3-D ocean particle tracking modeling reveals extensive vertical movement and downstream interdependence of closed areas in the northwest Atlantic
1.
Dullo, W. C., Flögel, S. & Rüggeberg, A. Cold-water coral growth in relation to the hydrography of the Celtic and Nordic European continental margin. Mar. Ecol. Prog. Ser. 371, 165–176 (2008).
ADS Article Google Scholar
2.
Puerta, P. et al. Influence of water masses on the biodiversity and biogeography of deep-sea benthic ecosystems in the North Atlantic. Front. Mar. Sci. 7, 239. https://doi.org/10.3389/fmars.2020.00239 (2020).
Article Google Scholar
3.
Davies, A. J. & Guinotte, J. M. Global habitat suitability for framework-forming cold-water corals. PLoS ONE 6(4), e18483. https://doi.org/10.1371/journal.pone.0018483 (2011).
ADS CAS Article PubMed PubMed Central Google Scholar
4.
Davies, A. J. et al. Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef Complex. Limnol. Oceanogr. 54, 620–629 (2009).
ADS Article Google Scholar
5.
Xu, G., McGillicuddy, D. J. Jr., Mills, S. W. & Mullineaux, L. S. Dispersal of hydrothermal vent larvae at East Pacific rise 9–10° N segment. J. Geophys. Res. Oceans 123, 7877–7895 (2018).
ADS Article Google Scholar
6.
Bracco, A., Liu, G., Galaska, M., Quattrini, A. M. & Herrera, S. Integrating physical circulation models and genetic approaches to investigate population connectivity in deep-sea corals. J. Mar. Syst. 198, 103189. https://doi.org/10.1016/j.jmarsys.2019.103189 (2019).
Article Google Scholar
7.
Kenchington, E. et al. Connectivity modelling of areas closed to protect vulnerable marine ecosystems in the northwest Atlantic. Deep Sea Res. I Oceanogr. Res. Pap. 143, 85–103 (2019).
ADS Article Google Scholar
8.
Zeng, X., Adams, A., Roffer, M. & He, R. Potential connectivity among spatially distinct management zones for bonefish (Albula vulpes) via larval dispersal. Environ. Biol. Fishes 102, 233–252 (2019).
Article Google Scholar
9.
Lange, M. & van Sebille, E. Parcels v0.9: Prototyping a lagrangian ocean analysis framework for the petascale age. Geosci. Model Dev. 10, 4175–4186 (2017).
ADS Article Google Scholar
10.
Knudby, A., Kenchington, E. & Murillo, F. J. Modeling the distribution of Geodia sponges and sponge grounds in the northwest Atlantic. PLoS ONE 8(12), e82306. https://doi.org/10.1371/journal.pone.0082306 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
11.
Knudby, A., Lirette, C., Kenchington, E. & Murillo, F. J. Species distribution models of black corals, large gorgonian corals and sea pens in the NAFO Regulatory Area. Ser. No. N6276. NAFO SCR Doc. 13/78 (2013). (Accessed 5 November 2020); https://www.nafo.int/Portals/0/PDFs/sc/2013/scr13-078.pdf.
12.
Beazley, L., Kenchington, E., Yashayaev, I. & Murillo, F. J. Drivers of epibenthic megafaunal composition in the sponge grounds of the Sackville Spur, northwest Atlantic. Deep Sea Res. I Oceanogr. Res. Pap. 98, 102–114 (2015).
ADS Article Google Scholar
13.
Murillo, F. J., Kenchington, E., Lawson, J. M., Li, G. & Piper, D. Ancient deep-sea sponge grounds on the Flemish Cap and Grand Bank, northwest Atlantic. Mar. Biol. 163, 63. https://doi.org/10.1007/s00227-016-2839-5 (2016).
CAS Article PubMed PubMed Central Google Scholar
14.
Kenchington, E., Yashayaev, I., Tendal, O. S. & Jørgensbye, H. Water mass characteristics and associated fauna of a recently discovered Lophelia pertusa (Scleractinia: Anthozoa) reef in Greenlandic waters. Polar Biol. 40, 321–337 (2017).
Article Google Scholar
15.
FAO. International Guidelines for the Management of Deep-Sea Fisheries in the High Seas p73 (FAO, Quebec, 2009).
Google Scholar
16.
NAFO. Conservation and Enforcement Measures. Ser. No. N6638. NAFO/FC Doc. 17/01 (2017). (Accessed 5 November 2020); https://www.nafo.int/Portals/0/PDFs/fc/2017/CEM-2017-web.pdf.
17.
Williams, J. C., Revelle, C. S. & Levin, S. A. Spatial attributes and reserve design models: A review. Environ. Model. Assess. 10, 163–181 (2005).
Article Google Scholar
18.
Yashayaev, I. Hydrographic changes in the Labrador Sea, 1960–2005. Prog. Oceanogr. 73, 242–276 (2007).
ADS Article Google Scholar
19.
Yashayaev, I. & Loder, J. W. Recurrent replenishment of Labrador Sea Water and associated decadal-scale variability. J. Geophys. Res. Oceans 121, 8095–8114 (2016).
ADS Article Google Scholar
20.
Wang, S., Wang, Z., Lirette, C., Davies, A. & Kenchington, E. Comparison of physical connectivity particle tracking models in the Flemish Cap region. Can. Tech. Rep. Fish. Aquat. Sci. 3353, 39 (2019).
Article Google Scholar
21.
Morato, T. et al. Climate-induced changes in the habitat suitability of cold-water corals and commercially important deep-sea fish in the North Atlantic. Glob. Change Biol. 26, 2181–2202 (2020).
ADS Article Google Scholar
22.
Han, G. & Wang, Z. Monthly-mean circulation in the Flemish Cap region: A modeling study. In Estuarine and Coastal Modeling: Proceedings of the Ninth International Conference on Estuarine and Coastal Modeling (ed. Spaulding, M. L.) 138–154 (American Society of Civil Engineers, Reston, 2006).
Google Scholar
23.
Han, G. et al. Seasonal variability of the Labrador current and shelf circulation off Newfoundland. J. Geophys. Res. Oceans 113, C10013. https://doi.org/10.1029/2007JC004376 (2008).
ADS Article Google Scholar
24.
Maldonado, M. The ecology of the sponge larva. Can. J. Zool. 84, 175–194 (2006).
Article Google Scholar
25.
Wang, Z., Hamilton, J. & Su, J. Variations in freshwater pathways from the Arctic Ocean into the North Atlantic Ocean. Progr. Oceanogr. 155, 54–73 (2017).
ADS Article Google Scholar
26.
Ross, R. E., Nimmo-Smith, W. A. M. & Howell, K. L. Increasing the depth of current understanding: Sensitivity testing of deep-sea larval dispersal models for ecologists. PLoS ONE 11(8), e0161220. https://doi.org/10.1371/journal.pone.0161220 (2016).
CAS Article PubMed PubMed Central Google Scholar
27.
Wang, Z., Brickman, D. & Greenan, B. J. W. Characteristic evolution of the Atlantic Meridional Overturning Circulation from 1990 to 2015: An eddy-resolving ocean model study. Deep Sea Res. I Oceanogr. Res. Pap. 149, 103056. https://doi.org/10.1016/j.dsr.2019.06.002 (2019).
Article Google Scholar
28.
Lazier, J. R. N. & Wright, D. G. Annual velocity variations in the Labrador current. J. Phys. Oceanogr. 23, 659–678 (1993).
ADS Article Google Scholar
29.
Hall, M. M., Torres, D. J. & Yashayaev, I. Absolute velocity along the AR7W section in the Labrador sea. Deep Sea Res. I Oceanogr. Res. Pap. 72, 72–87 (2013).
ADS Article Google Scholar
30.
Schneider, L. et al. Variability of Labrador Sea water transported through Flemish Pass during 1993–2013. J. Geophys. Res. Oceans 120, 5514–5533 (2015).
ADS Article Google Scholar
31.
Varotsou, E., Jochumsen, K., Serra, N., Kieke, D. & Schneider, L. Interannual transport variability of Upper Labrador Sea Water at Flemish Cap. J. Geophys. Res. Oceans 120, 5074–5089 (2015).
ADS Article Google Scholar
32.
Layton, C., Greenan, B. J. W., Hebert, D. E. & Kelley, D. Low-frequency oceanographic variability near Flemish Cap and Sackville Spur. J. Geophys. Res. Oceans 123, 1814–1826 (2018).
ADS Article Google Scholar
33.
Wang, Z., Brickman, D., Greenan, B. J. W. & Yashayaev, I. An abrupt shift in the Labrador current system in relation to winter NAO events. J. Geophys. Res. Oceans 121, 5338–5349 (2016).
ADS Article Google Scholar
34.
Yashayaev, I. & Loder, J. Further intensification of deep convection in the Labrador Sea in 2016. Geophys. Res. Lett. 44, 1429–1438 (2016).
ADS Article Google Scholar
35.
Delandmeter, P. & van Sebille, E. The parcels v2.0 Lagrangian framework: New field interpolation schemes. Geosci. Model Dev. 12, 3571–3584 (2019).
ADS Article Google Scholar
36.
Brickman, D., Wang, Z. & DeTracey, B. Variability of current streams in Atlantic Canadian Waters: A model study. Atmos. Ocean 54, 1–12 (2015).
Google Scholar
37.
Brickman, D., Hebert, D. & Wang, Z. Mechanism for the recent ocean warming events on the Scotian Shelf of eastern Canada. Cont. Shelf Res. 156, 11–22 (2018).
ADS Article Google Scholar
38.
Pepin, P., Han, G. & Head, E. J. Modelling the dispersal of Calanus finmarchicus on the Newfoundland Shelf: Implications for the analysis of population dynamics from a high frequency monitoring site. Fish. Oceanogr. 22, 371–387 (2013).
Article Google Scholar
39.
Le Corre, N., Pepin, P., Han, G., Ma, Z. & Snelgrove, P. V. R. Assessing connectivity patterns among management units of the Newfoundland and Labrador shrimp population. Fish. Oceanogr. 28, 183–202 (2019).
Article Google Scholar
40.
Han, G. & Kulka, D. Dispersion of eggs, larvae and pelagic juveniles of White Hake (Urophycis tenuis) in relation to ocean currents of the Grand Bank: A modelling approach. J. Northw. Atl. Fish. Sci. 41, 183–196 (2009).
Article Google Scholar
41.
Lynch, D. G. D. et al. Particles in the Coastal Ocean. Theory and Applications 389–452 (Cambridge University Press, Cambridge, 2014).
Google Scholar
42.
Murillo, F. J., Serrano, A., Kenchington, E. & Mora, J. Epibenthic assemblages of the tail of the Grand Bank and Flemish Cap (northwest Atlantic) in relation to environmental parameters and trawling intensity. Deep Sea Res. I Oceanogr. Res. Pap. 109, 99–122 (2016).
ADS Article Google Scholar
43.
Mariani, S., Uriz, M.-J. & Turon, X. The dynamics of sponge larvae assemblages from northwestern Mediterranean nearshore bottoms. J. Plankton Res. 27, 249–262 (2005).
Article Google Scholar
44.
Mariani, S., Uriz, M.-J. & Alcoverro, T. Dispersal strategies in sponge larvae: Integrating the life history of larvae and the hydrologic component. Oecologia 149, 174–184 (2006).
ADS Article PubMed Google Scholar
45.
NAFO. Northwest Atlantic Fisheries Organization. Conservation and Enforcement Measures 2020. Ser. No. N7028. NAFO/COM Doc. 20-01 (2020). (Accessed 5 November 2020); https://www.nafo.int/Portals/0/PDFs/com/2020/CEM-2020-web.pdf.
46.
Goldsmit, J. et al. Where else? Assessing zones of alternate ballast water exchange in the Canadian eastern Arctic. Mar. Pollut. Bull. 139, 74–90 (2019).
CAS Article PubMed Google Scholar
47.
Kim, M. et al. Transit time distributions and storage selection functions in a sloping soil lysimeter with time-varying flow paths: Direct observation of internal and external transport variability. Water Resour. Res. 52, 7105–7129 (2016).
ADS Article Google Scholar
48.
Gary, S.F. The Interior Pathway of the Atlantic Meridional Overturning Circulation. Doctor of Philosophy Thesis (Duke University, 2011). (Accessed 5 November 2020); https://dukespace.lib.duke.edu/dspace/handle/10161/4980.
49.
Good, S. A., Martin, M. J. & Rayner, N. A. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans 118, 6704–6716 (2013).
ADS Article Google Scholar
50.
Boyer, T. P. et al. World Ocean Database 09. In NOAA Atlas NESDIS 66 (ed. Levitus, S.) (U.S. Government Printing Office, New York, 2009).
Google Scholar
51.
Wang, S., Wang, Z., Kenchington, E., Yashayaev, I. & Davies, A. 3-D ocean particle tracking modeling reveals extensive vertical movement and downstream interdependence of closed areas in the northwest Atlantic. Mendeley Data https://doi.org/10.17632/chfcjmnvcv.1 (2020).
Article Google Scholar More
