More stories

  • in

    Impacts of sub-micrometer sediment particles on early-stage growth and survival of the kelp Ecklonia bicyclis

    Influence on zoospore attachment
    A slide glass with various sub-micro particles was deposited in a container (outer diameter 61.8 mm, height 125.2 mm) filled with seawater. Zoospores were poured from the surface of the water, and the number of zoospores that had attached to the slide glass was counted. The effect of the particles on attachment was investigated. Here, particles A, B and C were used (silicon carbide–SiC–particles with different size distributions) as the sediment particles. Particles A and B had one peak in the size distribution, and average particle sizes of 1.1 µm and 3.9 µm, respectively. Particle C had two peaks at 0.090 µm and 4.6 µm, and the average particle size was 1.5 µm (Supplementary Fig. S1 online).
    When about 5 × 104 of E. bicyclis zoospores were placed in the container, after 12 h an average attachment of 13.5 ind./mm2 was observed on the slide glass without sediment particles. The relationship between the attachment percentage (%) of zoospores and amount of sediment particles of SiC is shown in Fig. 1a. The attachment percentage, expressed as the number of attached zoospores without sediments, was 100%.
    Figure 1

    Negative influences of sediment on zoospore attachment and gametophyte survival; (a,b) zoospore attachment percentage and gametophyte survival percentage, respectively.

    Full size image

    In the case of particle A (mean diameter 1.1 µm), which had one peak in the size distribution, the zoospore attachment percentage (mean ± SD) at 0.05 mg/cm2 and 0.1 mg/cm2 of sediments were 25.9 ± 14.2% and 10.2 ± 6.17%, respectively (Fig. 1a, Supplementary Table S1 online). In the case of particle B (mean diameter 3.9 µm), the attachment percentage was 53.9 ± 24.8% at 0.05 mg/cm2 and 41.1 ± 23.1% at 0.1 mg/cm2. In the case of particle A, few attachments were found at sediment levels of 0.3 mg/cm2.
    The attachment percentage decreased exponentially as the amount of sediment on the substrate increased at any particle size. A significant negative correlation (Spearman’s rank correlation, p  More

  • in

    A new method for isolating and analysing coccospheres within sediment

    1.
    Holligan, P. M. & Balch, W. M. From the Ocean to Cells: Coccolithophore Optics and Biogeochemistry BT: Particle Analysis in Oceanography. (ed. Demers, S.) 301–324 (Springer, Berlin, 1991).
    2.
    Wallich, G. C. Results of soundings in the North Atlantic. Ann. Mag. Nat. Hist. 6, 457–458. https://doi.org/10.1080/00222936008697369 (1860).
    Article  Google Scholar 

    3.
    Huxley, T. H. Appendix to Capt. Dayman’s Admiralty Report ‘Deep-Sea Soundings in the N. Atlantic Ocean made in H.M.S Cyclops’. (1858).

    4.
    Young, J. R., Geisen, M. & Probert, I. A review of selected aspects of coccolithophore biology with implications for paleobiodiversity estimation. Micropaleontology https://doi.org/10.2113/gsmicropal.51.4.267 (2005).
    Article  Google Scholar 

    5.
    Honjo, S. Coccoliths: production, transport and sedimentation. Mar. Micropaleontol. 1, 65–79. https://doi.org/10.1016/0377-8398(76)90005-0 (1976).
    ADS  Article  Google Scholar 

    6.
    O’Dea, S. A. et al. Coccolithophore calcification response to past ocean acidification and climate change. Nat. Commun. https://doi.org/10.1038/ncomms6363 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    7.
    Bown, P. R., Gibbs, S. J., Sheward, R., O’Dea, S. & Higgins, D. Searching for cells: the potential of fossil coccospheres in coccolithophore research. J. Nannoplankt. Res. 1, 5 (2014).
    Google Scholar 

    8.
    Chisholm, S. W. Phytoplankton Size. in Primary Productivity and Biogeochemical Cycles in the Sea 213–237 (1992).

    9.
    Finkel, Z. V. et al. Phytoplankton in a changing world: cell size and elemental stoichiometry. J. Plankton Res. 32, 119–137. https://doi.org/10.1093/plankt/fbp098 (2010).
    CAS  Article  Google Scholar 

    10.
    Gibbs, S. J. et al. Species-specific growth response of coccolithophores to Palaeocene – Eocene environmental change. Nat. Geosci. 6, 218–222. https://doi.org/10.1038/ngeo1719 (2013).
    ADS  CAS  Article  Google Scholar 

    11.
    Gibbs, S. J., Sheward, R. M., Bown, P. R., Poulton, A. J. & Alvarez, S. A. Warm plankton soup and red herrings: calcareous nannoplankton cellular communities and the Palaeocene – Eocene Thermal Maximum. Philos. Trans. A https://doi.org/10.1098/rsta.2017.0075 (2018).
    Article  Google Scholar 

    12.
    Deuser, W. G., Ross, E. H., Hemleben, C. & Spindler, M. Seasonal changes in species composition, numbers, mass, size, and isotopic composition of planktonic foraminifera settline into the Deep Sargasso Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 33, 103–127. https://doi.org/10.1016/0031-0182(81)90034-1 (1981).
    Article  Google Scholar 

    13.
    Braun, A., Chen, J., Waloszek, D. & Maas, A. First early Cambrian Radiolaria. The rise and fall of the Ediacaran. Biota 286, 143–149. https://doi.org/10.1144/SP286.10 (2007).
    Article  Google Scholar 

    14.
    Witkowski, J., Harwood, D. M. & Chin, K. Taxonomic composition, paleoecology and biostratigraphy of late cretaceous diatoms from Devon Island, Nunavut. Can. High Arctic. Cretac. Res. 32, 277–300. https://doi.org/10.1016/j.cretres.2010.12.009 (2011).
    Article  Google Scholar 

    15.
    Bolton, C. T. et al. Decrease in coccolithophore calcification and CO2 since the middle Miocene. Nat. Commun. https://doi.org/10.1038/ncomms10284 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    16.
    Saavedra-pellitero, M., Baumann, K., Gallagher, S. J., Sagawa, T. & Tada, R. Paleoceanographic evolution of the Japan Sea over the last 460 kyr: a coccolithophore perspective. Mar. Micropaleontol. https://doi.org/10.1016/j.marmicro.2019.01.001 (2019).
    Article  Google Scholar 

    17.
    Beaufort, L. & Heussner, S. Seasonal dynamics of calcareous nannoplankton on a West European continental margin: the Bay of Biscay. Mar. Micropaleontol. 43, 27–55. https://doi.org/10.1016/S0377-8398(01)00020-2 (2001).
    ADS  Article  Google Scholar 

    18.
    Bendif, E. M. et al. Repeated species radiations in the recent evolution of the key marine phytoplankton lineage Gephyrocapsa. Nat. Commun. https://doi.org/10.1038/s41467-019-12169-7 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    19.
    Bown, P. R. Paleocene calcareous nannofossils from Tanzania. J. Nannoplankt. Res. 36, 1–32 (2016).
    Google Scholar 

    20.
    Gibbs, S. J., Bralower, T. J., Bown, P. R., Zachos, J. C. & Bybell, L. M. Shelf and open-ocean calcareous phytoplankton assemblages across the paleocene-eocene thermal maximum: implications for global productivity gradients. Geology 34, 233–236. https://doi.org/10.1130/G22381.1 (2006).
    ADS  CAS  Article  Google Scholar 

    21.
    Pearson, P. N. et al. Paleogene and Cretaceous sediment cores from the Kilwa and Lindi areas of coastal Tanzania: Tanzania Drilling Project Sites 1–5. J. Afr. Earth Sci. 39, 25–62. https://doi.org/10.1016/j.jafrearsci.2004.05.001 (2004).
    ADS  CAS  Article  Google Scholar 

    22.
    Dunkley Jones, T., Bown, P. R. & Pearson, P. N. Exceptionally well preserved upper Eocene to lower Oligocene calcareous nannofossils (Prymnesiophyceae) from the Pande Formation (Kilwa Group), Tanzania. J. Syst. Palaeontol. 7, 359–411. https://doi.org/10.1017/S1477201909990010 (2009).
    Article  Google Scholar 

    23.
    Bown, P. R., Dunkley Jones, T., Young, J. R. & Randell, R. A Palaeogene record of extant lower photic zone calcareous nannoplankton. Palaeontology 52, 457–469. https://doi.org/10.1111/j.1475-4983.2009.00853.x (2009).
    Article  Google Scholar 

    24.
    Gibbs, S. J., Bown, P. R., Sessa, J. A., Bralower, T. J. & Wilson, P. A. Nannoplankton extinction and origination across the paleocene-eocene thermal maximum. Earth Planet. Sci. Lett. 314, 1770–1773. https://doi.org/10.1126/science.1133902 (2006).
    CAS  Article  Google Scholar 

    25.
    Gibbs, S. J., Stoll, H. M., Bown, P. R. & Bralower, T. J. Ocean acidification and surface water carbonate production across the Paleocene-Eocene thermal maximum. Earth Planet. Sci. Lett. 295, 583–592. https://doi.org/10.1016/j.epsl.2010.04.044 (2010).
    ADS  CAS  Article  Google Scholar 

    26.
    Halloran, P., Rust, N. & Rickaby, R. E. M. Isolating coccoliths from sediment for geochemical analysis. Geochem. Geophys. Geosyst. 10, 1–8. https://doi.org/10.1029/2008GC002228 (2009).
    CAS  Article  Google Scholar 

    27.
    Beaufort, L. & Dollfus, D. Automatic recognition of coccoliths by dynamical neural networks. Mar. Micropaleontol. 51, 57–73. https://doi.org/10.1016/j.marmicro.2003.09.003 (2004).
    ADS  Article  Google Scholar 

    28.
    Hildebrand, M. et al. Applications of imaging flow cytometry for microalgae. Imaging Flow Cytom. 1, 47–67. https://doi.org/10.1007/978-1-4939-3302-0_4 (2016).
    Article  Google Scholar 

    29.
    Dashkova, V., Malashenkov, D., Poulton, N., Vorobjev, I. & Barteneva, N. S. Imaging flow cytometry for phytoplankton analysis. Methods 112, 188–200. https://doi.org/10.1016/j.ymeth.2016.05.007 (2017).
    CAS  Article  PubMed  Google Scholar 

    30.
    Dunker, S. Hidden secrets behind dots: improved phytoplankton taxonomic resolution using high-throughput imaging flow cytometry. Cytom. Part A 95, 854–868. https://doi.org/10.1002/cyto.a.23870 (2019).
    Article  Google Scholar 

    31.
    Beaufort, L. weight estimates of coccoliths using the optical properties (birefringence) of calcite. Micropaleontology 51, 289–297. https://doi.org/10.2113/gsmicropal.51.4.289 (2005).
    Article  Google Scholar 

    32.
    Henderiks, J. & Pagani, M. (Table S2) Mean coccosphere diameter, cell diameter and coccolith size of fossilized reticulofenestrid coccospheres from DSDP Site 72–516. PANGAEA https://doi.org/10.1594/PANGAEA.833085 (2007).
    Article  Google Scholar 

    33.
    Bown, P. Biometric data illustrating species-specific growth response of coccolithophores to Palaeocene-Eocene environmental change (NERC Grant NE_H017291_1). NERC Data Catalogue http://data.bgs.ac.uk/id/dataHolding/13607273 (2018).

    34.
    Schlüter, L. et al. Experiment: adaptation of a globally important coccolithophore to ocean warming and acidification. PANGAEA https://doi.org/10.1594/PANGAEA.835341 (2014).
    Article  Google Scholar 

    35.
    Sheward, R. M., Poulton, A. J., Gibbs, S. J., Daniels, C. J. & Bown, P. R. Coccosphere geometry measurements from culture experiments on the coccolithophore species Calcidiscus leptoporus, Calcidiscus quadriperforatus and Helicosphaera carteri. PANAGEA https://doi.org/10.1594/PANGAEA.865403 (2016).
    Article  Google Scholar 

    36.
    Young, J. R. et al. A guide to extant coccolithophore taxonomy. J. Nannoplankt. Res. 1, 10 (2003).
    Google Scholar 

    37.
    Jordan, R. W., Kleijine, A., Heimdal, B. R. & Green, J. C. A glossary of the extant Haptophyta of the world. J. Mar. Biol. Assoc. UK 75, 769–814. https://doi.org/10.1017/S0025315400038169 (1995).
    Article  Google Scholar 

    38.
    Young, J. R. & Henriksen, K. Biomineralization within vesicles: the calcite of coccoliths. Rev. Mineral. Geochem. 54, 189–215. https://doi.org/10.2113/0540189 (2003).
    CAS  Article  Google Scholar 

    39.
    Young, J. R., Didymus, J. M., Bown, P. R., Prins, B. & Mann, S. Crystal assembly and phylogenetic evolution in heterococcoliths. Nature 359, 710–713. https://doi.org/10.1038/356516a0 (1992).
    Article  Google Scholar 

    40.
    Iglesias-Rodriguez, M. D. et al. Phytoplankton calcification in a high-CO2 world. Science 320, 336–340. https://doi.org/10.1126/science.1154122 (2008).
    ADS  CAS  Article  PubMed  Google Scholar 

    41.
    Stoll, H. et al. Insights on coccolith chemistry from a new ion probe method for analysis of individually picked coccoliths. Geochem. Geophys. Geosyst. 8, 1–8. https://doi.org/10.1029/2006GC001546 (2007).
    CAS  Article  Google Scholar 

    42.
    Henderiks, J. & Pagani, M. Refining ancient carbon dioxide estimates: Significance of coccolithophore cell size for alkenone-based pCO2 records. Paleoceanography 22, 1–12. https://doi.org/10.1029/2006PA001399 (2007).
    Article  Google Scholar 

    43.
    Henderiks, J. & Pagani, M. Coccolithophore cell size and the Paleogene decline in atmospheric CO2. Earth Planet. Sci. Lett. 269, 575–583. https://doi.org/10.1016/j.epsl.2008.03.016 (2008).
    ADS  CAS  Article  Google Scholar 

    44.
    Šupraha, L. & Henderiks, J. A 15-million-year-long record of phenotypic evolution in the heavily calcified coccolithophore Helicosphaeraand its biogeochemical implications. Biogeosciences 17, 2955–2969. https://doi.org/10.5194/bg-17-2955-2020 (2020).
    ADS  Article  Google Scholar 

    45.
    Hannisdal, B., Henderiks, J. & Liow, L. H. Long-term evolutionary and ecological responses of calcifying phytoplankton to changes in atmospheric CO2. Glob. Chang. Biol. 18, 3504–3516. https://doi.org/10.1111/gcb.12007 (2012).
    ADS  Article  Google Scholar 

    46.
    Urbanek, A. Biotic crises in the history of Upper Silurian graptoloids: a Palaeobiological model. Hist. Biol. 7, 29–50. https://doi.org/10.1080/10292389309380442 (1993).
    Article  Google Scholar 

    47.
    Stanley, S. M. An explanation for Cope’s rule. Evolution 27, 1–26. https://doi.org/10.2307/2407115 (1973).
    Article  PubMed  Google Scholar 

    48.
    Langer, G., Nehrke, G., Probert, I., Ly, J. & Ziveri, P. Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences 6, 2637–2646. https://doi.org/10.5194/bg-6-2637-2009 (2009).
    ADS  CAS  Article  Google Scholar 

    49.
    Langer, G. et al. Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2005GC001227 (2006).
    Article  Google Scholar 

    50.
    Zondervan, I., Rost, B. & Riebesell, U. Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths. J. Exp. Mar. Biol. Ecol. 272, 55–70. https://doi.org/10.1016/S0022-0981(02)00037-0 (2002).
    CAS  Article  Google Scholar 

    51.
    Feng, Y. et al. Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). Eur. J. Phycol. 43, 87–98. https://doi.org/10.1080/09670260701664674 (2008).
    MathSciNet  CAS  Article  Google Scholar 

    52.
    Fiorini, S., Middelburg, J. J. & Gattuso, J. Effects of elevated CO2 partial pressure and temperature on the coccolithophore Syracosphaera pulchra. Aquat. Microb. Ecol. 64, 221–232. https://doi.org/10.3354/ame01520 (2011).
    Article  Google Scholar 

    53.
    McClelland, H. L. O. et al. Calcification response of a key phytoplankton family to millennial-scale environmental change. Sci. Rep. https://doi.org/10.1038/srep34263 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    54.
    Lohbeck, K. T., Riebesell, U. & Reusch, T. B. H. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat. Geosci. 5, 346–351. https://doi.org/10.1038/ngeo1441 (2012).
    ADS  CAS  Article  Google Scholar 

    55.
    Schlüter, L., Lohbeck, K. T., Gröger, J. P., Riebesell, U. & Reusch, T. B. H. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification. Sci. Adv. 2, 1–8. https://doi.org/10.1126/sciadv.1501660 (2016).
    CAS  Article  Google Scholar 

    56.
    Ziveri, P. et al. Stable isotope ‘vital effects’ in coccolith calcite. Earth Planet. Sci. Lett. 210, 137–149. https://doi.org/10.1016/S0012-821X(03)00101-8 (2003).
    ADS  CAS  Article  Google Scholar 

    57.
    Stoll, H. M. & Schrag, D. P. Coccolith Sr/Ca as a new indicator of coccolithophorid calcification and growth rate. Geochem. Geophys. Geosyst. https://doi.org/10.1029/1999GC000015 (2000).
    Article  Google Scholar 

    58.
    Stoll, H. M. & Ziveri, P. Separation of monospecific and restricted coccolith assemblages from sediments using differential settling velocity. Mar. Micropaleontol. 46, 209–221. https://doi.org/10.1016/s0377-8398(02)00040-3 (2002).
    ADS  Article  Google Scholar 

    59.
    Stoll, H. M., Ziveri, P., Geisen, M., Probert, I. & Young, J. R. Potential and limitations of Sr/Ca ratios in coccolith carbonate: new perspectives from cultures and monospecific samples. Philos. Trans. R. Soc. A 360, 719–747. https://doi.org/10.1098/rsta.2001.0966 (2002).
    ADS  CAS  Article  Google Scholar 

    60.
    Rickaby, R. E., Bard, E., Sonzogni, C. & Rostek, F. Coccolith chemistry reveals secular variations in the global ocean carbon cycle?. Earth Planet. Sci. Lett. 253, 83–95. https://doi.org/10.1016/j.epsl.2006.10.016 (2007).
    ADS  CAS  Article  Google Scholar 

    61.
    Bolton, C. T., Stoll, H. M. & Mendez-Vicente, A. Vital effects in coccolith calcite: cenozoic climate-pCO2 drove the diversity of carbon acquisition strategies in coccolithophores?. Paleoceanography https://doi.org/10.1029/2012PA002339 (2012).
    Article  Google Scholar 

    62.
    Bolton, C. T. & Stoll, H. M. Late Miocene threshold response of marine algae to carbon dioxide limitation. Nature 500, 558–562. https://doi.org/10.1038/nature12448 (2013).
    ADS  CAS  Article  PubMed  Google Scholar 

    63.
    Rickaby, R., Henderiks, J. & Young, J. Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species. Clim. Past 6, 771–785. https://doi.org/10.5194/cp-6-771-2010 (2010).
    Article  Google Scholar 

    64.
    Andruleit, H., Rogalla, U. & Stable, S. S. From living communities to fossil assemblages: origin and fate of coccolithophores in the Northern Arabian Sea. Micropaleontology 50, 5–21. https://doi.org/10.2113/50.Suppl_1.5 (2004).
    Article  Google Scholar 

    65.
    Maguire, O., Collins, C., O’Loughlin, K., Miecznikowski, J. & Minderman, H. Quantifying nuclear p65 as a parameter for NF-κB activation: correlation between imagestream cytometry microscopy and western blot. Cytom. A 79, 461–469. https://doi.org/10.1002/cyto.a.21068 (2011).
    CAS  Article  Google Scholar 

    66.
    Prentice, K. et al. Trace metal (Mg/Ca and Sr/Ca) analyses of single coccoliths by secondary ion mass spectrometry. Geochim. Cosmochim. Acta 146, 90–106. https://doi.org/10.1016/j.gca.2014.09.041 (2014).
    ADS  CAS  Article  Google Scholar 

    67.
    Beaufort, L. Weight estimates of coccoliths using the optical properties (birefringence) of calcite. Micropaleontology https://doi.org/10.2113/gsmicropal.51.4.289 (2005).
    Article  Google Scholar 

    68.
    von Dassow, P., van den Engh, G., Iglesias-Rodriguez, D. & Gittins, J. R. Calcification state of coccolithophores can be assessed by light scatter depolarization measurements with flow cytometry. J. Plankton Res. 34, 1011–1027. https://doi.org/10.1093/plankt/fbs061 (2012).
    CAS  Article  Google Scholar 

    69.
    Balch, W. M., Kilpatrick, K., Holligan, P. M. & Cucci, T. Coccolith production and detachment by Emiliania Huxleyi (Prymnesiophyceae). J. Phycol. 29, 566–573. https://doi.org/10.1111/j.0022-3646.1993.00566.x (1993).
    Article  Google Scholar 

    70.
    Spooner, P. T. et al. Exceptional 20th century ocean circulation in the Northeast Atlantic. Geophys. Res. Lett. https://doi.org/10.1029/2020GL087577 (2020).
    Article  Google Scholar 

    71.
    Halloran, P. R., Hall, I. R. & Rickaby, R. E. M. Evidence for a multi-species coccolith volume change over the past two centuries: understanding a potential ocean acidification response. Biogeosciences 5, 1651–1655. https://doi.org/10.5194/bg-5-1651-2008 (2008).
    ADS  CAS  Article  Google Scholar  More

  • in

    Genome skimming and exploration of DNA barcodes for Taiwan endemic cypresses

    1.
    Wang, W., Hwang, C., Lin, T. & Hwang, S. Y. Historical biogeography and phylogenetic relationships of the genus Chamaecyparis (Cupressaceae) inferred from chloroplast DNA polymorphism. Plant Syst. Evol. 241, 13–28. https://doi.org/10.1007/s00606-003-0031-0 (2003).
    CAS  Article  Google Scholar 
    2.
    Liao, P. C., Lin, T. P. & Hwang, S. Y. Reexamination of the pattern of geographical disjunction of Chamaecyparis (Cupressaceae) in North America and East Asia. Bot. Stud. 51, 511–520 (2010).
    CAS  Google Scholar 

    3.
    Li, C. F. et al. Chamaecyparis montane cloud forest in Taiwan: ecology and vegetation classification. Ecol. Res. 30, 771–791. https://doi.org/10.1007/s11284-015-1284-0 (2015).
    Article  Google Scholar 

    4.
    IUCN Red List of Threatened Species. https://www.iucnredlist.org/ (2013).

    5.
    Horng, F. W., Ma, F. C., Yu, H. M., Hsui, Y. R. & Chang, H. M. An estimation of original Chamaecyparis forest area in Taiwan and its implication for conservation. Q. J. Chin. For. 17, 143–153 (2000).
    Google Scholar 

    6.
    Koch, G., Richter, H. G. & Schmitt, U. Design and application of CITESwoodID computer-aided identification and description of CITES-protected timbers. IAWA J. 32, 213–220. https://doi.org/10.1163/22941932-90000052 (2011).
    Article  Google Scholar 

    7.
    Sarmiento, C. et al. Pl@ntwood: a computer-assisted identification tool for 110 species of Amazon trees based on wood anatomical features. IAWA J. 32, 221–232. https://doi.org/10.1163/22941932-90000053 (2011).
    MathSciNet  Article  Google Scholar 

    8.
    Gasson, P. How precise can wood identification be? Wood anatomy’s role in support of the legal timber trade, especially cites. IAWA J. 32, 137–154. https://doi.org/10.1163/22941932-90000049 (2011).
    Article  Google Scholar 

    9.
    Jiao, L., Yin, Y., Cheng, Y. & Jiang, X. DNA barcoding for identification of the endangered species Aquilaria sinensis: comparison of data from heated or aged wood samples. Holzforschung 68, 487–494. https://doi.org/10.1515/hf-2013-0129 (2014).
    CAS  Article  Google Scholar 

    10.
    Jiao, L. et al. DNA barcode authentication and library development for the wood of six commercial Pterocarpus species: the critical role of xylarium specimens. Sci. Rep. 8, 1945. https://doi.org/10.1038/s41598-018-20381-6 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    Nithaniyal, S. et al. DNA barcode authentication of wood samples of threatened and commercial timber trees within the tropical dry evergreen forest of India. PLoS ONE 9, e107669. https://doi.org/10.1371/journal.pone.0107669 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    12.
    Liu, J. et al. Integrating a comprehensive DNA barcode reference library with a global map of yews (Taxus L.) for forensic identification. Mol. Ecol. Resour. 18, 1115–1131. https://doi.org/10.1111/1755-0998.12903 (2018).
    CAS  Article  Google Scholar 

    13.
    Kress, W. J. Plant DNA barcodes: applications today and in the future. J. Syst. Evol. 55, 291–307. https://doi.org/10.1111/jse.12254 (2017).
    Article  Google Scholar 

    14.
    CBOL Plant Working Group. A DNA barcode for land plants. Proc. Natl. Acad. Sci. U S A 106, 12794–12797. https://doi.org/10.1111/1755-0998.12194 (2009).
    CAS  Article  PubMed Central  Google Scholar 

    15.
    Hollingsworth, P. M., Graham, S. W. & Little, D. P. Choosing and using a plant DNA barcode. PLoS ONE 6, e19254. https://doi.org/10.1371/journal.pone.0019254 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Li, D. Z. et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. USA 108(19641–19646), 2011. https://doi.org/10.1073/pnas.1104551108 (2011).
    Article  Google Scholar 

    17.
    Purty, R. S. & Chatterjee, S. DNA Barcoding: an effective technique in molecular taxonomy. Austin J. Biotechnol. Bioeng. 3, 1059 (2016).
    Google Scholar 

    18.
    Kane, N. et al. Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA. Am. J. Bot. 99, 320–329. https://doi.org/10.3732/ajb.1100570 (2012).
    CAS  Article  PubMed  Google Scholar 

    19.
    Bock, D. G., Kane, N. C., Ebert, D. P. & Rieseberg, L. H. Genome skimming reveals the origin of the Jerusalem Artichoke tuber crop species: neither from Jerusalem nor an artichoke. New Phytol. 201, 1021–1030. https://doi.org/10.1111/nph.12560 (2014).
    CAS  Article  PubMed  Google Scholar 

    20.
    Ji, Y. et al. Testing and using complete plastomes and ribosomal DNA sequences as the next generation DNA barcodes in Panax (Araliaceae). Mol. Ecol. Resour. 19, 1333–1345. https://doi.org/10.1111/1755-0998.13050 (2019).
    CAS  Article  PubMed  Google Scholar 

    21.
    Li, X. et al. Plant DNA barcoding: from gene to genome. Biol. Rev. 90, 157–166. https://doi.org/10.1111/brv.12104 (2015).
    Article  PubMed  Google Scholar 

    22.
    Niu, Z. et al. Comparative analysis of Dendrobium plastomes and utility of plastomic mutational hotspots. Sci. Rep. 7, 2073. https://doi.org/10.1038/s41598-017-02252-8 (2017).
    CAS  Article  Google Scholar 

    23.
    Zhu, S. et al. Accurate authentication of Dendrobium officinale and its closely related species by comparative analysis of complete plastomes. Acta. Pharm. Sin. B. 8, 969–980. https://doi.org/10.1016/j.apsb.2018.05.009 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    24.
    Fu, C. N. et al. Prevalence of isomeric plastomes and effectiveness of plastome super-barcodes in yews (Taxus) worldwide. Sci. Rep. 9, 2773. https://doi.org/10.1038/s41598-019-39161-x (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    25.
    Dodsworth, S. Genome skimming for next-generation biodiversity analysis. Trends Plant Sci. 20, 525–527. https://doi.org/10.1016/j.tplants.2015.06.012 (2015).
    CAS  Article  PubMed  Google Scholar 

    26.
    Guo, W. et al. Predominant and substoichiometric isomers of the plastid genome coexist within Juniperus plants and have shifted multiple times during cupressophyte evolution. Genome Biol. Evol. 6, 580–590. https://doi.org/10.1093/gbe/evu046 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Wu, C. S. & Chaw, S. M. Large-scale comparative analysis reveals the mechanisms driving plastomic compaction, reduction, and inversions in conifers II (cupressophytes). Genome Biol. Evol. 8, 3740–3750. https://doi.org/10.1093/gbe/evw278 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    28.
    Qu, X. J., Wu, C. S., Chaw, S. M. & Yi, T. S. Insights into the existence of isomeric plastomes in Cupressoideae (Cupressaceae). Genome Biol. Evol. 9, 1110–1119. https://doi.org/10.1093/gbe/evx071 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    29.
    Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A. & Janzen, D. H. Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. USA 102, 8369–8374. https://doi.org/10.1073/pnas.0503123102 (2005).
    ADS  CAS  Article  PubMed  Google Scholar 

    30.
    Pang, X. et al. Utility of the trnH-psbA intergenic spacer region and its combinations as plant DNA barcodes: a meta-analysis. PLoS ONE 7, e48833. https://doi.org/10.1371/journal.pone.0048833 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Loera-Sánchez, M., Studer, B. & Kölliker, R. DNA barcode trnH-psbA is a promising candidate for efficient identification of forage legumes and grasses. BMC Res. Notes 13, 35. https://doi.org/10.1186/s13104-020-4897-5 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Zonneveld, B. J. M. Conifer genome sizes of 172 species, covering 64 of 67 genera, range from 8 to 72 picogram. Nord. J. Bot. 30, 490–502. https://doi.org/10.1111/j.1756-1051.2012.01516.x (2012).
    Article  Google Scholar 

    33.
    Preuten, T. et al. Fewer genes than organelles: extremely low and variable gene copy numbers in mitochondria of somatic plant cells. Plant J. 64, 948–959. https://doi.org/10.1111/j.1365-313X.2010.04389.x (2010).
    CAS  Article  PubMed  Google Scholar 

    34.
    Shen, J., Zhang, Y., Havey, M. J. & Shou, W. Copy numbers of mitochondrial genes change during melon leaf development and are lower than the numbers of mitochondria. Hortic. Res. 6, 95. https://doi.org/10.1038/s41438-019-0177-8 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Sloan, D. B. One ring to rule them all? Genome sequencing provides new insights into the ‘master circle’ model of plant mitochondrial DNA structure. New Phytol. 200, 978–985. https://doi.org/10.1111/nph.12395 (2013).
    CAS  Article  PubMed  Google Scholar 

    36.
    Gualberto, J. M. & Newton, K. J. Plant mitochondrial genomes: dynamics and mechanisms of mutation. Annu. Rev. Plant Biol. 68, 225–252. https://doi.org/10.1146/annurev-arplant-043015-112232 (2017).
    CAS  Article  PubMed  Google Scholar 

    37.
    Kozik, A. et al. The alternative reality of plant mitochondrial DNA: one ring does not rule them all. PLoS Genet. 15, e1008373. https://doi.org/10.1371/journal.pgen.1008373 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    38.
    Ruhsam, M. et al. Does complete plastid genome sequencing improve species discrimination and phylogenetic resolution in Araucaria?. Mol. Ecol. Resour. 15, 1067–1078. https://doi.org/10.1111/1755-0998.12375 (2015).
    CAS  Article  PubMed  Google Scholar 

    39.
    Chen, Q., Wu, X. & Zhang, D. Comparison of the abilities of universal, super, and specific DNA barcodes to discriminate among the original species of Fritillariae cirrhosae bulbus and its adulterants. PLoS ONE 15, e0229181. https://doi.org/10.1371/journal.pone.0229181 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Weng, M. L., Blazier, J. C., Govindu, M. & Jansen, R. K. Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Mol. Biol. Evol. 31, 645–659. https://doi.org/10.1093/molbev/mst257 (2014).
    CAS  Article  PubMed  Google Scholar 

    41.
    Vieira Ldo, N. et al. The complete chloroplast genome sequence of Podocarpus lambertii: genome structure, evolutionary aspects, gene content and SSR detection. PLoS ONE 9, e90618. https://doi.org/10.1371/journal.pone.0090618 (2014).
    ADS  Article  PubMed  Google Scholar 

    42.
    Hamsher, S. E. et al. Extensive chloroplast genome rearrangement amongst three closely relatedHalamphora spp. (Bacillariophyceae), and evidence for rapid evolution as compared to land plants. PLoS ONE 14, e0217824. https://doi.org/10.1371/journal.pone.0217824 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Garcia, S., Kovařík, A., Leitch, A. R. & Garnatje, T. Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database. Plant J. 89, 1020–1030. https://doi.org/10.1111/tpj.13442 (2017).
    CAS  Article  PubMed  Google Scholar 

    44.
    Liere, K. & Börner, T. Development-dependent changes in the amount and structural organization of plastid DNA. In Plastid Development in Leaves during Growth and Senescence (ed. Biswal, B., K. Krupinska, K. & Biswal, U. C.) 215–237 (Amsterdam Springer, 2013).

    45.
    Li, J., Su, Y. & Wang, T. The repeat sequences and elevated substitution rates of the chloroplast accD gene in cupressophytes. Front. Plant Sci. 9, 533. https://doi.org/10.3389/fpls.2018.00533 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    46.
    Sudianto, E. & Chaw, S. M. Two independent plastid accD transfers to the nuclear genome of Gnetum and other insights on acetyl-coA carboxylase evolution in gymnosperms. Genome Biol. Evol. 11, 1691–1705. https://doi.org/10.1093/gbe/evz059 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    47.
    Deguilloux, M. F., Pemonge, M. H. & Petit, R. J. Novel perspectives in wood certification and forensics: dry wood as a source of DNA. Proc. Biol. Sci. 269, 1039–1046. https://doi.org/10.1098/rspb.2002.1982 (2002).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    48.
    Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bul. 19, 11–15 (1987).
    Google Scholar 

    49.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477. https://doi.org/10.1089/cmb.2012.0021 (2012).
    MathSciNet  CAS  Article  PubMed  PubMed Central  Google Scholar 

    51.
    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421. https://doi.org/10.1186/1471-2105-10-421 (2009).
    CAS  Article  Google Scholar 

    52.
    Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18. https://doi.org/10.1186/2047-217X-1-18 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    53.
    Ronen, R., Boucher, C., Chitsaz, H. & Pevzner, P. SEQuel: improving the accuracy of genome assemblies. Bioinformatics 28, i188-196. https://doi.org/10.1093/bioinformatics/bts219 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    54.
    Tillich, M. et al. GeSeq-versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 45, W6–W11. https://doi.org/10.1093/nar/gkx391 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    55.
    Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100–3108. https://doi.org/10.1093/nar/gkm160 (2007).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    56.
    Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645. https://doi.org/10.1101/gr.092759.109 (2009).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    58.
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    59.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    60.
    Darling, A. E., Mau, B. & Perna, N. T. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5, e11147. https://doi.org/10.1371/journal.pone.0011147 (2010).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    61.
    Rozas, J. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302. https://doi.org/10.1093/molbev/msx248 (2017).
    CAS  Article  Google Scholar 

    62.
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(1792–1797), 2004. https://doi.org/10.1093/nar/gkh340 (2004).
    CAS  Article  Google Scholar  More

  • in

    Mycosporine-like amino acid and aromatic amino acid transcriptome response to UV and far-red light in the cyanobacterium Chlorogloeopsis fritschii PCC 6912

    1.
    Singh, S. P., Häder, D.-P. & Sinha, R. P. Cyanobacteria and ultraviolet radiation (UVR) stress: mitigation strategies. Ageing Res. Rev. 9, 79–90 (2010).
    CAS  PubMed  Article  Google Scholar 
    2.
    Montgomery, B. L. Seeing new light: recent insights into the occurrence and regulation of chromatic acclimation in cyanobacteria. Curr. Opin. Plant Biol. 37, 18–23 (2017).
    CAS  PubMed  Article  Google Scholar 

    3.
    Huang, L., McCluskey, M. P., Ni, H. & LaRossa, R. A. Global gene expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white light. J. Bacteriol. 184, 6845–6858 (2002).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Hideg, É., Jansen, M. K. & Strid, Å. UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci. 18, 107–115 (2013).

    5.
    Shick, J. M. & Dunlap, W. C. Mycosporine-like amino acids and related gadusols: biosynthesis, acumulation, and UV-protective functions in aquatic organisms. Annu. Rev. Physiol. 64, 223–262 (2002).
    CAS  PubMed  Article  Google Scholar 

    6.
    Oren, A. & Gunde-Cimerman, N. Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites?. Fems. Microbiol. Lett. 269, 1–10 (2007).
    CAS  PubMed  Article  Google Scholar 

    7.
    Llewellyn, C. A. & Airs, R. L. Distribution and abundance of MAAs in 33 species of microalgae across 13 classes. Marine Drugs 8, 1273–1291 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Garcia-Pichel, F. & Castenholz, R. W. Occurence of UV-absorbing, Mycosporine-like compounds among cyanobacterial isolates and estimates of their screening capacity. Appl. Environ. Microbiol. 59, 163–169 (1993).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Schmid, D., Cornelia, S. & Fred, Z. UV-A sunscreen from red algae for protection against premature skin aging. Cosmetics 2004, 139–143 (2004).
    Google Scholar 

    10.
    Liddell, P. A. et al. Mimicry of carotenoid function in photosynthesis: synthesis and photophysical properties of a carotenopyropheophorbide. Photochem. Photobiol. 36, 641–645 (1982).
    CAS  Article  Google Scholar 

    11.
    Derikvand, P., Llewellyn, C. A. & Purton, S. Cyanobacterial metabolites as a source of sunscreens and moisturizers: a comparison with current synthetic compounds. Eur. J. Phycol. 52, 43–56 (2016).
    Article  CAS  Google Scholar 

    12.
    Rastogi, R. P. et al. Ultraviolet radiation and cyanobacteria. J. Photochem. Photobiol. B 141, 154–169 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Rastogi, R. P., Madamwar, D. & Incharoensakdi, A. Sun-screening bioactive compounds mycosporine-like amino acids in naturally occurring cyanobacterial biofilms: role in photoprotection. J. Appl. Microbiol. 119, 753–762 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Portwich, A. & Garcia-Pichel, F. Ultraviolet and osmotic stresses induce and regulate the synthesis of mycosporines in the cyanobacterium Chlorogloeopsis PCC 6912. Arch. Microbiol. 172, 187–192 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Waditee-Sirisattha, R., Kageyama, H., Fukaya, M., Rai, V. & Takabe, T. Nitrate and amino acid availability affects glycine betaine and mycosporine-2-glycine in response to changes of salinity in a halotolerant cyanobacterium Aphanothece halophytica. Fems Microbiol. Lett. 362, fnv198 (2015).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    16.
    Conde, F. R., Churio, M. S. & Previtali, C. M. The deactivation pathways of the excited-states of the mycosporine-like amino acids shinorine and porphyra-334 in aqueous solution. Photochem. Photobiol. Sci. 3, 960–967 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Gao, Q. & Garcia-Pichel, F. Microbial ultraviolet sunscreens. Nat. Rev. Microbiol. 9, 791–802 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Balskus, E. P. & Walsh, C. T. The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science 329, 1653–1656 (2010).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Pope, M. A. et al. O-Methyltransferase is shared between the pentose phosphate and shikimate pathways and is essential for mycosporine-like amino acid biosynthesis in Anabaena variabilis ATCC 29413. ChemBioChem 16, 320–327 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Portwich, A. & Garcia-Pichel, F. Biosynthetic pathway of mycosporines (mycosporine-like amino acids) in the cyanobacterium Chlorogloeopsis sp strain PCC 6912. Phycologia 42, 384–392 (2003).
    Article  Google Scholar 

    21.
    Challis, G. L. & Naismith, J. H. Structural aspects of non-ribosomal peptide biosynthesis. Curr. Opin. Struct. Biol. 14, 748–756 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Gao, Q. & Garcia-Pichel, F. An ATP-grasp ligase involved in the last biosynthetic step of the iminomycosporine shinorine in Nostoc punctiforme ATCC 29133. J. Bacteriol. 193, 5923–5928 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Maeda, H. & Dudareva, N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 63, 73–105 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Wu, D. et al. Structural basis of ultraviolet-B perception by UVR8. Nature 484, 214–219 (2012).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    25.
    Rizzini, L. et al. Perception of UV-B by the Arabidopsis UVR8 protein. Science 332, 103–106 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Busch, A. W. U. & Montgomery, B. L. Distinct light-, stress-, and nutrient-dependent regulation of multiple tryptophan-rich sensory protein (TSPO) genes in the cyanobacterium Fremyella diplosiphon. Plant Signal Behav. 12, e1293221 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Gan, F. et al. Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science 345, 1312–1317 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Ho, M. Y. & Bryant, D. A. Global transcriptional profiling of the cyanobacterium Chlorogloeopsis fritschii PCC 9212 in far-red light: insights into the regulation of chlorophyll d synthesis. Front. Microbiol. 10, 465 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    Airs, R. L. et al. Chlorophyll f and chlorophyll d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation. FEBS Lett. 588, 3770–3777 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Zheng, Z., Gao, S. & Wang, G. Far red light induces the expression of LHCSR to trigger nonphotochemical quenching in the intertidal green macroalgae Ulva prolifera. Algal Res. 40, 101512 (2019).
    Article  Google Scholar 

    31.
    Kono, M., Yamori, W., Suzuki, Y. & Terashima, I. Photoprotection of PSI by far-red light against the fluctuating light-induced photoinhibition in Arabidopsis thaliana and field-grown plants. Plant Cell Physiol. 58, 35–45 (2017).
    CAS  PubMed  Google Scholar 

    32.
    Ma, K. Two new algae from Indian Soil. Ann. Bot. 14, 457–464 (1950).
    Article  Google Scholar 

    33.
    Garcia-Pichel, F., Wingard, C. E. & Castenholz, R. W. Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Appl. Environ. Microbiol. 59, 170–176 (1993).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Singh, S. P., Klisch, M., Sinha, R. P. & Hader, D. P. Genome mining of mycosporine-like amino acid (MAA) synthesizing and non-synthesizing cyanobacteria: a bioinformatics study. Genomics 95, 120–128 (2010).
    CAS  PubMed  Article  Google Scholar 

    35.
    Osborn, A. R. et al. De novo synthesis of a sunscreen compound in vertebrates. Elife 4, e05919 (2015).
    PubMed Central  Article  PubMed  Google Scholar 

    36.
    Osborn, A. R. et al. Evolution and distribution of C7-cyclitol synthases in prokaryotes and eukaryotes. ACS Chem. Biol. 12, 979–988 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Carreto, J. I., Carignan, M. O. & Montoya, N. G. A high-resolution reverse-phase liquid chromatography method for the analysis of mycosporine-like amino acids (MAAs) in marine organisms. Mar. Biol. 146, 237–252 (2005).
    CAS  Article  Google Scholar 

    38.
    Bandaranayake, W. M. Mycosporines: are they nature’s sunscreens?. Nat. Prod. Rep. 15, 159–172 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Kultschar, B., Dudley, E., Wilson, S. & Llewellyn, C. A. Intracellular and extracellular metabolites from the cyanobacterium Chlorogloeopsis fritschii, PCC 6912, during 48 hours of UV-B exposure. Metabolites 9, 74 (2019).
    CAS  PubMed Central  Article  Google Scholar 

    40.
    Busch, A. W. U., WareJoncas, Z. & Montgomery, B. L. Tryptophan-rich sensory protein/translocator protein (TSPO) from cyanobacterium Fremyella diplosiphon binds a broad range of functionally relevant tetrapyrroles. Biochemistry 56, 73–84 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Prasanna, R. et al. Rediscovering cyanobacteria as valuable sources of bioactive compounds. Prikl. Biokhim. Mikrobiol. 46, 133–147 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    42.
    Kobayashi, M., Rodriguez, R., Lara, C. & Omata, T. Involvement of the C-terminal domain of an ATP-binding subunit in the regulation of the ABC-type nitrate/nitrite transporter of the cyanobacterium Synechococcus sp. strain PCC 7942. J. Biol. Chem. 272, 27197–27201 (1997).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Couradeau, E. et al. Bacteria increase arid-land soil surface temperature through the production of sunscreens. Nat. Commun. 7, 10373 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Llewellyn, C. A., Airs, R. L., Farnham, G. & Greig, C. Synthesis, regulation and degradation of carotenoids under low level UV-B radiation in the filamentous cyanobacterium Chlorogloeopsis fritschii PCC 6912. Front. Microbiol. 11, 163 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Anders, S., Pyl, P. T. & Huber, W. HTSeq: a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
    CAS  PubMed  Article  Google Scholar 

    46.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    47.
    Pinto, F., Pacheco, C. C., Ferreira, D., Moradas-Ferreira, P. & Tamagnini, P. Selection of suitable reference genes for RT-qPCR analyses in cyanobacteria. PLoS ONE 7, e34983 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17, 10–12 (2011).
    Google Scholar 

    49.
    Tjaden, B. De novo assembly of bacterial transcriptomes from RNA-seq data. Genome Biol. 16, 1 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    McClure, R. et al. Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res. 41, e140 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Liao, Y., Smyth, G. K. & Shi, W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41, e108 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    52.
    Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    A holistic approach in herbicide resistance research and management: from resistance detection to sustainable weed control

    1.
    Keeley, P. E., Carter, C. H. & Thullen, R. J. Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci. 35, 199–204 (1987).
    Article  Google Scholar 
    2.
    Christoffers, M. J. Genetic aspects of herbicide-resistant weed management. Weed Technol. 13, 647–652 (1999).
    Article  Google Scholar 

    3.
    Gressel, J. Low pesticide rates may hasten the evolution of resistance by increasing mutation frequencies. Pest Manage. Sci. 67, 253–257 (2011).
    CAS  Article  Google Scholar 

    4.
    Dominguez-Valenzuela, J. A. et al. First confirmation and characterization of target and non-target site resistance to glyphosate in Palmer amaranth (Amaranthus palmeri) from Mexico. Plant Physiol. Biochem. 115, 212–218 (2017).
    CAS  PubMed  Article  Google Scholar 

    5.
    Gaines, T. A. et al. Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc. Natl. Acad. Sci. 107, 1029–1034 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    6.
    Kaundun, S. S. et al. Evolution of target-site resistance to glyphosate in an Amaranthus palmeri population from Argentina and its expression at different plant growth temperatures. Plants 8, 512 (2019).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    7.
    Lacoste, M. & Powles, S. Beyond modelling: considering user-centred and post-development aspects to ensure the success of a decision support system. Comput. Electron. Agric. 121, 260–268 (2016).
    Article  Google Scholar 

    8.
    Culpepper, A., Whitaker, J., MacRae, A. & York, A. Distribution of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Georgia and North Carolina during 2005 and 2006. J. Cotton Sci. 12, 306–310 (2008).
    Google Scholar 

    9.
    Patzoldt, W. L., Tranel, P. J. & Hager, A. G. A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Sci. 53, 30–36 (2005).
    CAS  Article  Google Scholar 

    10.
    Kaundun, S., Hutchings, S. J., Dale, R., Bailly, G. & Glanfield, P. Syngenta ‘RISQ’ test: a novel in-season method for detecting resistance to post-emergence ACCase and ALS inhibitor herbicides in grass weeds. Weed Res. 51, 284–293 (2011).
    Article  Google Scholar 

    11.
    Koger, C. H. et al. Assessment of two nondestructive assays for detecting glyphosate resistance in horseweed (Conyza canadensis). Weed Sci. 53, 559–566 (2005).
    CAS  Article  Google Scholar 

    12.
    Norsworthy, J. K., Scott, R. C., Smith, K. L. & Oliver, L. R. Response of Northeastern Arkansas Palmer amaranth (Amaranthus palmeri) accessions to glyphosate. Weed Technol. 22, 408–413 (2008).
    CAS  Article  Google Scholar 

    13.
    Mithila, J., Hall, J. C., Johnson, W. G., Kelley, K. B. & Riechers, D. E. Evolution of resistance to auxinic herbicides: historical perspectives, mechanisms of resistance, and implications for broadleaf weed management in agronomic crops. Weed Sci. 59, 445–457 (2011).
    CAS  Article  Google Scholar 

    14.
    Spaunhorst, D. J. Utilization of dicamba for the control of glyphosate-resistant giant ragweed (Ambrosia trifida L.) and waterhemp (Amaranthus rudis Sauer.) Masters thesis, University of Missouri-Columbia, (2013).

    15.
    Steckel, L. E., Craig, C. C. & Hayes, R. M. Glyphosate-resistant horseweed (Conyza canadensis) control with glufosinate prior to planting no-till cotton (Gossypium hirsutum). Weed Technol. 20, 1047–1051 (2006).
    CAS  Article  Google Scholar 

    16.
    Lindsay, K. et al. PAM: decision support for long-term Palmer amaranth (Amaranthus palmeri) control. Weed Technol. 31, 915–927 (2017).
    Article  Google Scholar 

    17.
    Neve, P., Norsworthy, J. K., Smith, K. L. & Zelaya, I. A. Modelling evolution and management of glyphosate resistance in Amaranthus palmeri. Weed Res. 51, 99–112 (2011).
    Article  Google Scholar 

    18.
    Mohseni-Moghadam, M., Schroeder, J. & Ashigh, J. Mechanism of resistance and inheritance in glyphosate resistant Palmer amaranth (Amaranthus palmeri) populations from New Mexico, USA. Weed Sci. 61, 517–525 (2013).
    CAS  Article  Google Scholar 

    19.
    Singh, S., Singh, V., Lawton-Rauh, A., Bagavathiannan, M. V. & Roma-Burgos, N. EPSPS gene amplification primarily confers glyphosate resistance among Arkansas Palmer amaranth (Amaranthus palmeri) populations. Weed Sci. 66, 293–300 (2018).
    Article  Google Scholar 

    20.
    Beres, Z. T. et al. Target-site EPSPS Pro-106-Ser mutation in Conyza canadensis biotypes with extreme resistance to glyphosate in Ohio and Iowa, USA. Sci. Rep. 10, 7577. https://doi.org/10.1038/s41598-020-64458-7 (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    21.
    Palma-Bautista, C. et al. Reduced absorption and impaired translocation endows glyphosate resistance in Amaranthus palmeri harvested in glyphosate-resistant soybean from Argentina. J. Agric. Food Chem. 67, 1052–1060 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Brunharo, C. A. D. C. G., Morran, S., Martin, K., Moretti, M. L. & Hanson, B. D. EPSPS duplication and mutation involved in glyphosate resistance in the allotetraploid weed species Poa annua L.. Pest Manage. Sci. 75, 1663–1670. https://doi.org/10.1002/ps.5284 (2019).
    CAS  Article  Google Scholar 

    23.
    Chen, J. et al. Glyphosate resistance in Eleusine indica: EPSPS overexpression and P106A mutation evolved in the same individuals. Pestic. Biochem. Physiol. 164, 203–208. https://doi.org/10.1016/j.pestbp.2020.01.014 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Kaundun, S. S. An aspartate to glycine change in the carboxyl transferase domain of acetyl CoA carboxylase and non-target-site mechanism (s) confer resistance to ACCase inhibitor herbicides in a Lolium multiflorum population. Pest Manage. Sci. 66, 1249–1256 (2010).
    CAS  Article  Google Scholar 

    25.
    Lu, H., Yu, Q., Han, H., Owen, M. J. & Powles, S. B. Metribuzin resistance in a wild radish (Raphanus raphanistrum) population via both psbA gene mutation and enhanced metabolism. J. Agric. Food Chem. 67, 1353–1359 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Perotti, V. E. et al. A novel triple amino acid substitution in the EPSPS found in a high-level glyphosate-resistant Amaranthus hybridus population from Argentina. Pest Manage. Sci. 75, 1242–1251 (2019).
    CAS  Article  Google Scholar 

    27.
    Heap, I. & Duke, S. O. Overview of glyphosate-resistant weeds worldwide. Pest Manage. Sci. 74, 1040–1049 (2018).
    CAS  Article  Google Scholar 

    28.
    Koo, D.-H. et al. Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri. Proc. Natl. Acad. Sci. 115, 3332–3337 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Gaines, T. A., Patterson, E. L. & Neve, P. Molecular mechanisms of adaptive evolution revealed by global selection for glyphosate resistance. New Phytol. 223, 1770–1775 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    30.
    Gressel, J. Perspective: present pesticide discovery paradigms promote the evolution of resistance—learn from nature and prioritize multi-target site inhibitor design. Pest Manage. Sci. 76, 421–425. https://doi.org/10.1002/ps.5649 (2020).
    CAS  Article  Google Scholar 

    31.
    Liu, C. et al. A generalised individual-based algorithm for modelling the evolution of quantitative herbicide resistance in arable weed populations. Pest Manage. Sci. 73, 462–474 (2017).
    CAS  Article  Google Scholar 

    32.
    Ashworth, M. B., Walsh, M. J., Flower, K. C., Vila-Aiub, M. M. & Powles, S. B. Directional selection for flowering time leads to adaptive evolution in Raphanus raphanistrum (Wild radish). Evol. Appl. 9, 619–629 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Bagavathiannan, M. V. & Davis, A. S. An ecological perspective on managing weeds during the great selection for herbicide resistance. Pest Manage. Sci. 74, 2277–2286 (2018).
    CAS  Article  Google Scholar 

    34.
    Booth, B. D. & Swanton, C. J. Assembly theory applied to weed communities. Weed Sci. 50, 2–13 (2002).
    CAS  Article  Google Scholar 

    35.
    Délye, C., Jasieniuk, M. & Le Corre, V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 29, 649–658 (2013).
    PubMed  Article  CAS  Google Scholar 

    36.
    Heap, I. The International Herbicide-Resistant Weed Database (accessed 29 May 2020). www.weedscience.org.

    37.
    Carroll, S. P., Hendry, A. P., Reznick, D. N. & Fox, C. W. Evolution on ecological time-scales. Funct. Ecol. 21, 387–393 (2007).
    Article  Google Scholar 

    38.
    Neve, P. Gene drive systems: do they have a place in agricultural weed management?. Pest Manage. Sci. 74, 2671–2679 (2018).
    CAS  Article  Google Scholar 

    39.
    Partel, V., Charan Kakarla, S. & Ampatzidis, Y. Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Comput. Electron. Agric. 157, 339–350 (2019).
    Article  Google Scholar 

    40.
    Singh, V. et al. Chapter three—unmanned aircraft systems for precision weed detection and management: prospects and challenges. In Advances in Agronomy (ed. Sparks, D. L.) 93–134 (Academic Press, Cambridge, 2020).
    Google Scholar 

    41.
    Walsh, M. J. et al. Opportunities and challenges for harvest weed seed control in global cropping systems. Pest Manage. Sci. 74, 2235–2245 (2018).
    CAS  Article  Google Scholar 

    42.
    Daszak, P. et al. Interdisciplinary approaches to understanding disease emergence: the past, present, and future drivers of Nipah virus emergence. Proc. Natl. Acad. Sci. 110, 3681–3688 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Phillipson, J. & Symes, D. Science for sustainable fisheries management: an interdisciplinary approach. Fish. Res. 139, 61–64 (2013).
    Article  Google Scholar 

    44.
    Shaman, J., Solomon, S., Colwell, R. R. & Field, C. B. Fostering advances in interdisciplinary climate science. Proc. Natl. Acad. Sci. 110, 3653–3656 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Storch, I. et al. Evaluating the effectiveness of retention forestry to enhance biodiversity in production forests of Central Europe using an interdisciplinary, multi-scale approach. Ecol. Evol. 10, 1489–1509 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    46.
    Totsche, K. U. et al. Biogeochemical interfaces in soil: the interdisciplinary challenge for soil science. J. Plant Nutr. Soil Sci. 173, 88–99 (2010).
    CAS  Article  Google Scholar 

    47.
    Grimm, V. et al. CREAM: a European project on mechanistic effect models for ecological risk assessment of chemicals. Environ. Sci. Pollut. Res. 16, 614–617 (2009).
    Article  Google Scholar 

    48.
    Cousens, R. D. A question of logic: experiments cannot prove lack of an herbicide-resistance fitness penalty. Weed Sci. 68, 197–198. https://doi.org/10.1017/wsc.2020.24 (2020).
    Article  Google Scholar 

    49.
    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).
    PubMed  Article  Google Scholar 

    50.
    Wilensky, U. NetLogo. (accessed 20 May 2020). http://ccl.northwestern.edu/netlogo/ (1999).

    51.
    Patzoldt, W. L., Hager, A. G., McCormick, J. S. & Tranel, P. J. A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. Proc. Natl. Acad. Sci. U.S.A. 103, 12329–12334 (2006).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Rangani, G. et al. A novel single-site mutation in the catalytic domain of protoporphyrinogen oxidase IX (PPO) confers resistance to PPO-inhibiting herbicides. Front. Plant Sci. 10, 568. https://doi.org/10.3389/fpls.2019.00568 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    53.
    Salas, R. A. et al. Resistance to PPO-inhibiting herbicide in Palmer amaranth from Arkansas. Pest Manage. Sci. 72, 864–869 (2016).
    CAS  Article  Google Scholar  More

  • in

    Genetic origins and diversity of bushpigs from Madagascar (Potamochoerus larvatus, family Suidae)

    1.
    Hansford, J. et al. Early holocene human presence in Madagascar evidenced by exploitation of avian megafauna. Sci. Adv. 4, 1–7 (2018).
    Article  Google Scholar 
    2.
    Douglass, K. et al. A critical review of radiocarbon dates clarifies the human settlement of Madagascar. Quat. Sci. Rev. 221, 105878 (2019).
    Article  Google Scholar 

    3.
    Pierron, D. et al. Genomic landscape of human diversity across Madagascar. Proc. Natl. Acad. Sci. USA 114, E6498–E6506 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Anderson, A. et al. New evidence of megafaunal bone damage indicates late colonization of Madagascar. PLoS ONE 13, 1–14 (2018).
    Google Scholar 

    5.
    Blench, R. New palaeozoogeographical evidence for the settlement of Madagascar. Azania Archaeol. Res. Afr. 42, 69–82 (2007).
    Google Scholar 

    6.
    Beaujard, P. The first migrants to Madagascar and their introduction of plants: Linguistic and ethnological evidence. Azania 46, 169–189 (2011).
    Article  Google Scholar 

    7.
    Rakotozafy, L. M. A. & Goodman, S. M. Contribution à l’étude zooarchéologique de la région du Sud-ouest et extrême Sud de Madagascar sur la base des collections de l’ICMAA de l’Université d’Antananarivo. Taloha 14–15 (2005).

    8.
    Boivin, N., Crowther, A., Helm, R. & Fuller, D. Q. East Africa and Madagascar in the Indian Ocean world. J. World Prehistory 26, 213–281 (2013).
    Article  Google Scholar 

    9.
    Wright, H. T. et al. Early Seafarers of the Comoro Islands: The Dembeni Phase of the IXth-Xth Centuries AD. Azania Archaeol. Res. Africa 19, 13–59 (1984).
    Google Scholar 

    10.
    Krause, D. W. et al. Late cretaceous terrestrial vertebrates from Madagascar: Implications for Latin American biogeography 1. Ann. Missouri Bot. Gard. 93, 178–208 (2006).
    Article  Google Scholar 

    11.
    Roger, F., Ratovonjato, J., Vola, P. & Uilenberg, G. Ornithodoros porcinus ticks, bushpigs, and African swine fever in Madagascar. Exp. Appl. Acarol. 25, 263–269 (2001).
    CAS  PubMed  Article  Google Scholar 

    12.
    Sommer, S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front. Zool. 2, 16 (2005).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Venter, J., Ehlers-Smith, Y. & Seydack, A. Potamochoerus larvatus—Bushpig. 1–5 (The Red List of Mammals of South Africa, Swaziland and Lesotho, 2016).

    14.
    Andrianjakarivelo, V. Artiodactyla: Potamochoerus larvatus, Bush Pig. In The Natural History of Madagascar (eds Goodman, S. M. & Benstead, J. B.) 1365–1367 (The University of Chicago Press, Chicago, 2003).

    15.
    Grubb, P. The Afrotropical Suids (Phacochoerus, Hylochoerus, and Potamochoerus). In Pigs, Peccaries, and Hippos: Status Survey and Conservation Action Plan (ed. William, L. R. O.) 66–101 (International Union for the Conservation of Nature, Gland, 1993).
    Google Scholar 

    16.
    Forsyth, C. I. 5. On the Species of Potamochœrus, the Bush-Pigs of the Ethiopian Region. Proc. Zool. Soc. London 65, 359–370 (2009).
    Article  Google Scholar 

    17.
    Vercammen, P., Seydack, A. & Oliver, W. The Bush Pigs (Potamochoerus larvatus and P. porcus). In Pigs, Peccaries, and Hippos: Status Survey and Conservation Action Plan (ed. William, L. R. O.) 93–101 (IUCN SSC Pigs and Peccaries Specialist Group and IUCN SSC Hippo Specialist Group, Gland, 1993).
    Google Scholar 

    18.
    Funaioli, U. & Simonetta, A. M. The mammalian fauna of the somali republic: Status and conservation problems. Monit. Zool. Ital. Suppl. 1, 285–347 (1966).
    Google Scholar 

    19.
    Stuart, C. & Stuart, T. Chris and Tilde Stuart’s field guide to the mammals of southern Africa (R. Curtis Books Pub., Sanibel Island, 1988).
    Google Scholar 

    20.
    Blench, R. M. Archaeology, Language, and the African Past (Altamira Press, Lanham, 2006).
    Google Scholar 

    21.
    Alpers, E. A. Littoral society in Mozambique. In Cross Currents and Community Networks: The History of the Indian Ocean World (eds Ray, H. P. & Alpers, E. A.) 123–141 (Oxford University Press, Oxford, 2007).
    Google Scholar 

    22.
    Oura, C. A. L., Powell, P. P. & Parkhouse, R. M. E. African swine fever: A disease characterized by apoptosis. J. Gen. Virol. 79, 1427–1438 (1998).
    CAS  PubMed  Article  Google Scholar 

    23.
    Ravaomanana, J. et al. Assessment of interactions between African swine fever virus, bushpigs (Potamochoerus larvatus), Ornithodoros ticks and domestic pigs in north-western Madagascar. Transbound. Emerg. Dis. 58, 247–254 (2011).
    CAS  PubMed  Article  Google Scholar 

    24.
    Cecchi, G. & Mattioli, R. C. Global geospatial datasets for African trypanosomiasis management: a review. Progr. Afr. Trypanos. Tech. Sci. Ser. 9, 1–39 (2009).
    Google Scholar 

    25.
    Munangandu, H. M., Siamudaala, V., Munyeme, M. & Nalubamba, K. S. A review of ecological factors associated with the epidemiology of wildlife Trypanosomiasis in the Luangwa and Zambezi Valley Ecosystems of Zambia. Interdiscip. Perspect. Infect. Dis. 2012, 1–13 (2012).
    Article  Google Scholar 

    26.
    Gibbs, E. P. The public health risks associated with wild and feral swine. Rev. Sci. Tech. 16, 594–598 (1997).
    CAS  PubMed  Article  Google Scholar 

    27.
    Patton, D. & Gu, H. China has culled more than 900,000 pigs due to African swine fever. Reuters (2018).

    28.
    Ploshnitsa, A. I., Goltsman, M. E., Macdonald, D. W., Kennedy, L. J. & Sommer, S. Impact of historical founder effects and a recent bottleneck on MHC variability in Commander Arctic foxes (Vulpes lagopus). Ecol. Evol. 2, 165–180 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    Klein, J. Origin of major histocompatibility complex polymorphism: The trans-species hypothesis. Hum. Immunol. 19, 155–162 (1987).
    CAS  PubMed  Article  Google Scholar 

    30.
    Ho, C. S. et al. Nomenclature for factors of the SLA system, update 2008. Tissue Antigens 73, 307–315 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Renard, C. et al. The genomic sequence and analysis of the swine major histocompatibility complex. Genomics 88, 96–110 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Ka, S. et al. HLAscan: Genotyping of the HLA region using next-generation sequencing data. BMC Bioinform. 18, 1–11 (2017).
    Article  CAS  Google Scholar 

    33.
    Fan, W. et al. Shared class II MHC polymorphisms between humans and chimpanzees. Hum. Immunol. 26, 107–121 (1989).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Piertney, S. B. & Oliver, M. K. The evolutionary ecology of the major histocompatibility complex. Heredity (Edinb). 96, 7–21 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Flajnik, M. F., Canel, C., Kramer, J. & Kasahara, M. Which came first, MHC class I or class II?. Immunogenetics 33, 295–300 (1991).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Borghans, J. A. M., Beltman, J. B. & De Boer, R. J. MHC polymorphism under host-pathogen coevolution. Immunogenetics 55, 732–739 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Spurgin, L. G. & Richardson, D. S. How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc. Biol. Sci. 277, 979–988 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Hughes, A. L. & Nei, M. Nucleotide substitution at major histocompatibility complex class II loci: Evidence for overdominant selection. Proc. Natl. Acad. Sci. 86, 958–962 (1989).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Hughes, A. L. & Nei, M. Evolution of the major histocompatibility complex: Independent origin of nonclassical class I genes in different groups of mammals. Mol. Biol. Evol. 6, 559–579 (1989).
    CAS  PubMed  Google Scholar 

    40.
    Penn, D. J. & Ilmonen, P. Major histocompatibility complex (MHC). in Encyclopedia of Life Sciences 1–7 (John Wiley & Sons, Ltd, 2001). https://doi.org/10.1038/npg.els.0000919.

    41.
    Bonneaud, C., Pérez-Tris, J., Federici, P., Chastel, O. & Sorci, G. Major histocompatibility alleles associated with local resistance to malaria in a passerine. Evolution (N. Y.). 60, 383 (2006).
    CAS  Google Scholar 

    42.
    Schatz, G. E. Endemism in the Malagasy flora. In Diversity and Endemism in Madagascar (eds Lourenço, W. R. & Goodman, S. M.) 1–10 (2000).

    43.
    Lowden, S. et al. Application of Sus scrofa microsatellite markers to wild suiformes. Conserv. Genet. 3, 347–350 (2002).
    CAS  Article  Google Scholar 

    44.
    Gongora, J., Morales, S., Bernal, J. E. & Moran, C. Phylogenetic divisions among Collared peccaries (Pecari tajacu) detected using mitochondrial and nuclear sequences. Mol. Phylogenet. Evol. 41, 1–11 (2006).
    CAS  PubMed  Article  Google Scholar 

    45.
    Lee, C. et al. Inferring the evolution of the major histocompatibility complex of wild pigs and peccaries using hybridisation DNA capture-based sequencing. Immunogenetics 70, 401–417 (2018).
    CAS  PubMed  Article  Google Scholar 

    46.
    Kim, K. I. et al. Phylogenetic relationships of Asian and European pig breeds determined by mitochondrial DNA D-loop sequence polymorphism. Anim. Genet. 33, 19–25 (2002).
    CAS  PubMed  Article  Google Scholar 

    47.
    Irwin, D. M., Kocher, T. D. & Wilson, A. C. Evolution of the Cytochrome b gene of mammals. J. Mol. Evol. 32, 128–144 (1991).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Giuffra, E. et al. The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154, 1785–1791 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Ishiguro, N., Naya, Y., Horiuchi, M. & Shinagawa, M. A Genetic method to distinguish crossbred inobuta from Japanese Wild Boars. Zool. Sci. 19, 1313–1319 (2002).
    CAS  Article  Google Scholar 

    50.
    Fajardo, V. et al. Differentiation of European wild boar (Sus scrofa scrofa) and domestic swine (Sus scrofa domestica) meats by PCR analysis targeting the mitochondrial D-loop and the nuclear melanocortin receptor 1 (MC1R) genes. Meat Sci. 78, 314–322 (2008).
    CAS  PubMed  Article  Google Scholar 

    51.
    Firestone, K. B. Phylogenetic relationships among quolls revisited: The mtDNA control region as a useful tool. J. Mamm. Evol. 7, 1–22 (2000).
    Article  Google Scholar 

    52.
    Randi, E. et al. Evolution of the mitochondrial DNA control region and cytochrome b genes and the inference of phylogenetic relationships in the avian genus Lophura (Galliformes). Mol. Phylogenet. Evol. 19, 187–201 (2001).
    CAS  PubMed  Article  Google Scholar 

    53.
    Jiang, J. et al. Mitochondrial genome and nuclear markers provide new insight into the evolutionary history of macaques. PLoS ONE 11, 1–19 (2016).
    Google Scholar 

    54.
    Chen, L. et al. Intraspecific mitochondrial genome comparison identified CYTB as a high-resolution population marker in a new pest Athetis lepigone. Genomics 111, 744–752 (2019).
    CAS  PubMed  Article  Google Scholar 

    55.
    Gongora, J. et al. Phylogenetic relationships of Australian and New Zealand feral pigs assessed by mitochondrial control region sequence and nuclear GPIP genotype. Mol. Phylogenet. Evol. 33, 339–348 (2004).
    CAS  PubMed  Article  Google Scholar 

    56.
    Wang, J. et al. Phylogenetic relationships of pig breeds from Shandong province of China and their influence by modern commercial breeds by analysis of mitochondrial DNA sequences. Ital. J. Anim. Sci. 9, 248–254 (2010).

    57.
    García, G., Vergara, J. & Lombardi, R. Genetic characterization and phylogeography of the wild boar Sus scrofa introduced into Uruguay. Genet. Mol. Biol. 34, 329–337 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Lopez, J., Hurwood, D., Dryden, B. & Fuller, S. Feral pig populations are structured at fine spatial scales in tropical Queensland, Australia. PLoS One 9, e91657 (2014).

    59.
    Dun, G., Li, X., Cao, H., Zhou, R. & Li, L. Variations of melanocortin receptor 1 (MC1R) gene in three pig breeds. J. Genet. Genomics 34, 777–782 (2007).
    CAS  PubMed  Article  Google Scholar 

    60.
    Chang, A. C. Y. et al. Phenotype-based identification of host genes required for replication of African swine fever virus. J. Virol. 80, 8705–8717 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Bitzer, A., Basler, M. & Groettrup, M. Chaperone BAG6 is dispensable for MHC class I antigen processing and presentation. Mol. Immunol. 69, 99–105 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Stam, M. et al. Centromeric/pericentromeric junction within the MHC locus on chromosome 7 in pig. In XXXI Conference of the International Society for Animal Genetics, Amsterdam, Netherlands (2008).

    63.
    Groenen, M. A. M. et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491, 393–398 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Stucky, B. J. SeqTrace: A graphical tool for rapidly processing DNA sequencing chromatograms. J. Biomol. Tech. 23, 90–93 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).
    CAS  PubMed  Article  Google Scholar 

    66.
    Watanobe, T. et al. Genetic relationship and distribution of the Japanese wild boar (Sus scrofa leucomystax) and Ryukyu wild boar (Sus scrofa riukiuanus) analysed by mitochondrial DNA. Mol. Ecol. 8, 1509–1512 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Gongora, J. et al. Rethinking the evolution of extant sub-Saharan African suids (Suidae, Artiodactyla). Zool. Scr. 40, 327–335 (2011).
    Article  Google Scholar 

    68.
    Larson, G. et al. Phylogeny and ancient DNA of Sus provides insights into neolithic expansion in Island Southeast Asia and Oceania. Proc. Natl. Acad. Sci. 104, 4834–4839 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    69.
    Mona, S., Randi, E. & Tommaseo-Ponzetta, M. Evolutionary history of the genus Sus inferred from Cytochrome b sequences. Mol. Phylogenet. Evol. 45, 757–762 (2007).
    CAS  PubMed  Article  Google Scholar 

    70.
    Niebert, M. & Tönjes, R. R. Evolutionary spread and recombination of porcine endogenous retroviruses in the suiformes. J. Virol. 79, 649–654 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    71.
    Gongora, J. & Moran, C. Nuclear and mitochondrial evolutionary analyses of Collared, White-lipped, and Chacoan peccaries (Tayassuidae). Mol. Phylogenet. Evol. 34, 181–189 (2005).
    CAS  PubMed  Article  Google Scholar 

    72.
    Hassanin, A. et al. Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. C. R. Biol. 335, 32–50 (2012).
    PubMed  Article  Google Scholar 

    73.
    Wu, G. S. et al. Population phylogenomic analysis of mitochondrial DNA in wild boars and domestic pigs revealed multiple domestication events in East Asia. Genome Biol. 8, R245 (2007).

    74.
    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180 (2011).
    Article  Google Scholar 

    76.
    Gadagkar, S. R., Rosenberg, M. S. & Kumar, S. Inferring species phylogenies from multiple genes: Concatenated sequence tree versus consensus gene tree. J. Exp. Zool. B. Mol. Dev. Evol. 304, 64–74 (2005).
    PubMed  Article  CAS  Google Scholar 

    77.
    Tonini, J., Moore, A., Stern, D., Shcheglovitova, M. & Ortí, G. Concatenation and species tree methods exhibit Statistically indistinguishable accuracy under a range of simulated conditions. PLoS Curr. 7, 1–15 (2015).
    Google Scholar 

    78.
    Arcila, D., Petry, P. & Ortí, G. Phylogenetic relationships of the family Tarumaniidae (Characiformes) based on nuclear and mitochondrial data. Neotrop. Ichthyol. 16, 16–19 (2018).
    Article  Google Scholar 

    79.
    Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).
    MathSciNet  MATH  Article  Google Scholar 

    81.
    Keane, T. M., Creevey, C. J., Pentony, M. M., Naughton, T. J. & Mclnerney, J. O. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol. Biol. 6, 29 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    82.
    Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
    Article  Google Scholar 

    83.
    Weaver, S. et al. Datamonkey 2.0: A modern web application for characterizing selective and other evolutionary processes. Mol. Biol. Evol. 35, 773–777 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    84.
    Nei, M. & Gojobori, T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3, 418–426 (1986).
    CAS  PubMed  PubMed Central  Google Scholar 

    85.
    Murrell, B. et al. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 8, e1002764 (2012).

    86.
    Pond, S. L. K. & Frost, S. D. W. Not so different after all: A comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 22, 1208–1222 (2005).
    CAS  Article  Google Scholar 

    87.
    Awadi, A. et al. Positive selection and climatic effects on MHC class II gene diversity in hares (Lepus capensis) from a steep ecological gradient. Sci. Rep. 8, 11514 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    88.
    Garrigan, D. & Hedrick, P. W. Perspective: Detecting adaptive molecular polymorphism: Lessons from the MHC. Evolution 57, 1707–1722 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    89.
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    90.
    Tamura, K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol. Biol. Evol. 9, 678–687 (1992).
    CAS  PubMed  Google Scholar 

    91.
    Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).
    ADS  CAS  PubMed  Article  Google Scholar 

    92.
    Jukes, T. H. & Cantor, C. R. Evolution of protein molecules. In Mammalian Protein Metabolism, 21–132 (Elsevier, 1969). https://doi.org/10.1016/B978-1-4832-3211-9.50009-7.

    93.
    Bouckaert, R. et al. BEAST 2: A software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    94.
    Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    95.
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2016).
    Google Scholar 

    96.
    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mss075 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    97.
    Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1006650 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    98.
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    99.
    Rambaut, A. FigTree v1.4.3. Molecular evolution, phylogenetics and epidemiology (2016).

    100.
    Radimilahy, C. Mahilaka: An Archaeological Investigation of an Early Town in Northwestern Madagascar (PhD Dissertation) (Acta Universitatis Upsaliensis, Uppsala, 1998).
    Google Scholar 

    101.
    Walsh, M. T. Island subsistence: Hunting, trapping and the translocation of wildlife in the Western Indian Ocean. Azania Archaeol. Res. Africa 42, 83–113 (2007).
    Google Scholar 

    102.
    Li, J. et al. Artificial selection of the melanocortin receptor 1 gene in Chinese domestic pigs during domestication. Heredity (Edinb). 105, 274–281 (2010).
    CAS  PubMed  Article  Google Scholar 

    103.
    Kijas, J. M. H. et al. Melanocortin receptor 1 (MC1R) mutations and coat color in pigs. Genetics 150, 1177–1185 (1998).

    104.
    Arauco-Shapiro, G., Schumacher, K. I., Boersma, D. & Bouzat, J. L. The role of demographic history and selection in shaping genetic diversity of the Galápagos penguin (Spheniscus mendiculus). PLoS ONE 15, 1–20 (2020).
    Article  CAS  Google Scholar 

    105.
    Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    106.
    Froeschke, G. & Sommer, S. MHC Class II DRB variability and parasite load in the striped mouse (Rhabdomys pumilio) in the Southern Kalahari. Mol. Biol. Evol. 22, 1254–1259 (2005).
    CAS  PubMed  Article  Google Scholar 

    107.
    Froeschke, G. & Sommer, S. Insights into the complex associations between MHC Class II DRB polymorphism and multiple gastrointestinal parasite infestations in the striped mouse. PLoS ONE 7, e31820 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    108.
    Yanagida, T. et al. Genetics of the pig tapeworm in Madagascar reveal a history of human dispersal and colonization. PLoS One 9, e109002 (2014).

    109.
    Braae, U. C. et al. Taenia solium taeniosis/cysticercosis and the co-distribution with schistosomiasis in Africa. Parasites Vectors 8, 1–14 (2015).
    Article  Google Scholar 

    110.
    Macpherson, C. N. L. & Craig, P. S. Trichinella in Africa and the nelsoni affair. In Parasitic Helminths and Zoonoses in Africa (eds Macpherson, C. & Craig, P.) 83–100 (Springer, Netherlands, 1991). https://doi.org/10.1007/978-94-011-3054-7_4.

    111.
    Sarovich, D. S. et al. Phylogenomic analysis reveals an Asian origin for African Burkholderia pseudomallei and further supports Melioidosis Endemicity in Africa. mSphere 1, 1–12 (2016).

    112.
    Kaesler, E. et al. Shared evolutionary origin of major histocompatibility complex polymorphism in sympatric lemurs. Mol. Ecol. 26, 5629–5645 (2017).
    CAS  PubMed  Article  Google Scholar 

    113.
    Kloch, A., Babik, W., Bajer, A., Siński, E. & Radwan, J. Effects of an MHC-DRB genotype and allele number on the load of gut parasites in the bank vole Myodes glareolus. Mol. Ecol. 19(Suppl 1), 255–265 (2010).
    PubMed  Article  Google Scholar 

    114.
    Kusza, S. et al. Transcription specificity of the class Ib genes SLA-6, SLA-7 and SLA-8 of the swine major histocompatibility complex and comparison with class Ia genes. Anim. Genet. 42, 510–520 (2011).
    CAS  PubMed  Article  Google Scholar 

    115.
    Chardon, P. et al. Sequence of the swine major histocompatibility complex region containing all non-classical class I genes. Tissue Antigens 57, 55–65 (2001).
    CAS  PubMed  Article  Google Scholar 

    116.
    Le Gal, F. A. et al. HLA-G-mediated inhibition of antigen-specific cytotoxic T lymphocytes. Int. Immunol. 11, 1351–1356 (1999).
    PubMed  Article  Google Scholar 

    117.
    Fournel, S. et al. Cutting edge: Soluble HLA-G1 triggers CD95/CD95 ligand-mediated apoptosis in activated CD8+ cells by interacting with CD8. J. Immunol. 164, 6100–6104 (2000).
    CAS  PubMed  Article  Google Scholar 

    118.
    Hunt, J. S., Langat, D. K., McIntire, R. H. & Morales, P. J. The role of HLA-G in human pregnancy. Reprod. Biol. Endocrinol. 4, 1–8 (2006).
    Article  CAS  Google Scholar 

    119.
    Minami, R. et al. BAG-6 is essential for selective elimination of defective proteasomal substrates. J. Cell Biol. 190, 637–650 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    120.
    Jori, F. & Bastos, A. D. S. Role of wild suids in the epidemiology of African swine fever. EcoHealth 6, 296–310 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    121.
    Brown, V. R. & Bevins, S. N. A Review of African Swine fever and the potential for introduction into the United States and the possibility of subsequent establishment in feral swine and native ticks. Front. Vet. Sci. 5, 1–18 (2018).
    ADS  Article  Google Scholar 

    122.
    Fowler, M. E. Husbandry and diseases of captive wild swine and peccaries. Rev. Sci. Tech. 15, 141–154 (1996).
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    A green wave of saltmarsh productivity predicts the timing of the annual cycle in a long-distance migratory shorebird

    1.
    Helm, B. et al. Annual rhythms that underlie phenology: Biological time-keeping meets environmental change. Proc. R. Soc. B 280, 20130016 (2013).
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    McNamara, J. M., Barta, Z., Klaassen, M. & Bauer, S. Cues and the optimal timing of activities under environmental changes. Ecol. Lett. 14, 1183–1190 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    3.
    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Diez, J. M. et al. Forecasting phenology: From species variability to community patterns. Ecol. Lett. 15, 545–553 (2012).
    PubMed  Article  Google Scholar 

    5.
    Post, E., Pedersen, C., Wilmers, C. C. & Forchhammer, M. C. Warming, plant phenology and the spatial dimension of trophic mismatch for large herbivores. Proc. R. Soc. Lond. B Biol. Sci. 275, 2005–2013 (2008).
    Google Scholar 

    6.
    Primack, R. B. et al. Spatial and interspecific variability in phenological responses to warming temperatures. Biol. Conserv. 142, 2569–2577 (2009).
    Article  Google Scholar 

    7.
    Fryxell, J. M. & Sinclair, A. R. E. Causes and consequences of migration by large herbivores. Trends Ecol. Evol. 3, 237–241 (1988).
    CAS  PubMed  Article  Google Scholar 

    8.
    Levey, D. J. & Stiles, F. G. Evolutionary precursors of long-distance migration: Resource availability and movement patterns in neotropical landbirds. Am. Nat. 140, 447–476 (1992).
    Article  Google Scholar 

    9.
    Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: Evolution and determinants. Oikos 103, 247–260 (2003).
    Article  Google Scholar 

    10.
    Dawson, A. Control of the annual cycle in birds: Endocrine constraints and plasticity in response to ecological variability. Philos. Trans. R. Soc. B Biol. Sci. 363, 1621–1633 (2008).
    Article  Google Scholar 

    11.
    Buehler, D. & Piersma, T. Travelling on a budget: Predictions and ecological evidence for bottlenecks in the annual cycle of long-distance migrants. Philos. Trans. R. Soc. B-Biol. Sci. 363, 247–266 (2008).
    Article  Google Scholar 

    12.
    Kokko, H. Competition for early arrival in migratory birds. J. Anim. Ecol. 68, 940–950 (1999).
    Article  Google Scholar 

    13.
    Moller, A. P. Heritability of arrival date in a migratory bird. Proc. R. Soc. Lond. B Biol. Sci. 268, 203–206 (2001).
    CAS  Article  Google Scholar 

    14.
    Saino, N. et al. Ecological conditions during winter predict arrival date at the breeding quarters in a trans-Saharan migratory bird. Ecol. Lett. 7, 21–25 (2004).
    Article  Google Scholar 

    15.
    Studds, C. E. & Marra, P. P. Rainfall-induced changes in food availability modify the spring departure programme of a migratory bird. Proc. R. Soc. B Biol. Sci. 278, 3437–3443 (2011).
    Article  Google Scholar 

    16.
    Conklin, J. R., Battley, P. F., Potter, M. A. & Fox, J. W. Breeding latitude drives individual schedules in a trans-hemispheric migrant bird. Nat. Commun. 1, 67 (2010).
    ADS  PubMed  Article  CAS  Google Scholar 

    17.
    Holmes, R. T. Latitudinal differences in the breeding and molt schedules of Alaskan Red-backed Sandpipers (Calidris alpina). Condor 73, 93–99 (1971).
    Article  Google Scholar 

    18.
    Briedis, M., Hahn, S. & Adamík, P. Cold spell en route delays spring arrival and decreases apparent survival in a long-distance migratory songbird. BMC Ecol. 17, 11 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Sandercock, B. K., Lank, D. B. & Cooke, F. Seasonal declines in the fecundity of arctic-breeding sandpipers: Different tactics in two species with an invariant clutch size. J. Avian Biol. 30, 460–468 (1999).
    Article  Google Scholar 

    20.
    Langin, K. M. & P. P. M. ,. Breeding latitude and timing of spring migration in songbirds crossing the Gulf of Mexico. J. Avian Biol. 40, 309–316 (2009).
    Article  Google Scholar 

    21.
    Lappalainen, J. & Tarkan, A. S. Latitudinal gradients in onset date, onset temperature and duration of spawning of roach. J. Fish Biol. 70, 441–450 (2007).
    Article  Google Scholar 

    22.
    Ben-David, M. Timing of reproduction in wild mink: The influence of spawning Pacific salmon. Can. J. Zool. 75, 376–382 (1997).
    Article  Google Scholar 

    23.
    Burr, Z. M. et al. Later at higher latitudes: Large-scale variability in seabird breeding timing and synchronicity. Ecosphere 7, e01283 (2016).
    Article  Google Scholar 

    24.
    Briedis, M. et al. Breeding latitude leads to different temporal but not spatial organization of the annual cycle in a long-distance migrant. J. Avian Biol. 47, 743–748 (2016).
    Article  Google Scholar 

    25.
    Lourenço, P. M. et al. Repeatable timing of northward departure, arrival and breeding in Black-tailed Godwits Limosa l. limosa, but no domino effects. J. Ornithol. 152, 1023–1032 (2011).
    Article  Google Scholar 

    26.
    Armstrong, J. B., Takimoto, G., Schindler, D. E., Hayes, M. M. & Kauffman, M. J. Resource waves: Phenological diversity enhances foraging opportunities for mobile consumers. Ecology 97, 1099–1112 (2016).
    PubMed  Article  Google Scholar 

    27.
    Renfrew, R. B. et al. Phenological matching across hemispheres in a long-distance migratory bird. Divers. Distrib. 19, 1008–1019 (2013).
    Article  Google Scholar 

    28.
    Visser, M. E., te Marvelde, L. & Lof, M. E. Adaptive phenological mismatches of birds and their food in a warming world. J. Ornithol. 153, 75–84 (2012).
    Article  Google Scholar 

    29.
    Bertness, M. D. & Ellison, A. M. Determinants of pattern in a New England salt marsh plant community. Ecol. Monogr. 57, 129–147 (1987).
    Article  Google Scholar 

    30.
    Hoekstra, J. M., Molnar, J. L., Jennings, M., Revenga, C. & Spalding, M. D. The Atlas of Global Conservation, Vol. 67 (University of California Press, California, 2010).
    Google Scholar 

    31.
    Kirwan, M. L., Guntenspergen, G. R. & Morris, J. T. Latitudinal trends in Spartina alterniflora productivity and the response of coastal marshes to global change. Glob. Change Biol. 15, 1982–1989 (2009).
    ADS  Article  Google Scholar 

    32.
    Lowther, P. E., Douglas, H. D. III. & Gratto-Trevor, C. L. Willet (Tringa semipalmata). Birds N. Am. Online https://doi.org/10.2173/bna.579 (2001).
    Article  Google Scholar 

    33.
    Tomkins, I. R. the summer schedule of the Eastern Willet in Georgia. Wilson Bull. 27, 291–296 (1955).
    Google Scholar 

    34.
    Howe, M. A. Social organization in a nesting population of eastern Willets (Catoptrophorus semipalmatus). Auk 99, 88–102 (1982).
    Article  Google Scholar 

    35.
    Gratto-Trevor, C. L. The North American Bander’s Manual for Banding Shorebirds (North Am. Band. Counc. Publ. Comm, Point Reyes CA, 2004).
    Google Scholar 

    36.
    Minton, C. et al. Initial results from light level geolocator trials on Ruddy Turnstone Arenaria interpres reveal unexpected migration route. Wader Study Group Bull. 117, 9–14 (2010).
    Google Scholar 

    37.
    Gosler, A. G. Birds in the hand. In Bird Ecology and Conservation: A Handbook of Techniques (eds Sutherland, W. J. et al.) 85–118 (Oxford University Press, Oxford, 2004).
    Google Scholar 

    38.
    Sumner, M. D., Wotherspoon, S. J. & Hindell, M. A. Bayesian estimation of animal movement from archival and satellite tags. PLoS ONE 4, e7324 (2009).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    39.
    R Core Team. R: A Language and Environment for Statistical Computing (The R Foundation, Vienna, 2020).
    Google Scholar 

    40.
    Lisovski, S. et al. Light-level geolocator analyses: A user’s guide. J. Anim. Ecol. 89, 221–236 (2020).
    PubMed  Article  Google Scholar 

    41.
    Lisovski, S., Bauer, S., Emmenegger, T. & Lisovski, M. S. Package ‘GeoLight’ (2012).

    42.
    Wotherspoon, S., Sumner, M. & Lisovski, S. TwGeos: Basic data processing for light-level geolocation archival tags. Version 00-1 (2016).

    43.
    Tonra, C. M. et al. Concentration of a widespread breeding population in a few critically important nonbreeding areas: Migratory connectivity in the Prothonotary Warbler. Condor 121, duz019 (2019).
    Article  Google Scholar 

    44.
    Porter, R. & Smith, P. A. Techniques to improve the accuracy of location estimation using light-level geolocation to track shorebirds. Wader Study Group Bull. 120, 147–158 (2014).
    Google Scholar 

    45.
    Battley, P. F. & Conklin, J. R. Geolocator wetness data accurately detect periods of migratory flight in two species of shorebird. Wader Study 124, 112–119 (2017).
    Article  Google Scholar 

    46.
    Burger, J. et al. Migration and over-wintering of Red Knots (Calidris canutus rufa) along the Atlantic Coast of the United States. Condor 114, 302–313 (2012).
    Article  Google Scholar 

    47.
    Cooper, N. W., Hallworth, M. T. & Marra, P. P. Light-level geolocation reveals wintering distribution, migration routes, and primary stopover locations of an endangered long-distance migratory songbird. J. Avian Biol. 48, 209–219 (2017).
    Article  Google Scholar 

    48.
    Lisovski, S. et al. Geolocation by light: Accuracy and precision affected by environmental factors. Methods Ecol. Evol. 3, 603–612 (2012).
    Article  Google Scholar 

    49.
    Burger, J., Niles, L. J., Porter, R. R. & Dey, A. D. Using geolocator data to reveal incubation periods and breeding biology in Red Knots Calidris canutus rufa. Wader Study Group Bull. 119, 26–36 (2012).
    Google Scholar 

    50.
    Bulla, M. et al. Unexpected diversity in socially synchronized rhythms of shorebirds. Nature 540, 109–113 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    51.
    Bates, D. et al. Package ‘lme4’. Version 1, 17 (2018).
    Google Scholar 

    52.
    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: Estimated marginal means, aka least-squares means. R Package Version 1, 3 (2018).
    Google Scholar 

    53.
    Sullivan, B. L. et al. eBird: A citizen-based bird observation network in the biological sciences. Biol. Conserv. 142, 2282–2292 (2009).
    Article  Google Scholar 

    54.
    Spano, D., Cesaraccio, C., Duce, P. & Snyder, R. L. Phenological stages of natural species and their use as climate indicators. Int. J. Biometeorol. 42, 124–133 (1999).
    ADS  Article  Google Scholar 

    55.
    Oregon State University Integrated Plant Protection Center. http://pnwpest.org/US/ (2015).

    56.
    Baskerville, G. L. & Emin, P. Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology 50, 514–517 (1969).
    Article  Google Scholar 

    57.
    van Wijk, R. E. et al. Individually tracked geese follow peaks of temperature acceleration during spring migration. Oikos 121, 655–664 (2012).
    Article  Google Scholar 

    58.
    Kölzsch, A. et al. Forecasting spring from afar? Timing of migration and predictability of phenology along different migration routes of an avian herbivore. J. Anim. Ecol. 84, 272–283 (2015).
    PubMed  Article  Google Scholar 

    59.
    Fitzjarrald, D. R., Acevedo, O. C. & Moore, K. E. Climatic consequences of leaf presence in the eastern United States. J. Clim. 14, 598–614 (2001).
    ADS  Article  Google Scholar 

    60.
    Burger, J. & Shisler, J. Nest-site selection of Willets in a New Jersey salt marsh. Wilson Bull. 90, 599–607 (1978).
    Google Scholar 

    61.
    Turner, R. E. Geographic Variations in Salt Marsh Macrophyte Production: A Review http://agris.fao.org/agris-search/search/display.do?f=2012/OV/OV201207875007875.xml;US19770198479 (1976).

    62.
    Pezeshki, S. R. & DeLaune, R. D. A comparative study of above-ground productivity of dominant U.S. Gulf Coast marsh species. J. Veg. Sci. 2, 331–338 (1991).
    Article  Google Scholar 

    63.
    Morris, J., Sundberg, K. & Hopkinson, C. Salt marsh primary production and its responses to relative sea level and nutrients in estuaries at plum Island, Massachusetts, and North Inlet, South Carolina, USA. Oceanography 26, 78–84 (2013).
    Article  Google Scholar 

    64.
    Dai, T. & Wiegert, R. G. Ramet population dynamics and net aerial primary productivity of Spartina alterniflora. Ecology 77, 276–288 (1996).
    Article  Google Scholar 

    65.
    Gallagher, J. L., Reimold, R. J., Linthurst, R. A. & Pfeiffer, W. J. Aerial production, mortality, and mineral accumulation-export dynamics in Spartina alterniflora and Juncus roemerianus plant stands in a Georgia Salt Marsh. Ecology 61, 303–312 (1980).
    Article  Google Scholar 

    66.
    Stroud, L. M. & Cooper, A. W. Color-Infrared Aerial Photographic Interpretation and Net Primary Productivity of a Regularly-Flooded North Carolina Salt Marsh http://repository.lib.ncsu.edu/dr/handle/1840.4/1681 (1969).

    67.
    Reidenbaugh, T. G. Productivity of cordgrass, Spartina alterniflora, estimated from live standing crops, mortality, and leaf shedding in a Virginia salt marsh. Estuaries 6, 57–65 (1983).
    Article  Google Scholar 

    68.
    Squiers, E. R. & Good, R. E. Seasonal changes in the productivity, caloric content, and chemical composition of a population of salt-marsh cord-grass (Spartina alterniflora). Chesap. Sci. 15, 63–71 (1974).
    Article  Google Scholar 

    69.
    Morris, J. & Sundberg, K. Aboveground biomass data from control sites in a Spartina alterniflora-dominated salt marsh at Law’s Point, Rowley River, Plum Island Ecosystem, MA (2012).

    70.
    Cranford, P. J., Gordon, D. C. & Jarvis, C. M. Measurement of cordgrass, Spartina alterniflora, production in a macrotidal estuary, Bay of Fundy. Estuaries 12, 27–34 (1989).
    Article  Google Scholar 

    71.
    Hatcher, B. G. & Mann, K. H. Above-ground production of marsh cordgrass (Spartina alterniflora) near the northern end of its range. J. Fish. Board Can. 32, 83–87 (1975).
    Article  Google Scholar 

    72.
    Rohatgi, A. Web Plot Digitizer, V 3.9 http://arohatgi.info/WebPlotDigitizer/ (2015).

    73.
    Morris, J. T. & Haskin, B. A 5-yr record of aerial primary production and stand characteristics of Spartina alterniflora. Ecology 71, 2209–2217 (1990).
    Article  Google Scholar 

    74.
    Curtin, F. Meta-analysis combining parallel and crossover trials using generalised estimating equation method. Res. Synth. Methods 8, 312–320 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    75.
    Müller, J. & Hothorn, T. Maximally selected two-sample statistics as a new tool for the identification and assessment of habitat factors with an application to breeding-bird communities in oak forests. Eur. J. For. Res. 123, 219–228 (2004).
    Article  Google Scholar 

    76.
    Tomkins, I. R. The Willets of Georgia and South Carolina. Wilson Bull. 77, 151–167 (1965).
    Google Scholar 

    77.
    Morrison, R. I. G. & Ross, R. K. Atlas of Nearctic Shorebirds on the Coast of South America (Canadian Wildlife Service, Ottawa, 1989).
    Google Scholar 

    78.
    Merchant, D. et al. Shorebird Conservation in Brazil and Delaware Bay. In North American Migratory Bird Conservation Act Annual Report 2016–2017 (2017).

    79.
    Alerstam, T. & Hedenström, A. The development of bird migration theory. J. Avian Biol. 29, 343–369 (1998).
    Article  Google Scholar 

    80.
    Meltofte, H., Piersma, T., Boyd, H., Mccaffery, B. J. & Tulp, I. Y. M. Effects of climate variation on the breeding ecology of Artic shorebirds. Meddelelser Om Groenl. Biosci. 59, 45 (2007).
    Google Scholar 

    81.
    Willson, M. F. & Womble, J. N. Vertebrate exploitation of pulsed marine prey: A review and the example of spawning herring. Rev. Fish Biol. Fish. 16, 183–200 (2006).
    Article  Google Scholar 

    82.
    Mizrahi, D. S. & Peters, K. A. Relationships between sandpipers and horseshoe crab in Delaware Bay: A synthesis. In Biology and Conservation of Horseshoe Crabs (eds Tanacredi, J. et al.) 65–87 (Springer, Berlin, 2009).
    Google Scholar 

    83.
    Johansson, J. & Jonzén, N. Effects of territory competition and climate change on timing of arrival to breeding grounds: A game-theory approach. Am. Nat. 179, 463–474 (2012).
    PubMed  Article  Google Scholar 

    84.
    Verhulst, S. & Nilsson, J. -Å. The timing of birds’ breeding seasons: A review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. B Biol. Sci. 363, 399–410 (2008).
    Article  Google Scholar 

    85.
    Hatchwell, B. J. An Experimental study of the effects of timing of breeding on the reproductive success of common guillemots (Uria aalge). J. Anim. Ecol. 60, 721–736 (1991).
    Article  Google Scholar 

    86.
    McKinnon, L. et al. Lower predation risk for migratory birds at high latitudes. Science 327, 326–327 (2010).

    87.
    Ruskin, K. J. et al. Demographic analysis demonstrates systematic but independent spatial variation in abiotic and biotic stressors across 59 percent of a global species range. The Auk 134, 903–916 (2017).

    88.
    Karagicheva, J. et al. Seasonal time keeping in a long-distance migrating shorebird. J. Biol. Rhythms 5, 509–521 (2016).
    Article  Google Scholar 

    89.
    Daan, S., Dijkstra, C., Drent, R. & Meijer, T. Food supply and the annual timing of avian reproduction. In Proceedings of the International Ornithological Congress vol. 19 392–407 (University of Ottawa Press, Ottawa, 1988).

    90.
    Krebs, C. T. & Burns, K. A. Long-term effects of an oil spill on populations of the salt-marsh crab Uca pugnax. Science 197, 484–487 (1977).
    ADS  CAS  PubMed  Article  Google Scholar 

    91.
    Williams, R. B. & Murdoch, M. B. Potential Importance of Spartina alterniflora in Conveying Zinc, Manganese, and Iron into Estuarine Food Chains in Conveying Zinc, Manganese, and Iron into Estuarine Food Chains (Radiobiological Lab, Bureau of Commercial Fisheries, Beaufort, NC, 1969).
    Google Scholar 

    92.
    Anthes, N. Long-distance migration timing of Tringa sandpipers adjusted to recent climate change: Capsule evidence for earlier spring migration of Tringa sandpipers after warmer winters, but no clear pattern concerning autumn migration timing. Bird Study 51, 203–211 (2004).
    Article  Google Scholar 

    93.
    Gill, J. A. et al. Why is timing of bird migration advancing when individuals are not?. Proc. R. Soc. B Biol. Sci. 281, 20132161 (2014).
    Article  Google Scholar 

    94.
    Cotton, P. A. Avian migration phenology and global climate change. Proc. Natl. Acad. Sci. 100, 12219–12222 (2003).
    ADS  CAS  PubMed  Article  Google Scholar 

    95.
    Crozier, L. G. et al. Potential responses to climate change in organisms with complex life histories: Evolution and plasticity in Pacific salmon. Evol. Appl. 1, 252–270 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Australian long-finned pilot whales (Globicephala melas) emit stereotypical, variable, biphonic, multi-component, and sequenced vocalisations, similar to those recorded in the northern hemisphere

    1.
    Tyack, P. L. & Clark, C. W. Communication and acoustic behaviour of dolphins and whales. In Hearing by Whales and Dolphins (eds Au, W. L. et al.) 156–224 (Springer, New York, 2000).
    Google Scholar 
    2.
    Au, W. W. L. The Sonar of Dolphins (Springer, Berlin, 1993).
    Google Scholar 

    3.
    Filatova, O. A. et al. Call diversity in the North Pacific killer whale populations: implications for dialect evolution and population history. Anim. Behav. 83, 595–603. https://doi.org/10.1016/j.anbehav.2011.12.013 (2012).
    Article  Google Scholar 

    4.
    Ding, W., Wuersig, B. & Evans, W. E. Whistles of bottlenose dolphins: comparisons among populations. Aquat. Mamm. 21, 65–77 (1995).
    Google Scholar 

    5.
    Caldwell, M. C. & Caldwell, D. D. Statistical evidence for individual signature whistles in Pacific whitesided dolphin Lagenorhynchus obliquidens. Cetology 3, 1–9 (1971).
    Google Scholar 

    6.
    Erbe, C. et al. Review of underwater and in-air sounds emitted by Australian and Antarctic marine mammals. Acoust. Aust. 45, 179–241. https://doi.org/10.1007/s40857-017-0101-z (2017).
    Article  Google Scholar 

    7.
    Sayigh, L. S., Esch, H. C., Wells, R. S. & Janik, V. M. Facts about signature whistles of bottlenose dolphins Tursiops truncatus. Anim. Behav. 74, 1631–1642. https://doi.org/10.1016/j.anbehav.2007.02.018 (2007).
    Article  Google Scholar 

    8.
    Herzing, D. L. Clicks, whistles and pulses: passive and active signal use in dolphin communication. Acta Astronaut. 105, 534–537. https://doi.org/10.1016/j.actaastro.2014.07.003 (2014).
    ADS  Article  Google Scholar 

    9.
    Ford, J. K. B. Acoustic behaviour of resident killer whales (Orcinus orca) off Vancouver Island, British Columbia. Can. J. Zool. 67, 727–745. https://doi.org/10.1139/z89-105 (1989).
    Article  Google Scholar 

    10.
    Miller, P. J. O., Shapiro, A. D., Tyack, P. L. & Solow, A. R. Call-type matching in vocal exchanges of free-ranging resident killer whales, Orcinus orca. Anim. Behav. 67, 1099–1107. https://doi.org/10.1016/j.anbehav.2003.06.017 (2004).
    Article  Google Scholar 

    11.
    Herzing, D. L. Vocalizations and associated underwater behavior of free-ranging Atlantic spotted dolphins, Stenella frontalis and bottlenose dolphins, Tursiops truncatus. Aquat. Mamm. 22, 61–79 (1996).
    Google Scholar 

    12.
    Weilgart, L. & Whitehead, H. Coda communication by sperm whales (Physeter macrocephalus) off the Galápagos Islands. Can. J. Zool. 71, 744–752. https://doi.org/10.1139/z93-098 (1993).
    Article  Google Scholar 

    13.
    Dawson, S. M. Clicks and communication: the behavioural and social contexts of hector’s dolphin vocalizations. Ethology 88, 265–276. https://doi.org/10.1111/j.1439-0310.1991.tb00281.x (1991).
    Article  Google Scholar 

    14.
    Sørensen, P. M. et al. Click communication in wild harbour porpoises (Phocoena phocoena). Sci. Rep. 8, 9702. https://doi.org/10.1038/s41598-018-28022-8 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Karlsen, J. et al. Summer vocalisations of adult male white whales (Delphinapterus leucas) in Svalbard, Norway. Polar Biol. 25, 808–817. https://doi.org/10.1007/s00300-002-0415-6 (2002).
    Article  Google Scholar 

    16.
    Murray, S. O., Mercado, E. & Roitblat, H. L. Characterizing the graded structure of false killer whale (Pseudorca crassidens) vocalizations. J. Acoust. Soc. Am. 104, 1679–1688. https://doi.org/10.1121/1.424380 (1998).
    ADS  CAS  Article  PubMed  Google Scholar 

    17.
    Quick, N., Callahan, H. & Read, A. J. Two-component calls in short-finned pilot whales (Globicephala macrorhynchus). Mar. Mamm. Sci. 34, 155–168. https://doi.org/10.1111/mms.12452 (2018).
    Article  Google Scholar 

    18.
    Aplan, J. D., Melillo-Sweeting, K. & Reiss, D. Biphonal calls in Atlantic spotted dolphins (Stenella frontalis): bitonal and burst-pulse whistles. Bioacoustics 27, 145–164. https://doi.org/10.1080/09524622.2017.1300105 (2018).
    Article  Google Scholar 

    19.
    Vester, H., Hallerberg, S., Timme, M. & Hammerschmidt, K. Vocal repertoire of long-finned pilot whales (Globicephala melas) in northern Norway. J. Acoust. Soc. Am. 141, 4289–4299. https://doi.org/10.1121/1.4983685 (2017).
    ADS  Article  PubMed  Google Scholar 

    20.
    Ford, J. K. B. A catalogue of underwater calls produced by killer whales (Orcinus orca) in British Columbia. Can. Data Rep. Fish. Aquat. Sci. 633, 165 (1987).
    Google Scholar 

    21.
    Wellard, R., Pitman, R. L., Durban, J. & Erbe, C. Cold call: the acoustic repertoire of Ross Sea killer whales (Orcinus orca, Type C) in McMurdo Sound, Antarctica. R. Soc. Open Sci. 7, 191228. https://doi.org/10.1098/rsos.191228 (2020).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    22.
    Steiner, W. W. Species-specific differences in pure tonal whistle vocalizations of five western North Atlantic dolphin species. Behav. Ecol. Sociobiol. 9, 241–246. https://doi.org/10.1007/bf00299878 (1981).
    Article  Google Scholar 

    23.
    Tyack, P. L. Development and social functions of signature whistles in bottlenose dolphins Tursiops truncatus. Bioacoustics 8, 21–46. https://doi.org/10.1080/09524622.1997.9753352 (1997).
    Article  Google Scholar 

    24.
    Mishima, Y. et al. Individuality embedded in the isolation calls of captive beluga whales (Delphinapterus leucas). Zool. Lett. 1, 27. https://doi.org/10.1186/s40851-015-0028-x (2015).
    Article  Google Scholar 

    25.
    Azzolin, M., Papale, E., Lammers, M. O., Gannier, A. & Giacoma, C. Geographic variation of whistles of the striped dolphin (Stenella coeruleoalba) within the Mediterranean Sea. J. Acoust. Soc. Am. 134, 694–705. https://doi.org/10.1121/1.4808329 (2013).
    ADS  Article  PubMed  Google Scholar 

    26.
    Papale, E., Gamba, M., Perez-Gil, M., Martin, V. M. & Giacoma, C. Dolphins adjust species-specific frequency parameters to compensate for increasing background noise. PLoS ONE 10, e0121711. https://doi.org/10.1371/journal.pone.0121711 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Fouda, L. et al. Dolphins simplify their vocal calls in response to increased ambient noise. Biol. Lett. 14, 20180484. https://doi.org/10.1098/rsbl.2018.0484 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    28.
    Oremus, M. et al. Worldwide mitochondrial DNA diversity and phylogeography of pilot whales (Globicephala spp.). Biol. J. Linnean Soc. 98, 729–744. https://doi.org/10.1111/j.1095-8312.2009.01325.x (2009).
    Article  Google Scholar 

    29.
    Olson, P. A. Pilot Whales: Globicephala melas and G macrorhynchus. In Encyclopedia of Marine Mammals (eds Perrin, W. F. et al.) 847–852 (Academic Press, Cambridge, 2009).
    Google Scholar 

    30.
    Bloch, D. & Lastein, L. Morphometric segregation of long-finned pilot whales in eastern and western North Atlantic. Ophelia 38, 55–68. https://doi.org/10.1080/00785326.1993.10429924 (1993).
    Article  Google Scholar 

    31.
    Rogan, E. et al. Distribution, abundance and habitat use of deep diving cetaceans in the North-East Atlantic. Deep Sea Res. Part II 141, 8–19. https://doi.org/10.1016/j.dsr2.2017.03.015 (2017).
    Article  Google Scholar 

    32.
    Kemper, C. et al. Cetacean captures, strandings and mortalities in South Australia 1881–2000, with special reference to human interactions. Aust. Mammal. 27, 37–47. https://doi.org/10.1071/AM05037 (2005).
    Article  Google Scholar 

    33.
    Minton, G., Reeves, R. & Braulik, G. The IUCN Red List of Threatened Species. (2018).

    34.
    Hamilton, V., Evans, K., Raymond, B., Betty, E. & Hindell, M. A. Spatial variability in responses to environmental conditions in Southern Hemisphere long-finned pilot whales. Mar. Ecol. Prog. Ser. 629, 207–218. https://doi.org/10.3354/meps13109 (2019).
    ADS  Article  Google Scholar 

    35.
    Nemiroff, L. & Whitehead, H. Structural characteristics of pulsed calls of long-finned pilot whales Globicephala melas. Bioacoustics 19, 67–92. https://doi.org/10.1080/09524622.2009.9753615 (2009).
    Article  Google Scholar 

    36.
    Zwamborn, E. M. J. & Whitehead, H. Repeated call sequences and behavioural context in long-finned pilot whales off Cape Breton, Nova Scotia, Canada. Bioacoustics 26, 169–183. https://doi.org/10.1080/09524622.2016.1233457 (2017).
    Article  Google Scholar 

    37.
    Visser, F. et al. Vocal foragers and silent crowds: context-dependent vocal variation in Northeast Atlantic long-finned pilot whales. Behav. Ecol. Sociobiol. 71, 170. https://doi.org/10.1007/s00265-017-2397-y (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    38.
    Erbe, C. Underwater passive acoustic monitoring and noise impacts on marine fauna- a workshop report. Acoust. Aust. 41, 211–217 (2013).
    Google Scholar 

    39.
    Watkins, W. A. The Harmonic Interval: Fact or Artefact in Spectral Analysis of Pulse Trains 15–43 (Pergamon Press, Oxford, 1967).
    Google Scholar 

    40.
    Taruski, A. G. The whistle repertoire of the North Atlantic pilot whale (Globicephala melaena) and its relationship to behavior and environment. In Behavior of Marine Animals: Current Perspectives in Research (eds Winn, H. E. & Olla, B. L.) 345–368 (Springer US, New York, 1979).
    Google Scholar 

    41.
    Rendell, L. E., Matthews, J. N., Gill, A., Gordon, J. C. D. & Macdonald, D. W. Quantitative analysis of tonal calls from five odontocete species, examining interspecific and intraspecific variation. J. Zool. 249, 403–410. https://doi.org/10.1111/j.1469-7998.1999.tb01209.x (1999).
    Article  Google Scholar 

    42.
    Lesage, V., Barrette, C., Kingsley, M. C. S. & Sjare, B. The effect of vessel noise on the vocal behaviour of belugas in the St. Lawrence River Estuary, Canada. Mar. Mamm. Sci. 15, 65–84. https://doi.org/10.1111/j.1748-7692.1999.tb00782.x (1999).
    Article  Google Scholar 

    43.
    Ding, W., Würsig, B. & Evans, W. E. Comparison of whistles among seven odontocete species. In Sensory Systems of Marine Mammals (eds Kastelein, R. A. et al.) 299–323 (DeSpil Publishers, Woerden, 1995).
    Google Scholar 

    44.
    Baron, S. C., Martinez, A., Garrison, L. P. & Keith, E. O. Differences in acoustic signals from Delphinids in the western North Atlantic and northern Gulf of Mexico. Mar. Mamm. Sci. 24, 42–56. https://doi.org/10.1111/j.1748-7692.2007.00168.x (2008).
    Article  Google Scholar 

    45.
    May-Collado, L. J. & Wartzok, D. A comparison of bottlenose dolphin whistles in the Atlantic Ocean: factors promoting whistle variation. J. Mammal. 89, 1229–1240. https://doi.org/10.1644/07-mamm-a-310.1 (2008).
    Article  Google Scholar 

    46.
    Oswald, J., Rankin, S. & Barlow, J. To whistle or not to whistle? Geographic variation in the whistling behaviour of small odontocetes. Aquat. Mamm. 34, 288–302. https://doi.org/10.1578/AM.34.3.2008.288 (2008).
    Article  Google Scholar 

    47.
    Ward-Geiger, L. I., Silber, G. K., Baumstark, R. D. & Pulfer, T. L. Characterization of ship traffic in right whale critical habitat. Coastal Manag. 33, 263–278. https://doi.org/10.1080/08920750590951965 (2005).
    Article  Google Scholar 

    48.
    Weilgart, L. S. & Whitehead, H. Vocalizations of the North Atlantic pilot whale (Globicephala melas) as related to behavioral contexts. Behav. Ecol. Sociobiol. 26, 399–402. https://doi.org/10.1007/bf00170896 (1990).
    Article  Google Scholar 

    49.
    Cato, D. H. & McCauley, R. D. Australian research in ambient sea noise. Acoust. Aust. 30, 1–13 (2009).
    Google Scholar 

    50.
    Busnel, R. G. & Dziedzic, A. Acoustic signals of pilot whale Globicephala melaena and of the porpoises Delphinus delphis and Phocoena phocoena. In Whales, Dolphins, and Porpoise (ed. Norris, K. S.) 604–648 (University of California Press, Berkeley, 1966).
    Google Scholar 

    51.
    Matthews, J. N., Rendell, L. E., Gordon, J. C. D. & Macdonald, D. W. A review of frequency and time parameters of cetacean tonal calls. Bioacoustics 10, 47–71. https://doi.org/10.1080/09524622.1999.9753418 (1999).
    Article  Google Scholar 

    52.
    Davies, J. L. The Southern Form of the Pilot Whale. J. Mammal. 41, 29–34. https://doi.org/10.2307/1376514 (1960).
    Article  Google Scholar 

    53.
    Scheer, M. Call vocalisations recorded among short-finned pilot whales (Globicephala macrorhynchus) off Tenerife, Canary Islands. Aquat. Mamm. 39, 306–313. https://doi.org/10.1578/AM.39.3.2013.306 (2013).
    Article  Google Scholar 

    54.
    Wellard, R., Erbe, C., Fouda, L. & Blewitt, M. Vocalisations of killer whales (Orcinus orca) in the Bremer Canyon, Western Australia. PLoS ONE 10, e0136535. https://doi.org/10.1371/journal.pone.0136535 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    55.
    Curé, C. et al. Pilot whales attracted to killer whale sounds: acoustically-mediated interspecific interactions in cetaceans. PLoS ONE 7, e52201. https://doi.org/10.1371/journal.pone.0052201 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    56.
    Stenersen, J. & Simila, T. Norwegian Killer Whales (Tringa, Wales, 2004).
    Google Scholar 

    57.
    De Stephanis, R. et al. Mobbing-like behavior by pilot whales towards killer whales: a response to resource competition or perceived predation risk?. Acta Ethologica 18, 69–78. https://doi.org/10.1007/s10211-014-0189-1 (2015).
    Article  Google Scholar 

    58.
    Alves, A. et al. Vocal matching of naval sonar signals by long-finned pilot whales (Globicephala melas). Mar. Mamm. Sci. 30, 1248–1257. https://doi.org/10.1111/mms.12099 (2014).
    Article  Google Scholar 

    59.
    Visser, I. N. et al. First record of predation on false killer whales (Pseudorca crassidens) by killer whales (Orcinus orca). Aquat. Mamm. 36, 195–204 (2010).
    Article  Google Scholar 

    60.
    Filatova, O. A., Fedutin, I. D., Nagaylik, M. M., Burdin, A. M. & Hoyt, E. Usage of monophonic and biphonic calls by free-ranging resident killer whales (Orcinus orca) in Kamchatka, Russian Far East. Acta Ethologica 12, 37–44. https://doi.org/10.1007/s10211-009-0056-7 (2009).
    Article  Google Scholar 

    61.
    Hall, M. L. A review of hypotheses for the functions of avian duetting. Behav. Ecol. Sociobiol. 55, 415–430. https://doi.org/10.1007/s00265-003-0741-x (2004).
    Article  Google Scholar 

    62.
    Robinson, A. The biological significance of bird song in Australia. Emu 48, 291–315. https://doi.org/10.1071/MU948291 (1949).
    Article  Google Scholar 

    63.
    Levin, R. N. Song behaviour and reproductive strategies in a duetting wren, Thryothorus nigricapillus: I Removal experiments. Anim. Behav. 52, 1093–1106. https://doi.org/10.1006/anbe.1996.0257 (1996).
    Article  Google Scholar 

    64.
    Hall, M. L. A Review of Vocal Duetting in Birds. Advances in the Study of Behavior 67–121 (Academic Press, Cambridge, 2009).
    Google Scholar 

    65.
    Constantine, R., Brunton, D. H. & Dennis, T. Dolphin-watching tour boats change bottlenose dolphin (Tursiops truncatus) behaviour. Biol. Conserv. 117, 299–307. https://doi.org/10.1016/j.biocon.2003.12.009 (2004).
    Article  Google Scholar 

    66.
    Wellard, R. et al. Killer whale (Orcinus orca) predation on beaked whales (Mesoplodon spp.) in the Bremer Sub-Basin, Western Australia. PLoS ONE 11, e0166670. https://doi.org/10.1371/journal.pone.0166670 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    67.
    Exon, N. F., Hill, P. J., Mitchell, C. & Post, A. Nature and origin of the submarine Albany canyons off southwest Australia. Aust. J. Earth Sci. 52, 101–115. https://doi.org/10.1080/08120090500100036 (2005).
    Article  Google Scholar 

    68.
    Salgado-Kent, C., Parnum, I., Wellard, R., Erbe, C. & Fouda, L. Habitat preferences and distribution of killer whales (Orcinus orca) in the Bremer Sub-Basin, Australia. Report CMST 2017–15 by the Centre for Marine Science and Technology, Curtin University, for the National Environmental Science Programme; Perth, Australia (2017).

    69.
    Bronshtein, I. N., Semendyayev, K. A., Musiol, G. & Muhlig, H. Handbook of Mathematics 6th edn, 129–268 (Springer, New York, 2015).
    Google Scholar 

    70.
    Fleiss, J. L. & Cohen, J. The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educ. Psychol. Meas. 33, 613–619. https://doi.org/10.1177/001316447303300309 (1973).
    Article  Google Scholar 

    71.
    Landis, J. R. & Koch, G. G. The measurement of observer agreement for categorical data. Biometrics 33, 159–174. https://doi.org/10.2307/2529310 (1977).
    CAS  Article  MATH  Google Scholar  More