Ecology
Subterms
More stories
238 Shares159 Views
in EcologyA pilot study of eDNA metabarcoding to estimate plant biodiversity by an alpine glacier core (Adamello glacier, North Italy)
1.
Millennium Ecosystem Assessment. Ecosystems and human well-being: Biodiversity synthesis (World Resources Institute, Washington, DC, 2005). http://www.millenniumassessment.org/documents/document.354.aspx.pdf (accessed 22 April 2020).
2.
Willis, K. & Birks, H. What is natural? The need for a long-term perspective. Science 314(5803), 1261–1266. https://doi.org/10.1126/science.1122667 (2006).
ADS CAS Article PubMed PubMed Central Google Scholar3.
Birks, H. J. B. et al. Does pollen-assemblage richness reflect floristic richness? A review of recent developments and future challenges. Rev. Palaeobot. Palynol. 228, 1–25. https://doi.org/10.1016/j.revpalbo.2015.12.011 (2016).
Article Google Scholar4.
Li, K., Liao, M., Ni, J., Liu, X. & Wang, Y. Treeline composition and biodiversity change on the southeastern Tibetan Plateau during the past millennium, inferred from a high-resolution alpine pollen record. Quat. Sci. Rev. 206, 44–55. https://doi.org/10.1016/j.quascirev.2018.12.029 (2019).
ADS Article Google Scholar5.
Bálint, M. et al. Environmental DNA time series in ecology. Trends Ecol. Evol. 33, 945–957. https://doi.org/10.1016/j.tree.2018.09.003 (2018).
Article PubMed Google Scholar6.
Garlapati, D., Charankumar, B., Ramu, K., Madeswaran, P. & Ramana Murthy, M. V. A review on the applications and recent advances in environmental DNA (eDNA) metagenomics. Rev. Environ. Sci. Biotechnol. 18, 389–411. https://doi.org/10.1007/s11157-019-09501-4 (2019).
CAS Article Google Scholar7.
Hebert, P. D. N., Cywinska, A., Ball, S. L. & DeWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 270, 313–321. https://doi.org/10.1098/rspb.2002.2218 (2003).
CAS Article Google Scholar8.
Kress, W. J. & Erickson, D. L. DNA barcodes: Genes, genomics, and bioinformatics. Proc. Natl. Acad. Sci. USA 105, 2761–2762. https://doi.org/10.1073/pnas.0800476105 (2008).
ADS Article PubMed Google Scholar9.
CBOL Plant Working Group. A DNA barcode for land plants. Proc. Natl. Acad. Sci. USA 106, 12794–12797. https://doi.org/10.1073/pnas.0905845106 (2009).
Article Google Scholar10.
China Plant BOL Group. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. USA 108, 19641–19646. https://doi.org/10.1073/pnas.1104551108 (2011).
ADS Article Google Scholar11.
Li, X. W. et al. Plant DNA barcoding: From gene to genome. Biol. Rev. Camb. Philos. 90, 157–166. https://doi.org/10.1111/brv.12104 (2015).
Article Google Scholar12.
Fior, S. et al. Spatiotemporal reconstruction of the Aquilegia rapid radiation through next-generation sequencing of rapidly evolving cpDNA regions. New Phytol. 198, 579–592. https://doi.org/10.1111/nph.12163 (2013).
Article PubMed Google Scholar13.
Staats, M. et al. Advances in DNA metabarcoding for food and wildlife forensic species identification. Anal. Bioanal. Chem. 408, 4615–4630. https://doi.org/10.1007/s00216-016-9595-8 (2016).
CAS Article PubMed PubMed Central Google Scholar14.
Taberlet, P. et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35, e14. https://doi.org/10.1093/nar/gkl938 (2007).
CAS Article Google Scholar15.
Kraaijeveld, K. et al. Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing. Mol. Ecol. Resour. 15, 8–16. https://doi.org/10.1111/1755-0998.12288 (2015).
CAS Article PubMed Google Scholar16.
Leontidou, K. et al. DNA metabarcoding of airborne pollen: New protocols for improved taxonomic identification of environmental samples. Aerobiologia 34, 63–74. https://doi.org/10.1007/s10453-017-9497-z (2018).
Article Google Scholar17.
Parducci, L. et al. Ancient plant DNA in lake sediments. New Phytol. 214, 924–942 (2017).
CAS Article Google Scholar18.
Giguet-Covex, C. et al. New insights on lake sediment DNA from the catchment: Importance of taphonomic and analytical issues on the record quality. Sci. Rep. 9, 1–21 (2019).
CAS Article Google Scholar19.
Bovo, S. et al. Shotgun metagenomics of honey DNA: Evaluation of a methodological approach to describe a multi-kingdom honey bee derived environmental DNA signature. PLoS ONE 13, 1–19. https://doi.org/10.1371/journal.pone.0205575 (2018).
CAS Article Google Scholar20.
Yoccoz, N. G. et al. DNA from soil mirrors plant taxonomic and growth form diversity. Mol. Ecol. 21, 3647–3655 (2012).
CAS Article Google Scholar21.
Parducci, L. et al. Shotgun environmental DNA, pollen, and macrofossil analysis of lateglacial lake sediments from southern Sweden. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00189 (2019).
Article Google Scholar22.
Alsos, I. G. et al. Plant DNA metabarcoding of lake sediments: How does it represent the contemporary vegetation. PLoS ONE 13, 1–23. https://doi.org/10.1371/journal.pone.0195403 (2018).
CAS Article Google Scholar23.
Willerslev, E. et al. Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317, 111–114. https://doi.org/10.1126/science.1141758 (2007).
ADS CAS Article PubMed PubMed Central Google Scholar24.
Willerslev, E. et al. Diverse plant and animal genetic records from holocene and pleistocene sediments. Science 300, 791–795 (2003).
ADS CAS Article Google Scholar25.
Willerslev, E. et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506, 47–51. https://doi.org/10.1038/nature12921 (2014).
ADS CAS Article PubMed Google Scholar26.
Zimmermann, H. et al. Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia). Biogeosciences 14, 575–596. https://doi.org/10.5194/bg-14-575-2017 (2017).
ADS CAS Article Google Scholar27.
Alaeddini, R. Forensic implications of PCR inhibition—A review. Forensic Sci. Int. Genet. 6, 297–305. https://doi.org/10.1016/j.fsigen.2011.08.006 (2012).
CAS Article PubMed Google Scholar28.
Haeberli, W. & Alean, J. Temperature and accumulation of high altitude firn in the alps. Ann. Glaciol. 6, 161–163. https://doi.org/10.3189/1985AoG6-1-161-163 (1985).
ADS Article Google Scholar29.
Bennett, K. D. & Buck, C. E. Interpretation of lake sediment accumulation rates. Holocene 26, 1092–1102. https://doi.org/10.1177/0959683616632880 (2016).
ADS Article Google Scholar30.
Festi, D. et al. A novel pollen-based method to detect seasonality in ice cores: A case study from the Ortles glacier, South Tyrol, Italy. J. Glaciol. 61, 815–824. https://doi.org/10.3189/2015JoG14J236 (2015).
ADS Article Google Scholar31.
Nakazawa, F. Application of pollen analysis to dating of ice cores from lower-latitude glaciers. J. Geophys. Res. 109, 168–170. https://doi.org/10.1029/2004JF000125 (2004).
Article Google Scholar32.
Nakazawa, F. et al. Dating of seasonal snow/firn accumulation layers using pollen analysis. J. Glaciol. 51, 483–490. https://doi.org/10.3189/172756505781829179 (2005).
ADS Article Google Scholar33.
Nakazawa, F. et al. Establishing the timing of chemical deposition events on Belukha Glacier, Altai Mountains, Russia, using Pollen analysis. Arctic Antarct. Alp. Res. 43, 66–72. https://doi.org/10.1657/1938-4246-43.1.66 (2011).
Article Google Scholar34.
Nakazawa, F., Konya, K., Kadota, T. & Ohata, T. Reconstruction of the depositional environment upstream of Potanin Glacier, Mongolian Altai, from pollen analysis. Environ. Res. Lett. 7, 035402. https://doi.org/10.1088/1748-9326/7/3/035402 (2012).
ADS Article Google Scholar35.
Santibañez, P. et al. Glacier mass balance interpreted from biological analysis of firn cores in the Chilean lake district. J. Glaciol. 54, 452–462. https://doi.org/10.3189/002214308785837101 (2008).
ADS Article Google Scholar36.
Uetake, J. et al. Biological ice-core analysis of Sofiyskiy glacier in the Russian Altai. Ann. Glaciol. 43, 70–78. https://doi.org/10.3189/172756406781811925 (2006).
ADS CAS Article Google Scholar37.
Andreev, A. A., Nikolaev, V. I., Boi’sheiyanov, D. Y. & Petrov, V. N. Pollen and isotope investigations of an ice core from Vavilov ice cap, October revolution island, Severnaya Zemlya archipelago, Russia. Geogr. Phys. Quat. 51, 379–389. https://doi.org/10.7202/033137ar (1997).
Article Google Scholar38.
Liu, K. B., Reese, C. A. & Thompson, L. G. A potential pollen proxy for ENSO derived from the Sajama ice core. Geophys. Res. Lett. 34, 1–5. https://doi.org/10.1029/2006GL029018 (2007).
Article Google Scholar39.
Reese, C. A., Liu, K. B. & Thompson, L. G. An ice-core pollen record showing vegetation response to Late-glacial and Holocene climate changes at Nevado Sajama, Bolivia. Ann. Glaciol. 54, 183–190. https://doi.org/10.3189/2013AoG63A375 (2013).
ADS CAS Article Google Scholar40.
Papina, T. et al. Biological proxies recorded in a Belukha ice core, Russian Altai. Clim. Past 9, 2399–2411. https://doi.org/10.5194/cp-9-2399-2013 (2013).
Article Google Scholar41.
Winkler, S. et al. An introduction to mountain glaciers as climate indicators with spatial and temporal diversity. Erdkunde 64, 97–118. https://doi.org/10.3112/erdkunde.2010.02.01 (2010).
Article Google Scholar42.
Citterio, M. et al. The fluctuations of Italian glaciers during the last century: A contribution to knowledge about alpine glacier changes. Geogr. Ann. Ser. A Phys. Geogr. 89, 167–184. https://doi.org/10.1111/j.1468-0459.2007.00316.x (2007).
Article Google Scholar43.
Knoll, C. & Kerschner, H. A glacier inventory for South Tyrol, Italy, based on airborne laser-scanner data. Ann. Glaciol. 50, 46–52. https://doi.org/10.3189/172756410790595903 (2009).
ADS Article Google Scholar44.
Diolaiuti, G., Bocchiola, D., D’agata, C. & Smiraglia, C. Evidence of climate change impact upon glaciers’ recession within the Italian Alps: The case of Lombardy glaciers. Theor. Appl. Climatol. 109, 429–445. https://doi.org/10.1007/s00704-012-0589-y (2012).
ADS Article Google Scholar45.
IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Core Writing Team, R.K. Pachauri and L.A. Meyer) 151 (IPCC, Geneva, 2014).46.
Maggi, V. et al. Variability of anthropogenic and natural compounds in high altitude-high accumulation alpine glaciers. Hydrobiologia 562, 43–56. https://doi.org/10.1007/s10750-005-1804-y (2006).
CAS Article Google Scholar47.
Gabrielli, P. et al. Age of the Mt. Ortles ice cores, the Tyrolean Iceman and glaciation of the highest summit of South Tyrol since the Northern Hemisphere Climatic Optimum. Cryosphere 10, 2779–2797. https://doi.org/10.5194/tc-10-2779-2016 (2016).
ADS Article Google Scholar48.
Bohleber, P. et al. Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium. Clim. Past 14, 21–37. https://doi.org/10.5194/cp-14-21-2018 (2018).
Article Google Scholar49.
Rizzi, C., Finizio, A., Maggi, V. & Villa, S. Spatial–temporal analysis and risk characterisation of pesticides in Alpine glacial streams. Environ. Pollut. 248, 659–666. https://doi.org/10.1016/j.envpol.2019.02.067 (2019).
CAS Article PubMed Google Scholar50.
Garzonio, R. et al. Mapping the suitability for ice-core drilling of glaciers in the European Alps and the Asian High Mountains. J. Glaciol. 64, 12–26. https://doi.org/10.1017/jog.2017.75 (2018).
ADS Article Google Scholar51.
Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59. https://doi.org/10.1038/nmeth.2276 (2013).
CAS Article PubMed Google Scholar52.
Olds, B. P. et al. Estimating species richness using environmental DNA. Ecol. Evol. 6, 4214–4226. https://doi.org/10.1002/ece3.2186 (2016).
Article PubMed PubMed Central Google Scholar53.
Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895. https://doi.org/10.1111/mec.14350 (2017).
Article PubMed Google Scholar54.
Soons, M. B. & Ozinga, W. A. How important is long-distance seed dispersal for the regional survival of plant species?. Divers. Distrib. 11, 165–172. https://doi.org/10.1111/j.1366-9516.2005.00148.x (2005).
Article Google Scholar55.
Lyscov, V. N. & Moshkovsky, Y. S. DNA cryolysis. Biochim. Biophys. Acta 190, 101–110 (1969).
CAS Article Google Scholar56.
Pietramellara, G. et al. Extracellular DNA in soil and sediment: Fate and ecological relevance. Biol. Fertil. Soils 45, 219–235 (2009).
CAS Article Google Scholar57.
Lindahl, T. & Nyberg, B. Rate of depurination of native deoxyribonucleic acid. Biochemistry 11, 3610–3618 (1972).
CAS Article Google Scholar58.
Strickler, K. M., Fremier, A. K. & Goldberg, C. S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol. Conserv. 183, 85–92 (2015).
Article Google Scholar59.
Bortenschlager, S. Aspects of pollen morphology in the Cupressaceae. Grana 29, 129–137 (1990).
Article Google Scholar60.
Kurmann, M. H. Pollen morphology and ultrastructure in the Cupressaceae. Acta Bot. Gall. 141, 141–147 (1994).
Article Google Scholar61.
Chichiriccò, G. & Pacini, E. Cupressus arizonica pollen wall zonation and in vitro hydration. Plant Syst. Evol. 270, 231–242 (2008).
Article Google Scholar62.
Moran, T., Marshall, S. J. & Sharp, M. J. Isotope thermometry in melt-affected ice cores. J. Geophys. Res. Earth Surf. 116, 1–10. https://doi.org/10.1029/2010JF001738 (2011).
CAS Article Google Scholar63.
Baroni, C., Armiraglio, S., Gentili, R. & Carton, A. Landform-vegetation units for investigating the dynamics and geomorphologic evolution of alpine composite debris cones (Valle dell’Avio, Adamello Group, Italy). Geomorphology 84, 59–79 (2007).
ADS Article Google Scholar64.
Coissac, E., Riaz, T. & Puillandre, N. Bioinformatic challenges for DNA metabarcoding of plants and animals. Mol. Ecol. 21, 1834–1847. https://doi.org/10.1111/j.1365-294X.2012.05550.x (2012).
CAS Article PubMed Google Scholar65.
Celesti-Grapow, L. et al. (eds) Flora vascolare alloctona e invasiva delle regioni d’Italia (Casa Editrice Università La Sapienza, Roma, 2010).
Google Scholar66.
Wu, P.-C., Su, H.-J., Lung, S.-C.C., Chen, M.-J. & Lin, W.-P. Pollen of Broussonetia papyrifera: An emerging aeroallergen associated with allergic illness in Taiwan. Sci. Total Environ. 657, 804–810. https://doi.org/10.1016/j.scitotenv.2018.11.324 (2019).
ADS CAS Article PubMed Google Scholar67.
Kelly, R. P. et al. Genetic and manual survey methods yield different and complementary views of an ecosystem. Front. Mar. Sci. 3, 1–11. https://doi.org/10.3389/fmars.2016.00283 (2017).
Article Google Scholar68.
Baksay, S. et al. Experimental quantification of pollen with DNA metabarcoding using ITS1 and trnL. Sci. Rep. 10, 4202. https://doi.org/10.1038/s41598-020-61198-6 (2020).
ADS CAS Article PubMed PubMed Central Google Scholar69.
Picotti, S., Francese, R., Giorgi, M., Pettenati, F. & Carcione, J. M. Estimation of glacier thicknesses and basal properties using the horizontal-to-vertical component spectral ratio (HVSR) technique from passive seismic data. J. Glaciol. 63, 229–248. https://doi.org/10.1017/jog.2016.135 (2017).
ADS Article Google Scholar70.
Smiraglia, C. et al. The evolution of the Italian glaciers from the previous data base to the new Italian inventory. Preliminary considerations and results. Geogr. Fis. e Din. Quat. 38, 79–87. https://doi.org/10.4461/GFDQ.2015.38.08 (2015).
Article Google Scholar71.
Comitato Glaciologico Italiano & Consiglio Nazionale delle Ricerche. Catasto dei ghiacciai italiani. Anno geofisico 1957–1958. Volume III—Ghiacciai della Lombardia e dell’Ortles-Cevedale. (Comitato Glaciologico Italiano, Torino, 1961).72.
Marson, L. Sui ghiacciai dell’Adamello – Presanella (alto bacino del Sarca – Mincio). Boll. Soc. Geogr. It. 7, 546–568 (1906).
Google Scholar73.
Servizio Glaciologico Lombardo. Ghiacciai in Lombardia (Edizioni Bolis, Bergamo, 1992).
Google Scholar74.
Payer, J. Originalkarte der Adamello-Presanella Alpen, scala di 1:56.000. In Pajer J. – Die Adamello-Presanella Alpen nach den Forschungen und Aufnahmen, Petermanns Geogr. Mitt. Erganzungs-Hefte, 11 (17) (Gotha, 1865).75.
Bombarda, R. Il cuore Bianco. Guida ai ghiacciai del Trentino (Edizioni Arca, 1996).76.
Baroni, C., Carton, A. & Casarotto, C. I ghiacciai dell’Adamello. In: Itinerari Glaciologici sulle montagne italiane (ed. Comitato Glaciologico Italiano) Vol. 3 (Società Geologica Italiana, Roma, 2017).77.
Bertoni, E. & Casarotto, C. Estensione dei ghiacciai trentini dalla fine della Piccola Età glaciale a oggi. Rilevamento sul terreno, digitalizzazione GIS e analisi. (2015). Progetto finanziato dal Servizio sviluppo sostenibile e aree protette della PAT (rif. prot. n. P001/0640691/29-2014-16 dd. 2/12/2014) (accessed on 27 April 2020). http://www.climatrentino.it/binary/pat_climaticamente/osservatorio_trentino_clima/2014_Estensione_dei_ghiacciai_dalla_fine_della_Piccola_Et_Glaciale_a_oggi_MUSE_.1462456788.pdf.78.
Abeni, F. et al. Hydrogen and oxygen stable isotope fractionation in body fluid compartments of dairy cattle according to season, farm, breed, and reproductive stage. PLoS ONE 10(5), e0127391. https://doi.org/10.1371/journal.pone.0127391 (2015).
CAS Article PubMed PubMed Central Google Scholar79.
Bocchiola, D., Bombelli, G. M., Camin, F. & Ossi, P. M. Field study of mass balance, and hydrology of the West Khangri Nup Glacier (Khumbu, Everest). Water 12(2), 433. https://doi.org/10.3390/w12020433 (2020).
Article Google Scholar80.
Erdtman, G. The acetolysis method, A revised description. Svensk Bot. Tidskr. 54, 561–569 (1960).
Google Scholar81.
Faegri, K. & Iversen, J. Textbook of Pollen Analysis (Wiley, London, 1989).
Google Scholar82.
Bucher, E., Kofler, V., Vorwohl, G. & Zieger, E. Lo spettro pollinico dei mieli dell’Alto Adige (Laboratorio Biologico, Agenzia Provinciale per l’Ambiente, Laives, Bolzano. 2004).83.
Albanese, D. et al. MICCA: Aa complete and accurate software for taxonomic profiling of metagenomic data. Sci. Rep. 5, 9743 (2015).
CAS Article Google Scholar More200 Shares199 Views
in EcologyGroup size and aquatic vegetation modulates male preferences for female shoals in wild zebrafish, Danio rerio
Ethics statement
The study complied with the existing rules and guidelines outlined by the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Government of India, the Institutional Animal Ethics Committee’s (IAEC) and guidelines of Indian Institute of Science Education and Research (IISER) Kolkata. All experimental protocols followed here have been approved by the Institutional Animal Ethics Committee’s (IAEC) and guidelines of Indian Institute of Science Education and Research (IISER) Kolkata, Government of India. No animals were euthanized or sacrificed during any part of the study, and behavioral observations were conducted without any chemical treatment on the individuals. At the end of the experiments, all fish were returned to stock tanks and continued to be maintained in the laboratory.
Procuring subject animals and maintenance
We used wild-caught zebrafish (from Howrah district, West Bengal, India), bought from a commercial supplier. The fish were maintained in the laboratory in mixed-sex groups of approximately 60 individuals in well-aerated holding tanks (60 × 30 × 30 cm) filled with filtered water. The lighting in the laboratory was maintained at 14 hL:10 hD to mimic the natural LD cycle in zebrafish. They were fed commercially purchased freeze-dried blood worms once a day alternating with brine shrimp Artemia. The holding tanks were provided with standard corner filters for circulation. They were maintained in the laboratory for six months before experiments were conducted to ensure they were all adults and were reproductively mature. Holding room temperature was maintained between 23 and 25 °C.
Experimental setup
The experiments were conducted in a square glass arena (83 × 83 cm), with a half-diagonal of the square from the center that approximated ten fish standard body lengths (i.e. 40 cm, assuming one body length of adult zebrafish to be about 4 cm) (Fig. 1). Each corner of the arena was provided with a square chamber (of sides 10 cm) built from transparent mesh (using synthetic fish nets) for housing the females. This design allowed for the stimuli females to be localized in the patches and not escape into the arena while simultaneously ensuring that the test males can have visuo-chemical communication with the females. The center of the arena was provided with a removable chamber (with holes) for acclimation of the males prior to the trial.
Figure 1Diagrammatic representation of the arena for the density experimental set-up. The central chamber (indicated by a circle) represents the area where the test males were released and the corner square chamber (separated by transparent mesh) contained females of varying density. The distance of each patch from the central chamber was 40 cm.
Full size image
Three sets of experiments were performed to test their association preferences under (1) only varying female densities (2) increasing female and vegetation densities and (3) increasing female densities with decreasing vegetation.
Association preference experiment with varying female densities
For this experiment, each small chamber within the arena housed two (low number), four (medium number), eight (high number) or no (blank) females. These chambers represented patches of varying female numbers. The position of the female-containing chambers, as well as the composition of females within each patch, was randomized between trials. A total of 20 males were tested for their association preferences. Details on the data collected are provided in Supplementary File S1.
Association preference experiment with vegetation
For this experiment, the female-housing chambers (patches) were provided with vegetation (using artificial plants) of varying density (Fig. 2). Each subject fish was tested under two experimental settings. In E1, the number of females was proportional to the density of associated vegetation cover. We used four different densities of females, each associated with different densities of plants
1.
one female + no plants (no vegetation—N)2.
two females + two plants (low vegetation—L)3.
four females + three plants (moderate vegetation—M) and4.
eight females + five plants (high vegetation—H).Figure 2
Diagrammatic representation of the arena the vegetation experimental set-up. The central chamber (indicated by a circle) represents the area where the test males were released and the corner square chambers (separated by transparent mesh) contained females of varying density and each patch was associated with variable number of plastic plants representing vegetation cover.
Full size image
For E2, we interchanged in the vegetation cover for the two and eight female patches. The patch composition in E2 set were as follows
1.
one female + no plants (no vegetation—N)2.
two females + eight plants (high vegetation—H)3.
four females + three plants (moderate vegetation—M) and4.
eight females + two plants (low vegetation—L).All test males were tested in E1 and E2 on consecutive days in no particular order. Details on the data collected are provided in Supplementary Files S2 and S3.
Experimental protocol
For the experiment involving association preferences with only varying female numbers a total of 20 males were tested, while 24 males were tested for experiments on the association preferences in varying female numbers combined with vegetation density gradients (E1 and E2 experiments). The experiments were performed two months’ apart to ensure the fish do not retain any memory from the first experiment, and thus they could be treated as two independent sets. We isolated subject males of comparable sizes and kept them in individual isolation in 500 ml jars for four days prior to experiments as that allowed us to keep track of individual fish and also stimulated mate-seeking behavior21,22. They were fed freeze-dried blood worms every day at constantly maintained feeding times. The gravid females that were used for the experiment as stimuli for association were isolated (about 22 females) in a small holding tank (30 × 20 × 20 cm) with a feeding regimen similar to the test males. Before the start of each trial, we introduced the females into each chamber (patch) randomly (according to the experimental setup described above) and left them there for 15 min. for acclimation. A single male individual was then gently introduced into the central cylindrical chamber (with a hand-net), open at both ends (made of transparent plastic and provided with holes). After a five-minute acclimation period, the chamber was slowly removed to allow the male to swim freely in the arena and video recording was commenced. Video recordings were done using a camera (Sony DCR-PJ5, Sony DCR-SX22) placed perpendicularly above the arena. The test fish (males and females) were fed only after the end of experimental trials, on each day of experiments. At the end of the trials, the fish were returned to their holding tanks. No subject male fish were tested more than once per experimental setup and trial. The females used for the patches, were housed together (but separate from their male counterparts) in a smaller tank. Before the trials the females were picked randomly and assigned into each patch. During the experiment, the position of females being used was randomized between trials from patch to patch, to avoid the possibility of bias among the subject males for any particular females in the patches.
We recorded the behavior of each test fish for 10 min. All videos were analyzed using the software BORIS23. A single visit to any of the patch was denoted when the male approaches within 6 cm (1.5 times their average body length) of the patch. We collected data on three parameters: total number of visits to each patch, the total amount of time spent in each patch and the mean time spent per visit within each patch. The same overall protocol was followed for all sets of experiments.
Statistical analyses
We noted the total number of visits to each patch, the total duration of time spent in each patch and mean time spent per visit per patch for the entire ten minutes duration of video recording for each test male. We calculated preference index (I) the total number of visits (I_visit) and total time spent (I_time) for each patch as proportion of the total visits made to all four patches24.I_visit for patch A = No. of visit to patch A/(visit to patch A + visit to patch B + visit to patch C + visit to patch D).
I_time for patch A = time spent in patch A/(time spent in patch A + time spent in patch B + time spent in patch C + time spent in patch D).
All statistical analyses were performed in R studio (version 1.1.463)25. We developed generalized linear mixed models (GLMMs) using package glmmTMB (version 0.2.3)26 with ‘fish’ as the random factor and ‘Patches’ as the fixed factor, with four levels representing the four choices for the test (male) fish. Preference for total number of visits (I_visit) as well as total time spent (I_time) were found to fit beta distribution with values ranging between 0 and 1. For data fitting, we added 0.0001 to every value, to remove zeroes. Relevelled models were used to compare the parameters between the four patches. Link = logit was used under beta family to construct the GLMM models.
For analyzing the data for the second and third experiments involving varying female densities along with vegetation densities (E1 and E2), we followed a similar procedure of constructing a GLMM followed by post hoc tests. GLMM models were constructed with a single independent variable, “patch”, that had four levels, designated as H (high vegetation density), M (moderate vegetation density), L (low vegetation density) and N (no vegetation). More175 Shares149 Views
in EcologySilicon alleviates salinity stress in licorice (Glycyrrhiza uralensis) by regulating carbon and nitrogen metabolism
1.
Aslam, M., Ahmad, K., Arslan, A. M. & Amir, M. M. Salinity stress in crop plants: Effects of stress, tolerance mechanisms and breeding strategies for improvement. J. Agric. Basic Sci. 2(1), 2518–4210 (2017).
Google Scholar
2.
Kirsten, B., Abbey, F. W., Thomas, D., Amitava, C. & Jason, H. Soil salinity: A threat to global food security. Agron. J. 108(6), 2189–2200 (2016).
Article CAS Google Scholar3.
Shakeel, A. A. et al. Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front. Plant Sci. 8(69), 1–12 (2017).
Google Scholar4.
Abd-ElBaki, G. K. et al. Nitrate reductase in Zea mays L. under salinity. Plant Cell Environ. 23, 515–521 (2000).
CAS Article Google Scholar5.
Flores, P., Botella, M. Á., Martínez, V. & Cerdá, A. C. Ionic and osmotic effects of nitrate reductase activity in tomato seedlings. J. Plant Physiol. 156, 552–557 (2000).
CAS Article Google Scholar6.
Petronia, C., Gabriella, M., Francesco, N. & Amodio, F. Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity. Funct. Plant Biol. 32(3), 209–219 (2005).
Article Google Scholar7.
Flowers, T. J. et al. Salt sensitivity in chickpea. Plant Cell Environ. 3(4), 490–509 (2010).
MathSciNet Article CAS Google Scholar8.
Husen, A., Iqbal, M., Sohrab, S. S. & Ansari, M. K. A. Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.). Agric. Food Secur. 7(1), 44 (2018).
Article Google Scholar9.
Farhangi-Abriz, S. & Torabian, S. Biochar improved nodulation and nitrogen metabolism of soybean under salt stress. Symbiosis. 74(3), 215–223 (2018).
CAS Article Google Scholar10.
Gupta, B. & Huan, B. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J. Genomics. 1, 701596. https://doi.org/10.1155/2014/701596 (2014).
CAS Article Google Scholar11.
Zhang, W. J. et al. Silicon promotes growth and root yield of Glycyrrhiza uralensis, under salt and drought stresses through enhancing osmotic adjustment and regulating antioxidant metabolism. Crop Prot. 107, 1–11 (2018).
Article CAS Google Scholar12.
Saqib, M., Zörb, C. & Schubert, S. Salt resistant and salt-sensitive wheat genotypes show similar biochemical reaction at protein level in the first phase of salt stress. J. Plant Nutr. Soil Sci. 169(4), 542–548 (2006).
CAS Article Google Scholar13.
Turan, M. A., Katkat, V. & Taban, S. Salinity-induced stomatal resistance, proline, chlorophyll and ion concentrations of bean. Int. J. Agric. Res. 2(5), 483–488 (2007).
CAS Article Google Scholar14.
Memon, S. A., Hou, X. L. & Wang, L. J. Morphological analysis of salt stress response of pak Choi. Electron. J. Environ. Agric. Food Chem. 9(1), 248–254 (2010).
CAS Google Scholar15.
Keyvan, A. & Setsuko, K. Crop and medicinal plants proteomics in response to salt stress. Front. Plant Sci. 4(8), 8 (2013).
Google Scholar16.
Dadkhah, A. R. Effect of salt stress on growth and essential oil of Matricaria chamomilla. Planta Med. 5(10), 643–646 (2010).
Google Scholar17.
Aziz, E. E., Al-Amier, H. & Craker, L. E. Influence of salt stress on growth and essential oil production in peppermint, pennyroyal, and apple mint. J. Herbs Spices Med. Plants. 14(1–2), 77–87 (2008).
CAS Article Google Scholar18.
Leithy, S., Gaballah, M. S. & Gomaa, A. M. Associative impact of bio-and organic fertilizers on geranium plants grown under saline conditions. Electron. J. Environ. Agric. Food Chem. 1(3), 617–626 (2009).
Google Scholar19.
Najafian, S., Khoshkhui, M. & Tavallali, V. Effect of salicylic acid and salinity in rosemary (Rosmarinus officinalis L): Investigation on changes in gas exchange, water relations, and membrane stabilization. Aust. J. Basic. Appl. Sci. 3(3), 322–328 (2009).
CAS Google Scholar20.
Taarit, M. B. et al. Plant growth, essential oil yield and composition of sage (Salvia officinalis L.) fruits cultivated under salt stress conditions. Ind. Crops Prod. 30(3), 333–337 (2009).
Article CAS Google Scholar21.
Queslati, S. et al. Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiol. Plant. 32(2), 289–296 (2010).
Article CAS Google Scholar22.
Seyed, M. Z., Faezeh, M., Saadat, S. & Mohsen, P. Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Sci. Rep. 10, 17672. https://doi.org/10.1038/s41598-020-74273-9 (2020).
CAS Article Google Scholar23.
Yan, et al. Silicon improves rice salinity resistance by alleviating ionic toxicity and osmotic constraint in an organ-specific pattern. Front. Plant Sci. 11, 260. https://doi.org/10.3389/fpls.2020.00260 (2020).
ADS Article PubMed PubMed Central Google Scholar24.
Mateos-Naranjo, E., Andrades-Moreno, L. & Davy, A. J. Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora. Plant Physiol. Biochem. 63, 115–121 (2013).
CAS PubMed Article PubMed Central Google Scholar25.
Chen, D. Q., Yin, L., Deng, X. P. & Wang, S. W. Silicon increases salt tolerance by influencing the two-phase growth response to salinity in wheat (Triticum aestivum L). Acta Physiol. Plant. 36(9), 2531–2535 (2014).
CAS Article Google Scholar26.
Khattab, H. I., Emam, M. A., Emam, M. M., Helal, N. M. & Mohamed, R. M. Effect of selenium and silicon on transcription factors NAC5 and DREB2A involved in drought-responsive gene expression in rice. Biol. Plant. 58(2), 265–273 (2014).
CAS Article Google Scholar27.
Zhu, Y. X. & Gong, H. G. Beneficial effects of silicon on salt and drought tolerance in plants. Agron. Sustain. Dev. 34(2), 455–472 (2013).
Article CAS Google Scholar28.
Zhang, X. H. et al. Effect of silicon on seed germination and the physiological characteristics of Glycyrrhiza uralensis under different levels of salinity. J. Hortic. Sci. Biotechnol. 90(4), 439–443 (2015).
CAS Article Google Scholar29.
Marcin, R. N. & Maria, S. The relationship between carbon and nitrogen metabolism in cucumber leaves acclimated to salt stress. Peer J. 6(3), e6043 (2018).
Google Scholar30.
Zhang, D. D. et al. Enhanced of α-ketoglutarate production in Torulopsis glabrata: Redistribution of carbon flux from pyruvate to α-ketoglutarate. Biotechnol. Bioprocess Eng. 14(2), 134–139 (2009).
ADS CAS Article Google Scholar31.
Nunes-Nesi, A., Fernie, A. R. & Stitt, M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol. Plant. 3(6), 973–996 (2010).
CAS PubMed Article PubMed Central Google Scholar32.
Miller, A. J., Fan, X. R., Shen, Q. R. & Smith, S. J. Amino acids and nitrate as signals for the regulation of nitrogen acquisition. J. Exp. Bot. 59(1), 111–119 (2008).
CAS PubMed Article PubMed Central Google Scholar33.
Reynolds, M. P. Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. J. Exp. Bot. 62(2), 469–486 (2010).
PubMed PubMed Central Google Scholar34.
Yan, B. B. et al. The effects of endogenous hormones on the flowering and fruiting of Glycyrrhiza uralensis. Plants Basel. 8(11), 519 (2019).
CAS PubMed Central Article Google Scholar35.
Mochida, K. et al. Draft genome assembly and annotation of Glycyrrhiza uralensis, a medicinal legume. Plant J. 89(2), 181–194 (2016).
PubMed Article CAS PubMed Central Google Scholar36.
An, C.-G. et al. Effect of KCl or K2SO4 supplement to nutrient solution on yield and fruit quality in sweet peppers (Capsicum annuum “Special” and ’Fiesta’). Hortic. Sci. Technol. 24(2), 181–189 (2006).
Google Scholar37.
Lang, D. Y., Yu, X. X., Jia, X. X., Li, Z. X. & Zhang, X. H. Methyl jasmonate improves metabolism and growth of NaCl-stressed Glycyrrhiza uralensis seedlings. Sci. Hortic. 266, 109287. https://doi.org/10.1016/j.scienta (2020).
CAS Article Google Scholar38.
Verma, A. K., Upadhyay, S. K., Verma, P. C., Solomon, S. & Singh, S. B. Functional analysis of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in sugarcane (Saccharum) cultivars. Plant Biol. 13(2), 325–332 (2010).
PubMed Article CAS PubMed Central Google Scholar39.
Orathai, W., Lih, S. K. & Liang, Y. S. The changes in physical, bio-chemical, physiological characteristics and enzyme activities of mango cv. Jinhwang during fruit growth and development. NJAS-Wagen. J. Life Sc. 72–73, 7–12 (2015).
Google Scholar40.
Charles, J. B., Christine, H. F., Janice, T., Stephen, A. R. & Quick, W. P. Elevated sucrose-phosphate synthase activity in transgenic tobacco sustains photosynthesis in older leaves and alters development. J. Exp. Bot. 54(389), 1813–1820 (2003).
Article Google Scholar41.
Wang, X. W. et al. In vitro evaluation of the hypoglycemic properties of lactic acid bacteria and its fermentation adaptability in apple juice. LWT-Food Sci. Technol. 136, 110363. https://doi.org/10.1016/j.lwt.2020.110363 (2020).
CAS Article Google Scholar42.
Ali, A., Jha, P., Sandhu, K. S. & Raghuram, N. Spirulina nitrate-assimilating enzymes (NR, NiR, GS) have higher specific activities and are more stable than those of rice. Physiol. Mol. Biol. Plant. 14(3), 179–182 (2008).
CAS Article Google Scholar43.
Patel, J. G., Kumar, N. J. I., Kumar, R. N. & Khan, S. R. Evaluation of nitrogen fixing enzyme activities in response to pyrene bioremediation efficacy by defined artificial microalgal-bacterial consortium of Gujarat, India. Polycycl. Aromat. Compd. 38(3), 282–293 (2018).
CAS Article Google Scholar44.
Liu, C. G. et al. Carbon and nitrogen metabolism in leaves and roots of dwarf bamboo (Fargesia denudata Yi) subjected to drought for two consecutive years during sprouting period. J. Plant Growth Regul. 33, 243–255 (2014).
CAS Article Google Scholar45.
Magomya, A. M., Kubmarawa, D., Ndahi, J. A. & Yebpella, G. G. Determination of plant proteins via the Kjeldahl method and amino acid analysis: A comparative study. Int. J. Sci. Technol. Res. 3(4), 68–72 (2014).
Google Scholar46.
Yang, H. L. et al. Molybdenum blue photometry method for the determination of colloidal silica and soluble silica in leaching solution. Anal. Methods. https://doi.org/10.1039/C5AY01306B (2015).
Article Google Scholar47.
Marino, D., González, E. M. & Arrese-Igor, C. Drought effects on carbon and nitrogen metabolism of pea nodules can be mimicked by paraquat: Evidence for the occurrence of two regulation pathways under oxidative stresses. J. Exp. Bot. 57(3), 665–673 (2006).
CAS PubMed Article PubMed Central Google Scholar48.
Shao, Q. S. et al. Effects of NaCl stress on nitrogen metabolism of cucumber seedlings. Russ. J. Plant Physiol. 62(5), 595–603 (2015).
CAS Article Google Scholar49.
Irani, S. & Todd, C. D. Ureide metabolism under abiotic stress in Arabidopsis thaliana. J. Plant Physiol. 199, 87–95 (2016).
CAS PubMed Article PubMed Central Google Scholar50.
Ahmad, P. et al. Silicon (Si) supplementation alleviates NaCl toxicity in Mung Bean [Vigna radiata, (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes. J. Plant Growth Regul. 38, 70–82 (2018).
Article CAS Google Scholar51.
Liang, Y. C., Chen, Q., Liu, Q., Zhang, W. H. & Ding, R. X. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J. Plant Physiol. 160(10), 1157–1164 (2003).
CAS PubMed Article PubMed Central Google Scholar52.
Kim, Y. H. et al. Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. J. Plant Growth Regul. 33(2), 137–149 (2013).
Article CAS Google Scholar53.
Haghighi, M. & Pessarakli, M. Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci. Hortic. 161(24), 111–117 (2013).
CAS Article Google Scholar54.
Zhu, Y. X. et al. Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus, L. Plant Cell Rep. 34(9), 1629–1646 (2015).
CAS PubMed Article PubMed Central Google Scholar55.
Fernandes, F. M., Arrabaca, M. C. & Carvalho, L. M. M. Sucrose metabolism in Lupinus albus L. under salt stress. Biol. Plant. 48(2), 317–319 (2004).
CAS Article Google Scholar56.
Miyako, K. et al. Cytosolic GLUTAMINE SYNTHETASE1;1 modulates metabolism and chloroplast development in roots. Plant Physiol. 182(4), 1894–1909 (2020).
Article CAS Google Scholar57.
Joaquim, A. G. S. et al. Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in cashew leaves. J. Plant Physiol. 160(2), 115–123 (2003).
Article Google Scholar58.
Dresler, S., Wójcik, M., Bednarek, W., Hanaka, A. & Tukiendorf, A. The effect of silicon on maize growth under cadmium stress. Russ. J. Plant Physiol. 62(1), 86–92 (2015).
CAS Article Google Scholar59.
Muneer, S. & Jeong, B. R. Proteomic analysis of salt-stress responsive proteins in roots of tomato (Lycopersicon esculentum L.) plants towards silicon efficiency. Plant Growth Regul. 77(2), 133–146 (2015).
ADS CAS Article Google Scholar60.
Dorairaj, D., Ismail, M. R., Sinniah, U. R. & Ban, T. K. Influence of silicon on growth, yield, and lodging resistance of MR219, a lowland rice of Malaysia. J. Plant Nutr. 40(8), 1111–1124 (2017).
CAS Article Google Scholar61.
Garg, N. & Singh, S. Arbuscular mycorrhiza Rhizophagus irregularis and silicon modulate growth, proline biosynthesis and yield in Cajanus cajan L. Millsp. (pigeonpea) genotypes under cadmium and zinc stress. J. Plant Growth Regul. 37(6), 46–63 (2018).
CAS Article Google Scholar More150 Shares169 Views
in EcologyDeep-sea bacteria trigger settlement and metamorphosis of the mussel Mytilus coruscus larvae
1.
Liang, X., Liu, Y. Z., Chen, K., Li, Y. F. & Yang, J. L. Identification of MyD88-4 in Mytilus coruscus and expression changes in response to Vibrio chagasii challenge (in Chinese with English abstract). J. Fish. China. 43, 2347–2358 (2019).
Google Scholar
2.
Li, T. W. Marine Biology (in Chinese) (China Ocean Press, Beijing, 2013).
Google Scholar3.
Liang, X. et al. Effects of dynamic succession of Vibrio biofilms on settlement of the mussel Mytilus coruscus (in Chinese with English abstract). J. Fish. China. 44, 118–129 (2020).
Google Scholar4.
Whalan, S. & Webster, N. S. Sponge larval settlement cues: the role of microbial biofilms in a warming ocean. Sci. Rep. 4, 4072 (2014).
ADS CAS Article Google Scholar5.
Satuito, C. G., Natoyama, K., Yamazaki, M. & Fusetani, N. Induction of attachment and metamorphosis of laboratory cultured mussel Mytilus edulis galloprovincialis larvae by microbial film. Fish. Sci. 61, 223–227 (1995).
CAS Article Google Scholar6.
Zhao, B., Zhang, S. & Qian, P. Y. Larval settlement of the silver-or goldlip pearl oyster Pinctada maxima (Jameson) in response to natural biofilms and chemical cues. Aquaculture 220, 883–901 (2003).
Article Google Scholar7.
Rahim, S. A. K. A., Li, J. Y. & Kitamura, H. Larval metamorphosis of the sea urchins, Pseudocentrotus depressus and Anthocidaris crassispina in response to microbial film. Mar. Biol. 144, 71–78 (2004).
Article Google Scholar8.
Bao, W. Y., Satuito, C. G., Yang, J. L. & Kitamura, H. Larval settlement and metamorphosis of the mussel Mytilus galloprovincialis in response to biofilms. Mar. Biol. 150, 565–574 (2007).
Article Google Scholar9.
Huang, Y., Callahan, S. & Hadfield, M. G. Recruitment in the sea: bacterial genes required for inducing larval settlement in a polychaete worm. Sci. Rep. 2, 228 (2012).
ADS Article Google Scholar10.
Wang, C. et al. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to natural biofilms. Biofouling 28, 249–256 (2012).
Article Google Scholar11.
Yang, J. L. et al. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms. Biofouling 29, 247–259 (2013).
CAS Article Google Scholar12.
Liang, X. et al. The flagellar gene regulates biofilm formation and mussel larval settlement and metamorphosis. Int. J. Mol. Sci. 21, 710 (2020).
CAS Article Google Scholar13.
Peng, L. H., Liang, X., Xu, J. K., Dobretsov, S. & Yang, J. L. Monospecific biofilms of Pseudoalteromonas promote larval settlement and metamorphosis of Mytilus coruscus. Sci. Rep. 10, 2577 (2020).
ADS CAS Article Google Scholar14.
Schippers, A. et al. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433, 861–864 (2005).
ADS CAS Article Google Scholar15.
Orcutt, B. N., Sylvan, J. B., Knab, N. J. & Edwards, K. J. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol. Mol. Biol. Rev. 75, 361–422 (2011).
CAS Article Google Scholar16.
Woodall, L. C. et al. Deep-sea anthropogenic macrodebris harbours rich and diverse communities of bacteria and archaea. PLoS ONE 13, e0206220 (2018).
Article Google Scholar17.
Wieczorek, S. K. & Todd, C. D. Inhibition and facilitation of settlement of epifaunal marine invertebrate larvae by microbial biofilm cues. Biofouling 12, 81–118 (1998).
Article Google Scholar18.
Qian, P. Y., Lau, S. C. K., Dahms, H. U., Dobretsov, S. & Harder, T. Marine biofilms as mediators of colonization by marine macroorganisms: implications for antifouling and aquaculture. Mar. Biotechnol. 9, 399–410 (2007).
CAS Article Google Scholar19.
Dobretsov, S. in Marine and Industrial Biofouling (eds Flemming, H. C. et al.) 293–313 (Springer, 2009).20.
Huang, S. & Hadfield, M. G. Composition and density of bacterial biofilms determine larval settlement of the polychaete Hydroides elegans. Mar. Ecol. Prog. Ser. 260, 161–172 (2003).
ADS CAS Article Google Scholar21.
Tran, C. & Hadfield, M. G. Larvae of Pocillopora damicornis (Anthozoa) settle and metamorphose in response to surface-biofilm bacteria. Mar. Ecol. Prog. Ser. 433, 85–96 (2011).
ADS Article Google Scholar22.
Dahms, H. U., Dobretsov, S. & Qian, P. Y. The effect of bacterial and diatom biofilms on the settlement of the bryozoan Bugula neritina. J. Exp. Mar. Biol. Ecol. 313, 191–209 (2004).
Article Google Scholar23.
Lau, S. C. K., Thiyagarajan, V. & Qian, P. Y. The bioactivity of bacterial isolates in Hong Kong waters for the inhibition of barnacle (Balanus amphitrite Darwin) settlement. J. Exp. Mar. Biol. Ecol. 282, 43–60 (2003).
Article Google Scholar24.
Lau, S. C. K. & Qian, P. Y. Larval settlement in the serpulid polychaete Hydroides elegans in response to bacterial films: an investigation of the nature of putative larval settlement cue. Mar. Biol. 138, 321–328 (2001).
Article Google Scholar25.
Bao, W. Y., Yang, J. L., Satuito, C. G. & Kitamura, H. Larval metamorphosis of the mussel Mytilus galloprovincialis in response to Alteromonas sp. 1: evidence for two chemical cues?. Mar. Biol. 152, 657–666 (2007).
Article Google Scholar26.
Unabia, C. R. C. & Hadfield, M. G. Role of bacteria in larval settlement and metamorphosis of the polychaete Hydroides elegans. Mar. Biol. 133, 55–64 (1999).
Article Google Scholar27.
Hadfield, M. G. Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. Annu. Rev. Mar. Sci. 3, 453–470 (2011).
ADS Article Google Scholar28.
Flemming, H. C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).
CAS Article Google Scholar29.
Flemming, H. C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).
CAS Article Google Scholar30.
Karygianni, L., Ren, Z., Koo, H. & Thurnheer, T. Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol. 28, 668–681 (2020).
CAS Article Google Scholar31.
Fulaz, S., Vitale, S., Quinn, L. & Casey, E. Nanoparticle–biofilm interactions: the role of the EPS matrix. Trends Microbiol. 27, 915–926 (2019).
CAS Article Google Scholar32.
Dragoš, A. & Kovács, Á. T. The peculiar functions of the bacterial extracellular matrix. Trends Microbiol. 25, 257–266 (2017).
Article Google Scholar33.
Mayer, C. et al. The role of intermolecular interactions: studies on model systems for bacterial biofilms. Int. J. Biol. Macromol. 26, 3–16 (1999).
CAS Article Google Scholar34.
Liang, X. et al. Effects of biofilms of deep-sea bacteria under varying temperatures on larval metamorphosis of Mytilus coruscus (in Chinese with English abstract). J. Fish. China. 44, 131–144 (2020).
Google Scholar35.
Huggett, M. J., Williamson, J. E., de Nys, R., Kjelleberg, S. & Steinberg, P. D. Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae. Oecologia 149, 604–619 (2006).
ADS Article Google Scholar36.
Yang, J. L., Satuito, C. G., Bao, W. Y. & Kitamura, H. Induction of metamorphosis of pediveliger larvae of the mussel Mytilus galloprovincialis Lamarck, 1819 using neuroactive compounds, KCl, NH4Cl and organic solvents. Biofouling 24, 461–470 (2008).
CAS Article Google Scholar37.
Yang, J. L., Li, Y. F., Bao, W. Y., Satuito, C. G. & Kitamura, H. Larval metamorphosis of the mussel Mytilus galloprovincialis Lamarck, 1819 in response to neurotransmitter blockers and tetraethylammonium. Biofouling 27, 193–199 (2011).
CAS Article Google Scholar38.
Yang, J. L., Satuito, C. G., Bao, W. Y. & Kitamura, H. Larval settlement and metamorphosis of the mussel Mytilus galloprovincialis on different macroalgae. Mar. Biol. 152, 1121–1132 (2007).
Article Google Scholar39.
Bao, W. Y., Lee, O. O., Chung, H. C., Li, M. & Qian, P. Y. Copper affects biofilm inductiveness to larval settlement of the serpulid polychaete Hydroides elegans (Haswell). Biofouling 26, 119–128 (2009).
Article Google Scholar40.
Peng, L. H. et al. A bacterial polysaccharide biosynthesis-related gene inversely regulates larval settlement and metamorphosis of Mytilus coruscus. Biofouling 36, 753–765 (2020).
CAS Article Google Scholar More138 Shares199 Views
in EcologyEffect of temperature on the unimodal size scaling of phytoplankton growth
1.
Finkel, Z. V. et al. Phytoplankton in a changing world: cell size and elemental stoichiometry. J. Plankton Res. 32, 119–137 (2010).
CAS Article Google Scholar
2.
Marañón, E. Cell size as a key determinant of phytoplankton metabolism and community structure. Ann. Rev. Mar. Sci. 7, 241–264 (2015).
PubMed Article PubMed Central Google Scholar3.
Chavez, F. P., Messié, M. & Pennington, J. T. marine primary production in relation to climate variability and change. Ann. Rev. Mar. Sci. 3, 227–260 (2011).
PubMed Article PubMed Central Google Scholar4.
Kleiber, M. Body size and metabolism. Hilgardia J. Agric. Sci. 6, 315–353 (1932).
CAS Article Google Scholar5.
Gillooly, J. F. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).
ADS CAS PubMed Article PubMed Central Google Scholar6.
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
Article Google Scholar7.
Raven, J. A. Why are there no picoplanktonic O2 evolvers with volumes less than 10–19 m3?. J. Plankton Res. 16, 565–580 (1994).
Article Google Scholar8.
Bec, B., Collos, Y., Vaquer, A., Mouillot, D. & Souchu, P. Growth rate peaks at intermediate cell size in marine photosynthetic picoeukaryotes. Limnol. Oceanogr. 53, 863–867 (2008).
ADS Article Google Scholar9.
Chen, B. & Liu, H. Relationships between phytoplankton growth and cell size in surface oceans: interactive effects of temperature, nutrients, and grazing. Limnol. Oceanogr. 55, 965–972 (2010).
ADS CAS Article Google Scholar10.
Marañón, E. et al. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecol. Lett. 16, 371–379 (2013).
PubMed Article PubMed Central Google Scholar11.
Ward, B. A., Marañón, E., Sauterey, B., Rault, J. & Claessen, D. The size dependence of phytoplankton growth rates: a trade-off between nutrient uptake and metabolism. Am. Nat. 189, 170–177 (2016).
PubMed Article PubMed Central Google Scholar12.
Chen, B., Liu, H., Huang, B. & Wang, J. Temperature effects on the growth rate of marine picoplankton. Mar. Ecol. Prog. Ser. 505, 37–47 (2014).
ADS Article Google Scholar13.
Sal, S., Alonso-Saez, L., Bueno, J., Garcıa, F. C. & Lopez-Urrutia, A. Thermal adaptation, phylogeny, and the unimodal size scaling of marine phytoplankton growth. Limnol. Oceanogr. 60, 1212–1221 (2015).
ADS Article Google Scholar14.
Bissinger, J. E., Montagnes, D. J. S., Sharples, J. & Atkinson, D. Predicting marine phytoplankton maximum growth rates from temperature: improving on the Eppley curve using quantile regression. Limnol. Oceanogr. 53, 487–493 (2008).
ADS Article Google Scholar15.
Chen, B. Patterns of thermal limits of phytoplankton. J. Plankton Res. 37, 285–292 (2015).
Article Google Scholar16.
Thomas, M. K., Kremer, C. T. & Litchman, E. Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits. Glob. Ecol. Biogeogr. 25, 75–86 (2016).
Article Google Scholar17.
Heinle, M. The effects of light, temperature and nutrients on coccolithophores and implications for biogeochemical models (Doctoral dissertation, University of East Anglia, Norwich, United Kingdom). (2013).18.
Kruskopf, M. & Flynn, K. J. Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytol. 169, 841–842 (2006).
Article CAS Google Scholar19.
Flynn, K. J. & Raven, J. A. What is the limit for photoautotrophic plankton growth rates?. J. Plankton Res. 39, 13–22 (2016).
Article CAS Google Scholar20.
Prakash, A., Skoglund, L., Rystad, B. & Jensen, A. Growth and cell-size distribution of marine planktonic algae in batch and dialysis cultures. J. Fish. Res. Board Canada 30, 143–155 (1973).
Article Google Scholar21.
Xia, L., Huang, R., Li, Y. & Song, S. The effect of growth phase on the surface properties of three oleaginous microalgae (Botryococcus sp. FACGB-762, Chlorella sp. XJ-445 and Desmodesmus bijugatus XJ-231). PLoS ONE 12, e0186434 (2017).
PubMed PubMed Central Article CAS Google Scholar22.
Verdy, A., Follows, M. & Flierl, G. Optimal phytoplankton cell size in an allometric model. Mar. Ecol. Prog. Ser. 379, 1–12 (2009).
ADS Article Google Scholar23.
Kempes, C. P., Dutkiewicz, S. & Follows, M. J. Growth, metabolic partitioning, and the size of microorganisms. Proc. Natl. Acad. Sci. U.S.A. 109, 495–500 (2012).
ADS CAS PubMed Article Google Scholar24.
Stawiarski, B., Buitenhuis, E. T. & Quéré, C. L. The physiological response of picophytoplankton to temperature and its model representation. Front. Mar. Sci. 3, 1–13 (2016).
Article Google Scholar25.
Martiny, A. C., Ma, L., Mouginot, C., Chandler, J. W. & Zinser, E. R. Interactions between thermal acclimation, growth rate, and phylogeny influence prochlorococcus elemental stoichiometry. PLoS ONE 11, 1–12 (2016).
Article CAS Google Scholar26.
Mackey, K. R. M. et al. Effect of temperature on photosynthesis and growth in marine Synechococcus spp. Plant Physiol. 163, 815–829 (2013).
CAS PubMed PubMed Central Article Google Scholar27.
Demory, D. et al. Picoeukaryotes of the Micromonas genus: sentinels of a warming ocean. ISME J. 13, 132–146 (2018).
PubMed PubMed Central Article Google Scholar28.
Pittera, J. et al. Connecting thermal physiology and latitudinal niche partitioning in marine Synechococcus. ISME J. 8, 1221–1236 (2014).
CAS PubMed PubMed Central Article Google Scholar29.
Barton, S. & Yvon-Durocher, G. Quantifying the temperature dependence of growth rate in marine phytoplankton within and across species. Limnol. Oceanogr. 64, 2081–2091 (2019).
ADS Article Google Scholar30.
Kremer, C. T., Thomas, M. K. & Litchman, E. Temperature- and size-scaling of phytoplankton population growth rates: reconciling the Eppley curve and the metabolic theory of ecology. Limnol. Oceanogr. 62, 1658–1670 (2017).
ADS Article Google Scholar31.
Berthelot, H. et al. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 13, 651–662 (2019).
CAS PubMed Article PubMed Central Google Scholar32.
Duhamel, S., Kim, E., Sprung, B. & Anderson, O. R. Small pigmented eukaryotes play a major role in carbon cycling in the P-depleted western subtropical North Atlantic, which may be supported by mixotrophy. Limnol. Oceanogr. 64, 2424–2440 (2019).
ADS CAS Article Google Scholar33.
Worden, A. Z., Nolan, J. K. & Palenik, B. Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol. Oceanogr. 49, 168–179 (2004).
ADS CAS Article Google Scholar34.
Gutierrez-Rodríguez, A., Selph, K. E. & Landry, M. R. Phytoplankton growth and microzooplankton grazing dynamics across vertical environmental gradients determined by transplant in situ dilution experiments. J. Plankton Res. 38, 271–289 (2015).
PubMed PubMed Central Article Google Scholar35.
Worden, A. Z. & Binder, B. J. Application of dilution experiments for measuring growth and mortality rates among Prochlorococcus and Synechococcus populations in oligotrophic environments. Aquat. Microb. Ecol. 30, 159–174 (2003).
Article Google Scholar36.
DeLong, J. P., Okie, J. G., Moses, M. E., Sibly, R. M. & Brown, J. H. Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. Proc. Natl. Acad. Sci. U.S. A. 107, 12941–12945 (2010).
ADS CAS PubMed PubMed Central Article Google Scholar37.
García, F. C. et al. The allometry of the smallest: superlinear scaling of microbial metabolic rates in the Atlantic Ocean. ISME J. 10, 1029–1036 (2016).
PubMed Article CAS Google Scholar38.
Kiørboe, T. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv. Mar. Biol. 29, 1–72 (1993).
Article Google Scholar39.
Marãnón, E. et al. Resource supply overrides temperature as a controlling factor of marine phytoplankton growth. PLoS ONE 9, 20–23 (2014).
Article CAS Google Scholar40.
Behrenfeld, M. J., Boss, E., Siegel, D. A. & Shea, D. M. Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochem. Cycles 19, 1–14 (2005).
Article CAS Google Scholar41.
Tsuda, A. et al. A mesoscale iron enrichment in the Western subarctic Pacific induces a large centric diatom bloom. Science 300, 958–961 (2003).
ADS CAS PubMed Article PubMed Central Google Scholar42.
Latasa, M., Landry, M. R., Schlüter, L. & Bidigare, R. R. Pigment-specific growth and grazing rates of phytoplankton in the central equatorial pacific. Limnol. Oceanogr. 42, 289–298 (1997).
ADS CAS Article Google Scholar43.
Cavender-Bares, K. K., Mann, E. L., Chisholm, S. W., Ondrusek, M. E. & Bidigare, R. R. Differential response of equatorial Pacific phytoplankton to iron fertilization. Limnol. Oceanogr. 44, 237–246 (1999).
ADS CAS Article Google Scholar44.
Mouriño-Carballido, B. et al. Nutrient supply controls picoplankton community structure during three contrasting seasons in the northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 543, 1–19 (2016).
ADS Article CAS Google Scholar45.
Schmidt, K. et al. Increasing picocyanobacteria success in shelf waters contributes to long-term food web degradation. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15161 (2020).
Article PubMed PubMed Central Google Scholar46.
Tarran, G. A., Heywood, J. L. & Zubkov, M. V. Latitudinal changes in the standing stocks of nano- and picoeukaryotic phytoplankton in the Atlantic Ocean. Deep Res. Part II Top. Stud. Oceanogr. 53, 1516–1529 (2006).
ADS Article Google Scholar47.
Marañón, E., Cermeño, P., Latasa, M. & Tadonléké, R. D. Temperature, resources, and phytoplankton size structure in the ocean. Limnol. Oceanogr. 57, 1266–1278 (2012).
ADS Article Google Scholar48.
Chisholm, S. W. Phytoplankton Size. Prim. Product. Biogeochem. Cycles Sea 02139, 213–237 (1992).
Article Google Scholar49.
Montes-Pérez, J. J. et al. Intermediate-size cell dominance in the phytoplankton community of an eutrophic, estuarine ecosystem (Guadalhorce River, Southern Spain). Hydrobiologia 847, 2241–2254 (2020).
Article CAS Google Scholar50.
Chen, B. & Laws, E. A. Is there a difference of temperature sensitivity between marine phytoplankton and heterotrophs?. Limnol. Oceanogr. 62, 806–817 (2016).
ADS Article Google Scholar51.
Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).
Google Scholar52.
Johnson, F. & Lewin, I. The growth rate of E. coli in relation to temperature, Quinine and Coenzyme. J. Cell Physiol. 28, 47–75 (1946).
CAS Article Google Scholar53.
Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. U.S.A. 108, 10591–10596 (2011).
ADS CAS PubMed PubMed Central Article Google Scholar More113 Shares129 Views
in EcologyTemporal division of labor in an aphid social system
1.
Wilson, E. O. The Insect Societies (Harvard University Press, Cambridge, 1971).
Google Scholar
2.
Wilson, E. O. Sociobiology: The New Synthesis (Harvard University Press, Cambridge, 1975).
Google Scholar3.
Oster, G. F. & Wilson, E. O. Caste and Ecology in the Social Insects (Princeton University Press, Princeton, 1978).
Google Scholar4.
Seeley, T. D. Honeybee Ecology: A Study of Adaptation in Social Life (Princeton University Press, Princeton, 1985).
Google Scholar5.
Seeley, T. D. Adaptive significance of the age polyethism schedule in honeybee colonies. Behav. Ecol. Sociobiol. 11, 287–293 (1982).
Article Google Scholar6.
Robinson, G. E. Regulation of division of labor in insect societies. Annu. Rev. Entomol. 37, 637–665 (1992).
CAS PubMed Article Google Scholar7.
Beshers, S. N. & Fewell, J. H. Models of division of labor in social insects. Annu. Rev. Entomol. 46, 413–440 (2001).
CAS PubMed Article Google Scholar8.
Johnson, B. R. Within-nest temporal polyethism in the honey bee. Behav. Ecol. Sociobiol. 62, 777–784 (2008).
Article Google Scholar9.
Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, Cambridge, 1990).
Google Scholar10.
Crosland, M. W. J., Lok, C. M., Wong, T. C., Shakarad, M. & Traniello, J. F. A. Division of labour in a lower termite: The majority of tasks are performed by older workers. Anim. Behav. 54, 999–1012 (1997).
CAS PubMed Article Google Scholar11.
Hinze, B. & Leuthold, R. H. Age related polyethism and activity rhythms in the nest of the termite Macrotermes bellicosus (Isoptera, Termitidae). Insect. Soc. 46, 392–397 (1999).
Article Google Scholar12.
Cameron, S. A. Temporal patterns of division of labor among workers in the primitively eusocial bumble bee, Bombus griseocoffis (Hymenoptera: Apidae). Ethology 80, 137–151 (1989).
Article Google Scholar13.
Naug, D. & Gadagkar, R. The role of age in temporal polyethism in a primitively eusocial wasp. Behav. Ecol. Sociobiol. 42, 37–47 (1998).
Article Google Scholar14.
Biedermann, P. H. W. & Taborsky, M. Larval helpers and age polyethism in ambrosia beetles. Proc. Natl. Acad. Sci. USA 108, 17064–17069 (2011).
ADS CAS PubMed Article Google Scholar15.
Wakano, J. N., Nakata, K. & Yamamura, N. Dynamic model of optimal age polyethism in social insects under stable and fluctuating environments. J. Theor. Biol. 193, 153–165 (1998).
Article Google Scholar16.
Duarte, A., Weissing, F. J., Pen, I. & Keller, L. An evolutionary perspective on self-organized division of labor in social insects. Annu. Rev. Ecol. Evol. Syst. 42, 91–110 (2011).
Article Google Scholar17.
Stern, D. L. & Foster, W. A. The evolution of soldiers in aphids. Biol. Rev. 71, 27–79 (1996).
CAS PubMed Article Google Scholar18.
Aoki, S. & Kurosu, U. A review of the biology of Cerataphidini (Hemiptera, Aphididae, Hormaphidinae), focusing mainly on their life cycles, gall formation, and soldiers. Psyche 2010, 380351 (2010).
Google Scholar19.
Abbot, P., Tooker, J. & Lawson, S. P. Chemical ecology and sociality in aphids: Opportunities and directions. J. Chem. Ecol. 44, 770–784 (2018).
CAS PubMed Article Google Scholar20.
Aoki, S. Colophina clematis (Homoptera, Pemphigidae), an aphid species with” soldiers”. Kontyu 5, 276–282 (1977).
Google Scholar21.
Aoki, S. & Kurosu, U. Gall cleaning by the aphid Hormaphis betulae. J. Ethol. 9, 51–55 (1989).
Google Scholar22.
Benton, T. G. & Foster, W. A. Altruistic housekeeping in a social aphid. Proc. R. Soc. B 247, 199–202 (1992).
ADS Article Google Scholar23.
Aoki, S. & Kurosu, U. Soldiers of Astegopteryx styraci (Homoptera, Aphidoidea) clean their gall. Jpn. J. Entomol. 57, 407–416 (1989).
Google Scholar24.
Aoki, S., Kurosu, U. & Stern, D. L. Aphid soldiers discriminate between soldiers and non-soldiers, rather than between kin and non-kin Ceratoglyphina bambusae. Anim. Behav. 42, 865–866 (1991).
Article Google Scholar25.
Kurosu, U., Narukawa, J., Buranapanichpan, S. & Aoki, S. Head-plug defense in a gall aphid. Insect. Soc. 53, 86–91 (2006).
Article Google Scholar26.
Kurosu, U., Aoki, S. & Fukatsu, T. Self-sacrificing gall repair by aphid nymphs. Proc. R. Soc. B 270, S12–S14 (2003).
PubMed Article Google Scholar27.
Pike, N. & Foster, W. Fortress repair in the social aphid species Pemphigus spyrothecae. Anim. Behav. 67, 909–914 (2004).
Article Google Scholar28.
Kutsukake, M., Shibao, H., Uematsu, K. & Fukatsu, T. Scab formation and wound healing of plant tissue by soldier aphid. Proc. R. Soc. B 276, 1555–1563 (2009).
PubMed Article Google Scholar29.
Kutsukake, M. et al. Exaggeration and cooption of innate immunity for social defense. Proc. Natl. Acad. Sci. USA 116, 8950–8959 (2019).
CAS PubMed Article Google Scholar30.
Aoki, S. Evolution of sterile soldiers in aphids. In Animal Societies: Theories andFacts (eds Ito, Y. et al.) 53–65 (Japan Scientific Societies Press, Tokyo, 1987).
Google Scholar31.
Aoki, S. & Kurosu, U. Social aphids. In Encyclopedia of Social Insects (ed. Starr, C. K.) (Springer, New York, 2020). https://doi.org/10.1007/978-3-319-90306-4_107-1.
Google Scholar32.
Aoki, S. & Kurosu, U. Biennial galls of the aphid Astegopteryx styraci on a temperate deciduous tree Styrax obassia. Acta Phytopathol. Entomol. Hung. 25, 57–65 (1990).
Google Scholar33.
Shibao, H., Kutsukake, M., Lee, J. & Fukatsu, T. Maintenance of soldier-producing aphids on an artificial diet. J. Insect Physiol. 48, 495–505 (2002).
CAS PubMed Article Google Scholar34.
Shibao, H., Lee, J. M., Kutsukake, M. & Fukatsu, T. Aphid soldier differentiation: density acts on both embryos and newborn nymphs. Naturwissenschaften 90, 501–504 (2003).
ADS CAS PubMed Article Google Scholar35.
Shibao, H., Kutsukake, M. & Fukatsu, T. Density triggers soldier production in a social aphid. Proc. R. Soc. B 271, S71–S74 (2004).
PubMed Article Google Scholar36.
Shibao, H., Kutsukake, M. & Fukatsu, T. The proximate cue of density-dependent soldier production in a social aphid. J. Insect Physiol. 50, 143–147 (2004).
CAS PubMed Article Google Scholar37.
Shibao, H., Kutsukake, M. & Fukatsu, T. Density-dependent induction and suppression of soldier differentiation in an aphid social system. J. Insect Physiol. 50, 995–1000 (2004).
CAS PubMed Article Google Scholar38.
Shibao, H., Kutsukake, M., Matsuyama, S., Fukatsu, T. & Shimada, M. Mechanisms regulating caste differentiation in an aphid social system. Commun. Integr. Biol. 3, 1–5 (2010).
PubMed PubMed Central Article Google Scholar39.
Kutsukake, M. et al. Venomous protease of aphid soldier for colony defense. Proc. Natl. Acad. Sci. USA 101, 11338–11343 (2004).
ADS CAS PubMed Article Google Scholar40.
Stern, D. L., Aoki, S. & Kurosu, U. A test of geometric hypotheses for soldier investment patterns in the gall producing tropical aphid Cerataphis fransseni (Homoptera, Hormaphididae). Insect. Soc. 41, 457–460 (1994).
Article Google Scholar41.
Pike, N., Braendle, C. & Foster, W. A. Seasonal extension of the soldier instar as a route to increased defence investment in the social aphid Pemphigus spyrothecae. Ecol. Entomol. 29, 89–95 (2004).
Article Google Scholar42.
Pike, N. Specialised placement of morphs within the gall of the social aphid Pemphigus spyrothecae. BMC Evol. Biol. 7, 18 (2007).
PubMed PubMed Central Article Google Scholar43.
Uematsu, K., Kutsukake, M., Fukatsu, T., Shimada, M. & Shibao, H. Altruistic colony defense by menopausal female insects. Curr. Biol. 20, 1182–1186 (2010).
CAS PubMed Article Google Scholar44.
Uematsu, K., Shimada, M. & Shibao, H. Juveniles and the elderly defend, the middle-aged escape: division of labour in a social aphid. Biol. Let. 9, 20121053 (2013).
Article Google Scholar45.
Abe, T., Bignell, D. E., Higashi, M. & Abe, Y. Termites: Evolution, Sociality, Symbioses, Ecology (Springer, Berlin, 2000).
Google Scholar46.
Shibao, H. Lack of kin discrimination in the eusocial aphid Pseudoregma bambucicola (Homoptera: Aphididae). J. Ethol. 17, 17–24 (1999).
Article Google Scholar47.
Abbot, P., Withgott, J. H. & Moran, N. A. Genetic conflict and conditional altruism in social aphid colonies. Proc. Natl. Acad. Sci. USA 98, 12068–12071 (2001).
ADS CAS PubMed Article Google Scholar48.
Abbot, P. & Chhatre, V. Kin structure provides no explanation for intruders in social aphids. Mol. Ecol. 16, 3659–3670 (2007).
CAS PubMed Article Google Scholar49.
Kutsukake, M. et al. An insect-induced novel plant phenotype for sustaining social life in a closed system. Nat. Commun. 3, 1187 (2012).
ADS PubMed PubMed Central Article CAS Google Scholar50.
Kutsukake, M. et al. Evolution of soldier-specific venomous protease in social aphids. Mol. Biol. Evol. 25, 2627–2641 (2008).
CAS PubMed Article Google Scholar More150 Shares169 Views
in EcologyWater constraints drive allometric patterns in the body shape of tree frogs
1.
Adams, D. C. & Nistri, A. Ontogenetic convergence and evolution of foot morphology in european cave salamanders (Family: Plethodontidae). BMC Evol. Biol. 10, 216 (2010).
PubMed PubMed Central Article Google Scholar
2.
Baken, E. K., Mellenthin, L. E. & Adams, D. C. Macroevolution of desiccation-related morphology in plethodontid salamanders as inferred from a novel surface area to volume ratio estimation approach. Evolution 74, 476–486 (2020).
PubMed Article Google Scholar3.
Martinez, P. A. et al. The contribution of neutral evolution and adaptive processes in driving phenotypic divergence in a model mammalian species, the andean fox Lycalopex culpaeus. J. Biogeogr. 45, 1114–1125 (2018).
Article Google Scholar4.
Vidal-García, M., Byrne, P. G., Roberts, J. D. & Keogh, J. S. The role of phylogeny and ecology in shaping morphology in 21 genera and 127 species of australo-papuan myobatrachid frogs. J. Evol. Biol. 27, 181–192 (2014).
PubMed Article Google Scholar5.
Adams, D. C. Parallel evolution of character displacement driven by competitive selection in terrestrial salamanders. BMC Evol. Biol. 10, 72 (2010).
PubMed PubMed Central Article Google Scholar6.
Losos, J. B. Ecological character displacement and the study of adaptation. Proc. Natl. Acad. Sci. 97, 5693–5695 (2000).
ADS CAS PubMed Article Google Scholar7.
Moen, D. S., Irschick, D. J. & Wiens, J. J. Evolutionary conservatism and convergence both lead to striking similarity in ecology, morphology and performance across continents in frogs. Proc. R. Soc. B. 280, 20132156 (2013).
PubMed Article Google Scholar8.
Amado, T. F., Bidau, C. J. & Olalla-Tárraga, M. Á. Geographic variation of body size in new world anurans: energy and water in a balance. Ecography 42, 456–466 (2019).
Article Google Scholar9.
Gouveia, S. F. et al. Biophysical modeling of water economy can explain geographic gradient of body size in anurans. Am. Nat. 193, 51–58 (2019).
PubMed Article PubMed Central Google Scholar10.
Olalla-Tárraga, M. Á., Diniz-Filho, J. A. F., Bastos, R. P. & Rodríguez, M. Á. Geographic body size gradients in tropical regions: water deficit and anuran body size in the brazilian cerrado. Ecography 32, 581–590 (2009).
Article Google Scholar11.
Cooney, C. R. et al. Ecology and allometry predict the evolution of avian developmental durations. Nat. Commun. 11, 1–9 (2020).
Article CAS Google Scholar12.
Kriegman, S., Cheney, N. & Bongard, J. How morphological development can guide evolution. Sci. Rep. 8, 1–10 (2018).
Article CAS Google Scholar13.
Moczek, A. P. Re-evaluating the environment in developmental evolution. Front. Ecol. Evol. 3, 1–8 (2015).
Article Google Scholar14.
Richter-Boix, A., Tejedo, M. & Rezende, E. L. Evolution and plasticity of anuran larval development in response to desiccation. a comparative analysis. Ecol. Evol. 1, 15–25 (2011).
PubMed PubMed Central Article Google Scholar15.
Castro, K. M. S. A., do Santos, M. P., Brito, M. F. G., Bidau, C. J. & Martinez, P. A. Ontogenetic allometry conservatism across five teleost orders. J. Fish Biol. 93, 745–749 (2018).
Article Google Scholar16.
Skúlason, S. et al. A way forward with eco evo devo: an extended theory of resource polymorphism with postglacial fishes as model systems. Biol. Rev. 94, 1786–1808 (2019).
PubMed Article Google Scholar17.
Porter, W. P. & Gates, D. M. Thermodynamic equilibria of animals with environment. Ecol. Monogr. 39, 227–244 (1969).
Article Google Scholar18.
Thompson, D. A. On Growth and Form (Cambridge University Press, Cambridge, 1917).
Google Scholar19.
Schmidt-Nielsen, K. Scaling: Why is Animal Size so Important? (Cambridge University Press, Cambridge, 1984).
Google Scholar20.
Amado, T. F., Pinto, M. G. M. & Olalla-Tárraga, M. Á. Anuran 3d models reveal the relationship between surface area-to-volume ratio and climate. J. Biogeogr. 46, 1429–1437 (2019).
Google Scholar21.
Ashton, K. G. Do amphibians follow bergmann’s rule?. Can. J. Zool. 80, 708–716 (2002).
Article Google Scholar22.
Glazier, D. Effects of contingency versus constraints on the body-mass scaling of metabolic rate. Challenges 9, 4 (2018).
Article Google Scholar23.
Gouveia, S. F. & Correia, I. Geographical clines of body size in terrestrial amphibians: water conservation hypothesis revisited. J. Biogeogr. 43, 2075–2084 (2016).
Article Google Scholar24.
Lindsey, C. C. Body sizes of poikilotherm vertebrates at different latitudes. Evolution 20, 456–465 (1966).
CAS PubMed PubMed Central Article Google Scholar25.
Bergmannn, C. Über die verhältnisse der wärmeökonomie der thiere zu ihrer grösse. Göttinger Stud. 1, 595–708 (1847).
Google Scholar26.
Nevo, E. Adaptive variation in size of cricket frogs. Ecology 54, 1271–1281 (1973).
Article Google Scholar27.
Tracy, C. R., Christian, K. A. & Tracy, C. R. Not just small, wet, and cold : effects of body size and skin resistance on thermoregulation and arboreality of frogs. Ecology 91, 1477–1484 (2010).
PubMed Article PubMed Central Google Scholar28.
Wells, K. D. The Ecology and Behavior of Amphibians (The University of Chicago Press, Chicago, 2007).
Google Scholar29.
Perez, D., Sheehy, C. M. & Lillywhite, H. B. Variation of organ position in snakes. J. Morphol. 280, 1798–1807 (2019).
PubMed Article PubMed Central Google Scholar30.
Amiel, J. J., Chua, B., Wassersug, R. J. & Jones, D. R. Temperature-dependent regulation of blood distribution in snakes. J. Exp. Biol. 214, 1458–1462 (2011).
PubMed Article PubMed Central Google Scholar31.
Canals, M. Thermal ecology of small animals. Biol Res 31, 367–374 (1998).
Google Scholar32.
Tracy, C. R. A model of the dynamic exchanges of water and energy between a terrestrial amphibian and its environment. Ecol. Monogr. 46, 293–326 (1976).
Article Google Scholar33.
Gould, S. J. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41, 587–640 (1966).
CAS PubMed Article PubMed Central Google Scholar34.
Klingenberg, C. P. Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biol. Rev. 73, 79–123 (1998).
CAS PubMed Article Google Scholar35.
Klingenberg, C. P. Size, shape, and form: concepts of allometry in geometric morphometrics. Dev. Genes Evol. 226, 113–137 (2016).
PubMed PubMed Central Article Google Scholar36.
Voje, K. L., Hansen, T. F., Egset, C. K., Bolstad, G. H. & Pélabon, C. Allometric constraints and the evolution of allometry. Evolution 68, 866–885 (2014).
PubMed Article Google Scholar37.
Pélabon, C. et al. Evolution of morphological allometry. Ann. N. Y. Acad. Sci. 1320, 58–75 (2014).
ADS PubMed Article Google Scholar38.
Duellman, W. E., Marion, A. B. & Hedges, S. B. Phylogenetics, classification, and biogeography of the treefrogs (amphibia: anura: arboranae). Zootaxa 4104, 001–109 (2016).
Article Google Scholar39.
Kamilar, J. M. & Cooper, N. Phylogenetic signal in primate behaviour, ecology and life history. Phil. Trans. R. Soc. B. 368, 20120341 (2013).
PubMed Article Google Scholar40.
Landis, M. J. & Schraiber, J. G. Pulsed evolution shaped modern vertebrate body sizes. Proc. Natl. Acad. Sci. U. S. A. 114, 13224–13229 (2017).
CAS PubMed PubMed Central Article Google Scholar41.
Levy, D. L. & Heald, R. Biological scaling problems and solutions in amphibians. Cold Spring Harb. Perspect. Biol. 8, a019166 (2015).
PubMed Article PubMed Central Google Scholar42.
Boutilier, R. G., Stiffler, D. F. & Toews, D. Exchange of respiratory gases, ions, and water in amphibious and aquatic amphibians. In Environmental Physiology of Amphibians (eds Feder, M. E. & Burggren, W. W.) 81–124 (University of Chicago Press, Chicago, 1992).
Google Scholar43.
Spotila, J. R., O’connor, M. P. & Bakken, G. S. Biophysics of heat and mass transfer. In Environmental Physiology of the Amphibians (eds Feder, M. E. & Burggren, W. W.) 59–80 (University of Chicago Press, Chicago, 1992).
Google Scholar44.
Sanger, T. J. et al. Convergent evolution of sexual dimorphism in skull shape using distinct developmental strategies. Evolution 67, 2180–2193 (2013).
PubMed Article PubMed Central Google Scholar45.
Navas, C. A., Antoniazzi, M. M. & Jared, C. A preliminary assessment of anuran physiological and morphological adaptation to the caatinga, a brazilian semi-arid environment. Int. Congr. Ser. 1275, 298–305 (2004).
Article Google Scholar46.
Wiley, D. F. et al. Evolutionary Morphing Minneapolis, MN, USA Minneapolis, MN, USA (IEEE Computer Society, Minneapolis, 2005).
Google Scholar47.
Klingenberg, C. P. & Gidaszewski, N. A. Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Syst. Biol. 59, 245–261 (2010).
CAS PubMed Article PubMed Central Google Scholar48.
Dryden, I. L. & Mardia, K. V. Statistical Shape Analysis (Wiley, Hoboken, 1998).
Google Scholar49.
Adams, D. C. A generalized k statistic for estimating phylogenetic signal from shape and other high-dimenstional multivariate data. Syst. Biol. 63(5), 685–697 (2014).
PubMed Article PubMed Central Google Scholar50.
Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).
PubMed Article Google Scholar51.
Adams, D. C. & Otárola-Castillo, E. Geomorph: an r package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).
Article Google Scholar52.
Fox, J. & Hong, J. Effect displays in r for multinomial and proportional-odds logit models: extensions to the effects package. J. Stat. Softw. 32, 1–24 (2009).
Article Google Scholar53.
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2016). More
