More stories

  • in

    Sustained organic loading disturbance favors nitrite accumulation in bioreactors with variable resistance, recovery and resilience of nitrification and nitrifiers

    1.
    Osborn, D., Cutter, A. & Ullah, F. in Stakeholder Forum, Commissioned by the UN Development Program. Geneva, Switzerland.
    2.
    Cain, M., Bowman, W. & Hacker, S. Ecology 3rd edn. (Sinauer Associates Inc., Sunderland, 2014).
    Google Scholar 

    3.
    Donohue, I. et al. On the dimensionality of ecological stability. Ecol. Lett. 16, 421–429 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    4.
    Hillebrand, H. et al. Decomposing multiple dimensions of stability in global change experiments. Ecol. Lett. 21, 21–30 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    5.
    Briones, A. & Raskin, L. Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Curr. Opin. Biotechnol. 14, 270–276 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Wang, Q., Ding, C., Tao, G. & He, J. Analysis of enhanced nitrogen removal mechanisms in a validation wastewater treatment plant containing anammox bacteria. Appl. Microbiol. Biotechnol. 103, 1255–1265 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Zhou, J. & Ning, D. Stochastic community assembly: does it matter in microbial ecology?. Microbiol. Mol. Biol. Rev. 81, 1–32 (2017).
    Article  Google Scholar 

    8.
    Santillan, E., Seshan, H., Constancias, F., Drautz-Moses, D. I. & Wuertz, S. Frequency of disturbance alters diversity, function, and underlying assembly mechanisms of complex bacterial communities. NPJ Biofilms Microbiomes 5, 1–8 (2019).
    Article  Google Scholar 

    9.
    Prosser, J. I. Replicate or lie. Environ. Microbiol. 12, 1806–1810 (2010).
    CAS  PubMed  Article  Google Scholar 

    10.
    Bender, E. A., Case, T. J. & Gilpin, M. E. Perturbation experiments in community ecology: theory and practice. Ecology 65, 1–13 (1984).
    Article  Google Scholar 

    11.
    Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3, 1–19 (2012).
    ADS  Article  Google Scholar 

    12.
    Botton, S., van Heusden, M., Parsons, J. R., Smidt, H. & van Straalen, N. Resilience of microbial systems towards disturbances. Crit. Rev. Microbiol. 32, 101–112 (2006).
    CAS  PubMed  Article  Google Scholar 

    13.
    Rykiel, E. J. Towards a definition of ecological disturbance. Aust. J. Ecol. 10, 361–365 (1985).
    Article  Google Scholar 

    14.
    Hu, B., Wheatley, A., Ishtchenko, V. & Huddersman, K. The effect of shock loads on SAF bioreactors for sewage treatment works. Chem. Eng. J. 166, 73–80 (2011).
    CAS  Article  Google Scholar 

    15.
    Bassin, J. P. et al. Effect of increasing organic loading rates on the performance of moving-bed biofilm reactors filled with different support media: assessing the activity of suspended and attached biomass fractions. Process Saf. Environ. Prot. 100, 131–141 (2016).
    CAS  Article  Google Scholar 

    16.
    Seetha, N., Bhargava, R. & Kumar, P. Effect of organic shock loads on a two-stage activated sludge-biofilm reactor. Bioresour. Technol. 101, 3060–3066 (2010).
    CAS  PubMed  Article  Google Scholar 

    17.
    Ketheesan, B. & Stuckey, D. C. Effects of hydraulic/organic shock/transient loads in anaerobic wastewater treatment: a review. Crit. Rev. Environ. Sci. Technol. 45, 2693–2727 (2015).
    CAS  Article  Google Scholar 

    18.
    Senturk, E., Ince, M. & Onkal Engin, G. The effect of shock loading on the performance of a thermophilic anaerobic contact reactor at constant organic loading rate. J. Environ. Health Sci. Eng. 12, 1–6 (2014).
    Article  CAS  Google Scholar 

    19.
    Gray, N. F. Biology of Wastewater Treatment 2nd edn, Vol. 4 (Imperial College Press, London, 2004).
    Google Scholar 

    20.
    Laureni, M. et al. Mainstream partial nitritation and anammox: long-term process stability and effluent quality at low temperatures. Water Res. 101, 628–639 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Wang, Q. & He, J. Newly designed high-coverage degenerate primers for nitrogen removal mechanism analysis in a partial nitrification-anammox (PN/A) process. FEMS Microbiol. Ecol. 96, fiz202 (2019).
    Article  Google Scholar 

    22.
    Ma, B. et al. Suppressing nitrite-oxidizing bacteria growth to achieve nitrogen removal from domestic wastewater via anammox using intermittent aeration with low dissolved oxygen. Sci. Rep. 5, 1–9 (2015).
    Google Scholar 

    23.
    Sinha, B. & Annachhatre, A. P. Partial nitrification—operational parameters and microorganisms involved. Rev. Environ. Sci. Bio. Technol. 6, 285–313 (2007).
    CAS  Article  Google Scholar 

    24.
    Okabe, S., Oozawa, Y., Hirata, K. & Watanabe, Y. Relationship between population dynamics of nitrifiers in biofilms and reactor performance at various C:N ratios. Water Res. 30, 1563–1572 (1996).
    CAS  Article  Google Scholar 

    25.
    Ge, S. et al. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: a review. Chemosphere 140, 85–98 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Ma, J. et al. Analysis of nitrification efficiency and microbial community in a membrane bioreactor fed with low COD/N-ratio wastewater. PLoS ONE 8, 1–10 (2013).
    Article  Google Scholar 

    27.
    Tan, C., Ma, F. & Qiu, S. Impact of carbon to nitrogen ratio on nitrogen removal at a low oxygen concentration in a sequencing batch biofilm reactor. Water Sci. Technol. 67, 612–618 (2012).
    Article  CAS  Google Scholar 

    28.
    Zhang, T. et al. Achieving partial nitrification in a continuous post-denitrification reactor treating low C/N sewage. Chem. Eng. J. 335, 330–337 (2018).
    CAS  Article  Google Scholar 

    29.
    She, Z. et al. Partial nitrification and denitrification in a sequencing batch reactor treating high-salinity wastewater. Chem. Eng. J. 288, 207–215 (2016).
    CAS  Article  Google Scholar 

    30.
    Regmi, P. et al. Control of aeration, aerobic SRT and COD input for mainstream nitritation/denitritation. Water Res. 57, 162–171 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Ge, S., Peng, Y., Qiu, S., Zhu, A. & Ren, N. Complete nitrogen removal from municipal wastewater via partial nitrification by appropriately alternating anoxic/aerobic conditions in a continuous plug-flow step feed process. Water Res. 55, 95–105 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Jiang, H. et al. A pilot-scale study on start-up and stable operation of mainstream partial nitrification-anammox biofilter process based on online pH-DO linkage control. Chem. Eng. J. 350, 1035–1042 (2018).
    CAS  Article  Google Scholar 

    33.
    Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321 (1984).
    ADS  Article  Google Scholar 

    34.
    Santillan, E., Constancias, F. & Wuertz, S. Press disturbance alters community structure and assembly mechanisms of bacterial taxa and functional genes in mesocosm-scale bioreactors. mSystems 5, e00471–e00420 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Nowka, B., Daims, H. & Spieck, E. Comparison of oxidation kinetics of nitrite-oxidizing bacteria: nitrite availability as a key factor in niche differentiation. Appl. Environ. Microbiol. 81, 745–753 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Okabe, S., Aoi, Y., Satoh, H. & Suwa, Y. Nitrification. In Nitrification in Wastewater Treatment (eds Ward, B. B. et al.) 405–418 (ASM Press, Washington, DC, 2011).
    Google Scholar 

    38.
    Blackburne, R., Yuan, Z. & Keller, J. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. Biodegradation 19, 303–312 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Garrido, J. M., van Benthum, W. A. J., van Loosdrecht, M. C. M. & Heijnen, J. J. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnol. Bioeng. 53, 168–178 (1997).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Almstrand, R., Daims, H., Persson, F., Sörensson, F. & Hermansson, M. New methods for analysis of spatial distribution and coaggregation of microbial populations in complex biofilms. Appl. Environ. Microbiol. 79, 5978–5987 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Law, Y. et al. High dissolved oxygen selection against nitrospira sublineage I in full-scale activated sludge. Environ. Sci. Technol. 53, 8157–8166 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    42.
    Gonzalez, C., Garcia, P. A. & Munoz, R. Effect of feed characteristics on the organic matter, nitrogen and phosphorus removal in an activated sludge system treating piggery slurry. Water Sci. Technol. 60, 2145–2152 (2009).
    CAS  PubMed  Article  Google Scholar 

    43.
    Lydmark, P., Lind, M., Sörensson, F. & Hermansson, M. Vertical distribution of nitrifying populations in bacterial biofilms from a full-scale nitrifying trickling filter. Environ. Microbiol. 8, 2036–2049 (2006).
    CAS  PubMed  Article  Google Scholar 

    44.
    Okabe, S., Satoh, H. & Watanabe, Y. In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbiol. 65, 3182–3191 (1999).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Anthonisen, A., Loehr, R., Prakasam, T. & Srinath, E. Inhibition of nitrification by ammonia and nitrous acid. Journal (Water Pollut. Control Fed.), 835–852 (1976).

    46.
    Lackner, S. et al. Full-scale partial nitritation/anammox experiences: an application survey. Water Res. 55, 292–303 (2014).
    CAS  PubMed  Article  Google Scholar 

    47.
    Wu, J., He, C., van Loosdrecht, M. C. M. & Pérez, J. Selection of ammonium oxidizing bacteria (AOB) over nitrite oxidizing bacteria (NOB) based on conversion rates. Chem. Eng. J. 304, 953–961 (2016).
    CAS  Article  Google Scholar 

    48.
    Tchobanoglous, G. B., Franklin, L. & Stensel, H. D. Wastewater engineering: treatment and reuse 4th edn. (McGraw Hill, New York, 2003).
    Google Scholar 

    49.
    Smith, R. C., Elger, S. O. & Mleziva, S. Implementation of solids retention time (SRT) control in wastewater treatment. Xylem Anal. 20, 1–6 (2015).
    Google Scholar 

    50.
    Simsek, H., Kasi, M., Ohm, J.-B., Murthy, S. & Khan, E. Impact of solids retention time on dissolved organic nitrogen and its biodegradability in treated wastewater. Water Res. 92, 44–51 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Wu, Y.-J. et al. Impact of food to microorganism (F/M) ratio and colloidal chemical oxygen demand on nitrification performance of a full-scale membrane bioreactor treating thin film transistor liquid crystal display wastewater. Bioresour. Technol. 141, 35–40 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Meerburg, F. A. et al. High-rate activated sludge communities have a distinctly different structure compared to low-rate sludge communities, and are less sensitive towards environmental and operational variables. Water Res. 100, 137–145 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Vuono, D. C. et al. Disturbance and temporal partitioning of the activated sludge metacommunity. ISME J. 9, 425–435 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Ballinger, S. J., Head, I. M., Curtis, T. P. & Godley, A. R. The effect of C/N ratio on ammonia oxidising bacteria community structure in a laboratory nitrification-denitrification reactor. Water Sci. Technol. 46, 543–550 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Cabrol, L. et al. Management of microbial communities through transient disturbances enhances the functional resilience of nitrifying gas-biofilters to future disturbances. Environ. Sci. Technol. 50, 338–348 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Wells, G. F. et al. Comparing the resistance, resilience, and stability of replicate moving bed biofilm and suspended growth combined nitritation–anammox reactors. Environ. Sci. Technol. 51, 5108–5117 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    57.
    Pianka, E. R. R-selection and K-selection. Am. Nat. 104, 592–579 (1970).
    Article  Google Scholar 

    58.
    Santillan, E., Seshan, H., Constancias, F. & Wuertz, S. Trait-based life-history strategies explain succession scenario for complex bacterial communities under varying disturbance. Environ. Microbiol. 21, 3751–3764 (2019).
    CAS  PubMed  Article  Google Scholar 

    59.
    Macarthur, R. H. & Wilson, E. O. The Theory of Island Biogeography 224 (Princeton, Princeton University Press, 1967).
    Google Scholar 

    60.
    Blackburne, R., Vadivelu, V. M., Yuan, Z. & Keller, J. Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter. Water Res. 41, 3033–3042 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Dytczak, M. A., Londry, K. L. & Oleszkiewicz, J. A. Activated sludge operational regime has significant impact on the type of nitrifying community and its nitrification rates. Water Res. 42, 2320–2328 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Huang, Z., Gedalanga, P. B., Asvapathanagul, P. & Olson, B. H. Influence of physicochemical and operational parameters on Nitrobacter and Nitrospira communities in an aerobic activated sludge bioreactor. Water Res. 44, 4351–4358 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Vuono, D. C., Munakata-Marr, J., Spear, J. R. & Drewes, J. E. Disturbance opens recruitment sites for bacterial colonization in activated sludge. Environ. Microbiol. 18, 87–99 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Jauffur, S., Isazadeh, S. & Frigon, D. Should activated sludge models consider influent seeding of nitrifiers? Field characterization of nitrifying bacteria. Water Sci. Technol. 70, 1526–1532 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Yu, L. et al. Natural continuous influent nitrifier immigration effects on nitrification and the microbial community of activated sludge systems. J. Environ. Sci. 74, 159–167 (2018).
    Article  Google Scholar 

    66.
    Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 105, 11512–11519 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Shade, A. et al. Lake microbial communities are resilient after a whole-ecosystem disturbance. ISME J. 6, 2153–2167 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Santillan, E. Disturbance-Performance-Diversity Relationships and Microbial Ecology in Bioreactors for Wastewater Treatment. Ph.D. thesis, University of California, Davis (2018).

    69.
    Hesselmann, R. P. X., Werlen, C., Hahn, D., van der Meer, J. R. & Zehnder, A. J. B. Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst. Appl. Microbiol. 22, 454–465 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    APHA-AWWA-WEF. Standard Methods for the Examination of Water and Wastewater 22nd edn. (AWWA, Mumbai, 2005).
    Google Scholar 

    71.
    Thijs, S. et al. Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys. Front. Microbiol. 8, 1–15 (2017).
    Article  Google Scholar 

    72.
    Callahan, B. J. et al. DADA2: High resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Glöckner, F. O. et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J. Biotechnol. 261, 169–176 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    74.
    Chen, C., Khaleel, S. S., Huang, H. & Wu, C. H. Software for pre-processing Illumina next-generation sequencing short read sequences. Sour. Code Biol. Med. 9, 8–8 (2014).
    Article  Google Scholar 

    75.
    Ilott, N. E. et al. Defining the microbial transcriptional response to colitis through integrated host and microbiome profiling. ISME J. 10, 2389–2404 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    77.
    Huson, D. H. et al. MEGAN community edition: interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comp. Biol. 12, 1–12 (2016).
    Article  CAS  Google Scholar 

    78.
    Tamames, J. & Puente-Sánchez, F. SqueezeMeta, a highly portable, fully automatic metagenomic analysis pipeline. Front. Microbiol. 9 (2019).

    79.
    Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    80.
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).
    Article  CAS  Google Scholar 

    81.
    Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).
    CAS  PubMed  Article  Google Scholar 

    82.
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    83.
    Puente-Sánchez, F., García-García, N. & Tamames, J. SQMtools: automated processing and visual analysis of ’omics data with R and anvi’o. BMC Bioinform. 21, 358 (2020).
    Article  Google Scholar 

    84.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Ser. B. (Method.) 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar  More

  • in

    Linear infrastructure habitats increase landscape-scale diversity of plants but not of flower-visiting insects

    1.
    Bergman, K.-O., Dániel-Ferreira, J., Milberg, P., Öckinger, E. & Westerberg, L. Butterflies in Swedish grasslands benefit from forest and respond to landscape composition at different spatial scales. Landsc. Ecol. 33, 2189–2204. https://doi.org/10.1007/s10980-018-0732-y (2018).
    Article  Google Scholar 
    2.
    Cousins, S. A. O., Auffret, A. G., Lindgren, J. & Tränk, L. Regional-scale land-cover change during the 20th century and its consequences for biodiversity. Ambio 44, 17–27. https://doi.org/10.1007/s13280-014-0585-9 (2015).
    Article  PubMed Central  Google Scholar 

    3.
    Eriksson, O., Cousins, S. A. O. & Bruun, H. H. Land-use history and fragmentation of traditionally managed grasslands in Scandinavia. J. Veg. Sci. 13, 743–748. https://doi.org/10.1111/j.1654-1103.2002.tb02102.x (2002).
    Article  Google Scholar 

    4.
    Tyler, T. et al. Recent changes in the frequency of plant species and vegetation types in Scania, S Sweden, compared to changes during the twentieth century. Biodivers. Conserv. 29, 709–728. https://doi.org/10.1007/s10531-019-01906-5 (2020).
    Article  Google Scholar 

    5.
    Thomas, J. A. Butterfly communities under threat. Science 353, 216–218. https://doi.org/10.1126/science.aaf8838 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    6.
    Bommarco, R., Lundin, O., Smith, H. G. & Rundlöf, M. Drastic historic shifts in bumble-bee community composition in Sweden. Proc. R. Soc. B 279, 309–315. https://doi.org/10.1098/rspb.2011.0647 (2012).
    Article  Google Scholar 

    7.
    Marini, L. et al. Contrasting effects of habitat area and connectivity on evenness of pollinator communities. Ecography 37, 544–551. https://doi.org/10.1111/j.1600-0587.2013.00369.x (2014).
    Article  Google Scholar 

    8.
    Ferreira, P. A., Boscolo, D. & Viana, B. F. What do we know about the effects of landscape changes on plant–pollinator interaction networks?. Ecol. Indic. 31, 35–40. https://doi.org/10.1016/j.ecolind.2012.07.025 (2013).
    Article  Google Scholar 

    9.
    Larsen, T. H., Williams, N. M. & Kremen, C. Extinction order and altered community structure rapidly disrupt ecosystem functioning: altered community structure disrupts functioning. Ecol. Lett. 8, 538–547. https://doi.org/10.1111/j.1461-0248.2005.00749.x (2005).
    Article  PubMed  Google Scholar 

    10.
    Vanneste, T. et al. Plant diversity in hedgerows and road verges across Europe. J. Appl. Ecol. 57, 1244–1257. https://doi.org/10.1111/1365-2664.13620 (2020).
    Article  Google Scholar 

    11.
    Phillips, B. B. et al. Enhancing road verges to aid pollinator conservation: a review. Biol. Conserv. 250, 108687. https://doi.org/10.1016/j.biocon.2020.108687 (2020).

    12.
    Berg, Å., Bergman, K.-O., Wissman, J., Żmihorski, M. & Öckinger, E. Power-line corridors as source habitat for butterflies in forest landscapes. Biol. Conserv. 201, 320–326. https://doi.org/10.1016/j.biocon.2016.07.034 (2016).
    Article  Google Scholar 

    13.
    Lundholm, J. T. & Richardson, P. J. MINI-REVIEW: Habitat analogues for reconciliation ecology in urban and industrial environments. J. Appl. Ecol. 47, 966–975. https://doi.org/10.1111/j.1365-2664.2010.01857.x (2010).
    Article  Google Scholar 

    14.
    Cranmer, L., McCollin, D. & Ollerton, J. Landscape structure influences pollinator movements and directly affects plant reproductive success. Oikos 121, 562–568. https://doi.org/10.1111/j.1600-0706.2011.19704.x (2012).
    Article  Google Scholar 

    15.
    Van Geert, A., Van Rossum, F. & Triest, L. Do linear landscape elements in farmland act as biological corridors for pollen dispersal? J. Ecol. 98, 178–187. https://doi.org/10.1111/j.1365-2745.2009.01600.x (2010).
    Article  Google Scholar 

    16.
    Lázaro-Lobo, A. & Ervin, G. N. A global examination on the differential impacts of roadsides on native vs. exotic and weedy plant species. Glob. Ecol. Conserv. 17, e00555. https://doi.org/10.1016/j.gecco.2019.e00555 (2019).
    Article  Google Scholar 

    17.
    Dubé, C., Pellerin, S. & Poulin, M. Do power line rights-of-way facilitate the spread of non-peatland and invasive plants in bogs and fens?. Botany 89, 91–103. https://doi.org/10.1139/B10-089 (2011).
    Article  Google Scholar 

    18.
    Fahrig, L. & Rytwinski, T. Effects of Roads on Animal Abundance: an Empirical Review and Synthesis. Ecol. Soc. 14(1): 21. http://www.ecologyandsociety.org/vol14/iss1/art21/ (2009).

    19.
    Benítez-López, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol. Conserv. 143, 1307–1316. https://doi.org/10.1016/j.biocon.2010.02.009 (2010).
    Article  Google Scholar 

    20.
    Keilsohn, W., Narango, D. L. & Tallamy, D. W. Roadside habitat impacts insect traffic mortality. J. Insect Conserv. 22, 183–188. https://doi.org/10.1007/s10841-018-0051-2 (2018).
    Article  Google Scholar 

    21.
    Gardiner, M. M., Riley, C. B., Bommarco, R. & Öckinger, E. Rights-of-way: a potential conservation resource. Front. Ecol. Environ. 16, 149–158. https://doi.org/10.1002/fee.1778 (2018).
    Article  Google Scholar 

    22.
    Phillips, B. B., Gaston, K. J., Bullock, J. M. & Osborne, J. L. Road verges support pollinators in agricultural landscapes, but are diminished by heavy traffic and summer cutting. J. Appl. Ecol. 56, 2316–2327. https://doi.org/10.1111/1365-2664.13470 (2019).
    Article  Google Scholar 

    23.
    Wagner, D. L., Metzler, K. J. & Frye, H. Importance of transmission line corridors for conservation of native bees and other wildlife. Biol. Conserv. 235, 147–156. https://doi.org/10.1016/j.biocon.2019.03.042 (2019).
    Article  Google Scholar 

    24.
    Wojcik, V. A. & Buchmann, S. Pollinator conservation and management on electrical transmission and roadside rights-of-way: a review. J. Pollinat. Ecol. 7, 16–26 (2012).
    Article  Google Scholar 

    25.
    Stenmark, M. Infrastrukturens gräs-och buskmarker. Hur stora arealer gräs och buskmarker finns i anslutning till transportinfrastruktur och bidrar dessa till miljömålsarbetet? Infrastrukturens gräs-och buskmarker. Jordbruksverket Rapport 2012:36 (2012).

    26.
    Jeusset, A. et al. Can linear transportation infrastructure verges constitute a habitat and/or a corridor for biodiversity in temperate landscapes? A systematic review protocol. Environ. Evid. 7, 5. https://doi.org/10.1186/s13750-016-0056-9 (2016).
    Article  Google Scholar 

    27.
    Crist, T. O., Veech, J. A., Gering, J. C. & Summerville, K. S. Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β, and γ diversity. Am. Nat. 162, 734–743. https://doi.org/10.1086/378901 (2003).
    Article  PubMed  Google Scholar 

    28.
    With, K. A. Are landscapes more than the sum of their patches?. Landsc. Ecol. 31, 969–980. https://doi.org/10.1007/s10980-015-0328-8 (2016).
    Article  Google Scholar 

    29.
    Cornell, H. V. & Harrison, S. P. What are species pools and when are they important?. Annu. Rev. Ecol. Evol. Syst. 45, 45–67. https://doi.org/10.1146/annurev-ecolsys-120213-091759 (2014).
    Article  Google Scholar 

    30.
    Cornell, H. V. & Lawton, J. H. Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. J. Anim. Ecol. 61, 1. https://doi.org/10.2307/5503 (1992).
    Article  Google Scholar 

    31.
    Steinert, M., Moe, S. R., Sydenham, M. A. K. & Eldegard, K. Different cutting regimes improve species and functional diversity of insect-pollinated plants in power-line clearings. Ecosphere 9, e02509. https://doi.org/10.1002/ecs2.2509 (2018).
    Article  Google Scholar 

    32.
    Gagic, V. et al. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc. R. Soc. B Biol. Sci. 282, 20142620. https://doi.org/10.1098/rspb.2014.2620 (2015).
    Article  Google Scholar 

    33.
    Chao, A., Chiu, C.-H. & Jost, L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through hill numbers. Annu. Rev. Ecol. Evol. Syst. 45, 297–324. https://doi.org/10.1146/annurev-ecolsys-120213-091540 (2014).
    Article  Google Scholar 

    34.
    Vellend, M., Cornwell, W. K., Magnuson-Ford, K. & Mooers, A. O. Measuring phylogenetic biodiversity. In Biological Diversity: Frontiers in Measurement and Assessment 194–207 (Oxford University Press, 2011).

    35.
    Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge University Press, Cambridge, 1995).
    Google Scholar 

    36.
    Fahrig, L. Rethinking patch size and isolation effects: the habitat amount hypothesis. J. Biogeogr. 40, 1649–1663. https://doi.org/10.1111/jbi.12130 (2013).
    Article  Google Scholar 

    37.
    Hill, B. & Bartomeus, I. The potential of electricity transmission corridors in forested areas as bumblebee habitat. R. Soc. Open Sci. 3, 160525. https://doi.org/10.1098/rsos.160525 (2016).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    38.
    Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571. https://doi.org/10.1016/j.tree.2009.04.011 (2009).
    Article  PubMed  Google Scholar 

    39.
    Krauss, J. et al. Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol. Lett. 13, 597–605. https://doi.org/10.1111/j.1461-0248.2010.01457.x (2010).
    Article  PubMed  PubMed Central  Google Scholar 

    40.
    Grusell, E. & Miliander, S. Fältmanual för skötsel av kraftledningsgatans biotoper. https://www.svk.se/contentassets/2f77f2d04b7b451495013f4de5fa7409/bilaga-5-faltmanual-for-skotsel-av-kraftledningsgatans-biotoper.pdf (2011).

    41.
    Zeiter, M., Stampfli, A. & Newbery, D. M. Recruitment limitation constrains local species richness and productivity in dry grassland. Ecology 87, 942–951. https://doi.org/10.1890/0012-9658(2006)87[942:RLCLSR]2.0.CO;2 (2006).
    CAS  Article  PubMed  Google Scholar 

    42.
    Chaudron, C., Chauvel, B. & Isselin-Nondedeu, F. Effects of late mowing on plant species richness and seed rain in road verges and adjacent arable fields. Agric. Ecosyst. Environ. 232, 218–226. https://doi.org/10.1016/j.agee.2016.03.047 (2016).
    Article  Google Scholar 

    43.
    Angold, P. G. The impact of a road upon adjacent heathland vegetation: effects on plant species composition. J. Appl. Ecol. 34, 409–417 (1997).
    Article  Google Scholar 

    44.
    Watmough, S. A., Rabinowitz, T. & Baker, S. The impact of pollutants from a major northern highway on an adjacent hardwood forest. Sci. Total Environ. 579, 409–419. https://doi.org/10.1016/j.scitotenv.2016.11.081 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    45.
    Andersson, P., Koffman, A., Sjödin, N. E. & Johansson, V. Roads may act as barriers to flying insects: species composition of bees and wasps differs on two sides of a large highway. Nat. Conserv. 18, 47–59. https://doi.org/10.3897/natureconservation.18.12314 (2017).
    Article  Google Scholar 

    46.
    Öckinger, E. & Smith, H. G. Semi-natural grasslands as population sources for pollinating insects in agricultural landscapes. J. Appl. Ecol. 44, 50–59. https://doi.org/10.1111/j.1365-2664.2006.01250.x (2006).
    Article  Google Scholar 

    47.
    Krauss, J., Klein, A.-M., Steffan-Dewenter, I. & Tscharntke, T. Effects of habitat area, isolation, and landscape diversity on plant species richness of calcareous grasslands. Biodivers. Conserv. 13, 1427–1439. https://doi.org/10.1023/B:BIOC.0000021323.18165.58 (2004).
    Article  Google Scholar 

    48.
    Thiele, J., Kellner, S., Buchholz, S. & Schirmel, J. Connectivity or area: what drives plant species richness in habitat corridors?. Landsc. Ecol. 33, 173–181. https://doi.org/10.1007/s10980-017-0606-8 (2018).
    Article  Google Scholar 

    49.
    Lampinen, J., Heikkinen, R. K., Manninen, P., Ryttäri, T. & Kuussaari, M. Importance of local habitat conditions and past and present habitat connectivity for the species richness of grassland plants and butterflies in power line clearings. Biodivers. Conserv. 27, 217–233. https://doi.org/10.1007/s10531-017-1430-9 (2018).
    Article  Google Scholar 

    50.
    Pettersson, L. B., Arnberg, H. & Mellbrand, K. Svensk Dagfjärilsövervakning Årsrapport 2018. (2018).

    51.
    Orrock, J. L., Curler, G. R., Danielson, B. J. & Coyle, D. R. Large-scale experimental landscapes reveal distinctive effects of patch shape and connectivity on arthropod communities. Landsc. Ecol. 26, 1361–1372. https://doi.org/10.1007/s10980-011-9656-5 (2011).
    Article  Google Scholar 

    52.
    Clough, Y. et al. Density of insect-pollinated grassland plants decreases with increasing surrounding land-use intensity. Ecol. Lett. 17, 1168–1177. https://doi.org/10.1111/ele.12325 (2014).
    Article  Google Scholar 

    53.
    Grab, H. et al. Agriculturally dominated landscapes reduce bee phylogenetic diversity and pollination services. Science 363, 282–284. https://doi.org/10.1126/science.aat6016 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    54.
    Williams, N. M. et al. Ecological and life-history traits predict bee species responses to environmental disturbances. Biol. Conserv. 143, 2280–2291. https://doi.org/10.1016/j.biocon.2010.03.024 (2010).
    Article  Google Scholar 

    55.
    Helmus, M. R. & Ives, A. R. Phylogenetic diversity—area curves. Ecology 93, S31–S43. https://doi.org/10.1890/11-0435.1 (2012).
    Article  Google Scholar 

    56.
    Cameron, S. A., Hines, H. M. & Williams, P. H. A comprehensive phylogeny of the bumble bees (Bombus). Biol. J. Linn. Soc. 91, 161–188. https://doi.org/10.1111/j.1095-8312.2007.00784.x (2007).
    Article  Google Scholar 

    57.
    Eneland, A. Ängs- och betesmarksinventeringen. Metodik för inventering från och med 2016. Jordbruksverket Rapport 2017:9 (2017).

    58.
    Pollard, E. A method for assessing changes in the abundance of butterflies. Biol. Conserv. 12, 115–134. https://doi.org/10.1016/0006-3207(77)90065-9 (1977).
    Article  Google Scholar 

    59.
    ESRI. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute (2018). https://desktop.arcgis.com/en/arcmap/.

    60.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. (2019). More

  • in

    Domestication via the commensal pathway in a fish-invertebrate mutualism

    Study location and species
    Field research and sample collection was conducted on the shallow reef habitat surrounding the Smithsonian’s Carrie Bow Cay Research Station, Belize (16°48’9.8316”N, 88°4’54.8148”W) between January-April 2018. Mysid swarms, identified primarily as Mysidium integrum50, are present on these reefs year-round, and this species was used in all experiments. Six damselfish species in the genus Stegastes were present at the study site. Three of these, the longfin damselfish (Stegastes diencaeus), the phylogenetically similar dusky damselfish (Stegastes adustus)31, and threespot damselfish (Stegastes planifrons), can be characterized as ‘intensive territorial grazers’ or ‘farmers’ that tend and aggressively defend the turf-algae communities on which they feed24. The others, the bicolor damselfish (Stegastes partitus), cocoa damselfish (Stegastes variabilis) and beaugregory (Stegastes leucostictus) tend turf-algae to a lesser degree and display limited territoriality. As the most common intensive-farming species, the longfin damselfish was used in all experiments.
    Analytical software
    Analyses were conducted using R51. Generalized linear mixed models (GLMMs) were fitted with the lme4 package52 and zero-inflated GLMMs were fitted with the glmmTMB package53. The multinomial logistic regression model used for algal analysis was performed with the packages nnet54 and effects55.
    Associations between mysids and damselfish farms
    To determine whether mysid swarms were associated with Stegastes farms, we conducted a series of transects. Thirty 30-m transects were laid haphazardly across the study site. For 1 m on each side of the transect we recorded: the total number of swarms, the total number of Stegastes and whether a swarm was associated with a Stegastes farm. Each Stegastes was recorded to species. We used a (chi)2 test to investigate whether the presence of intensive-farming Stegastes was associated with swarm presence.
    Mysid swarm movement and site fidelity
    Mysidium swarms will often leave the substrate at dusk to feed in the water column, and isotope tagging indicates that swarms regroup at the same location each morning where they remain during daylight hours29. To test whether swarms at our study site followed this pattern, and whether swarms remained associated with the same Stegastes farms, we tested for site fidelity across a 20-day period. Thirty locations within longfin damselfish farms that had mysid swarms were tagged with numbered flagging tape. Thirty longfin damselfish farms where swarms were absent were also tagged. All locations were tagged between 9 and 10 a.m. Each location was visited at day 1, 10, and 20 post-tagging, 1-h post-sunrise and 1-h post-sunset, with swarm presence or absence recorded. In addition to formal rechecking, sites were frequently reassessed throughout this period, both during the day and at night, to confirm the consistency of the patterns recorded. We used a Friedman test to investigate whether swarms exhibited site fidelity to particular farms during the day over the 20-day period. The full and final model included time as a predictor and farm identification as a blocking factor.
    Mysid responses to habitat-related olfactory cues
    Choice experiments were conducted to determine whether mysids used olfactory cues to actively seek out intensive-farming damselfish33. Experiments were conducted using a two-channel choice flume (13 cm length × 4 cm width)56. Header tanks contained two separate water sources, each gravity fed into separate sides of the flume at equivalent volumes (~100 mL min−1). The flume design ensures that once laminar flow is achieved each water mass remains separated on either side of the main chamber with no areas of turbulence or eddies, presenting an individual placed in the center with a choice between the two separate water sources/olfactory cues. Regular dye tests confirmed laminar flow and that the two water sources remained separated.
    Five separate cue combinations were tested. Four cues were tested against a seawater control (seawater with no added cue): longfin damselfish (putative mutualism partner), farmed turf (putative mutualism partner’s environment), bicolor damselfish (non-intensive-farming damselfish that did not associate with mysids), and slippery dick wrasse (Halichoeres bivittatus, a diurnal predator of mysids). The fifth combination was a mysid-associated longfin damselfish versus a non-mysid-associated longfin damselfish. Cues were prepared by soaking an individual fish, or turf-covered rock from a longfin damselfish farm, in 10 L of seawater from the Carrie Bow Cay flow-through system for 1-h. All selected fishes and turf pieces had a similar biomass to minimize variation in cue concentration. For each trial set, both the cue and seawater control were produced concurrently, with both buckets sitting adjacent with constant aeration for the 1-h period. In this way, both cue and control had matching salinity, temperature, and O2 levels, minimizing any opportunity for behavioral bias due to the physical properties of the water and ensuring proper laminar flow. Each cue combination was split into three blocks: three separate fish or turf-covered rocks (one per block) were used to prepare treatments, with ten replicates obtained from each block (a total of n = 30 per combination). Individual mysids were only used in one trial.
    All trials were conducted blind, with the tester having no knowledge of the cues tested or the side on which each cue was placed. A second observer was also present at all times. For each trial, a mysid was placed at the downstream center of the flume chamber. Following a 2-min habituation period, its position on either the left or right side of chamber was recorded at 5-s intervals for 2-min. Water sources were then switched to the opposite sides, and the chamber was allowed to flush for 1-min. The 2-min habituation period and 2-min test period were then repeated to exclude the possibility that mysids were exhibiting a side preference (i.e., spending 100% of time on one side of the chamber despite the water source being switched midway through the trial). Mysids that exhibited a side preference (n = 6 of 156) were excluded from analysis. Data were analyzed using paired t-tests, except for the longfin damselfish versus seawater comparison. Here, a Wilcoxon signed-rank test was used because these data did not meet the assumption of normality.
    Effect of predation on the damselfish-mysid relationship
    To first test whether mysids receive protection by residing within the boundaries of longfin damselfish farms we conducted a predation-risk experiment. Sixty trials were conducted (n = 30 inside, and n = 30 immediately outside of farms), which each consisted of three treatments: (1) live mysids, (2) an ‘imitation’ mysid control, and (3) a seawater control. Each treatment consisted of a weighted 3.5 L polyethylene bag filled with seawater. The live mysid treatment consisted of 150 mysids. The ‘imitation’ mysid control was included to account for the presence of objects within the bag and consisted of 150 1 mm long sections of 4 mm diameter silicon tubing. These lightweight sections were slightly negatively buoyant and moved within the bag due to external water movement. Finally, the seawater control consisted of an empty seawater-filled bag. For each trial, bags were sequentially placed on the substrate in random order.
    Each trial was 1-min in duration, during which the focal bag was filmed using an HD video camera (GoPro). After 1-min, this bag was removed and a 1-min rest period was observed. A bag containing the next treatment was then placed in the same location, and the 1-min trial was repeated. This same procedure was then repeated for the third bag. Videos were analyzed to compare: the number of fishes that attacked each bag, the number of strikes taken, the species of the attacker(s), and the number and species of fishes that came within 1 m of the bag but did not attack.
    We used a zero-inflated GLMM with a Poisson distribution to test whether the number of strikes directed by predators at bags differed according to treatment (empty bag, artificial mysids, and live mysids), and location (inside versus outside of farm). The full and final model included treatment, location, and the interaction between treatment and location as fixed effects and trial as a random effect. We used a GLMM with a Poisson distribution to test whether the number of species that directed strikes at bags differed according to treatment and location. The full model included treatment, location and the interaction between treatment and location as fixed effects and trial as a random effect; however, the interaction was removed from the final model as it was found to be non-significant. We used a GLMM with a negative-binomial distribution to test whether the number of individuals that directed strikes at bags differed according to treatment and location. The full model included treatment, location and the interaction between treatment and location as fixed effects and trial as a random effect; however, the interaction was removed from the final model as it was found to be non-significant. Finally, we used a zero-inflated GLMM with a Poisson distribution to test whether the number of chases by longfin damselfish directed towards mysid predators differed according to treatment, location and the interaction between treatment and location. The full model included treatment, location and the interaction between treatment and location as fixed effects and trial as a random effect; however, the interaction was removed from the final model after being found to be non-significant.
    In addition, to test whether the persistence of naturally occurring swarms was dependent on the protection damselfish provide, we conducted a second field-based predation experiment. Thirty trials were conducted (n = 15 treatment, and n = 15 control) with replicates for both conducted in a random order. For treatment trials, a swarm within a damselfish farm was observed on SCUBA from a distance of 2 m for a 5-min period. During this time, all strikes on the swarm by predatory fishes were recorded with this number taken as the baseline predation rate. Immediately following this period, a second 5-min observation was conducted during which a second diver actively prevented damselfish from defending their territory, pressuring fish into reef structure by gesturing at them using a fiberglass pole. During this second period, all strikes on the swarm were again recorded with this number taken as the change in predation rate. Control trials accounted for the effect of the second diver’s actions on predator behavior. Control period 1 was as above; however, during the second period, the second diver made movements and noise using the pole but did not direct this at damselfish, allowing them to continue to defend their farm. All strikes on the swarm were recorded. During control trials, damselfish did not react to the second diver’s actions indicating that their territorial behavior was not affected. Differences in strikes between periods were determined using Wilcoxon signed-rank tests.
    Effect of mysids on damselfish behavior
    We conducted field observations to determine whether mysid-associated longfin damselfish behaved differently to those without mysids. Adult longfin damselfish that were (n = 30), or were not (n = 30), associated with swarms were observed for 30-min. For each observation, the focal fish was observed on SCUBA from a distance of at least 2-m. During each observation we recorded the number of bites on the farmed substrate, the number of strikes directed towards the swarms, the number of chases directed towards intruding fishes, the number of chases directed towards intruding fishes attempting to feed on farm-associated mysids and the number of non-aggressive interactions between the focal fish and the swarm. At the end of each observation, we recorded the total number of longfin damselfish associated with each farm with only one observation made per farm. An estimate of farm area was also made at this point by using a transect tape to measure the maximum length and width across the area that was actively defended and tended during the observation period.
    We used a GLM with a Gaussian distribution to determine whether the number of chases by longfin damselfish was associated with the presence or absence of mysids. The full model included farm type (mysids present or absent), longfin damselfish group size, and the interaction between farm type and group size as fixed effects; however, the interaction between farm type and group size, and group size were removed from the final model as they were found to be non-significant. A GLM with a Gaussian distribution was used to test whether the number of bites on farmed substrate by focal longfin damselfish was associated with the presence or absence of mysids. The full model included farm type (mysids present or absent) longfin damselfish group size and the interaction between farm type and group size as fixed effects; however, the interaction between farm type and group size, and group size were removed from the final model because they were found to be non-significant. Whether farm area differed between farms with and without mysids was determined using a Wilcoxon rank sum test.
    Effect of mysid swarms on longfin damselfish body condition
    To determine the effect of mysid presence on longfin damselfish body condition, we compared the hepatosomatic index (HSI) of damselfish with and without mysids in their farms. This measure can reflect the amount of stored energy in the liver, and thus it can indicate of the relationship between diet and physical condition in damselfishes57,58,59,60. Thirty adult longfin damselfish (75–100 mm TL) were sampled from farms with or without associated mysids. Damselfish were collected on snorkel using hand nets and a 1:3:7 clove oil/ethanol/seawater mixture. Prior to euthanasia, fish were maintained in a 20 L flow-through aquaria for 24-h. Fish were not fed during this period. Fish were euthanized by immersion in a clove oil/ethanol/seawater solution to induce anesthesia followed by immersion in an ice slurry. Once euthanized, fish were measured (SL and TL) and weighed. The liver of each fish was removed and weighed, and the alimentary canal checked to confirm that all digested matter was evacuated. The HSI of each fish was calculated as the proportion of total weight contributed by the liver [(liver weight (g)/total weight (g)) × 100]. We used a GLM with a Gaussian distribution to test the effect of mysid presence on hepatosomatic index (HSI). The full model included damselfish length, farm type (mysids present or absent) and the interaction between damselfish length and farm type as fixed effects; however, the interaction and damselfish length were removed from the final model as they were found to be non-significant.
    Effect of mysid swarms on algal composition within damselfish farms
    Algal composition was assessed to determine the effect of mysid swarms on algae within longfin damselfish farms. Sixty farms were analyzed: 30 with and 30 without swarms. Three 20 cm × 20 cm quadrats were placed haphazardly within each farm, and a series of four photographs were taken, including one overhead shot encompassing the entire quadrat and three macro shots of the algae within the quadrat. Within each quadrat, algal composition and coverage was determined to phylum, including Chlorophyta, Rhodophyta, and Ochrophyta. Percent cover of these groups was assigned based on a categorical classification scheme: low (30% coverage). To obtain a single assessment of algal composition for each phylum within each farm, the categorical classification was averaged across the three quadrats photographed in each farm. We used a multinomial logistic regression model to assess how the percent cover of Ochrophyta within farms was affected by swarm presence. The response within each model was multinomial: low, medium, or high percent coverage of Ochrophyta. The model included the fixed effect of mysid presence or absence.
    Estimates of mysid swarm density
    Surveys were conducted to determine the average size and density of farm-associated swarms. The size and area of 30 focal swarms were determined by measuring the length, width and height across the widest points when first observed. Each swarm was then collected using hand nets and returned to the laboratory where the total number of mysids within each swarm was counted. Finally, swarm density was estimated by calculating the maximum ellipsoid volume based on the measured axes and dividing this volume by the total number of mysids, giving an estimate of mysids mL−1.
    Mysid waste excretion and nutrient availability
    We used an aquarium experiment to determine if mysid swarms produce key nutrients at concentrations that could enhance benthic algal growth. Artificial seawater was produced at sunrise by mixing deionized fresh water with a phosphate and nitrogen-free aquarium salt (Instant Ocean® Sea Salt) to 35ppt salinity. Once mixed, the absence of phosphate and ammonia was confirmed through color comparison using laboratory-grade test kits (Hach PO-19A test kit, Hach NI-SA test kit), and the temperature and pH of the water were also measured. Seawater was then distributed into a series of 1 L plastic containers, along with one air stone per container. Containers were covered to prevent water loss through evaporation.
    Mysids were collected using hand nets and returned to the lab where they were allowed to habituate for 30-min in a bucket containing 3 L of artificial seawater. For sorting, mysids were removed from the habituation bucket using a hand net and placed into a petri dish containing artificial seawater. Mysids were individually selected using a sterile plastic pipette and moved into a second petri dish containing artificial seawater. The water in the second petri dish was then removed using the pipette, and mysids were placed into the appropriate container corresponding to one of three treatments: 0 mysids L−1 (n = 30), which served as a control, 100 mysids L−1 (n = 30) and 200 mysids L−1 (n = 30). These densities were selected as they are representative of the range found during the swarm density surveys. Each day, containers were haphazardly assigned a treatment prior to sorting, with an equal number of replicates for each treatment (n = 5) conducted each day. Trials were conducted from 08:00 to 16:00. This period was selected to represent the daylight hours when mysids are present, but was also short enough to prevent stress due to nutrient accumulation. Following this 8-h period, mysids were removed, and the concentration of phosphorous (P) and nitrogen-ammonia (NH3–N) in each container were recorded to the nearest 0.1 mgL−1 through color comparison. The temperature, salinity, and pH of each container were also recorded at this point.
    Reporting summary
    Further information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Global phosphorus dynamics in terms of phosphine

    1.
    Devai, I., Felföldy, L., Wittner, I. & Plósz, S. Detection of phosphine: new aspects of the phosphorus cycle in the hydrosphere. Nature 333, 343 (1988).
    Article  Google Scholar 
    2.
    Cao, J. et al. Study on effects of electron donors on phosphine production from anaerobic activated sludge. Water 9, 563 (2017).
    Article  Google Scholar 

    3.
    Zhang, C., Zhang, K., Wei, W., Rong, H. & Liu, T. Release rule of phosphine in anaerobic sequencing batch process. China Water Wastewater 26, 53–55 (2010).
    Google Scholar 

    4.
    Hong, Y. et al. Distribution of phosphine in the offshore area of the Southwest Yellow Sea, East Asia. Mar. Chem. 118, 67–74 (2010).
    Article  Google Scholar 

    5.
    Liu, Z., Jia, S., Wang, B. & Liu, S. Differences in phosphine contents of various environment samples and the effecting factors. Acta Scien. Circum. 5, 852–857 (2004).
    Google Scholar 

    6.
    Zhu, R., Liu, Y., Sun, J., Sun, L. & Geng, J. Stimulation of gaseous phosphine production from Antarctic seabird guanos and ornithogenic soils. J. Environ. Sci. 21, 150–154 (2009).
    Article  Google Scholar 

    7.
    Zhang, R., Wu, M., Wang, Q., Geng, J. & Yang, X. The determination of atmospheric phosphine in Ny-Ålesund. Sci. Bull. 55, 1662–1666 (2010).
    Article  Google Scholar 

    8.
    Zhu, R., Ding, W., Hou, L. & Wang, Q. Matrix-bound phosphine and phosphorus fractions in surface sediments of Arctic Kongsfjorden, Svalbard: effects of glacial activity and environmental variables. Chemosphere 103, 240–249 (2014).
    Article  Google Scholar 

    9.
    Wang, Q., Geng, J.-j., Jin, H.-m., Shi, H.-h. & Wang, X.-r. Temporal and spatial distributions of microbes and phosphine in Lake Taihu sediments. China Environ. Sci. 26, 350–354 (2006).
    Google Scholar 

    10.
    Ding, L. et al. Sources of matrix-bound phosphine in advanced wastewater treatment system. Sci. Bull. 50, 1274–1276 (2005).
    Article  Google Scholar 

    11.
    Li, J.-B. et al. Matrix bound phosphine in sediments of the Changjiang Estuary and its adjacent shelf areas. Estuar. Coast. Shelf Sci. 90, 206–211 (2010).
    Article  Google Scholar 

    12.
    You, L. et al. Distribution of matrix-bound phosphine in surface sediments of Jinpu Bay. Environ. Sci. 34, 3804–3809 (2013).
    Google Scholar 

    13.
    Niu, X. et al. Phosphine in paddy fields and the effects of environmental factors. Chemosphere 93, 1942–1947 (2013).
    Article  Google Scholar 

    14.
    Glindemann, D., Edwards, M., Liu, J.-A. & Kuschk, P. Phosphine in soils, sludges, biogases and atmospheric implications—a review. Ecol. Eng. 24, 457–463 (2005).
    Article  Google Scholar 

    15.
    Han, S.-H., Zhuang, Y.-H., Liu, J.-A. & Glindemann, D. Phosphorus cycling through phosphine in paddy fields. Sci. Total Environ. 258, 195–203 (2000).
    Article  Google Scholar 

    16.
    Han, C., Geng, J., Zhang, R., Wang, X. & Gao, S. Matrix-bound phosphine and phosphorus fractions in paddy soils. J. Environ. Monit. 13, 844–849 (2011).
    Article  Google Scholar 

    17.
    Han, C. et al. Production and emission of phosphine gas from wetland ecosystems. J. Environ. Sci. 22, 1309–1311 (2010).
    Article  Google Scholar 

    18.
    Glindemann, D., Stottmeister, U. & Bergmann, A. Free phosphine from the anaerobic biosphere. Environ. Sci. Pollut. Res. 3, 17–19 (1996).
    Article  Google Scholar 

    19.
    Wang, J., Niu, X., Ma, J. & Lu, M. Conversion of phosphorus to phosphine by microbial deoxidization under anaerobic conditions. Microbiol. China 1, 34–41 (2015).
    Google Scholar 

    20.
    Ding, L. et al. Effect of pH on phosphine production and the fate of phosphorus during anaerobic process with granular sludge. Chemosphere 59, 49–54 (2005).
    Article  Google Scholar 

    21.
    Zhang, R. et al. Effects of free-air CO2 enrichment on phosphine emission from rice field. Environ. Sci. 30, 2694–2700 (2009).
    Google Scholar 

    22.
    Ma, J., Chen, W., Niu, X. & Fan, Y. The relationship between phosphine, methane, and ozone over paddy field in Guangzhou, China. Glob. Ecol. Conserv. 17, 1–7 (2019).
    Google Scholar 

    23.
    Zhang, C., Zhang, K., Sun, L., Rong, H. & Liu, T. Effect of carbon sources on phoshpine production from anaerobic activated sludge. China Water Wastewater 29, 103–106 (2013).
    Google Scholar 

    24.
    Liu, J.-A. et al. Phosphine in the urban air of Beijing and its possible sources. Water Air Soil Pollut. 116, 597–604 (1999).
    Article  Google Scholar 

    25.
    Niu, X. et al. Temporal and spatial distributions of phosphine in Taihu Lake, China. Sci. Total Environ. 323, 169–178 (2004).
    Article  Google Scholar 

    26.
    Zhu, R. et al. Tropospheric phosphine and its sources in coastal Antarctica. Environ. Sci. Technol. 40, 7656–7661 (2006).
    Article  Google Scholar 

    27.
    Zhu, R., Kong, D., Sun, L., Geng, J. & Wang, X. The first determination of atmospheric phosphine in Antarctica. Sci. Bull. 52, 131–135 (2007).
    Article  Google Scholar 

    28.
    Zhu, R. et al. Phosphine in the marine atmosphere along a hemispheric course from China to Antarctica. Atmos. Environ. 41, 1567–1573 (2007).
    Article  Google Scholar 

    29.
    An, S. et al. Mechanism of matrix-bound phosphine production in response to atmospheric elevated CO2in paddy soils. Environ. Pollut. 239, 253–260 (2018).
    Article  Google Scholar 

    30.
    Zhang, K., Zhang, C., Wei, W., Rong, H. & Liu, T. Phosphine release in aerobic sequencing reactor process and anaerobic/aerobic sequencing reactor process. Environ. Eng. 5, 127–129 (2011).
    Google Scholar 

    31.
    Ding, L. et al. Distribution of phosphine and phosphorus balance in a full scale UASB system. J. Nanjing Uni. Nat. Sci. 41, 620–626 (2005).
    Google Scholar 

    32.
    Hou, L. et al. Emission of phosphine in intertidal marshes of the Yangtze Estuary. Appl. Geochem. 26, 2260–2265 (2011).
    Article  Google Scholar 

    33.
    Glindemann, D., Bergmann, A., Stottmeister, U. & Gassmann, G. Phosphine in the lower terrestrial troposphere. Naturwissenschaften 83, 131–133 (1996).
    Article  Google Scholar 

    34.
    Feng, Y., Wang, Q., Yao, Z. & Geng, J. Research on distribution of phosphine in the natural environment and its environmental factors. Chin. High. Technol. Lett. 19, 650–655 (2009).
    Google Scholar 

    35.
    Geng, J. et al. Simultaneous monitoring of phosphine and of phosphorus species in Taihu Lake sediments and phosphine emission from lake sediments. Biogeochemistry 76, 283–298 (2005).
    Article  Google Scholar 

    36.
    Han, C. et al. Free atmospheric phosphine concentrations and fluxes in different wetland ecosystems, China. Environ. Pollut. 159, 630–635 (2011).
    Article  Google Scholar 

    37.
    Glindemann, D., Edwards, M. & Kuschk, P. Phosphine gas in the upper troposphere. Atmos. Environ. 37, 2429–2433 (2003).
    Article  Google Scholar 

    38.
    Gassmann, G., Van Beusekom, J. & Glindemann, D. Offshore atmospheric phosphine. Naturwissenschaften 83, 129–131 (1996).
    Article  Google Scholar 

    39.
    Roels, J. & Verstraete, W. Occurrence and origin of phosphine in landfill gas. Sci. Total Environ. 327, 185–196 (2004).
    Article  Google Scholar 

    40.
    Han, S.-h., Wang, Z.-j., Zhuang, Y.-h., Yu, Z.-m. & Glindemann, D. Phosphine in various matrixes. J. Environ. Sci. (China) 15, 339–341 (2003).
    Google Scholar 

    41.
    Devai, I., DeLaune, R., Devai, G., Patrick, J. W. H. & Czegeny, I. Phosphine production potential of various wastewater and sewage sludge sources. Anal. Lett. 32, 1447–1457 (1999).
    Article  Google Scholar 

    42.
    Zhu, R. et al. Matrix-bound phosphine in Antarctic biosphere. Chemosphere 64, 1429–1435 (2006).
    Article  Google Scholar 

    43.
    Niu, X. et al. Matrix-bound phosphine in the paddy soils of South China and its relationship to environmental factors and bacterial composition. J. Soils Sediment. 16, 592–604 (2016).
    Article  Google Scholar 

    44.
    Zhang, J., Geng, J., Zhang, R., Ren, H. & Wang, X. Matrix-bound phosphine in paddy fields under a simulated increase in global atmospheric CO2. Environ. Chem. 7, 287–291 (2010).
    Article  Google Scholar 

    45.
    Eismann, F., Glindemann, D., Bergmannt, A. & Kuschk, P. Soils as source and sink of phosphine. Chemosphere 35, 523–533 (1997).
    Article  Google Scholar 

    46.
    Devai, I. & Delaune, R. Evidence for phosphine production and emission from Louisiana and Florida marsh soils. Org. Geochem. 23, 277–279 (1995).
    Article  Google Scholar 

    47.
    Gassmann, G. Phosphine in the fluvial and marine hydrosphere. Mar. Chem. 45, 197–205 (1994).
    Article  Google Scholar 

    48.
    Gassmann, G. & Schorn, E. Phosphine from harbor surface sediments. Naturwissenschaften 80, 78–80 (1993).
    Article  Google Scholar 

    49.
    Song, X. et al. Matrix-bound phosphine in sediments from Lake Illawarra, New South Wales, Australia. Mar. Pollut. Bull. 62, 1744–1750 (2011).
    Article  Google Scholar 

    50.
    Feng, Z., Song, X. & Yu, Z. Seasonal and spatial distribution of matrix-bound phosphine and its relationship with the environment in the Changjiang River Estuary, China. Mar. Pollut. Bull. 56, 1630–1636 (2008).
    Article  Google Scholar 

    51.
    Feng, Z., Song, X. & Yu, Z. Distribution characteristics of matrix-bound phosphine along the coast of China and possible environmental controls. Chemosphere 73, 519–525 (2008).
    Article  Google Scholar 

    52.
    Yu, Z. & Song, X. Matrix-bound phosphine: a new form of phosphorus found in sediment of Jiaozhou Bay. Sci. Bull. 48, 31–35 (2003).
    Article  Google Scholar 

    53.
    Mu, Q., Song, X. & Yu, Z. Matrix-bound phosphine (PH3) distribution characteristics in the sediments of Jiaozhou Bay. China Environ. Sci. 26, 135–138 (2005).
    Google Scholar 

    54.
    Zhu, R. et al. Occurrence of matrix-bound phosphine in polar ornithogenic tundra ecosystems: effects of alkaline phosphatase activity and environmental variables. Sci. Total Environ. 409, 3789–3800 (2011).
    Article  Google Scholar 

    55.
    Eismann, F., Glindemann, D., Bergmann, A. & Kuschk, P. Balancing phosphine in manure fermentation. J. Environ. Sci. Health B 32, 955–968 (1997).
    Article  Google Scholar 

    56.
    Li, J.-B., Zhang, G.-L., Zhang, J., Liu, S.-M. & Ren, J.-L. Matrix bound phosphine in sediments of the yellow sea and its coastal areas. Cont. Shelf Res. 30, 743–751 (2010).
    Article  Google Scholar 

    57.
    Han, C., Geng, J., Zhang, J., Wang, X. & Gao, S. Phosphine migration at the water–air interface in Lake Taihu, China. Chemosphere 82, 935–939 (2011).
    Article  Google Scholar 

    58.
    Glindemann, D., Edwards, M. & Schrems, O. Phosphine and methylphosphine production by simulated lightning—a study for the volatile phosphorus cycle and cloud formation in the earth atmosphere. Atmos. Environ. 38, 6867–6874 (2004).
    Article  Google Scholar 

    59.
    Bains, W., Petkowski, J. J., Sousa-Silva, C. & Seager, S. New environmental model for thermodynamic ecology of biological phosphine production. Sci. Total Environ. 658, 521–536 (2019).
    Article  Google Scholar 

    60.
    Cao, H., Liu, J., Zhuang, Y. & Dietmar, G. Emission sources of atmospheric phosphine and simulation of phosphine formation. Sci. China, Ser. B: Chem. 43, 162 (2000).
    Article  Google Scholar 

    61.
    Zhu, R. et al. Penguins significantly increased phosphine formation and phosphorus contribution in maritime Antarctic soils. Sci. Rep. 4, 1–9 (2014).
    Google Scholar 

    62.
    Roels, J. & Verstraete, W. Biological formation of volatile phosphorus compounds. Bioresour. Technol. 79, 243–250 (2001).
    Article  Google Scholar 

    63.
    Sun, L., Zhang, C., Zhang, K., Rong, H. & Liu, T. Effects of different phosphorus sources on phosphine production from anaerobic sludge. China Water Wastewater 28, 89–91 (2012).
    Google Scholar 

    64.
    Jenkins, R., Morris, T.-A., Craig, P. J., Ritchie, A. & Ostah, N. Phosphine generation by mixed-and monoseptic-cultures of anaerobic bacteria. Sci. Total Environ. 250, 73–81 (2000).
    Article  Google Scholar 

    65.
    Glindemann, D., Edwards, M. & Morgenstern, P. Phosphine from rocks: mechanically driven phosphate reduction? Environ. Sci. Technol. 39, 8295–8299 (2005).
    Article  Google Scholar 

    66.
    Glindemann, D., Eismann, F., Bergmann, A., Kuschk, P. & Stottmeister, U. Phosphine by bio-corrosion of phosphide-rich iron. Environ. Sci. Pollut. Res. 5, 71 (1998).
    Article  Google Scholar 

    67.
    Glindemann, D., De Graaf, R. & Schwartz, A. W. Chemical reduction of phosphate on the primitive Earth. Orig. Life Evol. Biosphere 29, 555–561 (1999).
    Article  Google Scholar 

    68.
    Hammer, D. A. Constructed Wetlands for Wastewater Treatment: Municipal, Industrial and Agricultural (CRC Press, 1989).

    69.
    Whitmire, S. L. & Hamilton, S. K. Rates of anaerobic microbial metabolism in wetlands of divergent hydrology on a glacial landscape. Wetlands 28, 703–714 (2008).
    Article  Google Scholar 

    70.
    Picek, T., Čížková, H. & Dušek, J. Greenhouse gas emissions from a constructed wetland—plants as important sources of carbon. Ecol. Eng. 31, 98–106 (2007).
    Article  Google Scholar 

    71.
    Roels, J., Huyghe, G. & Verstraete, W. Microbially mediated phosphine emission. Sci. Total Environ. 338, 253–265 (2005).
    Article  Google Scholar 

    72.
    Pasek, M. A role for phosphorus redox in emerging and modern biochemistry. Curr. Opin. Chem. Biol. 49, 53–58 (2019).
    Article  Google Scholar 

    73.
    Pasek, M. A., Sampson, J. M. & Atlas, Z. Redox chemistry in the phosphorus biogeochemical cycle. Proc. Nat. Acad. Sci. USA 111, 15468–15473 (2014).
    Article  Google Scholar 

    74.
    Han, C. et al. Phosphite in sedimentary interstitial water of Lake Taihu, a large eutrophic shallow lake in China. Environ. Sci. Technol. 47, 5679–5685 (2013).
    Article  Google Scholar 

    75.
    Han, C. et al. Determination of phosphite in a eutrophic freshwater lake by suppressed conductivity ion chromatography. Environ. Sci. Technol. 46, 10667–10674 (2012).
    Article  Google Scholar 

    76.
    Wang, J., Li, L., Niu, X. & Zou, D. Phosphine-induced phosphorus mobilization in the rhizosphere of rice seedlings. J. Soils Sediment. 16, 1735–1744 (2016).
    Article  Google Scholar 

    77.
    Zhang, C.-B. et al. Responses of dissimilatory nitrate reduction to ammonium and denitrification to plant presence, plant species and species richness in simulated vertical flow constructed wetlands. Wetlands 37, 109–122 (2017).
    Article  Google Scholar 

    78.
    Li, H., Chen, Z. & Chen, Z. Daily variation of the rhizosphere redox potential of six wetland plants. Acta Ecologica Sin. 34, 5766–5773 (2014).
    Google Scholar 

    79.
    Fu, R., Zhu, Y. & Yang, H. DO and ORP conditions and their correlation with plant root distribution in a continuous-flow constructed wetland treating eutrophic water. Acta Scien. Circum. 28, 2036–2038 (2008).
    Google Scholar 

    80.
    Colmer, T. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 26, 17–36 (2003).
    Article  Google Scholar 

    81.
    Liu, S., Li, T., Ning, P., Wu, M. & Yu, S. Research progress of the release, distribution and transformation of phosphine in environment. Chem. Ind. Eng. Prog. 38, 1085–1096 (2019).
    Google Scholar 

    82.
    Wang, D., Leng, B., An, X. & Lu, Q. Effects of UV light wave, temperature and humidity on phosphine concentration degrading. Plant Quar. 27, 45–49 (2013).
    Google Scholar 

    83.
    Chen, L., Arimoto, R. & Duce, R. A. The sources and forms of phosphorus in marine aerosol particles and rain from northern New Zealand. Atmos. Environ. 19, 779–787 (1985).
    Article  Google Scholar 

    84.
    Chen, H. Y. & Chen, L. D. Importance of anthropogenic inputs and continental‐derived dust for the distribution and flux of water‐soluble nitrogen and phosphorus species in aerosol within the atmosphere over the East China Sea. J. Geophys. Res. Atmos. 113, D11303 (2008).
    Article  Google Scholar 

    85.
    Xu, Z. et al. Dry and wet atmospheric deposition of nitrogen and phosphorus in Taihu Lake. Environ. Monit. Forewarning 119, 37–42 (2019).
    Google Scholar 

    86.
    Ma, Z., Zhang, Q. & Qin, Y. Numerical simulation and analysis of the effect of Three Gorges reservoir project on the regional climate change. Res. Environ. Yangtze Basin 19, 1044–1052 (2010).
    Google Scholar 

    87.
    Wang, M., Zhou, Y., Ren, Y. & Fang, S. Spatial-temporal change characteristics of precipitation over the key region of Three Gorges Reservoir. Meteorol. Environ. Sci. 40, 40–46 (2017).
    Google Scholar 

    88.
    Zhang, S., Lu, Z. & Zhang, N. Analysis of influence of Three Gorges Dam storage on reservoir region precipitation. Water Resour. Power 31, 21–24 (2013).
    Google Scholar 

    89.
    Zhang, H. Potential pitfalls in “Hongqi River” water transfer proposal and drought management in Northwest China. Water Resource Prot. 2, 8–11 (2018).
    Google Scholar 

    90.
    Prinn, R. G. The interactive atmosphere: global atmospheric-biospheric chemistry. Ambio 23, 50–61 (1994).
    Google Scholar 

    91.
    Kleemann, R. et al. Evaluation of local and national effects of recovering phosphorus at wastewater treatment plants: Lessons learned from the UK. Resour. Conserv. Recycl. 105, 347–359 (2015).
    Article  Google Scholar 

    92.
    Pradel, M. & Aissani, L. Environmental impacts of phosphorus recovery from a “product” Life Cycle Assessment perspective: allocating burdens of wastewater treatment in the production of sludge-based phosphate fertilizers. Sci. Total Environ. 656, 55–69 (2019).
    Article  Google Scholar 

    93.
    Humphrey, C. P., Anderson-Evans, E., O’Driscoll, M., Manda, A. & Iverson, G. Comparison of phosphorus concentrations in coastal plain watersheds served by onsite wastewater treatment systems and a municipal sewer treatment system. Water Air Soil Pollut. 226, 2259 (2015).
    Article  Google Scholar 

    94.
    Ding, L.-L. et al. Distribution of phosphine and phosphorus balance in a full-scale UASB system. J. Nanjing Uni. Nat. Sci. 41, 620–626 (2005).
    Google Scholar 

    95.
    Yang, Z., Zhou, J., Li, J., Han, Y. & He, Q. Pre-processing of raw wastewater in a septic tank leads to phosphorus removal by phosphine production in a sequencing batch biofilm reactor (SBBR). Desalination Water Treat. 57, 810–818 (2016).
    Article  Google Scholar 

    96.
    Liu, W., Niu, X., Chen, W., An, S. & Sheng, H. Effects of applied potential on phosphine formation in synthetic wastewater treatment by Microbial Electrolysis Cell (MEC). Chemosphere 173, 172–179 (2017).
    Article  Google Scholar 

    97.
    Yang, S. & Yao, G. Simultaneous removal of concentrated organics, nitrogen and phosphorus nutrients by an oxygen-limited membrane bioreactor. PLoS ONE 13, e0202179 (2018).
    Article  Google Scholar 

    98.
    Zhang, P., Rong, H., Zhang, K., Liu, T. & Cao, Y. Effect of diverse mud and phosphorus sources on total phosphorus removal efficiencies. Guangdong Chem. Ind. 56, 118–119 (2011).
    Google Scholar 

    99.
    Han, S., Zhuang, Y., Zhang, H., Wang, Z. & Yang, J. Phosphine and methane generation by the addition of organic compounds containing carbon–phosphorus bonds into incubated soil. Chemosphere 49, 651–657 (2002).
    Article  Google Scholar 

    100.
    Rutishauser, B. V. & Bachofen, R. Phosphine formation from sewage sludge cultures. Anaerobe 5, 525–531 (1999).
    Article  Google Scholar 

    101.
    Wan, J., Deng, M., He, H. & Tang, A. Factors influencing release of phosphine in piggery wastewater. China Water Wastewater 23, 117–120 (2013).
    Google Scholar 

    102.
    Fan, Y., Lv, M., Niu, X., Ma, J. & Song, Q. Evidence and mechanism of biological formation of phosphine from the perspective of the tricarboxylic acid cycle. Int. Biodeterior. Biodegrad. 146, 104791 (2020).
    Article  Google Scholar 

    103.
    Fan, Y. et al. Analysis of the characteristics of phosphine production by anaerobic digestion based on microbial community dynamics, metabolic pathways, and isolation of the phosphate-reducing strain. Chemosphere 262, 128213 (2021).
    Article  Google Scholar 

    104.
    Wang, R. et al. Significant contribution of combustion-related emissions to the atmospheric phosphorus budget. Nat. Geosci. 8, 48 (2015).
    Article  Google Scholar  More

  • in

    A new record for a massive Porites colony at Ta’u Island, American Samoa

    1.
    Fenner, D. Field guide to the coral species of the Samoan archipelago: American Samoa and independent Samoa 1–422 (American Samoa Dept. Marine & Wildlife Resources, 2016).
    2.
    NOAA. US Coral Reef Monitoring Data Summary 2018. NOAA Coral Reef Conservation Program. NOAA Technical Memorandum CRCP 31, https://doi.org/10.25923/g0v0-nm61 (2018).

    3.
    Fenner, D., et al. (2008) The State of Coral Reef Ecosystems of American Samoa in The State of Coral Reef Ecosystems of the United States and Pacific Freely Associated States (ed. Waddell, J) 307–351 (NOAA Technical Memorandum NOS NCCOS 11. NOAA/NCCOS Center for Coastal Monitoring and Assessment’s Biogeography Team, 2008).

    4.
    Birkeland, C. et al. Geologic setting and ecological functioning of coral reefs in American Samoa. In Coral reefs of the USA, pp 741–765 (eds Riegl, B. & Dodge, R.) (Springer, Berlin, 2008).
    Google Scholar 

    5.
    Ennis, R. S., Brandt, M. E., Grimes, K. R. W. & Smith, T. B. Coral reef health response to chronic and acute changes in water quality in St. Thomas, United States Virgin Islands. Mar. Poll. Bull. 111, 418–427 (2016).
    CAS  Article  Google Scholar 

    6.
    Webster, P. J., Holland, G. J., Curry, J. A. & Chang, H. R. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309, 1844–1846 (2005).
    ADS  CAS  Article  Google Scholar 

    7.
    Knutson, T. R. et al. Tropical cyclones and climate change. Nat. Geosci. 3, 157–163 (2010).
    ADS  CAS  Article  Google Scholar 

    8.
    Hughes, T. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
    ADS  CAS  Article  Google Scholar 

    9.
    NOAA Coral Reef Watch. NOAA Coral Reef Watch Version 3.1 Daily Global 5-km Satellite Virtual Station Time Series Data for Samoas, Jan 01, 2013-April 07, 2020. Data set accessed 08 Apr 2020. College Park, Maryland, https://coralreefwatch.noaa.gov/product/5km/index.php, (2018, updated daily).

    10.
    Fenner, D. The Samoan Archipelago. In World Seas: An Environmental Evaluation: Volume II: The Indian Ocean to the Pacific (ed. Sheppard, C.) 619–643 (Academic Press, Cambridge, 2018).
    Google Scholar 

    11.
    NOAA Physical Science Laboratory. Oceanic Niño Index for SST 5N-5S, 170W-120W from 1950 to 2020. Data set accessed 29 May 2020. Boulder, Colorado. https://psl.noaa.gov/data/correlation/oni.data (2015, updated monthly).

    12.
    Koppers, A. A. et al. Samoa reinstated as a primary hotspot trail. Geology 36, 435–438 (2008).
    ADS  CAS  Article  Google Scholar 

    13.
    Brown, D. P. et al. American Samoa’s island of giants: massive Porites colonies at Ta’u island. Coral Reefs 28, 735 (2009).
    ADS  Article  Google Scholar 

    14.
    Forsman, Z. H., Barshis, D. J., Hunter, C. L. & Toonen, R. J. Shape-shifting corals: molecular markers show morphology is evolutionarily plastic in Porites. BMC Evol. Biol. 9, 45 (2009).
    Article  Google Scholar 

    15.
    Tangri, N., Dunbar, R. B., Linsley, B. K. & Mucciarone, D. M. ENSO’s shrinking twentieth-century footprint revealed in a half-millennium coral core from the South Pacific Convergence Zone. Paleoceanogr. Paleoclimatol. 33, 1136–1150 (2018).
    ADS  Article  Google Scholar 

    16.
    Done, T. J. & Potts, D. C. Influences of habitat and natural disturbances on contributions of massive Porites corals to reef communities. Mar. Biol. 114, 479–493 (1992).
    Article  Google Scholar 

    17.
    Potts, D. C., Done, T. J., Isdale, P. J. & Fisk, D. A. Dominance of a coral community by the genus Porites (Scleractinia). Mar. Ecol. Prog. Ser. 23, 79–84 (1985).
    ADS  Article  Google Scholar 

    18.
    Soong, K., Chen, C. A. & Chang, J. C. A very large poritid colony at Green Island, Taiwan. Coral Reefs 18, 42 (1999).
    Article  Google Scholar 

    19.
    Takeuchi, I. & Yamashiro, H. Large Porites microatoll found by aerial survey at Sesoko Island, Okinawa, Japan. Coral Reefs 36, 1317 (2017).
    ADS  Article  Google Scholar 

    20.
    Pacific Islands Fisheries Science Center (PIFSC). Coral reef ecosystems of American Samoa: a 2002–2010 overview. (NOAA Fisheries Pacific Islands Fisheries Center, PIFSC Special Publication, 2011).

    21.
    Barstow, S.F. & Haug, O. The wave climate of Western Samoa. SOPAC Technical Report 204. 34 pp. (1994).

    22.
    Pirhalla, D., Ransi, V., Kendall, M., & Fenner, D. Oceanography of the Samoan Archipelago in A biogeographic assessment of the Samoan Archipelago. 3–26. (eds. Kendall, M & Poti, M) 3–26 (NOAA Tech. Memo NOS NCCOS 132, Silver Springs, Maryland, 2011).

    23.
    U.S. Army Corps of Engineers Wave Information Studies WISWAVE Hindcast model. Average Wave Height, Maximum Wave Height, Wave Direction at 14.5°S, 170°W from 1980–2011. Data set accessed 10 Jan 2012. http://frf.usace.army.mil/wis/.

    24.
    Lough, J. M. & Barnes, D. J. Several centuries of variation in skeletal extension, density and calcification in massive Porites colonies from the Great Barrier Reef: a proxy for seawater temperature and a background of variability against which to identify unnatural change. J. Exp. Mar. Biol. Ecol. 211, 29–67 (1997).
    Article  Google Scholar 

    25.
    Lough, J. M. Coral calcification from skeletal records revisited. Mar. Ecol. Prog. Ser. 373, 257–264 (2008).
    ADS  Article  Google Scholar 

    26.
    Environmental Research Division’s Data Access Program. HadISST Average Sea Surface Temperature, 1°, Global, Monthly, 1870-present. Data set accessed 04 Apr 2020. https://coastwatch.pfeg.noaa.gov/erddap/griddap/erdHadISST.html (2020).

    27.
    Qiu, B. & Chen, S. Seasonal modulations in the eddy field of the South Pacific Ocean. J. Phys. Oceanogr. 34, 1515–1527 (2004).
    ADS  Article  Google Scholar 

    28.
    Kendall, M.S., Poti, M., T. Wynne, B. Kinlan, L. Bauer. Ocean Currents and Larval Transport Among Islands and Shallow Seamounts of the Samoan Archipelago and Adjacent Island Nations. In A Biogeographic Assessment of the Samoan Archipelago (eds. Kendall, M & Poti, M) 3–26 (NOAA Tech. Memo NOS NCCOS 132, Silver Springs, Maryland, 2011).

    29.
    Wall, M. et al. Large-amplitude internal waves benefit corals during thermal stress. Proc. Biol. Sci 282, 20140650 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    30.
    Kavousi, J. & Keppel, G. Clarifying the concept of climate change refugia for coral reefs. ICES J. Mar. Sci. 75, 43–49 (2018).
    Article  Google Scholar 

    31.
    Langlais, C. E. et al. Coral bleaching pathways under the control of regional temperature variability. Nat. Clim. Change 7, 839–844 (2017).
    ADS  Article  Google Scholar 

    32.
    Hendy, E. J., Lough, J. M. & Gagan, M. K. Historical mortality in massive Porites from the central Great Barrier Reef, Australia: evidence for past environmental stress?. Coral Reefs 22, 207–215 (2003).
    Article  Google Scholar 

    33.
    Roff, G. et al. Porites and the Phoenix effect: unprecedented recovery after a mass coral bleaching event at Rangiroa Atoll, French Polynesia. Mar Biol. 161, 1385–1393 (2014).
    Article  Google Scholar 

    34.
    Barkley, H. C. et al. Repeat bleaching of a central Pacific coral reef over the past six decades (1960–2016). Commun. Biol. 1, 1–10 (2018).
    Article  Google Scholar 

    35.
    Loya, Y., Sakai, K., Nakano, Y., Sambali, H. & van Woesik, R. Coral bleaching: the winners and the losers. Ecol. Lett. 4, 122–131 (2001).
    Article  Google Scholar 

    36.
    Edmunds, P. J., Putnam, H. M. & Gates, R. D. Photophysiological consequences of vertical stratification of Symbiodinium in tissue of the coral Porites lutea. Biol. Bull. 223, 226–235 (2012).
    CAS  Article  Google Scholar  More

  • in

    Vegetation degradation impacts soil nutrients and enzyme activities in wet meadow on the Qinghai-Tibet Plateau

    1.
    Zhang, Z., Lu, X., Song, X., Guo, Y. & Xue, Z. Soil C, N and P stoichiometry of Deyeuxia angustifolia and Carex lasiocarpa wetlands in Sanjiang Plain Northeast China. J. Soils Sediments 9(12), 1309–1315 (2012).
    Article  CAS  Google Scholar 
    2.
    Sardans, J. et al. Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient-poor environments. Global Change Biol. 23(3), 1282–1291 (2017).
    ADS  Article  Google Scholar 

    3.
    Aneja, M. et al. Microbial colonization of beech and spruce litter: influence of decomposition site and plant litter species on the diversity of microbial community. Microb. Ecol. 52, 127–135 (2006).
    PubMed  Article  Google Scholar 

    4.
    Tilman, D. The resource–ratio hypothesis of plant succession. Am. Nat. 125(6), 827–852 (1985).
    Article  Google Scholar 

    5.
    Li, F. et al. Changes in soil microbial biomass and functional diversity with a nitrogen gradient in soil columns. Appl. Soil Ecol. 64, 1–6 (2013).
    MathSciNet  Article  Google Scholar 

    6.
    Bowles, T. M., Acosta-Martínez, V., Calderón, F. & Jackson, L. E. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol. Biochem. 68, 252–262 (2014).
    CAS  Article  Google Scholar 

    7.
    Caldwell, B. A. Enzyme activities as a component of soil biodiversity: a review. Pedobiologia 49(6), 637–644 (2005).
    CAS  Article  Google Scholar 

    8.
    Wang, B. et al. Changes in soil nutrient and enzyme activities under different vegetations in the Loess Plateau area Northwest China. CATENA 92, 186–195 (2012).
    CAS  Article  Google Scholar 

    9.
    Singh, D. K. & Kumar, S. Nitrate reductase, arginine deaminase, urease and dehydrogenase activities in natural soil (ridges with forest) and in cotton soil after acetamiprid treatments. Chemosphere 71(3), 412–418 (2008).
    ADS  MathSciNet  CAS  PubMed  Article  Google Scholar 

    10.
    Blagodatskaya, E., Blagodatsky, S., Khomyakov, N., Myachina, O. & Kuzyakov, Y. Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro. Sci. Rep. 6, 22240 (2016).
    ADS  CAS  Article  Google Scholar 

    11.
    Yao, Y., Shao, M., Fu, X., Wang, X. & Wei, X. Effects of shrubs on soil nutrients and enzymatic activities over a 0–100 cm soil profile in the desert-loess transition zone. CATENA 174, 362–370 (2019).
    CAS  Article  Google Scholar 

    12.
    Bartkowiak, A. & Lemanowicz, J. Effect of forest fire on changes in the content of total and available forms of selected heavy metals and catalase activity in soil. Soil Sci. Ann. 68(3), 140–148 (2017).
    CAS  Article  Google Scholar 

    13.
    Chen, S. K., Edwards, C. A. & Subler, S. The influence of two agricultural biostimulants on nitrogen transformations, microbial activity, and plant growth in soil microcosms. Soil Biol. Biochem. 35(1), 9–19 (2003).
    CAS  Article  Google Scholar 

    14.
    Baum, C., Leinweber, P. & Schlichting, A. Effects of chemical conditions in re-wetted peats on temporal variation in microbial biomass and acid phosphatase activity within the growing season. Appl. Soil Ecol. 22(2), 167–174 (2003).
    Article  Google Scholar 

    15.
    Štursová, M. & Baldrian, P. Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil-bound and free activity. Plant Soil 338(1–2), 99–110 (2011).
    Article  CAS  Google Scholar 

    16.
    Peng, F., Quangang, Y., Xue, X., Guo, J. & Wang, T. Effects of rodent-induced land degradation on ecosystem carbon fluxes in an alpine meadow in the Qinghai-Tibet Plateau, China. Solid Earth. 6(1) 303–310 (2015).

    17.
    Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9(4), 312–318 (2016).
    ADS  CAS  Article  Google Scholar 

    18.
    Tietjen, B. et al. Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands. Global Change Biol. 23(7), 2743–2754 (2017).
    ADS  Article  Google Scholar 

    19.
    Hao, L. et al. Quantifying the effects of overgrazing on mountainous watershed vegetation dynamics under a changing climate. Sci. Total Environ. 639, 1408–1420 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    20.
    Wen, L. et al. The impact of land degradation on the C pools in alpine grasslands of the Qinghai-Tibet Plateau. Plant Soil 368(1–2), 329–340 (2013).
    CAS  Article  Google Scholar 

    21.
    Zhang, W., Xue, X., Peng, F., You, Q. & Hao, A. Meta-analysis of the effects of grassland degradation on plant and soil properties in the alpine meadows of the Qinghai-Tibetan Plateau. Glob. Ecol. Conserv. 20, e00774 (2019).
    Article  Google Scholar 

    22.
    Che, R. et al. Increase in ammonia-oxidizing microbe abundance during degradation of alpine meadows may lead to greater soil nitrogen loss. Biogeochemistry 136(3), 341–352 (2017).
    CAS  Article  Google Scholar 

    23.
    Zhang, Q. et al. Distribution of soil nutrients, extracellular enzyme activities and microbial communities across particle-size fractions in a long-term fertilizer experiment. Appl. Soil Ecol. 94, 59–71 (2015).
    Article  Google Scholar 

    24.
    Liu, X. & Chen, B. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 20, 1729–1742 (2000).
    Article  Google Scholar 

    25.
    Wu, P. et al. Impacts of alpine wetland degradation on the composition, diversity and trophic structure of soil nematodes on the Qinghai-Tibetan Plateau. Sci. Rep. 7(1), 837 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Li, B., Dong, S. C., Jiang, X. B. & Li, Z. H. Analysis on the driving factors of grassland desertification in Zoige wetland. J. Soil Water Conserv. 15, 112–115 (2008).
    Google Scholar 

    27.
    Zhang, Y. et al. Alpine wetland in the Lhasa River Basin China. J. Geogr Sci. 20(3), 375–388 (2010).
    Article  Google Scholar 

    28.
    Wu, J. Q. et al. Vegetation degradation along water gradient leads to soil active organic carbon loss in Gahai wetland. Ecol. Eng. 145, 105666 (2020).
    Article  Google Scholar 

    29.
    Liu, L. F. et al. Water table drawdown reshapes soil physicochemical characteristics in Zoige peatlands. CATENA 170, 119–128 (2018).
    CAS  Article  Google Scholar 

    30.
    Ma, W. W. et al. Greenhouse gas emissions as influenced by wetland vegetation degradation along a moisture gradient on the eastern Qinghai-Tibet Plateau of North-West China. Nutr. Cycl. Agroecosys. 112, 335–354 (2018).
    Article  Google Scholar 

    31.
    Yang, Z. et al. The linkage between vegetation and soil nutrients and their variation under different grazing intensities in an alpine meadow on the eastern Qinghai-Tibetan Plateau. Ecol. Eng. 110, 128–136 (2018).
    Article  Google Scholar 

    32.
    Alhassan, A. M. et al. Response of soil organic carbon to vegetation degradation along a moisture gradient in a wet meadowon the Qinghai-Tibet Plateau. Ecol. Evol. 8, 11999–12010 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Li, Z. et al. Dynamics of soil respiration in alpine wetland meadows exposed to different levels of degradation in the Qinghai-Tibet Plateau China. Sci. Rep. 9, 7469 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    34.
    Bechmann, M. E., Kleinman, P. J., Sharpley, A. N. & Saporito, L. S. Freeze-thaw effects on phosphorus loss in runoff from manured and catch-cropped soils. J. Environ Qual. 34, 2301–2309 (2005).
    CAS  PubMed  Article  Google Scholar 

    35.
    Joseph, G. & Henry, H. A. Soil nitrogen leaching losses in response to freeze-thaw cycles and pulsed warming in a temperate old field. Soil Biol. Biochem. 40, 1947–1953 (2008).
    CAS  Article  Google Scholar 

    36.
    Ren, J. et al. Shifts in soil bacterial and archaeal communities during freeze-thaw cycles in a seasonal frozen marsh Northeast China. Sci. Total Environ. 625, 782–791 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    37.
    McGill, W. B. & Figueiredo, C. T. Total nitrogen. In Soil Sampling and Methods of Analysis (ed. Carter, M. R.) 201–211 (Canadian Society of Soil Science/Lewis Publishers, Boca Raton, 1993).
    Google Scholar 

    38.
    Lu, R. K. Soil and Agricultural Chemistry Analysis Method (China Agriculture Science and Technique Press, Beijing, 2000).
    Google Scholar 

    39.
    Guan, Y. S. Soil Enzyme and Research Method 309–313 (Agricultural Press, Beijing, 1986).
    Google Scholar 

    40.
    Yin, R., Deng, H., Wang, H. L. & Zhang, B. Vegetation type affects soil enzyme activities and microbial functional diversity following re-vegetation of a severely eroded red soil in sub-tropical China. CATENA 115, 96–103 (2014).
    Article  Google Scholar 

    41.
    Ge, G. et al. Soil biological activity and their seasonal variations in response to long-term application of organic and inorganic fertilizers. Plant soil. 326(1–2), 31 (2010).
    CAS  Article  Google Scholar 

    42.
    Xie, X. et al. Response of soil physicochemical properties and enzyme activities to long-term reclamation of coastal saline soil Eastern China.. Sci. Total Environ. 607, 1419–1427 (2017).
    ADS  PubMed  Article  CAS  Google Scholar 

    43.
    Cao, J., Ji, D. & Wang, C. Interaction between earthworms and arbuscular mycorrhizal fungi on the degradation of oxytetracycline in soils. Soil Biol. Biochem. 90, 283–292 (2015).
    CAS  Article  Google Scholar 

    44.
    Li, Q., Liang, J. H., He, Y. Y., Hu, Q. J. & Yu, S. Effect of land use on soil enzyme activities at karst area in Nanchuan, Chongqing Southwest China. Plant Soil Environ. 60(1), 15–20 (2014).
    CAS  Article  Google Scholar 

    45.
    Mitsch, W. J. & Gosselink, J. G. Wetland biogeochemistry. Wetlands. 3, 155–204 (2000).
    Google Scholar 

    46.
    Dijkstra, F., Cheng, W. & Johnson, D. Plant biomass influences rhizosphere priming effects on soil organic matter decomposition in two differently managed soils. Soil Biol. Biochem. 38, 2519–2526 (2006).
    CAS  Article  Google Scholar 

    47.
    Zhang, F., Shen, J., Li, L. & Liu, X. An overview of rhizosphere processes related with plant nutrition in major cropping systems in China. Plant Soil 260(1–2), 89–99 (2004).
    CAS  Article  Google Scholar 

    48.
    Wang, W. et al. Responses of soil nutrient concentrations and stoichiometry to different human land uses in a subtropical tidal wetland. Geoderma 232–234, 459–470 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Yan, J. et al. Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability. Geoderma 319, 194–203 (2018).
    ADS  CAS  Article  Google Scholar 

    50.
    Tesfaye, M. A., Bravo, F., Ruiz-Peinado, R., Pando, V. & Bravo-Oviedo, A. Impact of changes in land use, species and elevation on soil organic carbon and total nitrogen in Ethiopian Central Highlands. Geoderma 261, 70–79 (2016).
    ADS  CAS  Article  Google Scholar 

    51.
    Enriquez, A. S., Chimner, R. A., Cremona, M. V., Diehl, P. & Bonvissuto, G. L. Grazing intensity levels influence C reservoirs of wet and mesic meadows along a precipitation gradient in Northern Patagonia. Wetl. Ecol. Manag. 23, 439–451 (2015).
    CAS  Article  Google Scholar 

    52.
    Hassan, A. et al. Depth distribution of soil organic carbon fractions in relation to tillage and cropping sequences in some dry lands of Punjab Pakistan. Land Degrad. Dev. 27, 1175–1185 (2016).
    Article  Google Scholar 

    53.
    Li, J. et al. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China plain. Soil Tillage Res. 175, 281–290 (2018).
    Article  Google Scholar 

    54.
    Liu, E. et al. Seasonal changes and vertical distributions of soil organic carbon pools under conventional and no-till practices on Loess Plateau in China. Soil Sci. Soc. Am. J. 79(2), 517–526 (2015).
    ADS  CAS  Article  Google Scholar 

    55.
    Wuest, S. Seasonal variation in soil organic carbon. Soil Sci. Soc. Am. J. 78(4), 1442–1447 (2014).
    ADS  Article  CAS  Google Scholar 

    56.
    Suyker, A. E. & Verma, S. B. Year-round observations of the net ecosystem exchange of carbon dioxide in a native tallgrass prairie. Global Change Biol. 7, 279–289 (2001).
    ADS  Article  Google Scholar 

    57.
    Tang, S. et al. Decomposition of soil organic carbon influenced by soil temperature and moisture in Andisol and Inceptisol paddy soils in a cold temperate region of Japan. J. Soils Sediments. 17(7), 1843–1851 (2017).
    CAS  Article  Google Scholar 

    58.
    Li, Y. et al. Changes of soil microbial community under different degraded gradients of alpine meadow. Agric. Ecosyst. Environ. 222, 213–222 (2016).
    Article  Google Scholar 

    59.
    Luo, W. et al. Plant nutrients do not covary with soil nutrients under changing climatic conditions. Global Biogeochem. Cycle 29, 1298–1308 (2015).
    ADS  CAS  Article  Google Scholar 

    60.
    Foote, J. A., Boutton, T. W. & Scott, D. A. Soil C and N storage and microbial biomass in US southern pine forests: influence of forest management. For. Ecol. Manag. 355, 48–57 (2015).
    Article  Google Scholar 

    61.
    Lost, S., Landgraf, D. & Makeschin, F. Chemical soil properties of reclaimed marsh soil from Zhejiang Province P.R China. Geoderma 142(3–4), 245–250 (2007).
    ADS  Google Scholar 

    62.
    Zhang, L. P., Jia, G. M. & Xi, Y. The soil enzyme activities with age of tea in three gorges reservoir area. Adv. Mat. Res. 989, 1292–1296 (2014).
    Google Scholar 

    63.
    Manzoni, S., Trofymow, J. A., Jackson, R. B. & Porporato, A. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecol. Monogr. 80(1), 89–106 (2010).
    Article  Google Scholar 

    64.
    Chaparro, J. M. et al. Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS ONE 8(2), 55731 (2013).
    ADS  Article  CAS  Google Scholar 

    65.
    Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S. & Vivanco, J. M. The role of root exudates in rhizosphere interactions with plants and other organisms. Ann. Rev. Plant Biol. 57, 233–266 (2006).
    CAS  Article  Google Scholar 

    66.
    Hinsinger, P. et al. P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol. 156(3), 1078–1086 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Peng, J., Li, Y., Tian, L., Liu, Y. & Wang, Y. Vegetation dynamics and associated driving forces in Eastern China during 1999–2008. Remote Sens-Basel 7(10), 13641–13663 (2015).
    ADS  Article  Google Scholar 

    68.
    Yu, C. et al. Soil nutrient changes induced by the presence and intensity of plateaupika (ochotona curzoniae) disturbances in the qinghai-tibet plateau, china. Ecol. Eng. 106, 1–9 (2017).
    Article  Google Scholar 

    69.
    Saggar, S., Parfitt, R. L., Salt, G. & Skinner, M. F. Carbon and phosphorus transformations during decomposition of pine forest floor with different phosphorus status. Biol. Fert. Soils. 27(2), 197–204 (1998).
    CAS  Article  Google Scholar 

    70.
    Hanson, P. J., Edwards, N. T., Garten, C. T. & Andrews, J. A. Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48(1), 115–146 (2000).
    CAS  Article  Google Scholar 

    71.
    De Feudis, M. et al. Effect of beech (Fagus sylvatica L.) rhizosphere on phosphorous availability in soils at different altitudes (Central Italy). Geoderma 276, 53–63 (2016).
    ADS  Article  CAS  Google Scholar 

    72.
    Huang, W. & Spohn, M. Effects of long-term litter manipulation on soil carbon, nitrogen, and phosphorus in a temperate deciduous forest. Soil Biol. Biochem. 83, 12–18 (2015).
    CAS  Article  Google Scholar 

    73.
    Peng, S. Z., Yang, S. H., Xu, J. Z., Luo, Y. F. & Hou, H. J. Nitrogen and phosphorus leaching losses from paddy fields with different water and nitrogen managements. Paddy Water Environ. 9(3), 333–342 (2011).
    Article  Google Scholar 

    74.
    Deng, J. et al. Soil C, N, P and its stratification ratio affected by artificial vegetation in subsoil Loess Plateau China. PLoS ONE 11(3), e0151446 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    75.
    Liu, J. et al. Effect of seasonal freeze–thaw cycle on net nitrogen mineralization of soil organic layer in the subalpine/alpine forests of western Sichuan China. Acta Ecol. Sin. 33(1), 32–37 (2013).
    Article  Google Scholar 

    76.
    Wang, Y., Wu, Q., Tian, L., Niu, F. & Tan, L. Correlation of alpine vegetation degradation and soil nutrient status of permafrost in the source regions of the Yangtze River China. Environ. Earth Sci. 67(4), 1215–1223 (2012).
    CAS  Article  Google Scholar 

    77.
    Bauhus, J. & Khanna, P. K. Carbon and nitrogen turnover in two acid forest soils of southeast Australia as affected by phosphorus addition and drying and rewetting cycles. Biol. Fert. Soils. 17(3), 212–218 (1994).
    CAS  Article  Google Scholar 

    78.
    Mehnaz, K. R., Corneo, P. E., Keitel, C. & Dijkstra, F. A. Carbon and phosphorus addition effects on microbial carbon use efficiency, soil organic matter priming, gross nitrogen mineralization and nitrous oxide emission from soil. Soil Biol. Biochem. 134, 175–186 (2019).
    CAS  Article  Google Scholar 

    79.
    Acosta-Martinez, V., Cano, A. & Johnson, J. Simultaneous determination of multiple soil enzyme activities for soil health-biogeochemical indices. Appl. Soil Ecol. 126, 121–128 (2018).
    Article  Google Scholar 

    80.
    Poeplau, C., Bolinder, M., Kirchmann, H. & Kätterer, T. Phosphorus fertilisation under nitrogen limitation can deplete soil carbon, stocks: evidence from Swedish meta-replicated long-term field experiments. Biogeosciences 13(4), 1119–1127 (2016).
    ADS  CAS  Article  Google Scholar 

    81.
    Xiao, Y., Huang, Z. G. & Lu, X. G. Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang Plain Northeast China. Ecol. Eng. 82, 381–389 (2015).
    Article  Google Scholar 

    82.
    Vergani, C. & Graf, F. Soil permeability, aggregate stability and root growth: a pot experiment from a soil bioengineering perspective. Ecohydrology. 9(5), 830–842 (2016).
    Article  Google Scholar 

    83.
    Wang, X., Yan, B., Fan, B., Shi, L. & Liu, G. Temperature and soil microorganisms interact to affect Dodonaea viscosa, growth on mountainsides. Plant Ecol. 219(7), 759–774 (2018).

    84.
    Ross, D. J. A seasonal study of oxygen uptake of some pasture soils and activities of enzymes hydrolysing sucrose and starch. Eur. J. Soil Sci. 16(1), 73–85 (1965).
    CAS  Article  Google Scholar 

    85.
    Tierney, G. L. et al. Soil freezing alters fine root dynamics in a northern hardwood forest. Biogeochemistry 56(2), 175–190 (2001).
    CAS  Article  Google Scholar 

    86.
    Koponen, H. T. et al. Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles. Soil Biol. Biochem. 38(7), 1861–1871 (2006).
    CAS  Article  Google Scholar 

    87.
    Brzezińska, M., Włodarczyk, T., Stępniewski, W. & Przywara, G. Soil aeration status and catalase activity. Acta Agrophys. 5(3), 555–565 (2005).
    Google Scholar 

    88.
    Tegeder, M. & Masclaux-Daubresse, C. Source and sink mechanisms of nitrogen transport and use. New Phytol. 217, 35–53 (2018).
    PubMed  Article  Google Scholar 

    89.
    Bremner, J. M. & Mulvaney, R. L. Urease activity in soils. Soil Enzymes, 149–196 (Academic Press, London, 1978).

    90.
    Zornoza, R. et al. Assessing air drying and rewetting pretreatment effect on some soil enzyme activities under Mediterranean conditions. Soil Biol. Biochem. 38, 2125–2134 (2006).
    CAS  Article  Google Scholar 

    91.
    Fernandez, D. P., Neff, J. C., Belnap, J. & Reynolds, R. L. Soil respiration in the cold desert environment of the Colorado Plateau (USA): abiotic regulators and thresholds. Biogeochemistry 78(3), 247–265 (2006).
    Article  Google Scholar 

    92.
    Jing, X. et al. No temperature acclimation of soil extracellular enzymes to experimental warming in an alpine grassland ecosystem on the Tibetan Plateau. Biogeochemistry 117(1), 39–54 (2014).
    CAS  Article  Google Scholar 

    93.
    Schindlbacher, A., Schnecker, J., Takriti, M., Borken, W. & Wanek, W. Microbial physiology and soil CO2 efflux after 9 years of soil warming in atemperate forest-no indications for thermal adaptations. Global Change Biol. 21(11), 4265–4277 (2015).
    ADS  Article  Google Scholar 

    94.
    Wallenstein, M. D., Mcmahon, S. K. & Schimel, J. P. Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils. Global Change Biol. 15(7), 1631–1639 (2009).
    ADS  Article  Google Scholar 

    95.
    Kivlin, S. N. & Treseder, K. K. Soil extracellular enzyme activities correspond with abiotic factors more than fungal community composition. Biogeochemistry 117(1), 23–37 (2014).
    CAS  Article  Google Scholar 

    96.
    Allison, S. D. & Treseder, K. K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biol. 14(12), 2898–2909 (2008).
    ADS  Article  Google Scholar 

    97.
    Brzostek, E. R. & Finzi, A. C. Seasonal variation in the temperature sensitivity of proteolytic enzyme activity in temperate forest soils. J. Geophys. Res. 117(G1) (2012).

    98.
    Weintraub, S. R., Wieder, W. R., Cleveland, C. C. & Townsend, A. R. Organic matter inputs shift soil enzyme activity and allocation patterns in a wettropical forest. Biogeochemistry 114(1/3), 313–326 (2013).
    CAS  Article  Google Scholar 

    99.
    Wang, B., Liu, G. B., Xue, S. & Zhu, B. Changes in soil physico-chemical and microbiological properties during natural succession on abandoned farmland in the Loess Plateau. Environ. Earth Sci. 62(5), 915–925 (2011).
    ADS  CAS  Article  Google Scholar 

    100.
    Yang, L., Li, T., Li, F., Lemcoff, J. H. & Cohen, S. Fertilization regulates soil enzymatic activity and fertility dynamics in a cucumber field. Sci. Hortic. 116(1), 21–26 (2008).
    CAS  Article  Google Scholar 

    101.
    Alkorta, I. et al. Soil enzyme activities as biological indicators of soil health. Rev. Environ. Health. 18(1), 65–73 (2003).
    PubMed  Article  Google Scholar 

    102.
    Burns, R. G. et al. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biol. Biochem. 58, 216–227 (2013).
    CAS  Article  Google Scholar 

    103.
    Cao, C. et al. Soil chemical and microbiological properties along a chronosequence of Caragana microphylla Lam. plantations in the Horqin sandy land of Northeast China. Appl. Soil Ecol. 40(1), 0–85 (2008).
    Article  Google Scholar 

    104.
    Hao, Y., Chang, Q., Li, L. H. & Wei, X. R. Impacts of landform, land use and soil type on soil chemical properties and enzymatic activities in a Loessial Gully watershed. Soil Res. 52(5), 453 (2014).
    CAS  Article  Google Scholar 

    105.
    Qi, R. et al. Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Appl. Soil Ecol. 102, 36–45 (2016).
    Article  Google Scholar 

    106.
    Zhang, H., Zeng, Q., An, S., Dong, Y. & Darboux, F. Soil carbon fractions and enzyme activities under different vegetation types on the Loess Plateau of China. Solid Earth Discuss. 2016, 1–27. https://doi.org/10.5194/se-2016-137 (2016). More

  • in

    Cyanobacterial blooms contribute to the diversity of antibiotic-resistance genes in aquatic ecosystems

    1.
    Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008).
    CAS  PubMed  Article  Google Scholar 
    2.
    Ma, J. & Li, H. Preliminary discussion on eutrophication status of lakes, reservoirs and reivers in China and overseas. Resour. Environ. Yangtze Val. 11, 575–578 (2002).
    CAS  Google Scholar 

    3.
    Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).
    CAS  PubMed  Article  Google Scholar 

    4.
    Paerl, H. W. Transfer of N2 and CO2 fixation products from Anabaena oscillarioides to associated bacteria during inorganic carbon sufficiency and deficiency. J. Phycol. 20, 600–608 (1984).
    CAS  Article  Google Scholar 

    5.
    Danillo, O. A., Marli, F. F. & Alessandro, M. V. A metagenomic approach to cyanobacterial genomics. Front. Microbiol. 8, 809–824 (2017).
    Article  Google Scholar 

    6.
    Schindler, W. D. Eutrophication and recovery in experimental lakes: Implications for lake management. Science 184, 897–899 (1974).
    CAS  PubMed  Article  Google Scholar 

    7.
    Zhou, J. et al. Phycosphere microbial succession patterns and assembly mechanisms in a marine Dinoflagellate bloom. Appl. Environ. Microbiol. 85, e00349–19 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Codd, G. A., Lindsay, J., Young, F. M., Morrison, L. F. & Metcalf, J. S. Harmful cyanobacteria. In: Harmful Cyanobacteria. Aquatic Ecology Series (eds Huisman J., Matthijs H. C. & Visser P. M.). Vol. 3, 1–23 (Springer Netherlands: Dordrecht, The Netherlands,2005).

    9.
    Christoffersen, K. & Kaas, H. Toxic cyanobacteria in water. A guide to their public health consequences, monitoring, and management. Limnol. Oceanogr. 45, 1212–1212 (2000).
    Article  Google Scholar 

    10.
    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
    Article  Google Scholar 

    11.
    Zhu, Y. G. et al. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat. Microbiol. 2, 16270 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Laxminarayan, R. et al. Antibiotic resistance—the need for global solutions. Lancet Infect. Dis. 13, 1057–1098 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    El-Tahawy, A. T. A. The crisis of antibiotic-resistance in bacteria. Saudi. Med. J. 25, 837–842 (2004).
    PubMed  PubMed Central  Google Scholar 

    14.
    Tripathi, V. & Tripathi, P. in Perspectives in Environmental Toxicology. Environmental Science and Engineering. (ed. Kesari, K.) 183–201 (Springer, Cham: Cham, Switzerland, 2017).

    15.
    Gorokhova, E. et al. Bacteria-mediated effects of antibiotics on Daphnia nutrition. Environ. Sci. Technol. 49, 5779–5787 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Willing, B. P., Russell, S. L. & Finlay, B. B. Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat. Rev. Microbiol. 9, 233–243 (2011).
    CAS  PubMed  Article  Google Scholar 

    17.
    Garcia-Armisen, T. et al. Antimicrobial resistance of heterotrophic bacteria in sewage-contaminated rivers. Water Res. 45, 788–796 (2011).
    CAS  PubMed  Article  Google Scholar 

    18.
    Czekalski, N., Sigdel, R., Birtel, J., Matthews, B. & Bürgmann, H. Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes. Environ. Int. 81, 45–55 (2015).
    CAS  PubMed  Article  Google Scholar 

    19.
    Bondarczuk, K., Markowicz, A. & Piotrowska-Seget, Z. The urgent need for risk assessment on the antibiotic resistance spread via sewage sludge land application. Environ. Int. 87, 49–55 (2016).
    CAS  PubMed  Article  Google Scholar 

    20.
    Holger, H. & Kornelia, S. Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environ. Microbiol. 9, 657–666 (2010).
    Google Scholar 

    21.
    Baquero, F., Martinez, J. L. & Canton, R. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 19, 260–265 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Xi, C. et al. Prevalence of antibiotic resistance in drinking water treatment and distribution systems. Appl. Environ. Microbiol. 75, 5714–5718 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Witte, W. Ecological impact of antibiotic use in animals on different complex microflora: environment. Int. J. Antimicrob. Agents 14, 321–325 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Feng, J. L. et al. Identification and characterization of integron-associated antibiotic resistant Laribacter hongkongensis isolated from aquatic products in China. Int. J. Food Microbiol. 144, 337–341 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Luo, Y. et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environ. Sci. Technol. 44, 7220–7225 (2010).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    26.
    Guo, Y. et al. The antibiotic resistome of free-living and particle-attached bacteria under a reservoir cyanobacterial bloom. Environ. Int. 117, 107–115 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Song, H. et al. Allelopathic interactions of linoleic acid and nitric oxide increase the competitive ability of Microcystis aeruginosa. ISME J. 11, 1865–1876 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Zhang, Z. et al. Alteration of dominant cyanobacteria in different bloom periods caused by abiotic factors and species interactions. J. Environ. Sci. 99, 1–9 (2021).
    Article  Google Scholar 

    29.
    Zhang, Q. et al. The fungicide azoxystrobin perturbs the gut microbiota community and enriches antibiotic resistance genes in Enchytraeus crypticus. Environ. Int. 131, 104965 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Zhu, D. et al. Antibiotics disturb the microbiome and increase the incidence of resistance genes in the gut of a common soil collembolan. Environ. Sci. Technol. 52, 3081–3090 (2018).
    CAS  PubMed  Article  Google Scholar 

    31.
    Zhu, D. et al. Exposure of a soil collembolan to Ag nanoparticles and AgNO3 disturbs its associated microbiota and lowers the incidence of antibiotic resistance genes in the gut. Environ. Sci. Technol. 52, 12748–12756 (2018).
    CAS  PubMed  Article  Google Scholar 

    32.
    Chen, Q. L. et al. Application of struvite alters the antibiotic resistome in soil, rhizosphere, and phyllosphere. Environ. Sci. Technol. 51, 8149–8157 (2017).
    CAS  PubMed  Article  Google Scholar 

    33.
    Shi, K. et al. Long-term MODIS observations of cyanobacterial dynamics in Lake Taihu: Responses to nutrient enrichment and meteorological factors. Sci. Rep. 7, 40326 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Zhang, M. et al. Feedback regulation between aquatic microorganisms and the bloom-forming cyanobacterium Microcystis aeruginosa. Appl. Environ. Microbiol. 85, e01362–19 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    35.
    Scheibner, M. V. et al. Impact of warming on phyto-bacterioplankton coupling and bacterial community composition in experimental mesocosms. Environ. Microbiol. 16, 718–733 (2014).
    Article  Google Scholar 

    36.
    Woodhouse, J. N. et al. Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake. ISME J. 10, 1337–1351 (2016).
    CAS  PubMed  Article  Google Scholar 

    37.
    Martin, U. et al. PHI-base: a new interface and further additions for the multi-species pathogen–host interactions database. Nucleic Acids Res. 45, 604–610 (2016).
    Google Scholar 

    38.
    Chen, H., Jing, L., Yao, Z., Meng, F. & Teng, Y. Prevalence, source and risk of antibiotic resistance genes in the sediments of Lake Tai (China) deciphered by metagenomic assembly: a comparison with other global lakes. Environ. Int. 127, 267–275 (2019).
    CAS  PubMed  Article  Google Scholar 

    39.
    Zhang, Y., Sua, Y., Liu, Z., Yua, J. & Jina, M. Lipid biomarker evidence for determining the origin and distribution of organic matter in surface sediments of Lake Taihu, Eastern China. Ecol. Indic. 77, 397–408 (2017).
    CAS  Article  Google Scholar 

    40.
    Jothikumar, N., Kahler, A., Strockbine, N., Gladney, L. & Hill, V. R. Draft genome sequence of Buttiauxella agrestis, isolated from surface water. Genome Announc. 2, e01060–14 (2014).
    PubMed  PubMed Central  Google Scholar 

    41.
    Igbinosa, H. I. Antibiogram profiling and pathogenic status of Aeromonas species recovered from chicken. Saudi J. Biol. Sci. 21, 481–485 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Nguyen, H. N. K. et al. Molecular characterization of antibiotic resistance in Pseudomonas and Aeromonas isolates from catfish of the Mekong Delta, Vietnam. Vet. Microbiol. 171, 397–405 (2014).
    CAS  PubMed  Article  Google Scholar 

    43.
    Gaze, W. H. et al. Impacts of anthropogenic activity on the ecology of class 1 integrons and integron-associated genes in the environment. ISME J. 5, 1253–1261 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Gillings, M. et al. The evolution of class 1 integrons and the rise of antibiotic resistance. J. Bacteriol. 190, 5095–5100 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Partridge, S. R., Tsafnat, G., Coiera, E. & Iredell, J. R. Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol. Rev. 33, 757–784 (2009).
    CAS  PubMed  Article  Google Scholar 

    46.
    Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).
    CAS  PubMed  Article  Google Scholar 

    47.
    Louati, I. et al. Correction: structural diversity of bacterial communities associated with bloom-forming freshwater cyanobacteria differs according to the cyanobacterial genus. PLoS ONE 10, e0140614 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Dias, E. et al. Assessing the antibiotic susceptibility of freshwater Cyanobacteria spp. Front. Microbiol. 6, 799 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Dias, E., Oliveira, M., Manageiro, V., Vasconcelos, V. & Caniça, M. Deciphering the role of cyanobacteria in water resistome: Hypothesis justifying the antibiotic resistance (phenotype and genotype) in Planktothrix genus. Sci. Total. Environ. 652, 447–454 (2018).
    CAS  PubMed  Article  Google Scholar 

    50.
    Vaz-Moreira, I., Nunes, O. C. & Manaia, C. M. Bacterial diversity and antibiotic resistance in water habitats: searching the links with the human microbiome. FEMS Microbiol. Rev. 38, 761–778 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Cox, G. & Wright, G. D. Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int. J. Med. Microbiol. 303, 287–292 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Myklestad, S. M. in Marine Chemistry. The Handbook of Environmental Chemistry. (eds Wangersky, P. J.) Vol. 5 Series: Water Pollution, vol 5D. 111–148 (Springer: Berlin, Heidelberg, Germany, 2000).

    53.
    Pancrace, C. et al. Rearranged biosynthetic gene cluster and synthesis of Hassallidin E in Planktothrix serta PCC 8927. ACS Chem. Biol. 12, 1796–1804 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Zhao, Y. et al. Feed additives shift gut microbiota and enrich antibiotic resistance in swine gut. Sci. Total. Environ. 621, 1224–1232 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Peng, S., Feng, Y., Wang, Y., Guo, X. & Lin, X. Prevalence of antibiotic resistance genes in soils after continually applied with different animal manure for 30 years. J. Hazard. Mater. 340, 16–25 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Szekeres, E. et al. Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals. Environ. Pollut. 225, 304–315 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Zhu, L. et al. Bacterial Communities associated with four cyanobacterial genera display structural and functional differences: evidence from an experimental approach. Front. Microbiol. 7, 1662 (2016).
    PubMed  PubMed Central  Google Scholar 

    58.
    Dantas, G., Sommer, M. O. A., Oluwasegun, R. D. & Church, G. M. Bacteria subsisting on antibiotics. Science 320, 100–103 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    D’Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    60.
    Sun, D. L., Jiang, X., Wu, Q. L. & Zhou, N. Y. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Appl. Environ. Microbiol. 79, 5962 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Ouyang, W. Y., Huang, F. Y., Zhao, Y., Li, H. & Su, J. Q. Increased levels of antibiotic resistance in urban stream of Jiulongjiang River, China. Appl. Microbiol. Biotechnol. 99, 5697–5707 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Qian, H. F. et al. Bio-safety assessment of validamycin formulation on bacterial and fungal biomass in soil monitored by real-time PCR. B. Environ. Contam. Tox. 78, 239–244 (2007).
    CAS  Article  Google Scholar  More

  • in

    Predicted climate change will increase the truffle cultivation potential in central Europe

    1.
    Diez, J. et al. Altitudinal upwards shifts in fungal fruiting in the Alps. Proc. R. Soc. B 287, 20192348. https://doi.org/10.1098/rspb.2019.2348 (2020).
    Article  PubMed  Google Scholar 
    2.
    Gange, A. C. et al. Trait-dependent distributional shifts in fruiting of common British fungi. Ecography 41, 51–61. https://doi.org/10.1111/ecog.03233 (2018).
    Article  Google Scholar 

    3.
    Boddy, L. et al. Climate variation effects on fungal fruiting. Fungal Ecol. 10, 20–33. https://doi.org/10.1016/j.funeco.2013.10.006 (2014).
    Article  Google Scholar 

    4.
    Andrew, C. et al. Open-source data reveal how collections-based fungal diversity is sensitive to global change. Appl. Plant Sci. 7, e01227. https://doi.org/10.1002/aps3.1227 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    5.
    Marx, D. H., Marrs, L. F. & Cordell, C. E. Practical use of the mycorrhizal fungal technology in forestry, reclamation, arboriculture, and horticulture. Dendrobiology 47, 27–40 (2002).
    Google Scholar 

    6.
    Parmesan, C. & Yohe, G. A. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42. https://doi.org/10.1038/nature01286 (2003).
    ADS  CAS  Article  Google Scholar 

    7.
    Fordham, D. A. et al. Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming?. Glob. Chang. Biol. 18, 1357–1371. https://doi.org/10.1111/j.1365-2486.2011.02614.x (2012).
    ADS  Article  Google Scholar 

    8.
    Harrison, P., Berry, P. M., Butt, N. & New, M. Modelling climate change impacts on species’ distributions at the European scale: implications for conservation policy. Environ. Sci. Policy 9, 116–128. https://doi.org/10.1016/j.envsci.2005.11.003 (2006).
    Article  Google Scholar 

    9.
    Guo, Y. et al. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios. Sci. Rep. 7, 46221. https://doi.org/10.1038/srep46221 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    10.
    Araújo, M. B. & Peterson, A. T. Uses and misuses of bioclimatic envelope modeling. Ecology 93, 1527–1539. https://doi.org/10.1890/11-1930.1 (2012).
    Article  PubMed  Google Scholar 

    11.
    Ehrlén, J. & Morris, W. F. Predicting changes in the distribution and abundance of species under environmental change. Ecol. Lett. 18, 303–314. https://doi.org/10.1111/ele.12410 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    12.
    Chambers, D., Périé, C., Casajus, N. & de Blois, S. Challenges in modelling the abundance of 105 tree species in eastern North America using climate, edaphic, and topographic variables. For. Ecol. Manag. 291, 20–29. https://doi.org/10.1016/j.foreco.2012.10.046 (2013).
    Article  Google Scholar 

    13.
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).
    Article  Google Scholar 

    14.
    Anderson, R. P. A framework for using niche models to estimate impacts of climate change on species distributions. Ann. Ny. Acad. Sci. 1297, 8–28. https://doi.org/10.1111/nyas.12264 (2013).
    ADS  Article  PubMed  Google Scholar 

    15.
    Berch, S. M. & Bonito, G. Cultivation in Mediterranean species of Tuber (Tuberaceae) in British Columbia, Canada. Mycorrhiza 24, 473–479; https://doi.org/10.1007/s00572-014-0562-y (2014).

    16.
    Păcurar, H. et al. Identification of Soils Factors Influence in the Distributions of Tuber aestivum in Transylvanian Subcarpathian Hills, Romania. Not. Bot. Horti. Afrobio. 47, 478–486; https://doi.org/10.15835/nbha47111378 (2019).

    17.
    Rellini, I., Pavarino, M., Scopesi, C. & Zotti, M. Physical land suitability map for Tuber magnatum Pico in Piana Crixia municipality territory (Liguria-Italy). J. Maps 7, 353–362. https://doi.org/10.4113/jom.2011.1180 (2012).
    Article  Google Scholar 

    18.
    Serrano-Notivoli, R., Martín-Santafé, M., Sánchez, S. & Barriuso, J. J. Cultivation potentiality of black truffle in Zaragoza province (Northeast Spain). J. Maps 12, 994–998. https://doi.org/10.1080/17445647.2015.1113392 (2012).
    Article  Google Scholar 

    19.
    Trappe, J. M. & Claridge, A. W. The hidden life of truffles. Sci. Am. 302, 78–84. https://doi.org/10.1038/scientificamerican0410-78 (2010).
    Article  PubMed  Google Scholar 

    20.
    Stobbe, U. et al. Potential and limitations of Burgundy truffle cultivation. Appl. Microbiol. Biotechnol. 97, 5215–5224. https://doi.org/10.1007/s00253-013-4956-0 (2013).
    CAS  Article  PubMed  Google Scholar 

    21.
    Stobbe, U. et al. Spatial distribution and ecological variation of re-discovered German truffle habitats. Fungal Ecol. 5, 591–599. https://doi.org/10.1016/j.funeco.2012.02.001 (2012).
    Article  Google Scholar 

    22.
    Delmas, J. Tuber spp. in The biology and cultivation of edible mushrooms (eds. Chang, S. T. & Hayes, W. A.) 645–681 (Academic Press, 1978).

    23.
    Reyna, S. & Garcia-Barreda, S. Black truffle cultivation: a global reality. Forest Syst. 23, 317–328. https://doi.org/10.5424/fs/2014232-04771 (2014).
    Article  Google Scholar 

    24.
    Thomas, P. & Büntgen, U. First harvest of Périgord black truffle in the UK as a result of climate change. Clim. Res. 74, 67–70. https://doi.org/10.3354/cr01494 (2017).
    Article  Google Scholar 

    25.
    Büntgen, U. et al. Truffles on the move. Front. Ecol. Environ. 17, 200–202. https://doi.org/10.1002/fee.2033 (2019).
    Article  Google Scholar 

    26.
    Büntgen, U. et al. Drought-induced decline in Mediterranean truffle harvest. Nat. Clim. Chang. 2, 827–829. https://doi.org/10.1038/nclimate1733 (2012).
    ADS  Article  Google Scholar 

    27.
    Thomas, P. & Büntgen, U. A risk assessment of Europe’s black truffle sector under predicted climate change. Sci. Total Environ. 655, 27–34. https://doi.org/10.1016/j.scitotenv.2018.11.252 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    28.
    Bonet, J. A. et al. Cultivation Methods of the Black Truffle, the Most Profitable Mediterranean Non-Wood Forest Product; A State of the Art Review. in Modelling, Valuing and Managing Mediterranean Forest Ecosystems for Non-Timber Goods and Services (eds. Palahí, M., Birot, Y., Bravo, F., & Gorriz, E.) 57–71 (European Forest Institute, 2009).

    29.
    Bonet, J. A., Fisher, C. R. & Colinas, C. Cultivation of black truffle to promote reforestation and land-use stability. Agron. Sustain. Dev. 26, 69–76. https://doi.org/10.1051/agro:2005059 (2006).
    Article  Google Scholar 

    30.
    Büntgen, U., Latorre, J., Egli, S. & Martínez-Peña, F. Socio-economic, scientific, and political benefits of mycotourism. Ecosphere 8, e01870. https://doi.org/10.1002/ecs2.1870 (2017).
    Article  Google Scholar 

    31.
    Chevalier, G. & Frochot, H. Ecology and possibility of culture in Europe of the Burgundy truffle (Tuber uncinatum Chatin). Agric. Ecosyst. Environ. 28, 71–73. https://doi.org/10.1016/0167-8809(90)90016-7 (1989).
    Article  Google Scholar 

    32.
    Chevalier, G. The Truffle of Europe (Tuber aestivum): geographic limits, ecology and possibility of cultivation. Österr. Z. Pilzk. 19, 249–259 (2010).
    Google Scholar 

    33.
    Chevalier, G. Europe, a continent with high potential for the cultivation of the Burgundy truffle (Tuber aestivum/uncinatum). Acta Mycol. 47, 127–132 (2012).
    Article  Google Scholar 

    34.
    Chytrý, M. Flora and Vegetation of the Czech Republic, Plant and Vegetation 14. (Springer, 2017).

    35.
    Rivas-Martínez, S. Bioclimatic & Biogeographic Maps of Europe. (University of León, 2004).

    36.
    Trnka, M. et al. Soil moisture trends in the Czech Republic between 1961 and 2012. Int. J. Climatol. 35, 3733–3747. https://doi.org/10.1002/joc.4242 (2015).
    Article  Google Scholar 

    37.
    Ji, D. et al. Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1. Geosci. Model. Dev. 7, 2039–2064. https://doi.org/10.5194/gmd-7-2039-2014 (2014).
    ADS  Article  Google Scholar 

    38.
    Voldoire, A. et al. The CNRM-CM5.1 global climate model: description and basic evaluation. Clim. Dyn. 40, 2091–2121. https://doi.org/10.1007/s00382-011-1259-y (2013).
    Article  Google Scholar 

    39.
    Martin, G. M. et al. The HadGEM2 family of met office unified model climate configurations. Geosci. Model Dev. 4, 723–757. https://doi.org/10.5194/gmd-4-723-2011 (2011).
    ADS  Article  Google Scholar 

    40.
    Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165. https://doi.org/10.1007/s00382-012-1636-1 (2013).
    Article  Google Scholar 

    41.
    Yukimoto, S. et al. A new global climate model of the meteorological research institute: MRI-CGCM3. J. Meteorol. Soc. Jpn. 90A, 23–64 (2012).
    Article  Google Scholar 

    42.
    Dubrovský, M., Trnka, M., Holman, I. P., Svobodová, E. & Harrison, P. Developing a reduced-form ensemble of climate change scenarios for Europe and its application to selected impact indicators. Clim. Change 128, 169–186. https://doi.org/10.1007/s10584-014-1297-7 (2015).
    ADS  Article  Google Scholar 

    43.
    Hay, L. E., Wilby, R. L. & Leavesley, G. H. A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J. Am. Water Resour. Assoc. 36, 387–397. https://doi.org/10.1111/j.1752-1688.2000.tb04276.x (2007).
    Article  Google Scholar 

    44.
    Plíva, K. Typologický systém ÚHUL. (Forest Management Institute, 1971).

    45.
    Novotný, I. Metodika mapování a aktualizace bonitovaných půdně ekologických jednotek. (Research Institute for Soil and Water Conservation, 2013).

    46.
    ESRI. ArcGIS Pro: Release 2.3.0. (Environmental Systems Research Institute, 2019).

    47.
    ArcData Praha. ArcČR 500, Version 3.3. (ArcData Praha, 2016).

    48.
    Malczewski, J. GIS and multicriteria decision analysis. (John Wiley, 1999).

    49.
    Jaillard, B. et al. Soil Characteristics of Tuber melanosporum Habitat. in True Truffle (Tuber spp.) in the World (eds. Zambonelli, A., Iotti, M. & Murat, C.) 169–190 (Springer International Publishing, 2016).

    50.
    Büntgen, U. et al. New insights into the complex relationship between weight and maturity of Burgundy Truffles (Tuber aestivum). PLoS ONE 12, e0170375. https://doi.org/10.1371/journal.pone.0170375 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    51.
    Garcia-Barreda, S., Camarero, J. J., Vicente-Serrano, S. M. & Serrano-Notivoli, R. Variability and trends of black truffle production in Spain (1970–2017): Linkages to climate, host growth, and human factors. Agric. For. Meteorol. 287, 107951. https://doi.org/10.1016/j.agrformet.2020.107951 (2020).
    ADS  Article  Google Scholar 

    52.
    Le Tacon, F. et al. Climatic variations explain annual fluctuations in French Périgord black truffle wholesale markets but do not explain the decrease in black truffle production over the last 48 years. Mycorrhiza 24(Suppl 1), S115–S125. https://doi.org/10.1007/s00572-014-0568-5 (2014).
    Article  PubMed  Google Scholar 

    53.
    Václavík, T., Kanaskie, A., Hansen, E. M., Ohmann, J. L. & Meentemeyer, R. K. Predicting potential and actual distribution of sudden oak death in Oregon: Prioritizing landscape contexts for early detection and eradication of disease outbreaks. For. Ecol. Manag. 260, 1026–1035. https://doi.org/10.1016/j.foreco.2010.06.026 (2010).
    Article  Google Scholar 

    54.
    Streiblová, E., Gryndlerová, H., Valda, S. & Gryndler, M. Tuber aestivum: hypogeous fungus neglected in the Czech Republic: a review. Czech Mycol. 61, 163–173 (2010).
    Article  Google Scholar 

    55.
    Gryndler, M. et al. Detection of summer truffle (Tuber aestivum Vittad) in ectomycorrhizae and soil using specific primers. FEMS Microbiol. Lett. 318, 84–91. https://doi.org/10.1111/j.1574-6968.2011.02243.x (2011).
    CAS  Article  PubMed  Google Scholar 

    56.
    Gryndler, M. et al. Truffle biogeography: a case study revealing ecological niche separation of different Tuber species. Ecol. Evol. 7, 4275–4288. https://doi.org/10.1002/ece3.3017 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    57.
    Sánchez, S., Ágreda, T., Martín, M., de Miguel, A. M. & Barriuso, J. Persistence and detection of black truffle ectomycorrhizas in plantations: comparison between two field detection methods. Mycorrhiza 24, 39–46. https://doi.org/10.1007/s00572-014-0560-0 (2014).
    Article  Google Scholar 

    58.
    Hilszczańska, D., Sierota, Z. & Palenzona, M. New Tuber species found in Poland. Mycorrhiza 18, 223–226. https://doi.org/10.1007/s00572-008-0175-4 (2008).
    Article  PubMed  Google Scholar 

    59.
    Trnka, M. et al. Expected changes in agroclimatic conditions in Central Europe. Clim. Change 108, 261–289. https://doi.org/10.1007/s10584-011-0025-9 (2011).
    ADS  Article  Google Scholar 

    60.
    Büntgen, U. et al. Black truffle winter production depends on Mediterranean summer precipitation. Environ. Res. Lett. 14, 074004. https://doi.org/10.1088/1748-9326/ab1880 (2019).
    ADS  CAS  Article  Google Scholar 

    61.
    Le Tacon, F., Delmas, J., Gleyze, R. & Bouchard, D. Influence du regime hydrique du sol et de la fertilisation sur la frutification de la truffe noire du Périgord (Tuber melanosporum Vitt.) dans le sud-est de la France. Acta Oecol-Oec. Appl. 3, 291–306 (1982).

    62.
    Trnka, M. et al. Assessing the combined hazards of drought, soil erosion and local flooding on agricultural land: a Czech case study. Clim. Res. 70, 231–249. https://doi.org/10.3354/cr01421 (2016).
    Article  Google Scholar 

    63.
    European Environment Agency. Climate change adaptation in the agriculture sector in Europe. (European Environment Agency, 2019).

    64.
    NCA CR. Species database of nature protection. (Nature Conservation Agency of the Czech Republic, 2019).

    65.
    San-Miguel-Ayanz, J. European Atlas of Forest Tree Species (Publication Office of the European Union, 2016). More