The dehydrins gene expression differs across ecotypes in Norway spruce and relates to weather fluctuations
1.
Oleksyn, J., Modrzýnski, J., Tjoelker, M. G., Reich, P. B. & Karolewski, P. Growth and physiology of Picea abies populations from elevational transects: Common garden evidence for altitudinal ecotypes and cold adaptation. Funct. ecol. 12(4), 573–590 (1998).
Article Google Scholar
2.
Jansson, G. et al. Norway spruce (Picea abies (L.) H. Karst.) Pâques L. (ed.) forest tree breeding in Europe. Manag. Ecosyst. 25, 123–176 (2013).
Google Scholar
3.
Müller-Starck, G., Baradat, Ph. & Bergmann, F. Genetic variation within European tree species. New For. 6(1–4), 23–47 (1992).
Article Google Scholar
4.
Morgenstern, E. K. of tree ecotypes in Geographic Variation in Forest Trees: Genetic Basis and Application of Knowledge in Silviculture 109–115 (Vancouver, Amsterdam, 1996).
5.
Androsiuk, P. et al. Genetic status of Norway spruce (Picea abies) breeding populations for northern Sweden. Silvae Genet. 62(1–6), 127–136 (2013).
Article Google Scholar
6.
Farjon, A. & Filer, D. Specific Adaptations in An atlas of the world’s conifers: An Analysis of Their Distribution, Biogeography, Diversity and Conservation Status (Springer, The Netherlands, 2013).
Google Scholar
7.
Chakraborty, D. et al. Selecting populations for non-analogous climate conditions using universal response functions: The case of Douglas-fir in central Europe. PLoS ONE 10(8), e0136357 (2015).
Article Google Scholar
8.
van der Maaten-Theunissen, M., Kahle, H. P., & van der Maaten, E. Drought sensitivity of Norway spruce is higher than that of silver fir along an altitudinal gradient in southwestern Germany. Ann. Sci. 70(2), 185–193 (2013).
9.
Trujillo-Moya, C. et al. Drought sensitivity of norway spruce at the species’ warmest fringe: Quantitative and molecular analysis reveals high genetic variation among and within provenances. G3 Genes Genom. Genet. g3, 300524 (2018).
Google Scholar
10.
Close, T. J. Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plantarum. 97(4), 795–803 (1996).
ADS CAS Article Google Scholar
11.
Campbell, S. A. & Close, T. J. Dehydrins: Genes, proteins, and associations with phenotypic traits. New Phytol. 137(1), 61–74 (1997).
CAS Article Google Scholar
12.
Yakovlev, I. A. et al. Dehydrins expression related to timing of bud burst in Norway spruce. Planta 228(3), 459–472 (2008).
MathSciNet CAS Article Google Scholar
13.
Eldhuset, T. D. et al. Drought affects tracheid structure, dehydrin expression, and above-and below ground growth in 5-year-old Norway spruce. Plant Soil 366(1–2), 305–320 (2013).
CAS Article Google Scholar
14.
Hara, M. The multifunctionality of dehydrins: An overview. Plant Signal. Behav. 5(5), 503–508 (2010).
CAS Article Google Scholar
15.
Graether, S. P. & Boddington, K. F. Disorder and function: A review of the dehydrin protein family. Front. Plant Sci. 5, 576 (2014).
Article Google Scholar
16.
Hanin, M. et al. Plant dehydrins and stress tolerance: Versatile proteins for complex mechanisms. Plant Signal. Behav. 6(10), 1503–1509 (2011).
CAS Article Google Scholar
17.
Kosová, K. et al. Expression of dehydrin 5 during the development of frost tolerance in barley (Hordeum vulgare). J. Plant Physiol. 165(11), 1142–1151 (2008).
Article Google Scholar
18.
Yamasaki, Y., Koehler, G., Blacklock, B. J. & Randall, S. K. Dehydrin expression in soybean. Plant Physiol. Biochem. 70, 213–220 (2013).
CAS Article Google Scholar
19.
Liu, H. et al. Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Sci. 231, 198–211 (2015).
CAS Article Google Scholar
20.
Velasco-Conde, T., Yakovlev, I., Majada, J. P., Aranda, I. & Johnsen, Ø. Dehydrins in maritime pine (Pinus pinaster) and their expression related to drought stress response. Tree Genet. Genomes. 8(5), 957–973 (2012).
Article Google Scholar
21.
Stival Sena, J., Giguère, I., Rigault, P., Bousquet, J. & Mackay, J. Expansion of the dehydrin gene family in the Pinaceae is associated with considerable structural diversity and drought-responsive expression. Tree Physiol. 38(3), 442–456 (2018).
Article Google Scholar
22.
Šindelář J. of experimental plot in Klonové Archivy Smrku Ztepilého Picea abies Karst. na PLO Zbraslav-Strnady—Polesí Jíloviště (VÚLHM, 1975).
23.
Elshire, R. J. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5), e19379 (2011).
ADS CAS Article Google Scholar
24.
Yakovlev, I. A., Fossdal, C. G., Johnsen, O., Junttila, O. & Skrøppa, T. Analysis of gene expression during bud burst initiation in Norway spruce via ESTs from subtracted cDNA libraries. Tree Genet. Genomes. 2(1), 39–52 (2006).
Article Google Scholar
25.
Kjellsen, T. D., Yakovlev, I. A., Fossdal, C. G. & Strimbeck, G. R. Dehydrin accumulation and extreme low-temperature tolerance in Siberian spruce (Picea obovata). Tree Physiol. 33(12), 1354–1366 (2013).
CAS Article Google Scholar
26.
R Core Team. R. A language and environment for statistical computing. Preprint at https://www.R-project.org/ (2018).
27.
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27(15), 2156–2158 (2011).
CAS Article Google Scholar
28.
Jombart, T. & Ahmed, I. New tools for the analysis of genome-wide SNP data. Bioinformatics 27(21), 3070–3071 (2011).
CAS Article Google Scholar
29.
Gömöry, D., Foffová, E., Kmeť, J., Longauer, R. & Romšáková, I. Norway spruce (Picea abies [L.] Karst.) provenance variation in autumn cold hardiness: Adaptation or acclimation?. Acta Biol. Cracov. Bot. 52(2), 42–49 (2010).
Google Scholar
30.
Cortleven, A. et al. Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ. 42, 998–1018 (2019).
CAS Article Google Scholar
31.
Szabados, L. & Savoure, A. Proline: A multifunctional amino acid. Trends Plant Sci. 15, 89–97 (2010).
CAS Article Google Scholar
32.
Zulfiqar, F., Akram, N. A. & Ashraf, M. Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon. Planta 251, 3 (2020).
CAS Article Google Scholar
33.
Ciereszko, I. Regulatory roles of sugars in plant growth and development. Acta Soc. Bot. Pol. 87(2), 66 (2018).
Article Google Scholar
34.
Rowland, L. J. & Arora, R. Proteins related to endodormancy (rest) in woody perennials. Plant Sci. 126(2), 119–144 (1997).
CAS Article Google Scholar
35.
Erez, A., Faust, M. & Line, M. J. Changes in water status in peach buds on induction, development and release from dormancy. Sci. Hortic. 73(2–3), 111–123 (1998).
Article Google Scholar
36.
Kalberer, S. R., Wisniewski, M. & Arora, R. Deacclimation and reacclimation of cold-hardy plants: Current understanding and emerging concepts. Plant Sci. 171(1), 3–16 (2006).
CAS Article Google Scholar
37.
Welling, A., Moritz, T., Palva, E. T. & Junttila, O. Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen. Plant Physiol. 129(4), 1633–1641 (2002).
CAS Article Google Scholar
38.
Welling, A. et al. Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.). J. Exp. Bot. 55(396), 507–516 (2004).
CAS Article Google Scholar
39.
Karlson, D. T., Zeng, Y., Stirm, V. E., Joly, R. J. & Ashworth, E. N. Photoperiodic regulation of a 24-kD dehydrin-like protein in red-osier dogwood (Cornus sericea L.) in relation to freeze-tolerance. Plant Cell Physiol. 44(1), 25–34 (2003).
CAS Article Google Scholar
40.
Carneros, E., Yakovlev, I., Viejo, M., Olsen, J. E. & Fossdal, C. G. The epigenetic memory of temperature during embryogenesis modifies the expression of bud burst-related genes in Norway spruce epitypes. Planta 246(3), 553–566 (2017).
CAS Article Google Scholar
41.
Asante, D. K. et al. Gene expression changes during short day induced terminal bud formation in Norway spruce. Plant Cell Environ. 34(2), 332–346 (2011).
CAS Article Google Scholar
42.
Asante, D. K. et al. Effect of bud burst forcing on transcript expression of selected genes in needles of Norway spruce during autumn. Plant Physiol. Bioch. 47(8), 681–689 (2009).
CAS Article Google Scholar
43.
Ruttink, T. et al. A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19(8), 2370–2390 (2007).
CAS Article Google Scholar More