Sustained organic loading disturbance favors nitrite accumulation in bioreactors with variable resistance, recovery and resilience of nitrification and nitrifiers
1.
Osborn, D., Cutter, A. & Ullah, F. in Stakeholder Forum, Commissioned by the UN Development Program. Geneva, Switzerland.
2.
Cain, M., Bowman, W. & Hacker, S. Ecology 3rd edn. (Sinauer Associates Inc., Sunderland, 2014).
Google Scholar
3.
Donohue, I. et al. On the dimensionality of ecological stability. Ecol. Lett. 16, 421–429 (2013).
PubMed PubMed Central Article Google Scholar
4.
Hillebrand, H. et al. Decomposing multiple dimensions of stability in global change experiments. Ecol. Lett. 21, 21–30 (2018).
PubMed PubMed Central Article Google Scholar
5.
Briones, A. & Raskin, L. Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Curr. Opin. Biotechnol. 14, 270–276 (2003).
CAS PubMed Article PubMed Central Google Scholar
6.
Wang, Q., Ding, C., Tao, G. & He, J. Analysis of enhanced nitrogen removal mechanisms in a validation wastewater treatment plant containing anammox bacteria. Appl. Microbiol. Biotechnol. 103, 1255–1265 (2019).
CAS PubMed Article PubMed Central Google Scholar
7.
Zhou, J. & Ning, D. Stochastic community assembly: does it matter in microbial ecology?. Microbiol. Mol. Biol. Rev. 81, 1–32 (2017).
Article Google Scholar
8.
Santillan, E., Seshan, H., Constancias, F., Drautz-Moses, D. I. & Wuertz, S. Frequency of disturbance alters diversity, function, and underlying assembly mechanisms of complex bacterial communities. NPJ Biofilms Microbiomes 5, 1–8 (2019).
Article Google Scholar
9.
Prosser, J. I. Replicate or lie. Environ. Microbiol. 12, 1806–1810 (2010).
CAS PubMed Article Google Scholar
10.
Bender, E. A., Case, T. J. & Gilpin, M. E. Perturbation experiments in community ecology: theory and practice. Ecology 65, 1–13 (1984).
Article Google Scholar
11.
Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3, 1–19 (2012).
ADS Article Google Scholar
12.
Botton, S., van Heusden, M., Parsons, J. R., Smidt, H. & van Straalen, N. Resilience of microbial systems towards disturbances. Crit. Rev. Microbiol. 32, 101–112 (2006).
CAS PubMed Article Google Scholar
13.
Rykiel, E. J. Towards a definition of ecological disturbance. Aust. J. Ecol. 10, 361–365 (1985).
Article Google Scholar
14.
Hu, B., Wheatley, A., Ishtchenko, V. & Huddersman, K. The effect of shock loads on SAF bioreactors for sewage treatment works. Chem. Eng. J. 166, 73–80 (2011).
CAS Article Google Scholar
15.
Bassin, J. P. et al. Effect of increasing organic loading rates on the performance of moving-bed biofilm reactors filled with different support media: assessing the activity of suspended and attached biomass fractions. Process Saf. Environ. Prot. 100, 131–141 (2016).
CAS Article Google Scholar
16.
Seetha, N., Bhargava, R. & Kumar, P. Effect of organic shock loads on a two-stage activated sludge-biofilm reactor. Bioresour. Technol. 101, 3060–3066 (2010).
CAS PubMed Article Google Scholar
17.
Ketheesan, B. & Stuckey, D. C. Effects of hydraulic/organic shock/transient loads in anaerobic wastewater treatment: a review. Crit. Rev. Environ. Sci. Technol. 45, 2693–2727 (2015).
CAS Article Google Scholar
18.
Senturk, E., Ince, M. & Onkal Engin, G. The effect of shock loading on the performance of a thermophilic anaerobic contact reactor at constant organic loading rate. J. Environ. Health Sci. Eng. 12, 1–6 (2014).
Article CAS Google Scholar
19.
Gray, N. F. Biology of Wastewater Treatment 2nd edn, Vol. 4 (Imperial College Press, London, 2004).
Google Scholar
20.
Laureni, M. et al. Mainstream partial nitritation and anammox: long-term process stability and effluent quality at low temperatures. Water Res. 101, 628–639 (2016).
CAS PubMed PubMed Central Article Google Scholar
21.
Wang, Q. & He, J. Newly designed high-coverage degenerate primers for nitrogen removal mechanism analysis in a partial nitrification-anammox (PN/A) process. FEMS Microbiol. Ecol. 96, fiz202 (2019).
Article Google Scholar
22.
Ma, B. et al. Suppressing nitrite-oxidizing bacteria growth to achieve nitrogen removal from domestic wastewater via anammox using intermittent aeration with low dissolved oxygen. Sci. Rep. 5, 1–9 (2015).
Google Scholar
23.
Sinha, B. & Annachhatre, A. P. Partial nitrification—operational parameters and microorganisms involved. Rev. Environ. Sci. Bio. Technol. 6, 285–313 (2007).
CAS Article Google Scholar
24.
Okabe, S., Oozawa, Y., Hirata, K. & Watanabe, Y. Relationship between population dynamics of nitrifiers in biofilms and reactor performance at various C:N ratios. Water Res. 30, 1563–1572 (1996).
CAS Article Google Scholar
25.
Ge, S. et al. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: a review. Chemosphere 140, 85–98 (2015).
ADS CAS PubMed Article PubMed Central Google Scholar
26.
Ma, J. et al. Analysis of nitrification efficiency and microbial community in a membrane bioreactor fed with low COD/N-ratio wastewater. PLoS ONE 8, 1–10 (2013).
Article Google Scholar
27.
Tan, C., Ma, F. & Qiu, S. Impact of carbon to nitrogen ratio on nitrogen removal at a low oxygen concentration in a sequencing batch biofilm reactor. Water Sci. Technol. 67, 612–618 (2012).
Article CAS Google Scholar
28.
Zhang, T. et al. Achieving partial nitrification in a continuous post-denitrification reactor treating low C/N sewage. Chem. Eng. J. 335, 330–337 (2018).
CAS Article Google Scholar
29.
She, Z. et al. Partial nitrification and denitrification in a sequencing batch reactor treating high-salinity wastewater. Chem. Eng. J. 288, 207–215 (2016).
CAS Article Google Scholar
30.
Regmi, P. et al. Control of aeration, aerobic SRT and COD input for mainstream nitritation/denitritation. Water Res. 57, 162–171 (2014).
CAS PubMed Article PubMed Central Google Scholar
31.
Ge, S., Peng, Y., Qiu, S., Zhu, A. & Ren, N. Complete nitrogen removal from municipal wastewater via partial nitrification by appropriately alternating anoxic/aerobic conditions in a continuous plug-flow step feed process. Water Res. 55, 95–105 (2014).
CAS PubMed Article PubMed Central Google Scholar
32.
Jiang, H. et al. A pilot-scale study on start-up and stable operation of mainstream partial nitrification-anammox biofilter process based on online pH-DO linkage control. Chem. Eng. J. 350, 1035–1042 (2018).
CAS Article Google Scholar
33.
Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321 (1984).
ADS Article Google Scholar
34.
Santillan, E., Constancias, F. & Wuertz, S. Press disturbance alters community structure and assembly mechanisms of bacterial taxa and functional genes in mesocosm-scale bioreactors. mSystems 5, e00471–e00420 (2020).
PubMed PubMed Central Article Google Scholar
35.
Nowka, B., Daims, H. & Spieck, E. Comparison of oxidation kinetics of nitrite-oxidizing bacteria: nitrite availability as a key factor in niche differentiation. Appl. Environ. Microbiol. 81, 745–753 (2015).
PubMed PubMed Central Article CAS Google Scholar
36.
Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).
PubMed PubMed Central Article Google Scholar
37.
Okabe, S., Aoi, Y., Satoh, H. & Suwa, Y. Nitrification. In Nitrification in Wastewater Treatment (eds Ward, B. B. et al.) 405–418 (ASM Press, Washington, DC, 2011).
Google Scholar
38.
Blackburne, R., Yuan, Z. & Keller, J. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. Biodegradation 19, 303–312 (2008).
CAS PubMed Article PubMed Central Google Scholar
39.
Garrido, J. M., van Benthum, W. A. J., van Loosdrecht, M. C. M. & Heijnen, J. J. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnol. Bioeng. 53, 168–178 (1997).
CAS PubMed Article PubMed Central Google Scholar
40.
Almstrand, R., Daims, H., Persson, F., Sörensson, F. & Hermansson, M. New methods for analysis of spatial distribution and coaggregation of microbial populations in complex biofilms. Appl. Environ. Microbiol. 79, 5978–5987 (2013).
CAS PubMed PubMed Central Article Google Scholar
41.
Law, Y. et al. High dissolved oxygen selection against nitrospira sublineage I in full-scale activated sludge. Environ. Sci. Technol. 53, 8157–8166 (2019).
ADS CAS PubMed Article Google Scholar
42.
Gonzalez, C., Garcia, P. A. & Munoz, R. Effect of feed characteristics on the organic matter, nitrogen and phosphorus removal in an activated sludge system treating piggery slurry. Water Sci. Technol. 60, 2145–2152 (2009).
CAS PubMed Article Google Scholar
43.
Lydmark, P., Lind, M., Sörensson, F. & Hermansson, M. Vertical distribution of nitrifying populations in bacterial biofilms from a full-scale nitrifying trickling filter. Environ. Microbiol. 8, 2036–2049 (2006).
CAS PubMed Article Google Scholar
44.
Okabe, S., Satoh, H. & Watanabe, Y. In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbiol. 65, 3182–3191 (1999).
CAS PubMed PubMed Central Article Google Scholar
45.
Anthonisen, A., Loehr, R., Prakasam, T. & Srinath, E. Inhibition of nitrification by ammonia and nitrous acid. Journal (Water Pollut. Control Fed.), 835–852 (1976).
46.
Lackner, S. et al. Full-scale partial nitritation/anammox experiences: an application survey. Water Res. 55, 292–303 (2014).
CAS PubMed Article Google Scholar
47.
Wu, J., He, C., van Loosdrecht, M. C. M. & Pérez, J. Selection of ammonium oxidizing bacteria (AOB) over nitrite oxidizing bacteria (NOB) based on conversion rates. Chem. Eng. J. 304, 953–961 (2016).
CAS Article Google Scholar
48.
Tchobanoglous, G. B., Franklin, L. & Stensel, H. D. Wastewater engineering: treatment and reuse 4th edn. (McGraw Hill, New York, 2003).
Google Scholar
49.
Smith, R. C., Elger, S. O. & Mleziva, S. Implementation of solids retention time (SRT) control in wastewater treatment. Xylem Anal. 20, 1–6 (2015).
Google Scholar
50.
Simsek, H., Kasi, M., Ohm, J.-B., Murthy, S. & Khan, E. Impact of solids retention time on dissolved organic nitrogen and its biodegradability in treated wastewater. Water Res. 92, 44–51 (2016).
CAS PubMed Article PubMed Central Google Scholar
51.
Wu, Y.-J. et al. Impact of food to microorganism (F/M) ratio and colloidal chemical oxygen demand on nitrification performance of a full-scale membrane bioreactor treating thin film transistor liquid crystal display wastewater. Bioresour. Technol. 141, 35–40 (2013).
CAS PubMed Article PubMed Central Google Scholar
52.
Meerburg, F. A. et al. High-rate activated sludge communities have a distinctly different structure compared to low-rate sludge communities, and are less sensitive towards environmental and operational variables. Water Res. 100, 137–145 (2016).
CAS PubMed Article PubMed Central Google Scholar
53.
Vuono, D. C. et al. Disturbance and temporal partitioning of the activated sludge metacommunity. ISME J. 9, 425–435 (2015).
CAS PubMed Article PubMed Central Google Scholar
54.
Ballinger, S. J., Head, I. M., Curtis, T. P. & Godley, A. R. The effect of C/N ratio on ammonia oxidising bacteria community structure in a laboratory nitrification-denitrification reactor. Water Sci. Technol. 46, 543–550 (2002).
CAS PubMed Article PubMed Central Google Scholar
55.
Cabrol, L. et al. Management of microbial communities through transient disturbances enhances the functional resilience of nitrifying gas-biofilters to future disturbances. Environ. Sci. Technol. 50, 338–348 (2016).
ADS CAS PubMed Article PubMed Central Google Scholar
56.
Wells, G. F. et al. Comparing the resistance, resilience, and stability of replicate moving bed biofilm and suspended growth combined nitritation–anammox reactors. Environ. Sci. Technol. 51, 5108–5117 (2017).
ADS CAS PubMed Article Google Scholar
57.
Pianka, E. R. R-selection and K-selection. Am. Nat. 104, 592–579 (1970).
Article Google Scholar
58.
Santillan, E., Seshan, H., Constancias, F. & Wuertz, S. Trait-based life-history strategies explain succession scenario for complex bacterial communities under varying disturbance. Environ. Microbiol. 21, 3751–3764 (2019).
CAS PubMed Article Google Scholar
59.
Macarthur, R. H. & Wilson, E. O. The Theory of Island Biogeography 224 (Princeton, Princeton University Press, 1967).
Google Scholar
60.
Blackburne, R., Vadivelu, V. M., Yuan, Z. & Keller, J. Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter. Water Res. 41, 3033–3042 (2007).
CAS PubMed Article PubMed Central Google Scholar
61.
Dytczak, M. A., Londry, K. L. & Oleszkiewicz, J. A. Activated sludge operational regime has significant impact on the type of nitrifying community and its nitrification rates. Water Res. 42, 2320–2328 (2008).
CAS PubMed Article PubMed Central Google Scholar
62.
Huang, Z., Gedalanga, P. B., Asvapathanagul, P. & Olson, B. H. Influence of physicochemical and operational parameters on Nitrobacter and Nitrospira communities in an aerobic activated sludge bioreactor. Water Res. 44, 4351–4358 (2010).
CAS PubMed Article PubMed Central Google Scholar
63.
Vuono, D. C., Munakata-Marr, J., Spear, J. R. & Drewes, J. E. Disturbance opens recruitment sites for bacterial colonization in activated sludge. Environ. Microbiol. 18, 87–99 (2016).
CAS PubMed Article PubMed Central Google Scholar
64.
Jauffur, S., Isazadeh, S. & Frigon, D. Should activated sludge models consider influent seeding of nitrifiers? Field characterization of nitrifying bacteria. Water Sci. Technol. 70, 1526–1532 (2014).
CAS PubMed Article PubMed Central Google Scholar
65.
Yu, L. et al. Natural continuous influent nitrifier immigration effects on nitrification and the microbial community of activated sludge systems. J. Environ. Sci. 74, 159–167 (2018).
Article Google Scholar
66.
Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 105, 11512–11519 (2008).
ADS CAS PubMed Article PubMed Central Google Scholar
67.
Shade, A. et al. Lake microbial communities are resilient after a whole-ecosystem disturbance. ISME J. 6, 2153–2167 (2012).
CAS PubMed PubMed Central Article Google Scholar
68.
Santillan, E. Disturbance-Performance-Diversity Relationships and Microbial Ecology in Bioreactors for Wastewater Treatment. Ph.D. thesis, University of California, Davis (2018).
69.
Hesselmann, R. P. X., Werlen, C., Hahn, D., van der Meer, J. R. & Zehnder, A. J. B. Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst. Appl. Microbiol. 22, 454–465 (1999).
CAS PubMed Article PubMed Central Google Scholar
70.
APHA-AWWA-WEF. Standard Methods for the Examination of Water and Wastewater 22nd edn. (AWWA, Mumbai, 2005).
Google Scholar
71.
Thijs, S. et al. Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys. Front. Microbiol. 8, 1–15 (2017).
Article Google Scholar
72.
Callahan, B. J. et al. DADA2: High resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
CAS PubMed PubMed Central Article Google Scholar
73.
Glöckner, F. O. et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J. Biotechnol. 261, 169–176 (2017).
PubMed Article CAS PubMed Central Google Scholar
74.
Chen, C., Khaleel, S. S., Huang, H. & Wu, C. H. Software for pre-processing Illumina next-generation sequencing short read sequences. Sour. Code Biol. Med. 9, 8–8 (2014).
Article Google Scholar
75.
Ilott, N. E. et al. Defining the microbial transcriptional response to colitis through integrated host and microbiome profiling. ISME J. 10, 2389–2404 (2016).
CAS PubMed PubMed Central Article Google Scholar
76.
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
CAS PubMed Article PubMed Central Google Scholar
77.
Huson, D. H. et al. MEGAN community edition: interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comp. Biol. 12, 1–12 (2016).
Article CAS Google Scholar
78.
Tamames, J. & Puente-Sánchez, F. SqueezeMeta, a highly portable, fully automatic metagenomic analysis pipeline. Front. Microbiol. 9 (2019).
79.
Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).
CAS PubMed Article PubMed Central Google Scholar
80.
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).
Article CAS Google Scholar
81.
Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).
CAS PubMed Article Google Scholar
82.
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
CAS PubMed PubMed Central Article Google Scholar
83.
Puente-Sánchez, F., García-García, N. & Tamames, J. SQMtools: automated processing and visual analysis of ’omics data with R and anvi’o. BMC Bioinform. 21, 358 (2020).
Article Google Scholar
84.
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Ser. B. (Method.) 57, 289–300 (1995).
MathSciNet MATH Google Scholar More
