More stories

  • in

    Evaluating the performance of the Bayesian mixing tool MixSIAR with fatty acid data for quantitative estimation of diet

    Case 1: spectacled eiders, from Wang et al.42
    The experiment
    This case is based on captive feeding trials conducted on 8 adult spectacled eiders, Somateria fischeri, which were maintained on an initial diet containing 1% Atlantic surf clam, 3% Antarctic krill, 88% Mazuri sea duck formula, 4% blue mussel and 4% Atlantic silverside, for 69 days prior to the start of the feeding experiment. After this, on day 0, a biopsy sample of the synsacral adipose tissue was obtained from each eider. With the FA data of the adipose tissue the authors calculated CCs. Feeding trials started on Day 0, and spectacled eiders were switched to diet A, consisting of 56% krill and 44% Mazuri sea duck formula for 21 days. On Day 21, eiders were biopsied again and switched to diet B consisting of 48% Mazuri formula and 52% silverside. On Day 50, a final biopsy sample was collected (Fig. 2A). FA turnover was considered near complete by 69 days.
    Figure 2

    Spectacled eiders case. (A) Feeding experiment: spectacled eiders (n = 8) spent 69 days on the initial diet described in the figure; after this, on day 0 eiders were biopsied and switched to diet A. On day 21 they were biopsied again and switched to diet B. After 29 days on diet B, eiders were biopsied on day 50. (B) Plots for diet estimations of spectacled eiders fed different combined diets. The true diet is indicated in each plot by the blue asterisks. CCs were calculated using FA data of day 0. Images by Alicia Guerrero.

    Full size image

    The model
    This analysis is based on FA data from day 0, 21 and 50. We used the CCs calculated in this study after eiders were maintained on the same initial diet for 69 days. All sources were significantly different from each other (PERMANOVA, F4 = 9936.9, P = 0.001). ‘Day’ was set as fixed factor in the model.
    Diet predictions
    Based on FA data of day 0, MixSIAR estimated a contribution of 0.1% clam, 4% krill, 88% Mazuri, 6% mussel, and 1% silverside (Fig. 2B). After the first shift of diet, MixSIAR estimations changed to 28% krill and 62% Mazuri for FA data obtained on day 21. The final biopsy sample on day 50 produced estimations of 62% Mazuri, and 27% silverside.
    Case 2: Steller’s eiders, from Wang et al.42
    The experiment
    This case corresponds to a feeding trial conducted simultaneously to the previous case by Wang et al.42, although the diet of Steller’s eiders, Polysticta stelleri, differed slightly. For 69 days prior to the start of the feeding trial, 8 adult Steller’s eiders were maintained on an initial diet containing 1% clam, 1% Antarctic krill, 88% Mazuri sea duck formula, 7% mussel, and 3% silverside. CCs were calculated after a biopsy was extracted to each eider on day 0. At the start of the feeding experiment, on day 0, Steller’s eiders were switched to diet A, containing 66% krill and 34% Mazuri formula. Then, on day 21, they were switched to diet B, consisting of 34% Mazuri formula and 66% silverside. Biopsy samples were collected on days 0, 21 and 50 (Fig. 3A). FA turnover was considered near complete by 69 days.
    Figure 3

    Steller’s eiders case. (A) Feeding experiment: eiders (n = 8) were maintained on the initial diet described in the figure for 69 days after which biopsy samples were collected (day 0) and eiders were switched to diet A. After 21 days, eiders were biopsied again and switched to diet B. On day 50, after 29 days on diet B, eiders were biopsied one last time. (B) Plots of diet estimation for Steller’s eiders fed different combined diets. Diet estimates are based on biopsy samples collected on days 0, 21 and 50. The true diet is indicated in each plot by red asterisks. CCs were calculated using FA data of day 0. Images by Alicia Guerrero.

    Full size image

    The model
    We used the CCs calculated in the same study after Steller’s eiders were maintained on the same diet for 69 days. All sources were significantly different from each other (PERMANOVA, F4 = 10,079, P = 0.001). ‘Day’ was set as fixed factor in the model.
    Diet predictions
    Based on FA data of Day 0, MixSIAR estimated a contribution of 0.2% clam, 2% krill, 90% Mazuri, 4% mussel, and 3% silverside (Fig. 3B). After the first diet switch, MixSIAR estimations changed to 46% krill and 27% Mazuri. The final biopsy sample on day 50 produced estimations of 9% krill, 28% Mazuri, and 46% silverside.
    Case 3: Atlantic salmon, from Budge et al.43
    The experiment
    For 22 weeks, tank-reared juvenile Atlantic salmon, Salmo salar (n = 132), were fed one of four different formulated feeds based on two marine oils: 100% krill oil, 100% herring oil, a mixture of 70:30 herring to krill oil, or a mixture of 30:70 herring to krill oil. Muscle samples were analysed for FAs after the 22-week experiment, which allowed the calculation of CCs. In this experiment, two sets of CCs were calculated: one derived from salmon fed the diet based on 100% herring oil and another from salmon fed the diet based on 100% krill oil (Fig. 4A). Unlike the previous two cases, where CCs were derived from consumers eating a mixed diet, here CCs were obtained from consumers feeding on a single type of source: either herring or krill oil. This allowed us to evaluate whether the source used to calculate the CCs affected dietary predictions. Additionally, we calculated a combined CC (an average value between CCs derived from krill and herring diets) and run a separate model. FA turnover was considered complete after 22 weeks on the same diet.
    Figure 4

    Atlantic salmon case. (A) Feeding experiment: Atlantic salmon fed formulated feeds based on either solely herring (n = 36) or krill oil (n = 28), or in proportions of 70:30 or 30:70 herring to krill oil (n = 34 each), for 22 weeks. (B) Plots of diet proportions estimated using MixSIAR for models using CCs derived from salmon fed a herring-oil diet (HO-CC), a krill-oil diet (KO-CC) or CCs averaged from these two treatments (Combined-CC). The true diet is indicated in each plot by black asterisks. Salmon image designed by Creazilla (https://creazilla.com).

    Full size image

    The model
    We ran three independent models to estimate the diet of salmon fed each of the four diets: one using the set of CCs derived from herring oil, another using the CCs derived from krill oil, and one using the combined CCs. For each model, we used krill oil, herring oil and initial diet (commercial feed given to salmon prior to the experiment) as sources, and set ‘diet group’ as fixed factor. Significantly different FA compositions were found for the three sets of sources: those multiplied by herring oil CCs (PERMANOVA, F2 = 4008.7, P = 0.003), those multiplied by krill oil CCs (PERMANOVA, F2 = 3354.7, P = 0.002), and those multiplied by the combined CCs (PERMANOVA, F2 = 3677.2, P = 0.003).
    Diet predictions
    When we used CCs derived from salmon fed on a diet supplemented with herring oil only, MixSIAR correctly estimated the contribution of herring oil in the consumers (salmon) diet (98%). However, the contribution of herring was slightly overestimated where the consumers had been fed a mixture of herring and krill oil (Fig. 4B), and where the salmon’s diet was based on krill oil the contribution of krill oil was slightly underestimated (89%).
    We found the opposite trend when we used CCs derived from salmon that had been fed a diet where krill oil had been the lipid source. Here, MixSIAR correctly estimated the contribution of krill oil in the salmon’s diet when they had been fed a diet based on krill oil (98%) or a mixture of 70:30 herring to krill oil (33% krill) or 30:70 herring to krill oil (70% krill); however, when herring oil had been the only dietary source this dietary contribution was underestimated (81%) (Fig. 4B).
    Our dietary estimates were less biased when we used CC values that had been derived from the average between the herring- and krill-oil treatments (Combined-CCs). For example, we estimated herring contribution to be 90% of the diet when the actual diet was supplemented only with herring oil, and an estimate of 95% krill contribution when the actual diet was supplemented with krill oil only, and when the actual diet was a combination of herring (70%) and krill (30%), the estimations were 71% and 27%, and where the actual contribution of herring was 30% and 70% of krill, the estimated diets were 34% herring and 65% krill (Fig. 4B).
    Case 4: tufted puffin nestlings, from Williams et al. 44
    The experiment
    Tufted puffin, Fratercula cirrhata, nestlings (n = 6) underwent an experimental feeding trial in their own burrows. Chicks were fed by their parents for approximately 10 days since hatching. When they were estimated to be 10-days old, the access to the burrows was blocked, so adults could not continue feeding their chicks. Through another access hole excavated by the researchers, chicks began being fed Pacific herring once a day, for 27 days. To infer the diet of free-living puffin nestlings during the first 10 days after hatching, wire screens were placed at burrow entrances to collect whole fish dropped by the parents. The species identified, in descending order (by mass), were Pacific sandlance, capelin, Pacific sandfish, salmonid and Pacific cod. An adipose tissue sample was collected on days 10 (start of the feeding trial), 19, 28 and 37. On day 37, assuming complete FA turnover after 27 days on a single prey diet (herring), the researchers calculated CCs (Fig. 5A). The data used to run this model included day 10, which represents the unknown diet provided by the parents, days 19, 28, and 37 which represent the herring diet at different extents. FA turnover was considered “close to, but not entirely complete” after 27 days44.
    Figure 5

    source even though it was not part of the nestlings’ diet. The red asterisks in each plot represent the potential diet fed by the parents (and used as priors in the first model). (D) Plots of diet estimations for tufted puffins fed herring, based on their FA profiles of days 19, 28 and 37. The true diet is indicated in each plot by red asterisks. CCs were calculated from tufted puffins fed herring, using FAs from day 37. Images by Alicia Guerrero.

    Tufted puffins case. (A) Nestlings (n = 6) were fed by their parents for approximately 10 days since hatching. After this, they were fed herring for another 27 days as the entrance to their burrows was blocked and parents could not feed their chicks. (B) Non-metric multidimensional scaling plots for FAs obtained from chicks at different stages of the experiment and their sources. When FAs of sources were multiplied by their respective CCs, source (herring) and consumer (chicks, day 37) overlap in the plot. (C) Plots of the three models run to estimate the diet of nestlings on day 10. From left to right: Model using informative priors based on meals brought by the parents after the burrows were blocked; the same model without informative priors; and a third model without informative priors but including herring as

    Full size image

    The model
    We used the CCs derived from these chicks feeding on Pacific herring for 27 days. For biopsy samples collected on day 10, we conducted three separate analyses: the first model excluded herring as potential prey, and incorporated informative priors based on the amount of different fish (% by mass) dropped by the parents at the burrow entrances; the second model was exactly the same but without prior information; and the third model was run without priors, and included herring as potential prey in order to determine whether this prey could be identified as absent.
    For days 19, 28 and 37, we ran another analysis and included herring as source and no informative priors. ‘Day’ was set as a fixed factor in this model. All sources had significantly different FA compositions (PERMANOVA, F5 = 430.9, P = 0.001).
    Diet predictions
    In this example we included a non-metric dimensional scaling plot (Fig. 5B) to evaluate the effect of applying CCs to sources. Day 0 biopsies show greater variation than those of successive days, in both plots. When using original sources and consumer FA values, chicks are segregated from all the sources, although the similarity of the FAs increases toward the FA of herring as days pass, but they do not match. When CCs were applied to sources, the FA values of herring and chicks from day 37 overlap, indicating that they have the same FA compositions.
    For day 0 (Fig. 5C), the estimated diet contributions were similar to meals brought by the parents when the model included informative priors, where the main dietary sources were sandlance (72%) and capelin (15%). Whereas estimates from the model without informative priors misrepresented the diet, as capelin was wrongly identified as the main dietary source (61%), cod the second most important prey (26%), and sandlance was incorrectly estimated to be only 6% of the diet. The third model including herring again identified capelin and cod as the main contributors (56% and 23%, respectively) whereas herring was identified as the least important prey, with 0.9% of contribution.
    For day 19 (Fig. 5D), herring was identified as the main source, with 60% of contribution, followed by capelin and sandlance although with greater variation. From day 19 to 37, the contribution of herring increases from 60 to 97%, respectively.
    Case 5. Harp seals, from Kirsch et al.45
    The experiment
    This study evaluated the effect of a low-fat diet on blubber FAs of harp seals, Pagophilus groenlandicus. Only for this experiment, the fat content of the different sources was available. Juvenile harp seals (n = 5) had been maintained on a diet of Atlantic herring (≥ 9% fat) for approximately 1 year prior to the feeding trial. On day 0, a full-depth blubber sample was collected from the posterior flank of each animal. For 30 days, seals were kept on a diet consisting solely of Atlantic pollock (1.7% fat). Blubber biopsies were taken again on days 14 and 30 (Fig. 6A). FA turnover was not considered complete after 30 days on the same diet, and authors suggest that a longer period on the diet, or higher intakes of fat, would be needed to accomplish it.
    Figure 6

    Diet estimates for juvenile harp seals fed a low-fat prey. (A) Feeding experiment: For a year prior to the feeding experiment, harp seals (n = 5) had been eating only Atlantic herring, a prey with a high-fat content. During the feeding experiment, seals were fed Atlantic pollock, a low-fat prey, for 30 days. (B) Plots of estimates derived from MixSIAR models based on FA data of whole blubber cores from days 0, 14 and 30. The black asterisks in the plots indicate the true diet. CCs correspond to harp seals fed herring, calculated using FAs from day 0. Images: fish by Lukas Guerrero Zambra, harp seal by Alicia Guerrero.

    Full size image

    The model
    Since seals had been feeding on the same source for a year, we calculated CCs using FA data from day 0. Thus, consumer values were divided by Atlantic herring values producing CCs that were applied to both herring and pollock FA data. Sources were significantly different (PERMANOVA, F1 = 3680.4, P = 0.001) and ‘day’ was set as fixed factor in the model.
    Diet predictions
    For all three data sets (day 0, 14 and 30) the main contributor to the diet was Atlantic herring. The predicted proportion of Atlantic herring decreased only slightly from 99% on day 0 to 95% on day 30. Consequently, the contribution of pollock increased from 1% on day 0, to 5% on day 30 (Fig. 6B).
    Case 6: Harbour seals, from Nordstrom et al.46
    The experiment
    Estimations are based on a feeding experiment by Nordstrom et al.46. Prior to the feeding study, juvenile harbour seals, Phoca vitulina, were fed a homogenate of 2:1 Pacific herring to salmon oil for approximately three weeks, and then fed only Pacific herring for four to six days. The feeding experiment consisted of three diets: one group of seals was fed only herring for 42 days (n = 3); the second group was fed only surf smelt for the same period (n = 6); and a third group (n = 7) was fed smelt for 21 days and then only herring for 21 days (Fig, 7A). Whole blubber core samples were collected on days 0, 21 and 42 for each group. Complete FA turnover was estimated to occur after at least 55 days on the same diet, although it could extend well beyond if turnover rate slowed with time.
    The model
    Since prey FA data was not provided in the same study, we used Pacific herring, surf smelt, and salmon FA values from Huynh and Kitts47, which had significantly different FA composition (PERMANOVA, F2 = 87.7, P = 0.001). CCs were derived from other harbour seals on a Pacific herring diet for over a year, in the same study46. We estimated the diet of the three groups of harbour seals, based on samples collected on day 42, setting ‘diet group’ as fixed factor in our model.
    Diet predictions
    Overall, diet differences were evident among groups, and the direction of the change was consistent with the shifts in diet. Estimates for harbour seals fed exclusively Pacific herring for 42 days, correctly showed that diet was predominantly based on herring (94.7%). For seals fed surf smelt for 42 days; however, estimates showed that surf smelt only accounted for 26.6% of the diet whereas herring remained to be the main component. For seals fed surf smelt for 21 days and then herring for another 21 days, MixSIAR again identified herring as the main component, with 90.9%, whereas surf smelt was only 3% (Fig. 7B).
    Figure 7

    Diet estimates for harbour seals. (A) Feeding experiment: For 42 days, seals were fed the following diets: solely herring (n = 3), solely surf smelt (n = 6), or surf smelt for the first 21 days and then herring for the remaining 21 days (n = 7). Prior to the feeding experiments they had been fed a mixture of herring and salmon. (B) Plots for MixSIAR diet estimations, based on blubber FAs obtained on day 42. The red asterisks indicate the true diet. CCs were obtained from harbour seals (other individuals) fed herring for over a year. Image by Alicia Guerrero.

    Full size image More

  • in

    Identification and motif analyses of candidate nonreceptor olfactory genes of Dendroctonus adjunctus Blandford (Coleoptera: Curculionidae) from the head transcriptome

    1.
    Salinas-Moreno, Y. et al. Areography of the genus Dendroctonus (Coleoptera: Curculionidae: Scolytinae) in Mexico. J. Biogeogr. 31, 1163–1177 (2004).
    Article  Google Scholar 
    2.
    Salinas-Moreno, Y., Ager, A., Vargas, C. F., Hayes, J. L. & Zúñiga, G. Determining the vulnerability of Mexican pine forest to bark beetles of the genus Dendroctonus Erichson (Coleoptera: Curculionidae: Scolytinae). Forest Ecol. Manag. 260, 52–61 (2010).
    Article  Google Scholar 

    3.
    FAO. 2009. The impacts of climate change on forest health. Preprint at https://www.fao.org/3/a-k3837s.pdf (2016).

    4.
    Cervantes-Martínez, R. et al. Historical bark beetle outbreaks in Mexico, Guatemala and Honduras (1895–2015) and their relationship with droughts. Rev. Chapingo Serie Ciencias Forestales y del Ambiente. 25, 269–290 (2019).

    5.
    Byers, J. Chemical ecology of bark beetles in a complex olfactory landscape. in Bark and wood boring insects in living trees in Europe, a synthesis (eds. Lieutier, F., Day, K.R., Battisti, A., Grégoire, J. C. & Evans H. F.) 89–134 (Springer, 2007).

    6.
    Raffa, K. F., Andersson M. N. & Schlyter, F. Host selection by bark beetles: playing the odds in a high-stakes game. in Advances in insect physiology, pine bark beetles (eds. Tittiger, C. & Bloquist, G. J.) 1–74 (Oxford, 2016).

    7.
    Bakke, A. Using pheromones in the management of bark beetle outbreaks. In Forest insects guild: patterns of interaction with host trees. (eds. Baranchikov, Y. N., Mattson, W. J., Hain, F. P. & Payne, T. L.) 371–377 (U.S.D.A. Forest Service, 1991).

    8.
    Galko, J. et al. Effectiveness of pheromone traps for the European spruce bark beetle: a comparative study of four commercial products and two new models. Lesn. Cas. For. J. 62, 207–215 (2016).
    Google Scholar 

    9.
    Suwannapong, C. & Benbow, M. E. Sources of insect odors: pheromone glands and odor production. in The biology of odors: sources, olfaction and response. (eds. Logan, E. W. & Atwood, J. M.) 153–184 (Nova Science Publishers, 2011).

    10.
    Hansson, S. B. & Stensmyr, M. C. Evolution of insect olfaction. Neuron 72, 698–711 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Sachse, S. & Krieger, J. Olfaction in insects: the primary processes of odor recognition and coding. E-Neuroforum. 2, 49–60 (2011).
    Google Scholar 

    12.
    Leal, W. S. Pheromone reception. Top. Curr. Chem. 240, 1–36 (2005).
    CAS  Google Scholar 

    13.
    Pelosi, P., Zhou, J.-J., Ban, L. P. & Calvello, M. Soluble proteins in insect chemical communication. Cell. Mol. Life Sci. 63, 1658–1676 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Leal, W. S. Odorant Reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu. Rev. Entomol. 58, 373–391 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Gómez-Díaz, C., Martín, F., García-Fernandez, J. M. & Alcorta, E. The two main olfactory receptor families in Drosophila, ORs and IRs: a comparative approach. Front. Cell. Neurosci. 12, 253. https://doi.org/10.3389/fncel.2018.00253 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Depetris-Chauvin, A., Galagovsky, D. & Grosjean, Y. Chemicals and chemoreceptors: ecologically relevant signals driving behavior in Drosophila. Front. Ecol. Evol. 3, 41. https://doi.org/10.3389/fevo.2015.00041 (2015).
    Article  Google Scholar 

    17.
    Pelosi, P., Iovinella, I., Felicioli, A. & Dani, F. R. Soluble proteins of chemical communication: an overview across arthropods. Frontiers in Physiology. 5, 1–13 (2014).
    CAS  Article  Google Scholar 

    18.
    Benton, R., Vannice, K. S. & Vosshall, L. B. An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450, 289–295 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Pelosi, P., Calvello, M. & Ban. L. Diversity of odorant-binding proteins and chemosensory proteins in insects. Chem. Senses. 30, 291–292 (2005).

    20.
    Tegoni, M., Campanacci, V. & Cambillau, C. Structural aspects of sexual attraction and chemical communication in insects. Trends Biochem Sci. 29, 257–264 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Zhou, J.-J. Odorant-binding proteins in insects. Pheromones. 83, 241–272. https://doi.org/10.1016/s0083-6729(10)83010-9 (2010).
    CAS  Article  Google Scholar 

    22.
    Sánchez-Gracia, A., Vieira, G. F. & Rozas, J. Molecular evolution of the major chemosensory gene families in insects. Heredity 103, 208–216 (2009).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    23.
    Kulmuni, J. & Havukainen, H. Insights into the evolution of the CSP gene family through the integration of evolutionary analysis and comparative protein modeling. PLoS ONE 8, e63688. https://doi.org/10.1371/journal.pone.0063688 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Pelosi, P., Iovinella, I., Zhu, J., Wang, G. & Dani, F. R. Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects. Biol. Rev. 93, 184–200 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    25.
    Dani, F. R. et al. Odorant-binding proteins and chemosensory proteins in pheromone detection and release in the silkmoth Bombyx mori. Chem. Senses 36, 335–344 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Gu, S.-H. et al. Identification of genes expressed in the sex pheromone gland of the black cutworm Agrotis ipsilon with putative roles in sex pheromone biosynthesis and transport. BMC Genomics. 14, 636 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Zhang, Y.-N. et al. Identification and expression profiles of sex pheromone biosynthesis and transport related genes in Spodoptera litura. PLoS ONE 10, e0140019. https://doi.org/10.1371/journal.pone.0140019 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    28.
    Nagnan-Le, M. P. et al. Chemosensory proteins from the proboscis of Mamestra brassicae. Chem. Senses 25, 541–553 (2000).
    Article  Google Scholar 

    29.
    Zhu, J. et al. Conserved chemosensory proteins in the proboscis and eyes of Lepidoptera. International Journal of Biological Sciences. 11, 1394–1404 (2016).
    Article  CAS  Google Scholar 

    30.
    Liu, G. et al. Biotype characterization, developmental profiling, insecticide response and binding property of Bemisia tabaci chemosensory proteins: role of CSP in insect defense. PLoS ONE 11, e0154706. https://doi.org/10.1371/journal.pone.0154706 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Bautista, M. A. et al. Evidence for trade-offs in detoxification and chemosensation gene signatures in Plutella xylostella. Pest Manag. Sci. 71, 423–432 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Vogt, R. G. et al. The insect SNMP gene family. Insect Biochem. Mol. Biol. 39, 448–456 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Jiang, X., Pregitzer, P., Grosse-Wilde, E., Breer, H. & Krieger, J. Identification and characterization of two “sensory neuron membrane proteins” (SNMPs) of the desert locust, Schistocerca gregaria (Orthoptera: Acrididae). J. Insect Sci. 16, 1–10 (2016).
    Article  CAS  Google Scholar 

    34.
    Zhang, G., Chen, F. J., Wang, L. G. & Zhang, J. Characterization and levels of expression of sensory neuron membrane proteins in the adult citrus fuit fly (Diptera: Tephritidae). J. Insect Sci. 18, 1–8. https://doi.org/10.1093/jisesa/iey117 (2018).
    ADS  CAS  Article  PubMed Central  Google Scholar 

    35.
    Jin, X., Ha, T. S. & Smith, D. P. SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc. Natl. Acad. Sci. USA 105, 10996–11001 (2018).
    ADS  Article  Google Scholar 

    36.
    Zhang, J., Liu, Y., Walker, W. B., Dong, S.-L. & Wang, G.-R. Identification and localization of two sensory neuron membrane proteins from Spodoptera litura (Lepidoptera: Noctuidae). Insect Sci. 22, 399–408 (2015).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    37.
    Zhou, J.-J., Field, L. M. & Li, X. Insect odorant-binding proteins: do they offer an alternative pest control strategy?. Outlooks Pest Manag. 21, 31–34 (2010).
    CAS  Article  Google Scholar 

    38.
    Venthur, H. & Zhou, J.-J. Odorant receptors and odorant-binding proteins as insect pest control targets: a comparative analysis. Chemosensory Targets for Insect Control. 9, 1–16 (2018).
    Google Scholar 

    39.
    Lu, Y. et al. Olfactory biosensor for insect semiochemicals analysis by impedance sensing of odorant-binding proteins on interdigitated electrodes. Biosens. Bioelectron. 67, 662–669. https://doi.org/10.1016/j.bios.2014.09.098 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Yi, X. et al. Ligands binding and molecular simulation: the potential investigation of a biosensor based on an insect odorant binding protein. Int. J. Biol. Sci. 11, 75–87. https://doi.org/10.7150/ijbs.9872 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    41.
    Plettner, E. Insect pheromone olfaction: new targets for the design of species-selective pest control agents. Curr. Med. Chem. 9, 1075–1085 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Devillers, J. In Computational design of chemicals for the control of mosquitoes and their diseases (ed. Devillers, J.) 25–468 (CRC Press, Boca Raton, 2018).
    Google Scholar 

    43.
    Pelletier, J., Guidolin, A., Syed, Z., Cornel, A. J. & Leal, W. S. Knockdown of a mosquito odorant-binding protein involved in the sensitive detection of oviposition attractants. J. Chem. Ecol. 36, 245–248 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Antony, B., Johny, J. & Aldosari, S. A. Silencing the odorant binding protein RferOBP1768 reduces the strong preference of palm weevil for the major aggregation pheromone compound ferrugineol. Front. Physiol. 9, 252. https://doi.org/10.3389/fphys.2018.00252 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    45.
    Andersson, N. M. et al. Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae). BMC Genomics 14, 198 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Gu, X.-C., Zhang, Y.-N., Kang, K., Dong, S.-L. & Zhang, L.-W. Antennal transcriptome analysis of odorant reception genes in the red turpentine beetle (RTB) Dendroctonus valens. PLoS ONE 10, e0125159. https://doi.org/10.1371/journal.pone.0125159 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    47.
    Zhu, J.-Y., Zhao, N. & Yang, B. Global transcriptome profiling of the pine shoot beetle Tomicus yunnanensis (Coleoptera: Scolytinae). PLoS ONE 7, e32291. https://doi.org/10.1371/journal.pone.0032291 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    48.
    Yi, J.-K. et al. Identification of candidate chemosensory receptors in the antennal transcriptome of the large black chafer Holotrichia parallela Motschulsky (Coleoptera: Scarabaeidae). Comp. Biochem. Physiol. 28, 63–71 (2018).
    CAS  Google Scholar 

    49.
    Hu, P., Wang, J., Cui, M., Tao, J. & Luo, Y. Antennal transcriptome analysis of the asian longhorned beetle Anoplophora glabripennis. Sci. Rep. 6, 26652. https://doi.org/10.1038/srep26652 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Chen, H., Lin, L., Xie, M., Zhang, G. & Su, W. D. novo sequencing, assembly and characterization of antennal transcriptome of Anomala corpulenta Motschulsky (Coleoptera: Rutelidae). PLoS ONE 9, e114238. https://doi.org/10.1371/journal.pone.0114238 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    51.
    Dippel, S. et al. Tissue-specific transcriptomics, chromosomal localization, and phylogeny of chemosensory and odorant binding proteins from the red flour beetle Tribolium castaneum reveal subgroup specificities for olfaction or more general functions. BMC Genomic 15, 1141 (2014).
    Article  Google Scholar 

    52.
    Oppenheim, J. S., Baker, H. R., Simon, S. & DeSalle, R. We can’t all be supermodels: the value of comparative transcriptomics to the study of non-model insects. Insect Mol. Biol. 24, 139–215 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Keeling, C. et al. Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins a major forest pest. Genome Biol. 14, R27. https://doi.org/10.1186/gb-2013-14-3-r27 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    54.
    Goldman-Huertas, B. et al. Evolution of herbivory in Drosophilidae linked to loss of behaviors, antennal responses, odorant receptors, and ancestral diet. Proc. Natl. Acad. Sci. USA 112, 3026–3031. https://doi.org/10.1073/pnas.1424656112 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    55.
    Zhou, X. et al. Phylogenetic and transcriptomic analysis of chemosensory receptors in a pair of divergent ant species reveals sex-specific signatures of odor coding. PLoS Genet. 8, e1002930. https://doi.org/10.1371/journal.pgen.1002930 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    56.
    Lavagnino, N., Serra, F., Arbiza, L., Dopazo, H. & Hasson, E. Evolutionary genomics of genes involved in olfactory behavior in the Drosophila melanogaster species group. Evol Bioinform. 8, 89–104. https://doi.org/10.4137/EBO.S8484 (2012).
    Article  Google Scholar 

    57.
    Fan, J., Francis, F., Lim, Y., Chen, J. L. & Cheng, D. F. An overview of odorant-binding protein functions in insect peripheral olfactory reception. Genet. Mol. Res. 10, 3056–3069 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58
    Zhou, J.-J. Odorant-binding proteins in insects. In Vitamins and hormones (ed. Litwack, G.) (Academic Press, Cambridge, 2010).
    Google Scholar 

    59.
    Gu, S.-H. et al. Identification and comparative expression analysis of odorant binding protein genes in the tobacco cutworm Spodoptera litura. Sci. Rep. 5, 13800. https://doi.org/10.1038/srep13800 (2015).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    60.
    Zhang, S., Zhang, Z., Kong, X., Wang, H. & Liu, F. Dynamic changes in chemosensory gene expression during the Dendrolimus punctatus mating process. Front. Physiol. 8, 1127. https://doi.org/10.3389/fphys.2017.01127 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    61.
    Wang, Y., Chen, Q., Zhao, H. & Ren, B. Identification and comparison of candidate olfactory genes in the olfactory and non-olfactory organs of elm pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) based on transcriptome analysis. PLoS ONE 11, e0147144. https://doi.org/10.1371/journal.Pone.0147144 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    62.
    Xu, Y.-L. et al. Large-scale identification of odorant-binding proteins and chemosensory proteins from expressed sequence tags in insects. BMC Genomics 10, 632 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    63.
    Vogt, R. G. & Riddiford, L. M. Pheromone binding and inactivation by moth antennae. Nature 293, 161–163 (1981).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Nikonov, A. A., Peng, G., Tsurupa, G. & Leal, W. S. Unisex pheromone detectors and pheromone-binding proteins in Scarab beetles. Chem. Senses 27, 495–504 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65
    Oliveira, D. S. et al. Functional characterization of odorant binding protein 27 (RproOBP27) from Rhodnius prolixus antennae. Front. Physiol. 9, 1175. https://doi.org/10.3389/fphys.2018.01175 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    66.
    Li, Z. et al. Identification, expression patterns, and functional characterization of chemosensory proteins in Dendroctonus armandi (Coleoptera: Curculionidae: Scolytinae). Front. Physiol. 9, 291. https://doi.org/10.3389/fphys.2018.00291 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    67.
    Langeswaran, K., Jeyaraman, J., Mariadasse, R. & Soorangkattan, S. Insights from the molecular modeling, docking analysis of illicit drugs and bomb compounds with honey bee odorant binding proteins (OBPs). Bioinformation 14, 219–231 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    Jayanthi, K. P. et al. Computational reverse chemical ecology: virtual screening and predicting behaviorally active semiochemicals for Bactrocera dorsalis. BMC Genomics 15, 209. https://doi.org/10.1186/1471-2164-15-209 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    69.
    Vieira, F. G. & Rozas, J. Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: origin and evolutionary history of the chemosensory system. Genome Biol. Evol. 3, 476–490 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Li, Z.-Q. et al. Two minus-C odorant binding proteins from Helicoverpa armigera display higher ligand binding affinity at acidic pH than neutral pH. J. Insect Physiol. 59, 263–272 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Spinelli, S. et al. Crystal structure of Apis mellifera OBP14, a C-minus odorant-binding protein, and its complexes with odorant molecules. Insect Biochem. Mol. Biol. 42, 41–50 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    72.
    Zheng, Z.-C. et al. Predicted structure of a minus-C OBP from Batocera horsfieldi (Hope) suggests an intermediate structure in evolution of OBPs. Sci. Rep. 6, 33981. https://doi.org/10.1038/srep33981 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    73.
    Li, Z.-Q., He, P., Zhang, Y.-N. & Dong, S.-L. Molecular and functional characterization of three odorant-binding protein from Periplaneta americana. PLoS ONE 12, e0170072. https://doi.org/10.1371/journal.pone.0170072 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    74.
    Li, D.-Z. et al. Structure-Based analysis of the ligand-binding mechanism for DhelOBP21, a c-minus odorant binding protein, from Dastarcus helophoroides Fairmaire (Coleoptera: Bothrideridae). Int. J. Biol. Sci. 11, 1281–1295 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Zhou, J.-J., Huangb, W., Zhang, G.-A., Picketta, J. A. & Fielda, L. M. ‘Plus-C’’ odorant binding protein genes in two Drosophila species and the malaria mosquito Anopheles gambiae. Gene 327, 117–212 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    76
    Song, Y.-Q., Sun, H.-Z. & Du, J. Identification and tissue distribution of chemosensory protein and odorant binding protein genes in Tropidothorax elegans Distant(Hemiptera: Lygaeidae). Sci. Rep. 8, 7803. https://doi.org/10.1038/s41598-018-26137-6 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    77.
    Mei, T., Fu, W.-B., Li, B., He, Z.-B. & Chen, B. Comparative genomics of chemosensory protein genes (CSPs) in twenty-two mosquito species (Diptera: Culicidae): Identification, characterization and evolution. PLoS ONE 13, e0190412. https://doi.org/10.1371/journal.pone.0190412 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    78.
    Nichols, Z. & Vogt, R. G. The SNMP/CD36 gene family in Diptera, Hymenoptera and Coleoptera: Drosophila melanogaster, D. pseudoobscura, Anopheles gambiae, Aedes aegypti, Apis mellifera, and Tribolium castaneum. Insect Biochem. Mol. Biol. 38, 398–415 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    79.
    Forstner, M. et al. Differential expression of SNMP-1 and SNMP-2 proteins in pheromone-sensitive hairs of moths. Chem. Senses 33, 291–299. https://doi.org/10.1093/chemse/bjm087 (2008).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    80.
    Gu, S.-H. et al. Molecular identification and differential ex- pression of sensory neuron membrane proteins in the antennae of the black cutworm moth Agrotis ipsilon. J. Insect Physiol. 59, 430–443 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    81.
    Wu, Z. et al. Candidates for chemosensory genes identified in the Chinese citrus fly, Bactrocera minax, through a transcriptomic analysis. BMC Genomics 20, 646. https://doi.org/10.1186/s12864-019-6022-5 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    82.
    Liu, C., Zhang, J., Liu, Y., Wang, G. & Dong, S. Expression of SNMP1 and SNMP2 genes in antennal sensilla of Spodoptera exigua (HÜBNER). Arch. Insect Biochem. Physiol. 85, 114–126 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    83.
    Tateno, Y. et al. Evolutionary motif and its biological and structural significance. J. Mol. Evol. 44, S38–S43 (1997).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    84.
    Armendáriz-Toledano, F. & Zuñiga, G. Illustrated key to species of genus Dendroctonus (Coleoptera: Curculionidae) occurring in Mexico and Central America. J. Insect Sci. 17, 1–15. https://doi.org/10.1093/jisesa/iex009 (2016).
    Article  Google Scholar 

    85.
    Timothy, L. B. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208. https://doi.org/10.1093/nar/gkp335 (2009).
    CAS  Article  Google Scholar 

    86.
    Whelan, S. & Goldman, N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 18, 691–699 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Impacts of sub-micrometer sediment particles on early-stage growth and survival of the kelp Ecklonia bicyclis

    Influence on zoospore attachment
    A slide glass with various sub-micro particles was deposited in a container (outer diameter 61.8 mm, height 125.2 mm) filled with seawater. Zoospores were poured from the surface of the water, and the number of zoospores that had attached to the slide glass was counted. The effect of the particles on attachment was investigated. Here, particles A, B and C were used (silicon carbide–SiC–particles with different size distributions) as the sediment particles. Particles A and B had one peak in the size distribution, and average particle sizes of 1.1 µm and 3.9 µm, respectively. Particle C had two peaks at 0.090 µm and 4.6 µm, and the average particle size was 1.5 µm (Supplementary Fig. S1 online).
    When about 5 × 104 of E. bicyclis zoospores were placed in the container, after 12 h an average attachment of 13.5 ind./mm2 was observed on the slide glass without sediment particles. The relationship between the attachment percentage (%) of zoospores and amount of sediment particles of SiC is shown in Fig. 1a. The attachment percentage, expressed as the number of attached zoospores without sediments, was 100%.
    Figure 1

    Negative influences of sediment on zoospore attachment and gametophyte survival; (a,b) zoospore attachment percentage and gametophyte survival percentage, respectively.

    Full size image

    In the case of particle A (mean diameter 1.1 µm), which had one peak in the size distribution, the zoospore attachment percentage (mean ± SD) at 0.05 mg/cm2 and 0.1 mg/cm2 of sediments were 25.9 ± 14.2% and 10.2 ± 6.17%, respectively (Fig. 1a, Supplementary Table S1 online). In the case of particle B (mean diameter 3.9 µm), the attachment percentage was 53.9 ± 24.8% at 0.05 mg/cm2 and 41.1 ± 23.1% at 0.1 mg/cm2. In the case of particle A, few attachments were found at sediment levels of 0.3 mg/cm2.
    The attachment percentage decreased exponentially as the amount of sediment on the substrate increased at any particle size. A significant negative correlation (Spearman’s rank correlation, p  More

  • in

    A new method for isolating and analysing coccospheres within sediment

    1.
    Holligan, P. M. & Balch, W. M. From the Ocean to Cells: Coccolithophore Optics and Biogeochemistry BT: Particle Analysis in Oceanography. (ed. Demers, S.) 301–324 (Springer, Berlin, 1991).
    2.
    Wallich, G. C. Results of soundings in the North Atlantic. Ann. Mag. Nat. Hist. 6, 457–458. https://doi.org/10.1080/00222936008697369 (1860).
    Article  Google Scholar 

    3.
    Huxley, T. H. Appendix to Capt. Dayman’s Admiralty Report ‘Deep-Sea Soundings in the N. Atlantic Ocean made in H.M.S Cyclops’. (1858).

    4.
    Young, J. R., Geisen, M. & Probert, I. A review of selected aspects of coccolithophore biology with implications for paleobiodiversity estimation. Micropaleontology https://doi.org/10.2113/gsmicropal.51.4.267 (2005).
    Article  Google Scholar 

    5.
    Honjo, S. Coccoliths: production, transport and sedimentation. Mar. Micropaleontol. 1, 65–79. https://doi.org/10.1016/0377-8398(76)90005-0 (1976).
    ADS  Article  Google Scholar 

    6.
    O’Dea, S. A. et al. Coccolithophore calcification response to past ocean acidification and climate change. Nat. Commun. https://doi.org/10.1038/ncomms6363 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    7.
    Bown, P. R., Gibbs, S. J., Sheward, R., O’Dea, S. & Higgins, D. Searching for cells: the potential of fossil coccospheres in coccolithophore research. J. Nannoplankt. Res. 1, 5 (2014).
    Google Scholar 

    8.
    Chisholm, S. W. Phytoplankton Size. in Primary Productivity and Biogeochemical Cycles in the Sea 213–237 (1992).

    9.
    Finkel, Z. V. et al. Phytoplankton in a changing world: cell size and elemental stoichiometry. J. Plankton Res. 32, 119–137. https://doi.org/10.1093/plankt/fbp098 (2010).
    CAS  Article  Google Scholar 

    10.
    Gibbs, S. J. et al. Species-specific growth response of coccolithophores to Palaeocene – Eocene environmental change. Nat. Geosci. 6, 218–222. https://doi.org/10.1038/ngeo1719 (2013).
    ADS  CAS  Article  Google Scholar 

    11.
    Gibbs, S. J., Sheward, R. M., Bown, P. R., Poulton, A. J. & Alvarez, S. A. Warm plankton soup and red herrings: calcareous nannoplankton cellular communities and the Palaeocene – Eocene Thermal Maximum. Philos. Trans. A https://doi.org/10.1098/rsta.2017.0075 (2018).
    Article  Google Scholar 

    12.
    Deuser, W. G., Ross, E. H., Hemleben, C. & Spindler, M. Seasonal changes in species composition, numbers, mass, size, and isotopic composition of planktonic foraminifera settline into the Deep Sargasso Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 33, 103–127. https://doi.org/10.1016/0031-0182(81)90034-1 (1981).
    Article  Google Scholar 

    13.
    Braun, A., Chen, J., Waloszek, D. & Maas, A. First early Cambrian Radiolaria. The rise and fall of the Ediacaran. Biota 286, 143–149. https://doi.org/10.1144/SP286.10 (2007).
    Article  Google Scholar 

    14.
    Witkowski, J., Harwood, D. M. & Chin, K. Taxonomic composition, paleoecology and biostratigraphy of late cretaceous diatoms from Devon Island, Nunavut. Can. High Arctic. Cretac. Res. 32, 277–300. https://doi.org/10.1016/j.cretres.2010.12.009 (2011).
    Article  Google Scholar 

    15.
    Bolton, C. T. et al. Decrease in coccolithophore calcification and CO2 since the middle Miocene. Nat. Commun. https://doi.org/10.1038/ncomms10284 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    16.
    Saavedra-pellitero, M., Baumann, K., Gallagher, S. J., Sagawa, T. & Tada, R. Paleoceanographic evolution of the Japan Sea over the last 460 kyr: a coccolithophore perspective. Mar. Micropaleontol. https://doi.org/10.1016/j.marmicro.2019.01.001 (2019).
    Article  Google Scholar 

    17.
    Beaufort, L. & Heussner, S. Seasonal dynamics of calcareous nannoplankton on a West European continental margin: the Bay of Biscay. Mar. Micropaleontol. 43, 27–55. https://doi.org/10.1016/S0377-8398(01)00020-2 (2001).
    ADS  Article  Google Scholar 

    18.
    Bendif, E. M. et al. Repeated species radiations in the recent evolution of the key marine phytoplankton lineage Gephyrocapsa. Nat. Commun. https://doi.org/10.1038/s41467-019-12169-7 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    19.
    Bown, P. R. Paleocene calcareous nannofossils from Tanzania. J. Nannoplankt. Res. 36, 1–32 (2016).
    Google Scholar 

    20.
    Gibbs, S. J., Bralower, T. J., Bown, P. R., Zachos, J. C. & Bybell, L. M. Shelf and open-ocean calcareous phytoplankton assemblages across the paleocene-eocene thermal maximum: implications for global productivity gradients. Geology 34, 233–236. https://doi.org/10.1130/G22381.1 (2006).
    ADS  CAS  Article  Google Scholar 

    21.
    Pearson, P. N. et al. Paleogene and Cretaceous sediment cores from the Kilwa and Lindi areas of coastal Tanzania: Tanzania Drilling Project Sites 1–5. J. Afr. Earth Sci. 39, 25–62. https://doi.org/10.1016/j.jafrearsci.2004.05.001 (2004).
    ADS  CAS  Article  Google Scholar 

    22.
    Dunkley Jones, T., Bown, P. R. & Pearson, P. N. Exceptionally well preserved upper Eocene to lower Oligocene calcareous nannofossils (Prymnesiophyceae) from the Pande Formation (Kilwa Group), Tanzania. J. Syst. Palaeontol. 7, 359–411. https://doi.org/10.1017/S1477201909990010 (2009).
    Article  Google Scholar 

    23.
    Bown, P. R., Dunkley Jones, T., Young, J. R. & Randell, R. A Palaeogene record of extant lower photic zone calcareous nannoplankton. Palaeontology 52, 457–469. https://doi.org/10.1111/j.1475-4983.2009.00853.x (2009).
    Article  Google Scholar 

    24.
    Gibbs, S. J., Bown, P. R., Sessa, J. A., Bralower, T. J. & Wilson, P. A. Nannoplankton extinction and origination across the paleocene-eocene thermal maximum. Earth Planet. Sci. Lett. 314, 1770–1773. https://doi.org/10.1126/science.1133902 (2006).
    CAS  Article  Google Scholar 

    25.
    Gibbs, S. J., Stoll, H. M., Bown, P. R. & Bralower, T. J. Ocean acidification and surface water carbonate production across the Paleocene-Eocene thermal maximum. Earth Planet. Sci. Lett. 295, 583–592. https://doi.org/10.1016/j.epsl.2010.04.044 (2010).
    ADS  CAS  Article  Google Scholar 

    26.
    Halloran, P., Rust, N. & Rickaby, R. E. M. Isolating coccoliths from sediment for geochemical analysis. Geochem. Geophys. Geosyst. 10, 1–8. https://doi.org/10.1029/2008GC002228 (2009).
    CAS  Article  Google Scholar 

    27.
    Beaufort, L. & Dollfus, D. Automatic recognition of coccoliths by dynamical neural networks. Mar. Micropaleontol. 51, 57–73. https://doi.org/10.1016/j.marmicro.2003.09.003 (2004).
    ADS  Article  Google Scholar 

    28.
    Hildebrand, M. et al. Applications of imaging flow cytometry for microalgae. Imaging Flow Cytom. 1, 47–67. https://doi.org/10.1007/978-1-4939-3302-0_4 (2016).
    Article  Google Scholar 

    29.
    Dashkova, V., Malashenkov, D., Poulton, N., Vorobjev, I. & Barteneva, N. S. Imaging flow cytometry for phytoplankton analysis. Methods 112, 188–200. https://doi.org/10.1016/j.ymeth.2016.05.007 (2017).
    CAS  Article  PubMed  Google Scholar 

    30.
    Dunker, S. Hidden secrets behind dots: improved phytoplankton taxonomic resolution using high-throughput imaging flow cytometry. Cytom. Part A 95, 854–868. https://doi.org/10.1002/cyto.a.23870 (2019).
    Article  Google Scholar 

    31.
    Beaufort, L. weight estimates of coccoliths using the optical properties (birefringence) of calcite. Micropaleontology 51, 289–297. https://doi.org/10.2113/gsmicropal.51.4.289 (2005).
    Article  Google Scholar 

    32.
    Henderiks, J. & Pagani, M. (Table S2) Mean coccosphere diameter, cell diameter and coccolith size of fossilized reticulofenestrid coccospheres from DSDP Site 72–516. PANGAEA https://doi.org/10.1594/PANGAEA.833085 (2007).
    Article  Google Scholar 

    33.
    Bown, P. Biometric data illustrating species-specific growth response of coccolithophores to Palaeocene-Eocene environmental change (NERC Grant NE_H017291_1). NERC Data Catalogue http://data.bgs.ac.uk/id/dataHolding/13607273 (2018).

    34.
    Schlüter, L. et al. Experiment: adaptation of a globally important coccolithophore to ocean warming and acidification. PANGAEA https://doi.org/10.1594/PANGAEA.835341 (2014).
    Article  Google Scholar 

    35.
    Sheward, R. M., Poulton, A. J., Gibbs, S. J., Daniels, C. J. & Bown, P. R. Coccosphere geometry measurements from culture experiments on the coccolithophore species Calcidiscus leptoporus, Calcidiscus quadriperforatus and Helicosphaera carteri. PANAGEA https://doi.org/10.1594/PANGAEA.865403 (2016).
    Article  Google Scholar 

    36.
    Young, J. R. et al. A guide to extant coccolithophore taxonomy. J. Nannoplankt. Res. 1, 10 (2003).
    Google Scholar 

    37.
    Jordan, R. W., Kleijine, A., Heimdal, B. R. & Green, J. C. A glossary of the extant Haptophyta of the world. J. Mar. Biol. Assoc. UK 75, 769–814. https://doi.org/10.1017/S0025315400038169 (1995).
    Article  Google Scholar 

    38.
    Young, J. R. & Henriksen, K. Biomineralization within vesicles: the calcite of coccoliths. Rev. Mineral. Geochem. 54, 189–215. https://doi.org/10.2113/0540189 (2003).
    CAS  Article  Google Scholar 

    39.
    Young, J. R., Didymus, J. M., Bown, P. R., Prins, B. & Mann, S. Crystal assembly and phylogenetic evolution in heterococcoliths. Nature 359, 710–713. https://doi.org/10.1038/356516a0 (1992).
    Article  Google Scholar 

    40.
    Iglesias-Rodriguez, M. D. et al. Phytoplankton calcification in a high-CO2 world. Science 320, 336–340. https://doi.org/10.1126/science.1154122 (2008).
    ADS  CAS  Article  PubMed  Google Scholar 

    41.
    Stoll, H. et al. Insights on coccolith chemistry from a new ion probe method for analysis of individually picked coccoliths. Geochem. Geophys. Geosyst. 8, 1–8. https://doi.org/10.1029/2006GC001546 (2007).
    CAS  Article  Google Scholar 

    42.
    Henderiks, J. & Pagani, M. Refining ancient carbon dioxide estimates: Significance of coccolithophore cell size for alkenone-based pCO2 records. Paleoceanography 22, 1–12. https://doi.org/10.1029/2006PA001399 (2007).
    Article  Google Scholar 

    43.
    Henderiks, J. & Pagani, M. Coccolithophore cell size and the Paleogene decline in atmospheric CO2. Earth Planet. Sci. Lett. 269, 575–583. https://doi.org/10.1016/j.epsl.2008.03.016 (2008).
    ADS  CAS  Article  Google Scholar 

    44.
    Šupraha, L. & Henderiks, J. A 15-million-year-long record of phenotypic evolution in the heavily calcified coccolithophore Helicosphaeraand its biogeochemical implications. Biogeosciences 17, 2955–2969. https://doi.org/10.5194/bg-17-2955-2020 (2020).
    ADS  Article  Google Scholar 

    45.
    Hannisdal, B., Henderiks, J. & Liow, L. H. Long-term evolutionary and ecological responses of calcifying phytoplankton to changes in atmospheric CO2. Glob. Chang. Biol. 18, 3504–3516. https://doi.org/10.1111/gcb.12007 (2012).
    ADS  Article  Google Scholar 

    46.
    Urbanek, A. Biotic crises in the history of Upper Silurian graptoloids: a Palaeobiological model. Hist. Biol. 7, 29–50. https://doi.org/10.1080/10292389309380442 (1993).
    Article  Google Scholar 

    47.
    Stanley, S. M. An explanation for Cope’s rule. Evolution 27, 1–26. https://doi.org/10.2307/2407115 (1973).
    Article  PubMed  Google Scholar 

    48.
    Langer, G., Nehrke, G., Probert, I., Ly, J. & Ziveri, P. Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences 6, 2637–2646. https://doi.org/10.5194/bg-6-2637-2009 (2009).
    ADS  CAS  Article  Google Scholar 

    49.
    Langer, G. et al. Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2005GC001227 (2006).
    Article  Google Scholar 

    50.
    Zondervan, I., Rost, B. & Riebesell, U. Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths. J. Exp. Mar. Biol. Ecol. 272, 55–70. https://doi.org/10.1016/S0022-0981(02)00037-0 (2002).
    CAS  Article  Google Scholar 

    51.
    Feng, Y. et al. Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). Eur. J. Phycol. 43, 87–98. https://doi.org/10.1080/09670260701664674 (2008).
    MathSciNet  CAS  Article  Google Scholar 

    52.
    Fiorini, S., Middelburg, J. J. & Gattuso, J. Effects of elevated CO2 partial pressure and temperature on the coccolithophore Syracosphaera pulchra. Aquat. Microb. Ecol. 64, 221–232. https://doi.org/10.3354/ame01520 (2011).
    Article  Google Scholar 

    53.
    McClelland, H. L. O. et al. Calcification response of a key phytoplankton family to millennial-scale environmental change. Sci. Rep. https://doi.org/10.1038/srep34263 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    54.
    Lohbeck, K. T., Riebesell, U. & Reusch, T. B. H. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat. Geosci. 5, 346–351. https://doi.org/10.1038/ngeo1441 (2012).
    ADS  CAS  Article  Google Scholar 

    55.
    Schlüter, L., Lohbeck, K. T., Gröger, J. P., Riebesell, U. & Reusch, T. B. H. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification. Sci. Adv. 2, 1–8. https://doi.org/10.1126/sciadv.1501660 (2016).
    CAS  Article  Google Scholar 

    56.
    Ziveri, P. et al. Stable isotope ‘vital effects’ in coccolith calcite. Earth Planet. Sci. Lett. 210, 137–149. https://doi.org/10.1016/S0012-821X(03)00101-8 (2003).
    ADS  CAS  Article  Google Scholar 

    57.
    Stoll, H. M. & Schrag, D. P. Coccolith Sr/Ca as a new indicator of coccolithophorid calcification and growth rate. Geochem. Geophys. Geosyst. https://doi.org/10.1029/1999GC000015 (2000).
    Article  Google Scholar 

    58.
    Stoll, H. M. & Ziveri, P. Separation of monospecific and restricted coccolith assemblages from sediments using differential settling velocity. Mar. Micropaleontol. 46, 209–221. https://doi.org/10.1016/s0377-8398(02)00040-3 (2002).
    ADS  Article  Google Scholar 

    59.
    Stoll, H. M., Ziveri, P., Geisen, M., Probert, I. & Young, J. R. Potential and limitations of Sr/Ca ratios in coccolith carbonate: new perspectives from cultures and monospecific samples. Philos. Trans. R. Soc. A 360, 719–747. https://doi.org/10.1098/rsta.2001.0966 (2002).
    ADS  CAS  Article  Google Scholar 

    60.
    Rickaby, R. E., Bard, E., Sonzogni, C. & Rostek, F. Coccolith chemistry reveals secular variations in the global ocean carbon cycle?. Earth Planet. Sci. Lett. 253, 83–95. https://doi.org/10.1016/j.epsl.2006.10.016 (2007).
    ADS  CAS  Article  Google Scholar 

    61.
    Bolton, C. T., Stoll, H. M. & Mendez-Vicente, A. Vital effects in coccolith calcite: cenozoic climate-pCO2 drove the diversity of carbon acquisition strategies in coccolithophores?. Paleoceanography https://doi.org/10.1029/2012PA002339 (2012).
    Article  Google Scholar 

    62.
    Bolton, C. T. & Stoll, H. M. Late Miocene threshold response of marine algae to carbon dioxide limitation. Nature 500, 558–562. https://doi.org/10.1038/nature12448 (2013).
    ADS  CAS  Article  PubMed  Google Scholar 

    63.
    Rickaby, R., Henderiks, J. & Young, J. Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species. Clim. Past 6, 771–785. https://doi.org/10.5194/cp-6-771-2010 (2010).
    Article  Google Scholar 

    64.
    Andruleit, H., Rogalla, U. & Stable, S. S. From living communities to fossil assemblages: origin and fate of coccolithophores in the Northern Arabian Sea. Micropaleontology 50, 5–21. https://doi.org/10.2113/50.Suppl_1.5 (2004).
    Article  Google Scholar 

    65.
    Maguire, O., Collins, C., O’Loughlin, K., Miecznikowski, J. & Minderman, H. Quantifying nuclear p65 as a parameter for NF-κB activation: correlation between imagestream cytometry microscopy and western blot. Cytom. A 79, 461–469. https://doi.org/10.1002/cyto.a.21068 (2011).
    CAS  Article  Google Scholar 

    66.
    Prentice, K. et al. Trace metal (Mg/Ca and Sr/Ca) analyses of single coccoliths by secondary ion mass spectrometry. Geochim. Cosmochim. Acta 146, 90–106. https://doi.org/10.1016/j.gca.2014.09.041 (2014).
    ADS  CAS  Article  Google Scholar 

    67.
    Beaufort, L. Weight estimates of coccoliths using the optical properties (birefringence) of calcite. Micropaleontology https://doi.org/10.2113/gsmicropal.51.4.289 (2005).
    Article  Google Scholar 

    68.
    von Dassow, P., van den Engh, G., Iglesias-Rodriguez, D. & Gittins, J. R. Calcification state of coccolithophores can be assessed by light scatter depolarization measurements with flow cytometry. J. Plankton Res. 34, 1011–1027. https://doi.org/10.1093/plankt/fbs061 (2012).
    CAS  Article  Google Scholar 

    69.
    Balch, W. M., Kilpatrick, K., Holligan, P. M. & Cucci, T. Coccolith production and detachment by Emiliania Huxleyi (Prymnesiophyceae). J. Phycol. 29, 566–573. https://doi.org/10.1111/j.0022-3646.1993.00566.x (1993).
    Article  Google Scholar 

    70.
    Spooner, P. T. et al. Exceptional 20th century ocean circulation in the Northeast Atlantic. Geophys. Res. Lett. https://doi.org/10.1029/2020GL087577 (2020).
    Article  Google Scholar 

    71.
    Halloran, P. R., Hall, I. R. & Rickaby, R. E. M. Evidence for a multi-species coccolith volume change over the past two centuries: understanding a potential ocean acidification response. Biogeosciences 5, 1651–1655. https://doi.org/10.5194/bg-5-1651-2008 (2008).
    ADS  CAS  Article  Google Scholar  More

  • in

    Genome skimming and exploration of DNA barcodes for Taiwan endemic cypresses

    1.
    Wang, W., Hwang, C., Lin, T. & Hwang, S. Y. Historical biogeography and phylogenetic relationships of the genus Chamaecyparis (Cupressaceae) inferred from chloroplast DNA polymorphism. Plant Syst. Evol. 241, 13–28. https://doi.org/10.1007/s00606-003-0031-0 (2003).
    CAS  Article  Google Scholar 
    2.
    Liao, P. C., Lin, T. P. & Hwang, S. Y. Reexamination of the pattern of geographical disjunction of Chamaecyparis (Cupressaceae) in North America and East Asia. Bot. Stud. 51, 511–520 (2010).
    CAS  Google Scholar 

    3.
    Li, C. F. et al. Chamaecyparis montane cloud forest in Taiwan: ecology and vegetation classification. Ecol. Res. 30, 771–791. https://doi.org/10.1007/s11284-015-1284-0 (2015).
    Article  Google Scholar 

    4.
    IUCN Red List of Threatened Species. https://www.iucnredlist.org/ (2013).

    5.
    Horng, F. W., Ma, F. C., Yu, H. M., Hsui, Y. R. & Chang, H. M. An estimation of original Chamaecyparis forest area in Taiwan and its implication for conservation. Q. J. Chin. For. 17, 143–153 (2000).
    Google Scholar 

    6.
    Koch, G., Richter, H. G. & Schmitt, U. Design and application of CITESwoodID computer-aided identification and description of CITES-protected timbers. IAWA J. 32, 213–220. https://doi.org/10.1163/22941932-90000052 (2011).
    Article  Google Scholar 

    7.
    Sarmiento, C. et al. Pl@ntwood: a computer-assisted identification tool for 110 species of Amazon trees based on wood anatomical features. IAWA J. 32, 221–232. https://doi.org/10.1163/22941932-90000053 (2011).
    MathSciNet  Article  Google Scholar 

    8.
    Gasson, P. How precise can wood identification be? Wood anatomy’s role in support of the legal timber trade, especially cites. IAWA J. 32, 137–154. https://doi.org/10.1163/22941932-90000049 (2011).
    Article  Google Scholar 

    9.
    Jiao, L., Yin, Y., Cheng, Y. & Jiang, X. DNA barcoding for identification of the endangered species Aquilaria sinensis: comparison of data from heated or aged wood samples. Holzforschung 68, 487–494. https://doi.org/10.1515/hf-2013-0129 (2014).
    CAS  Article  Google Scholar 

    10.
    Jiao, L. et al. DNA barcode authentication and library development for the wood of six commercial Pterocarpus species: the critical role of xylarium specimens. Sci. Rep. 8, 1945. https://doi.org/10.1038/s41598-018-20381-6 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    Nithaniyal, S. et al. DNA barcode authentication of wood samples of threatened and commercial timber trees within the tropical dry evergreen forest of India. PLoS ONE 9, e107669. https://doi.org/10.1371/journal.pone.0107669 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    12.
    Liu, J. et al. Integrating a comprehensive DNA barcode reference library with a global map of yews (Taxus L.) for forensic identification. Mol. Ecol. Resour. 18, 1115–1131. https://doi.org/10.1111/1755-0998.12903 (2018).
    CAS  Article  Google Scholar 

    13.
    Kress, W. J. Plant DNA barcodes: applications today and in the future. J. Syst. Evol. 55, 291–307. https://doi.org/10.1111/jse.12254 (2017).
    Article  Google Scholar 

    14.
    CBOL Plant Working Group. A DNA barcode for land plants. Proc. Natl. Acad. Sci. U S A 106, 12794–12797. https://doi.org/10.1111/1755-0998.12194 (2009).
    CAS  Article  PubMed Central  Google Scholar 

    15.
    Hollingsworth, P. M., Graham, S. W. & Little, D. P. Choosing and using a plant DNA barcode. PLoS ONE 6, e19254. https://doi.org/10.1371/journal.pone.0019254 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Li, D. Z. et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. USA 108(19641–19646), 2011. https://doi.org/10.1073/pnas.1104551108 (2011).
    Article  Google Scholar 

    17.
    Purty, R. S. & Chatterjee, S. DNA Barcoding: an effective technique in molecular taxonomy. Austin J. Biotechnol. Bioeng. 3, 1059 (2016).
    Google Scholar 

    18.
    Kane, N. et al. Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA. Am. J. Bot. 99, 320–329. https://doi.org/10.3732/ajb.1100570 (2012).
    CAS  Article  PubMed  Google Scholar 

    19.
    Bock, D. G., Kane, N. C., Ebert, D. P. & Rieseberg, L. H. Genome skimming reveals the origin of the Jerusalem Artichoke tuber crop species: neither from Jerusalem nor an artichoke. New Phytol. 201, 1021–1030. https://doi.org/10.1111/nph.12560 (2014).
    CAS  Article  PubMed  Google Scholar 

    20.
    Ji, Y. et al. Testing and using complete plastomes and ribosomal DNA sequences as the next generation DNA barcodes in Panax (Araliaceae). Mol. Ecol. Resour. 19, 1333–1345. https://doi.org/10.1111/1755-0998.13050 (2019).
    CAS  Article  PubMed  Google Scholar 

    21.
    Li, X. et al. Plant DNA barcoding: from gene to genome. Biol. Rev. 90, 157–166. https://doi.org/10.1111/brv.12104 (2015).
    Article  PubMed  Google Scholar 

    22.
    Niu, Z. et al. Comparative analysis of Dendrobium plastomes and utility of plastomic mutational hotspots. Sci. Rep. 7, 2073. https://doi.org/10.1038/s41598-017-02252-8 (2017).
    CAS  Article  Google Scholar 

    23.
    Zhu, S. et al. Accurate authentication of Dendrobium officinale and its closely related species by comparative analysis of complete plastomes. Acta. Pharm. Sin. B. 8, 969–980. https://doi.org/10.1016/j.apsb.2018.05.009 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    24.
    Fu, C. N. et al. Prevalence of isomeric plastomes and effectiveness of plastome super-barcodes in yews (Taxus) worldwide. Sci. Rep. 9, 2773. https://doi.org/10.1038/s41598-019-39161-x (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    25.
    Dodsworth, S. Genome skimming for next-generation biodiversity analysis. Trends Plant Sci. 20, 525–527. https://doi.org/10.1016/j.tplants.2015.06.012 (2015).
    CAS  Article  PubMed  Google Scholar 

    26.
    Guo, W. et al. Predominant and substoichiometric isomers of the plastid genome coexist within Juniperus plants and have shifted multiple times during cupressophyte evolution. Genome Biol. Evol. 6, 580–590. https://doi.org/10.1093/gbe/evu046 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Wu, C. S. & Chaw, S. M. Large-scale comparative analysis reveals the mechanisms driving plastomic compaction, reduction, and inversions in conifers II (cupressophytes). Genome Biol. Evol. 8, 3740–3750. https://doi.org/10.1093/gbe/evw278 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    28.
    Qu, X. J., Wu, C. S., Chaw, S. M. & Yi, T. S. Insights into the existence of isomeric plastomes in Cupressoideae (Cupressaceae). Genome Biol. Evol. 9, 1110–1119. https://doi.org/10.1093/gbe/evx071 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    29.
    Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A. & Janzen, D. H. Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. USA 102, 8369–8374. https://doi.org/10.1073/pnas.0503123102 (2005).
    ADS  CAS  Article  PubMed  Google Scholar 

    30.
    Pang, X. et al. Utility of the trnH-psbA intergenic spacer region and its combinations as plant DNA barcodes: a meta-analysis. PLoS ONE 7, e48833. https://doi.org/10.1371/journal.pone.0048833 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Loera-Sánchez, M., Studer, B. & Kölliker, R. DNA barcode trnH-psbA is a promising candidate for efficient identification of forage legumes and grasses. BMC Res. Notes 13, 35. https://doi.org/10.1186/s13104-020-4897-5 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Zonneveld, B. J. M. Conifer genome sizes of 172 species, covering 64 of 67 genera, range from 8 to 72 picogram. Nord. J. Bot. 30, 490–502. https://doi.org/10.1111/j.1756-1051.2012.01516.x (2012).
    Article  Google Scholar 

    33.
    Preuten, T. et al. Fewer genes than organelles: extremely low and variable gene copy numbers in mitochondria of somatic plant cells. Plant J. 64, 948–959. https://doi.org/10.1111/j.1365-313X.2010.04389.x (2010).
    CAS  Article  PubMed  Google Scholar 

    34.
    Shen, J., Zhang, Y., Havey, M. J. & Shou, W. Copy numbers of mitochondrial genes change during melon leaf development and are lower than the numbers of mitochondria. Hortic. Res. 6, 95. https://doi.org/10.1038/s41438-019-0177-8 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Sloan, D. B. One ring to rule them all? Genome sequencing provides new insights into the ‘master circle’ model of plant mitochondrial DNA structure. New Phytol. 200, 978–985. https://doi.org/10.1111/nph.12395 (2013).
    CAS  Article  PubMed  Google Scholar 

    36.
    Gualberto, J. M. & Newton, K. J. Plant mitochondrial genomes: dynamics and mechanisms of mutation. Annu. Rev. Plant Biol. 68, 225–252. https://doi.org/10.1146/annurev-arplant-043015-112232 (2017).
    CAS  Article  PubMed  Google Scholar 

    37.
    Kozik, A. et al. The alternative reality of plant mitochondrial DNA: one ring does not rule them all. PLoS Genet. 15, e1008373. https://doi.org/10.1371/journal.pgen.1008373 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    38.
    Ruhsam, M. et al. Does complete plastid genome sequencing improve species discrimination and phylogenetic resolution in Araucaria?. Mol. Ecol. Resour. 15, 1067–1078. https://doi.org/10.1111/1755-0998.12375 (2015).
    CAS  Article  PubMed  Google Scholar 

    39.
    Chen, Q., Wu, X. & Zhang, D. Comparison of the abilities of universal, super, and specific DNA barcodes to discriminate among the original species of Fritillariae cirrhosae bulbus and its adulterants. PLoS ONE 15, e0229181. https://doi.org/10.1371/journal.pone.0229181 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Weng, M. L., Blazier, J. C., Govindu, M. & Jansen, R. K. Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Mol. Biol. Evol. 31, 645–659. https://doi.org/10.1093/molbev/mst257 (2014).
    CAS  Article  PubMed  Google Scholar 

    41.
    Vieira Ldo, N. et al. The complete chloroplast genome sequence of Podocarpus lambertii: genome structure, evolutionary aspects, gene content and SSR detection. PLoS ONE 9, e90618. https://doi.org/10.1371/journal.pone.0090618 (2014).
    ADS  Article  PubMed  Google Scholar 

    42.
    Hamsher, S. E. et al. Extensive chloroplast genome rearrangement amongst three closely relatedHalamphora spp. (Bacillariophyceae), and evidence for rapid evolution as compared to land plants. PLoS ONE 14, e0217824. https://doi.org/10.1371/journal.pone.0217824 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Garcia, S., Kovařík, A., Leitch, A. R. & Garnatje, T. Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database. Plant J. 89, 1020–1030. https://doi.org/10.1111/tpj.13442 (2017).
    CAS  Article  PubMed  Google Scholar 

    44.
    Liere, K. & Börner, T. Development-dependent changes in the amount and structural organization of plastid DNA. In Plastid Development in Leaves during Growth and Senescence (ed. Biswal, B., K. Krupinska, K. & Biswal, U. C.) 215–237 (Amsterdam Springer, 2013).

    45.
    Li, J., Su, Y. & Wang, T. The repeat sequences and elevated substitution rates of the chloroplast accD gene in cupressophytes. Front. Plant Sci. 9, 533. https://doi.org/10.3389/fpls.2018.00533 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    46.
    Sudianto, E. & Chaw, S. M. Two independent plastid accD transfers to the nuclear genome of Gnetum and other insights on acetyl-coA carboxylase evolution in gymnosperms. Genome Biol. Evol. 11, 1691–1705. https://doi.org/10.1093/gbe/evz059 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    47.
    Deguilloux, M. F., Pemonge, M. H. & Petit, R. J. Novel perspectives in wood certification and forensics: dry wood as a source of DNA. Proc. Biol. Sci. 269, 1039–1046. https://doi.org/10.1098/rspb.2002.1982 (2002).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    48.
    Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bul. 19, 11–15 (1987).
    Google Scholar 

    49.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477. https://doi.org/10.1089/cmb.2012.0021 (2012).
    MathSciNet  CAS  Article  PubMed  PubMed Central  Google Scholar 

    51.
    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421. https://doi.org/10.1186/1471-2105-10-421 (2009).
    CAS  Article  Google Scholar 

    52.
    Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18. https://doi.org/10.1186/2047-217X-1-18 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    53.
    Ronen, R., Boucher, C., Chitsaz, H. & Pevzner, P. SEQuel: improving the accuracy of genome assemblies. Bioinformatics 28, i188-196. https://doi.org/10.1093/bioinformatics/bts219 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    54.
    Tillich, M. et al. GeSeq-versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 45, W6–W11. https://doi.org/10.1093/nar/gkx391 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    55.
    Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100–3108. https://doi.org/10.1093/nar/gkm160 (2007).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    56.
    Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645. https://doi.org/10.1101/gr.092759.109 (2009).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    58.
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    59.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    60.
    Darling, A. E., Mau, B. & Perna, N. T. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5, e11147. https://doi.org/10.1371/journal.pone.0011147 (2010).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    61.
    Rozas, J. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302. https://doi.org/10.1093/molbev/msx248 (2017).
    CAS  Article  Google Scholar 

    62.
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(1792–1797), 2004. https://doi.org/10.1093/nar/gkh340 (2004).
    CAS  Article  Google Scholar  More

  • in

    Mycosporine-like amino acid and aromatic amino acid transcriptome response to UV and far-red light in the cyanobacterium Chlorogloeopsis fritschii PCC 6912

    1.
    Singh, S. P., Häder, D.-P. & Sinha, R. P. Cyanobacteria and ultraviolet radiation (UVR) stress: mitigation strategies. Ageing Res. Rev. 9, 79–90 (2010).
    CAS  PubMed  Article  Google Scholar 
    2.
    Montgomery, B. L. Seeing new light: recent insights into the occurrence and regulation of chromatic acclimation in cyanobacteria. Curr. Opin. Plant Biol. 37, 18–23 (2017).
    CAS  PubMed  Article  Google Scholar 

    3.
    Huang, L., McCluskey, M. P., Ni, H. & LaRossa, R. A. Global gene expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white light. J. Bacteriol. 184, 6845–6858 (2002).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Hideg, É., Jansen, M. K. & Strid, Å. UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci. 18, 107–115 (2013).

    5.
    Shick, J. M. & Dunlap, W. C. Mycosporine-like amino acids and related gadusols: biosynthesis, acumulation, and UV-protective functions in aquatic organisms. Annu. Rev. Physiol. 64, 223–262 (2002).
    CAS  PubMed  Article  Google Scholar 

    6.
    Oren, A. & Gunde-Cimerman, N. Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites?. Fems. Microbiol. Lett. 269, 1–10 (2007).
    CAS  PubMed  Article  Google Scholar 

    7.
    Llewellyn, C. A. & Airs, R. L. Distribution and abundance of MAAs in 33 species of microalgae across 13 classes. Marine Drugs 8, 1273–1291 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Garcia-Pichel, F. & Castenholz, R. W. Occurence of UV-absorbing, Mycosporine-like compounds among cyanobacterial isolates and estimates of their screening capacity. Appl. Environ. Microbiol. 59, 163–169 (1993).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Schmid, D., Cornelia, S. & Fred, Z. UV-A sunscreen from red algae for protection against premature skin aging. Cosmetics 2004, 139–143 (2004).
    Google Scholar 

    10.
    Liddell, P. A. et al. Mimicry of carotenoid function in photosynthesis: synthesis and photophysical properties of a carotenopyropheophorbide. Photochem. Photobiol. 36, 641–645 (1982).
    CAS  Article  Google Scholar 

    11.
    Derikvand, P., Llewellyn, C. A. & Purton, S. Cyanobacterial metabolites as a source of sunscreens and moisturizers: a comparison with current synthetic compounds. Eur. J. Phycol. 52, 43–56 (2016).
    Article  CAS  Google Scholar 

    12.
    Rastogi, R. P. et al. Ultraviolet radiation and cyanobacteria. J. Photochem. Photobiol. B 141, 154–169 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Rastogi, R. P., Madamwar, D. & Incharoensakdi, A. Sun-screening bioactive compounds mycosporine-like amino acids in naturally occurring cyanobacterial biofilms: role in photoprotection. J. Appl. Microbiol. 119, 753–762 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Portwich, A. & Garcia-Pichel, F. Ultraviolet and osmotic stresses induce and regulate the synthesis of mycosporines in the cyanobacterium Chlorogloeopsis PCC 6912. Arch. Microbiol. 172, 187–192 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Waditee-Sirisattha, R., Kageyama, H., Fukaya, M., Rai, V. & Takabe, T. Nitrate and amino acid availability affects glycine betaine and mycosporine-2-glycine in response to changes of salinity in a halotolerant cyanobacterium Aphanothece halophytica. Fems Microbiol. Lett. 362, fnv198 (2015).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    16.
    Conde, F. R., Churio, M. S. & Previtali, C. M. The deactivation pathways of the excited-states of the mycosporine-like amino acids shinorine and porphyra-334 in aqueous solution. Photochem. Photobiol. Sci. 3, 960–967 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Gao, Q. & Garcia-Pichel, F. Microbial ultraviolet sunscreens. Nat. Rev. Microbiol. 9, 791–802 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Balskus, E. P. & Walsh, C. T. The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science 329, 1653–1656 (2010).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Pope, M. A. et al. O-Methyltransferase is shared between the pentose phosphate and shikimate pathways and is essential for mycosporine-like amino acid biosynthesis in Anabaena variabilis ATCC 29413. ChemBioChem 16, 320–327 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Portwich, A. & Garcia-Pichel, F. Biosynthetic pathway of mycosporines (mycosporine-like amino acids) in the cyanobacterium Chlorogloeopsis sp strain PCC 6912. Phycologia 42, 384–392 (2003).
    Article  Google Scholar 

    21.
    Challis, G. L. & Naismith, J. H. Structural aspects of non-ribosomal peptide biosynthesis. Curr. Opin. Struct. Biol. 14, 748–756 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Gao, Q. & Garcia-Pichel, F. An ATP-grasp ligase involved in the last biosynthetic step of the iminomycosporine shinorine in Nostoc punctiforme ATCC 29133. J. Bacteriol. 193, 5923–5928 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Maeda, H. & Dudareva, N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 63, 73–105 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Wu, D. et al. Structural basis of ultraviolet-B perception by UVR8. Nature 484, 214–219 (2012).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    25.
    Rizzini, L. et al. Perception of UV-B by the Arabidopsis UVR8 protein. Science 332, 103–106 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Busch, A. W. U. & Montgomery, B. L. Distinct light-, stress-, and nutrient-dependent regulation of multiple tryptophan-rich sensory protein (TSPO) genes in the cyanobacterium Fremyella diplosiphon. Plant Signal Behav. 12, e1293221 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Gan, F. et al. Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science 345, 1312–1317 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Ho, M. Y. & Bryant, D. A. Global transcriptional profiling of the cyanobacterium Chlorogloeopsis fritschii PCC 9212 in far-red light: insights into the regulation of chlorophyll d synthesis. Front. Microbiol. 10, 465 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    Airs, R. L. et al. Chlorophyll f and chlorophyll d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation. FEBS Lett. 588, 3770–3777 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Zheng, Z., Gao, S. & Wang, G. Far red light induces the expression of LHCSR to trigger nonphotochemical quenching in the intertidal green macroalgae Ulva prolifera. Algal Res. 40, 101512 (2019).
    Article  Google Scholar 

    31.
    Kono, M., Yamori, W., Suzuki, Y. & Terashima, I. Photoprotection of PSI by far-red light against the fluctuating light-induced photoinhibition in Arabidopsis thaliana and field-grown plants. Plant Cell Physiol. 58, 35–45 (2017).
    CAS  PubMed  Google Scholar 

    32.
    Ma, K. Two new algae from Indian Soil. Ann. Bot. 14, 457–464 (1950).
    Article  Google Scholar 

    33.
    Garcia-Pichel, F., Wingard, C. E. & Castenholz, R. W. Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Appl. Environ. Microbiol. 59, 170–176 (1993).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Singh, S. P., Klisch, M., Sinha, R. P. & Hader, D. P. Genome mining of mycosporine-like amino acid (MAA) synthesizing and non-synthesizing cyanobacteria: a bioinformatics study. Genomics 95, 120–128 (2010).
    CAS  PubMed  Article  Google Scholar 

    35.
    Osborn, A. R. et al. De novo synthesis of a sunscreen compound in vertebrates. Elife 4, e05919 (2015).
    PubMed Central  Article  PubMed  Google Scholar 

    36.
    Osborn, A. R. et al. Evolution and distribution of C7-cyclitol synthases in prokaryotes and eukaryotes. ACS Chem. Biol. 12, 979–988 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Carreto, J. I., Carignan, M. O. & Montoya, N. G. A high-resolution reverse-phase liquid chromatography method for the analysis of mycosporine-like amino acids (MAAs) in marine organisms. Mar. Biol. 146, 237–252 (2005).
    CAS  Article  Google Scholar 

    38.
    Bandaranayake, W. M. Mycosporines: are they nature’s sunscreens?. Nat. Prod. Rep. 15, 159–172 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Kultschar, B., Dudley, E., Wilson, S. & Llewellyn, C. A. Intracellular and extracellular metabolites from the cyanobacterium Chlorogloeopsis fritschii, PCC 6912, during 48 hours of UV-B exposure. Metabolites 9, 74 (2019).
    CAS  PubMed Central  Article  Google Scholar 

    40.
    Busch, A. W. U., WareJoncas, Z. & Montgomery, B. L. Tryptophan-rich sensory protein/translocator protein (TSPO) from cyanobacterium Fremyella diplosiphon binds a broad range of functionally relevant tetrapyrroles. Biochemistry 56, 73–84 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Prasanna, R. et al. Rediscovering cyanobacteria as valuable sources of bioactive compounds. Prikl. Biokhim. Mikrobiol. 46, 133–147 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    42.
    Kobayashi, M., Rodriguez, R., Lara, C. & Omata, T. Involvement of the C-terminal domain of an ATP-binding subunit in the regulation of the ABC-type nitrate/nitrite transporter of the cyanobacterium Synechococcus sp. strain PCC 7942. J. Biol. Chem. 272, 27197–27201 (1997).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Couradeau, E. et al. Bacteria increase arid-land soil surface temperature through the production of sunscreens. Nat. Commun. 7, 10373 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Llewellyn, C. A., Airs, R. L., Farnham, G. & Greig, C. Synthesis, regulation and degradation of carotenoids under low level UV-B radiation in the filamentous cyanobacterium Chlorogloeopsis fritschii PCC 6912. Front. Microbiol. 11, 163 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Anders, S., Pyl, P. T. & Huber, W. HTSeq: a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
    CAS  PubMed  Article  Google Scholar 

    46.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    47.
    Pinto, F., Pacheco, C. C., Ferreira, D., Moradas-Ferreira, P. & Tamagnini, P. Selection of suitable reference genes for RT-qPCR analyses in cyanobacteria. PLoS ONE 7, e34983 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17, 10–12 (2011).
    Google Scholar 

    49.
    Tjaden, B. De novo assembly of bacterial transcriptomes from RNA-seq data. Genome Biol. 16, 1 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    McClure, R. et al. Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res. 41, e140 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Liao, Y., Smyth, G. K. & Shi, W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41, e108 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    52.
    Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    A holistic approach in herbicide resistance research and management: from resistance detection to sustainable weed control

    1.
    Keeley, P. E., Carter, C. H. & Thullen, R. J. Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci. 35, 199–204 (1987).
    Article  Google Scholar 
    2.
    Christoffers, M. J. Genetic aspects of herbicide-resistant weed management. Weed Technol. 13, 647–652 (1999).
    Article  Google Scholar 

    3.
    Gressel, J. Low pesticide rates may hasten the evolution of resistance by increasing mutation frequencies. Pest Manage. Sci. 67, 253–257 (2011).
    CAS  Article  Google Scholar 

    4.
    Dominguez-Valenzuela, J. A. et al. First confirmation and characterization of target and non-target site resistance to glyphosate in Palmer amaranth (Amaranthus palmeri) from Mexico. Plant Physiol. Biochem. 115, 212–218 (2017).
    CAS  PubMed  Article  Google Scholar 

    5.
    Gaines, T. A. et al. Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc. Natl. Acad. Sci. 107, 1029–1034 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    6.
    Kaundun, S. S. et al. Evolution of target-site resistance to glyphosate in an Amaranthus palmeri population from Argentina and its expression at different plant growth temperatures. Plants 8, 512 (2019).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    7.
    Lacoste, M. & Powles, S. Beyond modelling: considering user-centred and post-development aspects to ensure the success of a decision support system. Comput. Electron. Agric. 121, 260–268 (2016).
    Article  Google Scholar 

    8.
    Culpepper, A., Whitaker, J., MacRae, A. & York, A. Distribution of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Georgia and North Carolina during 2005 and 2006. J. Cotton Sci. 12, 306–310 (2008).
    Google Scholar 

    9.
    Patzoldt, W. L., Tranel, P. J. & Hager, A. G. A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Sci. 53, 30–36 (2005).
    CAS  Article  Google Scholar 

    10.
    Kaundun, S., Hutchings, S. J., Dale, R., Bailly, G. & Glanfield, P. Syngenta ‘RISQ’ test: a novel in-season method for detecting resistance to post-emergence ACCase and ALS inhibitor herbicides in grass weeds. Weed Res. 51, 284–293 (2011).
    Article  Google Scholar 

    11.
    Koger, C. H. et al. Assessment of two nondestructive assays for detecting glyphosate resistance in horseweed (Conyza canadensis). Weed Sci. 53, 559–566 (2005).
    CAS  Article  Google Scholar 

    12.
    Norsworthy, J. K., Scott, R. C., Smith, K. L. & Oliver, L. R. Response of Northeastern Arkansas Palmer amaranth (Amaranthus palmeri) accessions to glyphosate. Weed Technol. 22, 408–413 (2008).
    CAS  Article  Google Scholar 

    13.
    Mithila, J., Hall, J. C., Johnson, W. G., Kelley, K. B. & Riechers, D. E. Evolution of resistance to auxinic herbicides: historical perspectives, mechanisms of resistance, and implications for broadleaf weed management in agronomic crops. Weed Sci. 59, 445–457 (2011).
    CAS  Article  Google Scholar 

    14.
    Spaunhorst, D. J. Utilization of dicamba for the control of glyphosate-resistant giant ragweed (Ambrosia trifida L.) and waterhemp (Amaranthus rudis Sauer.) Masters thesis, University of Missouri-Columbia, (2013).

    15.
    Steckel, L. E., Craig, C. C. & Hayes, R. M. Glyphosate-resistant horseweed (Conyza canadensis) control with glufosinate prior to planting no-till cotton (Gossypium hirsutum). Weed Technol. 20, 1047–1051 (2006).
    CAS  Article  Google Scholar 

    16.
    Lindsay, K. et al. PAM: decision support for long-term Palmer amaranth (Amaranthus palmeri) control. Weed Technol. 31, 915–927 (2017).
    Article  Google Scholar 

    17.
    Neve, P., Norsworthy, J. K., Smith, K. L. & Zelaya, I. A. Modelling evolution and management of glyphosate resistance in Amaranthus palmeri. Weed Res. 51, 99–112 (2011).
    Article  Google Scholar 

    18.
    Mohseni-Moghadam, M., Schroeder, J. & Ashigh, J. Mechanism of resistance and inheritance in glyphosate resistant Palmer amaranth (Amaranthus palmeri) populations from New Mexico, USA. Weed Sci. 61, 517–525 (2013).
    CAS  Article  Google Scholar 

    19.
    Singh, S., Singh, V., Lawton-Rauh, A., Bagavathiannan, M. V. & Roma-Burgos, N. EPSPS gene amplification primarily confers glyphosate resistance among Arkansas Palmer amaranth (Amaranthus palmeri) populations. Weed Sci. 66, 293–300 (2018).
    Article  Google Scholar 

    20.
    Beres, Z. T. et al. Target-site EPSPS Pro-106-Ser mutation in Conyza canadensis biotypes with extreme resistance to glyphosate in Ohio and Iowa, USA. Sci. Rep. 10, 7577. https://doi.org/10.1038/s41598-020-64458-7 (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    21.
    Palma-Bautista, C. et al. Reduced absorption and impaired translocation endows glyphosate resistance in Amaranthus palmeri harvested in glyphosate-resistant soybean from Argentina. J. Agric. Food Chem. 67, 1052–1060 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Brunharo, C. A. D. C. G., Morran, S., Martin, K., Moretti, M. L. & Hanson, B. D. EPSPS duplication and mutation involved in glyphosate resistance in the allotetraploid weed species Poa annua L.. Pest Manage. Sci. 75, 1663–1670. https://doi.org/10.1002/ps.5284 (2019).
    CAS  Article  Google Scholar 

    23.
    Chen, J. et al. Glyphosate resistance in Eleusine indica: EPSPS overexpression and P106A mutation evolved in the same individuals. Pestic. Biochem. Physiol. 164, 203–208. https://doi.org/10.1016/j.pestbp.2020.01.014 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Kaundun, S. S. An aspartate to glycine change in the carboxyl transferase domain of acetyl CoA carboxylase and non-target-site mechanism (s) confer resistance to ACCase inhibitor herbicides in a Lolium multiflorum population. Pest Manage. Sci. 66, 1249–1256 (2010).
    CAS  Article  Google Scholar 

    25.
    Lu, H., Yu, Q., Han, H., Owen, M. J. & Powles, S. B. Metribuzin resistance in a wild radish (Raphanus raphanistrum) population via both psbA gene mutation and enhanced metabolism. J. Agric. Food Chem. 67, 1353–1359 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Perotti, V. E. et al. A novel triple amino acid substitution in the EPSPS found in a high-level glyphosate-resistant Amaranthus hybridus population from Argentina. Pest Manage. Sci. 75, 1242–1251 (2019).
    CAS  Article  Google Scholar 

    27.
    Heap, I. & Duke, S. O. Overview of glyphosate-resistant weeds worldwide. Pest Manage. Sci. 74, 1040–1049 (2018).
    CAS  Article  Google Scholar 

    28.
    Koo, D.-H. et al. Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri. Proc. Natl. Acad. Sci. 115, 3332–3337 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Gaines, T. A., Patterson, E. L. & Neve, P. Molecular mechanisms of adaptive evolution revealed by global selection for glyphosate resistance. New Phytol. 223, 1770–1775 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    30.
    Gressel, J. Perspective: present pesticide discovery paradigms promote the evolution of resistance—learn from nature and prioritize multi-target site inhibitor design. Pest Manage. Sci. 76, 421–425. https://doi.org/10.1002/ps.5649 (2020).
    CAS  Article  Google Scholar 

    31.
    Liu, C. et al. A generalised individual-based algorithm for modelling the evolution of quantitative herbicide resistance in arable weed populations. Pest Manage. Sci. 73, 462–474 (2017).
    CAS  Article  Google Scholar 

    32.
    Ashworth, M. B., Walsh, M. J., Flower, K. C., Vila-Aiub, M. M. & Powles, S. B. Directional selection for flowering time leads to adaptive evolution in Raphanus raphanistrum (Wild radish). Evol. Appl. 9, 619–629 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Bagavathiannan, M. V. & Davis, A. S. An ecological perspective on managing weeds during the great selection for herbicide resistance. Pest Manage. Sci. 74, 2277–2286 (2018).
    CAS  Article  Google Scholar 

    34.
    Booth, B. D. & Swanton, C. J. Assembly theory applied to weed communities. Weed Sci. 50, 2–13 (2002).
    CAS  Article  Google Scholar 

    35.
    Délye, C., Jasieniuk, M. & Le Corre, V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 29, 649–658 (2013).
    PubMed  Article  CAS  Google Scholar 

    36.
    Heap, I. The International Herbicide-Resistant Weed Database (accessed 29 May 2020). www.weedscience.org.

    37.
    Carroll, S. P., Hendry, A. P., Reznick, D. N. & Fox, C. W. Evolution on ecological time-scales. Funct. Ecol. 21, 387–393 (2007).
    Article  Google Scholar 

    38.
    Neve, P. Gene drive systems: do they have a place in agricultural weed management?. Pest Manage. Sci. 74, 2671–2679 (2018).
    CAS  Article  Google Scholar 

    39.
    Partel, V., Charan Kakarla, S. & Ampatzidis, Y. Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Comput. Electron. Agric. 157, 339–350 (2019).
    Article  Google Scholar 

    40.
    Singh, V. et al. Chapter three—unmanned aircraft systems for precision weed detection and management: prospects and challenges. In Advances in Agronomy (ed. Sparks, D. L.) 93–134 (Academic Press, Cambridge, 2020).
    Google Scholar 

    41.
    Walsh, M. J. et al. Opportunities and challenges for harvest weed seed control in global cropping systems. Pest Manage. Sci. 74, 2235–2245 (2018).
    CAS  Article  Google Scholar 

    42.
    Daszak, P. et al. Interdisciplinary approaches to understanding disease emergence: the past, present, and future drivers of Nipah virus emergence. Proc. Natl. Acad. Sci. 110, 3681–3688 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Phillipson, J. & Symes, D. Science for sustainable fisheries management: an interdisciplinary approach. Fish. Res. 139, 61–64 (2013).
    Article  Google Scholar 

    44.
    Shaman, J., Solomon, S., Colwell, R. R. & Field, C. B. Fostering advances in interdisciplinary climate science. Proc. Natl. Acad. Sci. 110, 3653–3656 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Storch, I. et al. Evaluating the effectiveness of retention forestry to enhance biodiversity in production forests of Central Europe using an interdisciplinary, multi-scale approach. Ecol. Evol. 10, 1489–1509 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    46.
    Totsche, K. U. et al. Biogeochemical interfaces in soil: the interdisciplinary challenge for soil science. J. Plant Nutr. Soil Sci. 173, 88–99 (2010).
    CAS  Article  Google Scholar 

    47.
    Grimm, V. et al. CREAM: a European project on mechanistic effect models for ecological risk assessment of chemicals. Environ. Sci. Pollut. Res. 16, 614–617 (2009).
    Article  Google Scholar 

    48.
    Cousens, R. D. A question of logic: experiments cannot prove lack of an herbicide-resistance fitness penalty. Weed Sci. 68, 197–198. https://doi.org/10.1017/wsc.2020.24 (2020).
    Article  Google Scholar 

    49.
    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).
    PubMed  Article  Google Scholar 

    50.
    Wilensky, U. NetLogo. (accessed 20 May 2020). http://ccl.northwestern.edu/netlogo/ (1999).

    51.
    Patzoldt, W. L., Hager, A. G., McCormick, J. S. & Tranel, P. J. A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. Proc. Natl. Acad. Sci. U.S.A. 103, 12329–12334 (2006).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Rangani, G. et al. A novel single-site mutation in the catalytic domain of protoporphyrinogen oxidase IX (PPO) confers resistance to PPO-inhibiting herbicides. Front. Plant Sci. 10, 568. https://doi.org/10.3389/fpls.2019.00568 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    53.
    Salas, R. A. et al. Resistance to PPO-inhibiting herbicide in Palmer amaranth from Arkansas. Pest Manage. Sci. 72, 864–869 (2016).
    CAS  Article  Google Scholar  More

  • in

    Genetic origins and diversity of bushpigs from Madagascar (Potamochoerus larvatus, family Suidae)

    1.
    Hansford, J. et al. Early holocene human presence in Madagascar evidenced by exploitation of avian megafauna. Sci. Adv. 4, 1–7 (2018).
    Article  Google Scholar 
    2.
    Douglass, K. et al. A critical review of radiocarbon dates clarifies the human settlement of Madagascar. Quat. Sci. Rev. 221, 105878 (2019).
    Article  Google Scholar 

    3.
    Pierron, D. et al. Genomic landscape of human diversity across Madagascar. Proc. Natl. Acad. Sci. USA 114, E6498–E6506 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Anderson, A. et al. New evidence of megafaunal bone damage indicates late colonization of Madagascar. PLoS ONE 13, 1–14 (2018).
    Google Scholar 

    5.
    Blench, R. New palaeozoogeographical evidence for the settlement of Madagascar. Azania Archaeol. Res. Afr. 42, 69–82 (2007).
    Google Scholar 

    6.
    Beaujard, P. The first migrants to Madagascar and their introduction of plants: Linguistic and ethnological evidence. Azania 46, 169–189 (2011).
    Article  Google Scholar 

    7.
    Rakotozafy, L. M. A. & Goodman, S. M. Contribution à l’étude zooarchéologique de la région du Sud-ouest et extrême Sud de Madagascar sur la base des collections de l’ICMAA de l’Université d’Antananarivo. Taloha 14–15 (2005).

    8.
    Boivin, N., Crowther, A., Helm, R. & Fuller, D. Q. East Africa and Madagascar in the Indian Ocean world. J. World Prehistory 26, 213–281 (2013).
    Article  Google Scholar 

    9.
    Wright, H. T. et al. Early Seafarers of the Comoro Islands: The Dembeni Phase of the IXth-Xth Centuries AD. Azania Archaeol. Res. Africa 19, 13–59 (1984).
    Google Scholar 

    10.
    Krause, D. W. et al. Late cretaceous terrestrial vertebrates from Madagascar: Implications for Latin American biogeography 1. Ann. Missouri Bot. Gard. 93, 178–208 (2006).
    Article  Google Scholar 

    11.
    Roger, F., Ratovonjato, J., Vola, P. & Uilenberg, G. Ornithodoros porcinus ticks, bushpigs, and African swine fever in Madagascar. Exp. Appl. Acarol. 25, 263–269 (2001).
    CAS  PubMed  Article  Google Scholar 

    12.
    Sommer, S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front. Zool. 2, 16 (2005).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Venter, J., Ehlers-Smith, Y. & Seydack, A. Potamochoerus larvatus—Bushpig. 1–5 (The Red List of Mammals of South Africa, Swaziland and Lesotho, 2016).

    14.
    Andrianjakarivelo, V. Artiodactyla: Potamochoerus larvatus, Bush Pig. In The Natural History of Madagascar (eds Goodman, S. M. & Benstead, J. B.) 1365–1367 (The University of Chicago Press, Chicago, 2003).

    15.
    Grubb, P. The Afrotropical Suids (Phacochoerus, Hylochoerus, and Potamochoerus). In Pigs, Peccaries, and Hippos: Status Survey and Conservation Action Plan (ed. William, L. R. O.) 66–101 (International Union for the Conservation of Nature, Gland, 1993).
    Google Scholar 

    16.
    Forsyth, C. I. 5. On the Species of Potamochœrus, the Bush-Pigs of the Ethiopian Region. Proc. Zool. Soc. London 65, 359–370 (2009).
    Article  Google Scholar 

    17.
    Vercammen, P., Seydack, A. & Oliver, W. The Bush Pigs (Potamochoerus larvatus and P. porcus). In Pigs, Peccaries, and Hippos: Status Survey and Conservation Action Plan (ed. William, L. R. O.) 93–101 (IUCN SSC Pigs and Peccaries Specialist Group and IUCN SSC Hippo Specialist Group, Gland, 1993).
    Google Scholar 

    18.
    Funaioli, U. & Simonetta, A. M. The mammalian fauna of the somali republic: Status and conservation problems. Monit. Zool. Ital. Suppl. 1, 285–347 (1966).
    Google Scholar 

    19.
    Stuart, C. & Stuart, T. Chris and Tilde Stuart’s field guide to the mammals of southern Africa (R. Curtis Books Pub., Sanibel Island, 1988).
    Google Scholar 

    20.
    Blench, R. M. Archaeology, Language, and the African Past (Altamira Press, Lanham, 2006).
    Google Scholar 

    21.
    Alpers, E. A. Littoral society in Mozambique. In Cross Currents and Community Networks: The History of the Indian Ocean World (eds Ray, H. P. & Alpers, E. A.) 123–141 (Oxford University Press, Oxford, 2007).
    Google Scholar 

    22.
    Oura, C. A. L., Powell, P. P. & Parkhouse, R. M. E. African swine fever: A disease characterized by apoptosis. J. Gen. Virol. 79, 1427–1438 (1998).
    CAS  PubMed  Article  Google Scholar 

    23.
    Ravaomanana, J. et al. Assessment of interactions between African swine fever virus, bushpigs (Potamochoerus larvatus), Ornithodoros ticks and domestic pigs in north-western Madagascar. Transbound. Emerg. Dis. 58, 247–254 (2011).
    CAS  PubMed  Article  Google Scholar 

    24.
    Cecchi, G. & Mattioli, R. C. Global geospatial datasets for African trypanosomiasis management: a review. Progr. Afr. Trypanos. Tech. Sci. Ser. 9, 1–39 (2009).
    Google Scholar 

    25.
    Munangandu, H. M., Siamudaala, V., Munyeme, M. & Nalubamba, K. S. A review of ecological factors associated with the epidemiology of wildlife Trypanosomiasis in the Luangwa and Zambezi Valley Ecosystems of Zambia. Interdiscip. Perspect. Infect. Dis. 2012, 1–13 (2012).
    Article  Google Scholar 

    26.
    Gibbs, E. P. The public health risks associated with wild and feral swine. Rev. Sci. Tech. 16, 594–598 (1997).
    CAS  PubMed  Article  Google Scholar 

    27.
    Patton, D. & Gu, H. China has culled more than 900,000 pigs due to African swine fever. Reuters (2018).

    28.
    Ploshnitsa, A. I., Goltsman, M. E., Macdonald, D. W., Kennedy, L. J. & Sommer, S. Impact of historical founder effects and a recent bottleneck on MHC variability in Commander Arctic foxes (Vulpes lagopus). Ecol. Evol. 2, 165–180 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    Klein, J. Origin of major histocompatibility complex polymorphism: The trans-species hypothesis. Hum. Immunol. 19, 155–162 (1987).
    CAS  PubMed  Article  Google Scholar 

    30.
    Ho, C. S. et al. Nomenclature for factors of the SLA system, update 2008. Tissue Antigens 73, 307–315 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Renard, C. et al. The genomic sequence and analysis of the swine major histocompatibility complex. Genomics 88, 96–110 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Ka, S. et al. HLAscan: Genotyping of the HLA region using next-generation sequencing data. BMC Bioinform. 18, 1–11 (2017).
    Article  CAS  Google Scholar 

    33.
    Fan, W. et al. Shared class II MHC polymorphisms between humans and chimpanzees. Hum. Immunol. 26, 107–121 (1989).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Piertney, S. B. & Oliver, M. K. The evolutionary ecology of the major histocompatibility complex. Heredity (Edinb). 96, 7–21 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Flajnik, M. F., Canel, C., Kramer, J. & Kasahara, M. Which came first, MHC class I or class II?. Immunogenetics 33, 295–300 (1991).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Borghans, J. A. M., Beltman, J. B. & De Boer, R. J. MHC polymorphism under host-pathogen coevolution. Immunogenetics 55, 732–739 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Spurgin, L. G. & Richardson, D. S. How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc. Biol. Sci. 277, 979–988 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Hughes, A. L. & Nei, M. Nucleotide substitution at major histocompatibility complex class II loci: Evidence for overdominant selection. Proc. Natl. Acad. Sci. 86, 958–962 (1989).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Hughes, A. L. & Nei, M. Evolution of the major histocompatibility complex: Independent origin of nonclassical class I genes in different groups of mammals. Mol. Biol. Evol. 6, 559–579 (1989).
    CAS  PubMed  Google Scholar 

    40.
    Penn, D. J. & Ilmonen, P. Major histocompatibility complex (MHC). in Encyclopedia of Life Sciences 1–7 (John Wiley & Sons, Ltd, 2001). https://doi.org/10.1038/npg.els.0000919.

    41.
    Bonneaud, C., Pérez-Tris, J., Federici, P., Chastel, O. & Sorci, G. Major histocompatibility alleles associated with local resistance to malaria in a passerine. Evolution (N. Y.). 60, 383 (2006).
    CAS  Google Scholar 

    42.
    Schatz, G. E. Endemism in the Malagasy flora. In Diversity and Endemism in Madagascar (eds Lourenço, W. R. & Goodman, S. M.) 1–10 (2000).

    43.
    Lowden, S. et al. Application of Sus scrofa microsatellite markers to wild suiformes. Conserv. Genet. 3, 347–350 (2002).
    CAS  Article  Google Scholar 

    44.
    Gongora, J., Morales, S., Bernal, J. E. & Moran, C. Phylogenetic divisions among Collared peccaries (Pecari tajacu) detected using mitochondrial and nuclear sequences. Mol. Phylogenet. Evol. 41, 1–11 (2006).
    CAS  PubMed  Article  Google Scholar 

    45.
    Lee, C. et al. Inferring the evolution of the major histocompatibility complex of wild pigs and peccaries using hybridisation DNA capture-based sequencing. Immunogenetics 70, 401–417 (2018).
    CAS  PubMed  Article  Google Scholar 

    46.
    Kim, K. I. et al. Phylogenetic relationships of Asian and European pig breeds determined by mitochondrial DNA D-loop sequence polymorphism. Anim. Genet. 33, 19–25 (2002).
    CAS  PubMed  Article  Google Scholar 

    47.
    Irwin, D. M., Kocher, T. D. & Wilson, A. C. Evolution of the Cytochrome b gene of mammals. J. Mol. Evol. 32, 128–144 (1991).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Giuffra, E. et al. The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154, 1785–1791 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Ishiguro, N., Naya, Y., Horiuchi, M. & Shinagawa, M. A Genetic method to distinguish crossbred inobuta from Japanese Wild Boars. Zool. Sci. 19, 1313–1319 (2002).
    CAS  Article  Google Scholar 

    50.
    Fajardo, V. et al. Differentiation of European wild boar (Sus scrofa scrofa) and domestic swine (Sus scrofa domestica) meats by PCR analysis targeting the mitochondrial D-loop and the nuclear melanocortin receptor 1 (MC1R) genes. Meat Sci. 78, 314–322 (2008).
    CAS  PubMed  Article  Google Scholar 

    51.
    Firestone, K. B. Phylogenetic relationships among quolls revisited: The mtDNA control region as a useful tool. J. Mamm. Evol. 7, 1–22 (2000).
    Article  Google Scholar 

    52.
    Randi, E. et al. Evolution of the mitochondrial DNA control region and cytochrome b genes and the inference of phylogenetic relationships in the avian genus Lophura (Galliformes). Mol. Phylogenet. Evol. 19, 187–201 (2001).
    CAS  PubMed  Article  Google Scholar 

    53.
    Jiang, J. et al. Mitochondrial genome and nuclear markers provide new insight into the evolutionary history of macaques. PLoS ONE 11, 1–19 (2016).
    Google Scholar 

    54.
    Chen, L. et al. Intraspecific mitochondrial genome comparison identified CYTB as a high-resolution population marker in a new pest Athetis lepigone. Genomics 111, 744–752 (2019).
    CAS  PubMed  Article  Google Scholar 

    55.
    Gongora, J. et al. Phylogenetic relationships of Australian and New Zealand feral pigs assessed by mitochondrial control region sequence and nuclear GPIP genotype. Mol. Phylogenet. Evol. 33, 339–348 (2004).
    CAS  PubMed  Article  Google Scholar 

    56.
    Wang, J. et al. Phylogenetic relationships of pig breeds from Shandong province of China and their influence by modern commercial breeds by analysis of mitochondrial DNA sequences. Ital. J. Anim. Sci. 9, 248–254 (2010).

    57.
    García, G., Vergara, J. & Lombardi, R. Genetic characterization and phylogeography of the wild boar Sus scrofa introduced into Uruguay. Genet. Mol. Biol. 34, 329–337 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Lopez, J., Hurwood, D., Dryden, B. & Fuller, S. Feral pig populations are structured at fine spatial scales in tropical Queensland, Australia. PLoS One 9, e91657 (2014).

    59.
    Dun, G., Li, X., Cao, H., Zhou, R. & Li, L. Variations of melanocortin receptor 1 (MC1R) gene in three pig breeds. J. Genet. Genomics 34, 777–782 (2007).
    CAS  PubMed  Article  Google Scholar 

    60.
    Chang, A. C. Y. et al. Phenotype-based identification of host genes required for replication of African swine fever virus. J. Virol. 80, 8705–8717 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Bitzer, A., Basler, M. & Groettrup, M. Chaperone BAG6 is dispensable for MHC class I antigen processing and presentation. Mol. Immunol. 69, 99–105 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Stam, M. et al. Centromeric/pericentromeric junction within the MHC locus on chromosome 7 in pig. In XXXI Conference of the International Society for Animal Genetics, Amsterdam, Netherlands (2008).

    63.
    Groenen, M. A. M. et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491, 393–398 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Stucky, B. J. SeqTrace: A graphical tool for rapidly processing DNA sequencing chromatograms. J. Biomol. Tech. 23, 90–93 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).
    CAS  PubMed  Article  Google Scholar 

    66.
    Watanobe, T. et al. Genetic relationship and distribution of the Japanese wild boar (Sus scrofa leucomystax) and Ryukyu wild boar (Sus scrofa riukiuanus) analysed by mitochondrial DNA. Mol. Ecol. 8, 1509–1512 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Gongora, J. et al. Rethinking the evolution of extant sub-Saharan African suids (Suidae, Artiodactyla). Zool. Scr. 40, 327–335 (2011).
    Article  Google Scholar 

    68.
    Larson, G. et al. Phylogeny and ancient DNA of Sus provides insights into neolithic expansion in Island Southeast Asia and Oceania. Proc. Natl. Acad. Sci. 104, 4834–4839 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    69.
    Mona, S., Randi, E. & Tommaseo-Ponzetta, M. Evolutionary history of the genus Sus inferred from Cytochrome b sequences. Mol. Phylogenet. Evol. 45, 757–762 (2007).
    CAS  PubMed  Article  Google Scholar 

    70.
    Niebert, M. & Tönjes, R. R. Evolutionary spread and recombination of porcine endogenous retroviruses in the suiformes. J. Virol. 79, 649–654 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    71.
    Gongora, J. & Moran, C. Nuclear and mitochondrial evolutionary analyses of Collared, White-lipped, and Chacoan peccaries (Tayassuidae). Mol. Phylogenet. Evol. 34, 181–189 (2005).
    CAS  PubMed  Article  Google Scholar 

    72.
    Hassanin, A. et al. Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. C. R. Biol. 335, 32–50 (2012).
    PubMed  Article  Google Scholar 

    73.
    Wu, G. S. et al. Population phylogenomic analysis of mitochondrial DNA in wild boars and domestic pigs revealed multiple domestication events in East Asia. Genome Biol. 8, R245 (2007).

    74.
    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180 (2011).
    Article  Google Scholar 

    76.
    Gadagkar, S. R., Rosenberg, M. S. & Kumar, S. Inferring species phylogenies from multiple genes: Concatenated sequence tree versus consensus gene tree. J. Exp. Zool. B. Mol. Dev. Evol. 304, 64–74 (2005).
    PubMed  Article  CAS  Google Scholar 

    77.
    Tonini, J., Moore, A., Stern, D., Shcheglovitova, M. & Ortí, G. Concatenation and species tree methods exhibit Statistically indistinguishable accuracy under a range of simulated conditions. PLoS Curr. 7, 1–15 (2015).
    Google Scholar 

    78.
    Arcila, D., Petry, P. & Ortí, G. Phylogenetic relationships of the family Tarumaniidae (Characiformes) based on nuclear and mitochondrial data. Neotrop. Ichthyol. 16, 16–19 (2018).
    Article  Google Scholar 

    79.
    Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).
    MathSciNet  MATH  Article  Google Scholar 

    81.
    Keane, T. M., Creevey, C. J., Pentony, M. M., Naughton, T. J. & Mclnerney, J. O. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol. Biol. 6, 29 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    82.
    Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
    Article  Google Scholar 

    83.
    Weaver, S. et al. Datamonkey 2.0: A modern web application for characterizing selective and other evolutionary processes. Mol. Biol. Evol. 35, 773–777 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    84.
    Nei, M. & Gojobori, T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3, 418–426 (1986).
    CAS  PubMed  PubMed Central  Google Scholar 

    85.
    Murrell, B. et al. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 8, e1002764 (2012).

    86.
    Pond, S. L. K. & Frost, S. D. W. Not so different after all: A comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 22, 1208–1222 (2005).
    CAS  Article  Google Scholar 

    87.
    Awadi, A. et al. Positive selection and climatic effects on MHC class II gene diversity in hares (Lepus capensis) from a steep ecological gradient. Sci. Rep. 8, 11514 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    88.
    Garrigan, D. & Hedrick, P. W. Perspective: Detecting adaptive molecular polymorphism: Lessons from the MHC. Evolution 57, 1707–1722 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    89.
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    90.
    Tamura, K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol. Biol. Evol. 9, 678–687 (1992).
    CAS  PubMed  Google Scholar 

    91.
    Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).
    ADS  CAS  PubMed  Article  Google Scholar 

    92.
    Jukes, T. H. & Cantor, C. R. Evolution of protein molecules. In Mammalian Protein Metabolism, 21–132 (Elsevier, 1969). https://doi.org/10.1016/B978-1-4832-3211-9.50009-7.

    93.
    Bouckaert, R. et al. BEAST 2: A software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    94.
    Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    95.
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2016).
    Google Scholar 

    96.
    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mss075 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    97.
    Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1006650 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    98.
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    99.
    Rambaut, A. FigTree v1.4.3. Molecular evolution, phylogenetics and epidemiology (2016).

    100.
    Radimilahy, C. Mahilaka: An Archaeological Investigation of an Early Town in Northwestern Madagascar (PhD Dissertation) (Acta Universitatis Upsaliensis, Uppsala, 1998).
    Google Scholar 

    101.
    Walsh, M. T. Island subsistence: Hunting, trapping and the translocation of wildlife in the Western Indian Ocean. Azania Archaeol. Res. Africa 42, 83–113 (2007).
    Google Scholar 

    102.
    Li, J. et al. Artificial selection of the melanocortin receptor 1 gene in Chinese domestic pigs during domestication. Heredity (Edinb). 105, 274–281 (2010).
    CAS  PubMed  Article  Google Scholar 

    103.
    Kijas, J. M. H. et al. Melanocortin receptor 1 (MC1R) mutations and coat color in pigs. Genetics 150, 1177–1185 (1998).

    104.
    Arauco-Shapiro, G., Schumacher, K. I., Boersma, D. & Bouzat, J. L. The role of demographic history and selection in shaping genetic diversity of the Galápagos penguin (Spheniscus mendiculus). PLoS ONE 15, 1–20 (2020).
    Article  CAS  Google Scholar 

    105.
    Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    106.
    Froeschke, G. & Sommer, S. MHC Class II DRB variability and parasite load in the striped mouse (Rhabdomys pumilio) in the Southern Kalahari. Mol. Biol. Evol. 22, 1254–1259 (2005).
    CAS  PubMed  Article  Google Scholar 

    107.
    Froeschke, G. & Sommer, S. Insights into the complex associations between MHC Class II DRB polymorphism and multiple gastrointestinal parasite infestations in the striped mouse. PLoS ONE 7, e31820 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    108.
    Yanagida, T. et al. Genetics of the pig tapeworm in Madagascar reveal a history of human dispersal and colonization. PLoS One 9, e109002 (2014).

    109.
    Braae, U. C. et al. Taenia solium taeniosis/cysticercosis and the co-distribution with schistosomiasis in Africa. Parasites Vectors 8, 1–14 (2015).
    Article  Google Scholar 

    110.
    Macpherson, C. N. L. & Craig, P. S. Trichinella in Africa and the nelsoni affair. In Parasitic Helminths and Zoonoses in Africa (eds Macpherson, C. & Craig, P.) 83–100 (Springer, Netherlands, 1991). https://doi.org/10.1007/978-94-011-3054-7_4.

    111.
    Sarovich, D. S. et al. Phylogenomic analysis reveals an Asian origin for African Burkholderia pseudomallei and further supports Melioidosis Endemicity in Africa. mSphere 1, 1–12 (2016).

    112.
    Kaesler, E. et al. Shared evolutionary origin of major histocompatibility complex polymorphism in sympatric lemurs. Mol. Ecol. 26, 5629–5645 (2017).
    CAS  PubMed  Article  Google Scholar 

    113.
    Kloch, A., Babik, W., Bajer, A., Siński, E. & Radwan, J. Effects of an MHC-DRB genotype and allele number on the load of gut parasites in the bank vole Myodes glareolus. Mol. Ecol. 19(Suppl 1), 255–265 (2010).
    PubMed  Article  Google Scholar 

    114.
    Kusza, S. et al. Transcription specificity of the class Ib genes SLA-6, SLA-7 and SLA-8 of the swine major histocompatibility complex and comparison with class Ia genes. Anim. Genet. 42, 510–520 (2011).
    CAS  PubMed  Article  Google Scholar 

    115.
    Chardon, P. et al. Sequence of the swine major histocompatibility complex region containing all non-classical class I genes. Tissue Antigens 57, 55–65 (2001).
    CAS  PubMed  Article  Google Scholar 

    116.
    Le Gal, F. A. et al. HLA-G-mediated inhibition of antigen-specific cytotoxic T lymphocytes. Int. Immunol. 11, 1351–1356 (1999).
    PubMed  Article  Google Scholar 

    117.
    Fournel, S. et al. Cutting edge: Soluble HLA-G1 triggers CD95/CD95 ligand-mediated apoptosis in activated CD8+ cells by interacting with CD8. J. Immunol. 164, 6100–6104 (2000).
    CAS  PubMed  Article  Google Scholar 

    118.
    Hunt, J. S., Langat, D. K., McIntire, R. H. & Morales, P. J. The role of HLA-G in human pregnancy. Reprod. Biol. Endocrinol. 4, 1–8 (2006).
    Article  CAS  Google Scholar 

    119.
    Minami, R. et al. BAG-6 is essential for selective elimination of defective proteasomal substrates. J. Cell Biol. 190, 637–650 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    120.
    Jori, F. & Bastos, A. D. S. Role of wild suids in the epidemiology of African swine fever. EcoHealth 6, 296–310 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    121.
    Brown, V. R. & Bevins, S. N. A Review of African Swine fever and the potential for introduction into the United States and the possibility of subsequent establishment in feral swine and native ticks. Front. Vet. Sci. 5, 1–18 (2018).
    ADS  Article  Google Scholar 

    122.
    Fowler, M. E. Husbandry and diseases of captive wild swine and peccaries. Rev. Sci. Tech. 15, 141–154 (1996).
    CAS  PubMed  Article  PubMed Central  Google Scholar  More