More stories

  • in

    Predation impacts of invasive raccoons on rare native species

    Study area
    We conducted our study at Nopporo Forest Park in Hokkaido, Japan (43° 03′ N, 141° 32′ E) (Fig. 1). This forest is a semi-isolated 2,053 ha area surrounded by residential areas and farmland. There have been concerns about raccoon impacts on this ecosystem since they were first detected in 199234.
    Animals
    We captured raccoons using box traps (Havahart Large Collapsible Pro Cage Model 1089, Woodstream Corp., Lititz, PA, USA) from May to July in 2018 and April to August in 2019. Traps were placed at 86 sites (Fig. 1). Trapping points within 250 m of the forest boundary line facing the farmland were defined as ‘around the farmland’ (31 points), and other points were defined as ‘in the forest’ (55 points) using QGIS version 3.1023. Captured raccoons were anesthetised with butorphanol tartrate (Vetorphale 5 mg, 1.2 mg/kg; Meiji Seika, Tokyo, Japan), medetomidine hydrochloride (Dolbene, 40 µg/kg; Kyoritsu, Tokyo, Japan), and midazolam (Dormicum injection 10 mg, 0.2 mg/kg; Astellas, Tokyo, Japan) by intramuscular injection and euthanised by potassium chloride injection into the heart. We captured 48 raccoons (34 around the farmland, 14 in the forest) in 2018, and 27 (12 around the farmland, 15 in the forest) in 2019 (Fig. 1). We collected thigh muscle samples, rectal faeces, and gastric contents from captured raccoons. Samples were stored at − 20 °C until analysis.
    DNA metabarcoding
    Sample preparation
    Rectal faeces and gastric contents that were dominated by plant materials and groomed hair were excluded from analyses. In total, 18 rectal faeces and six gastric content samples that contained animal materials or whose contents were unknown were selected. Rapidly digested food resources such as amphibians cannot be confirmed visually in gastrointestinal contents, and even DNA may not be detected. Therefore, multiple samples were pooled and analysed because the target DNA may not be detected otherwise. The rectal faeces and gastric contents were divided into five (S1–S5) and two groups (G1–G2), respectively, based on the capture site and date of raccoons (Table 1). Each group was mixed and stored at − 20 °C until DNA extraction. Subsequent DNA analyses were performed at Bioengineering Lab. Co., Ltd. (Kanagawa, Japan).
    DNA extraction
    Samples (about 100 mg each) were lyophilised using a VD-250R lyophiliser freeze dryer (TAITEC, Saitama, Japan) and ground using a ShakeMaster NEO homogeniser (Bio Medical Science, Tokyo, Japan). Crude DNA was extracted from each group; then, DNA was purified using the MPure-12 Automated Nucleic Acid Purification System (MP Biomedicals, California, USA) with a MPure Bacterial DNA Extraction Kit (MP Biomedicals).
    Library preparation and sequencing
    Each library was prepared using two-step tailed PCR. We used the gSalamander primer, which amplifies salamander and newt 12S rRNA, as a specific primer to detect Hokkaido salamander, and the gInsect primer, which amplifies arthropod 16S rRNA, to detect Japanese crayfish (Table 5). All primers were designed by Bioengineering Lab. Co., Ltd.
    Table 5 Primer sets used in this study.
    Full size table

    The first PCR amplified the target region using gSalamander and gInsect. These reactions were conducted in a final volume of 10 μl, comprising 2 μl DNA template, 0.5 μl each primer (10 μM), 0.1 μl Ex Taq HS (5 U/µl) (Takara Bio Inc., Shiga, Japan), 1.0 μl 10 × Ex Taq buffer, 0.8 μl dNTP mixture (2.5 mM), and 5.1 μl sterile distilled water. The PCR conditions were: first denaturation for 2 min at 94 °C, followed by 35 cycles of 30 s at 94 °C, 30 s at 50 °C, and 30 s at 72 °C, and final extension for 5 min at 72 °C.
    The second PCR used the first PCR products as the template with index primers (2ndF and 2ndR). These reactions were conducted in a final volume of 10 μl, as described for the first PCR. The PCR conditions were: first denaturation for 2 min at 94 °C, followed by 12 cycles of 30 s at 94 °C, 30 s at 60 °C, and 30 s at 72 °C, and final extension for 5 min at 72 °C. At each step, PCR products were purified using the Agencourt AMPure XP system (Beckman Coulter, Inc., California, USA). The library concentrations were measured with a Synergy H1 microplate reader (BioTek) and a QuantiFluor dsDNA System (Promega). Library quality was assessed using a Fragment Analyser (Advanced Analytical Technologies, Iowa, USA) with a dsDNA 915 Reagent Kit (Agilent, California, USA). Paired-end sequencing (2 × 300 bp) was conducted on the Illumina MiSeq platform (Illumina, California, USA).
    Data analysis
    Reads that began with a sequence that completely matched the primer used were extracted using the fastq_barcode_splitter tool in the FASTX-Toolkit; then, the primer sequence was trimmed. The reads were trimmed and filtered using the Sickle tool with a quality value of 20; then, trimmed and paired-end reads with fewer than 150 bases were discarded. The remaining reads were merged using the FLASH paired-end merge script35 under the following conditions: fragment length after merge, 300 bases; read fragment length, 230 bases; and minimum overlap length, 10 bases. The UCHIME2 algorithm within USEARCH was used to check all filtered sequences for chimeric sequences36. All sequences that were not judged to be chimeras were used for further analysis. The UPARSE algorithm within USEARCH was used for OTU creation and taxonomic assignments. The constructed OTUs were subjected to Basic Local Alignment Search Tool (BLASTN) searches. More than 100 reads and the top BLAST hit with a sequence identity of ≥ 97% were used to assign species (target length: about 300 bp) to each representative sequence37.
    Additional analyses of COI region
    S–2, S–3, G–1, and G–2 sample group DNA was successfully extracted using gSalamander or gInsect primers (Table 1) and analysed by PCR using COI and blocking primers for raccoon (Table 5). The library was prepared using two-step tailed PCR. The first PCR amplification using the primer set 1st-IntF and 1st-HCOmR was conducted in a final volume of 10 μl, comprising 2 μl DNA template, 5 μl of each primer (10 μM) (forward primer 0.5 µl, reverse primer 0.5 µl, blocking primer 4 µl), 0.08 μl Ex Taq HS (5 U/µl), 1.0 μl 10 × Ex Taq buffer, 0.8 μl dNTP mixture (2.5 mM), and 1.12 μl DDW. The PCR conditions were as follows: first denaturation for 2 min at 94 °C, followed by 35 cycles of 30 s at 94 °C, 15 s at 67 °C, and 30 s at 52 °C and 30 s at 72 °C, and final extension for 5 min at 72 °C. Subsequent methods were as described above, except for the FLASH paired-end merge script (fragment length after merge, 310 bases; read fragment length, 225 bases).
    Stable isotope analysis
    Stable isotope ratios of muscle tissue reflect the diet over the previous few weeks to one month38,39. We used the muscles of raccoons captured from April to August and assumed that the stable isotope ratios in raccoon muscle samples reflected their diet from March to July, i.e. late winter to early summer, in Hokkaido.
    Raccoon muscle and potential prey item samples were dried at 60 °C for  > 24 h and then ground with a mortar and pestle. Potential food items (such as amphibians and crustaceans) were collected from the forest. The raccoon muscle and potential prey item samples were rinsed with a 2:1 chloroform: methanol solution to remove lipids and then dried at 60 °C for at least 24 h40. Each sample (1.0–3.0 mg) was enclosed in a tin cup and combusted in an elemental analyser (Vario MICRO cube, Elementar Gmbh, Hanau, Germany) interfaced with an isotope ratio mass spectrometer (IsoPrime100, Elementar Gmbh). We determined the δ13C, δ15N, and δ34S values for each sample. The results are reported as parts per thousand of the isotopes relative to a standard. For δ13C, δ15N, and δ34S values, Vienna Pee Dee Belemnite, air, and Vienna Cañon Diablo Triolite were used as standards, respectively. We used L-alanine (Shoko Science Co., Ltd., Tokyo, Japan) and sulfanilamide (Elementar GmbH) as working standards. A working standard, sulfanilamide (δ34S value, − 1.92‰), was calibrated against IAEA (International Atomic Energy Agency, Vienna, Austria) silver sulfides, IAEA-S-1, IAEA-S-2, IAEA-S-3, and was used as a working standard for δ34S.
    Statistical analysis
    We performed two-way analysis of variance to examine the interactions between two independent variables, season (spring: April–June vs. summer: July–August) and capture site (around the farmland vs. in the forest), and their relationship with the dependent variables (stable isotope ratio; δ13C, δ15N, and δ34S). After examining interactions between two independent variables (season and capture site), a Mann–Whitney U test was conducted. Differences were considered statistically significant at P  More

  • in

    Intercontinental genomic parallelism in multiple three-spined stickleback adaptive radiations

    1.
    Schluter, D. The Ecology of Adaptive Radiations (Oxford Univ. Press, 2000).
    2.
    Gavrilets, S. & Losos, J. B. Adaptive radiation: contrasting theory with data. Science 323, 732–737 (2009).
    CAS  PubMed  Google Scholar 

    3.
    Arnold, S. J., Bürger, R., Hohenlohe, P. A., Ajie, B. C. & Jones, A. G. Understanding the evolution and stability of the G-matrix. Evolution 62, 2451–2461 (2008).
    PubMed  PubMed Central  Google Scholar 

    4.
    Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism: American Society of Naturalists E. O. Wilson award address. Am. Nat. 175, 623–639 (2010).
    PubMed  Google Scholar 

    5.
    Elmer, K. R. et al. Parallel evolution of Nicaraguan crater lake cichlid fishes via non-parallel routes. Nat. Commun. 5, 5168 (2014).
    CAS  PubMed  Google Scholar 

    6.
    Mahler, D. L., Ingram, T., Revell, L. J. & Losos, J. B. Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341, 292–295 (2013).
    CAS  PubMed  Google Scholar 

    7.
    Lamichhaney, S. et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518, 371–375 (2015).
    CAS  PubMed  Google Scholar 

    8.
    Gould, S. J. Wonderful Life: The Burgess Shale and the Nature of History (W. W. Norton, 1989).

    9.
    Schluter, D. Adaptive radiation along genetic lines of least resistance. Evolution 50, 1766–1774 (1996).
    PubMed  Google Scholar 

    10.
    Roff, D. The evolution of the G matrix: selection or drift? Heredity 84, 135–142 (2000).
    PubMed  Google Scholar 

    11.
    Arendt, J. & Reznick, D. Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? Trends Ecol. Evol. 23, 26–32 (2008).
    PubMed  Google Scholar 

    12.
    Stuart, Y. E. Divergent uses of ‘parallel evolution’ during the history of the American naturalist. Am. Nat. 193, 11–19 (2019).
    PubMed  Google Scholar 

    13.
    Oke, K. B., Rolshausen, G., LeBlond, C. & Hendry, A. P. How parallel is parallel evolution? A comparative analysis in fishes. Am. Nat. 190, 1–16 (2017).
    PubMed  Google Scholar 

    14.
    McGee, M. D., Neches, R. Y. & Seehausen, O. Evaluating genomic divergence and parallelism in replicate ecomorphs from young and old cichlid adaptive radiations. Mol. Ecol. 25, 260–268 (2016).
    CAS  PubMed  Google Scholar 

    15.
    Soria-Carrasco, V. et al. Stick insect genomes reveal natural selection’s role in parallel speciation. Science 344, 738–742 (2014).
    CAS  PubMed  Google Scholar 

    16.
    MacColl, A. D. C. The ecological causes of evolution. Trends Ecol. Evol. 26, 514–522 (2011).
    PubMed  Google Scholar 

    17.
    Elmer, K. R. & Meyer, A. Adaptation in the age of ecological genomics: insights from parallelism and convergence. Trends Ecol. Evol. 26, 298–306 (2011).
    PubMed  Google Scholar 

    18.
    Conte, G. L., Arnegard, M. E., Peichel, C. L. & Schluter, D. The probability of genetic parallelism and convergence in natural populations. Proc. R. Soc. B 279, 5039–5047 (2012).
    PubMed  Google Scholar 

    19.
    Jones, F. C. et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484, 55–61 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Stuart, Y. E. et al. Contrasting effects of environment and genetics generate a continuum of parallel evolution. Nat. Ecol. Evol. 1, 0158 (2017).
    Google Scholar 

    21.
    Jacobs, A. et al. Parallelism in eco-morphology and gene expression despite variable evolutionary and genomic backgrounds in a Holarctic fish. PLoS Genet. 16, 1008658 (2020).
    Google Scholar 

    22.
    Muschick, M., Indermaur, A. & Salzburger, W. Convergent evolution within an adaptive radiation of cichlid fishes. Curr. Biol. 22, 2362–2368 (2012).
    CAS  Google Scholar 

    23.
    Foster, S. & Bell, M. The Evolutionary Biology of the Threespine Stickleback (Oxford Univ. Press, 1994).

    24.
    Taylor, E. B. & McPhail, J. D. Historical contingency and ecological determinism interact to prime speciation in sticklebacks, Gasterosteus. Proc. R. Soc. Lond. B 267, 2375–2384 (2000).
    CAS  Google Scholar 

    25.
    Kaeuffer, R., Peichel, C. L., Bolnick, D. I. & Hendry, A. P. Parallel and nonparallel aspects of ecological, phenotypic, and genetic divergence across replicate population pairs of lake and stream stickleback. Evolution 66, 402–418 (2012).
    PubMed  Google Scholar 

    26.
    Ravinet, M., Prodöhl, P. A. & Harrod, C. Parallel and nonparallel ecological, morphological and genetic divergence in lake-stream stickleback from a single catchment. J. Evol. Biol. 26, 186–204 (2013).
    CAS  PubMed  Google Scholar 

    27.
    Magalhaes, I. S., D’Agostino, D., Hohenlohe, P. A. & MacColl, A. D. C. The ecology of an adaptive radiation of three-spined stickleback from North Uist, Scotland. Mol. Ecol. 25, 4319–4336 (2016).
    PubMed  PubMed Central  Google Scholar 

    28.
    Colosimo, P. F. et al. Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science 307, 1928–1933 (2005).
    CAS  PubMed  Google Scholar 

    29.
    Jones, F. C. et al. A genome-wide SNP genotyping array reveals patterns of global and repeated species-pair divergence in sticklebacks. Curr. Biol. 22, 83–90 (2012).
    CAS  PubMed  Google Scholar 

    30.
    Raeymaekers, J. A. M. et al. Adaptive and non-adaptive divergence in a common landscape. Nat. Commun. 8, 267 (2017).
    PubMed  PubMed Central  Google Scholar 

    31.
    Rennison, D. J., Stuart, Y. E., Bolnick, D. I. & Peichel, C. L. Ecological factors and morphological traits are associated with repeated genomic differentiation between lake and stream stickleback. Phil. Trans. R. Soc. B 374, 20180241 (2019).
    CAS  PubMed  Google Scholar 

    32.
    MacColl, A. D. C. & Aucott, B. Inappropriate analysis does not reveal the ecological causes of evolution of stickleback armour: a critique of Spence et al. 2013. Ecol. Evol. 4, 3509–3513 (2014).
    PubMed  PubMed Central  Google Scholar 

    33.
    Spoljaric, M. A. & Reimchen, T. E. 10,000 years later: evolution of body shape in Haida Gwaii three-spined stickleback. J. Fish Biol. 70, 1484–1503 (2007).
    Google Scholar 

    34.
    De Schamphelaere, K. A. C. et al. Reproductive toxicity of dietary zinc to Daphnia magna. Aquat. Toxicol. 70, 233–244 (2004).
    PubMed  Google Scholar 

    35.
    Martins, C., Jesus, F. T. & Nogueira, A. J. A. The effects of copper and zinc on survival, growth and reproduction of the cladoceran Daphnia longispina: introducing new data in an ‘old’ issue. Ecotoxicology 26, 1157–1169 (2017).
    CAS  PubMed  Google Scholar 

    36.
    Miller, C. T. et al. Modular skeletal evolution in sticklebacks is controlled by additive and clustered quantitative trait loci. Genetics 197, 405–420 (2014).
    PubMed  PubMed Central  Google Scholar 

    37.
    Chan, Y. F. et al. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327, 302–305 (2010).
    CAS  PubMed  Google Scholar 

    38.
    Thompson, K. A., Osmond, M. M. & Schluter, D. Parallel genetic evolution and speciation from standing variation. Evol. Lett. 3, 129–141 (2019).
    PubMed  PubMed Central  Google Scholar 

    39.
    Nelson, T. C. & Cresko, W. A. Ancient genomic variation underlies repeated ecological adaptation in young stickleback populations. Evol. Lett. 2, 9–21 (2018).
    PubMed  PubMed Central  Google Scholar 

    40.
    Paccard, A. et al. Repeatability of adaptive radiation depends on spatial scale: regional versus global replicates of stickleback in lake versus stream habitats. J. Hered. 111, 43–56 (2019).
    Google Scholar 

    41.
    Baldo, L., Riera, J. L., Salzburger, W. & Barluenga, M. Phylogeography and ecological niche shape the cichlid fish gut microbiota in Central American and African lakes. Front. Microbiol. 10, 2372 (2019).
    PubMed  PubMed Central  Google Scholar 

    42.
    Fang, B., Kemppainen, P., Momigliano, P. & Merilä, J. On the causes of geographically heterogeneous parallel evolution in sticklebacks. Nat. Ecol. Evol. 4, 1105–1115 (2020).
    PubMed  Google Scholar 

    43.
    Mäkinen, H. S. & Merilä, J. Mitochondrial DNA phylogeography of the three-spined stickleback (Gasterosteus aculeatus) in Europe—evidence for multiple glacial refugia. Mol. Phylogenet. Evol. 46, 167–182 (2008).
    PubMed  Google Scholar 

    44.
    Liu, S., Hansen, M. M. & Jacobsen, M. W. Region-wide and ecotype-specific differences in demographic histories of threespine stickleback populations, estimated from whole genome sequences. Mol. Ecol. 25, 5187–5202 (2016).
    CAS  PubMed  Google Scholar 

    45.
    Fang, B., Merilä, J., Ribeiro, F., Alexandre, C. M. & Momigliano, P. Worldwide phylogeny of three-spined sticklebacks. Mol. Phylogenet. Evol. 127, 613–625 (2018).
    PubMed  Google Scholar 

    46.
    Garduno-Paz, M. V., Couderc, S. & Adams, C. E. Habitat complexity modulates phenotype expression through developmental plasticity in the threespine stickleback. Biol. J. Linn. Soc. 100, 407–413 (2010).
    Google Scholar 

    47.
    Coop, G., Witonsky, D., Di Rienzo, A. & Pritchard, J. K. Using environmental correlations to identify loci underlying local adaptation. Genetics 185, 1411–1423 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    48.
    Hohenlohe, P. A. et al. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet. 6, e1000862 (2010).
    PubMed  PubMed Central  Google Scholar 

    49.
    Guo, B., DeFaveri, J., Sotelo, G., Nair, A. & Merilä, J. Population genomic evidence for adaptive differentiation in Baltic Sea three-spined sticklebacks. BMC Biol. 13, 19 (2015).
    PubMed  PubMed Central  Google Scholar 

    50.
    Glazer, A. M., Cleves, P. A., Erickson, P. A., Lam, A. Y. & Miller, C. T. Parallel developmental genetic features underlie stickleback gill raker evolution. EvoDevo 5, 19 (2014).
    PubMed  PubMed Central  Google Scholar 

    51.
    Day, T., Pritchard, J. & Schluter, D. A comparison of two sticklebacks. Evolution 48, 1723–1734 (1994).
    PubMed  Google Scholar 

    52.
    Franchini, P. et al. Genomic architecture of ecologically divergent body shape in a pair of sympatric crater lake cichlid fishes. Mol. Ecol. 23, 1828–1845 (2014).
    PubMed  Google Scholar 

    53.
    McCairns, R. J. S. & Bernatchez, L. Plasticity and heritability of morphological variation within and between parapatric stickleback demes. J. Evol. Biol. 25, 1097–1112 (2012).
    CAS  PubMed  Google Scholar 

    54.
    Peichel, C. L. & Marques, D. A. The genetic and molecular architecture of phenotypic diversity in sticklebacks. Phil. Trans. R. Soc. B 372, 20150486 (2017).
    PubMed  Google Scholar 

    55.
    Marques, D. A. et al. Genomics of rapid incipient speciation in sympatric threespine stickleback. PLoS Genet. 12, e1005887 (2016).
    PubMed  PubMed Central  Google Scholar 

    56.
    Burke, M. K., Liti, G. & Long, A. D. Standing genetic variation drives repeatable experimental evolution in outcrossing populations of Saccharomyces cerevisiae. Mol. Biol. Evol. 31, 3228–3239 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    57.
    Kang, L., Aggarwal, D. D., Rashkovetsky, E., Korol, A. B. & Michalak, P. Rapid genomic changes in Drosophila melanogaster adapting to desiccation stress in an experimental evolution system. BMC Genom. 17, 233 (2016).
    Google Scholar 

    58.
    Gompert, Z. & Messina, F. J. Genomic evidence that resource‐based trade‐offs limit host‐range expansion in a seed beetle. Evolution 70, 1249–1264 (2016).
    CAS  PubMed  Google Scholar 

    59.
    Berner, D., Moser, D., Roesti, M., Buescher, H. & Salzburger, W. Genetic architecture of skeletal evolution in European lake and stream stickleback. Evolution 68, 1792–1805 (2014).
    CAS  PubMed  Google Scholar 

    60.
    Pease, J. B., Haak, D. C., Hahn, M. W. & Moyle, L. C. Phylogenomics reveals three sources of adaptive variation during a rapid radiation. PLoS Biol. 14, e1002379 (2016).
    PubMed  PubMed Central  Google Scholar 

    61.
    Lowry, D. B. et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol. Ecol. Resour. 17, 142–152 (2017).
    CAS  Google Scholar 

    62.
    McKinney, G. J., Larson, W. A., Seeb, L. W. & Seeb, J. E. RADseq provides unprecedented insights into molecular ecology and evolutionary genetics: comment on Breaking RAD by Lowry et al. (2016). Mol. Ecol. Resour. 17, 356–361 (2017).
    CAS  PubMed  Google Scholar 

    63.
    Roesti, M., Kueng, B., Moser, D. & Berner, D. The genomics of ecological vicariance in threespine stickleback fish. Nat. Commun. 6, 8767 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Catchen, J. M. et al. Unbroken: RADseq remains a powerful tool for understanding the genetics of adaptation in natural populations. Mol. Ecol. Resour. 17, 362–365 (2017).
    CAS  PubMed  Google Scholar 

    65.
    Roesti, M., Moser, D. & Berner, D. Recombination in the threespine stickleback genome—patterns and consequences. Mol. Ecol. 22, 3014–3027 (2013).
    CAS  PubMed  Google Scholar 

    66.
    Samuk, K. et al. Gene flow and selection interact to promote adaptive divergence in regions of low recombination. Mol. Ecol. 26, 4378–4390 (2017).
    PubMed  Google Scholar 

    67.
    Meier, J. I., Marques, D. A., Wagner, C. E., Excoffier, L. & Seehausen, O. Genomics of parallel ecological speciation in Lake Victoria cichlids. Mol. Biol. Evol. 35, 1489–1506 (2018).
    CAS  PubMed  Google Scholar 

    68.
    Cruickshank, T. E. & Hahn, M. W. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol. Ecol. 23, 3133–3157 (2014).
    PubMed  Google Scholar 

    69.
    Terekhanova, N. V. et al. Fast evolution from precast bricks: genomics of young freshwater populations of threespine stickleback Gasterosteus aculeatus. PLoS Genet. 10, e1004696 (2014).
    PubMed  PubMed Central  Google Scholar 

    70.
    Westram, A. M. et al. Clines on the seashore: the genomic architecture underlying rapid divergence in the face of gene flow. Evol. Lett. 2, 297–309 (2018).
    PubMed  PubMed Central  Google Scholar 

    71.
    Shimada, Y., Shikano, T. & Merilä, J. A high incidence of selection on physiologically important genes in the three-spined stickleback, Gasterosteus aculeatus. Mol. Biol. Evol. 28, 181–193 (2011).
    CAS  PubMed  Google Scholar 

    72.
    Xie, K. T. et al. DNA fragility in the parallel evolution of pelvic reduction in stickleback fish. Science 363, 81–84 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    73.
    Henning, F. & Meyer, A. The evolutionary genomics of cichlid fishes: explosive speciation and adaptation in the postgenomic era. Annu. Rev. Genomics Hum. Genet. 15, 417–441 (2014).
    CAS  PubMed  Google Scholar 

    74.
    Kess, T., Galindo, J. & Boulding, E. G. Genomic divergence between Spanish Littorina saxatilis ecotypes unravels limited admixture and extensive parallelism associated with population history. Int. J. Bus. Innov. Res. 17, 8311–8327 (2018).
    Google Scholar 

    75.
    Bohutínská, M. et al. Genomic basis of parallel adaptation varies with divergence in Arabidopsis and its relatives. Preprint at BioRxiv https://doi.org/10.1101/2020.03.24.005397 (2020).

    76.
    Rennison, D. J., Samuk, K., Owens, G. L. & Miller, S. E. Shared patterns of genome-wide differentiation are more strongly predicted by geography than by ecology. Am. Nat. 195, 192–200 (2019).
    PubMed  Google Scholar 

    77.
    Lucek, K., Sivasundar, A., Roy, D. & Seehausen, O. Repeated and predictable patterns of ecotypic differentiation during a biological invasion: lake–stream divergence in parapatric Swiss stickleback. J. Evol. Biol. 26, 2691–2709 (2013).
    CAS  PubMed  Google Scholar 

    78.
    Berner, D., Roesti, M., Hendry, A. P. & Salzburger, W. Constraints on speciation suggested by comparing lake–stream stickleback divergence across two continents. Mol. Ecol. 19, 4963–4978 (2010).
    PubMed  Google Scholar 

    79.
    Giles, N. Behavioural effects of the parasite Schistocephalus solidus (Cestoda) on an intermediate host, the three-spined stickleback, Gasterosteus aculeatus L. Anim. Behav. 31, 1192–1194 (1983).
    Google Scholar 

    80.
    Spence, R., Wootton, R. J., Barber, I., Przybylski, M. & Smith, C. Ecological causes of morphological evolution in the three-spined stickleback. Ecol. Evol. 3, 1717–1726 (2013).
    PubMed  PubMed Central  Google Scholar 

    81.
    Reimchen, T. E. Incidence and intensity of Cyathocephalus truncatus and Schistocephalus solidus infection in Gasterosteus aculeatus. Can. J. Zool. 60, 1091–1095 (1982).
    Google Scholar 

    82.
    MacColl, A. D. C. Parasite burdens differ between sympatric three-spined stickleback species. Ecography 32, 153–160 (2009).
    Google Scholar 

    83.
    Stutz, W. E., Lau, O. L. & Bolnick, D. I. Contrasting patterns of phenotype-dependent parasitism within and among populations of threespine stickleback. Am. Nat. 183, 810–825 (2014).
    PubMed  Google Scholar 

    84.
    Bassham, S., Catchen, J., Lescak, E., von Hippel, F. A. & Cresko, W. A. Repeated selection of alternatively adapted haplotypes creates sweeping genomic remodeling in stickleback. Genetics 209, 921–939 (2018).
    PubMed  PubMed Central  Google Scholar 

    85.
    Etter, P. D., Preston, J. L., Bassham, S., Cresko, W. A. & Johnson, E. A. Local de novo assembly of RAD paired-end contigs using short sequencing reads. PLoS ONE 6, e18561 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    86.
    Ali, O. A. et al. Rad capture (Rapture): flexible and efficient sequence-based genotyping. Genetics 202, 389–400 (2016).
    CAS  PubMed  Google Scholar 

    87.
    Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).
    PubMed  PubMed Central  Google Scholar 

    88.
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
    CAS  Google Scholar 

    89.
    Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).
    PubMed  PubMed Central  Google Scholar 

    90.
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017); https://www.R-project.org/

    91.
    Günther, T. & Coop, G. Robust identification of local adaptation from allele frequencies. Genetics 195, 205–220 (2013).
    PubMed  PubMed Central  Google Scholar 

    92.
    Yeaman, S. et al. Convergent local adaptation to climate in distantly related conifers. Science 353, 1431–1433 (2016).
    CAS  PubMed  Google Scholar 

    93.
    Storey, J. qvalue: Q-value estimation for false discovery rate control. R package version 2.0.0 (2015).

    94.
    Pfeifer, B., Wittelsbürger, U., Ramos-Onsins, S. E. & Lercher, M. J. PopGenome: an efficient Swiss Army knife for population genomic analyses in R. Mol. Biol. Evol. 31, 1929–1936 (2014).
    CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    An unusual microbiome characterises a spatially-aggressive crustose alga rapidly overgrowing shallow Caribbean reefs

    1.
    Jackson, J., Donovan, M., Cramer, K. & Lam, V. Status and Trends of Caribbean Coral Reefs: 1970–2012. Glob. Coral Reef Monit. Network, Int. Union for Conserv. Nat. Glob. Mar. Polar Program, Washington, DC (2014).
    2.
    Baird, A. H., Babcock, R. C. & Mundy, C. P. Habitat selection by larvae influences the depth distribution of six common coral species. Mar. Ecol. Prog. Ser. 252, 289–293 (2003).
    ADS  Article  Google Scholar 

    3.
    Harrington, L., Fabricius, K., De’ath, G. & Negri, A. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecol. 85, 3428–3437 (2004).
    Article  Google Scholar 

    4.
    Roff, G. & Mumby, P. J. Global disparity in the resilience of coral reefs. Trends Ecol. & Evol. 27, 404–413 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Lessios, H. A. Mass mortality of Diadema antillarum in the Caribbean: What Have We Learned? Annu. Rev. Ecol. Syst. 19, 371–393 (1988).
    Article  Google Scholar 

    6.
    Patterson, K. L. et al. The etiology of white pox, a lethal disease of the Caribbean elkhorn coral, Acropora palmata. Proc. Natl. Acad. Sci. 99, 8725–8730 (2002).

    7.
    Eakin, C. M. et al. Caribbean Corals in Crisis: Record Thermal Stress, Bleaching, and Mortality in 2005. PLoS ONE 5, 1–9 (2010).
    Article  CAS  Google Scholar 

    8.
    Wilkinson, C. R. In Status of Coral Reefs of the World: 2004 (Townsville: Australian Institute of Marine Science, 2004).
    Google Scholar 

    9.
    Miller, J., Waara, R., Muller, E. & Rogers, C. Coral bleaching and disease combine to cause extensive mortality on reefs in US Virgin Islands. Coral Reefs 25, 418 (2006).
    Article  Google Scholar 

    10.
    Donner, S. D., Knutson, T. R. & Oppenheimer, M. Model-based assessment of the role of human-induced climate change in the 2005 Caribbean coral bleaching event. Proc. Natl. Acad. Sci. 104, 5483–5488 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nat. 543, 373–377 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Hurricanes and Caribbean coral reefs: impacts, recovery patterns, and role in long-term decline. Ecol. 86, 174–184 (2005).
    Article  Google Scholar 

    13.
    Smith, S. R. Patterns of Coral Recruitment and Post-Settlement Mortality on Bermuda’s Reefs: Comparisons to Caribbean and Pacific Reefs. Am. Zool. 32, 663–673 (1992).
    Article  Google Scholar 

    14.
    Arnold, S. N. & Steneck, R. S. Settling into an Increasingly Hostile World: The Rapidly Closing “Recruitment Window” for Corals. PLoS ONE 6, e28681 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Edmunds, P. J. et al. Geographic variation in long-term trajectories of change in coral recruitment: a global-to-local perspective. Mar. Freshw. Res. 66, 609–622 (2015).
    Article  Google Scholar 

    16.
    Glassom, D., Zakai, D. & Chadwick-Furman, N. Coral recruitment: a spatio-temporal analysis along the coastline of Eilat, northern Red Sea. Mar. Biol. 144, 641–651 (2004).
    Article  Google Scholar 

    17.
    Edmunds, P. J. et al. Why more comparative approaches are required in time-series analyses of coral reef ecosystems. Mar. Ecol. Prog. Ser. 608, 297–306 (2019).
    ADS  Article  Google Scholar 

    18.
    Hughes, T. P. Catastrophes, Phase Shifts, and Large-Scale Degradation of a Caribbean Coral Reef. Sci. 265, 1547–1551 (1994).
    ADS  CAS  PubMed  Article  Google Scholar 

    19.
    Jackson, J. B. C. et al. Historical Overfishing and the Recent Collapse of Coastal Ecosystems. Sci. 293, 629–637 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    McCook, L. Macroalgae, nutrients and phase shifts on coral reefs: scientific issues and management consequences for the Great Barrier Reef. Coral Reefs 18, 357–367 (1999).
    Article  Google Scholar 

    21.
    Loh, T., McMurray, S. E., Henkel, T. P., Vicente, J. & Pawlik, J. R. Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals. PeerJ 3, e901 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Lenz, E., Bramanti, L., Lasker, H. & Edmunds, P. J. Long-term variation of octocoral populations in St. John, US Virgin Islands. Coral Reefs 34, 1099–1109 (2015).
    ADS  Article  Google Scholar 

    23.
    Gleason, D. F. & Hofmann, D. K. Coral larvae: From gametes to recruits. J. Exp. Mar. Biol. Ecol. 408, 42–57 (2011).
    Article  Google Scholar 

    24.
    Siboni, N. et al. Using Bacterial Extract along with Differential Gene Expression in Acropora millepora Larvae to Decouple the Processes of Attachment and Metamorphosis. PLoS ONE 7, e37774 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Doropoulos, C. et al. Characterizing the ecological trade-offs throughout the early ontogeny of coral recruitment. Ecol. Monogr. 86, 20–44 (2016).
    Google Scholar 

    26.
    Ritson-Williams, R., Arnold, S. N., Paul, V. J. & Steneck, R. S. Larval settlement preferences of Acropora palmata and Montastraea faveolata in response to diverse red algae. Coral Reefs 33, 59–66 (2014).
    ADS  Article  Google Scholar 

    27.
    Ritson-Williams, R., Paul, V. J., Arnold, S. N. & Steneck, R. S. Larval settlement preferences and post-settlement survival of the threatened caribbean corals Acropora palmata and A. cervicornis. Coral Reefs 29, 71–81 (2010).
    ADS  Article  Google Scholar 

    28.
    Johnson, C. R., Muir, D. G. & Reysenbach, A. L. Characteristic bacteria associated with surfaces of coralline algae: a hypothesis for bacterial induction of marine invertebrate larvae. Mar. Ecol. Prog. Ser. 74, 281–294 (1991).
    ADS  Article  Google Scholar 

    29.
    Heyward, A. J. & Negri, A. P. Natural inducers for coral larval metamorphosis. Coral Reefs 18, 273–279 (1999).
    Article  Google Scholar 

    30.
    Webster, N. S. et al. Metamorphosis of a Scleractinian Coral in Response to Microbial Biofilms. Appl. Environ. Microbiol. 70, 1213–1221 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Hadfield, M. G. Biofilms and Marine Invertebrate Larvae: What Bacteria Produce that Larvae Use to Choose Settlement Sites. Annu. Rev. Mar. Sci. 3, 453–470 (2011).
    ADS  Article  Google Scholar 

    32.
    Sneed, J. M., Ritson-Williams, R. & Paul, V. J. Crustose coralline algal species host distinct bacterial assemblages on their surfaces. ISME J. 9, 2527–2536 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Negri, A. P., Webster, N. S., Hill, R. T. & Heyward, A. J. Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae. Mar. Ecol. Prog. Ser. 223, 121–131 (2001).
    ADS  Article  Google Scholar 

    34.
    Sneed, J. M., Sharp, K. H., Ritchie, K. B. & Paul, V. J. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Proc. Royal Soc. B 281, 20133086 (2014).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    35.
    Tebben, J. et al. Induction of Larval Metamorphosis of the Coral Acropora millepora by Tetrabromopyrrole Isolated from a Pseudoalteromonas Bacterium. PLoS ONE 6, e19082 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Tebben, J. et al. Chemical mediation of coral larval settlement by crustose coralline algae. Sci. Reports 5, 10803 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Morse, D. E., Morse, A. N. C., Raimondi, P. T. & Hooker, N. Morphogen-Based Chemical Flypaper for Agaricia humilis Coral Larvae. The Biol. Bull. 186, 172–181 (1994).
    CAS  PubMed  Article  Google Scholar 

    38.
    Raimondi, P. T. & Morse, A. N. C. The consequences of complex larval behavior in a coral. Ecol. 81, 3193–3211 (2000).
    Article  Google Scholar 

    39.
    Antonius, A. & Ballesteros, E. Epizoism: a new threat to coral health in Caribbean reefs. Revista de Biol. Trop. 46, 145–156 (1998).
    Google Scholar 

    40.
    Verlaque, M., Ballesteros, E. & Antonius, A. Metapeyssonnelia corallepida sp. nov. (Peyssonneliaceae, Rhodophyta), an Atlantic Encrusting Red Alga Overgrowing Corals. Bot. Mar. 43, 191–200 (2000).

    41.
    Pueschel, C. M. & Saunders, G. W. Ramicrusta textilis sp. nov. (Peyssonneliaceae, Rhodophyta), an anatomically complex Caribbean alga that overgrows corals. Phycol. 48, 480–491 (2009).
    Article  Google Scholar 

    42.
    Eckrich, C. E., Engel, M. S. & Peachey, R. B. J. Crustose, calcareous algal bloom (Ramicrusta sp.) overgrowing scleractinian corals, gorgonians, a hydrocoral, sponges, and other algae in Lac Bay, Bonaire, Dutch Caribbean. Coral Reefs 30, 131–131 (2011)

    43.
    Eckrich, C. E. & Engel, M. S. Coral overgrowth by an encrusting red alga (Ramicrusta sp.): a threat to Caribbean reefs?. Coral Reefs 32, 81–84 (2013).

    44.
    Ballantine, D. & Ruiz, H. Metapeyssonnelia milleporoides, a new species of coral-killing red alga (Peyssonneliaceae) from Puerto Rico, Caribbean Sea. Bot. Mar. 54, 47–51 (2011).

    45.
    Edmunds, P. J., Zimmerman, S. A. & Bramanti, L. A spatially aggressive peyssonnelid algal crust (PAC) threatens shallow coral reefs in St. John, US Virgin Islands. Coral Reefs 38, 1329–1341 (2019).

    46.
    Basso, D. Carbonate production by calcareous red algae and global change. Geodiversitas 34, 13–33 (2012).

    47.
    Taylor, W. & Arndt, C. The marine algae of the southwestern Peninsula of Hispaniola. Am. J. Bot. 16, 651–662 (1929).

    48.
    Van Den Hoek, C., Cortel-Breeman, A. & Wanders, J. Algal zonation in the fringing coral reef of Curaçao, Netherlands Antilles, in relation to zonation of corals and gorgonians. Aquatic. Bot. 1, 269–308 (1975).

    49.
    Sammarco, P. W. Effects of grazing by Diadema antillarum Philippi (Echinodermata: Echinoidea) on algal diversity and community structure. J. Exp. Mar. Biol. Ecol. 65, 83–105 (1982).

    50.
    Littler, M. M., Taylor, P. R., Littler, D. S., Sims, R. H. & Norris, J. N. Dominant macrophyte standing stocks, productivity and community structure on a Belizean barrier-reef. Atoll Res. Bull. 302, 1–24 (1987).

    51.
    Ballantine, D. & Ruiz, H. A unique red algal reef formation in Puerto Rico. Coral Reefs 32, 411–411 (2013).

    52.
    Ballantine, D., Ruiz, H., Lozada-Troche, C. & Norris, J. N. The genus Ramicrusta (Peyssonneliales, Rhodophyta) in the Caribbean Sea, including Ramicrusta bonairensis sp. nov. and Ramicrusta monensis sp. nov. Bot. Mar. 59, 417–431 (2016).

    53.
    Zhang, D. & Zhou, J. Ramicrusta, a new genus of Peyssonneliaceae (Cryptonemiales, Rhodophyta). Oceanol. et Limnol. Sinica 12, 538–544 (1981).

    54.
    Bramanti, L., Lasker, H. R. & Edmunds, P. J. An encrusting peyssonnellid preempts vacant space and overgrows corals in St. John, US Virgin Islands. Reef Encount. 32, 68–70 (2017).

    55.
    Tran, C. & Hadfield, M. G. Larvae of Pocillopora damicornis (Anthozoa) settle and metamorphose in response to surface-biofilm bacteria. Mar. Ecol. Prog. Ser. 433, 85–96 (2011).

    56.
    Golbuu, Y. & Richmond, R. H. Substratum preferences in planula larvae of two species of scleractinian corals, Goniastrea retiformis and Stylaraea punctata. Mar. Biol. 152, 639–644 (2007).

    57.
    Longford, S. R. et al. Comparisons of diversity of bacterial communities associated with three sessile marine eukaryotes. Aquatic. Microb. Ecol. 48, 217–229 (2007).

    58.
    Shade, A. & Handelsman, J. Beyond the Venn diagram: the hunt for a core microbiome. Environ. Microbiol. 14, 4–12 (2011).

    59.
    Edmunds, P. J. The hidden dynamics of low coral cover communities. Hydrobiol. 818, 193–209 (2018).

    60.
    Green, D. H., Edmunds, P. J., Pochon, X. & Gates, R. D. The effects of substratum type on the growth, mortality, and photophysiology of juvenile corals in St. John, US Virgin Islands. J. Exp. Mar. Biol. Ecol. 384, 18–29 (2010).

    61.
    Holmström, C. & Kjelleberg, S. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol. Ecol. 30, 285–293 (1999).

    62.
    Offret, C. et al. Spotlight on Antimicrobial Metabolites from the Marine Bacteria Pseudoalteromonas: Chemodiversity and Ecological Significance. Mar. Drugs 14, 129 (2016).

    63.
    Huang, Y.-L., Dobretsov, S., Xiong, H. & Qian, P.-Y. Effect of Biofilm Formation by Pseudoalteromonas spongiae on Induction of Larval Settlement of the Polychaete Hydroides elegans. Appl. Environ. Microbiol. 73, 6284–6288 (2007).

    64.
    Wolfaardt, G. M., Lawrence, J. R. & Korber, D. R. Function of EPS. In Wingender, J., Neu, T. R. & Flemming, H. (eds.) Microbial extracellular polymeric substances: characterization, structure, and function, 186–190 (Springer, New York, NY, 1999).
    Google Scholar 

    65.
    Huggett, M. J., Williamson, J. E., de Nys, R., Kjelleberg, S. & Steinberg, P. D. Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae. Oecologia 149, 604–619 (2006).
    ADS  PubMed  Article  Google Scholar 

    66.
    Shikuma, N. J., Antoshechkin, I., Medeiros, J. M., Pilhofer, M. & Newman, D. K. Stepwise metamorphosis of the tubeworm Hydroides elegans is mediated by a bacterial inducer and MAPK signaling. Proc. Natl. Acad. Sci. 113, 10097–10102 (2016).
    CAS  PubMed  Article  Google Scholar 

    67.
    Freckleton, M. L., Nedved, B. T. & Hadfield, M. G. Induction of Invertebrate Larval Settlement; Different Bacteria, Different Mechanisms? Sci. Reports 7, 42557 (2017).

    68.
    Kato, A., Baba, M., Kawai, H. & Masuda, M. Reassessment of the little-known crustose red algal genus Polystrata (Gigartinales), based on morphology and SSU rDNA sequences. J. Phycol. 42, 922–933 (2006).

    69.
    Dixon, K. R. & Saunders, G. W. DNA barcoding and phylogenetics of Ramicrusta and Incendia gen. nov., two early diverging lineages of the Peyssonneliaceae (Rhodophyta). Phycol. 52, 82–108 (2013).

    70.
    Nieder, C., Chen, P.-C., Chen, C. A. & Liu, S.-L. New record of the encrusting alga Ramicrusta textilis overgrowing corals in the lagoon of Dongsha Atoll, South China Sea. Bull. Mar. Sci. 95, 459–462 (2019).

    71.
    Smith, T. B., Ennis, R., Kadison, E., Nemeth, R. S. & Henderson, L. The United States Virgin Islands Territorial Coral Reef Monitoring Program. 2016 Annu. Report, Univ. Virgin Islands, United States Virgin Islands 1–286 (2016).

    72.
    Adey, W. H. A survey of red algal biology and ecology with reference to carbonate geology, and the role of reds in algal ridge and reef construction. In Recent Advances in Carbonate Studies, vol. 6, 3–6 (West Indies Laboratory, St. Croix, USVI, 1974).

    73.
    Woelkerling, W. J. South Florida benthic marine algae. In Sedimenta V (University of Miami, 1976).

    74.
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Sci. 318, 1737–1742 (2007).

    75.
    Hay, M. E. Marine Chemical Ecology: Chemical Signals and Cues Structure Marine Populations, Communities, and Ecosystems. Annu. Rev. Mar. Sci. 1, 193–212 (2009).

    76.
    Schupp, P. J. & Paul, V. J. Calcium Carbonate and Secondary Metabolites in Tropical Seaweeds: Variable Effects on Herbivorous Fishes. Ecol. 75, 1172–1185 (1994).

    77.
    Pennings, S. C., Puglisi, M. P., Pitlik, T. J., Himaya, A. C. & Paul, V. J. Effects of secondary metabolites and CaCO(_{3}) on feeding by surgeonfishes and parrotfishes: within-plant comparisons. Mar. Ecol. Prog. Ser. 134, 49–58 (1996).

    78.
    Blunt, J. W. et al. Marine natural products. Nat. Prod. Reports 24, 31–86 (2007).

    79.
    Blunt, J. W. et al. Marine natural products. Nat. Prod. Reports 25, 35–94 (2008).

    80.
    Lane, A. L. et al. Ecological leads for natural product discovery: novel sesquiterpene hydroquinones from the red macroalga Peyssonnelia sp. Tetrahedron 66, 455–461 (2010).

    81.
    Sawabe, T. et al. Pseudoalteromonas bacteriolytica sp. nov., a marine bacterium that is the causative agent of red spot disease of Laminaria japonica. Int. J. Syst. Evol. Microbiol. 48, 769–774 (1998).

    82.
    Steneck, R. & Dethier, M. A Functional Group Approach to the Structure of Algal-Dominated Communities. Oikos 69, 476–498 (1994).

    83.
    Edmunds, P. J. Decadal-scale changes in the community structure of coral reefs of St. John, US Virgin Islands. Mar. Ecol. Prog. Ser. 489, 107–123 (2013).

    84.
    Wilson, B. et al. Changes in Marine Prokaryote Composition with Season and Depth Over an Arctic Polar Year. Front. Mar. Sci. 4, 95 (2017).

    85.
    Øvreås, L., Forney, L., Daae, F. L. & Torsvik, V. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 63, 3367–3373 (1997).

    86.
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).

    87.
    Freshwater, D., Fredericq, S. & Bailey, J. Characteristics and utility of nuclear-encoded large-subunit ribosomal gene sequences in phylogenetic studies of red algae. Phycol. Res. 47, 33–38 (1999).

    88.
    Krayesky, D. M., Norris, J. N., Gabrielson, P. W., Gabriel, D. & Fredericq, S. A new order of red algae based on the Peyssonneliaceae, with an evaluation of the ordinal classification of the Florideophyceae (Rhodophyta). Proc. Biol. Soc. Wash. 122, 364–391 (2009).

    89.
    Yoon, H. S., Hackett, J. D. & Bhattacharya, D. A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc. Natl. Acad. Sci. 99, 11724–11729 (2002).

    90.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–6 (2010).

    91.
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinforma. 26, 2460–2461 (2010).

    92.
    Haas, B. J. et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21, 494–504 (2011).

    93.
    Caporaso, J. G. et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinforma. 26, 266–267 (2009).

    94.
    DeSantis, T. Z. et al. Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

    95.
    Joshi, N. A. & Fass, J. N. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) (2011). Available at https://github.com/najoshi/sickle. Accessed 6 Nov 2020.

    96.
    Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).

    97.
    Altschul, S., Gish, W., Miller, W., Myers, E. & Lipman, D. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    98.
    GNU General Public License. URL http://www.gnu.org/licenses/gpl.html. Accessed 6 Nov 2020. More

  • in

    Phylogenetic comparison of egg transparency in ascidians by hyperspectral imaging

    1.
    Herring, P. J. The Biology of the Deep Ocean (Oxford University Press, Oxford, 2007).
    Google Scholar 
    2.
    Chapman, G. Transparency in organisms. Experientia 32, 123–125 (1976).
    Article  Google Scholar 

    3.
    Bagge, L. E. Not as clear as it may appear: Challenges associated with transparent camouflage in the ocean. Integr. Comp. Biol. 59, 1653–1663 (2019).
    Article  Google Scholar 

    4.
    Johnsen, S. Hide and seek in the open sea: Pelagic camouflage and visual countermeasures. Ann. Rev. Mar. Sci. 6, 369–392 (2014).
    Article  Google Scholar 

    5.
    Kakiuchida, H., Sakai, D., Nishikawa, J. & Hirose, E. Measurement of refractive indices of tunicates’ tunics: Light reflection of the transparent integuments in an ascidian Rhopalaea sp. and a salp Thetys vagina. Zool. Lett. 3, 7 (2017).
    Article  Google Scholar 

    6.
    Sakai, D., Kakiuchida, H., Nishikawa, J. & Hirose, E. Physical properties of the tunic in the pinkish-brown salp Pegea confoederata (Tunicata: Thaliacea). Zool. Lett. 4, 1–9 (2018).
    Article  Google Scholar 

    7.
    Giguère, L. A. & Northcote, T. G. Ingested prey increase risks of visual predation in transparent Chaoborus larvae. Oecologia 73, 48–52 (1987).
    ADS  Article  Google Scholar 

    8.
    Cronin, T. W. Camouflage: Being invisible in the open ocean. Curr. Biol. 26, R1179–R1181 (2016).
    CAS  Article  Google Scholar 

    9.
    Hansson, L. A. Induced pigmentation in zooplankton: A trade-off between threats from predation and ultraviolet radiation. Proc. R. Soc. B Biol. Sci. 267, 2327–2331 (2000).
    CAS  Article  Google Scholar 

    10.
    Johnsen, S. Hidden in plain sight: The ecology and physiology of organismal transparency. Biol. Bull. 201, 301–318 (2001).
    CAS  Article  Google Scholar 

    11.
    Yasuo, H. & McDougall, A. Practical guide for ascidian microinjection: Phallusia mammillata. Adv. Exp. Med. Biol. 1029, 15–24 (2018).
    CAS  Article  Google Scholar 

    12.
    Piliszek, A., Kwon, G. S. & Hadjantonakis, A.-K. Embryological methods in ascidians: The Villefranche-sur-Mer protocols. In Methods in Molecular Biology (Clifton, N.J.) Vol. 770 (ed. Pelegri, F. J.) 243–257 (Humana Press, Totowa, 2011).
    Google Scholar 

    13.
    Burighel, P. & Cloney, R. A. Urochordata: Ascidiacea. Microscopic Anatomy of Invertebrates 221–347 (1997).

    14.
    Conklin, E. G. Mosaic development in ascidian eggs. J. Exp. Zool. 2, 145–223 (1905).
    Article  Google Scholar 

    15.
    Jeffery, W. R. Identification of proteins and mRNAs in isolated yellow crescents of ascidian eggs. J. Embryol. Exp. Morphol. 89, 275–287 (1985).
    CAS  PubMed  Google Scholar 

    16.
    Arai, M. N. Biological interactions. in A Functional Biology of Scyphozoa 203–223 (Springer Netherlands, 1997). https://doi.org/10.1007/978-94-009-1497-1_9

    17.
    Nishikawa, T. et al. Molecular and morphological discrimination between an invasive ascidian, Ascidiella aspersa, and its congener A. scabra (Urochordata: Ascidiacea). Zool. Sci. 31, 180–185 (2014).
    CAS  Article  Google Scholar 

    18.
    Passamaneck, Y. J. & Di Gregorio, A. Ciona intestinalis: Chordate development made simple. Dev. Dyn. https://doi.org/10.1002/dvdy.20300 (2005).
    Article  PubMed  Google Scholar 

    19.
    Dehal, P. et al. The draft genome of Ciona intestinalis: Insights into chordate and vertebrate origins. Science 298, 2157–2167 (2002).
    ADS  CAS  Article  Google Scholar 

    20.
    Tassy, O. et al. The ANISEED database: Digital representation, formalization, and elucidation of a chordate developmental program. Genome Res. 20, 1459–1468 (2010).
    CAS  Article  Google Scholar 

    21.
    Brozovic, M. et al. ANISEED 2017: Extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx1108 (2017).
    Article  PubMed Central  Google Scholar 

    22.
    Delsuc, F. F. et al. A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biol. 16, 1–14 (2018).
    Article  Google Scholar 

    23.
    Epel, D., Hemela, K., Shick, M. & Patton, C. Development in the floating world: Defenses of eggs and embryos against damage from UV radiation. Am. Zool. 39, 271–278 (1999).
    Article  Google Scholar 

    24.
    Eaton, T. H. & Cott, H. B. Adaptive coloration in animals. Am. Midl. Nat. https://doi.org/10.2307/2420875 (1940).
    Article  Google Scholar 

    25.
    Lindquist, N., Hay, M. E. & Fenical, W. Defense of ascidians and their conspicuous larvae: Adult vs larval chemical defenses. Ecol. Monogr. 62, 547–568 (1992).
    Article  Google Scholar 

    26.
    Hirose, E., Ohtake, S.-I. & Azumi, K. Morphological characterization of the tunic in the edible ascidian, Halocynthia roretzi (Drasche), with remarks on ‘soft tunic syndrome’ in aquaculture. J. Fish Dis. 32, 433–445 (2009).
    CAS  Article  Google Scholar 

    27.
    Jacobs, G. H. Ultraviolet vision in vertebrates. Am. Zool. 32, 544–554 (1992).
    Article  Google Scholar 

    28.
    Karentz, D., Bosch, I. & Mitchell, D. M. Limited effects of Antarctic ozone depletion on sea urchin development. Mar. Biol. 145, 277–292 (2004).
    CAS  Article  Google Scholar 

    29.
    Winckler, K. & Fidhiany, L. Combined effects of constant sublethal UVA irradiation and elevated temperature on the survival and general metabolism of the convict-cichlid fish, Cichlasoma nigrofasciatum. Photochem. Photobiol. 63, 487–491 (1996).
    CAS  Article  Google Scholar 

    30.
    Bingham, B. L. & Reitzel, A. M. Solar damage to the solitary ascidian, Corella inflata. J. Mar. Biol. Assoc. UK 80, 515–521 (2000).
    Article  Google Scholar 

    31.
    Hirose, E. Pigmentation and acid storage in the tunic: Protective functions of the tunic cells in the tropical ascidian Phallusia nigra. Invertebr. Biol. 118, 414 (1999).
    Article  Google Scholar 

    32.
    Hirose, E., Hirabayashi, S., Hori, K., Kasai, F. & Watanabe, M. M. UV protection in the photosymbiotic ascidian Didemnum molle inhabiting different depths. Zool. Sci. 23, 57–63 (2006).
    CAS  Article  Google Scholar 

    33.
    Olson, R. R. Ascidian-prochloron symbiosis: The role of larval photoadaptations in midday larval release and settlement. Biol. Bull. 165, 221–240 (1983).
    Article  Google Scholar 

    34.
    Sensui, N. & Hirose, E. Cytoplasmic UV-R absorption in an integumentary matrix (Tunic) of photosymbiotic ascidian colonies. Zool. Stud. 57, 1–11 (2018).
    Google Scholar 

    35.
    Hirose, E., Ohtsuka, K., Ishikura, M. & Maruyama, T. Ultraviolet absorption in ascidian tunic and ascidian-Prochloron symbiosis. J. Mar. Biol. Assoc. UK 84, 789–794 (2004).
    CAS  Article  Google Scholar 

    36.
    Hansson, L. A. & Hylander, S. Effects of ultraviolet radiation on pigmentation, photoenzymatic repair, behavior, and community ecology of zooplankton. Photochem. Photobiol. Sci. 8, 1266–1275 (2009).
    CAS  Article  Google Scholar 

    37.
    Hansson, L. A., Hylander, S. & Sommaruga, R. Escape from UV threats in zooplankton: A cocktail of behavior and protective pigmentation. Ecology 88, 1932–1939 (2007).
    Article  Google Scholar 

    38.
    Pineda, M. C., Lorente, B., López-Legentil, S., Palacín, C. & Turon, X. Stochasticity in space, persistence in time: Genetic heterogeneity in harbour populations of the introduced ascidian Styela plicata. PeerJ 4, e2158 (2016).
    Article  Google Scholar 

    39.
    Zaniolo, G., Burighel, P. & Martinucci, G. Ovulation and placentation in Botryllus schlosseri (Ascidiacea): An ultrastructural study. Can. J. Zool. 65, 1181–1190 (1987).
    Article  Google Scholar 

    40.
    Mukai, H., Saito, Y. & Watanabe, H. Viviparous development in Botrylloides (compound ascidians). J. Morphol. 193, 263–276 (1987).
    Article  Google Scholar 

    41.
    Burighel, P., Cloney, R. A. & Cloney, B. Microscopic anatomy of invertebrates. Microsc. Anat. Invertebr. 15, 221–347 (1997).
    Google Scholar 

    42.
    Sardet, C. et al. Chapter 14 Embryological methods in ascidians: The Villefranche-sur-Mer protocols. Vertebr. Embryog. Methods Mol. Biol. 770, (2011).

    43.
    Chatterjee, A. et al. Cephalopod-inspired optical engineering of human cells. Nat. Commun. 11, 2708 (2020).
    ADS  CAS  Article  Google Scholar 

    44.
    Tsagkogeorga, G. et al. An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models. BMC Evol. Biol. 9, 187 (2009).
    Article  Google Scholar 

    45.
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. https://doi.org/10.1071/ZO9660275 (1994).
    Article  PubMed  Google Scholar 

    46.
    Hasegawa, N. & Kajihara, H. A redescription of syncarpa composita (Ascidiacea, stolidobranchia) with an inference of its phylogenetic position within styelidae. Zookeys 2019, 1–15 (2019).
    CAS  Article  Google Scholar 

    47.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mst010 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    48.
    Castresana, J. Estimation of genetic distances from human and mouse introns. Genome Biol. https://doi.org/10.1186/gb-2002-3-6-research0028 (2002).
    Article  PubMed  PubMed Central  Google Scholar 

    49.
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msw054 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    50.
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. https://doi.org/10.1093/bioinformatics/btu033 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    51.
    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics https://doi.org/10.1093/bioinformatics/17.8.754 (2001).
    Article  PubMed  Google Scholar 

    52.
    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics https://doi.org/10.1093/bioinformatics/btg180 (2003).
    Article  PubMed  Google Scholar 

    53.
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. Partitionfinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msw260 (2017).
    Article  PubMed  Google Scholar 

    54.
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
    CAS  Article  Google Scholar  More

  • in

    Local communities and wildlife consumption bans

    To the Editor — A wildlife consumption ban, which China enacted in February as a response to the COVID-19 pandemic, has been welcomed by most conservationists as a step towards avoiding a future outbreak of zoonotic diseases1. There are dissenting voices against this ban, arguing that wildlife generates multiple benefits for people who co-exist with wild species2. While both schools of thought have their own valid arguments, neither has yet to actively lobby for the free, prior and informed consent or consultation of the people who will be directly affected by conservation decisions related to COVID-19.

    Throughout the years, indigenous peoples and local communities (IPLCs) have been seen as either culprits of biodiversity decline or as ‘unseen sentinels’ effectively managing and monitoring their territories, which are often highly biodiverse3. This polarized view of IPLCs signals a prevailing lack of understanding of their way of life, where most of their dependence on nature is on a subsistence level. Wildlife consumption is often an essential part of their diets. A blanket ban on wildlife consumption may, therefore, exacerbate food insecurity in these communities. In other cases, IPLC wildlife consumption is more than just for subsistence. It may also have cultural roots and should be respected in that regard. Calling for education campaigns to ‘discredit engrained cultural beliefs’ that lead to wildlife consumption ignores the dynamics of cultural development and would most likely fail to conserve wildlife or fail to prevent another zoonotic disease outbreak4. What is needed is to craft bottom-up solutions together with the IPLCs directly depending on wildlife and to learn from their nuanced understanding of nature.

    Through creating opportunities and spaces for dialogue, governments and institutions can involve IPLCs in setting guidelines for wildlife consumption. They can adopt the dialogue approach employed by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), where IPLCs engage in knowledge exchange with technical experts and government representatives5. The dialogue, through parallel contributions of indigenous, local, scientific and practical knowledge, can enhance the understanding of wildlife consumption6. Governments and institutions can tap into the network of non-governmental organizations (NGOs) that closely collaborate with IPLCs and have them facilitate these dialogues. They need to listen carefully to IPLCs, learn from their customary protocols on wildlife use and consumption, and draft laws that could potentially prevent another zoonotic disease outbreak without jeopardizing the livelihoods and well-being of IPLCs. Likewise, IPLCs and civil society can continue to build on processes of self-strengthening and assert themselves in spaces where they can proactively engage in efforts to raise awareness and understanding of traditional wildlife consumption practices. These multiple stakeholders must work together to co-craft potential solutions to this global yet also very local concern of wildlife consumption and its connection to zoonotic diseases.

    References

    1.
    Butler, R. A. Conservationists welcome China’s wildlife trade ban. Mongabay (26 January 2020); https://go.nature.com/3pohgzZ

    2.
    Roe, D. Despite COVID-19, using wild species may still be the best way to save them. International Institute for Environment and Development (1 April 2020); https://go.nature.com/3pjRNYt

    3.
    Sheil, D., Boissière, M. & Beaudoin, G. Ecol. Soc. 20, 39 (2015).
    Article  Google Scholar 

    4.
    Ribeiro, J., Bingre, P., Strubbe, D. & Reino, L. Nature 578, 217 (2020).
    CAS  Article  Google Scholar 

    5.
    Hill, R. et al. Curr. Opin. Environ. Sustain. 43, 8–20 (2020).
    Article  Google Scholar 

    6.
    Tengö, M., Brondizio, E. S., Elmqvist, T., Malmer, P. & Spierenburg, M. AMBIO 43, 579–591 (2014).
    Article  Google Scholar 

    Download references

    Author information

    Affiliations

    Center for Development Research (ZEF) Bonn, University of Bonn, Bonn, Germany
    Denise Margaret S. Matias

    Institute for Social-Ecological Research (ISOE), Frankfurt am Main, Germany
    Denise Margaret S. Matias

    Non-Timber Forest Products Exchange Programme (NTFP-EP) Asia, Quezon City, Philippines
    Eufemia Felisa Pinto & Diana San Jose

    Non-Timber Forest Products Exchange Programme (NTFP-EP) India, c/o Keystone Foundation, Kotagiri, India
    Madhu Ramnath

    Authors
    Denise Margaret S. Matias

    Eufemia Felisa Pinto

    Madhu Ramnath

    Diana San Jose

    Contributions
    D.M.S.M. conceptualized and drafted the Correspondence. E.F.P. and D.S.J. provided input. M.R. reviewed the Correspondence.
    Corresponding author
    Correspondence to Denise Margaret S. Matias.

    Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Rights and permissions

    About this article

    Cite this article
    Matias, D.M.S., Pinto, E.F., Ramnath, M. et al. Local communities and wildlife consumption bans. Nat Sustain (2020). https://doi.org/10.1038/s41893-020-00662-7
    Download citation More

  • in

    Diversity, structure and demography of coral assemblages on underwater lava flows of different ages at Reunion Island and implications for ecological succession hypotheses

    1.
    Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111, 1119–1144 (1977).
    Article  Google Scholar 
    2.
    Sandin, S. A. & Sala, E. Using successional theory to measure marine ecosystem health. Evol. Ecol. 26, 435–448 (2012).
    Article  Google Scholar 

    3.
    Buma, B., Bisbing, S., Krapek, J. & Wright, G. A foundation of ecology rediscovered: 100 years of succession on the William S. Cooper plots in Glacier Bay, Alaska. Ecology 98, 1513–1523 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Odum, E. P. The strategy of ecosystem development. Science 164, 262–270 (1969).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    5.
    Copper, P. Ecological succession in Phanerozoic reef ecosystems: Is it real?. Palaios 3, 136–151 (1988).
    ADS  Article  Google Scholar 

    6.
    Vercelloni, J., Kayal, M., Chancerelle, Y. & Planes, S. Exposure, vulnerability, and resiliency of French Polynesian coral reefs to environmental disturbances. Sci. Rep. 9, 1027 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    Grigg, R. Community structure, succession and development of coral reefs in Hawaii. Mar. Ecol. Prog. Ser. 11, 1–14 (1983).
    ADS  Article  Google Scholar 

    9.
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).
    ADS  CAS  Article  Google Scholar 

    10.
    Knowlton, N. Multiple, “stable” states and the conservation of marine ecosystems. Prog. Oceanogr. 60, 387–396 (2004).
    ADS  Article  Google Scholar 

    11.
    Norström, A. V., Nyström, M., Lokrantz, J. & Folke, C. Alternative states on coral reefs: beyond coral-macroalgal phase shifts. Mar. Ecol. Prog. Ser. 376, 295–306 (2009).
    ADS  Article  Google Scholar 

    12.
    van de Leemput, I. A., Hughes, T. P., van Nes, E. H. & Scheffer, M. Multiple feedbacks and the prevalence of alternate stable states on coral reefs. Coral Reefs 35, 857–865 (2016).
    ADS  Article  Google Scholar 

    13.
    Kitayama, K., Mueller-Dombois, D. & Vitousek, P. M. Primary succession of Hawaiian montane rain forest on a chronosequence of eight lava flows. J. Veg. Sci. 6, 211–222 (1995).
    Article  Google Scholar 

    14.
    Walker, L. R. & del Moral, R. Primary Succession and Ecosystem Rehabilitation. (Cambridge University Press, Cambridge, 2003). https://doi.org/10.1017/CBO9780511615078.

    15.
    Prach, K. & Walker, L. R. Four opportunities for studies of ecological succession. Trends Ecol. Evol. 26, 119–123 (2011).
    PubMed  Article  Google Scholar 

    16.
    Turner, M. G., Whitby, T. G., Tinker, D. B. & Romme, W. H. Twenty-four years after the Yellowstone Fires: Are postfire lodgepole pine stands converging in structure and function?. Ecology 97, 1260–1273 (2016).
    PubMed  Article  Google Scholar 

    17.
    Rossi, S., Bramanti, L., Gori, A. & Orejas, C. Animal forests of the world: An overview. In Marine Animal Forests (eds. Rossi, S., Bramanti, L., Gori, A. & Orejas, C.) 1–28 (Springer, New York, 2017).

    18.
    Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).
    Article  Google Scholar 

    19.
    Wilkinson, C. Status of Coral Reefs of the World: 2008. (Global Coral Reef Monitoring Network and Reef and Rainforest Research Center, 2008).

    20.
    Kittinger, J. N., Finkbeiner, E. M., Glazier, E. W. & Crowder, L. B. Human dimensions of coral reef social-ecological systems. Ecol. Soc. 17, 17 (2012).
    Article  Google Scholar 

    21.
    Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    22.
    Edmunds, P. J. et al. Persistence and change in community composition of reef corals through present, past, and future climates. PLoS ONE 9, e107525 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    24.
    Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional comparisons. PLoS ONE 2, e711 (2007).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Adjeroud, M. et al. Recovery of coral assemblages despite acute and recurrent disturbances on a South Central Pacific reef. Sci. Rep. 8, 9680 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Dudgeon, S. R., Aronson, R. B., Bruno, J. F. & Precht, W. F. Phase shifts and stable states on coral reefs. Mar. Ecol. Prog. Ser. 413, 201–216 (2010).
    ADS  Article  Google Scholar 

    27.
    Coles, S. L. & Brown, E. K. Twenty-five years of change in coral coverage on a hurricane impacted reef in Hawai’i: The importance of recruitment. Coral Reefs 26, 705–717 (2007).
    ADS  Article  Google Scholar 

    28.
    Jouffray, J.-B. et al. Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130268 (2015).
    Article  Google Scholar 

    29.
    Doropoulos, C., Roff, G., Visser, M. S. & Mumby, P. J. Sensitivity of coral recruitment to subtle shifts in early community succession. Ecology 98, 304–314 (2016).
    Article  Google Scholar 

    30.
    Hixon, M. A. & Brostoff, W. N. Succession and herbivory: effects of differential fish grazing on Hawaiian coral-reef algae. Ecol. Monogr. 66, 67–90 (1996).
    Article  Google Scholar 

    31.
    Burkepile, D. E. & Hay, M. E. Impact of herbivore identity on algal succession and coral growth on a Caribbean reef. PLoS ONE 5, e8963 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Humphries, A. T., McClanahan, T. R. & McQuaid, C. D. Differential impacts of coral reef herbivores on algal succession in Kenya. Mar. Ecol. Prog. Ser. 504, 119–132 (2014).
    ADS  Article  Google Scholar 

    33.
    Grigg, R. & Maragos, J. Recolonization of hermatypic corals on submerged lava flows in Hawaii. Ecology 55, 387–395 (1974).
    Article  Google Scholar 

    34.
    Tomascik, T., van Woesik, R. & Mah, A. J. Rapid coral colonization of a recent lava flow following a volcanic eruption, Banda Islands, Indonesia. Coral Reefs 15, 169–175 (1996).
    ADS  Article  Google Scholar 

    35.
    Smallhorn-West, P. F. et al. Coral reef annihilation, persistence and recovery at Earth’s youngest volcanic island. Coral Reefs 39, 529–536 (2020).
    Article  Google Scholar 

    36.
    Edmunds, P. J., Nelson, H. R. & Bramanti, L. Density-dependence mediates coral assemblage structure. Ecology 99, 2605–2613 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    37.
    Pearson, R. G. Recovery and recolonization of coral reefs. Mar. Ecol. Prog. Ser. 4, 105–122 (1981).
    ADS  Article  Google Scholar 

    38.
    Kayal, M. et al. Predicting coral community recovery using multi-species population dynamics models. Ecol. Lett. 21, 1790–1799 (2018).
    PubMed  Article  Google Scholar 

    39.
    van Hooidonk, R., Maynard, J. A. & Planes, S. Temporary refugia for coral reefs in a warming world. Nat. Clim. Change. 3, 508–511 (2013).
    ADS  Article  CAS  Google Scholar 

    40.
    Yates, K. K. et al. Diverse coral communities in mangrove habitats suggest a novel refuge from climate change. Biogeosciences 11, 4321–4337 (2014).
    ADS  Article  Google Scholar 

    41.
    Cacciapaglia, C. & van Woesik, R. Reef-coral refugia in a rapidly changing ocean. Glob. Change. Biol. 21, 2272–2282 (2015).
    ADS  Article  Google Scholar 

    42.
    Kavousi, J. & Keppel, G. Clarifying the concept of climate change refugia for coral reefs. ICES J. Mar. Sci. 75, 43–49 (2018).
    Article  Google Scholar 

    43.
    Tanguy, J. C., Bachèlery, P. & LeGoff, M. Archeomagnetism of Piton de la Fournaise: Bearing on volcanic activity at La Réunion Island and geomagnetic secular variation in Southern Indian Ocean. Earth Planet. Sci. Lett. 303, 361–368 (2011).
    ADS  CAS  Article  Google Scholar 

    44.
    Michon, L. & Saint-Ange, F. Morphology of Piton de la Fournaise basaltic shield volcano (La Réunion Island): Characterization and implication in the volcano evolution. J. Geophys. Res. Solid Earth 113, B03203 (2008).
    ADS  Article  Google Scholar 

    45.
    Schleyer, M. H., Benayahu, Y., Parker-Nance, S., van Soest, R. W. M. & Quod, J. P. Benthos on submerged lava beds of varying age off the coast of Reunion, western Indian Ocean: sponges, octocorals and ascidians. Biodiversity 17, 93–100 (2016).
    Article  Google Scholar 

    46.
    Zubia, M. et al. Diversity and assemblage structure of tropical marine flora on lava flows of different ages. Aquat. Bot. 144, 20–30 (2018).
    Article  Google Scholar 

    47.
    Pinault, M. et al. Marine fish communities in shallow volcanic habitats. J. Fish Biol. 82, 1821–1847 (2013).
    CAS  PubMed  Article  Google Scholar 

    48.
    Pinault, M. et al. Fish community structure in relation to environmental variation in coastal volcanic habitats. J. Exp. Mar. Biol. Ecol. 460, 62–71 (2014).
    Article  Google Scholar 

    49.
    Bollard, S. et al. Biodiversity of echinoderms on underwater lava flows with different ages, from the Piton de la Fournaise (Reunion Island, Indian Ocean). Cah. Biol. Mar. 54, 491–497 (2013).
    Google Scholar 

    50.
    Camoin, G. F. et al. Holocene sea level changes and reef development in the southwestern Indian Ocean. Coral Reefs 16, 247–259 (1997).
    Article  Google Scholar 

    51.
    Quod, J.-P. & Bigot, L. Coral Bleaching in the Indian Ocean Islands: Ecological Consequences and Recovery in Madagascar, Comoros, Mayotte and Réunion. Coral Reef Degradation in the Indian Ocean, Status Report. (2000).

    52.
    Scopélitis, J. et al. Changes of coral communities over 35 years: Integrating in situ and remote-sensing data on Saint-Leu Reef (La Réunion, Indian Ocean). Estuar. Coast. Shelf Sci. 84, 342–352 (2009).
    ADS  Article  Google Scholar 

    53.
    Wickel, J. et al. Coral reef status report for the Western Indian Ocean. Reunion (France). In Coral Reef Status Report for the Western Indian Ocean, Global Coral Reef Monitoring Network (GCRMN)/International Coral Reef Initiative (ICRI) (eds. Obura, D. et al.) 96–108 (2017).

    54.
    Putts, M. R., Parrish, F. A., Trusdell, F. A. & Kahng, S. E. Structure and development of Hawaiian deep-water coral communities on Mauna Loa lava flows. Mar. Ecol. Prog. Ser. 630, 69–82 (2019).
    ADS  Article  Google Scholar 

    55.
    Loya, Y. Community structure and species diversity of hermatypic corals at Eilat, Red Sea. Mar. Biol. 13, 100–123 (1972).
    Article  Google Scholar 

    56.
    Beenaerts, N. & Vanden Berghe, E. Comparative study of three transect methods to assess coral cover, richness and diversity. West Indian Ocean J. Mar. Sci. 4, 29–37 (2005).
    Google Scholar 

    57.
    Mundy, C. N. An appraisal of methods used in coral recruitment studies. Coral Reefs 19, 124–131 (2000).
    Article  Google Scholar 

    58.
    Adjeroud, M., Penin, L. & Carroll, A. G. Spatio-temporal heterogeneity in coral recruitment around Moorea, French Polynesia: Implications for population maintenance. J. Exp. Mar. Biol. Ecol. 341, 204–218 (2007).
    Article  Google Scholar 

    59.
    Babcock, R. C., Baird, A. H., Piromvaragorn, S., Thomson, D. P. & Willis, B. L. Identification of scleractinian coral recruits from Indo-Pacific reefs. Zool. Stud. 42, 211–226 (2003).
    Google Scholar 

    60.
    Lê, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).
    Article  Google Scholar 

    61.
    Legendre, P. & Legendre, L. Numerical Ecology. 2nd English Ed. (Elsevier Science BV, Amsterdam, 1998).

    62.
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2018).

    63.
    Huston, M. A. Patterns of species diversity on coral reefs. Annu. Rev. Ecol. Syst. 16, 149–177 (1985).
    Article  Google Scholar 

    64.
    Connell, J. H., Hughes, T. P. & Wallace, C. C. A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol. Monogr. 67, 461–488 (1997).
    Article  Google Scholar 

    65.
    Karlson, R. H. & Cornell, H. V. Species richness of coral assemblages: Detecting regional influences at local spatial scales. Ecology 83, 452–463 (2002).
    Article  Google Scholar 

    66.
    Adjeroud, M., Poisson, E., Peignon, C., Penin, L. & Kayal, M. Spatial patterns and short-term changes of coral assemblages along a cross-shelf gradient in the southwestern lagoon of New Caledonia. Diversity 11, 21 (2019).
    Article  Google Scholar 

    67.
    Bouchon, C. Quantitative study of the scleractinian coral communities of a fringing reef at Reunion Island (Indian Ocean). Mar. Ecol. Prog. Ser. 4, 273–288 (1981).
    ADS  Article  Google Scholar 

    68.
    Connell, J. H. Population ecology of reef-building corals. In Biology and Geology of Coral Reefs 205–245 (Elsevier, Amsterdam, 1973). https://doi.org/10.1016/B978-0-12-395526-5.50015-8.

    69.
    Clark, S. & Edwards, A. J. Use of artificial reef structures to rehabilitate reef flats degraded by coral mining in the Maldives. Bull. Mar. Sci. 55, 724–744 (1994).
    Google Scholar 

    70.
    Penin, L. et al. Early post-settlement mortality and the structure of coral assemblages. Mar. Ecol. Prog. Ser. 408, 55–64 (2010).
    ADS  Article  Google Scholar 

    71.
    Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R. & Côté, I. M. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    72.
    Kayal, M., Vercelloni, J., Wand, M. P. & Adjeroud, M. Searching for the best bet in life-strategy: A quantitative approach to individual performance and population dynamics in reef-building corals. Ecol. Complex. 23, 73–84 (2015).
    Article  Google Scholar 

    73.
    Jouval, F., Latreille, A. C., Bureau, S., Adjeroud, M. & Penin, L. Multiscale variability in coral recruitment in the Mascarene Islands: From centimetric to geographical scale. PLoS ONE 14, e0214163 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Sutherland, J. P. & Karlson, R. H. Development and stability of the fouling community at Beaufort, North Carolina. Ecol. Monogr. 47, 452–446 (1977).
    Article  Google Scholar 

    75.
    Karlson, R. H. & Hurd, L. E. Disturbance, coral reef communities, and changing ecological paradigms. Coral Reefs 12, 117–125 (1993).
    ADS  Article  Google Scholar 

    76.
    Bramanti, L. & Edmunds, P. J. Density-associated recruitment mediates coral population dynamics on a coral reef. Coral Reefs 35, 543–553 (2016).
    ADS  Article  Google Scholar  More

  • in

    Soil bacterial community structures in relation to different oil palm management practices

    Site description and soil sampling
    The experiment was established as part of the EFForTS project (Ecological and socioeconomic Functions of tropical lowland rainForest Transformation Systems) in the Jambi province, located in Sumatra, Indonesia8.
    The experimental sites are located in the state-owned oil palm plantation PTPNVI, which was planted in 2002 (Fig. 1). All planted palms were derived from Tenera seedlings, which are a crossing between Dura and Psifera palms, supplied by Marihat (Medan, Indonesia). Four different locations (referred to as OM1-4) harbor four treatments, which were established in November 2016. In each of these 16 plots (50 × 50 m), five subplots were randomly established, resulting in 80 samples total.
    Fertilizer treatment was conducted in two intensities: for one application the conventional treatment usually used in the entire plantation with 130 kg nitrogen, 25 kg phosphorus and 110 kg potassium ha−1 and reduced fertilization with 68 kg nitrogen, 8.5 kg phosphorous and 93.5 kg potassium ha−1. Additionally, liming was conducted in all plots with equal amounts (213 kg dolomite and 71 kg micromag (micronutrients) ha−1). Fertilizer application and liming was done twice per year. The herbicide treatment used 375 cm3 glyphosate ha−1 sprayed within the palm circle four times per year and 375 cm3 glyphosate ha−1 in inter-rows applied twice per year15. The last application before sampling was done in April 2017. Mechanical weeding was done by cutting vegetation four times per year within the palm circle and two times per year in interrows with a brush cutter. The combination of these applications resulted in four different treatments: conventional fertilization with herbicide spraying (ch), conventional fertilization with mechanical weeding (cw), reduced fertilization with herbicide spraying (rh) and reduced fertilization with mechanical weeding (rw) (Table 1).
    Topsoil was sampled in May 2017 with a soil corer from the upper seven centimeters in each subplot with a diameter of five cm. A soil corer was used to take three cores in each subplot with a distance of 1 m to each other and at least 1 m distance to trees. The three bulk soil samples per subplot were homogenized and coarse roots and stones were removed. To prevent nucleic acids, especially RNA, from degradation RNAprotect Bacteria Reagent (Qiagen, Hilden, Germany) was applied in a ratio of 1:1. For measurements of soil parameters, we collected an additional sample, which was not supplemented with RNAprotect solution. All samples were transported in cooling boxes and stored at −80 °C until further use.
    Nucleic acid extraction
    Frozen samples were thawed on ice. RNAprotect was removed from all samples by centrifuging for 20 min at 804.96 g and 4 °C and discarding the resulting supernatant. DNA and RNA were co-extracted from 1 g of soil by using the Qiagen RNeasy PowerSoil Total RNA kit and the RNeasy PowerSoil DNA Elution kit as recommended by the manufacturer (Qiagen), except that RNA was eluted with 50 µl elution buffer instead of 100 µl. DNA contamination was removed from RNA preparations by using the TurboDNAfree kit (Applied Biosystems, Darmstadt, Germany). For this purpose, 0.1 volume DNAse buffer and 1 µl DNAse were added and incubated for 30 min at 37 °C. Subsequently, a second digestion cycle was performed with 0.5 µl DNAse at 37 °C for 15 min. RNA was then purified with the RNeasy MiniElute Cleanup kit (Qiagen). In order to verify complete DNA removal, a control amplification of the 16 S rRNA gene was performed as described below for 16 S rRNA gene amplification. Purified RNA was then reverse-transcribed into cDNA with the Superscript IV reverse transcriptase and a specific primer (5′-CCGTCAATTCMTTTGAGT-′3) as recommended by the manufacturer (Thermo Fisher Scientific, Schwerte, Germany). After cDNA synthesis, we removed residual RNA by adding 1 µl RNase H (New England Biolabs, Frankfurt am Main, Germany) to each reaction and incubation for 20 min at 37 °C. Obtained DNA and cDNA were stored at −20 °C until further use.
    16 S rRNA gene amplification and sequencing
    For amplification of 16 S rRNA sequences, we used 16 S rRNA gene primers targeting the V3-V4 region (forward primer: S-D-Bact-0341-b-S-17 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-CCTACGGGNGGCWGCAG-3′, reverse primer: S-D-Bact-0785-a-A-21 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-GACTACHVGGGTATCTAATCC-3′) as described by Klindworth22 and Herlemann23 and added adapters for MiSeq sequencing (underlined). PCR reactions were performed in a total volume 50 µl containing 10 µl of 5-fold Phusion GC buffer, 0.2 µl 50 mM MgCl2 solution, 2.5 µl DMSO, 200 µM of each of the four deoxynucleoside triphosphates and 1 U of Phusion High-Fidelity DNA Polymerase (Thermo Fisher Scientific). We used 20 to 30 ng of DNA and 1 µl cDNA per reaction. The PCR reaction was started by an initial denaturation at 98 °C for 1 min, followed by 25 cycles of denaturation at 98 °C for 45 s, annealing at 60 °C for 45 s and elongation at 72 °C for 30 s. The final elongation was at 72 °C for 5 minutes. Amplicons were then purified by using MagSi-NGS PREP Plus magnetic beads following the procedure recommended by the manufacturer (Steinbrenner Laborsysteme GmbH, Wiesenbach, Germany) with the Janus Automated Workstation from Perkin Elmer (Perkin Elmer, Waltham Massachusetts, USA). Illumina MiSeq sequencing adapters were attached to the purified amplicons with the Nextera XT Index kit (Illumina, San Diego, USA). The Index PCR was done by using 5 µl of template PCR product, 2.5 µl of each index primer, 12.5 µl of 2x KAPA HiFi HotStart ReadyMix and 2.5 µl PCR grade water. Thermal cycling scheme was as follows: 95 °C for 3 min, 8 cycles of 30 s at 95 °C, 30 s at 55 °C and 30 s at 72 °C and a final extension at 72 °C for 5 min. The indexed products were purified as described before. Products were quantified by using the Quant-iT dsDNA HS assay kit and a Qubit fluorometer following the instructions of the manufacturer (Invitrogen GmbH, Karlsruhe, Germany). Purified amplicons were sequenced by the Göttingen Genomics Laboratory with a MiSeq instrument with a read length of 2 × 300 bp using dual indexing and reagent kit v3 (600 cycles) as recommended by the manufacturer (Illumina).
    Sequence processing
    We obtained 6,817,019 amplicon sequences with 5,183,993 remaining sequences after quality-filtering from DNA samples. At RNA level 6,412,838 raw sequences with 3,601,637 remaining sequences after quality-filtering were obtained24.
    Obtained paired-end sequences were first quality-filtered with fastp version 0.2025 using a minimum phred score of 20, a minimum length of 50 bases, the default sliding window size (–cut_window_size = 4), read correction by overlap (option “correction”), adapter removal of the sequencing primers (option “adapter_fasta”), and the provided index sequences of Illumina. Quality-filtered paired-end reads were merged with PEAR version 0.9.11 and default settings26. Primer sequences were clipped with cutadapt version 2.5 and default settings27. All further steps, except mapping of sequences to ASVs (Amplicon Sequence Variant) were performed with functions implemented in vsearch version 2.1.4.128. Sequences were filtered by size with “sortbylength” with a set minimum length of 300 bp. Dereplication of identical sequences was done by “derep_fulllength”. Denoising and removal of low abundant sequences with less than eight replicates were done with the vsearch UNOISE3 module “cluster_unoise”. Chimeric sequences were removed by employing the UCHIME module of vsearch. This included a de novo chimera removal (“uchime3_denovo”) and a reference-based chimera removal (“uchime_ref”) against the SILVA SSU 138 NR database29. Sequences were mapped to ASVs by vsearch (“usearch_global”) with a set sequence identity threshold of 0.97. Taxonomy assignments were performed with BLASTN30 (version 2.9.0) against the SILVA SSU 138 NR database29 with an minimum identity threshold of 90%31. In addition to the taxonomy identity, we added the taxonomy id of the database, length of fragment, query percentage identity, query coverage and e-value in the taxonomy string of the table. We used identity (pident) and query coverage (qcovs) per ASV of the blast output to exclude uncertain blast hits. As recommended by the SILVA ribosomal RNA database project32, we removed the taxonomic assignment for blast hits if dividing the sum of percent identity and percent query coverage by 2 resulted in ≤93%. In total, 31,987 ASVs were used for downstream analysis.
    Bacterial community analysis
    The bacterial community composition was further analysed in R33 (version 3.6.1) and RStudio34 (version 1.1.463). ASV counts were normalized by using the Geometric Mean of Pairwise Ratios (GMPR) of the GMPR package version 0.1.335. Community compositions were then analysed by the ampvis2 package version 2.4.11 and “amp_heatmap” at genus level36. The fifteen most abundant genera were displayed as relative abundance and clustered at treatment level. Heat-trees were displayed by the metacoder37 package (version 0.3.2.9001).
    For heat-tree calculation all counts were summed at order level and all taxa with a relative abundance of More

  • in

    Enhancement of Aedes aegypti susceptibility to dengue by Wolbachia is not supported

    1.
    Nazni, W. A. et al. Establishment of Wolbachia Strain wAlbB in Malaysian populations of Aedes aegypti for Dengue control. Curr. Biol. 29, 4241–4248 (2019). e4245.
    CAS  Article  Google Scholar 
    2.
    Ryan, P. A. et al. Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia. Gates Open Res. 3, 1547 (2019).
    Article  Google Scholar 

    3.
    King, J. G., Souto-Maior, C., Sartori, L. M., Maciel-de-Freitas, R. & Gomes, M. G. M. Variation in Wolbachia effects on Aedes mosquitoes as a determinant of invasiveness and vectorial capacity. Nat. Commun. 9, 1483 (2018).
    ADS  Article  Google Scholar 

    4.
    Souto-Maior, C., Sylvestre, G., Braga Stehling Dias, F., Gomes, M. G. M. & Maciel-de-Freitas, R. Model-based inference from multiple dose, time course data reveals Wolbachia effects on infection profiles of type 1 dengue virus in Aedes aegypti. PLoS Negl. Trop. Dis. 12, e0006339 (2018).
    Article  Google Scholar 

    5.
    Ferguson, N. M. et al. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. Sci. Transl. Med. 7, 279ra237 (2015).
    Article  Google Scholar 

    6.
    Ant, T. H., Herd, C. S., Geoghegan, V., Hoffmann, A. A. & Sinkins, S. P. The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti. PLoS Pathog. 14, e1006815 (2018).
    Article  Google Scholar 

    7.
    Walker, T. et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476, 450–453 (2011).
    ADS  CAS  Article  Google Scholar 

    8.
    Frentiu, F. D. et al. Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia. PLoS Negl. Trop. Dis. 8, e2688 (2014).
    Article  Google Scholar 

    9.
    Moreira, L. A. et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139, 1268–1278 (2009).
    Article  Google Scholar 

    10.
    Fraser, J. E. et al. Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes. PLoS Pathog. 13, e1006751 (2017).
    Article  Google Scholar 

    11.
    Joubert, D. A. et al. Establishment of a Wolbachia superinfection in Aedes aegypti Mosquitoes as a potential approach for future resistance management. PLoS Pathog. 12, e1005434 (2016).
    Article  Google Scholar 

    12.
    Bian, G., Xu, Y., Lu, P., Xie, Y. & Xi, Z. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog. 6, e1000833 (2010).
    Article  Google Scholar 

    13.
    Chouin-Carneiro, T. et al. Wolbachia strain wAlbA blocks Zika virus transmission in Aedes aegypti. Med. Vet. Entomol. https://doi.org/10.1111/mve.12384 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    14.
    Pacidonio, E. C., Caragata, E. P., Alves, D. M., Marques, J. T. & Moreira, L. A. The impact of Wolbachia infection on the rate of vertical transmission of dengue virus in Brazilian Aedes aegypti. Parasit. Vectors 10, 296 (2017).
    Article  Google Scholar 

    15.
    Duong, V. et al. Asymptomatic humans transmit dengue virus to mosquitoes. Proc. Natl Acad. Sci. USA 112, 14688–14693 (2015).
    ADS  CAS  Article  Google Scholar  More