More stories

  • in

    Explainable identification and mapping of trees using UAV RGB image and deep learning

    Study site
    The study site was the Kamigamo Experimental Station of Kyoto University, located in a suburban area of Kyoto, Japan (Supplementary Figure S1). This area is located in a warm and humid climate zone, with an elevation of 109–225 m above sea level. The mean annual precipitation and temperature are 1582 mm and 14.6 °C, respectively. The overall area is 46.8 ha. 65% of the area is naturally generated forest, primarily consisting of Japanese cypress (Chamaecyparis obtuse) and some broad-leaved trees such as oak (Quercus serrata or Quercus glauca). Within this area, 28% is planted forest, mainly consisting of foreign coniferous species. 7% consists of sample gardens, nurseries, or buildings.
    In this work, we focused on the northern part (an area of 11 ha) of the Kamigamo Experimental Station, containing a naturally regenerated forest of Japanese cypress, and a managed forest of Metasequoia (Metasequoia glyptostroboides), strobe pine (Pinus strobus), slash pine (Pinus elliottii), and taeda pine (Pinus taeda).
    Remote sensing data
    Flight campaigns were conducted around noon in two seasons: on October 2, 2016, which is the end of the leaf season, and November 20, 2016, the peak of the fall leaf offset season. We used UAV DJI Phantom 4 (DJI, Shenzhen China). The UAV had an onboard camera with a 1/2.3 CMOS sensor that can capture RGB spectral information. The UAV was operated automatically using the DroneDeploy v2.66 application (https://ww.dronedeploy.com, Infatics Inc., San Francisco, United States). On October 2, we set flight parameters as follows: both the overlap and sidelap were set to 75%, and the flight height was set to 80 m from the take-off ground level. However, we failed to align some parts of the images; thus, we changed the overlap and height parameters to 80% and 100 m on November 20. We used 10 ground-control points (GCPs) for reducing the error of the GPS with the images. From the images taken by the UAV, we produced an orthomosaic photo and a digital surface model (DSM) using the Agisoft PhotoScan Professional v1.3.4 software (https://www.agisoft.com, Agisoft LLC, St. Petersburg, Russia). An orthomosaic photo is an image that is composed of multiple overhead images corrected for perspective and scale. The parameter settings used in generating the orthomosaic photo are shown in Supplementary Table S1. These parameters are for November 20. The parameters for October 2 differ only in that the ground sampling distance (GSD) were approximately one centimetre. GSD of the orthomosaic photo and DSM was approximately 5 cm and 10 cm, respectively.
    Segmentation and preparation of supervised data
    The technological workflow of the individual tree image segmentation and extraction method we used is summarised in Fig. 1. First, we segmented each tree crown using UAV image (orthomosaic photo), a DSM, and a slope model. Second, we visually constructed the ground truth map. Third, we extracted each tree image with a ground truth label. Further details are discussed in sections from “Object-based tree crown segmentation” to “Tree image extraction with ground truth label”.
    Figure 1

    Workflow for supervised images extraction.

    Full size image

    Object-based tree crown segmentation
    At the segmentation stage, we segmented at the tree level. First, we constructed a slope model by calculating the slope from the DSM using the ArcGIS Desktop v10.4 software (https://www.esri.com, Environmental Systems Research Institute, Inc., Redlands, United States). The slope model showed the maximum rate of elevation change between each cell and its neighbours, such that the borders of trees were emphasised. From the orthomosaic photo, the DSM, and the slope model, tree crown segmentation was performed in the eCognition Developer v9.0.0 software (https://www.trimble.com, Trimble, Inc., Sunnyvale, United States) using the ‘Multiresolution Segmentation’ algorithm36. The parameter values were adjusted by trial and error. The tree crown map made by this segmentation process is shown in Fig. 2 with enlarged images for visual confirmation of the result, and the best parameters are presented in Supplementary Table S2.
    Figure 2

    Whole area and representative enlarged tree crown map. The blue line show grid-line of segmented polygons. The white rectangle shows the location of enlarged area, and light blue polygons are used for evaluating the accuracy of tree segmentation. This map was constructed via multiresolution segmentation using colour, DSM, and Slope model. This figure was created using ArcGIS Desktop v10.6 software (https://www.esri.com, Environmental Systems Research Institute, Inc., Redlands, United States).

    Full size image

    Herein, we evaluated the accuracy of the segmentation. The segmented crowns were placed into the following five categories according to their spatial relationships with the visually confirmed reference crown. The five categories, set based on a previous study 37, and illustrated in Supplementary Figure S2, are as follows.
    (a) Matched: If the overlap of the segmented polygon and the reference crown was more than 80%, the segmented polygon was categorized as “Matched”.
    (b) Nearly matched: If the overlap of the segmented polygon and the reference crown was 60–80%, the segmented polygon was categorized as “Nearly matched”.
    (c) Split: If the overlap of the segmented polygon and the reference crown was 20–60%, the segmented polygon was categorized as “Split”.
    (d) Merged: If multiple reference crowns covered by the segmented polygon, and even one overlap was more than 20%, the segmented polygon was categorized as “Merged”. If the segmented polygon had only one class reference crowns, the polygon was categorized as “one class merged”. If the segmented polygon had multiple class reference crowns, the polygon was categorized as “multiple class merged”.
    (e) Fragmented: If one or multiple reference crowns covered by the segmented polygon, and their respective overlaps were less than 20%, the segmented polygon was considered as a “fragmented polygon”.
    We calculated the segmentation accuracy of trees at four areas: Areas 1–4. Area 1 was a deciduous coniferous forest and Area 2 was a strobe pine forest, for which we calculated the entire area. Area 3 was a slash pine and taeda pine forest, for which we calculated part of the areas. Area 4 was a naturally regenerated forest, for which we calculated 1 ha in area. As a result, some segmented images had multiple tree crowns, but this method almost succeeded in separating each tree class (Table 1).
    Table 1 Accuracy statistics of the tree crown maps. (Area 1: deciduous coniferous tree; Area 2: strobe pine forest; Area 3: slash pine and taeda pine forest; Area 4: naturally regenerated forest).
    Full size table

    Ground truth label attachment to tree crown map
    After segmentation, we classified segmented images into the following seven classes: deciduous broad-leaved tree, deciduous coniferous tree, evergreen broad-leaved tree, Chamaecyparis obtuse, Pinus elliottii or Pinus taeda, Pinus strobus, and non-forest. The ‘non-forest’ class included understory vegetation and bare land, as well as artificial structures. For deciding these classes, we conducted field research. We set three rectangular plots sized 30 m × 30 m and checked the tree species, regarding the classes we decided could be identified from the November 20 drone images. The Pinus elliottii or Pinus taeda class consisted of two Pinus species, because these two species are difficult to identify from drone images. At the ground truth map-making phase, we visually attached the class label to each tree crown, using nearest neighbour classification in the eCognition software to improve operational efficiency, which was then used for forest mapping38 (Fig. 3). More specifically, we chose some image objects as training samples and applied that algorithm to the overall tree crowns. In subsequent steps, by adding wrongly classified objects to correct classes of the training samples, we improved the accuracy of the ground truth map.
    Figure 3

    Segmentation and ground truth map-making result. The tree classes found in the image on the left are represented by the colours explained in the legend in the figure on the right. This figure was created using ArcGIS Desktop v10.6 software (https://www.esri.com, Environmental Systems Research Institute, Inc., Redlands, United States).

    Full size image

    Tree image extraction with ground truth label
    From the orthomosaic photos of the two season and the ground truth map, we extracted each tree image with a class label using the ‘Extract by Mask’ function in ArcGIS. There were some inappropriate images, such as fragments of trees, those difficult to be interpreted or classified visually, and those including multiple classes; thus, we manually deleted inappropriate images and placed wrongly classified images into the correct class by group consensus. Representative images of the tree classes are shown in Figs. 4 and 5. The number of extracted images and that of arranged images are shown in Supplementary Table S3. After arrangement, the number of each class ranged from 37 to 416. The images had a wide range of sizes, but the length of one side of the largest image was approximately 400 pixels.
    Figure 4

    Representative extracted images from each class in the November 20 images. These images were segmented well at each tree crown level. However, the image of Pinus strobus includes several tree images. The image of the non-forest class shows the roof of a house.

    Full size image

    Figure 5

    Representative extracted images from each class in the October 2 images. These images were extracted from the same tree crown map polygon as the November 20 images.

    Full size image

    After extraction, we resized the images from October 2 to the size of images from November 20 in order to align the two season conditions. Thus, all images were adjusted to the size of images taken from a height of approximately 100 m.
    Machine learning
    To construct a model for object identification, we used the publicly available package PyTorch v0.4.139 as a deep learning framework and four standard neural network models—specifically, AlexNet23, VGG1640, Resnet18, and Resnet15241—for fine-tuning. Fine-tuning is an effective method to improve the learning performance, especially when the amount of data is insufficient for training42. We used each neural network model, which had been learned with the ImageNet dataset43, and trained all neural network layers using our data. At the CNN training phase, we augmented the training images eight times by flipping and rotating them. Further augmentation did not improve accuracy. For the input to the CNN, we applied ‘random resized crop’ at a scale of 224 × 224 pixel size for training, which crops the given image to a random size and aspect ratio. For validation and training, we resized the images into 256 × 256 pixel sizes and used ‘centre crop’ at a scale of 224 × 224 pixel size. These cropping algorithms extracted only one resized image (patch) from each cropped image. The ranges of the other learning settings are outlined in Supplementary Table S4.
    To evaluate the performance of the CNN, we used SVM as a machine learning platform. We used the average and standard deviation of each band and GLCM texture values as features. GLCM is a spatial co-occurrence matrix that computes the relationships of pixel values, and uses these relationships to compute the texture statistics44. For calculating GLCM, images with a large number of data bits result in huge computational complexity. In this case, the images that were converted to grey scale were 8-bit data. It is known that reduction of bit size causes only minor decrease in classification accuracy; hence, we rescaled from 8-bit to 5-bit45,46. After calculation of GLCM, we extracted five GLCM texture features (angular second moment (ASM), contrast, dissimilarity, entropy, and homogeneity). Their algorithms are defined in Eqs. (1)–(5):

    $$begin{array}{c}ASM=sum_{i,j}^{N}{(P}_{i,j}{)}^{2} end{array}$$
    (1)

    $$begin{array}{c}Contrast=sum_{i,j}^{N}{P}_{i,j}{left(i-jright)}^{2}end{array}$$
    (2)

    $$begin{array}{c}Dissimilarity=sum_{i,j}^{N}{P}_{i,j}left|i-jright|end{array}$$
    (3)

    $$begin{array}{c}Entropy=sum_{i,j}^{N}{P}_{i,j}mathrm{log}left({P}_{i,j}right)end{array}$$
    (4)

    $$begin{array}{c}Homogeneity=sum_{i,j}^{N}{P}_{i,j}/(1+{left(i-jright)}^{2})end{array}$$
    (5)

    where ({P}_{i,j}) is the GLCM at the pixel which is located in row number i and column number j. We obtained these GLCM texture features at each pixel, excluding pixels close to the image margin, and then calculated their mean and standard deviation for each image. Another important parameter that affects classification performance is the kernel size47,48. To determine the most suitable kernel size for GLCM operation, we calculated GLCM texture features with various kernel sizes of 3, 11, 19, 27, 35, 43, 51, and 59. For SVM validation, we used radial basis function (rbf) kernel and conducted a parameter grid search in the range of gamma from ({10}^{-1}) to ({10}^{-5}) and cost from 1 to ({10}^{5}). As a result of the grid search, we obtained the best validation accuracy and the best parameters at each GLCM kernel size (Supplementary Figure S3). The validation accuracy slightly increased along with the increase in kernel size, and the accuracy stopped increasing at the 51 × 51 kernel size. Considering this result, we adopted the 51 × 51 kernel size and the best parameters as follows: gamma and cost were ({10}^{-2}) and ({10}^{3}) in the fall peak season, and ({10}^{-3}) and ({10}^{4}) in the green leaf season, respectively. We then used these parameters for SVM learning and the comparative evaluation.
    For machine learning, we divided the data into training, validation, and testing sets. The validation dataset was used for hyperparameters tuning such as learning rate, batch size for deep learning, and kernel size, cost, and gamma values for SVM. In the testing phase, we used the data which had not been used for training and parameter tuning. Validation accuracy is not suitable for comparing performance as a final result because validation accuracy can be higher than testing accuracy; we tuned the hyperparameters to get higher accuracy using the validation data. Using testing data, we can exclude the bias of parameter tuning. We also used a kind of cross-validation because we had a limited amount of data and decreased the contingency of accuracy. In this case, we randomly divided all the images evenly into four datasets and used two of them for training, one for validation, and one for testing. Subsequently, we interchanged successively the datasets used for training, validation, and testing. This process was repeated four times. For the accuracy evaluation and confusion matrix, we used total accuracy and all the images.
    For this calculation, we used a built to order (BTO) desktop computer with a Xeon E5-2640 CPU, 32 GB RAM, and a Geforce GTX 1080 graphics card; the OS was Ubuntu 16.04.
    Evaluation
    For evaluation, we used the overall accuracy, Cohen’s Kappa coefficient49, and the macro average F1 score. F1 score is the harmonic mean of Recall and Precision. In this study, the number of images acquired for each class varied significantly. The overall accuracy, which is typically utilised for evaluating the machine learning performance, is subject to the difference in the amount of data available to each class. Therefore, we used the Kappa and F1 score, which is suitable for evaluating imbalanced dataset accuracy, as well as overall accuracy to obtain an objective evaluation. Additionally, for evaluating the per-class accuracy, we used the F1 score of each class. More

  • in

    Shape and rate of movement of the invasion front of Xylella fastidiosa spp. pauca in Puglia

    Samples included in this dataset were taken from olive trees sampled from November 2013 until April 2018 by the Apulian Regional Phytosanitary Service. From April 2016 to April 2018, sampling was done only in the buffer zone and containment zone (Fig. 1) and was structured in quadrats of one hectares (ha) area, with at least one sample collected in each quadrat. Within each quadrat, priority was given to sample symptomatic trees and if within the quadrat several trees showed disease symptoms, these were also sampled and individually tested. Samples consisted of mature olive twigs (at least 8 twigs/tree), collected close to symptomatic branches, or from the 4 cardinal points of the canopy when sampling asymptomatic trees. The samples were first tested for X. fastidiosa by using Enzyme-linked immunosorbent assay (ELISA)21. All ELISA-positive samples, and those yielding doubtful ELISA results, plus 3% of the negative samples, were subsequently tested using quantitative PCR.
    The total data set comprises 409,515 records and 7 columns. The columns are the ID number of the measurement, longitude, latitude, result (0 for negative on X. fastidiosa presence, 1 for positive), day, year, and month. The number of rows was reduced to 298,230 rows after removing NA (not available) values for the result column or missing coordinates for the longitude and latitude columns. We initially tried to work with the point data as observed, but found that these data were extremely difficult to analyse, presumably because of large variability in the data leading to very flat likelihood surfaces that did not support convergence of the optimization algorithms tested for fitting spatial expansion models (Simplex, Simulated annealing, etc.). We therefore grouped the observation data in 1-km wide distance classes from the port of Gallipoli, the likely origin of the disease invasion (latitude: 40.055851, longitude: 17.992615)22 and calculated the proportion of infected trees in each class. We thus obtained a reduced data set with approximately 200 distance classes comprising an inner circle of 1 km radius, and concentric rings of 1 km width each, with for each class the number of sampled trees and the number of infected trees. We then analysed the relationship between the proportion of infected trees and the distance from Gallipoli (Fig. 4). This relationship was first identified separately for each year, and subsequently by assuming a constant rate of displacement over time (i.e. the rate of spread) of a disease front with a fixed shape.
    Figure 4

    Relationship between proportion of positive samples per each km ring (Y-axis) and distance to Gallipoli (X-axis; km). Points with different colour represents different years.

    Full size image

    We expected a high proportion of positive samples at short distance from Gallipoli, with the proportion declining with increasing distance. Therefore, we chose for the shape of the disease front the following deterministic functions (1) a negative exponential function, (2) a decreasing logistic function, and (3) a constrained negative exponential function (CNE; constrained to have a maximum proportion diseased trees (p = 1.0)) (Table 1). The shape of the tail of the invasion front is in many instances exponential18,23,24,25,26, but the proportion of disease cannot exceed one, hence the CNE was used as a modification of an exponential relationship. The sampled data is binary count data (number of positive samples out of the total number of samples at a given distance) and the distance is transformed to discrete distance circles. Because the data are based on a known number of samples in each distance class with a stochastic number of positive outcomes, we chose the binomial distribution and the beta-binomial distribution as candidate stochastic models for fitting the model to the data (Table 1). The binomial model is a model for count data with a defined maximum (N), assuming a fixed probability of “success” (infection). The beta-binomial takes overdispersion into account by drawing the probability of success from a beta distribution around the mean probability of success. The probability of success, i.e. the proportion of positive samples, depends on the distance from Gallipoli and the time since first detection. In our model for the invasion front, the mean probability of disease presence at a distance (x) from Gallipoli is described by the deterministic part of the model (e.g. logistic), while the beta-binomial variability in the detection result is described by an overdispersion parameter (theta) which increases in value as the variance tends towards the variance of the binomial distribution (Bolker, 2008). Mathematically, the parameter θ equals the sum of the parameters (a + b), where (a) and (b) are the shape parameters of the beta distribution27. Given a same mean, the beta-binomial distribution has a larger variance than the binomial distribution (Table 1). The beta-binomial distribution tends to the binomial distribution as (theta) gets large. For all model fits, we calculated the AIC (Akaike information criterion):

    $${text{AIC}} = 2k – 2 log left( L right)$$
    (1)

    Table 1 Deterministic and stochastic models used for fitting all combinations of deterministic and stochastic models.
    Full size table

    where (k) is the number of estimated parameters, log is the natural logarithm, and L is the likelihood27. The model with the lowest AIC was selected as the most supported model. Models with a difference in AIC from the minimum AIC model of two or less are considered equivalent. In that case, we selected the simplest model.
    Next, we used the two best fitting models (see “Results” section), the logistic function with beta-binomial distribution and the CNE function with beta-binomial distribution, to analyse the speed with which X. fastidiosa spreads through Puglia. To keep the models in a simplified form, it can be assumed that the dispersal front retains its shape over time and space and moves in space at a constant rate28,29. Therefore, for this analysis the deterministic functions from Table 1 are modified to include a yearly spread rate c (km per year) and time variable t (year):

    $${text{Logistic}};{text{function:}};p_{l} = frac{1}{{1 + {text{exp}}left( {rleft( {x – (x_{50} + ct} right)} right))}}$$
    (2)

    $${text{CNE}};{text{function:}};p_{c} = left{ {begin{array}{ll} 1 & { mid; x < x_{100} + ct,} \ {exp left( { - rleft( {x - left( {x_{100} + ct} right)} right)} right) } & {mid; x ge x_{100} + ct.} \ end{array} } right.$$ (3) where (p_{l}) and (p_{c}) are the proportion of positive measurements of the logistic and CNE functions respectively, (r) is the relative growth rate of the disease in the tail in km-1, (x) is the distance in km from the disease origin, Gallipoli, (x_{50}) is the (negative) x-value (distance from Gallipoli) of the half-maximum of the curve at (t = 0) in km, (x_{100}) is the (negative) (x)-value where the CNE function curve reaches a value of 1.0 at (t = 0) in km, (t) is the time since 2013 in years, and the parameter c is the rate of spread in km per year. With these equations, one curve for every (t) (year) is displayed. 95% confidence limits (CLs) were calculated with the likelihood ratio test method27. To test the adequacy of the methodology for estimating the shape of the invasion front and the rate of spread, we did stochastic simulations in which we generated data on an expanding disease, collected samples in the same spatially heterogeneous manner from the simulated data as we did for the actual data sets, and re-estimated the rate of spread from the data. The estimated parameter values were then compared to the known parameter input values. The simulations were done using the logistic function and CNE function for the shape of the disease front and a beta-binomial distribution to describe variability. Data was randomly generated using a beta-binomial distribution for every distance circle according to the expected proportion of disease ((p)) calculated from the deterministically moving front, while the number of samples (N) within each distance circle was the same as in the empirical data. Again, a constant shape and rate of spread of the dispersal front is assumed29. Because of the uncertainty regarding the location of the front when sampling started (2013) and the rate of spread, the parameters that describe these aspects of the model, (x_{50}) (logistic) or (x_{100}) (CNE) and (c) respectively, were also varied in the stochastic simulations. For the logistic function, the parameters (r) (the relative growth rate of the disease in the tail) and (theta) (overdispersion) were fixed at 0.08 km−1 and 1 respectively, while parameter (x_{50}) was varied from − 40 to − 5 km from Gallipoli with steps of 5 km, and the parameter (c) was varied from 5 to 16 km per year with steps of 1 km per year. For the CNE function, the parameters (r) and (theta) were again fixed at 0.08 km−1 and 1 respectively, while parameter (x_{100}) was varied from − 45 to − 10 km with steps of 5 km, and parameter (c) was varied from 5 to 16 km per year with steps of 1 km per year. Data generation and estimation of parameters was done 10 times for each combination of parameters. For every combination of the location parameter, (x_{50}) or (x_{100}), and the rate of range expansion, c, the mean difference between the set rate of spread and the estimated rate of spread was calculated ((X_{i}); where i is the index for a parameter combination). Using the generated set of differences Xi, we calculated the mean bias ((overline{X})): $$overline{X} = frac{{mathop sum nolimits_{i}^{n} X_{i} }}{n}$$ (4) where (n) is the total number of parameter combinations. We also calculated the root-mean-squared error (RMSE): $${text{RMSE}} = sqrt {frac{{mathop sum nolimits_{i}^{n} X_{i}^{2} }}{n}}$$ (5) We estimated the width of the invasion front using a logistic shape of the invasion front. Width was calculated as the distance between the 1st and 99th percentile of the front or between the 5th and 95th percentile. For this, a curve at any point in time can be used since the curves have the same shape, and the width is the same in every year (Fig. 6). For the logistic function and the calculation of the 1st and 99th percentile the following applies: $$frac{1}{{1 + {text{exp}}left( {rleft( {x_{99} - left( {x_{50} + ct} right)} right)} right)}} = 0.99$$ (6) $$frac{1}{{1 + {text{exp}}left( {rleft( {x_{1} - left( {x_{50} + ct} right)} right)} right)}} = 0.01$$ (7) This is solved to find: $$x_{1} - x_{99} = frac{{2{text{log}}left( {99} right)}}{r}$$ (8) where log is the natural logarithm. Using Eq. (7), we also estimate the supposed starting time of the logistic growth of the disease by calculating (t) for (x_{1} = 0). To assess the sensitivity of our analysis to the point of origin, for which we chose Gallipoli in accordance with the best available evidence, we repeated our analyses of the shape of the front and the rate of spread when assuming different points of origin. For this we use three fictitious origin locations (Fig. 1): Santa Maria di Leuca, Otranto, and Maglie. We choose Santa Maria di Leuca and Otranto because these are also cities in Puglia with ports. We choose Maglie because it lies approximately in between the other three locations. These locations are not chosen because we think they are plausible points where Xylella could have been introduced for the first time, but only because they are suitable locations for a sensitivity analysis. To further asses the sensitivity of choosing Gallipoli as the point of origin, we repeat our simulations when generating data with Santa Maria di Leuca, Otranto, or Maglie as the point of origin, but analyse this data assuming Gallipoli as the point of origin. All calculations and model fitting were done in R 3.6.030. The complete dataset and details on the data analysis are available in the R script online at https://github.com/DBKottelenberg/OQDS_Xf_Puglia. More

  • in

    The impact of injury on apparent survival of whale sharks (Rhincodon typus) in South Ari Atoll Marine Protected Area, Maldives

    1.
    McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 1255641 (2015).
    PubMed  Article  CAS  Google Scholar 
    2.
    Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. eLife 3, 590 (2014).
    Article  Google Scholar 

    3.
    Hutchings, J. A., Myers, R. A., García, V. B., Lucifora, L. O. & Kuparinen, A. Life-history correlates of extinction risk and recovery potential. Ecol. Appl. 22, 1061–1067 (2012).
    PubMed  Article  Google Scholar 

    4.
    Frisk, M. & Miller, T. J. Life histories and vulnerability to exploitation of elasmobranchs: Inferences from elasticity, perturbation and phylogenetic analyses. Artic. J. Northwest Atl. Fish. Sci. https://doi.org/10.2960/J.v35.m514 (2005).
    Article  Google Scholar 

    5.
    Carr, L. A. et al. Illegal shark fishing in the Galápagos Marine Reserve. Mar. Policy 39, 317–321 (2013).
    Article  Google Scholar 

    6.
    Dharmadi, F. & Satria, F. African Journal of Marine Science Fisheries management and conservation of sharks in Indonesia. Afr. J. Mar. Sci. 37, 249–258 (2015).
    Article  Google Scholar 

    7.
    Heupel, M., Carlson, J. & Simpfendorfer, C. Shark nursery areas: Concepts, definition, characterization and assumptions. Mar. Ecol. Prog. Ser. 337, 287–297 (2007).
    ADS  Article  Google Scholar 

    8.
    Meylan, P. A., Meylan, A. B. & Gray, J. A. The ecology and migrations of sea turtles 8. Tests of the developmental habitat hypothesis. Bull. Am. Museum Nat. Hist. 357, 1–70 (2011).
    Article  Google Scholar 

    9.
    Jennings, D. E., Gruber, S. H., Franks, B. R., Kessel, S. T. & Robertson, A. L. Effects of large-scale anthropogenic development on juvenile lemon shark (Negaprion brevirostris) populations of Bimini, Bahamas. Environ. Biol. Fishes 83, 369–377 (2008).
    Article  Google Scholar 

    10.
    Kinney, M. J. & Simpfendorfer, C. A. Reassessing the value of nursery areas to shark conservation and management. Conserv. Lett. 2, 53–60 (2009).
    Article  Google Scholar 

    11.
    Healy, T. J., Hill, N. J., Chin, A. & Barnett, A. A global review of elasmobranch tourism activities, management and risk. Mar. Policy 118, 103964 (2020).
    Article  Google Scholar 

    12.
    White, T. D. et al. Assessing the effectiveness of a large marine protected area for reef shark conservation. Biol. Conserv. 207, 64–71 (2017).
    Article  Google Scholar 

    13.
    Claudet, J., Loiseau, C., Sostres, M. & Correspondence, M. Z. Underprotected marine protected areas in a global biodiversity hotspot. One Earth https://doi.org/10.1016/j.oneear.2020.03.008 (2020).
    Article  Google Scholar 

    14.
    Pierce, S. & Norman, B. Rhincodon typus. IUCN Red List Threat. Species e-T19488A2, (2016).

    15.
    CITES. Convention on international trade in endangered species of wild fauna and flora. Amendments to Appendices I and II of CITES. (2000).

    16.
    Convention on Migratory Species. Proposal for the inclusion of the whale shark (Rhincodon typus) on Appendix I of the convention CMS convention on migratory species. (2017).

    17.
    Simpfendorfer, C. A. & Dulvy, N. K. Bright spots of sustainable shark fishing. Curr. Biol. 27, R97–R98 (2017).
    CAS  PubMed  Article  Google Scholar 

    18.
    Reeve-Arnold, K. E., Kinni, J., Newbigging, R., Pierce, S. J. & Roques, K. Sustaining whale shark tourism in a diminishing population. In (Hamad bin Khalifa University Press, HBKU Press, 2016). https://doi.org/10.5339/qproc.2016.iwsc4.49.

    19.
    Pravin, P. Whale Shark in the Indian Coast—Need for conservation. Curr. Sci. 79, 310–315 (2000).
    Google Scholar 

    20.
    Li, W., Wang, Y. & Norman, B. A preliminary survey of whale shark Rhincodon typus catch and trade in China: An emerging crisis. J. Fish Biol. 80, 1608–1618 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Hearn, A. R. et al. Adult female whale sharks make long-distance movements past Darwin Island (Galapagos, Ecuador) in the Eastern Tropical Pacific. Mar. Biol. 163, 1–12 (2016).
    Article  Google Scholar 

    22.
    Wilson, S. G., Polovina, J. J., Stewart, B. S. & Meekan, M. G. Movements of whale sharks (Rhincodon typus) tagged at Ningaloo Reef, Western Australia. Mar. Biol. 148, 1157–1166 (2006).
    Article  Google Scholar 

    23.
    Hueter, R. E., Tyminski, J. P. & de la Parra, R. Horizontal movements, migration patterns, and population structure of whale sharks in the Gulf of Mexico and northwestern Caribbean Sea. PLoS ONE 8, e71883 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Robinson, D. P. et al. Some like it hot: Repeat migration and residency of whale sharks within an extreme natural environment. PLoS ONE 12, e0185360 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Araujo, G. et al. Photo-ID and telemetry highlight a global whale shark hotspot in Palawan, Philippines. Sci. Rep. 9, 1–12 (2019).
    Article  CAS  Google Scholar 

    26.
    Bradshaw, C. J. A., Fitzpatrick, B. M., Steinberg, C. C., Brook, B. W. & Meekan, M. G. Decline in whale shark size and abundance at Ningaloo Reef over the past decade: The world’s largest fish is getting smaller. Biol. Conserv. 141, 1894–1905 (2008).
    Article  Google Scholar 

    27.
    Speed, C. W. et al. Scarring patterns and relative mortality rates of Indian Ocean whale sharks. J. Fish Biol. 72, 1488–1503 (2008).
    Article  Google Scholar 

    28.
    Lester, E. et al. Multi-year patterns in scarring, survival and residency of whale sharks in Ningaloo Marine Park, Western Australia. Mar. Ecol. Prog. Ser. 634, 115–125 (2020).
    ADS  Article  Google Scholar 

    29.
    Rowat, D. & Brooks, K. S. A review of the biology, fisheries and conservation of the whale shark Rhincodon typus. J. Fish Biol. 80, 1019–1056 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Cochran, J. E. M. et al. Multi-method assessment of whale shark (Rhincodon typus) residency, distribution, and dispersal behavior at an aggregation site in the Red Sea. PLoS ONE 14, e0222285 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Copping, J. P., Stewart, B. D., McClean, C. J., Hancock, J. & Rees, R. Does bathymetry drive coastal whale shark (Rhincodon typus) aggregations?. PeerJ 6, e4904 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Norman, B. M. et al. Undersea constellations: The global biology of an endangered marine megavertebrate further informed through citizen science. Bioscience 67, 1029–1043 (2017).
    Article  Google Scholar 

    33.
    Donati, G. et al. New insights into the South Ari atoll whale shark, Rhincodon typus, aggregation. In (Hamad bin Khalifa University Press, HBKU Press, 2016). https://doi.org/10.5339/qproc.2016.iwsc4.16.

    34.
    Riley, M. J., Hale, M. S., Harman, A. & Rees, R. G. Analysis of whale shark Rhincodon typus aggregations near South Ari Atoll, Maldives Archipelago. Aquat. Biol. 8, 145–150 (2010).
    Article  Google Scholar 

    35.
    Rowat, D., Meekan, M. G., Engelhardt, U., Pardigon, B. & Vely, M. Aggregations of juvenile whale sharks (Rhincodon typus) in the Gulf of Tadjoura, Djibouti. Environ. Biol. Fishes 80, 465–472 (2007).
    Article  Google Scholar 

    36.
    Cagua, E. F. et al. Acoustic telemetry reveals cryptic residency of whale sharks. Biol. Lett. 11, 20150092 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Thomson, J. A. et al. Feeding the world’s largest fish: Highly variable whale shark residency patterns at a provisioning site in the Philippines. R. Soc. Open Sci. 4, 170394 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Perry, C. T. et al. Comparing length-measurement methods and estimating growth parameters of free-swimming whale sharks (Rhincodon typus) near the South Ari Atoll, Maldives. Mar. Freshw. Res. 69, 1487 (2018).
    Article  Google Scholar 

    39.
    Riley, M. J., Harman, A. & Rees, R. G. Evidence of continued hunting of whale sharks Rhincodon typus in the Maldives. Environ. Biol. Fishes 86, 371–374 (2009).
    Article  Google Scholar 

    40.
    Cagua, E. F., Collins, N., Hancock, J. & Rees, R. Whale shark economics: A valuation of wildlife tourism in South Ari Atoll. Maldives. PeerJ 2, e515 (2014).
    PubMed  Article  Google Scholar 

    41.
    Arzoumanian, Z., Holmberg, J. & Norman, B. An astronomical pattern-matching algorithm for computer-aided identification of whale sharks Rhincodon typus. J. Appl. Ecol. 42, 999–1011 (2005).
    Article  Google Scholar 

    42.
    Bradshaw, C. J. A., Mollett, H. F. & Meekan, M. G. Inferring population trends for the world’s largest fish from mark recapture estimates of survival. J. Anim. Ecol. 76, 480–489 (2007).
    PubMed  Article  Google Scholar 

    43.
    Holmberg, J., Norman, B. & Arzoumanian, Z. Estimating population size, structure, and residency time for whale sharks Rhincodon typus through collaborative photo-identification. Endanger. Species Res. 7, 39–53 (2009).
    Article  Google Scholar 

    44.
    Rowat, D., Gore, M., Meekan, M. G., Lawler, I. R. & Bradshaw, C. J. A. Aerial survey as a tool to estimate whale shark abundance trends. J. Exp. Mar. Biol. Ecol. 368, 1–8 (2009).
    Article  Google Scholar 

    45.
    Acuña-Marrero, D. et al. Whale shark (Rhincodon typus) seasonal presence, residence time and habitat use at darwin island, galapagos marine reserve. PLoS ONE 9, e115946 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    46.
    Schwarz, C. J., Bailey, R. E., Irvine, J. R. & Dalziel, F. C. Estimating salmon spawning escapement using capture-recapture methods. Can. J. Fish. Aquat. Sci. 50, 1181–1197 (1993).
    Article  Google Scholar 

    47.
    Schwarz, C. J. & Arnason, A. N. A general methodology for the analysis of capture-recapture experiments in open populations. Biometrics 52, 860 (1996).
    MathSciNet  MATH  Article  Google Scholar 

    48.
    Whitehead, H. Analysis of animal movement using opportunistic individual identifications: Application to sperm whales. Ecology 82, 1417–1432 (2001).
    Article  Google Scholar 

    49.
    QGIS.org. QGIS Geographic Information System. Open Source Geospatial Foundation Project. (2020).

    50.
    Van Tienhoven, A. M., Den Hartog, J. E., Reijns, R. A. & Peddemors, V. M. A computer-aided program for pattern-matching of natural marks on the spotted raggedtooth shark Carcharias taurus. J. Appl. Ecol. 44, 273–280 (2007).
    Article  Google Scholar 

    51.
    RStudio Team. RStudio: Integrated Development for R. (2015).

    52.
    Laake, J. L. RMark: An R interface for analysis of capture-recapture data with MARK. AFSC Processed Rep. 2013-01 Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., (2013). https://doi.org/10.1017/CBO9781107415324.004.

    53.
    Schwarz, C., Arnason, A., Cooch, E. & White, G. Jolly-Seber models in MARK. Progr. MARK–a gentle Introd. 18th Ed. (2018).

    54.
    Cooch, E. & White, G. Program MARK: A gentle introduction (13th ed.). available online with MARK Program. (2006).

    55.
    Whitehead, H. SOCPROG programs: Analysing animal social structures. Behav. Ecol. Sociobiol. 63, 765–778 (2009).
    Article  Google Scholar 

    56.
    Whitehead, H. Selection of models of lagged identification rates and lagged association rates using AIC and QAIC. Commun. Stat. Simul. Comput. 36, 1233–1246 (2007).
    MathSciNet  MATH  Article  Google Scholar 

    57.
    Buckland, S. T. & Garthwaite, P. H. Quantifying precision of mark-recapture estimates using the bootstrap and related methods. Biometrics 47, 255 (1991).
    Article  Google Scholar 

    58.
    Rohner, C. A. et al. No place like home? High residency and predictable seasonal movement of whale sharks off Tanzania. Front. Mar. Sci. 7, 423 (2020).
    Article  Google Scholar 

    59.
    Norman, B. M., Whitty, J. M., Beatty, S. J., Reynolds, S. D. & Morgan, D. L. Do they stay or do they go? Acoustic monitoring of whale sharks at Ningaloo Marine Park, Western Australia. J. Fish Biol. 91, 1713–1720 (2017).
    CAS  PubMed  Article  Google Scholar 

    60.
    Araujo, G. et al. Population structure and residency patterns of whale sharks, Rhincodon typus, at a provisioning site in Cebu, Philippines. PeerJ 2014, e543 (2014).
    Article  Google Scholar 

    61.
    Prebble, C. et al. Limited latitudinal ranging of juvenile whale sharks in the Western Indian Ocean suggests the existence of regional management units. Mar. Ecol. Prog. Ser. 601, 167–183 (2018).
    ADS  Article  Google Scholar 

    62.
    Araujo, G. et al. Population structure and residency patterns of whale sharks, Rhincodon typus, at a provisioning site in Cebu, Philippines. PeerJ 2, e543 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    63.
    Akhilesh, K. V. et al. Landings of whale sharks Rhincodon typus Smith, 1828 in Indian waters since protection in 2001 through the Indian Wildlife (Protection) Act, 1972. Environ. Biol. Fishes 96, 713–722 (2013).
    Article  Google Scholar 

    64.
    Heyman, W., Graham, R., Kjerfve, B. & Johannes, R. Whale sharks Rhincodon typus aggregate to feed on fish spawn in Belize. Mar. Ecol. Prog. Ser. 215, 275–282 (2001).
    ADS  Article  Google Scholar 

    65.
    Meekan, M. et al. Population size and structure of whale sharks Rhincodon typus at Ningaloo Reef, Western Australia. Mar. Ecol. Prog. Ser. 319, 275–285 (2006).
    ADS  Article  Google Scholar 

    66.
    Cochran, J. E. M. et al. Population structure of a whale shark Rhincodon typus aggregation in the Red Sea. J. Fish Biol. 89, 1570–1582 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Araujo, G. et al. Population structure, residency patterns and movements of whale sharks in Southern Leyte, Philippines: Results from dedicated photo-ID and citizen science. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 237–252 (2017).
    Article  Google Scholar 

    68.
    Robinson, D. P. et al. Population structure, abundance and movement of whale sharks in the Arabian Gulf and the Gulf of Oman. PLoS ONE 11, e0158593 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    McCoy, E. et al. Long-term photo-identification reveals the population dynamics and strong site fidelity of adult whale sharks to the coastal waters of Donsol, Philippines. Front. Mar. Sci. 5, 271 (2018).
    Article  Google Scholar 

    70.
    Araujo, G. et al. In-water methods reveal population dynamics of a green turtle Chelonia mydas foraging aggregation in the Philippines. Endanger. Species Res. 40, 207–218 (2019).
    Article  Google Scholar 

    71.
    Sleeman, J. C. et al. To go or not to go with the flow: Environmental influences on whale shark movement patterns. J. Exp. Mar. Biol. Ecol. 390, 84–98 (2010).
    Article  Google Scholar 

    72.
    Calambokidis, J., Laake, J. L. & Klimek, A. Abundance and population structure of seasonal gray whales in the Pacific Northwest, 1998–2008. Sc/62/Brg32, Vol. 2008 (2010).

    73.
    Branstetter, S. Early Life-History Implications of Selected Carcharhinoid and Lamnoid Sharks of the Northwest Atlantic. Elasmobranchs as Living Resour. Adv. Biol. Ecol. Syst. Status Fish. (1990).

    74.
    Parker, J. H. & Gischler, E. Modern foraminiferal distribution and diversity in two atolls from the Maldives, Indian Ocean. Mar. Micropaleontol. 78, 30–49 (2011).
    ADS  Article  Google Scholar 

    75.
    Halvorsen, M. B., Casper, B. M., Woodley, C. M., Carlson, T. J. & Popper, A. N. Threshold for onset of injury in Chinook salmon from exposure to impulsive pile driving sounds. PLoS ONE 7, e38968 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Haskell, P. J. et al. Monitoring the effects of tourism on whale shark Rhincodon typus behaviour in Mozambique. ORYX 49, 492–499 (2015).
    Article  Google Scholar 

    77.
    Quiros, A. L. Tourist compliance to a Code of Conduct and the resulting effects on whale shark (Rhincodon typus) behavior in Donsol, Philippines. Fish. Res. 84, 102–108 (2007).
    Article  Google Scholar 

    78.
    Araujo, G., Vivier, F., Labaja, J. J., Hartley, D. & Ponzo, A. Assessing the impacts of tourism on the world’s largest fish Rhincodon typus at Panaon Island, Southern Leyte, Philippines. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 986–994 (2017).
    Article  Google Scholar 

    79.
    Finger, J. S. et al. Rate of movement of juvenile lemon sharks in a novel open field, are we measuring activity or reaction to novelty?. Anim. Behav. 116, 75–82 (2016).
    Article  Google Scholar 

    80.
    Cade, D. E. et al. Whale sharks increase swimming effort while filter feeding, but appear to maintain high foraging efficiencies. J. Exp. Biol. 223, jeb.224402 (2020).
    Article  Google Scholar 

    81.
    Archie, E. A. Wound healing in the wild: stress, sociality, and energetic costs affect wound healing in natural populations. Parasite Immunol. 35, n/a-n/a (2013).

    82.
    Baker, M. R., Swanson, P. & Young, G. Injuries from non-retention in gillnet fisheries suppress reproductive maturation in escaped fish. PLoS ONE 8, e69615 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    83.
    Neat, F. C., Taylor, A. C. & Huntingford, F. A. Proximate costs of fighting in male cichlid fish: The role of injuries and energy metabolism. Anim. Behav. 55, 875–882 (1998).
    CAS  PubMed  Article  Google Scholar 

    84.
    Meekan, M. G., Fuiman, L. A., Davis, R., Berger, Y. & Thums, M. Swimming strategy and body plan of the world’s largest fish: Implications for foraging efficiency and thermoregulation. Front. Mar. Sci. 2, 64 (2015).
    Article  Google Scholar 

    85.
    Chin, A., Mourier, J. & Rummer, J. L. Blacktip reef sharks (Carcharhinus melanopterus) show high capacity for wound healing and recovery following injury. Conserv. Physiol. 3(1) (2015).

    86.
    Tierney, K. B. & Farrell, A. P. The relationships between fish health, metabolic rate, swimming performance and recovery in return-run sockeye salmon, Oncorhynchus nerka (Walbaum). J. Fish Dis. 27, 663–671 (2004).
    CAS  PubMed  Article  Google Scholar 

    87.
    McGregor, F., Richardson, A. J., Armstrong, A. J., Armstrong, A. O. & Dudgeon, C. L. Rapid wound healing in a reef manta ray masks the extent of vessel strike. PLoS ONE 14, e0225681 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Tort, L. Stress and immune modulation in fish. Dev. Comp. Immunol. 35, 1366–1375 (2011).
    CAS  PubMed  Article  Google Scholar 

    89.
    Mateus, A. P., Anjos, L., Cardoso, J. R. & Power, D. M. Chronic stress impairs the local immune response during cutaneous repair in gilthead sea bream (Sparus aurata L.). Mol. Immunol. 87, 267–283 (2017).
    CAS  PubMed  Article  Google Scholar 

    90.
    Environmental Protection Agency. Maldivian Whale Shark Tourist Encounter Guidelines. (2009).

    91.
    Leston, F. A. L. Monitoring Tourist Pressure on Whale Shark (Rhincodon typus) Behaviour in South Ari MPA, Maldive) Behaviour in South Ari MPA, Maldive (The University of Edinburgh, Edinburgh, 2016).
    Google Scholar 

    92.
    Kallsen, H. Regulation of Whale Shark Tourism: A Data Driven Approach for the South Ari Marine Protected Area (Syddansk Universitet, Odense, 2018).
    Google Scholar 

    93.
    Montero-Quintana, A. N., Vázquez-Haikin, J. A., Merkling, T., Blanchard, P. & Osorio-Beristain, M. Ecotourism impacts on the behaviour of whale sharks: An experimental approach. ORYX 54, 270–275 (2020).
    Article  Google Scholar 

    94.
    Bouyoucos, I. A., Simpfendorfer, C. A. & Rummer, J. L. Estimating oxygen uptake rates to understand stress in sharks and rays. Rev. Fish Biol. Fish. 29, 297–311 (2019).
    Article  Google Scholar 

    95.
    Semeniuk, C. A. D., Bourgeon, S., Smith, S. L. & Rothley, K. D. Hematological differences between stingrays at tourist and non-visited sites suggest physiological costs of wildlife tourism. Biol. Conserv. 142, 1818–1829 (2009).
    Article  Google Scholar 

    96.
    Van Rijn, J. A. & Reina, R. D. Distribution of leukocytes as indicators of stress in the Australian swellshark, Cephaloscyllium laticeps. Fish Shellfish Immunol. 29, 534–538 (2010).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    97.
    Barnett, A., Payne, N. L., Semmens, J. M. & Fitzpatrick, R. Ecotourism increases the field metabolic rate of whitetip reef sharks. Biol. Conserv. 199, 132–136 (2016).
    Article  Google Scholar 

    98.
    Mau, R. Managing for conservation and recreation: The Ningaloo whale shark experience. J. Ecotourism 7, 213–225 (2008).
    Article  Google Scholar 

    99.
    Martin, R. A. A review of behavioural ecology of whale sharks (Rhincodon typus). Fish. Res. 84, 10–16 (2007).
    ADS  Article  Google Scholar 

    100.
    Skomal, G. B. & Mandelman, J. W. The physiological response to anthropogenic stressors in marine elasmobranch fishes: A review with a focus on the secondary response. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 126, 146–155 (2012).
    Article  CAS  Google Scholar 

    101.
    Pankhurst, N. W. The endocrinology of stress in fish: An environmental perspective. Gen. Comp. Endocrinol. 170, 265–275 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    102.
    Renshaw, G. M. C., Kutek, A. K., Grant, G. D. & Anoopkumar-Dukie, S. Forecasting elasmobranch survival following exposure to severe stressors. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 126, 101–112 (2012).
    Article  CAS  Google Scholar 

    103.
    Lester, E. et al. Using an electronic monitoring system and photo identification to understand effects of tourism encounters on whale sharks in Ningaloo Marine Park. Tour. Mar. Environ. 14, 121–131 (2019).
    Article  Google Scholar  More

  • in

    Nematode epibionts on skin of the Florida manatee, Trichechus manatus latirostris

    1.
    Cobb, N. A. Nematodes and their relationships.Yearbook Dept. Agric. 1914, 457–490 (Dept. Agric, Washington DC, 1914).
    2.
    Blaxter, M. Nematodes: The worm and its relatives. PLoS Biol. 9, 4 (2011).
    Article  Google Scholar 

    3.
    Kiontke, K. & Fitch, D. H. A. Nematodes. Curr. Biol. 23, 19 (2013).
    Article  Google Scholar 

    4.
    Sommer, R. J. Pristionchus pacificus. In A Nematode Model for Comparative and Evolutionary Biology (ed. Sommer, R.) (Brill, Netherlands, 2015).
    Google Scholar 

    5.
    Beck, C. & Forrester, D. J. Helminths of the Florida manatee, Trichechus manatus latirostris, with a discussion and summary of the parasites of Sirenians. J. Parasitol. 74, 628–637. https://doi.org/10.2307/3282182 (1988).
    CAS  Article  PubMed  Google Scholar 

    6.
    Fürst von Lieven, A., Uni, S., Ueda, K., Barbuto, M. & Bain, O. Cutidiplogaster manati n. gen., n. sp. (Nematoda: Diplogastridae) from skin lesions of a West Indian manatee (Sirenia) from the Okinawa Churaumi Aquarium. Nematology. 13, 51–59. https://doi.org/10.1163/138855410X500082 (2011).
    Article  Google Scholar 

    7.
    Bledsoe, E. L. et al. A comparison of biofouling communities associated with free-ranging and captive Florida manatees (Trichechus manatus latirostris). Mar. Mammal. Sci. 22, 997–1003. https://doi.org/10.1111/j.1748-7692.2006.00053.x (2006).
    Article  Google Scholar 

    8.
    Kanzaki, N. & Giblin-Davis, R. M. Diplogastrid systematics and phylogeny. In Nematology Monographs & Perspectives 11: Pristionchus pacificus—A Nematode Model for Comparative and Evolutionary Biology (ed. Sommer, R.) 43–76 (Brill, Amsterdam, 2015).
    Google Scholar 

    9.
    Abolafia, J. Order Rhabditida: suborder Rhabditina. In Freshwater Nematodes: Ecology and Taxonomy (eds Abebe, E. et al.) 696–721 (CABI Publishing, Wallingford, 2006).
    Google Scholar 

    10.
    Kanzaki, N., Ragsdale, E. J. & Giblin-Davis, R. M. Revision of the paraphyletic genus Koerneria Meyl, 1960 and resurrection of two other genera of Diplogastridae (Nematoda). ZooKeys. 442, 17–30. https://doi.org/10.3897/zookeys.442.7459 (2014).
    Article  Google Scholar 

    11.
    Romeyn, K., Bouwman, L. A. & Admiraal, W. Ecology and cultivation of the herbivorous brackish-water nematode Eudiplogaster pararmatus. Mar. Ecol. Prog. Ser. 12, 145–153 (1983).
    ADS  Article  Google Scholar 

    12.
    Kanzaki, N., Giblin-Davis, R. M., Gonzalez, R. & Manzoor, M. Nematodes associated with palm and sugarcane weevils in South Florida with description of Acrostichus floridensis n. sp. Nematology. 19, 515–531. https://doi.org/10.1163/15685411-00003065 (2017).
    Article  Google Scholar 

    13.
    Troccoli, A., Oreste, M., Tarasco, E., Fanelli, E. & De Luca, F. Mononchoides macrospiculum n. sp. (Nematoda: Neodiplogaster) and Teratorhabditis synpapillata Sudhaus, 1985 (Nematoda: Rhabditidae): Nematode associates of Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae) in Italy. Nematology 17, 953–966. https://doi.org/10.1163/15685411-00002916 (2015).
    Article  Google Scholar 

    14.
    Steel, H. et al. Mononchoides composticola n. sp. (Nematoda: Diplogastridae) associated with composting processes: Morphological, molecular and autecological characterization. Nematology 13, 347–363. https://doi.org/10.1163/138855410X523023 (2011).
    Article  Google Scholar 

    15.
    Susoy, V. et al. Large-scale diversification without genetic isolation in nematode symbionts of figs. Sci. Adv. 2, e1501031. https://doi.org/10.1126/sciadv.1501031 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Mayer, W. E., Herrmann, M. & Sommer, R. J. Molecular phylogeny of beetle associated diplogastrid nematodes suggests host switching rather than nematode-beetle coevolution. BMC Evol. Biol. 9, 212. https://doi.org/10.1186/1471-2148-9-212 (2009).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    17.
    Sudhaus, W. & Fürst von Lieven, A. A phylogenetic classification and catalogue of the Diplogastridae (Secernentea, Nematoda). J. Nematode Morph. Syst. 6, 43–90 (2003).
    Google Scholar 

    18.
    Halvorsen, K. M. & Keith, E. O. Immunosuppression cascade in the Florida manatee (Trichechus manatus latirostris). Aquat. Mamm. 34, 412–419. https://doi.org/10.1578/AM.34.4.2008.412 (2008).
    Article  Google Scholar 

    19.
    Palopoli, M. F. et al. Global divergence of the human follicle mite Demodex folliculorum: Persistent associations between host ancestry and mite lineages. Proc. Natl. Acad. Sci. USA 112, 15958–15963. https://doi.org/10.1073/pnas.1512609112 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    20.
    Ingels, J., Valdes, Y. & Pontes, L. P. Meiofauna life on loggerhead sea turtles-diversely structured abundance and biodiversity hotspots that challenge the meiofauna paradox. Diversity. 12(5), 203 (2020).
    Article  Google Scholar 

    21.
    Kanzaki, N., Giblin-Davis, R. M., Gonzalez, R., Wood, L. A. & Kaufman, P. E. Sudhausia floridensis n. sp. (Diplogastridae) isolated from Onthophagus tuberculifrons (Scarabaeidae) from Florida, USA. Nematology. 19, 575–586. https://doi.org/10.1163/15685411-00003071 (2017).
    Article  Google Scholar 

    22.
    Giblin-Davis, R. M. et al. Stomatal ultrastructure, molecular phylogeny, and description of Parasitodiplogaster laevigata n. sp. (Nematoda: Diplogastridae), a parasite of fig wasps. J. Nematol. 38, 137–149 (2006).
    CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Kanzaki, N., Giblin-Davis, R. M., Ye, W., Herre, E. A. & Center, B. J. Parasitodiplogaster species associated with Pharmacosycea figs in Panama. Nematology. 16, 607–619. https://doi.org/10.1163/15685411-00002791 (2014).
    Article  Google Scholar 

    24.
    Shih, P.-Y. et al. Newly identified nematodes from Mono Lake exhibit extreme arsenic resistance. Curr. Biol. 29, 3339–3344. https://doi.org/10.1016/j.cub.2019.08.024 (2019).
    CAS  Article  PubMed  Google Scholar 

    25.
    Bonde, R. K. et al. Biomedical health assessments of the Florida manatee in Crystal River—Providing opportunities for training during the capture, handling, and processing of this endangered aquatic mammal. J. Mar. Anim. Ecol. 5, 17–28 (2012).
    Google Scholar 

    26.
    Yoder, M. et al. DESS: A versatile solution for preserving morphology and extractable DNA of nematodes. Nematology 8, 367–376. https://doi.org/10.1163/156854106778493448 (2006).
    CAS  Article  Google Scholar 

    27.
    Kikuchi, T., Aikawa, T., Oeda, Y., Karim, N. & Kanzaki, N. A rapid and precise diagnostic method for detecting the pinewood nematode Bursaphelenchus xylophilus by loop-mediated isothermal amplification. Phytopathology 99, 1365–1369. https://doi.org/10.1094/PHYTO-99-12-1365 (2009).
    CAS  Article  PubMed  Google Scholar 

    28.
    Tanaka, R., Kikuchi, T., Aikawa, T. & Kanzaki, N. Simple and quick methods for nematode DNA preparation. Appl. Entomol. Zool. 47, 291–294. https://doi.org/10.1007/s13355-012-0115-9 (2012).
    CAS  Article  Google Scholar 

    29.
    Ye, W., Giblin-Davis, R. M., Braasch, H., Morris, K. & Thomas, W. K. Phylogenetic relationships among Bursaphelenchus species (Nematoda: Parasitaphelenchidae) inferred from nuclear ribosomal and mitochondrial DNA sequence data. Mol. Phylogenet. Evol. 43, 1185–1197. https://doi.org/10.1016/j.ympev.2007.02.006 (2007).
    CAS  Article  PubMed  Google Scholar 

    30.
    Holterman, M. et al. Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Mol. Biol. Evol. 23, 1792–1800. https://doi.org/10.1093/molbev/msl044 (2006).
    CAS  Article  PubMed  Google Scholar 

    31.
    Slos, D., Couvreur, M. & Bert, W. Hidden diversity in mushrooms explored: A new nematode species, Neodiplogaster unguispiculata sp. n. (Rhabditida, Diplogastridae), with a key to the species of Neodiplogaster. Zool. Anz. 276, 71–85. https://doi.org/10.1016/j.jcz.2018.07.004 (2018).
    Article  Google Scholar 

    32.
    Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066. https://doi.org/10.1093/nar/gkf436 (2002).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Kuraku, S., Zmasek, C. M., Nishimura, O. & Katoh, K. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res. 41, W22–W28. https://doi.org/10.1093/nar/gkt389 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    34.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755. https://doi.org/10.1093/bioinformatics/17.8.754 (2001).
    CAS  Article  Google Scholar 

    36.
    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large modelspace. Syst. Biol. 61, 539–542. https://doi.org/10.1093/sysbio/sys029 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    37.
    Kanzaki, N., Ekino, T., Ide, T., Masuya, H. & Degawa, Y. Three new species of parasitaphelenchids, Parasitaphelenchus frontalis n. sp., P. costati n. sp., and Bursaphelenchus hirsutae n. sp. (Nematoda: Aphelenchoididae), isolated from bark beetles from Japan. Nematology 20, 957–1005. https://doi.org/10.1163/15685411-00003189 (2018).
    Article  Google Scholar  More

  • in

    Carryover effects of long-distance avian migration are weaker than effects of breeding environment in a partially migratory bird

    1.
    Norris, D. R. Carry-over effects and habitat quality in migratory populations. Oikos 109(1), 178–186 (2005).
    Article  Google Scholar 
    2.
    Ockendon, N., Leech, D. & Pearce-Higgins, J. W. Climatic effects on breeding grounds are more important drivers of breeding phenology in migrant birds than carryover effects from wintering grounds. Biol. Lett. 9(6). https://doi.org/10.1098/rsbl.2013.0669 (2013).

    3.
    Lehikoinen, A., Kilpi, M. & Öst, M. Winter climate affects subsequent breeding success of common eiders. Glob. Change Biol. 12(7), 1355–1365 (2006).
    ADS  Article  Google Scholar 

    4.
    Bearhop, S., Hilton, G. M., Votier, S. C. & Waldron, S. Stable isotope ratios indicate that body condition in migrating passerines is influenced by winter habitat. Biol. Lett. 271. https://doi.org/10.1098/rsbl.2003.0129 (2004).

    5.
    Rowe, L., Ludwig, D. & Schluter, D. Time, condition, and the seasonal decline of avian clutch size. Am. Nat. 143(4), 698–722 (1994).
    Article  Google Scholar 

    6.
    Morrison, C. A., Alves, J. A., Gunnarsson, T. G., Þórisson, B. & Gill, J. A. Why do earlier-arriving migratory birds have better breeding success? Ecol. Evol. 9(15), 8856–8864 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Gill, J. A. et al. The buffer effect and large-scale population regulation in migratory birds. Nature 412, 436–438 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    Finch, T., Pearce-Higgins, J. W., Leech, D. I. & Evans, K. L. Carry-over effects from passage regions are more important than breeding climate in determining the breeding phenology and performance of three avian migrants of conservation concern. Biodivers. Conserv. 23, 2427–2444 (2014).
    Article  Google Scholar 

    9.
    Legagneux, P., Fast, P. L. F., Gauthier, G. & Bêty, J. Manipulating individual state during migration provides evidence for carry-over effects modulated by environmental conditions. Proc. R. Soc. B. 279, 876–883 (2012).
    PubMed  Article  Google Scholar 

    10.
    Newton, I. The Migration Ecology of Birds (Academic Press, London, 2008).
    Google Scholar 

    11.
    Lok, T., Overdijk, O. & Piersma, T. The cost of migration: spoonbills suffer higher mortality during trans-Saharan spring migrations only. Biol. Lett., 11(1). https://doi.org/10.1098/rsbl.2014.0944 (2015).

    12.
    Bregnballe, T., Frederiksen, M. & Gregersen, J. Effects of distance to wintering area on arrival date and breeding performance in Great Cormorants Phalacrocorax carbo. Ardea. 94(3), 619–630 (2006).
    Google Scholar 

    13.
    Hötker, H. Arrival of Pied Avocets Recurvirostra avosetta at the breeding site: effects of winter quarters and consequences for reproductive success. Ardea. 90(3), 379–387 (2002).
    Google Scholar 

    14.
    Lundberg, P. The evolution of partial migration in birds. Trends Ecol. Evol. 3(7), 172–175 (1988).
    CAS  PubMed  Article  Google Scholar 

    15.
    Chapman, B. B., Brönmark, C., Nilsson, J. -Å. & Hansson, L.-A. Partial migration: An introduction. Oikos 120(12), 1761–1763 (2011).
    Article  Google Scholar 

    16.
    Buchan, C., Gilroy, J. J., Catry, I. & Franco, A. M. A. Fitness consequences of different migratory strategies in partially migratory populations: A multi-taxa meta-analysis. J. Anim. Ecol. 89, 678–690 (2020).
    PubMed  Article  Google Scholar 

    17.
    Mueller, J. C., Pulido, F. & Kempenaers, B. Identification of a gene associated with avian migratory behaviour. Proc. R. Soc. B. 278, 2848–2856 (2011).
    CAS  PubMed  Article  Google Scholar 

    18.
    Griswold, C. K., Taylor, C. M. & Norris, D. R. The evolution of migration in a seasonal environment. Proc. R. Soc. B. 277, 2711–2720 (2010).
    PubMed  Article  Google Scholar 

    19.
    Chapman, B. B., Brönmark, C., Nilsson, J-Å. & Hansson, L-A. The ecology and evolution of partial migration. Oikos. 120(12), 1764–1775 (2011).
    Article  Google Scholar 

    20.
    Kokko, H. Directions in modelling partial migration: How adaptation can cause a population decline and why the rules of territory acquisition matter. Oikos 120(12), 1826–1837 (2011).
    Article  Google Scholar 

    21.
    Newton, I. Population limitation in migrants. Ibis. 146(2), 197–226 (2004).
    Article  Google Scholar 

    22.
    Robinson, R. A. et al. Travelling through a warming world: Climate change and migratory species. Endanger. Species Res. 7(2), 87–99 (2009).
    ADS  Article  Google Scholar 

    23.
    IPCC. Summary for Policymakers in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (eds. Stocker, T.F. et al.) (Cambridge University Press, 2013).

    24.
    Berthold, P. Genetic basis and evolutionary aspects of bird migration. Adv. Study Behav. 33, 175–229 (2003).
    Article  Google Scholar 

    25.
    Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl. Acad. Sci. U.S.A. 105(42), 16195–16200 (2008).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    de Zoeten, T. & Pulido, F. How migratory populations become resident. Proc. R. Soc. B, 287, 20193011. https://doi.org/10.1098/rspb.2019.3011 (2020).

    27.
    Negro, J. J., de la Riva, M. & Bustamante, J. Patterns of winter distribution and abundance of Lesser Kestrel (Falco naumanni) in Spain. J. Raptor Res. 25, 30–35 (1991).
    Google Scholar 

    28.
    Anderson, A. M., Novak, S. J., Smith, J. F., Steenhof, K. & Heath, J. Nesting phenology, mate choice, and genetic divergence within a partially migratory population of American Kestrels. Auk. 133(1), 99–109 (2016).
    Article  Google Scholar 

    29.
    Lok, T., Veldhoen, L., Overdijk, O., Tinbergen, J. M. & Piersma, T. An age-dependent fitness cost of migration? Old trans-Saharan migrating spoonbills breed later than those staying in Europe, and late breeders have lower recruitment. J. Anim. Ecol. 86(5), 998–1009 (2017).
    PubMed  Article  Google Scholar 

    30.
    Catry, I. et al. Individual variation in migratory movements and winter behaviour of Iberian Lesser Kestrels Falco naumanni revealed by geolocators. Ibis. 153(1), 154–164 (2011).
    Article  Google Scholar 

    31.
    Rodríguez, C., Tapia, L., Kieny, F. & Bustamante, J. Temporal changes in lesser kestrel (Falco naumanni) diet during the breeding season in southern Spain. J. Raptor Res. 44(2), 120–128 (2010).
    Article  Google Scholar 

    32.
    Grist, H. et al. Reproductive performance of resident and migrant males, females and pairs in a partially migratory bird. J. Anim. Ecol. 86(5), 1010–1021 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Morganti, M., Ambrosini, R. & Sarà, M. Different trends of neighboring populations of Lesser Kestrel: effects of climate and other environmental conditions. Popul. Ecol. 61(3), 300–314 (2019).
    Article  Google Scholar 

    34.
    Hegemann, A., Marra, P. P. & Tieleman, B. I. Causes and consequences of partial migration in a passerine bird. Am. Nat. 186(4), 531–546 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Palacín, C., Alonso, J. C., Martín, C. A. & Alonso, J. A. Changes in bird-migration patterns associated with human-induced mortality. Conserv. Biol. 31(1), 106–115 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    36.
    Clausen, K. K., Madsen, J. & Tombre, I. M. Carry-over or compensation? The impact of winter harshness and post-winter body condition on spring-fattening in a migratory goose species. PLoS One 10(7). https://doi.org/10.1371/journal.pone.0132312 (2015).

    37.
    Wilson, S., LaDeau, S. L., Tøttrup, A. P. & Marra, P. P. Range-wide effects of breeding- and nonbreeding-season climate on the abundance of a Neotropical migrant songbird. Ecology 92(9), 1789–1798 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Pilard, P., Lelong, V., Sonko, A. & Riols, C. Suivi et conservation du dortoir de rapaces insectivores (faucon crécerellette Falco naumanni et elanion naucler Chelictinia riocourii) de l’Ile de Kousmar (Kaolack/Sénégal). Alauda. 79(4), 295–312 (2011).
    Google Scholar 

    39.
    Rodríguez, A., Negro, J. J., Bustamante, J., Fox, J. & Afanasyev, V. Geolocators map the wintering grounds of threatened lesser kestrels in Africa. Divers. Distrib. 15(6), 1010–1016 (2009).
    Article  Google Scholar 

    40.
    Norris, D. R. & Taylor, C. M. Predicting the consequences of carry-over effects for migratory populations. Biol. Lett. 2(1). https://doi.org/10.1098/rsbl.2005.0397 (2006).

    41.
    Marra, P. P. et al. Non-breeding season habitat quality mediates the strength of density-dependence for a migratory bird. Proc. R. Soc. B. 282, 20150624. https://doi.org/10.1098/rspb.2015.0624 (2015).
    Article  Google Scholar 

    42.
    Negro, J. J. Falco naumanni Lesser Kestrel. BWP Update. 1, 49–56 (1997).
    Google Scholar 

    43.
    Bustamante, J. Predictive models for lesser kestrel Falco naumanni distribution, abundance and extinction in southern Spain. Bio. Conserv. 80(2), 153–160 (1997).
    Article  Google Scholar 

    44.
    Lepley, M., Brun, L., Foucart, A. & Pilard, P. Régime et comportement alimentaires du faucon crécerellette Falco naumanni en crau en période de reproduction et post-reproduction. Alauda. 68(3), 177–184 (2000).
    Google Scholar 

    45.
    Donázar, J. A., Negro, J. J. & Hiraldo, F. Functional analysis of mate-feeding in the Lesser Kestrel Falco naumanni. Ornis Scand. 23, 190–194 (1992).
    Article  Google Scholar 

    46.
    Braziotis, S. et al. Patterns of postnatal growth in a small falcon, the lesser kestrel Falco naumanni (Fleischer, 1818) (Aves: Falconidae). Eur. Zool. J. 84(1), 277–285 (2017).
    Article  Google Scholar 

    47.
    Donázar, J. A., Negro, J. J. & Hiraldo, F. A note on the adoption of alien young by lesser kestrels Falco naumanni. Ardea. 77, 443–444 (1991).
    Google Scholar 

    48.
    Rakhimberdiev, E. et al. Comparing inferences of solar geolocation data against high-precision GPS data: Annual movements of a double-tagged black-tailed godwit. J. Avian Biol. 47(4), 589–596 (2016).
    Article  Google Scholar 

    49.
    Lisovski, S. et al. Light-level geolocator analyses: A user’s guide. J Anim. Ecol. 89, 221–236 (2020).
    PubMed  Article  Google Scholar 

    50.
    Forsman, D. The Raptors of Europe and the Middle East: A Handbook of Field Identification (Christopher Helm, London, 2006).
    Google Scholar 

    51.
    Bounas, A. Premigratory moult in the lesser kestrel Falco naumanni. Avocetta. 43, 49–54 (2019).
    Google Scholar 

    52.
    Gilbert, N. Movement and Foraging Ecology of Partially Migrant Birds in a Changing World (University of East Anglia, Norwich, 2015).
    Google Scholar 

    53.
    Hobson, K. A. et al. A multi-isotope (δ13C, δ15N, δ2H) feather isoscape to assign Afrotropical migrant birds to origins. Ecosphere. 3, 44. https://doi.org/10.1890/ES12-00018.1 (2012).
    Article  Google Scholar 

    54.
    Tella, J. L. & Forero, M. G. Farmland habitat selection of wintering lesser kestrels in a Spanish pseudosteppe: implications for conservation strategies. Biodivers. Conserv. 9, 433–441 (2000).
    Article  Google Scholar 

    55.
    Piersma, T. & Davidson, N. Confusions of mass and size. Auk 108, 441–444 (1991).
    Google Scholar 

    56.
    Wood, A. S. & Scheipl, F. gamm4: Generalized additive mixed models using ‘mgcv’ and ‘lme4’. in R Package Version 0.2-5. https://CRAN.R-project.org/package=gamm4 (2017).

    57.
    Bates, D., Machler, M., Bolker, B., & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67. https://doi.org/10.18637/jss.v067.i01 (2015).

    58.
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometric. J. 50(3), 346–363 (2008).
    MathSciNet  MATH  Article  Google Scholar 

    59.
    Rousset, F. & Ferdy, J. B. Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography 37(8), 781–790 (2014).
    Article  Google Scholar 

    60.
    Shmueli, G. A useful distribution for fitting discrete data: Revival of the Conway–Maxwell–Poisson distribution. J. R. Stat. Soc. Ser. C App. Stat. 54, 127–142 (2005).
    MathSciNet  MATH  Article  Google Scholar 

    61.
    Lynch, H. J., Thorson, J. T. & Shelton, A. O. Dealing with under- and over-dispersed count data in life history, spatial, and community ecology. Ecology 95(11), 3173–3180 (2014).
    Article  Google Scholar 

    62.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, New York, 2002).
    Google Scholar 

    63.
    Bartoń, K. MuMIn: Multi-model inference. in R Package Version 1.43.6. https://CRAN.R-project.org/package=MuMIn (2019).

    64.
    Cade, B. S. Model averaging and muddled multimodel inferences. Ecology 96(9), 2370–2382 (2015).
    PubMed  Article  Google Scholar 

    65.
    R Core Development Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, http://www.r-project.org, 2018).

    66.
    Didan, K. MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN grid V006. NASA EOSDIS Land. Process. DAAC. https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).
    Article  Google Scholar 

    67.
    Büttner, G. CORINE land cover and land cover change products. in Land Use and Cover Mapping in Europe. (eds. Manakos, I. & Braun, M.) 55–74 (Springer, 2014).

    68.
    Franco, A. M. A., Catry, I., Sutherland, W. J. & Palmeirim, J. M. Do different habitat preference survey methods produce the same conservation recommendations for lesser kestrels?. Anim. Conserv. 7(3), 291–300 (2004).
    Article  Google Scholar  More

  • in

    Co-application of a biosolids product and biochar to two coarse-textured pasture soils influenced microbial N cycling genes and potential for N leaching

    1.
    Sullivan, D. Composting biosolids into high quality agricultural product. BioCycle 51, 39–40 (2010).
    Google Scholar 
    2.
    Wang, X., Chen, T., Ge, Y. & Jia, Y. Studies on land application of sewage sludge and its limiting factors. J. Hazard. Mater. 160, 554–558 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Borjesson, G. & Katterer, T. Soil fertility effects of repeated application of sewage sludge in two 30-year-old field experiments. Nutr. Cycl. Agroecosyst. 112, 369–385 (2018).
    Article  Google Scholar 

    4.
    Kelly, J. J., Favila, E., Hundal, L. S. & Marlin, J. C. Assessment of soil microbial communities in surface applied mixtures of Illinois River sediments and biosolids. Appl. Soil Ecol. 36, 176–183 (2007).
    Article  Google Scholar 

    5.
    Kelly, J. J., Polocht, K., Grancharova, T. & Hundal, L. S. Distinct responses in ammonia-oxidizing archaea and bacteria after addition of biosolids to an agricultural soil. Appl. Environ. Microbiol. 77, 6551–6558 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Nakatani, A. S. et al. Changes in the genetic structure of bacteria and microbial activity in an agricultural soil amended with tannery sludge. Soil Biol. Biochem. 43, 106–114 (2011).
    CAS  Article  Google Scholar 

    7.
    Wang, M. & Xue., J., Horswell, J., Kimberley, M.O. & Huang, Z. ,. Long-term biosolids application alters the composition of soil microbiakl groups and nutrient status in a pine plantation. Biol. Fert. Soils 53, 799–809 (2017).
    CAS  Article  Google Scholar 

    8.
    Zaleski, K. J., Josephson, K. L., Gerba, C. P. & Pepper, I. L. Potential regrowth and recolonization of Salmonellae and indicators in biosolids and biosolid-amended soil. Appl. Environ. Microbiol. 71, 3701–3708 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Singh, R. P. & Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manage. 28, 347–358 (2008).
    CAS  Article  Google Scholar 

    10.
    Sigua, C. Recycling biosolids and lack-dredged materials to pasture-based animal agriculture: alternative nutrient sources for forage productivity and sustainability. A review. Agron. Sustain. Dev. 29, 143–160 (2009).
    CAS  Article  Google Scholar 

    11.
    McBride, M. B. Toxic metal accumulation from agricultural use of sludge—are USEPA regulations protective?. J. Environ. Qual. 24, 5–18 (1995).
    CAS  Article  Google Scholar 

    12.
    Navarro, I. et al. Environmental risk assessment of perfluoroalkyl substances and halogenated flame retardants released from biosolids-amended soils. Chemosphere 210, 147–155 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Mantovi, P., Baldoni, G. & Toderi, G. Reuse of liquid, dewatered, and composted sewage sludge on agricultural land: effects of long-term application on soil and crop. Water Res. 39, 289–296 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Paramashivam, D. et al. Effect of pine waste and pine biochar on nitrogen mobility in biosolids. J. Environ. Qual. 45, 360–367 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Willen, A., Junestedt, C., Rodhe, L., Pell, M. & Jonsson, H. Sewage sludge as fertiliser—environmental assessment of storage and land application options. Water Sci. Technol. 75, 1034–1050 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Weaver, D. M. & Reed, A. E. G. Patterns of nutrient status and fertiliser practice on soils of the south coast of Western Australia. Agric. Ecosyst. Environ. 67, 37–53 (1998).
    Article  Google Scholar 

    17.
    Knowles, O. A., Robinson, B. H., Contangelo, A. & Clucas, L. Biochar for the mitigation of nitrate leaching from soil amended with biosolids. Sci. Total Environ. 409, 3206–3210 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Dempster, D. N., Gleeson, D. B., Solaiman, Z. M., Jones, D. L. & Murphy, D. V. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil 354, 311–324 (2012).
    CAS  Article  Google Scholar 

    19.
    Dempster, D. N., Jones, D. L. & Murphy, D. V. Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil. Soil Res. 50, 216–221 (2012).
    CAS  Article  Google Scholar 

    20.
    Shanmugam, S., Abbott, L. K. & Murphy, D. V. Clay addition to lime-amended biosolids overcomes water repellence and provides nitrogen supply in an acid sandy soil. Soil Biol. Fert. Soils 50, 1047–1059 (2014).
    CAS  Article  Google Scholar 

    21.
    Paramashivam, D., Dickinson, N. M., Clough, T. J., Horswell, J. & Robinson, B. H. Potential environmental benefits from blending biosolids with other organic amendments before application to land. J. Environ. Qual. 46, 481–489 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Samara, E., Matsi, T., Zdragas, A. & Barbayiannis, N. Use of clay minerals for sewage sludge stabilization and a preliminary assessment of the treated sludge’s fertilization capacity. Environ. Sci. Polut. R. 26, 35387–35398 (2019).
    CAS  Article  Google Scholar 

    23.
    Djajadi, Abbott, L. K. & Hinz, C. Synergistic impacts of clay and organic matter on structural and biological properties of a sandy soil. Geoderma 183, 19–24 (2012).
    ADS  Article  Google Scholar 

    24.
    Ma, B., Lv, X., Cai, Y., Chang, S. X. & Dyke, M. F. Liming does not counteract the influence of long-term fertilization on soil bacterial community structure and its co-occurrence pattern. Soil Biol. Biochem. 123, 45–53 (2018).
    CAS  Article  Google Scholar 

    25.
    Dilly, O., Blume, H.-P. & Munch, J. C. Soil microbial activities in Luvisols and Anthrosols during 9 years of region-typical tillage and fertilisation practices in northern Germany. Biogeochemistry 65, 319–339 (2003).
    CAS  Article  Google Scholar 

    26.
    Lehmann, J. et al. Biochar effects on soil biota—a review. Soil Biol. Biochem. 43, 1812–1836 (2011).
    CAS  Article  Google Scholar 

    27.
    Liang, B. et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 70, 1719–1730 (2006).
    ADS  CAS  Article  Google Scholar 

    28.
    Taghizadeh-Toosi, A., Clough, T. J., Sherlock, R. R. & Condron, L. M. A wood based low-temperature biochar captures NH3-N generated from ruminant urine-N, retaining its bioavailability. Plant Soil 353, 73–84 (2012).
    CAS  Article  Google Scholar 

    29.
    Enders, A., Hanley, K., Whitman, T., Joseph, S. & Lehmann, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 114, 644–653 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Singh, B. P., Hatton, B. J., Singh, B., Cowie, A. L. & Kathuria, A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 39, 1224–1235 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Wang, D., Felice, M. L. & Scow, K. M. Impacts and interactions of biochar and biosolids on agricultural soil microbial communities during dry and wet-dry cycles. Appl. Soil Ecol. 152, 103570 (2020).
    Article  Google Scholar 

    32.
    Wu, H. et al. Responses of bacterial community and functional marker genes of nitrogen cycling to biochar, compost and combined amendments in soil. Appl. Microbiol. Biotechnol. 100, 8583–8591 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Xu, H.-J. et al. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape. Environ. Sci. Technol. 48, 9391–9399 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    34.
    Solaiman, Z. M., Abbott, L. K. & Murphy, D. V. Biochar phosphorus concentration dictates mycorrhizal colonisation, plant growth and soil phorphorus cycling. Sci. Rep.-U.K. 9, 5062 (2019).
    ADS  Article  CAS  Google Scholar 

    35.
    Cao, H. et al. Biochar can increase nitrogen use efficiency of Malus hupehensis by modulating nitrate reduction of soil and root. Appl. Soil Ecol. 135, 25–32 (2019).
    Article  Google Scholar 

    36.
    Zhang, K. et al. The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers. Biol. Fert. Soils 53, 77–87 (2017).
    CAS  Article  Google Scholar 

    37.
    Gartler, J., Robinson, B., Burton, K. & Clucas, L. Carbonaceous soil amendments to biofortify crop plants with zinc. Sci. Total Environ. 465, 308–313 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Hassink, J. Effects of soil texture and grassland management on soil organic C and N and rates of C and N mineralisation. Soil Biol. Biochem. 26, 1221–1231 (1994).
    Article  Google Scholar 

    39.
    Wang, H., Kimberley, M. O. & Schlegelmilch, M. Biosolids-derived nitrogen mineralisation and transformation in forest soils. J. Environ. Qual. 32, 1851–1856 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Atkinson, C. J., Fitzgerald, J. & Hipps, N. Potential mechanisms for achieving agricultural benefits fromm biochar application to temperate soils: a review. Plant Soil 337, 1–18 (2010).
    CAS  Article  Google Scholar 

    41.
    Jaafar, N. M., Clode, P. L. & Abbott, L. K. Microscopy observations of habitable space in biochar for colonization by fungal hyphae from soil. J. Integr. Agric. 13, 483–490 (2014).
    Article  Google Scholar 

    42.
    Jaafar, N. M., Clode, P. L. & Abbott, L. K. Soil microbial responses to biochar varying in particle size, surface and pore properties. Pedosphere 25, 770–780 (2015).
    Article  Google Scholar 

    43.
    Jaafar, N. M., Clode, P. L. & Abbott, L. K. Biochar-soil interactions in four agricultural soils. Pedosphere 25, 729–736 (2015).
    CAS  Article  Google Scholar 

    44.
    Petersen, S. O. et al. Recycling of sewage sludge and household compost to arable land: fate and effects of organic contaminants, and impact on soil fertility. Soil Till Res. 72, 139–152 (2003).
    Article  Google Scholar 

    45.
    Warman, P. R. & Termeer, W. C. Evaluation of sewage sludge, septic waste and sludge compost applications to corn and forage: yields and N, P and K content of crops and soils. Bioresour. Technol. 96, 955–961 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Campos, T., Chear, G., Leles, P. D., Silva, M. & Santos, F. Leaching of heavy metals in soils conditioned with biosolids from sewage sludge. Floresta e Amniente 26, e20180399 (2019).
    Article  Google Scholar 

    47.
    Peoples, M. et al. Factors affecting the potential contributions of N2 Fuxation by legumes in Australian pasture systems. Crop Pasture Sci. 63, 759–786 (2012).
    CAS  Article  Google Scholar 

    48.
    Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H. & Murphy, D. V. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 45, 113–124 (2012).
    CAS  Article  Google Scholar 

    49.
    Mickan, B. S., Abbott, L. K., Stefanova, K. & Solaiman, Z. M. Interactions between biochar and mycorrhizal fungi in water-stressed agricultural soil. Mycorrhiza 26, 565–574 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Hale, S. E. et al. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere 91, 1612–1619 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Zheng, J., Stewart, C. E. & Cotrufo, M. F. Biochar and nitrogen fertilizer alters soil nitrogen dynamics and greenhouse gas fluxes from two temperate soils. J. Environ. Qual. 41, 1361–1370 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Dempster, D. N., Jones, D. L. & Murphy, D. V. Organic nitrogen mineralisation in two contrasting agro-ecosystems is unchanged by biochar addition. Soil Biol. Biochem. 48, 47–50 (2012).
    CAS  Article  Google Scholar 

    53.
    Verhoeven, E. & Six, J. Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard: an assessment across two years. Agric. Ecosyst. Environ. 191, 27–38 (2014).
    CAS  Article  Google Scholar 

    54.
    Hamza, M. A. & Anderson, W. K. Responses of soil properties and grain yields to deep ripping and gypsum application in a compacted loamy sand soil contrasted with a sandy clay loam soil in Western Australia. Aust. J. Agric. Res. 54, 273–282 (2003).
    Article  Google Scholar 

    55.
    Asadishad, B. et al. Amendment of agricultural soil with metal nanoparticles: effects on soil enzyme activity and microbial community composition. Environ. Sci. Technol. 52, 1908–1918 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Mossa, A.-W., Dickinson, M. J., West, H. M., Young, S. D. & Crout, N. M. J. The response of soil microbial diversity and abundance to long-term application of biosolids. Environ. Pollut. 224, 16–25 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Sullivan, T. S., Stromberger, M. E. & Paschke, M. W. Parallel shifts in plant and soil microbial communities in response to biosolids in a semi-arid grassland. Soil Biol. Biochem. 38, 449–459 (2006).
    CAS  Article  Google Scholar 

    58.
    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U.S.A. 103, 626–631 (2006).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Jenkins, S. N. et al. Actinobacterial community dynamics in long term managed grasslands. Anton Van Leeuwenhoek 95, 319–334 (2009).
    Article  Google Scholar 

    60.
    Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Zhang, X., Liu, W., Zhang, G., Jiang, L. & Han, X. Mechanisms of soil acidification reducing bacterial diversity. Soil Biol. Biochem. 81, 275–281 (2015).
    CAS  Article  Google Scholar 

    62.
    Jenkins, S. N., Murphy, D. V., Waite, I. S., Rushton, S. P. & O’Donnell, A. G. Ancient landscapes and the relationship with microbial nitrification. Sci. Rep. 6, 30733 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    O’Brien, F. J. M. et al. Soil salinity and pH drive soil bacterial community composition and diversity along a lateritic slope in the Avon River critical zone observatory, Western Australia. Front. Microbiol. 10, 1486. https://doi.org/10.3389/fmicb.2019.01486 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    64.
    Janssen, P. H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72, 1719–1728 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Zeng, Q. C., Dong, Y. H. & An, S. S. Bacterial community responses to soils along a latitudinal and vegetation gradient on the Loess Plateau. China. Plos One. 11, e015289 (2016).
    Google Scholar 

    66.
    Gigliucci, F., Brambilla, G., Tozzoli, R., Michelacci, V. & Morabito, S. Comparative analysis of metagenomes of Italian top soil improvers. Environ. Res. 155, 108–115 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    DeBruyn, J. M., Nixon, L. T., Fawaz, M. N., Johnson, A. M. & Radosevich, M. Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Appl. Environ. Microbiol. 77, 6295–6300 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Mendez, M. O., Neilson, J. W. & Maier, R. M. Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site. Appl. Environ. Microbiol. 74, 3899–3907 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Kim, J.-S., Dungan, R. S. & Crowley, D. Microarray analysis of bacterial diversity and distribution in aggregates from a desert agricultural soil. Biol. Fert. Soils 44, 1003–1011 (2008).
    CAS  Article  Google Scholar 

    70.
    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    71.
    Jenkins, S. N. et al. Taxon-specific responses of soil bacteria to the addition of low level C inputs. Soil Biol. Biochem. 42, 1624–1631 (2010).
    CAS  Article  Google Scholar 

    72.
    Hartmann, M., Frey, B., Mayer, J., Mäder, P. & Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9, 1177–1194 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    73.
    Trivedi, P., Anderson, I. C. & Singh, B. K. Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol. 21, 641–651 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of Acidobacteria: moving beyond genes and genomes. Front. Microbiol. 7, 744–744 (2016).
    PubMed  PubMed Central  Google Scholar 

    75.
    Barton, L., Gleeson, D. B., Maccarone, L. D., Zuniga, L. P. & Murphy, D. V. Is liming soil a strategy for mitigating nitrous oxide emissions from semi-arid soils?. Soil Biol. Biochem. 62, 28–35 (2013).
    CAS  Article  Google Scholar 

    76.
    Barton, L., Murphy, D. V. & Butterbach-Bahl, K. Influence of crop rotation and liming on greenhouse gas emissions from a semi-arid soil. Agric. Ecosyst. Environ. 167, 23–32 (2013).
    CAS  Article  Google Scholar 

    77.
    Fisk, L. M., Barton, L., Jones, D. L., Glanville, H. C. & Murphy, D. V. Root exudate carbon mitigates nitrogen loss in a semi-arid soil. Soil Biol. Biochem. 88, 380–389 (2015).
    CAS  Article  Google Scholar 

    78.
    Fisk, L. M., Maccarone, L. D., Barton, L. & Murphy, D. V. Nitrapyrin decreased nitrification of nitrogen released from soil organic matter but not amoA gene abundance at high soil temperature. Soil Biol. Biochem. 88, 214–223 (2015).
    CAS  Article  Google Scholar 

    79.
    Wu, J. & Brookes, P. C. The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil. Soil Biol. Biochem. 37, 507–515 (2005).
    CAS  Article  Google Scholar 

    80.
    Rayment, G. & Higginson, F. Australian Laboratory Handbook of Soil and Water Chemical Methods (Inkata Press, Melbourne, 1992).
    Google Scholar 

    81.
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass-C. Soil Biol. Biochem. 19, 703–707 (1987).
    CAS  Article  Google Scholar 

    82.
    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnol. 31, 814–821 (2013).
    CAS  Article  Google Scholar 

    83.
    Mori, H. et al. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes. DNA Res. 21, 217–227 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    84.
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME 6, 1621–1624 (2012).
    CAS  Article  Google Scholar 

    85.
    Mickan, B. S., Abbott, L. K., Fan, J., Hart, M. M., Siddique, K. H. M., Solaiman, Z. M. & Jenkins, S. N. Application of compost and clay under water-stressed conditions influences functional diversity of rhizosphere bacteria. Biol Fert Soils. 54, 55–70 (2018).
    Article  Google Scholar 

    86.
    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 75, 7537–7541 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    87.
    Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 27, 2194–2200 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    89.
    Oksanen, J. et al. Vegan: community ecology package. R package version 1.17-4. http://CRAN.R-project.org/package=vegan. (2010). More

  • in

    Past and future potential range changes in one of the last large vertebrates of the Australian continent, the emu Dromaius novaehollandiae

    1.
    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907 (2000).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Graham, C. H., Moritz, C. & Williams, S. E. Habitat history improves prediction of biodiversity in rainforest fauna. Proc. Natl. Acad. Sci. 103, 632–636 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Latinne, A. et al. Influence of past and future climate changes on the distribution of three Southeast Asian murine rodents. J. Biogeogr. 42, 1714–1726 (2015).
    Article  Google Scholar 

    4.
    Davis, A. J., Jenkinson, L. S., Lawton, J. H., Shorrocks, B. & Wood, S. Making mistakes when predicting shifts in species range in response to global warming. Nature 391, 783 (1998).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Knick, S. T. & Rotenberry, J. T. Ghosts of habitats past: Contribution of landscape change to current habitats used by shrubland birds. Ecology 81, 220–227 (2000).
    Article  Google Scholar 

    6.
    Enright, N. J. & Thomas, I. Pre-European fire regimes in Australian ecosystems. Geogr. Compass 2, 979–1011 (2008).
    Article  Google Scholar 

    7.
    Bowman, D. M. The impact of Aboriginal landscape burning on the Australian biota. N. Phytolog. 140, 385–410 (1998).
    Article  Google Scholar 

    8.
    Rule, S. et al. The aftermath of megafaunal extinction: Ecosystem transformation in Pleistocene Australia. Science 335, 1483–1486 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    9.
    Gillespie, R., Brook, B. W. & Baynes, A. Short overlap of humans and megafauna in Pleistocene Australia. Alcheringa Aust. J Palaeontol. 30, 163–186 (2006).
    Article  Google Scholar 

    10.
    Roberts, R. G. et al. New ages for the last Australian megafauna: Continent-wide extinction about 46,000 years ago. Science 292, 1888–1892 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Miller, G. H. et al. Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science 309, 287–290 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. Ongoing unraveling of a continental fauna: Decline and extinction of Australian mammals since European settlement. Proc. Nat. Acad. Sci. 112, 4531–4540 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Guimarães, P. R. Jr., Galetti, M. & Jordano, P. Seed dispersal anachronisms: Rethinking the fruits extinct megafauna ate. PLoS One 3, e1745 (2008).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    14.
    Bradshaw, C. J. Little left to lose: Deforestation and forest degradation in Australia since European colonization. J. Plant Ecol. 5, 109–120 (2012).
    Article  Google Scholar 

    15.
    Dunstan, H., Florentine, S. K., Calviño-Cancela, M., Westbrooke, M. E. & Palmer, G. C. Dietary characteristics of Emus (Dromaius novaehollandiae) in semi-arid New South Wales, Australia, and dispersal and germination of ingested seeds. Emu 113, 168–176 (2013).
    Article  Google Scholar 

    16.
    Rogers, R. Dispersal of germinable seeds by emus in semi-arid Queensland. Emu 94, 132–134 (1994).
    Article  Google Scholar 

    17.
    Bradford, M. G. & Westcott, D. A. Consequences of Southern Cassowary (Casuarius casuarius, L) gut passage and deposition pattern on the germination of rainforest seeds. Austral. Ecol. 35, 325–333 (2010).
    Article  Google Scholar 

    18.
    Dawson, T., Read, D., Russell, E. & Herd, R. Seasonal variation in daily activity patterns, water relations and diet of emus. Emu 84, 93–102 (1984).
    Article  Google Scholar 

    19.
    Quin, B. Diet and habitat of Emus Dromaius novaehollandiae in the Grampians Ranges, south-western Victoria. Emu 96, 114–122 (1996).
    Article  Google Scholar 

    20.
    Higgins, S., Nathan, R. & Cain, M. Are long-distance dispersal events in plants usually caused by nonstandard means of dispersal?. Ecology 84, 1945–1956 (2003).
    Article  Google Scholar 

    21.
    Calviño-Cancela, M., Dunn, R. R., Van Etten, E. J. & Lamont, B. Emus as non-standard seed dispersers and their potential for long-distance dispersal. Ecography 29, 632–640 (2006).
    Article  Google Scholar 

    22.
    Calviño-Cancela, M., He, T. & Lamont, B. B. Distribution of myrmecochorous species over the landscape and their potential long-distance dispersal by emus and kangaroos. Divers. Distrib. 14, 11–17 (2008).
    Article  Google Scholar 

    23.
    McGrath, R. & Bass, D. Seed dispersal by emus on the New South Wales north-east coast. Emu 99, 248–252 (1999).
    Article  Google Scholar 

    24.
    Cain, M. L., Milligan, B. G. & Strand, A. E. Long-distance seed dispersal in plant populations. Am. J. Bot. 87, 1217–1227 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Vidal, M. M., Pires, M. M. & Guimarães, P. R. Jr. Large vertebrates as the missing components of seed-dispersal networks. Biol. Cons. 163, 42–48 (2013).
    Article  Google Scholar 

    26.
    Ruxton, G. D. & Schaefer, H. M. The conservation physiology of seed dispersal. Philos. Trans. R. Soc. B Biol. Sci. 367, 1708–1718 (2012).
    Article  Google Scholar 

    27.
    Johnson, C. N. Ecological consequences of Late Quaternary extinctions of megafauna. Proc. R. Soc. B Biol. Sci. 276, 2509–2519 (2009).
    CAS  Article  Google Scholar 

    28.
    Miller, G. H. & Fogel, M. L. Calibrating δ18O in Dromaius novaehollandiae (emu) eggshell calcite as a paleo-aridity proxy for the Quaternary of Australia. Geochim. Cosmochim. Acta 193, 1–13 (2016).
    ADS  CAS  Article  Google Scholar 

    29.
    Breckwoldt, R. Wildlife in the home paddock. Nat. Conserv. Farm. 20, 20 (1983).
    Google Scholar 

    30.
    Le Souëf, D. Extinct Tasmanian Emu. Emu Austral. Ornithol. 3, 229–231 (1904).
    Article  Google Scholar 

    31.
    Thomson, V. A. et al. Genetic diversity and drivers of dwarfism in extinct island emu populations. Biol. Lett. 14, 20 (2018).
    Article  Google Scholar 

    32.
    Department of Planning, Industry and Environment (DPIE) (2002). Emu population in the New South Wales North Coast Bioregion and Port Stephens local government area. NSW Sci. Determ. 20, 20 (2018).
    Google Scholar 

    33.
    Franklin, J. Moving beyond static species distribution models in support of conservation biogeography. Divers. Distrib. 16, 321–330 (2010).
    Article  Google Scholar 

    34.
    Colles, A., Liow, L. H. & Prinzing, A. Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol. Lett. 12, 849–863 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Glazier, D. S. & Eckert, S. E. Competitive ability, body size and geographical range size in small mammals. J. Biogeogr. 29, 81–92 (2002).
    Article  Google Scholar 

    36.
    Gaston, K. J. How large is a species’ geographic range?. Oikos 20, 434–438 (1991).
    Article  Google Scholar 

    37.
    Devictor, V., Julliard, R. & Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514 (2008).
    Article  Google Scholar 

    38.
    Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233 (1988).
    Article  Google Scholar 

    39.
    Östergård, H. & Ehrlén, J. Among population variation in specialist and generalist seed predation—the importance of host plant distribution, alternative hosts and environmental variation. Oikos 111, 39–46 (2005).
    Article  Google Scholar 

    40.
    Kassen, R. The experimental evolution of specialists, generalists, and the maintenance of diversity. J. Evol. Biol. 15, 173–190 (2002).
    Article  Google Scholar 

    41.
    Thuiller, W., Araújo, M. B. & Lavorel, S. Do we need land-cover data to model species distributions in Europe?. J. Biogeogr. 31, 353–361 (2004).
    Article  Google Scholar 

    42.
    Rahbek, C. & Graves, G. R. Multiscale assessment of patterns of avian species richness. Proc. Natl. Acad. Sci. 98, 4534–4539 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    43.
    Davies, S. J. J. F., Beck, M. W. R. & Kruiskamp, J. P. Results of banding 154 emus in Western Australia. Wildl. Res. 16, 77–79 (1971).
    Article  Google Scholar 

    44.
    Pople, A., Cairns, S. & Grigg, G. Distribution and abundance of emus Dromaius novaehollandiae in relation to the environment in the South Australian pastoral zone. Emu 91, 222–229 (1991).
    Article  Google Scholar 

    45.
    Davies, S. Aspects of a study of emus in semi-arid Western Australia. Proc. Ecol. Soc. Aust. 3, 160–166 (1968).
    Google Scholar 

    46.
    Coddington, C. L. & Cockburn, A. The mating system of free-living emus. Aust. J. Zool. 43, 365–372 (1995).
    Article  Google Scholar 

    47.
    Taylor, E. L., Blache, D., Groth, D., Wetherall, J. D. & Martin, G. B. Genetic evidence for mixed parentage in nests of the emu (Dromaius novaehollandiae). Behav. Ecol. Sociobiol. 47, 359–364 (2000).
    Article  Google Scholar 

    48.
    Bradford, M. G., Dennis, A. J. & Westcott, D. A. Diet and dietary preferences of the southern cassowary (Casuarius casuarius) in North Queensland, Australia. Biotropica 40, 338–343 (2008).
    Article  Google Scholar 

    49.
    Moore, L. Population ecology of the southern cassowary Casuarius casuarius johnsonii, Mission Beach north Queensland. J. Ornithol. 148, 357–366 (2007).
    Article  Google Scholar 

    50.
    Fourcade, Y., Besnard, A. G. & Secondi, J. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Glob. Ecol. Biogeogr. 27, 245–256 (2018).
    Article  Google Scholar 

    51.
    Grice, D., Caughley, G. & Short, J. Density and distribution of emus. Wildl. Res. 12, 69–73 (1985).
    Article  Google Scholar 

    52.
    Nield, A. P., Enright, N. J. & Ladd, P. G. Study of seed dispersal by Emu (Dromaius novaehollandiae) in the Jarrah (Eucalyptus marginata) forests of south-western Australia through satellite telemetry. Emu 115, 29–34 (2015).
    Article  Google Scholar 

    53.
    Davies, S. The food of emus. Aust. J. Ecol. 3, 411–422 (1978).
    Article  Google Scholar 

    54.
    Osborne, W. & Green, K. Seasonal changes in composition, abundance and foraging behavior of birds in the snowy mountains. Emu 92, 93–105 (1992).
    Article  Google Scholar 

    55.
    Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
    Article  Google Scholar 

    56.
    Mackey, B. G. & Lindenmayer, D. B. Towards a hierarchical framework for modelling the spatial distribution of animals. J. Biogeogr. 28, 1147–1166 (2001).
    Article  Google Scholar 

    57.
    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12, 361–371 (2003).
    Article  Google Scholar 

    58.
    Warren, M. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Thomas, C. D. Dispersal and extinction in fragmented landscapes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 267, 139–145 (2000).
    CAS  Article  Google Scholar 

    60.
    Quigley, M. C., Horton, T., Hellstrom, J. C., Cupper, M. L. & Sandiford, M. Holocene climate change in arid Australia from speleothem and alluvial records. Holocene 20, 1093–1104 (2010).
    ADS  Article  Google Scholar 

    61.
    Shulmeister, J. & Lees, B. G. Pollen evidence from tropical Australia for the onset of an ENSO-dominated climate at c. 4000 BP. Holocene 5, 10–18 (1995).
    ADS  Article  Google Scholar 

    62.
    Weber, L. C., VanDerWal, J., Schmidt, S., McDonald, W. J. & Shoo, L. P. Patterns of rain forest plant endemism in subtropical Australia relate to stable mesic refugia and species dispersal limitations. J. Biogeogr. 41, 222–238 (2014).
    Article  Google Scholar 

    63.
    Avilés, J. M., Soler, J. J. & Pérez-Contreras, T. Dark nests and egg colour in birds: A possible functional role of ultraviolet reflectance in egg detectability. Proc. R. Soc. Lond. B Biol. Sci. 273, 2821–2829 (2006).
    Google Scholar 

    64.
    Lahti, D. C. & Ardia, D. R. Shedding light on bird egg color: Pigment as parasol and the dark car effect. Am. Nat. 187, 547–563 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Magige, F. J., Moe, B. & Røskaft, E. The white colour of the Ostrich (Struthio camelus) egg is a trade-off between predation and overheating. J. Ornithol. 149, 323–328 (2008).
    Article  Google Scholar 

    66.
    Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).
    Article  Google Scholar 

    67.
    Maloney, S. & Dawson, T. Thermoregulation in a large bird, the emu (Dromaius novaehollandiae). J. Comp. Physiol. B. 164, 464–472 (1994).
    Article  Google Scholar 

    68.
    Dawson, T., Herd, R. & Skadhauge, E. Water turnover and body water distribution during dehydration in a large arid-zone bird, the emu, Dromaius novaehollandiae. J. Comp. Physiol. 153, 235–240 (1983).
    Article  Google Scholar 

    69.
    McKinney, M. L. Extinction vulnerability and selectivity: Combining ecological and paleontological views. Annu. Rev. Ecol. Syst. 28, 495–516 (1997).
    Article  Google Scholar 

    70.
    Crandall, K. A., Bininda-Emonds, O. R., Mace, G. M. & Wayne, R. K. Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15, 290–295 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Dickman, C. R. Impact of exotic generalist predators on the native fauna of Australia. Wildl. Biol. 2, 185–195 (1996).
    Article  Google Scholar 

    72.
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
    Article  Google Scholar 

    73.
    Araújo, M. B., Pearson, R. G., Thuiller, W. & Erhard, M. Validation of species—climate impact models under climate change. Glob. Change Biol. 11, 1504–1513 (2005).
    ADS  Article  Google Scholar 

    74.
    Thuiller, W. et al. Large-scale environmental correlates of forest tree distributions in Catalonia (NE Spain). Glob. Ecol. Biogeogr. 12, 313–325 (2003).
    Article  Google Scholar 

    75.
    Pfennigwerth, S. “The mighty cassowary”: The discovery and demise of the King Island emu. Arch. Nat. Hist. 37, 74–90 (2010).
    Article  Google Scholar 

    76.
    Heupink, T. H., Huynen, L. & Lambert, D. M. Ancient DNA suggests Dwarf and ‘Giant’Emu are conspecific. PLoS One 6, e18728 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    Zizka, A. et al. CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 7, 744–751 (2019).
    Article  Google Scholar 

    78.
    RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com (2020).

    79.
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    80.
    Fithian, W., Elith, J., Hastie, T. & Keith, D. A. Bias correction in species distribution models: Pooling survey and collection data for multiple species. Methods Ecol. Evol. 6, 424–438 (2015).
    PubMed  Article  Google Scholar 

    81.
    Molloy, S. W., Davis, R. A., Dunlop, J. A. & van Etten, E. Applying surrogate species presences to correct sample bias in species distribution models: A case study using the Pilbara population of the Northern Quoll. Nat. Conserv. 18, 27–46 (2017).
    Google Scholar 

    82.
    Baddeley, A., Rubak, E. & Turner, R. Spatial Point Patterns: Methodology and Applications with R (Chapman and Hall, London, 2015).
    Google Scholar 

    83.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. A J. R. Meteorol. Soc. 25, 1965–1978 (2005).
    Article  Google Scholar 

    84.
    Rabus, B., Eineder, M., Roth, A. & Bamler, R. The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramme. Remote Sens. 57, 241–262 (2003).
    ADS  Article  Google Scholar 

    85.
    Werner, M. Shuttle radar topography mission (SRTM) mission overview. Frequenz 55, 75–79 (2001).
    ADS  Article  Google Scholar 

    86.
    ESRI, ArcGIS Desktop: Release 10. Redlands: Environmental Systems Research Institute (2011).

    87.
    Hill, M. J., Lesslie, R., Barry, A. & Barry, S. A simple, portable, spatial multi-criteria analysis shell–MCAS-S. In MODSIM 2005 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand. 12–15 (2005).

    88.
    Australian Government Department of Agriculture, Water and the Environment (ABARES), Australian Fire Frequency (1988–2015), Australian Government. http://www.agriculture.gov.au/abares/aclump/land-use/alum-classification (2016).

    89.
    Australian Government Department of Environmen and Energy, Australian Vegetation Attribute Manual: National Vegetation Information System, Version 6.0, Canberra (2018).

    90.
    National Aeronautics and Space Administration Socioeconomic Data and Applications Center. Gridded Population of the World v4 (2017).

    91.
    Wildlife Conservation Society (WCS), and Center for International Earth Science Information Network (CIESIN). Last of the Wild Project, Version 2: Global Human Footprint Dataset (Geographic). NASA Socioeconomic Data and Applications Center (SEDAC). Columbia University. Palisades, NY (2005).

    92.
    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
    Article  Google Scholar 

    93.
    Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).
    Article  Google Scholar 

    94.
    Guisan, A., Edwards, T. C. Jr. & Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 157, 89–100 (2002).
    Article  Google Scholar 

    95.
    Marquaridt, D. W. Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics 12, 591–612 (1970).
    Article  Google Scholar 

    96.
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).
    Article  Google Scholar 

    97.
    Araújo, M. B., Whittaker, R. J., Ladle, R. J. & Erhard, M. Reducing uncertainty in projections of extinction risk from climate change. Glob. Ecol. Biogeogr. 14, 529–538 (2005).
    Article  Google Scholar 

    98.
    Anderson, R. P. & Gonzalez, I. Jr. Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecol. Model. 222, 2796–2811 (2011).
    Article  Google Scholar 

    99.
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).
    Article  Google Scholar 

    100.
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
    Article  Google Scholar 

    101.
    Hegel, T. M., Cushman, S. A., Evans, J. & Huettmann, F. Spatial Complexity, Informatics, and Wildlife Conservation 273–311 (Springer, Tokoyo, 2010).
    Google Scholar 

    102.
    Pearce, J. L. & Boyce, M. S. Modelling distribution and abundance with presence-only data. J. Appl. Ecol. 43, 405–412 (2006).
    Article  Google Scholar 

    103.
    Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).
    Article  Google Scholar 

    104.
    Otto-Bliesner, B. L. et al. Last glacial maximum and Holocene climate in CCSM3. J. Clim. 19, 2526–2544 (2006).
    ADS  Article  Google Scholar 

    105.
    Bi, D. et al. The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteorol. Oceanogr. J. 63, 41–64 (2012).
    Article  Google Scholar 

    106.
    Cooper, A. et al. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409, 704–707 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    107.
    Yonezawa, T. et al. Phylogenomics and morphology of extinct paleognaths reveal the origin and evolution of the ratites. Curr. Biol. 27, 68–77 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    108.
    Guillera-Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 (2015).
    Article  Google Scholar 

    109.
    Hijmans, R. J., Phillips, S., Leathwick, J., & Elith, J. dismo: Species distribution modeling. R package v1.1-4 (2017). More

  • in

    Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants

    1.
    Becerra, J. X. On the factors that promote the diversity of herbivorous insects and plants in tropical forests. Proc. Natl Acad. Sci. USA 112, 6098–6103 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Stork, N. E. How many species of insects and other terrestrial arthropods are there on earth? Annu. Rev. Entomol. 63, 31–45 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Grimaldi, D. A. & Engel, M. S. Evolution of the Insects (Cambridge University Press, 2005).

    4.
    Strong, D. R., Lawton, J. H. & Southwood, R. Insects on Plants: Community Patterns and Mechanisms (Harvard University Press, 1984).

    5.
    Ehrlich, P. R. & Raven, P. H. Butterflies and plants: a study in coevolution. Evolution 18, 586–608 (1964).
    Article  Google Scholar 

    6.
    Thompson, J. N. Concepts of coevolution. Trends Ecol. Evol. 4, 179–183 (1989).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Mitter, C., Farrell, B. & Wiegmann, B. The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification? Am. Nat. 132, 107–128 (1988).
    Article  Google Scholar 

    8.
    Farrell, B. D. ‘Inordinate fondness’ explained: why are there so many beetles? Science 281, 555–559 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Berenbaum, M. & Specialization, P. F. Chemical Mediation of Host-plant Specialization: The Papilionid Paradigm. Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects (University of California Press, 2008).

    10.
    Winter, S., Friedman, A. L. L., Astrin, J. J., Gottsberger, B. & Letsch, H. Timing and host plant associations in the evolution of the weevil tribe Apionini (Apioninae, Brentidae, Curculionoidea, Coleoptera) indicate an ancient co-diversification pattern of beetles and flowering plants. Mol. Phylogenet. Evol. 107, 179–190 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Kergoat, G. J. et al. Opposite macroevolutionary responses to environmental changes in grasses and insects during the Neogene grassland expansion. Nat. Commun. 9, 5089 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    12.
    Wheat, C. W. et al. The genetic basis of a plant–insect coevolutionary key innovation. Proc. Natl Acad. Sci. USA 104, 20427–20431 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Edger, P. P. et al. The butterfly plant arms-race escalated by gene and genome duplications. Proc. Natl Acad. Sci. USA 112, 8362–8366 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Calla, B. et al. Cytochrome P450 diversification and hostplant utilization patterns in specialist and generalist moths: Birth, death and adaptation. Mol. Ecol. 26, 6021–6035 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Nallu, S. et al. The molecular genetic basis of herbivory between butterflies and their host plants. Nat. Ecol. Evol. 2, 1418–1427 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Karageorgi, M. et al. Genome editing retraces the evolution of toxin resistance in the monarch butterfly. Nature 574, 409–412 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Sahoo, R. K., Warren, A. D., Collins, S. C. & Kodandaramaiah, U. Hostplant change and paleoclimatic events explain diversification shifts in skipper butterflies (Family: Hesperiidae). BMC Evol. Biol. 17, 174 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Condamine, F. L., Rolland, J., Höhna, S., Sperling, F. A. H. & Sanmartín, I. Testing the role of the red queen and court jester as drivers of the macroevolution of apollo butterflies. Syst. Biol. 67, 940–964 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Letsch, H. et al. Climate and host-plant associations shaped the evolution of ceutorhynch weevils throughout the Cenozoic. Evolution 72, 1815–1828 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Forister, M. L. et al. The global distribution of diet breadth in insect herbivores. Proc. Natl Acad. Sci. USA 112, 442–447 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    21.
    Winkler, I. S., Mitter, C. & Scheffer, S. J. Repeated climate-linked host shifts have promoted diversification in a temperate clade of leaf-mining flies. Proc. Natl Acad. Sci. USA 106, 18103–18108 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    22.
    Chomicki, G., Weber, M., Antonelli, A., Bascompte, J. & Kiers, E. T. The impact of mutualisms on species richness. Trends Ecol. Evol. 34, 698–711 (2019).
    PubMed  Article  Google Scholar 

    23.
    Janz, N. Ehrlich and Raven revisited: mechanisms underlying codiversification of plants and enemies. Annu. Rev. Ecol. Evol. Syst. 42, 71–89 (2011).
    Article  Google Scholar 

    24.
    Suchan, T. & Alvarez, N. Fifty years after Ehrlich and Raven, is there support for plant–insect coevolution as a major driver of species diversification? Entomol. Exp. Appl. 157, 98–112 (2015).
    Article  Google Scholar 

    25.
    Endara, M.-J. et al. Coevolutionary arms race versus host defense chase in a tropical herbivore-plant system. Proc. Natl Acad. Sci. USA 114, E7499–E7505 (2017).
    CAS  PubMed  Article  Google Scholar 

    26.
    Simon, J.-C. et al. Genomics of adaptation to host-plants in herbivorous insects. Brief. Funct. Genomics 14, 413–423 (2015).
    CAS  PubMed  Article  Google Scholar 

    27.
    Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl Acad. Sci. USA 114, 9641–9646 (2017).
    CAS  PubMed  Article  Google Scholar 

    28.
    Hua, X. & Bromham, L. Darwinism for the genomic age: connecting mutation to diversification. Front. Genet. 8, 12 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    Hembry, D. H. & Weber, M. G. Ecological interactions and macroevolution: a new field with old roots. Annu. Rev. Ecol. Evol. Syst. 51, (2020).

    30.
    Scriber, J. M., Tsubaki, Y. & Lederhouse, R. C. Swallowtail Butterflies: Their Ecology and Evolutionary Biology (Scientific Publishers, 1995).

    31.
    Nishida, R. Sequestration of defensive substances from plants by Lepidoptera. Annu. Rev. Entomol. 47, 57–92 (2002).
    CAS  PubMed  Article  Google Scholar 

    32.
    Schmeiser, H. H., Stiborovà, M. & Arlt, V. M. Chemical and molecular basis of the carcinogenicity of Aristolochia plants. Curr. Opin. Drug Discov. Dev. 12, 141–148 (2009).
    CAS  Google Scholar 

    33.
    Poon, S. L. et al. Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci. Transl. Med. 5, 197ra101 (2013).
    PubMed  Article  CAS  Google Scholar 

    34.
    Condamine, F. L., Sperling, F. A. H., Wahlberg, N., Rasplus, J.-Y. & Kergoat, G. J. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. Ecol. Lett. 15, 267–277 (2012).
    PubMed  Article  Google Scholar 

    35.
    Simonsen, T. J. et al. Phylogenetics and divergence times of Papilioninae (Lepidoptera) with special reference to the enigmatic genera Teinopalpus and Meandrusa. Cladistics 27, 113–137 (2011).
    Article  Google Scholar 

    36.
    Berenbaum, M. R., Favret, C. & Schuler, M. A. On defining ‘Key Innovations’ in an adaptive radiation: cytochrome P450s and Papilionidae. Am. Nat. 148, S139–S155 (1996).
    Article  Google Scholar 

    37.
    Cohen, M. B., Schuler, M. A. & Berenbaum, M. R. A host-inducible cytochrome P-450 from a host-specific caterpillar: molecular cloning and evolution. Proc. Natl Acad. Sci. USA 89, 10920–10924 (1992).
    ADS  CAS  PubMed  Article  Google Scholar 

    38.
    Li, W., Schuler, M. A. & Berenbaum, M. R. Diversification of furanocoumarin-metabolizing cytochrome P450 monooxygenases in two papilionids: specificity and substrate encounter rate. Proc. Natl Acad. Sci. USA 100(Suppl.), 14593–14598 (2003).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Thompson, J. N. Variation in preference and specificity in monophagous and oligophagous swallowtail butterflies. Evolution 42, 118–128 (1988).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Thompson, J. N., Wehling, W. & Podolsky, R. Evolutionary genetics of host use in swallowtail butterflies. Nature 344, 148–150 (1990).
    ADS  Article  Google Scholar 

    41.
    Berenbaum, M. R. & Feeny, P. P. in Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects (ed. Tilmon, K.) 2–19 (University of California Press, 2008).

    42.
    Zakharov, E. V., Caterino, M. S. & Sperling, F. A. H. Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera: Papilionidae). Syst. Biol. 53, 193–215 (2004).
    PubMed  Article  Google Scholar 

    43.
    Braby, M., Trueman, J. & Eastwood, R. When and where did troidine butterflies (Lepidoptera: Papilionidae) evolve? Phylogenetic and biogeographic evidence suggests an origin in remnant Gondwana in the Late Cretaceous. Invertebr. Syst. 19, 113–143 (2005).
    Article  Google Scholar 

    44.
    Condamine, F. L., Silva-Brandão, K. L., Kergoat, G. J. & Sperling, F. A. Biogeographic and diversification patterns of Neotropical Troidini butterflies (Papilionidae) support a museum model of diversity dynamics for Amazonia. BMC Evol. Biol. 12, 82 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Condamine, F. L. et al. Deciphering the evolution of birdwing butterflies 150 years after Alfred Russel Wallace. Sci. Rep. 5, 11860 (2015).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Allio, R. et al. Whole genome shotgun phylogenomics resolves the pattern and timing of swallowtail butterfly evolution. Syst. Biol. 69, 38–60 (2020).
    CAS  PubMed  Article  Google Scholar 

    47.
    McKenna, D. D., Sequeira, A. S., Marvaldi, A. E. & Farrell, B. D. Temporal lags and overlap in the diversification of weevils and flowering plants. Proc. Natl Acad. Sci. USA.106, 7083–7088 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    48.
    Takahashi, D. & Setoguchi, H. Molecular phylogeny and taxonomic implications of Asarum (Aristolochiaceae) based on ITS and matK sequences. Plant Species Biol. 33, 28–41 (2018).
    Article  Google Scholar 

    49.
    Wanke, S. et al. Evolution of Piperales—matK gene and trnK intron sequence data reveal lineage specific resolution contrast. Mol. Phylogenet. Evol. 42, 477–497 (2007).
    CAS  PubMed  Article  Google Scholar 

    50.
    Neinhuis, C., Wanke, S., Hilu, K. W., Müller, K. & Borsch, T. Phylogeny of Aristolochiaceae based on parsimony, likelihood, and Bayesian analyses of trnL-trnF sequences. Plant Syst. Evol. 250, 7–26 (2005).
    Article  Google Scholar 

    51.
    Wanke, S., González, F. & Neinhuis, C. Systematics of pipevines: combining morphological and fast‐evolving molecular characters to investigate the relationships within subfamily Aristolochioideae. Int. J. Plant Sci. 167, 1215–1227 (2006).
    CAS  Article  Google Scholar 

    52.
    González, F. et al. Present trans-Pacific disjunct distribution of Aristolochia subgenus Isotrema (Aristolochiaceae) was shaped by dispersal, vicariance and extinction. J. Biogeogr. 41, 380–391 (2014).
    Article  Google Scholar 

    53.
    Durden, C. J. & Rose, H. Butterflies from the Middle Eocene: The Earliest Occurrence of Fossil Papilionoidea (Lepidoptera) (Prarce-Sellards Ser. Tax. Mem. Mus., 1978).

    54.
    Sohn, J., Labandeira, C., Davis, D. & Mitter, C. An annotated catalog of fossil and subfossil Lepidoptera (Insecta: Holometabola) of the world. Zootaxa 3286, 1–132 (2012).
    Article  Google Scholar 

    55.
    de Jong, R. Estimating time and space in the evolution of the Lepidoptera. Tijdschr. voor Entomol. 150, 319–346 (2007).
    Article  Google Scholar 

    56.
    Hofmann, C.-C. & Zetter, R. Upper Cretaceous sulcate pollen from the Timerdyakh formation, Vilui Basin (Siberia). Grana 49, 170–193 (2010).
    Article  Google Scholar 

    57.
    Meller, B. The first fossil Aristolochia (Aristolochiaceae, Piperales) leaves from Austria. Palaeontol. Electron 17, 1–17 (2014).
    Google Scholar 

    58.
    Nee, S., May, R. M. & Harvey, P. H. The reconstructed evolutionary process. Philos. Trans. R. Soc. Lond. Ser. B 344, 305–311 (1994).
    ADS  CAS  Article  Google Scholar 

    59.
    Nee, S. Birth-death models in macroevolution. Annu. Rev. Ecol. Evol. Syst. 37, 1–17 (2006).
    Article  Google Scholar 

    60.
    Rabosky, D. L. & Lovette, I. J. Explosive evolutionary radiations: Decreasing speciation or increasing extinction through time? Evolution 62, 1866–1875 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    61.
    Crisp, M. D. & Cook, L. G. Explosive radiation or cryptic mass extinction? Interpreting signatures in molecular phylogenies. Evolution 63, 2257–2265 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    62.
    Quental, T. B. & Marshall, C. R. Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol. Evol. 25, 434–441 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Morlon, H. Phylogenetic approaches for studying diversification. Ecol. Lett. 17, 508–525 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    64.
    Xue, B. et al. Accelerated diversification correlated with functional traits shapes extant diversity of the early divergent angiosperm family Annonaceae. Mol. Phylogenet. Evol. 142, 106659 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Folk, R. A. et al. Rates of niche and phenotype evolution lag behind diversification in a temperate radiation. Proc. Natl Acad. Sci. USA 116, 10874–10882 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Sun, M. et al. Recent accelerated diversification in rosids occurred outside the tropics. Nat. Commun. 11, 3333 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism. Am. Nat. 175, 623–639 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    68.
    Cheng, T. et al. Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. Nat. Ecol. Evol. 1, 1747–1756 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    Rane, R. V. et al. Detoxifying enzyme complements and host use phenotypes in 160 insect species. Curr. Opin. Insect Sci. 31, 131–138 (2019).
    MathSciNet  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Cong, Q., Borek, D., Otwinowski, Z. & Grishin, N. V. Tiger swallowtail genome reveals mechanisms for speciation and caterpillar chemical defense. Cell Rep. 10, 910–919 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Li, X. et al. Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies. Nat. Commun. 6, 8212 (2015).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Nishikawa, H. et al. A genetic mechanism for female-limited Batesian mimicry in Papilio butterfly. Nat. Genet. 47, 405–409 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Thomas, G. W. C. & Hahn, M. W. Determining the null model for detecting adaptive convergence from genomic data: a case study using echolocating mammals. Mol. Biol. Evol. 32, 1232–1236 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Zou, Z. & Zhang, J. No genome-wide protein sequence convergence for echolocation. Mol. Biol. Evol. 32, 1237–1241 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge University Press, 1983).

    76.
    Yang, Z. Computational Molecular Evolution (Oxford University Press, 2006).

    77.
    Venkat, A., Hahn, M. W. & Thornton, J. W. Multinucleotide mutations cause false inferences of lineage-specific positive selection. Nat. Ecol. Evol. 2, 1280–1288 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    78.
    Mendes, F. K. & Hahn, M. W. Gene tree discordance causes apparent substitution rate variation. Syst. Biol. 65, 711–721 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    79.
    Dasmahapatra, K. K. et al. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487, 94–98 (2012).
    ADS  CAS  PubMed Central  Article  Google Scholar 

    80.
    Walden, N. et al. Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae. Nat. Commun. 11, 3795 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    81.
    McGee, M. D. et al. The ecological and genomic basis of explosive adaptive radiation. Nature 586, 75–79 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    82.
    Thomas, G. W. C. et al. Gene content evolution in the arthropods. Genome Biol. 21, 15 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    83.
    de Medeiros, B. A. S. & Farrell, B. D. Evaluating species interactions as a driver of phytophagous insect divergence. bioRxiv https://doi.org/10.1101/842153 (2019).

    84.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    85.
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2016).
    Google Scholar 

    86.
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    87.
    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Chernomor, O., von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65, 997–1008 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    89.
    Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    90.
    Ronquist, F. et al. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    91.
    Huelsenbeck, J. P., Larget, B. & Alfaro, M. E. Bayesian phylogenetic model selection using reversible jump Markov Chain Monte Carlo. Mol. Biol. Evol. 21, 1123–1133 (2004).
    CAS  PubMed  Article  Google Scholar 

    92.
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    93.
    Douady, C. J., Delsuc, F., Boucher, Y., Doolittle, W. F. & Douzery, E. J. P. Comparison of bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Mol. Biol. Evol. 20, 248–254 (2003).
    CAS  PubMed  Article  Google Scholar 

    94.
    Miller, M. A. et al. A RESTful API for access to phylogenetic tools via the CIPRES Science Gateway. Evol. Bioinforma. 11, EBO.S21501 (2015).
    Article  Google Scholar 

    95.
    Ayres, D. L. et al. BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Syst. Biol. 61, 170–173 (2012).
    PubMed  Article  Google Scholar 

    96.
    Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    97.
    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    98.
    Smith, M. E., Singer, B. & Carroll, A. 40Ar/39Ar geochronology of the Eocene Green River Formation, Wyoming. Geol. Soc. Am. Bull. 115, 549–565 (2003).
    ADS  CAS  Article  Google Scholar 

    99.
    de Jong, R. Fossil butterflies, calibration points and the molecular clock (Lepidoptera: Papilionoidea). Zootaxa 4270, 1–63 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    100.
    Scudder, S. H. Fossil butterflies. Mem. Am. Assoc. Adv. Sci. 1, 1–99 (1875).
    Google Scholar 

    101.
    Rasnitsyn, A. P. & Zherikhin, V. V. in History of Insects 437–446 (Kluwer Academic Publishers, 2002).

    102.
    Rebel, H. Doritites bosniaskii. Sitzungsberichte der akademie der wissenschaften. Mathematischen-Naturwissenschaftliche classe. Abt. 1 Mineral. Biol. Erdkd. 1, 734–741 (1898).
    Google Scholar 

    103.
    Carpenter, F. Treatise on Invertebrate Paleontology: Arthropoda 4. Superclass Hexapoda (Geological Society of America, 1992).

    104.
    Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. & Hernández-Hernández, T. A metacalibrated time‐tree documents the early rise of flowering plant phylogenetic diversity. N. Phytol. 207, 437–453 (2015).
    Article  Google Scholar 

    105.
    Sohn, J.-C., Labandeira, C. C. & Davis, D. R. The fossil record and taphonomy of butterflies and moths (Insecta, Lepidoptera): implications for evolutionary diversity and divergence-time estimates. BMC Evol. Biol. 15, 12 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    106.
    Toussaint, E. F. A. & Condamine, F. L. To what extent do new fossil discoveries change our understanding of clade evolution? A cautionary tale from burying beetles (Coleoptera: Nicrophorus). Biol. J. Linn. Soc. 117, 686–704 (2016).
    Article  Google Scholar 

    107.
    Gernhard, T. The conditioned reconstructed process. J. Theor. Biol. 253, 769–778 (2008).
    MathSciNet  PubMed  MATH  Article  Google Scholar 

    108.
    Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).
    CAS  PubMed  Article  Google Scholar 

    109.
    Ree, R. H. & Smith, S. A. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57, 4–14 (2008).
    PubMed  Article  Google Scholar 

    110.
    Pagel, M. & Meade, A. Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am. Nat. 167, 808–825 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    111.
    Igarashi, S. The classification of the Papilionidae mainly based on the morphology of their immature stages. Lepid. Sci. 34, 41–96 (1984).
    Google Scholar 

    112.
    Collins, N. M. & Morris, M. Threatened Swallowtail Butterflies of the World: the IUCN Red Data Book (IUCN, 1985).

    113.
    Tyler, H. A., Brown, K. S. & Wilson, K. H. Swallowtail Butterflies of the Americas: A Study in Biological Dynamics, Ecological Diversity, Biosystematics, and Conservation (Scientific Publishers, 1994).

    114.
    Ree, R. H., Moore, B. R., Webb, C. O. & Donoghue, M. J. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59, 2299–2311 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    115.
    Massoni, J., Couvreur, T. L. & Sauquet, H. Five major shifts of diversification through the long evolutionary history of Magnoliidae (Angiosperms). BMC Evol. Biol. 15, 49 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    116.
    Kyalangalilwa, B., Boatwright, J. S., Daru, B. H., Maurin, O. & van der Bank, M. Phylogenetic position and revised classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia. Bot. J. Linn. Soc. 172, 500–523 (2013).
    Article  Google Scholar 

    117.
    Miller, J. T., Murphy, D. J., Ho, S. Y. W., Cantrill, D. J. & Seigler, D. Comparative dating of Acacia: combining fossils and multiple phylogenies to infer ages of clades with poor fossil records. Aust. J. Bot. 61, 436–445 (2013).
    Article  Google Scholar 

    118.
    Michalak, I., Zhang, L.-B. & Renner, S. S. Trans-Atlantic, trans-Pacific and trans-Indian Ocean dispersal in the small Gondwanan Laurales family Hernandiaceae. J. Biogeogr. 37, 1214–1226 (2010).
    Article  Google Scholar 

    119.
    Wu, S.-D. et al. Evolution of asian interior arid-zone biota: Evidence from the diversification of asian Zygophyllum (Zygophyllaceae). PLoS ONE 10, e0138697 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    120.
    Chase, M. W. et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).
    Article  Google Scholar 

    121.
    Christenhusz, M. J. M., Vorontsova, M. S., Fay, M. F. & Chase, M. W. Results from an online survey of family delimitation in angiosperms and ferns: recommendations to the Angiosperm Phylogeny Group for thorny problems in plant classification. Bot. J. Linn. Soc. 178, 501–528 (2015).
    Article  Google Scholar 

    122.
    Gonzáles, F., Rudall, P. J. & Furness, C. A. Microsporogenesis and systematics of Aristolochiaceae. Bot. J. Linn. Soc. 137, 221–242 (2001).
    Article  Google Scholar 

    123.
    González, F. & Rudall, P. The questionable affinities of Lactoris: evidence from branching pattern, inflorescence morphology, and stipule development. Am. J. Bot. 88, 2143–2150 (2001).
    PubMed  Article  PubMed Central  Google Scholar 

    124.
    Isnard, S. et al. Growth form evolution in Piperales and its relevance for understanding angiosperm diversification: An integrative approach combining plant architecture, anatomy, and biomechanics. Int. J. Plant Sci. 173, 610–639 (2012).
    Article  Google Scholar 

    125.
    Wagner, S. T. et al. Major trends in stem anatomy and growth forms in the perianth-bearing Piperales, with special focus on Aristolochia. Ann. Bot. 113, 1139–1154 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    126.
    Nickrent, D. L. et al. Molecular data place Hydnoraceae with Aristolochiaceae. Am. J. Bot. 89, 1809–1817 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    127.
    Kelly, L. M. & González, F. Phylogenetic relationships in Aristolochiaceae. Syst. Bot. 28, 236–249 (2003).
    Google Scholar 

    128.
    Naumann, J. et al. Single-copy nuclear genes place haustorial Hydnoraceae within piperales and reveal a cretaceous origin of multiple parasitic angiosperm lineages. PLoS ONE 8, e79204 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    129.
    Salomo, K. et al. The emergence of earliest angiosperms may be earlier than fossil evidence indicates. Syst. Bot. 42, 607–619 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    130.
    Christenhusz, M. J. M. & Byng, J. W. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201–217 (2016).
    Article  Google Scholar 

    131.
    Naumann, J. et al. Detecting and characterizing the highly divergent plastid genome of the nonphotosynthetic parasitic plant Hydnora visseri (Hydnoraceae). Genome Biol. Evol. 8, 345–363 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    132.
    Jost, M., Naumann, J., Rocamundi, N., Cocucci, A. A. & Wanke, S. The first plastid genome of the Holoparasitic genus Prosopanche (Hydnoraceae). Plants 9, 306 (2020).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    133.
    Zavada, M. S. & Benson, J. M. First fossil evidence for the primitive angiosperm family Lactoricidae. Am. J. Bot. 74, 1590–1594 (1987).
    Article  Google Scholar 

    134.
    Gamerro, J. C. & Barreda, V. New fossil record of Lactoridaceae in southern South America: a palaeobiogeographical approach. Bot. J. Linn. Soc. 158, 41–50 (2008).
    Article  Google Scholar 

    135.
    Smith, S. Y. & Stockey, R. A. Establishing a fossil record for the perianthless Piperales: Saururus tuckerae sp. nov. (Saururaceae) from the Middle Eocene Princeton Chert. Am. J. Bot. 94, 1642–1657 (2007).
    PubMed  Article  Google Scholar 

    136.
    Massoni, J., Doyle, J. & Sauquet, H. Fossil calibration of Magnoliidae, an ancient lineage of angiosperms. Palaeontol. Electron. 18, 1–25 (2015).
    Google Scholar 

    137.
    Smith, S. A. Taking into account phylogenetic and divergence-time uncertainty in a parametric biogeographical analysis of the Northern Hemisphere plant clade Caprifolieae. J. Biogeogr. 36, 2324–2337 (2009).
    Article  Google Scholar 

    138.
    Beeravolu, C. R. & Condamine, F. L. An extended maximum likelihood inference of geographic range evolution by dispersal, local extinction and cladogenesis. bioRxiv https://doi.org/10.1101/038695 (2016).

    139.
    Scotese, C. R. A continental drift flipbook. J. Geol. 112, 729–741 (2004).
    ADS  Article  Google Scholar 

    140.
    Blakey, R. C. Gondwana paleogeography from assembly to breakup—a 500 m.y. odyssey. Geol. Soc. Am. Spec. Pap. 441, 1–28 (2008).
    Google Scholar 

    141.
    Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270 (2012).
    ADS  Article  Google Scholar 

    142.
    Chacón, J. & Renner, S. S. Assessing model sensitivity in ancestral area reconstruction using Lagrange: a case study using the Colchicaceae family. J. Biogeogr. 41, 1414–1427 (2014).
    Article  Google Scholar 

    143.
    Maddison, W. P., Midford, P. E. & Otto, S. P. Estimating a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701–710 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    144.
    FitzJohn, R. G., Maddison, W. P. & Otto, S. P. Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst. Biol. 58, 595–611 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    145.
    Morlon, H., Parsons, T. L. & Plotkin, J. B. Reconciling molecular phylogenies with the fossil record. Proc. Natl Acad. Sci. USA 108, 16327–16332 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    146.
    Rabosky, D. L. et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4, 1958 (2013).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    147.
    Höhna, S. et al. A Bayesian approach for estimating branch-specific speciation and extinction rates. bioRxiv https://doi.org/10.1101/555805 (2019).

    148.
    May, M. R., Höhna, S. & Moore, B. R. A Bayesian approach for detecting the impact of mass-extinction events on molecular phylogenies when rates of lineage diversification may vary. Methods Ecol. Evol. 7, 947–959 (2016).
    Article  Google Scholar 

    149.
    Magallon, S. & Sanderson, M. J. Absolute diversification rates in angiosperm clades. Evolution 55, 1762–1780 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    150.
    Rabosky, D. L. Likelihood methods for detecting temporal shifts in diversification rates. Evolution 60, 1152–1164 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    151.
    FitzJohn, R. G. Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol. Evol. 3, 1084–1092 (2012).
    Article  Google Scholar 

    152.
    Scriber, J. M. in Chemical Ecology of Insects (eds Bell, W. J. & Cardé, R. T.) 159–202 (Springer US, 1984).

    153.
    Davis, M. P., Midford, P. E. & Maddison, W. Exploring power and parameter estimation of the BiSSE method for analyzing species diversification. BMC Evol. Biol. 13, 38 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    154.
    Maddison, W. P. & FitzJohn, R. G. The unsolved challenge to phylogenetic correlation tests for categorical characters. Syst. Biol. 64, 127–136 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    155.
    Rabosky, D. L. & Goldberg, E. E. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst. Biol. 64, 340–355 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    156.
    Morlon, H. et al. RPANDA: an R package for macroevolutionary analyses on phylogenetic trees. Methods Ecol. Evol. 7, 589–597 (2016).
    Article  Google Scholar 

    157.
    Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    158.
    Moore, B. R., Höhna, S., May, M. R., Rannala, B. & Huelsenbeck, J. P. Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. Proc. Natl Acad. Sci. USA 113, 9569–9574 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    159.
    Rabosky, D. L. et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014).
    Article  Google Scholar 

    160.
    Rabosky, D. L., Mitchell, J. S. & Chang, J. Is BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification models. Syst. Biol. 66, 477–498 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    161.
    Höhna, S. et al. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Syst. Biol. 65, 726–736 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    162.
    Höhna, S., May, M. R. & Moore, B. R. TESS: an R package for efficiently simulating phylogenetic trees and performing Bayesian inference of lineage diversification rates. Bioinformatics 32, 789–791 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    163.
    Stadler, T. Mammalian phylogeny reveals recent diversification rate shifts. Proc. Natl Acad. Sci. USA 108, 6187–6192 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    164.
    Partha, R. et al. Subterranean mammals show convergent regression in ocular genes and enhancers, along with adaptation to tunneling. eLife 6, e25884 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    165.
    Wu, J., Yonezawa, T. & Kishino, H. Rates of molecular evolution suggest natural history of life history traits and a Post-K-Pg nocturnal bottleneck of placentals. Curr. Biol. 27, 3025–3033 (2017).
    CAS  PubMed  Article  Google Scholar 

    166.
    Zhang, G. et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346, 1311–1320 (2014).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    167.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    168.
    Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    169.
    Abascal, F., Zardoya, R. & Telford, M. J. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 38, W7–W13 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    170.
    Simion, P. et al. A software tool ‘CroCo’ detects pervasive cross-species contamination in next generation sequencing data. BMC Biol. 16, 28 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    171.
    Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    172.
    Di Franco, A., Poujol, R., Baurain, D. & Philippe, H. Evaluating the usefulness of alignment filtering methods to reduce the impact of errors on evolutionary inferences. BMC Evol. Biol. 19, 21 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    173.
    Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    174.
    Yang, Z. & Nielsen, R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 17, 32–43 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    175.
    Zhang, J., Nielsen, R. & Yang, Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol. Biol. Evol. 22, 2472–2479 (2005).
    CAS  PubMed  Article  Google Scholar 

    176.
    Yang, Z. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol. Biol. Evol. 15, 568–573 (1998).
    CAS  PubMed  Article  Google Scholar 

    177.
    Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
    CAS  Article  PubMed  Google Scholar 

    178.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    179.
    Bauer, D. F. Constructing confidence sets using rank statistics. J. Am. Stat. Assoc. 67, 687–690 (1972).
    MATH  Article  Google Scholar 

    180.
    Diekmann, Y. & Pereira-Leal, J. B. Gene tree affects inference of sites under selection by the branch-site test of positive selection. Evol. Bioinforma. 11, 11–17 (2015).
    Article  Google Scholar 

    181.
    Mallick, S., Gnerre, S., Muller, P. & Reich, D. The difficulty of avoiding false positives in genome scans for natural selection. Genome Res. 19, 922–933 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    182.
    Fletcher, W. & Yang, Z. The effect of insertions, deletions, and alignment errors on the branch-site test of positive selection. Mol. Biol. Evol. 27, 2257–2267 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    183.
    Jordan, G. & Goldman, N. The effects of alignment error and alignment filtering on the sitewise detection of positive selection. Mol. Biol. Evol. 29, 1125–1139 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    184.
    Duret, L. & Galtier, N. Biased gene conversion and the evolution of mammalian genomic landscapes. Annu. Rev. Genomics Hum. Genet. 10, 285–311 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    185.
    Galtier, N. & Duret, L. Adaptation or biased gene conversion? Extending the null hypothesis of molecular evolution. Trends Genet. 23, 273–277 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    186.
    Ratnakumar, A. et al. Detecting positive selection within genomes: the problem of biased gene conversion. Philos. Trans. R. Soc. Ser. B 365, 2571–2580 (2010).
    CAS  Article  Google Scholar 

    187.
    Guéguen, L. et al. Bio++: efficient extensible libraries and tools for computational molecular evolution. Mol. Biol. Evol. 30, 1745–1750 (2013).
    PubMed  Article  CAS  Google Scholar 

    188.
    Wickham, H. & Grolemund, G. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data (O’Reilly Media, Inc., Canada, 2016).

    189.
    Wilke, C. O. cowplot: streamlined plot theme and plot annotations for ‘ggplot2.’ CRAN Repos. 2, R2 (2016).

    190.
    Gouy, M., Guindon, S. & Gascuel, O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).
    CAS  PubMed  Article  Google Scholar 

    191.
    Redelings, B. Erasing errors due to alignment ambiguity when estimating positive selection. Mol. Biol. Evol. 31, 1979–1993 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    192.
    Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419–D426 (2019).
    CAS  Article  PubMed  Google Scholar 

    193.
    Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    194.
    Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).
    CAS  PubMed  Article  Google Scholar  More