More stories

  • in

    The sources of variation for individual prey-to-predator size ratios

    Agashe D, Bolnick DI (2010) Intraspecific genetic variation and competition interact to influence niche expansion. Proc R Soc B Biol Sci 277:2915–2924
    Article  Google Scholar 

    Araújo MS, Bolnick DI, Layman CA (2011) The ecological causes of individual specialisation. Ecol Lett 14:948–958
    PubMed  Article  Google Scholar 

    Benton TG, Ranta E, Kaitala V, Beckerman AP (2001) Maternal effects and the stability of population dynamics in noisy environments. J Anim Ecol 70:590–599
    Article  Google Scholar 

    Bernardo J (1996) Maternal effects in animal ecology. Am Zool 36:83–105
    Article  Google Scholar 

    Boll PK, Leal-Zanchet AM (2016) Preference for different prey allows the coexistence of several land planarians in areas of the Atlantic Forest. Zoology 119:162–168
    PubMed  Article  Google Scholar 

    Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M et al. (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26:183–192
    PubMed  PubMed Central  Article  Google Scholar 

    Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD et al. (2003) The ecology of individuals: Incidence and implications of individual specialization. Am Nat 161:1–28
    PubMed  PubMed Central  Article  Google Scholar 

    Bolnick DI, Yang LH, Fordyce JA, Davis JM, Svanbäck R (2002) Measuring individual-level resource specialization. Ecology 83:2936–2941
    Article  Google Scholar 

    Brose U, Ehnes RB, Rall BC, Vucic-Pestic O, Berlow EL, Scheu S (2008) Foraging theory predicts predator-prey energy fluxes. J Anim Ecol 77:1072–1078
    CAS  PubMed  Article  Google Scholar 

    Brose U, Jonsson T, Berlow EL, Warren P, Banasek-Richter C, Bersier LF et al. (2006) Consumer-resource body-size relationships in natural food webs. Ecology 87:2411–2417
    PubMed  Article  PubMed Central  Google Scholar 

    Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789
    Article  Google Scholar 

    Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology:some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35
    Article  Google Scholar 

    Caballero A (2020) Quantitative genetics. Cambridge University Press, Cambridge

    Carlborg Ö, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618–625
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Cheverud JM (1996) Development integration and evolution of pleiotropy. Am Zool 36:44–50
    Article  Google Scholar 

    Chevin LM (2013) Genetic constraints on adaptation to a changing environment. Evolution 67:708–721
    PubMed  Article  PubMed Central  Google Scholar 

    Class B, Brommer JE (2020) Can dominance genetic variance be ignored in evolutionary quantitative genetic analyses of wild populations? Evolution 74:1540–1550
    PubMed  Article  PubMed Central  Google Scholar 

    Cockburn A (1991) An introduction to evolutionary ecology. Blackwell Scientific, Oxford
    Google Scholar 

    Cortez MH (2018) Genetic variation determines which feedbacks drive and alter predator–prey eco-evolutionary cycles. Ecol Monogr 88:353–371
    Article  Google Scholar 

    Costa-Pereira R, Araújo MS, Olivier R, da S, Souza FL, Rudolf VHW (2018) Prey limitation drives variation in allometric scaling of predator-prey interactions. Am Nat 192:139–149
    Article  Google Scholar 

    Crnokrak P, Roff DA (1995) Dominance variance: associations with selection and fitness. Heredity 75:530–540
    Article  Google Scholar 

    Cuthbert RN, Wasserman RJ, Dalu T, Kaiser H, Weyl OLF, Dick JTA et al. (2020) Influence of intra‐ and interspecific variation in predator–prey body size ratios on trophic interaction strengths. Ecol Evol 10:5946–5962
    PubMed  PubMed Central  Article  Google Scholar 

    Dey S, Proulx SR, Teotónio H (2016) Adaptation to temporally fluctuating environments by the evolution of maternal effects. PLOS Biol 14:e1002388
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Dufour L (1835) Observations sur la Tarentule (Lycosa Tarantula) avec la figure de cette aranéide. Ann. Sci. Nat. Zool 3:95–108

    Emmerson MC, Raffaelli D (2004) Predator-prey body size, interaction strength and the stability of a real food web. J Anim Ecol 73:399–409
    Article  Google Scholar 

    Fabricius JC (1775) Systema entomologiae, sistens insectorum classes, ordines, genera, species, adiectis synonymis, locis, descriptionibus, observationibus, Flensburgi et Lipsiae. In Officina Libraria Kortii, 832 pp

    García LF, Viera C, Pekár S (2018) Comparison of the capture efficiency, prey processing, and nutrient extraction in a generalist and a specialist spider predator. Sci Nat 105:30
    Article  CAS  Google Scholar 

    Gavín-Centol MP, Kralj-Fišer S, De Mas E, Ruiz-Lupión D, Moya-Laraño J (2017) Feeding regime, adult age and sexual size dimorphism as determinants of pre-copulatory sexual cannibalism in virgin wolf spiders. Behav Ecol Sociobiol 71:10
    Article  Google Scholar 

    Gebhardt‐Henrich SG, Van Noordwijk AJ (1991) Nestling growth in the great tit I. Heritability estimates under different environmental conditions. J Evol Biol 4:341–362
    Article  Google Scholar 

    Gnatzy W, Otto D (1996) Digger wasp vs. cricket: application of the paralytic venom by the predator and changes in behavioural reactions of the prey after being stung. Naturwissenschaften 83:467–470
    CAS  Article  Google Scholar 

    Grafen A (1988) On the uses of data on lifetime reproductive success. In: Clutton-Brock TH (eds) Reproductive success: studies of individual variation in contrasting breeding systems, University of Chicago Press, Chicago. pp 454–471

    Griffiths D (1980) Foraging costs and relative prey size. Am Nat 116:743–752
    Article  Google Scholar 

    Grinsted L, Schou MF, Settepani V, Holm C, Bird TL, Bilde T (2020) Prey to predator body size ratio in the evolution of cooperative hunting—a social spider test case. Dev Genes Evol 230:173–184
    CAS  PubMed  Article  Google Scholar 

    Groothuis TGG, Schwabl H (2008) Hormone-mediated maternal effects in birds: Mechanisms matter but what do we know of them? Philos Trans R Soc B Biol Sci 363:1647–1661
    CAS  Article  Google Scholar 

    Gustafsson S, Rengefors K, Hansson LA (2005) Increased consumer fitness following transfer of toxin tolerance to offspring via maternal effects. Ecology 86:2561–2567
    Article  Google Scholar 

    Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33

    Hagstrum DW (1971) Carapace width as a tool for evaluating the rate of development of spiders in the laboratory and the field. Ann Entomol Soc Am 64:757–760
    Article  Google Scholar 

    Hansen TF (2013) Why epistasis is important for selection and adaptation. Evolution 67:3501–3511
    PubMed  Article  Google Scholar 

    Hart SP, Schreiber SJ, Levine JM (2016) How variation between individuals affects species coexistence. Ecol Lett 19:825–838

    Heath DD, Fox CW, Heath JW (1999) Maternal effects on offspring size: variation through early development of Chinook salmon. Evolution 53:1605
    PubMed  Article  Google Scholar 

    Hirvonen H, Ranta E (1996) Prey to predator size ratio influences foraging efficiency of larval Aeshna juncea dragonflies. Oecologia 106:407–415
    PubMed  Article  PubMed Central  Google Scholar 

    Inchausti P, Ginzburg LR (2009) Maternal effects mechanism of population cycling: a formidable competitor to the traditional predator–prey view. Philos Trans R Soc B Biol Sci 364:1117–1124
    Article  Google Scholar 

    Jakob EM, Marshall SD, Uetz GW (1996) Estimating fitness: a comparison of body condition indices. Oikos 77:61–67
    Article  Google Scholar 

    Jensen K, Mayntz D, Toft S, Raubenheimer D, Simpson SJ (2011) Nutrient regulation in a predator, the wolf spider Pardosa prativaga. Anim Behav 81:993–999
    Article  Google Scholar 

    Jiang L, Morin PJ (2005) Predator diet breadth influences the relative importance of bottom-up and top-down control of prey biomass and diversity. Am Nat 165:350–363
    PubMed  Article  Google Scholar 

    De Jong G, Imasheva A (2000) Genetic variance in temperature dependent adult size deriving from physiological genetic variation at temperature boundaries. Genetica 110:195–207
    PubMed  Article  Google Scholar 

    Jonsson T, Ebenman B (1998) Effects of predator-prey body size ratios on the stability of food chains. J Theor Biol 193:407–417
    CAS  PubMed  Article  Google Scholar 

    Keightley PD, Kacser H (1987) Dominance, pleiotropy and metabolic structure. Genetics 117:319–329
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Laigle I, Aubin I, Digel C, Brose U, Boulangeat I, Gravel D (2018) Species traits as drivers of food web structure. Oikos 127:316–326
    Article  Google Scholar 

    LaMontagne JM, McCauley E (2001) Maternal effects in Daphnia: what mothers are telling their offspring and do they listen? Ecol Lett 4:64–71
    Article  Google Scholar 

    Lindholm AK, Hunt J, Brooks R (2006) Where do all the maternal effects go? Variation in offspring body size through ontogeny in the live-bearing fish Poecilia parae. Biol Lett 2:586–589
    PubMed  PubMed Central  Article  Google Scholar 

    Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland
    Google Scholar 

    Magalhães S, Janssen A, Montserrat M, Sabelis MW (2005) Prey attack and predators defend: counterattacking prey trigger parental care in predators. Proc R Soc B Biol Sci 272:1929–1933
    Article  Google Scholar 

    Matlock RB (2005) Impact of prey size on prey capture success, development rate, and survivorship in Perillus bioculatus (Heteroptera: Pentatomidae), a predator of the Colorado Potato Beetle. Environ Entomol 34:1048–1056
    Article  Google Scholar 

    Maynard DS, Serván CA, Capitán JA, Allesina S (2019) Phenotypic variability promotes diversity and stability in competitive communities. Ecol Lett 22:1776–1786
    PubMed  Article  Google Scholar 

    McGlothlin JW, Ketterson ED (2008) Hormone-mediated suites as adaptations and evolutionary constraints. Philos Trans R Soc B Biol Sci 363:1611–1620
    Article  Google Scholar 

    Meigen JW (1830) Systematische Beschreibung der bekannten europaeischen zweifluegeligen Insekten. Schulzische uchhandlung, Hamm

    Merilä J, Kruuk LEB, Sheldon BC (2001) Natural selection on the genetical component of variance in body condition in a wild bird population. J Evol Biol 14:918–929
    Article  Google Scholar 

    Moore MP, Whiteman HH, Martin RA (2019) A mother’s legacy: the strength of maternal effects in animal populations. Ecol Lett 22:1620–1628
    PubMed  Article  PubMed Central  Google Scholar 

    Moskalik B, Uetz GW (2011) Female hunger state affects mate choice of a sexually selected trait in a wolf spider. Anim Behav 81:715–722
    Article  Google Scholar 

    Mousseau TA, Fox CW (1998) Maternal effects as adaptations. Oxford University Press, Oxford

    Mousseau TA, Roff DA (1987) Natural selection and the heritability of fitness components. Heredity 59:181–197
    PubMed  Article  PubMed Central  Google Scholar 

    Moya-Larano J (2002) Senescence and food limitation in a slowly ageing spider. Funct Ecol 16:734–741
    Article  Google Scholar 

    Moya-Laraño J (2011) Genetic variation, predator-prey interactions and food web structure. Philos Trans R Soc B Biol Sci 366:1425–1437
    Article  Google Scholar 

    Moya-Larano J, Barrientos JA, Orta-Ocana JM, Bach C, Wise DH (1998) Limitación por la comida en las tarántulas del Cabo de Gata (Almeria). Investig y Gestión del Medio Nat 3:73–77
    Google Scholar 

    Moya-Laraño J, Macías-Ordóñez R, Blanckenhorn WU, Fernández-Montraveta C (2008) Analysing body condition: Mass, volume or density? J Anim Ecol 77:1099–1108
    PubMed  Article  Google Scholar 

    Moya-Laraño J, Orta-Ocaña JM, Barrientos JA, Bach C, Wise DH (2002) Territoriality in a cannibalistic burrowing wolf spider. Ecology 83:356–361
    Article  Google Scholar 

    Moya-Laraño J, Bilbao-Castro JR, Barrionuevo G, Ruiz-Lupión D, Casado LG, Montserrat M et al. (2014) Eco-evolutionary spatial dynamics: rapid evolution and isolation explain food web persistence. In: Moya-Laraño J, Rowntree J & Woodward G (eds) Eco-Evolutionary Dynamics, Adv. Ecol. Res., Elsevier. Vol 50, pp 75–143

    Moya-Laraño J, Verdeny-Vilalta O, Rowntree J, Melguizo-Ruiz N, Montserrat M, Laiolo P et al. (2012) Climate change and eco-evolutionary dynamics in food webs. In: Schoener TW, Moya-Larano J, Rowntree J, & Woodward G Global Change in Multispecies Systems Part 2. Adv. Ecol. Res, Academic Press, Oxford. Vol 45, pp 1–80

    Nakazawa T (2017) Individual interaction data are required in community ecology: a conceptual review of the predator–prey mass ratio and more. Ecol Res 32:5–12
    Article  Google Scholar 

    Nakazawa T, Ushio M, Kondoh M (2011) Scale dependence of predator-prey mass ratio. In: Belgrano A & Reiss J (eds) The role of body size in multispecies system. Adv. Ecol. Res., Academic Press, Oxford. Vol 45, pp 269–302

    Nentwig W, Wissel C (1986) A comparison of prey lengths among spiders. Oecologia 68:595–600
    PubMed  Article  Google Scholar 

    Otto SB, Rall BC, Brose U (2007) Allometric degree distributions facilitate food-web stability. Nature 450:1226–1229
    CAS  PubMed  Article  Google Scholar 

    Parellada X (1998) Identificació i dades biològiques de tres espècies de taràntules (Araneae: Lycosidae) al Garraf. II Trobades d’estudiosos del Garraf Monogr 26:15–25
    Google Scholar 

    Patel S, Cortez MH, Schreiber SJ (2018) Partitioning the effects of eco-evolutionary feedbacks on community stability. Am Nat 191:381–394
    Article  Google Scholar 

    Persons MH, Rypstra AL (2000) Preference for chemical cues associated with recent prey in the wolf spider Hogna helluo (Araneae: Lycosidae). Ethology 106:27–35
    Article  Google Scholar 

    Pooni HS, Jinks JL, Jayasekara NEM, Jayasekara NEM (1978) An investigation of gene action and genotype x environment interaction in two crosses of nicotiana rustica by triple test cross and inbred line analysis. Heredity 41:83–92
    Article  Google Scholar 

    Poore AGB, Hill NA (2006) Sources of variation in herbivore preference: among-individual and past diet effects on amphipod host choice. Mar Biol 149:1403–1410
    Article  Google Scholar 

    Roff DA (1997) Evolutionary quantitative genetics. Chapman & Hall, New York

    Rooney N, McCann K, Gellner G, Moore JC (2006) Structural asymmetry and the stability of diverse food webs. Nature 442:265–269
    CAS  PubMed  Article  Google Scholar 

    De Roos AM, Persson L, McCauley E (2003) The influence of size-dependent life-history traits on the structure and dynamics of populations and communities. Ecol Lett 6:473–487
    Article  Google Scholar 

    Schneider FD, Brose U, Rall BC, Guill C (2016) Animal diversity and ecosystem functioning in dynamic food webs. Nat Commun 7:1–8
    Article  CAS  Google Scholar 

    Schreiber SJ, Bürger R, Bolnick DI (2011) The community effects of phenotypic and genetic variation within a predator population. Ecology 92:1582–1593
    PubMed  Article  Google Scholar 

    Schreiber SJ, Patel S, Terhorst C (2018) Evolution as a coexistence mechanism: does genetic architecture matter? Am Nat 191:407–420
    Article  Google Scholar 

    Sheriff MJ, Krebs CJ, Boonstra R (2010) The ghosts of predators past: population cycles and the role of maternal programming under fluctuating predation risk. Ecology 91:2983–2994
    PubMed  Article  Google Scholar 

    Shultz S, Noë R, McGraw WS, Dunbar RIM (2004) A community-level evaluation of the impact of prey behavioural and ecological characteristics on predator diet composition. Proc R Soc B Biol Sci 271:725–732
    Article  Google Scholar 

    Singer MC (1986) The definition and measurement of oviposition preference in plant-feeding insects. In: Miller JR, Miller TA (eds) Insect-plant interactions, Springer, New York. pp 65–94

    Stewart FM (1971) Evolution of dimorphism in a predator-prey model. Theor Popul Biol 2:493–506
    CAS  PubMed  Article  Google Scholar 

    Sztepanacz JL, Blows MW (2015) Dominance genetic variance for traits under directional selection in Drosophila serrata. Genetics 200:371–384
    PubMed  PubMed Central  Article  Google Scholar 

    Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. Annu Rev Ecol Evol Syst 45:471–493
    Article  Google Scholar 

    Tsai CH, Hsieh CH, Nakazawa T (2016) Predator–prey mass ratio revisited: does preference of relative prey body size depend on individual predator size? Funct Ecol 30:1979–1987
    Article  Google Scholar 

    Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C et al. (2012) The return of the variance: Intraspecific variability in community ecology. Trends Ecol Evol 27:244–252
    PubMed  Article  Google Scholar 

    Walsh MR, Castoe T, Holmes J, Packer M, Biles K, Walsh M et al. (2016) Local adaptation in transgenerational responses to predators. Proc R Soc B Biol Sci 283:20152271
    Article  Google Scholar 

    Wang J, Caballero A, Keightley PD, Hill WG (1998) Bottleneck effect on genetic variance: a theoretical investigation of the role of dominance. Genetics 150:435–447
    CAS  PubMed  PubMed Central  Google Scholar 

    Wilson AJ, Réale D (2006) Ontogeny of additive and maternal genetic effects: lessons from domestic mammals. Am Nat 167:E23–E38.
    PubMed  Article  Google Scholar 

    Wilson AJ, Réale D, Clements MN, Morrissey MM, Postma E, Walling CA et al. (2010) An ecologist’s guide to the animal model. J Anim Ecol 79:13–26
    PubMed  Article  Google Scholar 

    Wolak ME, Keller LF (2014) Dominance, genetic variance and inbreeding in natural populations. In: Charmantier A, Garant D & Kruuk LE (eds) Quantitative genetics in the wild, Oxford University Press, Oxford. pp 104–127

    Wolf JB, Wade MJ (2016) Evolutionary genetics of maternal effects. Evolution 70:827–839
    PubMed  PubMed Central  Article  Google Scholar 

    Woodward G, Hildrew AG (2002) Body-size determinants of niche overlap and intraguild predation within a complex food web. J Anim Ecol 71:1063–1074
    Article  Google Scholar 

    Woodward G, Perkins DM, Brown LE (2010) Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philos Trans R Soc B Biol Sci 365:2093–2106
    Article  Google Scholar 

    Woodward G, Warren P (2007) Body size and predatory interactions in freshwaters: scaling from individuals to communities. In: Hildrew AG, Raffaelli DG & Edmonds-Brown R (eds) Body size: the structure and function of aquatic ecosystems, Cambridge University Press, Cambridge. pp 98–117

    Ye L, Chang CY, García-Comas C, Gong GC, Hsieh Chao (2013) Increasing zooplankton size diversity enhances the strength of top-down control on phytoplankton through diet niche partitioning. J Anim Ecol 82:1052–1061
    PubMed  Article  PubMed Central  Google Scholar 

    Yoshida T, Jones LE, Ellner SP, Fussmann GF, Hairston NG (2003) Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424:303–306
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    A system dynamics model for pests and natural enemies interactions

    1.
    FAO Food and agriculture data [Internet]. www.fao.org/faostat/en/#home. Accessed 17 July 2019 (2018).
    2.
    Badu-Apraku, B. & Fakorede, M. Maize in Sub-Saharan Africa: Importance and Production Constraints. Advances in Genetic Enhancement of Early and Extra-Early Maize for Sub-Saharan Africa 3–10 (Springer, Cham, 2017).
    Google Scholar 

    3.
    Jin, Z. et al. Smallholder maize area and yield mapping at national scales with Google Earth Engine. Remote Sens. Environ. 228, 115–128 (2019).
    ADS  Article  Google Scholar 

    4.
    De Groote, H. et al. Spread and impact of fall armyworm (Spodoptera frugiperda J.E. Smith) in maize production areas of Kenya. Agric. Ecosyst. Environ. 292, 106804 (2020).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    5.
    Mumo, L., Yu, J. & Fang, K. Assessing impacts of seasonal climate variability on maize yield in Kenya. Int. J. Plant Prod. 12, 297–307 (2018).
    Article  Google Scholar 

    6.
    Mwalusepo, S. et al. Predicting the impact of temperature change on the future distribution of maize stem borers and their natural enemies along East African mountain gradients using phenology models. PLoS One 10, e0130427 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    GuoFa, Z., Overholt, W. A. & Mochiah, M. B. Changes in the distribution of lepidopteran maize stemborers in Kenya from the 1950s to 1990s. Int. J. Trop. Insect Sc. 21, 395–402 (2001).
    Article  Google Scholar 

    8.
    Tounou, A. K., Agboka, K., Agbodzavu, K. M. & Wegbe, K. Maize stemborers distribution, their natural enemies and farmers’ perception on climate change and stemborers in southern Togo. J. Appl. Biosci. 64, 4773–4786 (2013).
    Article  Google Scholar 

    9.
    Kfir, R., Overholt, W. A., Khan, Z. R. & Polaszek, A. Biology and management of economicaly important lepidopteran cereal stem borers in Africa. Annu. Rev. Entomol. 47, 701–731 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Nwilene, F. E., Nwanze, K. F. & Youdeowei, A. Impact of integrated pest management on food and horticultural crops in Africa. Entomol. Exp. Appl. 128, 355–363 (2008).
    Article  Google Scholar 

    11.
    Krüger, W., Van den Berg, J. & Van Hamburg, H. The relative abundance of maize stem borers and their parasitoids at the Tshiombo irrigation scheme in Venda, South Africa. S. Afr. J. Plant Soil 25, 144–151 (2008).
    Article  Google Scholar 

    12.
    Ongamo, G. et al. Distribution, pest status and agro-climatic preferences of lepidopteran stem borers of maize in Kenya. Ann. Soc. Entomol. Fr. 42, 171–177 (2006).
    Article  Google Scholar 

    13.
    Kfir, R. Competitive displacement of Busseola fusca (Lepidoptera: Noctuidae) by Chilo partellus (Lepidoptera: Pyralidae). Ann. Entomol. Soc. Am. 90, 619–624 (1997).
    Article  Google Scholar 

    14.
    Ofomata, V. C., Overholt, W. A., Lux, S. A., Van Huis, A. & Egwuatu, A. R. I. Comparative studies on the fecundity, egg survival, larval feeding, and development of Chilo partellus and Chilo orichalcociliellus (Lepidoptera: Crambidae) on five grasses. Ann. Entomol. Soc. Am. 93, 492–499 (2000).
    Article  Google Scholar 

    15.
    Ntiri, E. S., Calatayud, P.-A., Van den Berg, J., Schulthess, F. & Le Ru, B. P. Influence of temperature on intra- and interspecific resource utilization within a community of lepidopteran maize stemborers. PLoS One 11, e148735 (2016).
    Google Scholar 

    16.
    Fotso-Kuate, A. et al. Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) in Cameroon: Case study on its distribution, damage, pesticide use, genetic differentiation and host plants. PLoS One 14, e0215749 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A. & Tamò, M. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS One 11, e0165632 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    18.
    Sokame, B. M. et al. Influence of temperature on the interaction for resource utilization between Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), and a community of lepidopteran maize stemborers larvae. Insects 11, 73 (2020).
    PubMed Central  Article  PubMed  Google Scholar 

    19.
    Sokame, B. M. et al. Impact of the exotic fall armyworm on larval parasitoids associated with the lepidopteran maize stemborers in Kenya. Biocontrol https://doi.org/10.1007/s10526-020-10059-2 (2020).
    Article  Google Scholar 

    20.
    Chabaane, Y., Laplanche, D., Turlings, T. C. & Desurmont, G. A. Impact of exotic insect herbivores on native tritrophic interactions: A case study of the African cotton leafworm, Spodoptera littoralis and insects associated with the field mustard Brassica rapa. J. Ecol. 103, 109–117 (2015).
    Article  Google Scholar 

    21.
    Forrester, J. W. Industrial Dynamics (The MIT Press, Cambridge, 1961).
    Google Scholar 

    22.
    Sapiri, H., Zulkepli, J., Abidin, N. Z., Ahmad, N. & Hawari, N. N. Introduction to System Dynamics Modelling and Vensim Software 173 (Universiti Utara Malaysia, Malaysia, 2016).
    Google Scholar 

    23.
    Maani, K. E. & Cavana, R. Y. System Thinking and Modelling: Understanding Change and Complexity (Prentice Hall, Auckland, 2000).
    Google Scholar 

    24.
    Mwalusepo, S., Tonnang, H. E. Z., Massawe, E. S., Johansson, T. & Le Ru, B. P. Stability analysis of competing insect species for a single resource. J. Appl. Math. 20, 2014 (2014).
    MathSciNet  MATH  Google Scholar 

    25.
    Neill, W. E. The community matrix and interdependence of the competition coefficients. Am. Nat. 108, 399–408 (1974).
    Article  Google Scholar 

    26.
    Calatayud, P.-A. et al. Can climate-driven change influence silicon assimilation by cereals and hence the distribution of lepidopteran stem borers in East Africa?. Agric. Ecosyst. Environ. 224, 95–103 (2016).
    CAS  Article  Google Scholar 

    27.
    Ntiri, E. S., Calatayud, P.-A., Van den Berg, J. & Le Ru, B. P. Spatio-temporal interactions between maize lepidopteran stemborer communities and possible implications from the recent invasion of Spodoptera frugiperda (Lepidoptera : Noctuidae) in sub-Saharan Africa. Environ. Entomol. 48, 573–582 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    28.
    Sisay, B. et al. First report of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), natural enemies from Africa. J. Appl. Entomol. 142, 800–804 (2018).
    Article  Google Scholar 

    29.
    Mailafiya, D. M., Le Ru, B. P., Kairu, E. W., Calatayud, P.-A. & Dupas, S. Species diversity of lepidopteran stem borer parasitoids in cultivated and natural habitats in Kenya. J. Appl. Entomol. 133, 416–429 (2009).
    Article  Google Scholar 

    30.
    Mailafiya, D. M., Le Ru, B. P., Kairu, E. W., Calatayud, P.-A. & Dupas, S. Geographic distribution, host range and perennation of Cotesia sesamiae and Cotesia flavipes Cameron in cultivated and natural habitats in Kenya. Biol. Control 54, 1–8 (2010).
    Article  Google Scholar 

    31.
    Mailafiya, D. M., Le Ru, B. P., Kairu, E. W., Dupas, S. & Calatayud, P.-A. Parasitism of lepidopterous stemborers in cultivated and natural habitats. J. Insect Sci. 11, 1–19 (2011).
    Article  Google Scholar 

    32.
    Sisay, B. et al. Fall armyworm, Spodoptera frugiperda infestations in East Africa: Assessment of damage and parasitism. Insects 10, 195 (2019).
    PubMed Central  Article  PubMed  Google Scholar 

    33.
    Pitre, H. N., Mulrooney, J. E. & Hogg, D. B. Fall armyworm (Lepidoptera: Noctuidae) oviposition: Crop preferences and egg distribution on plants. J. Econ. Entomol. 76, 463–466 (1983).
    Article  Google Scholar 

    34.
    Polaszek, A. African Cereal Stem Borers: Economic Importance, Taxonomy, Natural Enemies and Control 530 (CAB International, Wallingford, 1998).
    Google Scholar 

    35.
    Sokame, B. M., Subramanian, S., Kilalo, D. C., Juma, G. & Calatayud, P.-A. Larval dispersal of the invasive fall armyworm, Spodoptera frugiperda, the exotic stemborer, Chilo partellus, and the indigenous maize stemborers in Africa. Entomol. Exp. Appl. 168, 322–331 (2020).
    CAS  Article  Google Scholar 

    36.
    Morrill, W. L. & Greene, G. L. Distribution of fall Armyworm larvae. 1. Regions of field corn plants infested by larvae. Environ. Entomol. 2, 195–198 (1973).
    Article  Google Scholar 

    37.
    Van den Berg, J. Economy of Stem Borer Control in Sorghum. ARC-Crop Protection Series no 2 4 (South Africa, Potchefstroom, 1997).
    Google Scholar 

    38.
    CAB International. How to Identify Fall Armyworm. Poster. Plantwise, http://www.plantwise.org/FullTextPDF/2017/20177800461.pdf. Accessed 23 Nov 2018 (2017).

    39.
    Bischof, R. & Zedrosser, A. The educated prey: Consequences for exploitation and control. Behav. Ecol. 20, 1228–1235 (2009).
    Article  Google Scholar 

    40.
    Boukal, D. & Kivan, V. Lyapunov functions for Lotka–Volterra predator-prey models with optimal foraging behavior. J. Math. Biol. 39, 493–517 (1999).
    MathSciNet  MATH  Article  Google Scholar 

    41.
    Sterman, J. Business Dynamics: Systems Thinking and Modeling for a Complex World (Irwin/McGraw-Hill, Boston, 2000).
    Google Scholar 

    42.
    Din, Q. & Donchev, T. Global character of a host-parasite model. Chaos Soliton Fract. 54, 1–7 (2013).
    ADS  MathSciNet  MATH  Article  Google Scholar 

    43.
    Sarmento, R. D. A. et al. Biology review, occurrence and control of Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) in corn in Brazil. Biosci. J. 18, 41–48 (2002).
    Google Scholar 

    44.
    Chapman, J. W., Williams, T., Martínez, A. M. & Cisneros, J. Does cannibalism in Spodoptera frugiperda (Lepidoptera: Noctuidae) reduce the risk of predation?. Behav. Ecol. Sociobiol. 48, 321–327 (2000).
    Article  Google Scholar 

    45.
    Zhou, S. Z., Chen, Z.-P. & Xu, Z.-F. Niches and interspecific competitive relationships of the parasitoids, Microplitis prodeniae and Campoletis chlorldeae, of the oriental leafworm moth, Spodoptera litura, in tobacco. J. Insect Sci. 10, 10 (2010).
    PubMed  PubMed Central  Google Scholar 

    46.
    Bentivenha, J. P. F., Baldin, E. L. L., Hunt, T. E., Paula-Moraes, S. V. & Blankenship, E. E. Intraguild competition of three noctuid maize pests. Environ. Entomol. 45, 999–1008 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Richardson, D. M., Allsopp, N., D’Antonio, C. M., Milton, S. J. & Rejmanek, M. Plant invasions—the role of mutalists. Biol. Rev. 75, 65–93 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Sujay, Y. H., Sattagi, H. N. & Patil, R. K. Invasive alien insects and their impact on agroecosystem. Karnatka J. Agric. Sci. 23, 26–34 (2010).
    Google Scholar 

    49.
    Reitz, S. & Trumble, J. Competitive displacement among insects and arachnids. Annu. Rev. Entomol. 47, 435–465 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    McClure, M. S. Biology, population trends, and damage of Pineus boerneri and P. coloradiensis (Homoptera: Adelgidae) on red pine. Environ. Entomol. 18, 1066–1073 (1989).
    Article  Google Scholar 

    51.
    Ekesi, S., Billah, M. K., Nderitu, P. W., Lux, S. A. & Rwomushana, I. Evidence for competitive displacement of Ceratitis cosyra by the invasive fruit fly Bactrocera invadens (Diptera: Tephritidae) on mango and mechanisms contributing to the displacement. J. Econ. Entomol. 102, 981–991 (2009).
    PubMed  Article  Google Scholar 

    52.
    Rwomushana, I., Ekesi, S., Ogol, C. K. P. O. & Gordon, I. Mechanisms contributing to the competitive success of the invasive fruit fly Bactrocera invadens over the indigenous mango fruit fly, Ceratitis cosyra: The role of temperature and resource pre-emption. Entomol. Exp. Appl. 133, 27–37 (2009).
    Article  Google Scholar 

    53.
    Fabre, J. P., Auger-Rozenberg, M. A., Chalon, A., Boivin, S. & Roques, A. Competition between exotic and native insects for seed resources in trees of a Mediterranean forest ecosystem. Biol. Invas. 6, 11–22 (2004).
    Article  Google Scholar 

    54.
    Macarthur, R. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385 (1967).
    Article  Google Scholar 

    55.
    Ventana. Ventana Systems Incl. Vensim software PLE 8.0.9. https://vensim.com/download/ (2019).

    56.
    Sokame, B. M. Functioning of a community of lepidopteran maize stemborers and associated parasitoids following the fall armyworm invasion in Kenya 276 (PhD thesis, University of Nairobi, Kenya, 2020).

    57.
    Tonnang, H. E. Z., Nedorezov, L. V., Ochanda, H., Owino, J. & Löhr, B. Assessing the impact of biological control of Plutella xylostella through the application of Lotka–Volterra model. Ecol. Model. 220, 60–70 (2009).
    Article  Google Scholar 

    58.
    Kroschel, J., Mujica, N., Carhuapoma, P. & Sporleder, M. Pest Distribution and Risk Atlas for Africa-Potential Global and Regional Distribution and Abundance of Agricultural and Horticultural Pests and Associated Biocontrol Agents Under Current and Future Climates (International Potato Center (CIP), Lima, 2016).
    Google Scholar 

    59.
    Prasanna, B. M., Huesing, J. E., Eddy, R. & Peschke, V. M. Fall Armyworm in Africa: A Guide for Integrated Pest Management. First Edition, Mexico (CDMX: IMMYT, Mexico, 2018).
    Google Scholar 

    60.
    Sokame, B. M. et al. Carry-over niches for lepidopteran maize stemborers and associated parasitoids during non-cropping season. Insect 10, 191 (2019).
    Article  Google Scholar  More

  • in

    R–R–T (resistance–resilience–transformation) typology reveals differential conservation approaches across ecosystems and time

    1.
    IPCC, Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (2018).
    2.
    Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211 (2020).
    PubMed  Article  CAS  Google Scholar 

    3.
    Diversity, S.o.t.C.o.B., Global Biodiversity Outlook 5 (Montreal, Canada, 2020).

    4.
    Global Commission on Adaptation, Adapt Now: A Global Call for Leadership on Climate Resilience (2019).

    5.
    Gross, J. E., Woodley, S., Welling, L. A. & Watson, J. E. M. eds. Adapting to Climate Change: Guidance for protected area managers and planners. Best Practice Protected Area Guidelines Series No. 24 (IUCN: Gland, Switzerland, 2016).

    6.
    IPBES, Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (Bonn, Germany: IPBES secretariat, 2019).

    7.
    Stein, B. A. & Shaw, M. R. Biodiversity conservation for a climate-altered future, In Successful Adaptation to Climate Change: Linking Science and Policy in a Rapidly Changing World (eds Moser, S. C. & Boykoff, M. T.) 50–66 (Routledge: London, UK, 2013).

    8.
    Colloff, M. J. et al. An integrative research framework for enabling transformative adaptation. Environ. Sci. Policy 68, 87–96 (2017).
    Article  Google Scholar 

    9.
    Dawson, T. P. et al. Beyond predictions: biodiversity conservation in a changing climate. Science 332, 53–58 (2011).
    CAS  PubMed  Article  Google Scholar 

    10.
    Hagerman, S., Dowlatabadi, H., Satterfield, T. & McDaniels, T. Expert views on biodiversity conservation in an era of climate change. Glob. Environ. Change 20, 192–207 (2010).
    Article  Google Scholar 

    11.
    Hagerman, S., Satterfield, T. & Dowlatabadi, H. Impacts, conservation and protected values: understanding promotion, ambivalence and resistance to policy change at the world conservation congress. Conserv. Soc. 8, 298–311 (2010).
    Article  Google Scholar 

    12.
    Corlett, R. T. Restoration, reintroduction, and rewilding in a changing world. Trends Ecol. Evol. 31, 453–462 (2016).
    PubMed  Article  Google Scholar 

    13.
    Colloff, M. J. et al. Transforming conservation science and practice for a postnormal world. Conserv. Biol. 31, 1008–1017 (2017).
    PubMed  Article  Google Scholar 

    14.
    Reside, A. E., Butt, N. & Adams, V. M. Adapting systematic conservation planning for climate change. Biodivers. Conserv. 27, 1–29 (2017).
    Article  Google Scholar 

    15.
    Dumroese, R. K., Williams, M. I., Stanturf, J. A. & Clair, J. B. S. Considerations for restoring temperate forests of tomorrow: forest restoration, assisted migration, and bioengineering. N. For. 46, 947–964 (2015).
    Google Scholar 

    16.
    Phelps, M. P., Seeb, L. W. & Seeb, J. E. Transforming ecology and conservation biology through genome editing. Conserv. Biol. 34, 54–65 (2019).
    PubMed  Article  Google Scholar 

    17.
    Hansen, L. J. & Hoffman, J. R. Climate savvy: adapting conservation and resource management to a changing world, (Washington, DC: Island Press, 2011).

    18.
    Stein, B. A. et al. Preparing for and managing change: climate adaptation for biodiversity and ecosystems. Front. Ecol. Environ. 11, 502–510 (2013).
    Article  Google Scholar 

    19.
    Hagerman, S. M. & Pelai, R. Responding to climate change in forest management: two decades of recommendations. Front. Ecol. Environ. 16, 579–587 (2018).
    Article  Google Scholar 

    20.
    Bertram, M. et al. Making Ecosystem-based Adaptation Effective: A Framework for Defining Qualification Criteria and Quality Standards (FEBA technical paper developed for UNFCCC-SBSTA 46). 2018, FEBA (Friends of Ecosystem-based Adaptation), GIZ, Bonn, Germany, IIED, London, UK, andIUCN, Gland, Switzerland. 1-14.

    21.
    Morecroft, M. D. et al. Measuring the success of climate change adaptation and mitigation in terrestrial ecosystems. Science 366, eaaw9256–eaaw9257 (2019).
    CAS  PubMed  Article  Google Scholar 

    22.
    Kareiva, P. & Fuller, E. Beyond resilience: how to better prepare for the profound disruption of the anthropocene. Glob. Policy 7, 107–118 (2016).
    Article  Google Scholar 

    23.
    Heller, N. E. & Hobbs, R. J. Development of a natural practice to adapt conservation goals to global change. Conserv. Biol. 28, 696–704 (2014).
    PubMed  Article  Google Scholar 

    24.
    Tompkins, E. L., Vincent, K., Nicholls, R. J. & Suckall, N. Documenting the state of adaptation for the global stocktake of the Paris Agreement. Wiley Interdiscip. Rev. Clim. Change 9, e545–e549 (2018).
    Article  Google Scholar 

    25.
    Heller, N. E. & Zavaleta, E. S. Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol. Conserv. 142, 14–32 (2009).
    Article  Google Scholar 

    26.
    Morgan, M. G. Use (and abuse) of expert elicitation in support of decision making for public policy. Proc. Natl Acad. Sci. USA 111, 7176–7184 (2014).
    CAS  PubMed  Article  Google Scholar 

    27.
    Mawdsley, J. R., O’Malley, R. & Ojima, D. S. A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conserv. Biol. 23, 1080–1089 (2009).
    PubMed  Article  Google Scholar 

    28.
    Hagerman, S. M. & Satterfield, T. Agreed but not preferred: expert views on taboo options for biodiversity conservation, given climate change. Ecol. Appl. 24, 548–559 (2014).
    PubMed  Article  Google Scholar 

    29.
    Moser, S. C. and M. T. Boykoff, Climate change and adaptation success: the scope of the challenge. (Taylor & Francis, 2013). 1–34.

    30.
    Stein, B. A., Glick, P., Edelson, N. & Staudt, A. Climate-smart conservation: putting adaption principles into practice, (National Wildlife Federation: Washington D.C, 2014).

    31.
    Dudney, J. et al. Navigating novelty and risk in resilience management. Trends Ecol. Evolution 33, 863–873 (2018).
    Article  Google Scholar 

    32.
    Walker, B. H. Resilience: what it is and is not. Ecol. Soc. 25, art11–art13 (2020).
    Article  Google Scholar 

    33.
    Fisichelli, N. A., Schuurman, G. W. & Hoffman, C. H. Is ‘Resilience’ maladaptive? Towards an accurate Lexicon for climate change adaptation. Environ. Manag. 57, 753–758 (2016).
    Article  Google Scholar 

    34.
    Oliver, T. H. et al. A decision framework for considering climate change adaptation in biodiversity conservation planning. J. Appl. Ecol. 49, 1247–1255 (2012).
    Article  Google Scholar 

    35.
    Schmitz, O. J. et al. Conserving biodiversity: practical guidance about climate change adaptation approaches in support of land-use planning. Nat. Areas J. 35, 190–203 (2015).
    Article  Google Scholar 

    36.
    Millar, C. I., Stephenson, N. L. & Stephens, S. L. Climate change and forests of the future: managing in the face of uncertainty. Ecol. Appl. 17, 2145–2151 (2007).
    PubMed  Article  Google Scholar 

    37.
    Pelling, M., Adaptation to climate change: from resilience to transformation. In Adaptation to Climate Change. (2011).

    38.
    Clifford, K. R. et al. Navigating climate adaptation on public lands: how views on ecosystem change and scale interact with management approaches. Environ. Manag. 66, 1–15 (2020).
    Article  Google Scholar 

    39.
    Thompson, L. M. et al. Responding to ecosystem transformation: resist, accept, or direct? Fisheries p. 1–14 https://doi.org/10.1002/fsh.10506 (2020).

    40.
    Thurman, L. L. et al. Persist in place or shift in space? Evaluating the adaptive capacity of species to climate change. Front. Ecol. Environ. 18, 520–528 (2020).
    Article  Google Scholar 

    41.
    Watson, J. E. M., Rao, M., Ai-Li, K. & Yan, X. Climate change adaptation planning for biodiversity conservation: a review. Adv. Clim. Change Res. 3, 1–11 (2012).
    Article  Google Scholar 

    42.
    Cross, M. et al. Embracing Change: Adapting Conservation Approaches to Address a Changing Climate. (Wildlife Conservation Society: New York, NY, 2018).

    43.
    Prober, S. M. et al. Shifting the conservation paradigm: a synthesis of options for renovating nature under climate change. Ecol. Monogr. 89, e01333–23 (2019).
    Article  Google Scholar 

    44.
    Burgman, M. A. Trusting Judgements: How to Get the Best out of Experts. (Cambridge, UK: Cambridge University Press, 2016).

    45.
    Prober, S. M. et al. Facilitating adaptation of biodiversity to climate change: a conceptual framework applied to the world’s largest Mediterranean-climate woodland. Climatic Change 110, 227–248 (2012).
    Article  Google Scholar 

    46.
    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers, In Ecosystem management (eds Samson, F. B. & Knopf, F. L.) 130–147 (Springer: Ney York, NY, 1996).

    47.
    Gibson, P. P. & Olden, J. D. Ecology, management, and conservation implications of North American beaver (Castor canadensis)in dryland streams. Aquat. Conserv. Mar. Freshw. Ecosyst. 24, 391–409 (2014).
    Article  Google Scholar 

    48.
    Hodgson, D., McDonald, J. L & Hosken, D. J. What do you mean, ‘resilient’? Trends Ecol. Evol. 30, 503–506 (2015).

    49.
    Aitken, S. N. & Whitlock, M. C. Assisted gene flow to facilitate local adaptation to climate change. Annu. Rev. Ecol. Evol. Syst. 44, 367–388 (2013).
    Article  Google Scholar 

    50.
    Aitken, S. N. & Bemmels, J. B. Time to get moving: assisted gene flow of forest trees. Evolut. Appl. 9, 271–290 (2015).
    Article  Google Scholar 

    51.
    Hoegh-Guldberg, O. et al. Assisted colonization and rapid climate change. Science 321, 345–346 (2008).
    CAS  PubMed  Article  Google Scholar 

    52.
    Ste-Marie, C., Nelson, E. A., Dabros, A. & Bonneau, M.-E. Assisted migration: Introduction to a multifaceted concept. Forestry Chron. 87, 724–730 (2011).
    Article  Google Scholar 

    53.
    Mueller, J. M. & Hellmann, J. J. An assessment of invasion risk from assisted migration. Conserv. Biol. 22, 562–567 (2008).
    PubMed  Article  Google Scholar 

    54.
    Strayer, D. L. et al. Essay: Making the most of recent advances in freshwater mussel propagation and restoration. Conserv. Sci. Pract. 1, 27–29 (2019).
    Article  Google Scholar 

    55.
    Beechie, T. et al. Restoring salmon habitat for a changing climate. River Res. Appl. 29, 939–960 (2013).
    Article  Google Scholar 

    56.
    Keeley, A. T. H. et al. New concepts, models, and assessments of climate-wise connectivity. Environ. Res. Lett. 13, 073002–073019 (2018).
    Article  Google Scholar 

    57.
    Dittbrenner, B. J. et al. Modeling intrinsic potential for beaver (Castor canadensis) habitat to inform restoration and climate change adaptation. PLoS ONE 13, e0192538–15 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    58.
    Amaru, S. & Chhetri, N. B. Climate adaptation: institutional response to environmental constraints, and the need for increased flexibility, participation, and integration of approaches. Appl. Geogr. 39, 128–139 (2013).
    Article  Google Scholar 

    59.
    Dilling, L. et al. Is adaptation success a flawed concept? Nat. Clim. Change 9, 572–574 (2019).
    Article  Google Scholar 

    60.
    Múnera, C. & van Kerkhoff, L. Diversifying knowledge governance for climate adaptation in protected areas in Colombia. Environ. Sci. Policy 94, 39–48 (2019).
    Article  Google Scholar 

    61.
    Wyborn, C. et al. Future oriented conservation: knowledge governance, uncertainty and learning. Biodivers. Conserv. 25, 1401–1408 (2016).
    Article  Google Scholar 

    62.
    Peterson St-Laurent, G., Hagerman, S. M. & Kozak, R. A. What risks matter? Public views about assisted migration and other climate adaptive reforestation strategies. Climat. Change 151, 573–587 (2018).
    Article  Google Scholar 

    63.
    Peterson St-Laurent, G., Hagerman, S. M. & Kozak, R. A. Cross-jurisdictional insights from practitioners on novel climate-adaptive options for Canada’s forests. 2020, under review.

    64.
    Martin, T. G. & Watson, J. E. M. Intact ecosystems provide best defence against climate change. Nat. Clim. Change 6, 122–124 (2016).
    Article  Google Scholar 

    65.
    Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evolution 2, 599–610 (2018).
    Article  Google Scholar 

    66.
    Krippendorff, K. Content analysis: an introduction to its methodology. Fourth edition ed. 451 (Los Angeles, CA: SAGE, 2019).

    67.
    RStudio Team, RStudio: Integrated Development for R. 2020, RStudio, Inc. More

  • in

    Large-scale variations in the dynamics of Amazon forest canopy gaps from airborne lidar data and opportunities for tree mortality estimates

    Study area
    The study area was the Amazon basin (Fig. 6)42. The basin was sub-divided in four regions with markedly different forest dynamics, geography and substrate origin, adapted from the classification of Feldpausch et al.33: West (parts of Brazil, Colombia, Ecuador and Peru), Southeast (Bolivia and Brazil), Central-East (Brazil) and North (Brazil, Guyana, French Guiana and Venezuela). The natural vegetation mainly corresponds to broadleaf moist forests and tropical seasonal forests, with both terra firme and seasonally flooded forests. Across the Amazon, there is a wide range of average monthly rainfall (100–300 mm) and dry season length (DSL) (0–8 months)43.
    Figure 6

    The Amazon in South America with colored regions, defined in Feldpausch et al.33, indicating faster (West and Southeast) and slower forest dynamics (Central-East and North). Small black lines represent single-date airborne lidar data acquisitions from the EBA project (n = 610 flight lines). Red triangles illustrate multi-temporal lidar data acquisition over five sites (BON, DUC, FN1, TAL and TAP). Circles indicate the location of field inventory plots (n = 181). R v4.0.2 was used to plot this figure32.

    Full size image

    The five sites selected for the multi-temporal assessment of the static and dynamic gaps relationship (red triangles in Fig. 6) were: Adolpho Ducke forest (DUC), Tapajós National Forest (TAP), Feliz Natal (FN1), Bonal (BON) and Talismã (TAL). These areas were chosen to represent distinct forest types, vegetation structure and biomass stocks. The predominant vegetation types consisted of dense rain forests (DUC and TAP), seasonal forests (FN1), and open rain forests (TAL and BON). DUC and FN1 are mostly undisturbed forests, while TAP underwent fire and/or selective logging in the past. TAL and BON were affected by a known fire occurrence in 2010. The sites cover a gradient of aboveground biomass (AGB) that increase, in average, from TAL (185 Mg ha−1), FN1 (235 Mg ha−1), BON (251 Mg ha−1), and DUC (327 Mg ha−1) to TAP (364 Mg ha−1)44.
    Data acquisition and pre-processing
    Airborne lidar data
    Multi-temporal lidar data were obtained by an airplane at each of the five sites (red triangles in Fig. 6), as part of the Sustainable Landscapes Brazil project. The time-interval window was close to 5 years and was sufficient to measure the long-term aggregated dynamics of tree mortality. The area covered by lidar in the 2012–2018 period was ~ 43 km2, ranging from 480 ha at TAL site to 1200 ha at DUC site (Supplementary Table S5).
    In addition to the multi-temporal datasets, 610 single-date airborne discrete-return lidar data strips (approx. 300 m wide by 12.5 km long; ~ 3.75 km2 each) were acquired during 2016 (acquisition dates in Supplementary Figure S6A) using the Trimble HARRIER 68i system at an airplane. The average flight height was 600 m above ground and the scan angle was 45° (dataset from the EBA project31).
    For both lidar datasets, multiple lidar returns were recorded with a minimum point density of 4 points m−2. Horizontal and vertical accuracy ranging from 0.035 to 0.185 m and from 0.07 to 0.33 m, respectively.
    Following the procedures described by Dalagnol et al.19, the lidar point clouds were processed into canopy height models (CHM) of 1-m spatial resolution. The steps of CHM processing included the: (a) classification of the points between ground and vegetation using the lasground, lasheight, and lasclassify functions from the LAStools 3.1.145; (b) creation of a Digital Terrain Model (DTM) using the TINSurfaceCreate function from FUSION/LDV 3.646; (c) normalization of the point cloud height to height above ground using the DTM; and (d) CHM generation by extracting the highest height of vegetation using the CanopyModel function from FUSION.
    Environmental and climate data
    To analyze the environmental and climatic drivers of gap dynamics, we used a spatialized set of variables and products for the whole Amazon, including: (a) HAND product at 30 × 30 m47; (b) slope calculated from the Shuttle Radar Topography Mission (SRTM) at 30 × 30 m48; (c) soil fertility proxied by SCC at 11 × 11 km37; (d) floodplain cover map at 30 × 30 m49; (e) forest degradation proxied by a non-forest distance map derived from the 30-m global forest change dataset v1.4 (2000–2016)50; (f) monthly mean rainfall (mm), climate water deficit (mm) and wind speed (m s−1), obtained from the TerraClimate dataset at 5 × 5 km (1958–2015)43; and (g) DSL at 28 × 28 km51. All variables and products, except HAND and slope, were resampled to the predominant spatial resolution of most datasets (5 km × 5 km), especially the climate data. We used the SRTM instead of the lidar DTM because the very narrow lidar DTMs (300–500 m) would not permit to determining the lowest point in the terrain to accurately calculate the HAND for every pixel.
    Long-term field inventory data
    We used data from 181 long-term field inventory plots from the RAINFOR network (Fig. 6)5. The data were collected at closed canopy mixed forests with vegetation structure preserved from fire and logging. All trees with diameter at breast height (DBH) ≥ 10 cm were measured at least twice5. These plots had 852 censuses from 1975 to 2013 with median plot size of 1 ha. The mean re-census interval was 3 years. Tree stem mortality rates (m; % year−1) were calculated as the coefficient of exponential mortality for each census interval and each plot52 (Eq. 1). The m estimates were then averaged by plot and were weighted by the censuses interval length, in years1.

    $$m = left[ {lnleft( {N0} right) – lnleft( {Nt} right)} right]/t$$
    (1)

    where N0 and Nt are the initial and final number of trees, and t is the censuses interval.
    Data analysis
    Gap definition and static–dynamic gaps relationship
    Dynamic gaps were detected using multi-date lidar data at the five study sites: DUC, TAP, FN1, BON, and TAL. We define here dynamic gaps as those opened between two periods of observation associated with canopy turnover events, including tree mortality. For this purpose, we calculated a delta height difference of 10 m between the two acquisitions (~ 5 years apart) and filtered for detections with area greater than 10 m2. This height difference was strongly correlated with tree loss at the canopy level in previous studies19, 20. Because standing dead trees do not necessarily generate gaps, we assume that the dynamic gaps are mostly related to the felled canopy trees associated with broken and uprooted mode of death.
    Static gaps were delineated using the CHM from the second lidar acquisition at the five sites (Supplementary Material S1). We applied and compared two types of gap delineation: a traditional method based on a fixed height cutoff (H = 2, 5 or 10 m), and an alternative method based on the relative height (RH = 33, 50, and 66% maximum tree height) around a neighborhood (W = 5–45 m). Since the relative height method did not depend on absolute height values, it should better account for local canopy variability and lower stature vegetation, as opposed to the fixed height method. For both methods, we tested a variety of parameters in the search of an optimal calibration amongst the sites. We filtered gaps for a minimum area of 10 m2, which corresponded to an approximation of the mean canopy area of trees greater than 5-cm DBH in tropical forests21. We also filtered them for a maximum area of 1 ha to automatically exclude open areas that very likely did not correspond to small-scale disturbance from treefall gaps21.
    The spatial match between each static and dynamic gap event was assessed by intersecting the detections and calculating metrics of precision (p), recall (r) and F1-score (F) (Eqs. 2–4) (more information at Supplementary Material S1). p represents the percentage of total correct detections, r represents the percentage of reference data correctly mapped, and F represents the harmonic mean between p and r, that is, a balance between commission and omission errors. Methods and parameters were compared to determine the optimal method for static gap delineation, i.e. higher F means greater agreement between static and dynamic gaps.

    $$Precisionleft( p right) = true , positives/number , of , gap , polygons$$
    (2)

    $$Recallleft( r right) = true , positives/number , of , mortality , polygons$$
    (3)

    $$F1 – scoreleft( F right) = left( {2 times p times r} right)/left( {p + r} right)$$
    (4)

    Finally, considering the optimal gap delineation method, we modeled the relationship between static-dynamic gaps at the landscape scale using a linear regression. For this purpose, annualized dynamic gap fraction and static gap fraction (i.e., the area occupied by gaps in relation to the total area of the flight line) were calculated at the 5-ha scale. Following the strategy by Wagner et al.53, we defined this value after several simulation tests between variable estimates, change rates and plot area (Supplementary Figure S7). Data and residuals were inspected for normality, and variables were transformed to the logarithmic scale prior to the linear model fitting. To assess the model, we calculated the coefficient of determination (R2), absolute Root Mean Square Error (RMSE) and relative RMSE (%) (ratio of RMSE and the mean of observations). To obtain more reliable and unbiased estimates of the model predictive performance, we calculated the RMSE considering out-of-sample values with a leave-one-site-out cross-validation (CV) strategy. Thus, we fitted the model with four sites and calculated the RMSE with predicted and observed values for the site not used in the modeling. We repeated this process for all five sites. A 95% prediction interval described the variability of tree mortality estimates from the gap fraction.
    Spatial variability of static gaps across the Brazilian Amazon
    We delineated static gaps on the single-date airborne lidar datasets (n = 610 flight lines) using the optimal gap delineation method and parameters assessed in the previous section. To characterize the gaps variability across the region, we calculated the gap fraction and mean gap size for each site.
    Assessment of landscape- and regional-scale drivers of static canopy gaps
    To quantify the relationship between static gaps and landscape- and regional-scale predictors, we employed correlation matrices and generalized linear models (GLM). Binomial GLM and Gaussian GLM were applied for landscape and regional models, respectively (detailed information at Supplementary Material S2). Models were assessed using a tenfold CV approach with 30 repetitions. The gap data used in this analysis were those obtained from the 610 single-date lidar data. We defined landscape-scale drivers as those showing great heterogeneity intra-site such as the topography (HAND and slope variables). We defined regional-scale drivers as those having great variability across sites such as the rainfall (Mean_pr and SD_pr), wind speed (Mean_vs and SD_vs), climate water deficit (Mean_def and SD_def), DSL, SCC, floodplains, and non-forest distance.
    Through the modeling we evaluated if gap occurrence (presence or absence) and gap size increased at valleys and steep terrains of the Amazon, represented by low HAND and high slope, respectively. As previously demonstrated with tree mortality ground observations, we also tested if gap fraction would increase with: (1) higher water stress, represented by low Mean_pr, and high SD_pr, Mean_def, SD_def, and DSL; (2) higher soil fertility, expressed by high SCC; (3) higher wind speed, proxied by high Mean_vs and SD_vs; (4) higher forest degradation/fragmentation, represented by low non-forest distance; and (5) areas of seasonally flooded forests, expressed by high floodplains cover. Model residuals were inspected in comparison to fitted values using also variogram and Moran’s I analyses to assess for potential biases and spatial correlation (detailed information in Supplementary Material S2). Static gap fraction and Nonforest_dist were transformed to log-scale due to non-normality data.
    Amazon-wide dynamic gaps mapping and relationship with tree mortality
    To obtain a map of dynamic gap estimates over the Amazon, we first applied the GLM model based on environmental and climate drivers to estimate static gap fractions for the whole region. We then applied the static–dynamic gaps relationship to estimate annualized dynamic gap fraction (% year−1). To explore the opportunities for tree mortality estimates based on gap dynamics, we compared the spatialized dynamic gap estimates with time-averaged mortality rates from long-term field inventory data using a linear model. The model was assessed using a tenfold CV approach with 30 repetitions and the RMSE calculated out-of-sample. We acknowledge that the comparison between field tree mortality and lidar gap estimates is not trivial. However, it is the best source available of independent mortality data to compare the results. Field plot-estimates located within the same 5-km cell of the lidar gap estimates were averaged, resulting in 88 pairs of lidar- and field-estimates samples for validation. The mean annualized dynamic gap fraction per Amazonian region (Fig. 6) was extracted and compared using one-way ANOVA and post-hoc Tukey–Kramer tests. More

  • in

    Pseudomonas aeruginosa reverse diauxie is a multidimensional, optimized, resource utilization strategy

    1.
    Byrd, M. S. et al. Direct evaluation of Pseudomonas aeruginosa biofilm mediators in a chronic infection model. Infect. Immun. 79, 3087–3095. https://doi.org/10.1128/IAI.00057-11 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 
    2.
    Behrends, V. et al. Metabolic adaptations of Pseudomonas aeruginosa during cystic fibrosis chronic lung infections. Environ. Microbiol. 15, 398–408. https://doi.org/10.1111/j.1462-2920.2012.02840.x (2013).
    CAS  Article  PubMed  Google Scholar 

    3.
    Calhoun, J. H., Murray, C. K. & Manring, M. M. Multidrug-resistant organisms in military wounds from Iraq and Afghanistan. Clin. Orthop. Relat. Res. 466, 1356–1362. https://doi.org/10.1007/s11999-008-0212-9 (2008).
    Article  PubMed  PubMed Central  Google Scholar 

    4.
    Frykberg, R. G. & Banks, J. Challenges in the treatment of chronic wounds. Adv. Wound Care New Rochelle 4, 560–582. https://doi.org/10.1089/wound.2015.0635 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    5.
    Jarbrink, K. et al. The humanistic and economic burden of chronic wounds: A protocol for a systematic review. Syst. Rev. 6, 15. https://doi.org/10.1186/s13643-016-0400-8 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    6.
    Fife, C. E. & Carter, M. J. Wound care outcomes and associated cost among patients treated in US outpatient wound centers: Data from the US wound registry. Wounds 24, 10–17 (2012).
    PubMed  Google Scholar 

    7.
    Valot, B. et al. What it takes to be a Pseudomonas aeruginosa? The core genome of the opportunistic pathogen updated. PLoS ONE 10, e0126468. https://doi.org/10.1371/journal.pone.0126468 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    8.
    Rojo, F. Carbon catabolite repression in Pseudomonas: Optimizing metabolic versatility and interactions with the environment. FEMS Microbiol. Rev. 34, 658–684. https://doi.org/10.1111/j.1574-6976.2010.00218.x (2010).
    CAS  Article  PubMed  Google Scholar 

    9.
    Görke, B. & Stülke, J. Carbon catabolite repression in bacteria: Many ways to make the most out of nutrients. Nat. Rev. Microbiol. 6, 613. https://doi.org/10.1038/nrmicro1932 (2008).
    CAS  Article  PubMed  Google Scholar 

    10.
    Collier, D. N., Hager, P. W. & Phibbs, P. V. Catabolite repression control in the Pseudomonads. Res. Microbiol. 147, 551–561. https://doi.org/10.1016/0923-2508(96)84011-3 (1996).
    CAS  Article  PubMed  Google Scholar 

    11.
    Scitable by Nature EDUCATION 2005).

    12.
    Pellett, S., Bigley, D. V. & Grimes, D. J. Distribution of Pseudomonas aeruginosa in a riverine ecosystem. Appl. Environ. Microb. 45, 328–332 (1983).
    CAS  Article  Google Scholar 

    13.
    Döring, G. et al. Distribution and transmission of Pseudomonas aeruginosa andBurkholderia cepacia in a hospital ward. Pediatr. Pulmonol. 21, 90–100. https://doi.org/10.1002/(sici)1099-0496(199602)21:2%3c90::Aid-ppul5%3e3.0.Co;2-t (1996).
    Article  PubMed  Google Scholar 

    14.
    Romling, U., Kader, A., Sriramulu, D. D., Simm, R. & Kronvall, G. Worldwide distribution of Pseudomonas aeruginosa clone C strains in the aquatic environment and cystic fibrosis patients. Environ. Microbiol. 7, 1029–1038. https://doi.org/10.1111/j.1462-2920.2005.00780.x (2005).
    CAS  Article  PubMed  Google Scholar 

    15.
    Hamilton, W. A., Dawes, E. & A. ,. A diauxic effect with Pseudomonas aeruginosa. Biochem. J. 71, 25P-26P (1959).
    CAS  Google Scholar 

    16.
    Liu, Y., Gokhale, C. S., Rainey, P. B. & Zhang, X. X. Unravelling the complexity and redundancy of carbon catabolic repression in Pseudomonas fluorescens SBW25. Mol. Microbiol. 105, 589–605. https://doi.org/10.1111/mmi.13720 (2017).
    CAS  Article  PubMed  Google Scholar 

    17.
    Park, H., McGill, S. L., Arnold, A. D. & Carlson, R. P. Pseudomonad reverse carbon catabolite repression, interspecies metabolite exchange, and consortial division of labor. Cell.Mol. Life Sci. https://doi.org/10.1007/s00018-019-03377-x (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    18.
    Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton University Press, Princeton, 2002).
    Google Scholar 

    19.
    Carlson, R. P. Metabolic systems cost-benefit analysis for interpreting network structure and regulation. Bioinformatics 23, 1258–1264. https://doi.org/10.1093/bioinformatics/btm082 (2007).
    CAS  Article  PubMed  Google Scholar 

    20.
    Carlson, R. P., Oshota, O. J. & Taffs, R. L. in Reprogramming Microbial Metabolic Pathways (eds Xiaoyuan Wang, Jian Chen, & Peter Quinn) 139–157 (Springer, Netherlands, 2012).

    21.
    Folsom, J. P. & Carlson, R. P. Physiological, biomass elemental composition and proteomic analyses of Escherichia coli ammonium-limited chemostat growth, and comparison with iron- and glucose-limited chemostat growth. Microbiology 161, 1659–1670. https://doi.org/10.1099/mic.0.000118 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    22.
    Carlson, R. P. Decomposition of complex microbial behaviors into resource-based stress responses. Bioinformatics 25, 90–97 (2009).
    CAS  Article  Google Scholar 

    23.
    Goelzer, A. & Fromion, V. Bacterial growth rate reflects a bottleneck in resource allocation. Biochim. Biophys. Acta 1810, 978–988. https://doi.org/10.1016/j.bbagen.2011.05.014 (2011).
    CAS  Article  PubMed  Google Scholar 

    24.
    Goelzer, A. & Fromion, V. Resource allocation in living organisms. Biochem. Soc. Trans. 45, 945–952. https://doi.org/10.1042/BST20160436 (2017).
    CAS  Article  Google Scholar 

    25.
    Yang, L. et al. solveME: Fast and reliable solution of nonlinear ME models. BMC Bioinform. 17, 391. https://doi.org/10.1186/s12859-016-1240-1 (2016).
    CAS  Article  Google Scholar 

    26.
    Beg, Q. K. et al. Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity. Proc. Natl. Acad. Sci. USA 104, 12663–12668. https://doi.org/10.1073/pnas.0609845104 (2007).
    ADS  CAS  Article  PubMed  Google Scholar 

    27.
    Vazquez, A. & Oltvai, Z. N. Macromolecular crowding explains overflow metabolism in cells. Sci. Rep. 6, 31007. https://doi.org/10.1038/srep31007 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    28.
    Zhuang, K., Vemuri, G. N. & Mahadevan, R. Economics of membrane occupancy and respiro-fermentation. Mol. Syst. Biol. 7, 500. https://doi.org/10.1038/msb.2011.34 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    29.
    Szenk, M., Dill, K. A. & de Graff, A. M. R. Why do fast-growing bacteria enter overflow metabolism? Testing the membrane real estate hypothesis. Cell Syst. 5, 95–104. https://doi.org/10.1016/j.cels.2017.06.005 (2017).
    CAS  Article  PubMed  Google Scholar 

    30.
    Basan, M. et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528, 99–104. https://doi.org/10.1038/nature15765 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Folsom, J. P., Parker, A. E. & Carlson, R. P. Physiological and proteomic analysis of Escherichia coli iron-limited chemostat growth. J. Bacteriol. 196, 2748–2761. https://doi.org/10.1128/JB.01606-14 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Schuster, S., Boley, D., Moller, P., Stark, H. & Kaleta, C. Mathematical models for explaining the Warburg effect: A review focussed on ATP and biomass production. Biochem. Soc. Trans. 43, 1187–1194. https://doi.org/10.1042/BST20150153 (2015).
    CAS  Article  PubMed  Google Scholar 

    33.
    Woods, J. et al. Development and application of a polymicrobial in vitro wound biofilm model. J. Appl. Microbiol. 112, 998–1006. https://doi.org/10.1111/j.1365-2672.2012.05264.x (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    34.
    Yung, Y. P. et al. Reverse diauxie phenotype in Pseudomonas aeruginosa biofilm revealed by exometabolomics and label-free proteomics. NPJ Biofilms Microbiomes 5, 31. https://doi.org/10.1038/s41522-019-0104-7 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Behrends, V., Ebbels, T. M., Williams, H. D. & Bundy, J. G. Time-resolved metabolic footprinting for nonlinear modeling of bacterial substrate utilization. Appl. Environ. Microbiol. 75, 2453–2463. https://doi.org/10.1128/AEM.01742-08 (2009).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    36.
    Berger, A. et al. Robustness and plasticity of metabolic pathway flux among uropathogenic isolates of Pseudomonas aeruginosa. PLoS ONE 9, e88368. https://doi.org/10.1371/journal.pone.0088368 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    37.
    Nouwens, A. S. et al. Complementing genomics with proteomics: The membrane subproteome ofPseudomonas aeruginosa PAO1. Electrophoresis 21, 3797–3809. https://doi.org/10.1002/1522-2683(200011)21:17%3c3797::Aid-elps3797%3e3.0.Co;2-p (2000).
    CAS  Article  PubMed  Google Scholar 

    38.
    Penesyan, A. et al. Genetically and phenotypically distinct Pseudomonas aeruginosa cystic fibrosis isolates share a core proteomic signature. PLoS ONE 10, e0138527. https://doi.org/10.1371/journal.pone.0138527 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Nikel, P. I., Chavarria, M., Fuhrer, T., Sauer, U. & de Lorenzo, V. Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways. J. Biol. Chem. 290, 25920–25932. https://doi.org/10.1074/jbc.M115.687749 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Phalak, P., Chen, J., Carlson, R. P. & Henson, M. A. Metabolic modeling of a chronic wound biofilm consortium predicts spatial partitioning of bacterial species. BMC Syst. Biol. 10, 90. https://doi.org/10.1186/s12918-016-0334-8 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    41.
    Oberhardt, M. A., Goldberg, J. B., Hogardt, M. & Papin, J. A. Metabolic network analysis of Pseudomonas aeruginosa during chronic cystic fibrosis lung infection. J. Bacteriol. 192, 5534–5548. https://doi.org/10.1128/JB.00900-10 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    42.
    Schuetz, R., Kuepfer, L. & Sauer, U. Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3, 119. https://doi.org/10.1038/msb4100162 (2007).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Schuster, S., Pfeiffer, T. & Fell, D. A. Is maximization of molar yield in metabolic networks favoured by evolution?. J. Theor. Biol. 252, 497–504. https://doi.org/10.1016/j.jtbi.2007.12.008 (2008).
    MathSciNet  CAS  Article  PubMed  MATH  Google Scholar 

    44.
    Varma, A., Boesch, B. W. & Palsson, B. O. Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl. Environ. Microbiol. 59, 2465–2473 (1993).
    CAS  Article  Google Scholar 

    45.
    Varma, A. & Palsson, B. O. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microb. 60, 3724–3731 (1994).
    CAS  Article  Google Scholar 

    46.
    Bar-Even, A. et al. The moderately efficient enzyme: Evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402–4410. https://doi.org/10.1021/bi2002289 (2011).
    CAS  Article  PubMed  Google Scholar 

    47.
    Volkmer, B. & Heinemann, M. Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling. PLoS ONE 6, e23126. https://doi.org/10.1371/journal.pone.0023126 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    48.
    Novak, M., Pfeiffer, T., Lenski, R. E., Sauer, U. & Bonhoeffer, S. Experimental tests for an evolutionary trade-off between growth rate and yield in E. coli. Am. Nat. 168, 242–251. https://doi.org/10.1086/506527 (2006).
    Article  PubMed  Google Scholar 

    49.
    Hoffmann, S., Hoppe, A. & Holzhütter, H.-G. Composition of metabolic flux distributions by functionally interpretable minimal flux modes (MinModes). Genome Inf. 17, 195–207 (2006).
    CAS  Google Scholar 

    50.
    Holzhutter, H. G. The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur. J. Biochem. 271, 2905–2922. https://doi.org/10.1111/j.1432-1033.2004.04213.x (2004).
    CAS  Article  PubMed  Google Scholar 

    51.
    Carlson, R. P. & Taffs, R. L. Molecular-level tradeoffs and metabolic adaptation to simultaneous stressors. Curr. Opin. Biotechnol. 21, 670–676 (2010).
    CAS  Article  Google Scholar 

    52.
    Schuetz, R., Zamboni, N., Zampieri, M., Heinemann, M. & Sauer, U. Multidimensional optimality of microbial metabolism. Science New York NY 336, 601–604. https://doi.org/10.1126/science.1216882 (2012).
    CAS  Article  Google Scholar 

    53.
    Velayudhan, J., Jones, M. A., Barrow, P. A. & Kelly, D. J. l-Serine catabolism via an oxygen-labile l-serine dehydratase is essential for colonization of the avian gut by Campylobacter jejuni. Infect. Immun. 72, 260–268. https://doi.org/10.1128/iai.72.1.260-268.2004 (2004).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    54.
    Frimmersdorf, E., Horatzek, S., Pelnikevich, A., Wiehlmann, L. & Schomburg, D. How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach. Environ. Microbiol. 12, 1734–1747. https://doi.org/10.1111/j.1462-2920.2010.02253.x (2010).
    CAS  Article  PubMed  Google Scholar 

    55.
    Tiwari, N. & Campbell, J. Enzymatic control of the metabolic activity of Pseudomonas aeruginosa grown in glucose or succinate media. Biochimica et Biophysica Acta BBA Gen. Subj. 192, 395–401. https://doi.org/10.1016/0304-4165(69)90388-2 (1969).
    CAS  Article  Google Scholar 

    56.
    Trautwein, K. et al. Benzoate mediates repression of C(4)-dicarboxylate utilization in “Aromatoleum aromaticum” EbN1. J. Bacteriol. 194, 518–528. https://doi.org/10.1128/JB.05072-11 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Kremling, A., Geiselmann, J., Ropers, D. & de Jong, H. An ensemble of mathematical models showing diauxic growth behaviour. BMC Syst. Biol. 12, 1–16. https://doi.org/10.1186/s12918-018-0604-8 (2018).
    CAS  Article  Google Scholar 

    58.
    Kremling, A., Geiselmann, J., Ropers, D. & de Jong, H. Understanding carbon catabolite repression in Escherichia coli using quantitative models. Trends Microbiol. 23, 99–109. https://doi.org/10.1016/j.tim.2014.11.002 (2015).
    CAS  Article  PubMed  Google Scholar 

    59.
    Ibberson, C. B. & Whiteley, M. The social life of microbes in chronic infection. Curr. Opin. Microbiol. 53, 44–50. https://doi.org/10.1016/j.mib.2020.02.003 (2020).
    CAS  Article  PubMed  Google Scholar 

    60.
    King, A. N., de Mets, F. & Brinsmade, S. R. Who’s in control? Regulation of metabolism and pathogenesis in space and time. Curr. Opin. Microbiol. 55, 88–96. https://doi.org/10.1016/j.mib.2020.05.009 (2020).
    CAS  Article  PubMed  Google Scholar 

    61.
    Tuncil, Y. E. et al. Reciprocal prioritization to dietary glycans by gut bacteria in a competitive environment promotes stable coexistence. MBio 8, 66. https://doi.org/10.1128/mBio.01068-17 (2017).
    Article  Google Scholar 

    62.
    Goyal, A., Dubinkina, V. & Maslov, S. Multiple stable states in microbial communities explained by the stable marriage problem. ISME J. 12, 2823–2834. https://doi.org/10.1038/s41396-018-0222-x (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    63.
    Ren, D., Madsen, J. S., Sorensen, S. J. & Burmolle, M. High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation. ISME J. 9, 81–89. https://doi.org/10.1038/ismej.2014.96 (2015).
    CAS  Article  PubMed  Google Scholar 

    64.
    Russel, J., Roder, H. L., Madsen, J. S., Burmolle, M. & Sorensen, S. J. Antagonism correlates with metabolic similarity in diverse bacteria. Proc. Natl. Acad. Sci. USA 114, 10684–10688. https://doi.org/10.1073/pnas.1706016114 (2017).
    CAS  Article  PubMed  Google Scholar 

    65.
    Brileya, K. A., Camilleri, L. B., Zane, G. M., Wall, J. D. & Fields, M. W. Biofilm growth mode promotes maximum carrying capacity and community stability during product inhibition syntrophy. Front. Microbiol. 5, 693. https://doi.org/10.3389/fmicb.2014.00693 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    66.
    Carlson, R. P. et al. Competitive resource allocation to metabolic pathways contributes to overflow metabolisms and emergent properties in cross-feeding microbial consortia. Biochem. Soc. Trans. 46, 269–284. https://doi.org/10.1042/BST20170242 (2018).
    CAS  Article  PubMed  Google Scholar 

    67.
    Beck, A., Hunt, K., Bernstein, H. C. & Carlson, R. in Biotechnology for Biofuel Production and Optimization (eds Carrie A. Eckert & Cong T. Trinh) 407–432 (Elsevier, Amsterdam, 2016).

    68.
    Hillesland, K. L. & Stahl, D. A. Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc. Natl. Acad. Sci. USA 107, 2124–2129. https://doi.org/10.1073/pnas.0908456107 (2010).
    ADS  Article  PubMed  Google Scholar 

    69.
    DeLeon, S. et al. Synergistic interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro wound model. Infect. Immun. 82, 4718–4728. https://doi.org/10.1128/IAI.02198-14 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    70.
    Filkins, L. M. et al. Coculture of Staphylococcus aureus with Pseudomonas aeruginosa drives S. aureus towards fermentative metabolism and reduced viability in a cystic fibrosis model. J. Bacteriol. 197, 2252–2264. https://doi.org/10.1128/jb.00059-15 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    71.
    Bernstein, H. C., Paulson, S. D. & Carlson, R. P. Synthetic Escherichia coli consortia engineered for syntrophy demonstrate enhanced biomass productivity. J. Biotechnol. 157, 159–166. https://doi.org/10.1016/j.jbiotec.2011.10.001 (2012).
    CAS  Article  PubMed  Google Scholar 

    72.
    Bernier, S. P., Letoffe, S., Delepierre, M. & Ghigo, J. M. Biogenic ammonia modifies antibiotic resistance at a distance in physically separated bacteria. Mol. Microbiol. 81, 705–716. https://doi.org/10.1111/j.1365-2958.2011.07724.x (2011).
    CAS  Article  PubMed  Google Scholar 

    73.
    Palkova, Z. et al. Ammonia mediates communication between yeast colonies. Nature 390, 532–536. https://doi.org/10.1038/37398 (1997).
    ADS  CAS  Article  PubMed  Google Scholar 

    74.
    Wang, J., Yan, D., Dixon, R. & Wang, Y. P. Deciphering the principles of bacterial nitrogen dietary preferences: A strategy for nutrient containment. mBio https://doi.org/10.1128/mBio.00792-16 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    75.
    Schreiber, K. et al. The anaerobic regulatory network required for Pseudomonas aeruginosa nitrate respiration. J. Bacteriol. 189, 4310–4314. https://doi.org/10.1128/JB.00240-07 (2007).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    76.
    Stewart, P. S. Diffusion in biofilms. J. Bacteriol. 185, 1485–1491. https://doi.org/10.1128/JB.185.5.1485-1491.2003 (2003).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    77.
    Cornforth, D. M. & Foster, K. R. Competition sensing: The social side of bacterial stress responses. Nat. Rev. Microbiol. 11, 285. https://doi.org/10.1038/nrmicro2977 (2013).
    CAS  Article  PubMed  Google Scholar 

    78.
    Korgaonkar, A., Trivedi, U., Rumbaugh, K. P. & Whiteley, M. Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc. Natl. Acad. Sci. USA 110, 1059–1064. https://doi.org/10.1073/pnas.1214550110 (2013).
    ADS  Article  PubMed  Google Scholar 

    79.
    Wang, M., Schaefer, A. L., Dandekar, A. A. & Greenberg, E. P. Quorum sensing and policing of Pseudomonas aeruginosa social cheaters. Proc. Natl. Acad. Sci. USA 112, 2187–2191. https://doi.org/10.1073/pnas.1500704112 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    80.
    Allegretta, G. et al. In-depth profiling of MvfR-regulated small molecules in Pseudomonas aeruginosa after quorum sensing inhibitor treatment. Front. Microbiol. 8, 1–12. https://doi.org/10.3389/fmicb.2017.00924 (2017).
    Article  Google Scholar 

    81.
    Deziel, E. et al. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc. Natl. Acad. Sci. USA 101, 1339–1344. https://doi.org/10.1073/pnas.0307694100 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    82.
    Meirelles, L. A. & Newman, D. K. Both toxic and beneficial effects of pyocyanin contribute to the lifecycle of Pseudomonas aeruginosa. Mol. Microbiol. 110, 995–1010. https://doi.org/10.1111/mmi.14132 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    83.
    Hall, S. et al. Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins Basel https://doi.org/10.3390/toxins8080236 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    84.
    Price-Whelan, A., Dietrich, L. E. & Newman, D. K. Rethinking “secondary” metabolism: Physiological roles for phenazine antibiotics. Nat. Chem. Biol. 2, 71–78. https://doi.org/10.1038/nchembio764 (2006).
    CAS  Article  PubMed  Google Scholar 

    85.
    Noto, M. J., Burns, W. J., Beavers, W. N. & Skaar, E. P. Mechanisms of pyocyanin toxicity and genetic determinants of resistance in Staphylococcus aureus. J. Bacteriol. https://doi.org/10.1128/JB.00221-17 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    86.
    James, T. J., Hughes, M. A., Cherry, G. W. & Taylor, R. P. Simple biochemical markers to assess chronic wounds. Wound Repair. Regen. 8, 264–269. https://doi.org/10.1046/j.1524-475x.2000.00264.x (2000).
    CAS  Article  PubMed  Google Scholar 

    87.
    Trengove, N. J., Langton, S. R. & Stacey, M. C. Biochemical analysis of wound fluid from nonhealing and healing chronic leg ulcers. Wound Repair. Regen. 4, 234–239. https://doi.org/10.1046/j.1524-475X.1996.40211.x (1996).
    CAS  Article  PubMed  Google Scholar 

    88.
    Cox, K. et al. Prevalence and significance of lactic acidosis in diabetic ketoacidosis. J. Crit. Care 27, 132–137. https://doi.org/10.1016/j.jcrc.2011.07.071 (2012).
    CAS  Article  PubMed  Google Scholar 

    89.
    de Oliveira, F. P. et al. Prevalence, antimicrobial susceptibility, and clonal diversity of Pseudomonas aeruginosa in Chronic Wounds. J. Wound Ostomy Contin. Nurs. 44, 528–535. https://doi.org/10.1097/won.0000000000000373 (2017).
    Article  Google Scholar 

    90.
    Rhoads, D. D., Wolcott, R. D., Sun, Y. & Dowd, S. E. Comparison of culture and molecular identification of bacteria in chronic wounds. Int. J. Mol. Sci. 13, 2535–2550. https://doi.org/10.3390/ijms13032535 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    91.
    Dalton, T. et al. An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PLoS ONE 6, e27317. https://doi.org/10.1371/journal.pone.0027317 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    92.
    Kirketerp-Moller, K. et al. Distribution, organization, and ecology of bacteria in chronic wounds. J. Clin. Microbiol. 46, 2717–2722. https://doi.org/10.1128/JCM.00501-08 (2008).
    Article  PubMed  PubMed Central  Google Scholar 

    93.
    Murray, J. L., Connell, J. L., Stacy, A., Turner, K. H. & Whiteley, M. Mechanisms of synergy in polymicrobial infections. J. Microbiol. 52, 188–199. https://doi.org/10.1007/s12275-014-4067-3 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    94.
    Ferreira, M. T., Manso, A. S., Gaspar, P., Pinho, M. G. & Neves, A. R. Effect of oxygen on glucose metabolism: Utilization of lactate in Staphylococcus aureus as revealed by in vivo NMR studies. PLoS ONE 8, e58277. https://doi.org/10.1371/journal.pone.0058277 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    95.
    Tynecka, Z., Szcześniak, Z., Malm, A. & Los, R. Energy conservation in aerobically grown Staphylococcus aureus. Res. Microbiol. 150, 555–566. https://doi.org/10.1016/s0923-2508(99)00102-3 (1999).
    CAS  Article  PubMed  Google Scholar 

    96.
    Sanchez, C. J. Jr. et al. Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect. Dis. 13, 47. https://doi.org/10.1186/1471-2334-13-47 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    97.
    James, G. A. et al. Biofilms in chronic wounds. Wound Repair. Regen. 16, 37–44. https://doi.org/10.1111/j.1524-475X.2007.00321.x (2008).
    ADS  Article  PubMed  Google Scholar 

    98.
    Bacon, C. W. & White, J. Microbial Endophytes (CRC Press, Boca Raton, 2000).
    Google Scholar 

    99.
    Mann, M. Filter Aided Sample Preparation (FASP) Method. http://www.biochem.mpg.de/226356/FASP (2013).

    100.
    Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protocols 11, 2301–2319. https://doi.org/10.1038/nprot.2016.136 (2016).
    CAS  Article  PubMed  Google Scholar 

    101.
    Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740. https://doi.org/10.1038/nmeth.3901 (2016).
    CAS  Article  PubMed  Google Scholar 

    102.
    Szklarczyk, D. et al. STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452. https://doi.org/10.1093/nar/gku1003 (2015).
    CAS  Article  PubMed  Google Scholar  More