst. 149, 512–526. https://doi.org/10.1080/11263504.2015.1040484 (2015).
Article Google Scholar
31.
Mauri, A., Davis, B., Collins, P. & Kaplan, J. The climate of Europe during the Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation. Quatern. Sci. Rev. 112, 109–127 (2015).
ADS Article Google Scholar
32.
Vila-Viçosa, C., Vázquez, F. M., Meireles, C. & Pinto-Gomes, C. Taxonomic peculiarities of marcescent oaks (Quercus, Fagaceae) in southern Portugal. Lazaroa 35, 139–153. https://doi.org/10.5209/rev_LAZA.2014.v35.42555 (2014).
Article Google Scholar
33.
Vicioso, C. Revisión del Género Quercus en España (Tipografía Artítica, Caligrafia, 1950).
Google Scholar
34.
Vázquez, F. M. et al. Anotaciones a la nomenclatura del género Quercus L., (FAGACEAE) en la Península Ibérica y NW de África. Folia Botánica Extremadurensis 12, 5–79 (2018).
Google Scholar
35.
Ülker, E. D., Tavşanoğlu, Ç. & Perktaş, U. Ecological niche modelling of pedunculate oak (Quercus robur) supports the ‘expansion–contraction’ model of Pleistocene biogeography. Biol. J. Lin. Soc. 123, 338–347 (2017).
Article Google Scholar
36.
Hipp, A. L. Should hybridization make us skeptical of the oak phylogeny. Int. Oak J. 26, 9–18 (2015).
Google Scholar
37.
McVay, J. D., Hipp, A. L. & Manos, P. S. A genetic legacy of introgression confounds phylogeny and biogeography in oaks. Proc. R. Soc. B 284, 20170300 (2017).
PubMed Article CAS PubMed Central Google Scholar
38.
Loidi, J. Introduction to the Iberian Peninsula, General Features: Geography, Geology, Name, Brief History, Land Use and Conservation. In The Vegetation of the Iberian Peninsula (ed. Loidi, J.) 3–27 (Springer, Berlin, 2017).
Google Scholar
39.
Rodríguez-Sánchez, F., Hampe, A., Jordano, P. & Arroyo, J. Past tree range dynamics in the Iberian Peninsula inferred through phylogeography and palaeodistribution modelling: a review. Rev. Palaeobot. Palynol. 162, 507–521 (2010).
Article Google Scholar
40.
Aedo, C., Buira, A., Medina, L. & Fernández-Albert, M. The Iberian vascular Flora: Richness, endemicity and distribution patterns. In The Vegetation of the Iberian Peninsula (ed. Loidi, J.) 101–130 (Springer, Berlin, 2017).
Google Scholar
41.
Denk, T., Grimm, G. W., Manos, P. S., Deng, M. & Hipp, A. L. An updated infrageneric classification of the oaks: Review of previous taxonomic schemes and synthesis of evolutionary patterns. bioRxiv https://doi.org/10.1101/168146 (2017).
42.
Gürke, M. In Plantae Europaeae [Enumeratio systematica et synonymica plantarum phanerogamicarum in Europa sponte crescentium vel mere inquilinarum] Vol. 2 (ed K. Richter) Ch. XXIX, 54–72 (Engelmann, 1897).
43.
Rivas-Martínez, S. & Saénz, C. Enumeración de los Quercus de la Península Ibérica. Rivasgodaya 6, 101–110 (1991).
Google Scholar
44.
Vasconcellos, J. C. & Franco, J. A. Os Carvalhos de Portugal. Anais do Instituto Superior de Agronomia 21, 1–135 (1954).
Google Scholar
45.
Schwarz, O. In Flora Europaea Vol. 1 (ed Tutin TG et al.) Ch. 36, 72–76 (Cambridge University Press, 1993).
46.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. https://doi.org/10.1002/joc.1276 (2005).
Article Google Scholar
47.
Goberville, E., Beaugrand, G., Hautekèete, N. C., Piquot, Y. & Luczak, C. Uncertainties in the projection of species distributions related to general circulation models. Ecol. Evol. 5, 1100–1116 (2015).
PubMed PubMed Central Article Google Scholar
48.
Cobos, M. E., Peterson, A. T., Osorio-Olvera, L. & Jiménez-García, D. An exhaustive analysis of heuristic methods for variable selection in ecological niche modeling and species distribution modeling. Ecol. Inform. 53, 100983 (2019).
Article Google Scholar
49.
Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD–a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).
Article Google Scholar
50.
Guisan, A., Edwards, T. C. Jr. & Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 157, 89–100 (2002).
Article Google Scholar
51.
Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).
Article Google Scholar
52.
Elith, J., Graham, C., Anderson, R., Dudık, M. & Ferrier, S. Novel methods improve prediction of species’ distribution models. Ecography 32, 66–77 (2006).
Article Google Scholar
53.
van Proosdij, A. S., Sosef, M. S., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542–552 (2016).
Article Google Scholar
54.
Freeman, E. A. & Moisen, G. G. A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecol. Model. 217, 48–58. https://doi.org/10.1016/j.ecolmodel.2008.05.015 (2008).
Article Google Scholar
55.
Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324 (2010).
PubMed Article PubMed Central Google Scholar
56.
Peterson, A. T. Ecological niche conservatism: A time-structured review of evidence. J. Biogeogr. 38, 817–827 (2011).
Article Google Scholar
57.
Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).
Article Google Scholar
58.
Boccard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, Berlin, 2011).
Google Scholar More
