Under the karst: detecting hidden subterranean assemblages using eDNA metabarcoding in the caves of Christmas Island, Australia
1.
Guzik, M. T. et al. Is the Australian subterranean fauna uniquely diverse?. Invertebr. Syst. 24, 407–418 (2011).
Article Google Scholar
2.
Gonzalez, B. C., Iliffe, T. M., Macalady, J. L., Schaperdoth, I. & Kakuk, B. Microbial hotspots in anchialine blue holes: initial discoveries from the Bahamas. Hydrobiologia 677, 149–156 (2011).
CAS Article Google Scholar
3.
Gibert, J. & Deharveng, L. Subterranean ecosystems: a truncated functional biodiversity: This article emphasizes the truncated nature of subterranean biodiversity at both the bottom (no primary producers) and the top (very few strict predators) of food webs and discusses the implic. Bioscience 52, 473–481 (2002).
Article Google Scholar
4.
Moldovan, O. T. An overview on the aquatic cave fauna. in Cave Ecology 173–194 (Springer, 2018).
5.
Adams, M. & Humphreys, W. F. Patterns of genetic diversity within selected subterranean fauna of the Cape Range peninsula, Western Australia: systematic and biogeographic implications. Rec. West. Aust. Museum Suppl. 45, 145–164 (1993).
Google Scholar
6.
Page, T. J., Humphreys, W. F. & Hughes, J. M. Shrimps down under: evolutionary relationships of subterranean crustaceans from Western Australia (Decapoda: Atyidae: Stygiocaris). PLoS ONE 3, e1618 (2008).
ADS Article Google Scholar
7.
Juan, C., Guzik, M. T., Jaume, D. & Cooper, S. J. B. Evolution in caves: Darwin’s ‘wrecks of ancient life’in the molecular era. Mol. Ecol. 19, 3865–3880 (2010).
Article Google Scholar
8.
Bradford, T., Adams, M., Humphreys, W. F., Austin, A. D. & Cooper, S. J. B. DNA barcoding of stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western Australia’s arid zone. Mol. Ecol. Resour. 10, 41–50 (2010).
CAS Article Google Scholar
9.
Asmyhr, M. G., Linke, S., Hose, G. & Nipperess, D. A. Systematic conservation planning for groundwater ecosystems using phylogenetic diversity. PLoS ONE 9, e115132 (2014).
ADS Article Google Scholar
10.
Matthews, E. F. et al. Scratching the surface of subterranean biodiversity: Molecular analysis reveals a diverse and previously unknown fauna of Parabathynellidae (Crustacea: Bathynellacea) from the Pilbara Western Australia. Mol. Phylogenet. Evol. 142, 106643 (2020).
Article Google Scholar
11.
Thomsen, P. F. et al. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS ONE 7, 1 (2012).
Google Scholar
12.
Evans, N. T. et al. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Mol. Ecol. Resour. 16, 29–41 (2016).
CAS Article Google Scholar
13.
Olds, B. P. et al. Estimating species richness using environmental DNA. Ecol. Evol. 6, 4214–4226 (2016).
Article Google Scholar
14.
Stat, M. et al. Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine environment. Sci. Rep. 7, 12240 (2017).
ADS Article Google Scholar
15.
Humphreys, W. et al. Geochemical and microbial diversity of Bundera sinkhole, an anchialine system in the eastern Indian ocean. Nat. Croat. Period. Musei Hist. Nat. Croat. 21, 59–63 (2012).
16.
Korbel, K., Chariton, A., Stephenson, S., Greenfield, P. & Hose, G. C. Wells provide a distorted view of life in the aquifer: implications for sampling, monitoring and assessment of groundwater ecosystems. Sci. Rep. 7, 40702 (2017).
ADS CAS Article Google Scholar
17.
Van Bekkum, M., Sainsbury, J. P., Daughney, C. J. & Chambers, G. K. Molecular analysis of bacterial communities in groundwaters from selected wells in the Hutt Valley and the Wairarapa, New Zealand. New Zeal. J. Mar. Freshw. Res. 40, 91–106 (2006).
Article Google Scholar
18.
Sohlberg, E. et al. Revealing the unexplored fungal communities in deep groundwater of crystalline bedrock fracture zones in Olkiluoto Finland. Front. Microbiol. 6, 573 (2015).
Article Google Scholar
19.
Purkamo, L. et al. Diversity and functionality of archaeal, bacterial and fungal communities in deep Archaean bedrock groundwater. FEMS Microbiol. Ecol. 94, fiy116 (2018).
20.
Miettinen, H. et al. Microbiome composition and geochemical characteristics of deep subsurface high-pressure environment Pyhäsalmi mine Finland. Front. Microbiol. 6, 1203 (2015).
Article Google Scholar
21.
Ali, J. R. & Aitchison, J. C. Time of re-emergence of Christmas Island and its biogeographical significance. Palaeogeogr. Palaeoclimatol. Palaeoecol. 109396 (2019).
22.
Grimes, K. G. Karst features of Christmas Island (Indian Ocean). Helictite 37, 41–58 (2001).
Google Scholar
23.
Beeton, B. et al. Final Report Christmas Island Expert Working Group to Minister for the Environment. Herit. Arts (2010).
24.
James, D. J., Green, P. T., Humphreys, W. F. & Woinarski, J. C. Z. Endemic species of Christmas Island, Indian Ocean. Rec. West. Aust. Museum 34, (2019).
25.
Humphreys, W. F. Subterranean fauna of Christmas Island: habitats and salient features (Raffles Bull, Zool, 2014).
Google Scholar
26.
Davie, P. J. F. & Ng, P. K. L. Two new species of Orcovita (Crustacea: Decapoda: Brachyura: Varunidae) from anchialine caves on Christmas Island, eastern Indian Ocean. Raffles Bull. Zool. 60, 1 (2012).
27.
Nester, G. M. et al. Development and evaluation of fish eDNA metabarcoding assays facilitates the detection of cryptic seahorse taxa (family: Syngnathidae) (Environ. DNA, 2020).
28.
Berry, T. E. et al. DNA metabarcoding for diet analysis and biodiversity: a case study using the endangered Australian sea lion (Neophoca cinerea). Ecol. Evol. 7, 5435–5453 (2017).
Article Google Scholar
29.
Pochon, X., Bott, N. J., Smith, K. F. & Wood, S. A. Evaluating detection limits of next-generation sequencing for the surveillance and monitoring of international marine pests. PLoS ONE 8, e73935 (2013).
ADS CAS Article Google Scholar
30.
Boyer, F., Mercier, C., Bonin, A., Taberlet, P. & Coissac, E. OBITools: a Unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2014).
Article Google Scholar
31.
Wilkinson, S. P., Davy, S. K., Bunce, M. & Stat, M. Taxonomic identification of environmental DNA with informatic sequence classification trees. PeerJ Prepr. (2018).
32.
R Core Team. RStudio: integrated development for R. RStudio, Inc., Boston, MA 42, (2015).
33.
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).
CAS Article Google Scholar
34.
Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Wheeler, D. L. GenBank. Nucleic Acids Res. 33, D34–D38 (2005).
CAS Article Google Scholar
35.
Mousavi-Derazmahalleh, M. et al. eDNAFlow, an automated, reproducible and scalable workflow for analysis of environmental DNA (eDNA) sequences exploiting Nextflow and Singularity (Manuscript submitted for publication, 2020).
36.
Hui, T. H., Naruse, T., Fujita, Y. & Kiat, T. S. Observations on the fauna from submarine and associated anchialine caves in Christmas Island, Indian Ocean Territory. (Australia, Raffles. Bull. Zool, 2014).
37.
Horton, T. et al. World Register of Marine Species (WoRMS). (2018).
38.
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
ADS CAS Article Google Scholar
39.
Clarke, K. R. & Gorley, R. N. PRIMER v7: User Manual/Tutorial. (2015).
40.
Anderson, M., Gorley, R. N. & Clarke, R. K. Permanova+ for Primer: Guide to Software and Statistical Methods. (Primer-E Limited, 2008).
41.
Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–5. (2019).
42.
Wickham, H. ggplot2: elegant graphics for data analysis. (Springer, 2016).
43.
Mitsch, W. J. & Gosselink, J. G. Wetlands, 539 pp. (Van Nostrand Reinhold, NY, 1986).
44.
Humphreys, W. F. & Eberhard, S. Subterranean fauna of Christmas Island Indian Ocean. Helictite 37, 59–74 (2001).
Google Scholar
45.
Greenslade, P. Systematic composition and distribution of Australian cave collembolan faunas with notes on exotic taxa. Helictite 38, 11–15 (2002).
Google Scholar
46.
Morgan. Decapod crustacea of Christmas Island. History 10, 629–637 (2000).
47.
Campos, P. F. & Gilbert, T. M. P. DNA extraction from formalin-fixed material. in Ancient DNA, 81–85 (Springer, 2012).
48.
Humphreys, W., & Eberhard, S. Assessment of the ecological values and management options for cave use on Christmas Island: Project 97/002. (1998).
49.
Franklin, P. A. Dissolved oxygen criteria for freshwater fish in New Zealand: a revised approach. New Zeal. J. Mar. Freshw. Res. 48, 112–126 (2014).
CAS Article Google Scholar
50.
Barrett, P. J. Searching for water on Christmas Island. Helictite 37, 37–39 (2001).
Google Scholar
51.
Anon. Water Search – Christmas Island. in Unpublished report held in records of Phosphate Mining Company of Christmas Island 9 (1971).
52.
Gorički, Š. Environmental DNA as a conservation tool. in Encyclopedia of Caves 387–393 (Elsevier, 2019).
53.
Porritt, K. & Walker, K. Christmas Island GIS 2013 release. (2015).
54.
ESRI. ArcGIS Desktop: Release 10. Environmental Systems Research Institute, Redlands, CA (2011).
55.
Bruce, A. J. & Davie, P. J. F. A new anchialine shrimp of the genus Procaris from Christmas Island: the first occurrence of the Procarididae in the Indian Ocean (Crustacea: Decapoda: Caridea). Zootaxa 1238, 23–33 (2006).
Article Google Scholar
56.
Namiotko, T., Wouters, K., Danielopol, D. L. & Humphreys, W. F. On the origin and evolution of a new anchialine stygobitic Microceratina species (Crustacea, Ostracoda) from Christmas Island (Indian Ocean). J. Micropalaeontol. 23, 49–59 (2004).
Article Google Scholar
57.
Duy-Jacquemin, M. N. Two new species of Lophoturus (Diplopoda, Penicillata, Lophoproctidae) from caves in Christmas Island, Australia, including the second troglomorph in Penicillata. Zoosystema 36, 29–40 (2014).
Article Google Scholar
58.
Huynh, C. & Veenstra, A. A. Two new Lophoturus species (Diplopoda, Polyxenida, Lophoproctidae) from Queensland, Australia. Zookeys 133 (2018).
59.
Karanovic, T. & Pesce, G. Copepods from ground waters of Western Australia, VII. Nitokra humphreysi sp. nov. (Crustacea: Copepoda: Harpacticoida). Hydrobiologia 470, 5–12 (2002).
60.
Karanovic, T. Subterranean Copepoda from arid Western Australia. Crustaceana Monographs 3, i–vi (2004).
Google Scholar More
