Seasonal variation in sex-specific immunity in wild birds
1.
Abbas, A., Lichtman, A. H. & Pillai, S. Basic Immunology: Functions and Disorders of the Immune System 5th edn. (Elsevier, Amsterdam, 2015).
Google Scholar
2.
Møller, A. P. & Saino, N. Immune response and survival. Oikos 104, 299–304. https://doi.org/10.1111/j.0030-1299.2004.12844.x (2004).
Article Google Scholar
3.
Hegemann, A., Matson, K. D., Flinks, H. & Tieleman, I. B. Offspring pay sooner, parents pay later: experimental manipulation of body mass reveals trade-offs between immune function, reproduction and survival. Front. Zool. 10, 77. https://doi.org/10.1186/1742-9994-10-77 (2013).
Article PubMed PubMed Central Google Scholar
4.
Nystrand, M. & Dowling, D. K. Effects of immune challenge on expression of life-history and immune trait expression in sexually reproducing metazoans: a meta-analysis. BMC Biol. 18, 135. https://doi.org/10.1186/s12915-020-00856-7 (2020).
CAS Article PubMed PubMed Central Google Scholar
5.
Furman, D. et al. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. PNAS 111, 869–874. https://doi.org/10.1073/pnas.1321060111 (2014).
ADS CAS Article PubMed Google Scholar
6.
Klein, S. & Flanagan, K. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638. https://doi.org/10.1038/nri.2016.90 (2016).
CAS Article PubMed Google Scholar
7.
Roberts, M. L., Buchanan, K. L. & Evans, M. R. Testing the immunocompetence handicap hypothesis: a review of the evidence. Anim. Behav. 68, 227–239. https://doi.org/10.1016/j.anbehav.2004.05.001 (2004).
Article Google Scholar
8.
Foo, Y. Z. et al. The effects of sex hormones on immune function: a meta-analysis. Biol. Rev. 92, 551–571. https://doi.org/10.1111/brv.12243 (2017).
Article PubMed Google Scholar
9.
Kelly, C. D. et al. Sexual dimorphism in immunity across animals: a meta-analysis. Ecol. Lett. 21, 1885–1894. https://doi.org/10.1111/ele.13164 (2018).
Article PubMed Google Scholar
10.
Tella, J. L., Scheuerlein, A. & Ricklefs, R. E. Is cell-mediated immunity related to the evolution of life-history strategies in birds?. Proc. R. Soc. B. 269, 1059–1066. https://doi.org/10.1098/rspb.2001.1951 (2002).
Article PubMed Google Scholar
11.
Korver, D. R. Implications of changing immune function through nutrition in poultry. Anim. Feed. Sci. Technol. 173, 54–64. https://doi.org/10.1016/j.anifeedsci.2011.12.019 (2012).
CAS Article Google Scholar
12.
Demina, I. et al. Time-keeping programme can explain seasonal dynamics of leukocyte profile in a migrant bird. J. Avian Biol. 50, e02117. https://doi.org/10.1111/jav.02117 (2019).
Article Google Scholar
13.
Martin, L. B. et al. Immune activity in temperate and tropical house sparrows: a common-garden experiment. Ecology 85, 2323–2331. https://doi.org/10.1890/03-0365 (2004).
Article Google Scholar
14.
Hõrak, P. et al. Health and reproduction: the sex-specific clinical profile of great tits (Parus major) in relation to breeding. Can. J. Zool. 76, 2235–2244. https://doi.org/10.1139/cjz-76-12-2235 (1998).
Article Google Scholar
15.
Merrill, L. et al. Immune function in an avian brood parasite and its nonparasitic relative. Physiol. Biochem. Zool. 86, 61–72. https://doi.org/10.1086/668852 (2013).
CAS Article PubMed Google Scholar
16.
Hasselquist, D. & Nilsson, J.-A. Physiological mechanisms mediating costs of immune responses: what can we learn from studies of birds?. Anim. Behav. 83, 1303–1312. https://doi.org/10.1016/j.anbehav.2012.03.025 (2012).
Article Google Scholar
17.
Marais, M., Maloney, S. K. & Gray, D. A. The metabolic cost of fever in Pekin ducks. J. Therm. Biol. 36, 116–120. https://doi.org/10.1016/j.jtherbio.2010.12.004 (2011).
Article Google Scholar
18.
Nilsson, J., Granbom, M. & Råberg, L. Does the strength of an immune response reflect its energetic cost?. J. Avian. Biol. 38, 488–494. https://doi.org/10.1111/j.0908-8857.2007.03919.x (2007).
Article Google Scholar
19.
Bryant, D. M. & Westerterp, K. R. The energy budget of the House martin (Delichon urbica). Ardea 55, 91–102. https://doi.org/10.5253/arde.v68.p91 (1980).
Article Google Scholar
20.
Maxson, S. J. & Oring, L. W. Breeding season time and energy budgets of the polyandrous spotted sandpiper. Behaviour 74, 200–263. https://doi.org/10.1163/156853980X00474 (1980).
Article Google Scholar
21.
Brunton, D. H. Energy expenditure in reproductive effort of male and female Killdeer (Charadrius vociferus). Auk 105, 553–564. https://doi.org/10.1093/auk/105.3.553 (1988).
Article Google Scholar
22.
Merrill, L. et al. Sex-specific variation in Brown-headed cowbird immunity following acute stress: a mechanistic approach. Oecologia 170, 25–38. https://doi.org/10.1007/s00442-012-2281-4 (2012).
ADS Article PubMed Google Scholar
23.
Romero, L. M. Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen. Comp. Endocrinol. 128, 1–24. https://doi.org/10.1016/S0016-6480(02)00064-3 (2002).
CAS Article PubMed Google Scholar
24.
Matson, K. D., Tieleman, B. I. & Klasing, K. C. Capture stress and the bactericidal competence of blood and plasma in five species of tropical birds. Physiol. Biochem. Zool. 79, 556–564. https://doi.org/10.1086/501057 (2006).
Article PubMed Google Scholar
25.
Cyr, N. E., Earle, K., Tam, C. & Romero, L. M. The effect of chronic psychological stress on corticosterone, plasma metabolites, and immune responsiveness in European starlings. Gen. Comp. Endocrinol. 154, 59–66. https://doi.org/10.1016/j.ygcen.2007.06.016 (2007).
CAS Article PubMed Google Scholar
26.
Gao, S., Sanchez, C. & Deviche, P. J. Corticosterone rapidly suppresses innate immune activity in the House sparrow (Passer domesticus). J. Exp. Biol. 220, 322–327. https://doi.org/10.1242/jeb.144378 (2017).
Article PubMed Google Scholar
27.
Palacios, M. J. et al. Cellular and humoral immunity in two highly demanding energetic life stages: reproduction and moulting in the Chinstrap Penguin. J. Ornithol. 159, 283–290. https://doi.org/10.1007/s10336-017-1499-7 (2018).
Article Google Scholar
28.
Martin, L. B. et al. Captivity induces hyper-inflammation in the house sparrow (Passer domesticus). J. Exp. Biol. 214, 2579–2585. https://doi.org/10.1242/jeb.057216 (2011).
CAS Article PubMed Google Scholar
29.
Jakubas, D., Wojczulanis-Jakubas, K. & Kosmicka, A. Factors affecting leucocyte profiles in the Little auk, a small Arctic seabird. J. Ornithol. 156, 101–111. https://doi.org/10.1007/s10336-014-1101-5 (2015).
Article Google Scholar
30.
Lee, K. A. Linking immune defenses and life history at the levels of the individual and the species. Integr. Comp. Biol. 46, 1000–1015. https://doi.org/10.1093/icb/icl049 (2006).
CAS Article PubMed Google Scholar
31.
Nordling, D. et al. Reproductive effort reduces specific immune response and parasite resistance. Proc. Biol. Sci. 265, 1291–1298. https://doi.org/10.1098/rspb.1998.0432 (1998).
Article PubMed Central Google Scholar
32.
Merrill, L. et al. A blurring of life-history lines: immune function, molt and reproduction in a highly stable environment. Gen. Comp. Endocrinol. 213, 65–73. https://doi.org/10.1016/j.ygcen.2015.02.010 (2015).
CAS Article PubMed Google Scholar
33.
Moher, D. et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097. https://doi.org/10.1136/bmj.b2535 (2009).
Article PubMed PubMed Central Google Scholar
34.
Davison, F., Kaspers, B. & Schat, K. A. Avian Immunology (Elsevier, Amsterdam, 2008).
Google Scholar
35.
Davis, A. K., Maney, D. L. & Maerz, J. C. The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct. Ecol. 22, 760–772. https://doi.org/10.1111/j.1365-2435.2008.01467.x (2008).
Article Google Scholar
36.
Dein, F. J. Hematology. In Clinical Avian Medicine and Surgery (eds Harrison, B. G. & Harrison, L. R.) 174–191 (WB Sander, Philadelphia, 1986).
Google Scholar
37.
Ots, I., Murumägi, A. & Hõrak, P. Haematological health state indices of reproducing Great tits: methodology and sources of natural variation. Funct. Ecol. 12, 700–707. https://doi.org/10.1046/j.1365-2435.1998.00219.x (1998).
Article Google Scholar
38.
Hõrak, P. et al. Immune function and survival of great tit nestlings in relation to growth conditions. Oecologia 121, 316–322. https://doi.org/10.1007/s004420050934 (1999).
ADS Article PubMed Google Scholar
39.
Ots, I. & Hõrak, P. Health impact of blood parasites in breeding great tits. Oecologia 166, 441–448. https://doi.org/10.1007/s004420050608 (1998).
ADS Article Google Scholar
40.
Skwarska, J. Variation of heterophil-to-lymphocyte ratio in the Great Tit Parus major: a review. Acta Ornithol. 53, 103–114. https://doi.org/10.3161/00016454AO2018.53.2.001 (2019).
Article Google Scholar
41.
Davis, A. K. Effects of handling time and repeated sampling on avian white blood cell counts. J. Field Ornithol. 76, 334–338. https://doi.org/10.1648/0273-8570-76.4.334 (2005).
Article Google Scholar
42.
Martin, L. B. et al. Phytohemagglutinin-induced skin swelling in birds: histological support for a classic immunoecological technique. Funct. Ecol. 20, 290–299. https://doi.org/10.1111/j.1365-2435.2006.01094.x (2006).
Article Google Scholar
43.
French, S. S. & Neuman-Lee, L. A. Improved ex vivo method for microbiocidal activity across vertebrate species. Biol. Open. 1, 482–487. https://doi.org/10.1242/bio.2012919 (2012).
Article PubMed PubMed Central Google Scholar
44.
Matson, K. D., Ricklefs, R. E. & Klasing, K. C. A hemolysis-hemagglutination assay for characterizing constitutive innate humoral immunity in wild and domestic birds. Dev. Comp. Immunol. 29, 275–286. https://doi.org/10.1016/j.dci.2004.07.006 (2005).
CAS Article PubMed Google Scholar
45.
Higgins, J. P. T. & Deeks, J. J. Selecting studies and collecting data. In Cochrane Handbook for Systematic Reviews of Interventions (eds Higgins, J. P. T. & Green, S.) 151–185 (Wiley, New York, 2008).
Google Scholar
46.
Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48. https://doi.org/10.18637/jss.v036.i03 (2010).
Article Google Scholar
47.
Hedges, L. Distribution theory for Glass’s estimator of effect size and related estimators. J. Educ. Behav. Stat. 6, 107–128. https://doi.org/10.3102/10769986006002107 (1981).
Article Google Scholar
48.
Rosenberg, M. S., Rothstein, H. & Gurevitch, J. Effect sizes: conventional choices and calculations. In Handbook of Meta-Analysis in Ecology and Evolution (eds Koricheva, J. et al.) 61–71 (Princeton University Press, Princeton, 2013).
Google Scholar
49.
Jetz, W. et al. The global diversity of birds in space and time. Nature 491, 444–448. https://doi.org/10.1038/nature11631 (2012).
ADS CAS Article PubMed Google Scholar
50.
Holder, M. T., Sukumaran, J. & Lewis, P. O. A justification for reporting the majority-rule consensus tree in Bayesian phylogenetics. Syst. Biol. 57, 814–821. https://doi.org/10.1080/10635150802422308 (2008).
Article PubMed Google Scholar
51.
Sukumaran, J. & Holder, M. T. DendroPy: a Python library for phylogenetic computing. Bioinformatics 26, 1569–1571. https://doi.org/10.1093/bioinformatics/btq228 (2010).
CAS Article PubMed Google Scholar
52.
Rubolini, D., Liker, A., Garamszegi, L. Z., Møller, A. P. & Saino, N. Using the BirdTree.org website to obtain robust phylogenies for avian comparative studies: a primer. Curr. Zool. 61, 959–965. https://doi.org/10.1093/czoolo/61.6.959 (2015).
Article PubMed PubMed Central Google Scholar
53.
Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290. https://doi.org/10.1093/bioinformatics/btg412 (2004).
CAS Article PubMed Google Scholar
54.
Koricheva, J., Gurevitch, J. & Mengersen, K. Handbook of Meta-Analysis in Ecology and Evolution (Princeton University Press, Princeton, 2013).
Google Scholar
55.
Egger, M., Smith, G. D. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634. https://doi.org/10.1136/bmj.315.7109.629 (1997).
CAS Article PubMed PubMed Central Google Scholar
56.
Sterne, J. A. & Egger, M. Regression methods to detect publication and other bias in meta-analysis. In Publication Bias in Meta-Analysis: Prevention, Assessment, and Adjustments (eds Rothstein, H. R. et al.) 99–110 (Wiley, New York, 2005).
Google Scholar
57.
Viechtbauer, W. & Cheung, M.W.-L. Outlier and influence diagnostics for meta-analysis. Res. Synth. Methods 1, 112–125. https://doi.org/10.1002/jrsm.11 (2010).
Article PubMed Google Scholar
58.
Habeck, C. W. & Schultz, A. K. Community-level impacts of White-tailed deer on understorey plants in North American forests: a meta-analysis. AoB Plants 7, 119. https://doi.org/10.1093/aobpla/plv119 (2015).
Article Google Scholar
59.
Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. Introduction to Meta-Analysis (Wiley, New York, 2009).
Google Scholar
60.
Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R Package. J. Stat. Softw. 33, 1–22. https://doi.org/10.18637/jss.v033.i02 (2010).
Article Google Scholar
61.
Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).
Article Google Scholar
62.
Plummer, M. et al. CODA: convergence diagnosis and output analysis for MCMC. R News 6, 7–11 (2006).
Google Scholar
63.
Higgins, J. P. T. et al. Measuring inconsistency in meta-analysis. BMJ 327, 557–560. https://doi.org/10.1136/bmj.327.7414.557 (2003).
Article PubMed PubMed Central Google Scholar
64.
Clark, P., Boardman, W. S. J. & Raidal, S. R. Atlas of Clinical Avian Hematology (Wiley, New York, 2009).
Google Scholar
65.
Dehnhard, N. & Hennicke, J. C. Leucocyte profiles and body condition in breeding Brown boobies and Red-tailed tropicbirds: effects of breeding stage and sex. Aust. J. Zool. 61, 178–185. https://doi.org/10.1071/ZO12123 (2013).
Article Google Scholar
66.
Gallo, L. et al. Hematology, plasma biochemistry, and trace element reference values for free-ranging adult Magellanic penguins (Spheniscus magellanicus). Polar Biol. 42, 733. https://doi.org/10.1007/s00300-019-02467-7 (2019).
Article Google Scholar
67.
Garcia-Morales, C. et al. Cell-autonomous sex differences in gene expression in chicken bone marrow-derived macrophages. J. Immunol. 194, 2338–2344. https://doi.org/10.4049/jimmunol.1401982 (2015).
CAS Article PubMed PubMed Central Google Scholar
68.
Vehrencamp, S. L., Bradbury, J. W. & Gibson, R. M. The energetic cost of display in male sage grouse. Anim. Behav. 38, 885–896. https://doi.org/10.1016/S0003-3472(89)80120-4 (1989).
Article Google Scholar
69.
Hambly, C., Markman, S., Roxburgh, L. & Pinshow, B. Seasonal sex-specific energy expenditure in breeding and non-breeding Palestine sunbirds Nectarinia osea. J. Avian Biol. 38, 190–197. https://doi.org/10.1111/j.2007.0908-8857.03774.x (2007).
Article Google Scholar
70.
Fokidis, H. B. et al. Unpredictable food availability induces metabolic and hormonal changes independent of food intake in a sedentary songbird. J. Exp. Biol. 215, 2920–2930. https://doi.org/10.1242/jeb.071043 (2012).
Article PubMed Google Scholar
71.
Johnstone, C. P., Reina, R. D. & Lill, A. Interpreting indices of physiological stress in free-living vertebrates. J. Comp. Physiol. B 182, 861–879. https://doi.org/10.1007/s00360-012-0656-9 (2012).
Article PubMed Google Scholar
72.
Müller, C., Jenni-Eiermann, S. & Jenni, L. Heterophils/Lymphocytes-ratio and circulating corticosterone do not indicate the same stress imposed on Eurasian kestrel nestlings. Funct. Ecol. 25, 566–576. https://doi.org/10.1111/j.1365-2435.2010.01816.x (2011).
Article Google Scholar
73.
Oberkircher, M. C. & Smith Pagano, S. Seasonal variation in chronic stress and energetic condition in Gray Catbirds (Dumetella carolinensis) and Song Sparrows (Melospiza melodia). Auk 135, 83–90. https://doi.org/10.1642/AUK-17-79.1 (2018).
Article Google Scholar
74.
Roberts, M. L. et al. The effects of testosterone on immune function in quail selected for divergent plasma corticosterone response. J. Exp. Biol. 212, 3125–3131. https://doi.org/10.1242/jeb.030726 (2009).
Article PubMed Google Scholar
75.
Li, D. et al. Changes in phytohaemagglutinin skin-swelling responses during the breeding season in a multi-brooded species, the Eurasian tree parrow: do males with higher testosterone levels show stronger immune responses?. J. Ornithol. 156, 133–141. https://doi.org/10.1007/s10336-014-1104-2 (2015).
Article Google Scholar
76.
Duffy, D. L. et al. Effects of testosterone on cell-mediated and humoral immunity in non-breeding adult European starlings. Behav. Ecol. 11, 654–662. https://doi.org/10.1093/beheco/11.6.654 (2000).
Article Google Scholar
77.
Boyd, R. J., Kelly, T. R., MacDougall-Shackleton, S. A. & MacDougall-Shackleton, E. A. Alternative reproductive strategies in white-throated sparrows are associated with differences in parasite load following experimental infection. Biol. Lett. 14, 20180194. https://doi.org/10.1098/rsbl.2018.0194 (2018).
CAS Article PubMed PubMed Central Google Scholar
78.
Folstad, I. & Karter, A. J. Parasites, bright males, and the immunocompetence handicap. Am. Nat. 139, 603–622. https://doi.org/10.1086/285346 (1992).
Article Google Scholar
79.
Bourgeon, S. et al. Relationships between metabolic status, corticosterone secretion and maintenance of innate and adaptive humoral immunities in fasted re-fed Mallards. J. Exp. Biol. 213, 3810–3818. https://doi.org/10.1242/jeb.045484 (2010).
CAS Article PubMed Google Scholar
80.
Cabrera-Martínez, L. V., Herrera, M. L. & Cruz-Neto, A. P. The energetic cost of mounting an immune response for Pallas’s long-tongued bat (Glossophaga soricina). PeerJ 6, e4627. https://doi.org/10.7717/peerj.4627 (2018).
CAS Article PubMed PubMed Central Google Scholar
81.
Sheldon, B. C. & Verhulst, S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 11, 317–321. https://doi.org/10.1016/0169-5347(96)10039-2 (1996).
CAS Article PubMed Google Scholar
82.
Hanssen, S. A., Hasselquist, D., Folstad, I. & Erikstad, K. E. Cost of reproduction in a long-lived bird: incubation effort reduces immune function and future reproduction. Proc. R. Soc. B 272, 1039–1046. https://doi.org/10.1098/rspb.2005.3057 (2005).
Article PubMed Google Scholar
83.
Miller, M. R., White, A. & Boots, M. The evolution of parasites in response to tolerance in their hosts: the good, the bad, and apparent commensalism. Evolution 60, 945–956. https://doi.org/10.1111/j.0014-3820.2006.tb01173.x (2006).
Article PubMed Google Scholar
84.
Medzhitov, R., Schneider, D. S. & Soares, M. P. Disease tolerance as a defense strategy. Science 335, 936–941. https://doi.org/10.1126/science.1214935 (2012).
ADS CAS Article PubMed PubMed Central Google Scholar
85.
Santiago-Quesada, F. et al. Secondary phytohaemagglutinin (PHA) swelling response is a good indicator of T-cell-mediated immunity in free-living birds. IBIS 157, 767–773. https://doi.org/10.1111/ibi.12295 (2015).
Article Google Scholar
86.
Moreno, J., de León, A., Fargallo, J. A. & Moreno, E. Breeding time, health and immune response in the chinstrap penguin Pygoscelis antarctica. Oecologia 115, 312–319. https://doi.org/10.1007/s004420050522 (1998).
ADS CAS Article PubMed Google Scholar
87.
Zhao, Y. et al. Life-history dependent relationships between body condition and immunity, between immunity indices in male Eurasian tree sparrows. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 210, 7–13. https://doi.org/10.1016/j.cbpa.2017.05.004 (2017).
CAS Article PubMed Google Scholar
88.
Zuk, M. & Johnsen, T. S. Seasonal changes in the relationship between ornamentation and immune response in red jungle fowl. Proc. R. Soc. Lond. B. 265, 1631–1635. https://doi.org/10.1098/rspb.1998.0481 (1998).
Article Google Scholar
89.
Hasselquist, D. Comparative immunoecology in birds: hypotheses and tests. J. Ornithol. 148, 571–582. https://doi.org/10.1007/s10336-007-0201-x (2007).
Article Google Scholar More
