1.
Hansford, J. et al. Early holocene human presence in Madagascar evidenced by exploitation of avian megafauna. Sci. Adv. 4, 1–7 (2018).
Article Google Scholar
2.
Douglass, K. et al. A critical review of radiocarbon dates clarifies the human settlement of Madagascar. Quat. Sci. Rev. 221, 105878 (2019).
Article Google Scholar
3.
Pierron, D. et al. Genomic landscape of human diversity across Madagascar. Proc. Natl. Acad. Sci. USA 114, E6498–E6506 (2017).
CAS PubMed Article PubMed Central Google Scholar
4.
Anderson, A. et al. New evidence of megafaunal bone damage indicates late colonization of Madagascar. PLoS ONE 13, 1–14 (2018).
Google Scholar
5.
Blench, R. New palaeozoogeographical evidence for the settlement of Madagascar. Azania Archaeol. Res. Afr. 42, 69–82 (2007).
Google Scholar
6.
Beaujard, P. The first migrants to Madagascar and their introduction of plants: Linguistic and ethnological evidence. Azania 46, 169–189 (2011).
Article Google Scholar
7.
Rakotozafy, L. M. A. & Goodman, S. M. Contribution à l’étude zooarchéologique de la région du Sud-ouest et extrême Sud de Madagascar sur la base des collections de l’ICMAA de l’Université d’Antananarivo. Taloha 14–15 (2005).
8.
Boivin, N., Crowther, A., Helm, R. & Fuller, D. Q. East Africa and Madagascar in the Indian Ocean world. J. World Prehistory 26, 213–281 (2013).
Article Google Scholar
9.
Wright, H. T. et al. Early Seafarers of the Comoro Islands: The Dembeni Phase of the IXth-Xth Centuries AD. Azania Archaeol. Res. Africa 19, 13–59 (1984).
Google Scholar
10.
Krause, D. W. et al. Late cretaceous terrestrial vertebrates from Madagascar: Implications for Latin American biogeography 1. Ann. Missouri Bot. Gard. 93, 178–208 (2006).
Article Google Scholar
11.
Roger, F., Ratovonjato, J., Vola, P. & Uilenberg, G. Ornithodoros porcinus ticks, bushpigs, and African swine fever in Madagascar. Exp. Appl. Acarol. 25, 263–269 (2001).
CAS PubMed Article Google Scholar
12.
Sommer, S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front. Zool. 2, 16 (2005).
PubMed PubMed Central Article CAS Google Scholar
13.
Venter, J., Ehlers-Smith, Y. & Seydack, A. Potamochoerus larvatus—Bushpig. 1–5 (The Red List of Mammals of South Africa, Swaziland and Lesotho, 2016).
14.
Andrianjakarivelo, V. Artiodactyla: Potamochoerus larvatus, Bush Pig. In The Natural History of Madagascar (eds Goodman, S. M. & Benstead, J. B.) 1365–1367 (The University of Chicago Press, Chicago, 2003).
15.
Grubb, P. The Afrotropical Suids (Phacochoerus, Hylochoerus, and Potamochoerus). In Pigs, Peccaries, and Hippos: Status Survey and Conservation Action Plan (ed. William, L. R. O.) 66–101 (International Union for the Conservation of Nature, Gland, 1993).
Google Scholar
16.
Forsyth, C. I. 5. On the Species of Potamochœrus, the Bush-Pigs of the Ethiopian Region. Proc. Zool. Soc. London 65, 359–370 (2009).
Article Google Scholar
17.
Vercammen, P., Seydack, A. & Oliver, W. The Bush Pigs (Potamochoerus larvatus and P. porcus). In Pigs, Peccaries, and Hippos: Status Survey and Conservation Action Plan (ed. William, L. R. O.) 93–101 (IUCN SSC Pigs and Peccaries Specialist Group and IUCN SSC Hippo Specialist Group, Gland, 1993).
Google Scholar
18.
Funaioli, U. & Simonetta, A. M. The mammalian fauna of the somali republic: Status and conservation problems. Monit. Zool. Ital. Suppl. 1, 285–347 (1966).
Google Scholar
19.
Stuart, C. & Stuart, T. Chris and Tilde Stuart’s field guide to the mammals of southern Africa (R. Curtis Books Pub., Sanibel Island, 1988).
Google Scholar
20.
Blench, R. M. Archaeology, Language, and the African Past (Altamira Press, Lanham, 2006).
Google Scholar
21.
Alpers, E. A. Littoral society in Mozambique. In Cross Currents and Community Networks: The History of the Indian Ocean World (eds Ray, H. P. & Alpers, E. A.) 123–141 (Oxford University Press, Oxford, 2007).
Google Scholar
22.
Oura, C. A. L., Powell, P. P. & Parkhouse, R. M. E. African swine fever: A disease characterized by apoptosis. J. Gen. Virol. 79, 1427–1438 (1998).
CAS PubMed Article Google Scholar
23.
Ravaomanana, J. et al. Assessment of interactions between African swine fever virus, bushpigs (Potamochoerus larvatus), Ornithodoros ticks and domestic pigs in north-western Madagascar. Transbound. Emerg. Dis. 58, 247–254 (2011).
CAS PubMed Article Google Scholar
24.
Cecchi, G. & Mattioli, R. C. Global geospatial datasets for African trypanosomiasis management: a review. Progr. Afr. Trypanos. Tech. Sci. Ser. 9, 1–39 (2009).
Google Scholar
25.
Munangandu, H. M., Siamudaala, V., Munyeme, M. & Nalubamba, K. S. A review of ecological factors associated with the epidemiology of wildlife Trypanosomiasis in the Luangwa and Zambezi Valley Ecosystems of Zambia. Interdiscip. Perspect. Infect. Dis. 2012, 1–13 (2012).
Article Google Scholar
26.
Gibbs, E. P. The public health risks associated with wild and feral swine. Rev. Sci. Tech. 16, 594–598 (1997).
CAS PubMed Article Google Scholar
27.
Patton, D. & Gu, H. China has culled more than 900,000 pigs due to African swine fever. Reuters (2018).
28.
Ploshnitsa, A. I., Goltsman, M. E., Macdonald, D. W., Kennedy, L. J. & Sommer, S. Impact of historical founder effects and a recent bottleneck on MHC variability in Commander Arctic foxes (Vulpes lagopus). Ecol. Evol. 2, 165–180 (2012).
PubMed PubMed Central Article Google Scholar
29.
Klein, J. Origin of major histocompatibility complex polymorphism: The trans-species hypothesis. Hum. Immunol. 19, 155–162 (1987).
CAS PubMed Article Google Scholar
30.
Ho, C. S. et al. Nomenclature for factors of the SLA system, update 2008. Tissue Antigens 73, 307–315 (2009).
CAS PubMed Article PubMed Central Google Scholar
31.
Renard, C. et al. The genomic sequence and analysis of the swine major histocompatibility complex. Genomics 88, 96–110 (2006).
CAS PubMed Article PubMed Central Google Scholar
32.
Ka, S. et al. HLAscan: Genotyping of the HLA region using next-generation sequencing data. BMC Bioinform. 18, 1–11 (2017).
Article CAS Google Scholar
33.
Fan, W. et al. Shared class II MHC polymorphisms between humans and chimpanzees. Hum. Immunol. 26, 107–121 (1989).
CAS PubMed Article PubMed Central Google Scholar
34.
Piertney, S. B. & Oliver, M. K. The evolutionary ecology of the major histocompatibility complex. Heredity (Edinb). 96, 7–21 (2006).
CAS PubMed Article PubMed Central Google Scholar
35.
Flajnik, M. F., Canel, C., Kramer, J. & Kasahara, M. Which came first, MHC class I or class II?. Immunogenetics 33, 295–300 (1991).
CAS PubMed Article PubMed Central Google Scholar
36.
Borghans, J. A. M., Beltman, J. B. & De Boer, R. J. MHC polymorphism under host-pathogen coevolution. Immunogenetics 55, 732–739 (2004).
CAS PubMed Article PubMed Central Google Scholar
37.
Spurgin, L. G. & Richardson, D. S. How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc. Biol. Sci. 277, 979–988 (2010).
CAS PubMed PubMed Central Google Scholar
38.
Hughes, A. L. & Nei, M. Nucleotide substitution at major histocompatibility complex class II loci: Evidence for overdominant selection. Proc. Natl. Acad. Sci. 86, 958–962 (1989).
ADS CAS PubMed Article PubMed Central Google Scholar
39.
Hughes, A. L. & Nei, M. Evolution of the major histocompatibility complex: Independent origin of nonclassical class I genes in different groups of mammals. Mol. Biol. Evol. 6, 559–579 (1989).
CAS PubMed Google Scholar
40.
Penn, D. J. & Ilmonen, P. Major histocompatibility complex (MHC). in Encyclopedia of Life Sciences 1–7 (John Wiley & Sons, Ltd, 2001). https://doi.org/10.1038/npg.els.0000919.
41.
Bonneaud, C., Pérez-Tris, J., Federici, P., Chastel, O. & Sorci, G. Major histocompatibility alleles associated with local resistance to malaria in a passerine. Evolution (N. Y.). 60, 383 (2006).
CAS Google Scholar
42.
Schatz, G. E. Endemism in the Malagasy flora. In Diversity and Endemism in Madagascar (eds Lourenço, W. R. & Goodman, S. M.) 1–10 (2000).
43.
Lowden, S. et al. Application of Sus scrofa microsatellite markers to wild suiformes. Conserv. Genet. 3, 347–350 (2002).
CAS Article Google Scholar
44.
Gongora, J., Morales, S., Bernal, J. E. & Moran, C. Phylogenetic divisions among Collared peccaries (Pecari tajacu) detected using mitochondrial and nuclear sequences. Mol. Phylogenet. Evol. 41, 1–11 (2006).
CAS PubMed Article Google Scholar
45.
Lee, C. et al. Inferring the evolution of the major histocompatibility complex of wild pigs and peccaries using hybridisation DNA capture-based sequencing. Immunogenetics 70, 401–417 (2018).
CAS PubMed Article Google Scholar
46.
Kim, K. I. et al. Phylogenetic relationships of Asian and European pig breeds determined by mitochondrial DNA D-loop sequence polymorphism. Anim. Genet. 33, 19–25 (2002).
CAS PubMed Article Google Scholar
47.
Irwin, D. M., Kocher, T. D. & Wilson, A. C. Evolution of the Cytochrome b gene of mammals. J. Mol. Evol. 32, 128–144 (1991).
ADS CAS PubMed Article PubMed Central Google Scholar
48.
Giuffra, E. et al. The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154, 1785–1791 (2000).
CAS PubMed PubMed Central Google Scholar
49.
Ishiguro, N., Naya, Y., Horiuchi, M. & Shinagawa, M. A Genetic method to distinguish crossbred inobuta from Japanese Wild Boars. Zool. Sci. 19, 1313–1319 (2002).
CAS Article Google Scholar
50.
Fajardo, V. et al. Differentiation of European wild boar (Sus scrofa scrofa) and domestic swine (Sus scrofa domestica) meats by PCR analysis targeting the mitochondrial D-loop and the nuclear melanocortin receptor 1 (MC1R) genes. Meat Sci. 78, 314–322 (2008).
CAS PubMed Article Google Scholar
51.
Firestone, K. B. Phylogenetic relationships among quolls revisited: The mtDNA control region as a useful tool. J. Mamm. Evol. 7, 1–22 (2000).
Article Google Scholar
52.
Randi, E. et al. Evolution of the mitochondrial DNA control region and cytochrome b genes and the inference of phylogenetic relationships in the avian genus Lophura (Galliformes). Mol. Phylogenet. Evol. 19, 187–201 (2001).
CAS PubMed Article Google Scholar
53.
Jiang, J. et al. Mitochondrial genome and nuclear markers provide new insight into the evolutionary history of macaques. PLoS ONE 11, 1–19 (2016).
Google Scholar
54.
Chen, L. et al. Intraspecific mitochondrial genome comparison identified CYTB as a high-resolution population marker in a new pest Athetis lepigone. Genomics 111, 744–752 (2019).
CAS PubMed Article Google Scholar
55.
Gongora, J. et al. Phylogenetic relationships of Australian and New Zealand feral pigs assessed by mitochondrial control region sequence and nuclear GPIP genotype. Mol. Phylogenet. Evol. 33, 339–348 (2004).
CAS PubMed Article Google Scholar
56.
Wang, J. et al. Phylogenetic relationships of pig breeds from Shandong province of China and their influence by modern commercial breeds by analysis of mitochondrial DNA sequences. Ital. J. Anim. Sci. 9, 248–254 (2010).
57.
García, G., Vergara, J. & Lombardi, R. Genetic characterization and phylogeography of the wild boar Sus scrofa introduced into Uruguay. Genet. Mol. Biol. 34, 329–337 (2011).
PubMed PubMed Central Article Google Scholar
58.
Lopez, J., Hurwood, D., Dryden, B. & Fuller, S. Feral pig populations are structured at fine spatial scales in tropical Queensland, Australia. PLoS One 9, e91657 (2014).
59.
Dun, G., Li, X., Cao, H., Zhou, R. & Li, L. Variations of melanocortin receptor 1 (MC1R) gene in three pig breeds. J. Genet. Genomics 34, 777–782 (2007).
CAS PubMed Article Google Scholar
60.
Chang, A. C. Y. et al. Phenotype-based identification of host genes required for replication of African swine fever virus. J. Virol. 80, 8705–8717 (2006).
CAS PubMed PubMed Central Article Google Scholar
61.
Bitzer, A., Basler, M. & Groettrup, M. Chaperone BAG6 is dispensable for MHC class I antigen processing and presentation. Mol. Immunol. 69, 99–105 (2016).
CAS PubMed Article PubMed Central Google Scholar
62.
Stam, M. et al. Centromeric/pericentromeric junction within the MHC locus on chromosome 7 in pig. In XXXI Conference of the International Society for Animal Genetics, Amsterdam, Netherlands (2008).
63.
Groenen, M. A. M. et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491, 393–398 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
64.
Stucky, B. J. SeqTrace: A graphical tool for rapidly processing DNA sequencing chromatograms. J. Biomol. Tech. 23, 90–93 (2012).
PubMed PubMed Central Article Google Scholar
65.
Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).
CAS PubMed Article Google Scholar
66.
Watanobe, T. et al. Genetic relationship and distribution of the Japanese wild boar (Sus scrofa leucomystax) and Ryukyu wild boar (Sus scrofa riukiuanus) analysed by mitochondrial DNA. Mol. Ecol. 8, 1509–1512 (1999).
CAS PubMed Article PubMed Central Google Scholar
67.
Gongora, J. et al. Rethinking the evolution of extant sub-Saharan African suids (Suidae, Artiodactyla). Zool. Scr. 40, 327–335 (2011).
Article Google Scholar
68.
Larson, G. et al. Phylogeny and ancient DNA of Sus provides insights into neolithic expansion in Island Southeast Asia and Oceania. Proc. Natl. Acad. Sci. 104, 4834–4839 (2007).
ADS CAS PubMed Article PubMed Central Google Scholar
69.
Mona, S., Randi, E. & Tommaseo-Ponzetta, M. Evolutionary history of the genus Sus inferred from Cytochrome b sequences. Mol. Phylogenet. Evol. 45, 757–762 (2007).
CAS PubMed Article Google Scholar
70.
Niebert, M. & Tönjes, R. R. Evolutionary spread and recombination of porcine endogenous retroviruses in the suiformes. J. Virol. 79, 649–654 (2005).
CAS PubMed PubMed Central Article Google Scholar
71.
Gongora, J. & Moran, C. Nuclear and mitochondrial evolutionary analyses of Collared, White-lipped, and Chacoan peccaries (Tayassuidae). Mol. Phylogenet. Evol. 34, 181–189 (2005).
CAS PubMed Article Google Scholar
72.
Hassanin, A. et al. Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. C. R. Biol. 335, 32–50 (2012).
PubMed Article Google Scholar
73.
Wu, G. S. et al. Population phylogenomic analysis of mitochondrial DNA in wild boars and domestic pigs revealed multiple domestication events in East Asia. Genome Biol. 8, R245 (2007).
74.
Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
CAS PubMed PubMed Central Article Google Scholar
75.
Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180 (2011).
Article Google Scholar
76.
Gadagkar, S. R., Rosenberg, M. S. & Kumar, S. Inferring species phylogenies from multiple genes: Concatenated sequence tree versus consensus gene tree. J. Exp. Zool. B. Mol. Dev. Evol. 304, 64–74 (2005).
PubMed Article CAS Google Scholar
77.
Tonini, J., Moore, A., Stern, D., Shcheglovitova, M. & Ortí, G. Concatenation and species tree methods exhibit Statistically indistinguishable accuracy under a range of simulated conditions. PLoS Curr. 7, 1–15 (2015).
Google Scholar
78.
Arcila, D., Petry, P. & Ortí, G. Phylogenetic relationships of the family Tarumaniidae (Characiformes) based on nuclear and mitochondrial data. Neotrop. Ichthyol. 16, 16–19 (2018).
Article Google Scholar
79.
Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).
CAS PubMed PubMed Central Article Google Scholar
80.
Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).
MathSciNet MATH Article Google Scholar
81.
Keane, T. M., Creevey, C. J., Pentony, M. M., Naughton, T. J. & Mclnerney, J. O. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol. Biol. 6, 29 (2006).
PubMed PubMed Central Article CAS Google Scholar
82.
Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
Article Google Scholar
83.
Weaver, S. et al. Datamonkey 2.0: A modern web application for characterizing selective and other evolutionary processes. Mol. Biol. Evol. 35, 773–777 (2018).
CAS PubMed PubMed Central Article Google Scholar
84.
Nei, M. & Gojobori, T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3, 418–426 (1986).
CAS PubMed PubMed Central Google Scholar
85.
Murrell, B. et al. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 8, e1002764 (2012).
86.
Pond, S. L. K. & Frost, S. D. W. Not so different after all: A comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 22, 1208–1222 (2005).
CAS Article Google Scholar
87.
Awadi, A. et al. Positive selection and climatic effects on MHC class II gene diversity in hares (Lepus capensis) from a steep ecological gradient. Sci. Rep. 8, 11514 (2018).
ADS PubMed PubMed Central Article CAS Google Scholar
88.
Garrigan, D. & Hedrick, P. W. Perspective: Detecting adaptive molecular polymorphism: Lessons from the MHC. Evolution 57, 1707–1722 (2003).
CAS PubMed Article PubMed Central Google Scholar
89.
Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
CAS PubMed Article PubMed Central Google Scholar
90.
Tamura, K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol. Biol. Evol. 9, 678–687 (1992).
CAS PubMed Google Scholar
91.
Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).
ADS CAS PubMed Article Google Scholar
92.
Jukes, T. H. & Cantor, C. R. Evolution of protein molecules. In Mammalian Protein Metabolism, 21–132 (Elsevier, 1969). https://doi.org/10.1016/B978-1-4832-3211-9.50009-7.
93.
Bouckaert, R. et al. BEAST 2: A software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).
PubMed PubMed Central Article CAS Google Scholar
94.
Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
PubMed PubMed Central Article Google Scholar
95.
Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2016).
Google Scholar
96.
Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mss075 (2012).
Article PubMed PubMed Central Google Scholar
97.
Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1006650 (2019).
Article PubMed PubMed Central Google Scholar
98.
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).
CAS PubMed PubMed Central Article Google Scholar
99.
Rambaut, A. FigTree v1.4.3. Molecular evolution, phylogenetics and epidemiology (2016).
100.
Radimilahy, C. Mahilaka: An Archaeological Investigation of an Early Town in Northwestern Madagascar (PhD Dissertation) (Acta Universitatis Upsaliensis, Uppsala, 1998).
Google Scholar
101.
Walsh, M. T. Island subsistence: Hunting, trapping and the translocation of wildlife in the Western Indian Ocean. Azania Archaeol. Res. Africa 42, 83–113 (2007).
Google Scholar
102.
Li, J. et al. Artificial selection of the melanocortin receptor 1 gene in Chinese domestic pigs during domestication. Heredity (Edinb). 105, 274–281 (2010).
CAS PubMed Article Google Scholar
103.
Kijas, J. M. H. et al. Melanocortin receptor 1 (MC1R) mutations and coat color in pigs. Genetics 150, 1177–1185 (1998).
104.
Arauco-Shapiro, G., Schumacher, K. I., Boersma, D. & Bouzat, J. L. The role of demographic history and selection in shaping genetic diversity of the Galápagos penguin (Spheniscus mendiculus). PLoS ONE 15, 1–20 (2020).
Article CAS Google Scholar
105.
Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).
PubMed PubMed Central Article Google Scholar
106.
Froeschke, G. & Sommer, S. MHC Class II DRB variability and parasite load in the striped mouse (Rhabdomys pumilio) in the Southern Kalahari. Mol. Biol. Evol. 22, 1254–1259 (2005).
CAS PubMed Article Google Scholar
107.
Froeschke, G. & Sommer, S. Insights into the complex associations between MHC Class II DRB polymorphism and multiple gastrointestinal parasite infestations in the striped mouse. PLoS ONE 7, e31820 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
108.
Yanagida, T. et al. Genetics of the pig tapeworm in Madagascar reveal a history of human dispersal and colonization. PLoS One 9, e109002 (2014).
109.
Braae, U. C. et al. Taenia solium taeniosis/cysticercosis and the co-distribution with schistosomiasis in Africa. Parasites Vectors 8, 1–14 (2015).
Article Google Scholar
110.
Macpherson, C. N. L. & Craig, P. S. Trichinella in Africa and the nelsoni affair. In Parasitic Helminths and Zoonoses in Africa (eds Macpherson, C. & Craig, P.) 83–100 (Springer, Netherlands, 1991). https://doi.org/10.1007/978-94-011-3054-7_4.
111.
Sarovich, D. S. et al. Phylogenomic analysis reveals an Asian origin for African Burkholderia pseudomallei and further supports Melioidosis Endemicity in Africa. mSphere 1, 1–12 (2016).
112.
Kaesler, E. et al. Shared evolutionary origin of major histocompatibility complex polymorphism in sympatric lemurs. Mol. Ecol. 26, 5629–5645 (2017).
CAS PubMed Article Google Scholar
113.
Kloch, A., Babik, W., Bajer, A., Siński, E. & Radwan, J. Effects of an MHC-DRB genotype and allele number on the load of gut parasites in the bank vole Myodes glareolus. Mol. Ecol. 19(Suppl 1), 255–265 (2010).
PubMed Article Google Scholar
114.
Kusza, S. et al. Transcription specificity of the class Ib genes SLA-6, SLA-7 and SLA-8 of the swine major histocompatibility complex and comparison with class Ia genes. Anim. Genet. 42, 510–520 (2011).
CAS PubMed Article Google Scholar
115.
Chardon, P. et al. Sequence of the swine major histocompatibility complex region containing all non-classical class I genes. Tissue Antigens 57, 55–65 (2001).
CAS PubMed Article Google Scholar
116.
Le Gal, F. A. et al. HLA-G-mediated inhibition of antigen-specific cytotoxic T lymphocytes. Int. Immunol. 11, 1351–1356 (1999).
PubMed Article Google Scholar
117.
Fournel, S. et al. Cutting edge: Soluble HLA-G1 triggers CD95/CD95 ligand-mediated apoptosis in activated CD8+ cells by interacting with CD8. J. Immunol. 164, 6100–6104 (2000).
CAS PubMed Article Google Scholar
118.
Hunt, J. S., Langat, D. K., McIntire, R. H. & Morales, P. J. The role of HLA-G in human pregnancy. Reprod. Biol. Endocrinol. 4, 1–8 (2006).
Article CAS Google Scholar
119.
Minami, R. et al. BAG-6 is essential for selective elimination of defective proteasomal substrates. J. Cell Biol. 190, 637–650 (2010).
CAS PubMed PubMed Central Article Google Scholar
120.
Jori, F. & Bastos, A. D. S. Role of wild suids in the epidemiology of African swine fever. EcoHealth 6, 296–310 (2009).
PubMed Article PubMed Central Google Scholar
121.
Brown, V. R. & Bevins, S. N. A Review of African Swine fever and the potential for introduction into the United States and the possibility of subsequent establishment in feral swine and native ticks. Front. Vet. Sci. 5, 1–18 (2018).
ADS Article Google Scholar
122.
Fowler, M. E. Husbandry and diseases of captive wild swine and peccaries. Rev. Sci. Tech. 15, 141–154 (1996).
CAS PubMed Article PubMed Central Google Scholar More