A green wave of saltmarsh productivity predicts the timing of the annual cycle in a long-distance migratory shorebird
1.
Helm, B. et al. Annual rhythms that underlie phenology: Biological time-keeping meets environmental change. Proc. R. Soc. B 280, 20130016 (2013).
PubMed Article PubMed Central Google Scholar
2.
McNamara, J. M., Barta, Z., Klaassen, M. & Bauer, S. Cues and the optimal timing of activities under environmental changes. Ecol. Lett. 14, 1183–1190 (2011).
PubMed PubMed Central Article Google Scholar
3.
Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389 (2002).
ADS CAS PubMed Article PubMed Central Google Scholar
4.
Diez, J. M. et al. Forecasting phenology: From species variability to community patterns. Ecol. Lett. 15, 545–553 (2012).
PubMed Article Google Scholar
5.
Post, E., Pedersen, C., Wilmers, C. C. & Forchhammer, M. C. Warming, plant phenology and the spatial dimension of trophic mismatch for large herbivores. Proc. R. Soc. Lond. B Biol. Sci. 275, 2005–2013 (2008).
Google Scholar
6.
Primack, R. B. et al. Spatial and interspecific variability in phenological responses to warming temperatures. Biol. Conserv. 142, 2569–2577 (2009).
Article Google Scholar
7.
Fryxell, J. M. & Sinclair, A. R. E. Causes and consequences of migration by large herbivores. Trends Ecol. Evol. 3, 237–241 (1988).
CAS PubMed Article Google Scholar
8.
Levey, D. J. & Stiles, F. G. Evolutionary precursors of long-distance migration: Resource availability and movement patterns in neotropical landbirds. Am. Nat. 140, 447–476 (1992).
Article Google Scholar
9.
Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: Evolution and determinants. Oikos 103, 247–260 (2003).
Article Google Scholar
10.
Dawson, A. Control of the annual cycle in birds: Endocrine constraints and plasticity in response to ecological variability. Philos. Trans. R. Soc. B Biol. Sci. 363, 1621–1633 (2008).
Article Google Scholar
11.
Buehler, D. & Piersma, T. Travelling on a budget: Predictions and ecological evidence for bottlenecks in the annual cycle of long-distance migrants. Philos. Trans. R. Soc. B-Biol. Sci. 363, 247–266 (2008).
Article Google Scholar
12.
Kokko, H. Competition for early arrival in migratory birds. J. Anim. Ecol. 68, 940–950 (1999).
Article Google Scholar
13.
Moller, A. P. Heritability of arrival date in a migratory bird. Proc. R. Soc. Lond. B Biol. Sci. 268, 203–206 (2001).
CAS Article Google Scholar
14.
Saino, N. et al. Ecological conditions during winter predict arrival date at the breeding quarters in a trans-Saharan migratory bird. Ecol. Lett. 7, 21–25 (2004).
Article Google Scholar
15.
Studds, C. E. & Marra, P. P. Rainfall-induced changes in food availability modify the spring departure programme of a migratory bird. Proc. R. Soc. B Biol. Sci. 278, 3437–3443 (2011).
Article Google Scholar
16.
Conklin, J. R., Battley, P. F., Potter, M. A. & Fox, J. W. Breeding latitude drives individual schedules in a trans-hemispheric migrant bird. Nat. Commun. 1, 67 (2010).
ADS PubMed Article CAS Google Scholar
17.
Holmes, R. T. Latitudinal differences in the breeding and molt schedules of Alaskan Red-backed Sandpipers (Calidris alpina). Condor 73, 93–99 (1971).
Article Google Scholar
18.
Briedis, M., Hahn, S. & Adamík, P. Cold spell en route delays spring arrival and decreases apparent survival in a long-distance migratory songbird. BMC Ecol. 17, 11 (2017).
PubMed PubMed Central Article Google Scholar
19.
Sandercock, B. K., Lank, D. B. & Cooke, F. Seasonal declines in the fecundity of arctic-breeding sandpipers: Different tactics in two species with an invariant clutch size. J. Avian Biol. 30, 460–468 (1999).
Article Google Scholar
20.
Langin, K. M. & P. P. M. ,. Breeding latitude and timing of spring migration in songbirds crossing the Gulf of Mexico. J. Avian Biol. 40, 309–316 (2009).
Article Google Scholar
21.
Lappalainen, J. & Tarkan, A. S. Latitudinal gradients in onset date, onset temperature and duration of spawning of roach. J. Fish Biol. 70, 441–450 (2007).
Article Google Scholar
22.
Ben-David, M. Timing of reproduction in wild mink: The influence of spawning Pacific salmon. Can. J. Zool. 75, 376–382 (1997).
Article Google Scholar
23.
Burr, Z. M. et al. Later at higher latitudes: Large-scale variability in seabird breeding timing and synchronicity. Ecosphere 7, e01283 (2016).
Article Google Scholar
24.
Briedis, M. et al. Breeding latitude leads to different temporal but not spatial organization of the annual cycle in a long-distance migrant. J. Avian Biol. 47, 743–748 (2016).
Article Google Scholar
25.
Lourenço, P. M. et al. Repeatable timing of northward departure, arrival and breeding in Black-tailed Godwits Limosa l. limosa, but no domino effects. J. Ornithol. 152, 1023–1032 (2011).
Article Google Scholar
26.
Armstrong, J. B., Takimoto, G., Schindler, D. E., Hayes, M. M. & Kauffman, M. J. Resource waves: Phenological diversity enhances foraging opportunities for mobile consumers. Ecology 97, 1099–1112 (2016).
PubMed Article Google Scholar
27.
Renfrew, R. B. et al. Phenological matching across hemispheres in a long-distance migratory bird. Divers. Distrib. 19, 1008–1019 (2013).
Article Google Scholar
28.
Visser, M. E., te Marvelde, L. & Lof, M. E. Adaptive phenological mismatches of birds and their food in a warming world. J. Ornithol. 153, 75–84 (2012).
Article Google Scholar
29.
Bertness, M. D. & Ellison, A. M. Determinants of pattern in a New England salt marsh plant community. Ecol. Monogr. 57, 129–147 (1987).
Article Google Scholar
30.
Hoekstra, J. M., Molnar, J. L., Jennings, M., Revenga, C. & Spalding, M. D. The Atlas of Global Conservation, Vol. 67 (University of California Press, California, 2010).
Google Scholar
31.
Kirwan, M. L., Guntenspergen, G. R. & Morris, J. T. Latitudinal trends in Spartina alterniflora productivity and the response of coastal marshes to global change. Glob. Change Biol. 15, 1982–1989 (2009).
ADS Article Google Scholar
32.
Lowther, P. E., Douglas, H. D. III. & Gratto-Trevor, C. L. Willet (Tringa semipalmata). Birds N. Am. Online https://doi.org/10.2173/bna.579 (2001).
Article Google Scholar
33.
Tomkins, I. R. the summer schedule of the Eastern Willet in Georgia. Wilson Bull. 27, 291–296 (1955).
Google Scholar
34.
Howe, M. A. Social organization in a nesting population of eastern Willets (Catoptrophorus semipalmatus). Auk 99, 88–102 (1982).
Article Google Scholar
35.
Gratto-Trevor, C. L. The North American Bander’s Manual for Banding Shorebirds (North Am. Band. Counc. Publ. Comm, Point Reyes CA, 2004).
Google Scholar
36.
Minton, C. et al. Initial results from light level geolocator trials on Ruddy Turnstone Arenaria interpres reveal unexpected migration route. Wader Study Group Bull. 117, 9–14 (2010).
Google Scholar
37.
Gosler, A. G. Birds in the hand. In Bird Ecology and Conservation: A Handbook of Techniques (eds Sutherland, W. J. et al.) 85–118 (Oxford University Press, Oxford, 2004).
Google Scholar
38.
Sumner, M. D., Wotherspoon, S. J. & Hindell, M. A. Bayesian estimation of animal movement from archival and satellite tags. PLoS ONE 4, e7324 (2009).
ADS PubMed PubMed Central Article CAS Google Scholar
39.
R Core Team. R: A Language and Environment for Statistical Computing (The R Foundation, Vienna, 2020).
Google Scholar
40.
Lisovski, S. et al. Light-level geolocator analyses: A user’s guide. J. Anim. Ecol. 89, 221–236 (2020).
PubMed Article Google Scholar
41.
Lisovski, S., Bauer, S., Emmenegger, T. & Lisovski, M. S. Package ‘GeoLight’ (2012).
42.
Wotherspoon, S., Sumner, M. & Lisovski, S. TwGeos: Basic data processing for light-level geolocation archival tags. Version 00-1 (2016).
43.
Tonra, C. M. et al. Concentration of a widespread breeding population in a few critically important nonbreeding areas: Migratory connectivity in the Prothonotary Warbler. Condor 121, duz019 (2019).
Article Google Scholar
44.
Porter, R. & Smith, P. A. Techniques to improve the accuracy of location estimation using light-level geolocation to track shorebirds. Wader Study Group Bull. 120, 147–158 (2014).
Google Scholar
45.
Battley, P. F. & Conklin, J. R. Geolocator wetness data accurately detect periods of migratory flight in two species of shorebird. Wader Study 124, 112–119 (2017).
Article Google Scholar
46.
Burger, J. et al. Migration and over-wintering of Red Knots (Calidris canutus rufa) along the Atlantic Coast of the United States. Condor 114, 302–313 (2012).
Article Google Scholar
47.
Cooper, N. W., Hallworth, M. T. & Marra, P. P. Light-level geolocation reveals wintering distribution, migration routes, and primary stopover locations of an endangered long-distance migratory songbird. J. Avian Biol. 48, 209–219 (2017).
Article Google Scholar
48.
Lisovski, S. et al. Geolocation by light: Accuracy and precision affected by environmental factors. Methods Ecol. Evol. 3, 603–612 (2012).
Article Google Scholar
49.
Burger, J., Niles, L. J., Porter, R. R. & Dey, A. D. Using geolocator data to reveal incubation periods and breeding biology in Red Knots Calidris canutus rufa. Wader Study Group Bull. 119, 26–36 (2012).
Google Scholar
50.
Bulla, M. et al. Unexpected diversity in socially synchronized rhythms of shorebirds. Nature 540, 109–113 (2016).
ADS CAS PubMed Article Google Scholar
51.
Bates, D. et al. Package ‘lme4’. Version 1, 17 (2018).
Google Scholar
52.
Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: Estimated marginal means, aka least-squares means. R Package Version 1, 3 (2018).
Google Scholar
53.
Sullivan, B. L. et al. eBird: A citizen-based bird observation network in the biological sciences. Biol. Conserv. 142, 2282–2292 (2009).
Article Google Scholar
54.
Spano, D., Cesaraccio, C., Duce, P. & Snyder, R. L. Phenological stages of natural species and their use as climate indicators. Int. J. Biometeorol. 42, 124–133 (1999).
ADS Article Google Scholar
55.
Oregon State University Integrated Plant Protection Center. http://pnwpest.org/US/ (2015).
56.
Baskerville, G. L. & Emin, P. Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology 50, 514–517 (1969).
Article Google Scholar
57.
van Wijk, R. E. et al. Individually tracked geese follow peaks of temperature acceleration during spring migration. Oikos 121, 655–664 (2012).
Article Google Scholar
58.
Kölzsch, A. et al. Forecasting spring from afar? Timing of migration and predictability of phenology along different migration routes of an avian herbivore. J. Anim. Ecol. 84, 272–283 (2015).
PubMed Article Google Scholar
59.
Fitzjarrald, D. R., Acevedo, O. C. & Moore, K. E. Climatic consequences of leaf presence in the eastern United States. J. Clim. 14, 598–614 (2001).
ADS Article Google Scholar
60.
Burger, J. & Shisler, J. Nest-site selection of Willets in a New Jersey salt marsh. Wilson Bull. 90, 599–607 (1978).
Google Scholar
61.
Turner, R. E. Geographic Variations in Salt Marsh Macrophyte Production: A Review http://agris.fao.org/agris-search/search/display.do?f=2012/OV/OV201207875007875.xml;US19770198479 (1976).
62.
Pezeshki, S. R. & DeLaune, R. D. A comparative study of above-ground productivity of dominant U.S. Gulf Coast marsh species. J. Veg. Sci. 2, 331–338 (1991).
Article Google Scholar
63.
Morris, J., Sundberg, K. & Hopkinson, C. Salt marsh primary production and its responses to relative sea level and nutrients in estuaries at plum Island, Massachusetts, and North Inlet, South Carolina, USA. Oceanography 26, 78–84 (2013).
Article Google Scholar
64.
Dai, T. & Wiegert, R. G. Ramet population dynamics and net aerial primary productivity of Spartina alterniflora. Ecology 77, 276–288 (1996).
Article Google Scholar
65.
Gallagher, J. L., Reimold, R. J., Linthurst, R. A. & Pfeiffer, W. J. Aerial production, mortality, and mineral accumulation-export dynamics in Spartina alterniflora and Juncus roemerianus plant stands in a Georgia Salt Marsh. Ecology 61, 303–312 (1980).
Article Google Scholar
66.
Stroud, L. M. & Cooper, A. W. Color-Infrared Aerial Photographic Interpretation and Net Primary Productivity of a Regularly-Flooded North Carolina Salt Marsh http://repository.lib.ncsu.edu/dr/handle/1840.4/1681 (1969).
67.
Reidenbaugh, T. G. Productivity of cordgrass, Spartina alterniflora, estimated from live standing crops, mortality, and leaf shedding in a Virginia salt marsh. Estuaries 6, 57–65 (1983).
Article Google Scholar
68.
Squiers, E. R. & Good, R. E. Seasonal changes in the productivity, caloric content, and chemical composition of a population of salt-marsh cord-grass (Spartina alterniflora). Chesap. Sci. 15, 63–71 (1974).
Article Google Scholar
69.
Morris, J. & Sundberg, K. Aboveground biomass data from control sites in a Spartina alterniflora-dominated salt marsh at Law’s Point, Rowley River, Plum Island Ecosystem, MA (2012).
70.
Cranford, P. J., Gordon, D. C. & Jarvis, C. M. Measurement of cordgrass, Spartina alterniflora, production in a macrotidal estuary, Bay of Fundy. Estuaries 12, 27–34 (1989).
Article Google Scholar
71.
Hatcher, B. G. & Mann, K. H. Above-ground production of marsh cordgrass (Spartina alterniflora) near the northern end of its range. J. Fish. Board Can. 32, 83–87 (1975).
Article Google Scholar
72.
Rohatgi, A. Web Plot Digitizer, V 3.9 http://arohatgi.info/WebPlotDigitizer/ (2015).
73.
Morris, J. T. & Haskin, B. A 5-yr record of aerial primary production and stand characteristics of Spartina alterniflora. Ecology 71, 2209–2217 (1990).
Article Google Scholar
74.
Curtin, F. Meta-analysis combining parallel and crossover trials using generalised estimating equation method. Res. Synth. Methods 8, 312–320 (2017).
PubMed Article PubMed Central Google Scholar
75.
Müller, J. & Hothorn, T. Maximally selected two-sample statistics as a new tool for the identification and assessment of habitat factors with an application to breeding-bird communities in oak forests. Eur. J. For. Res. 123, 219–228 (2004).
Article Google Scholar
76.
Tomkins, I. R. The Willets of Georgia and South Carolina. Wilson Bull. 77, 151–167 (1965).
Google Scholar
77.
Morrison, R. I. G. & Ross, R. K. Atlas of Nearctic Shorebirds on the Coast of South America (Canadian Wildlife Service, Ottawa, 1989).
Google Scholar
78.
Merchant, D. et al. Shorebird Conservation in Brazil and Delaware Bay. In North American Migratory Bird Conservation Act Annual Report 2016–2017 (2017).
79.
Alerstam, T. & Hedenström, A. The development of bird migration theory. J. Avian Biol. 29, 343–369 (1998).
Article Google Scholar
80.
Meltofte, H., Piersma, T., Boyd, H., Mccaffery, B. J. & Tulp, I. Y. M. Effects of climate variation on the breeding ecology of Artic shorebirds. Meddelelser Om Groenl. Biosci. 59, 45 (2007).
Google Scholar
81.
Willson, M. F. & Womble, J. N. Vertebrate exploitation of pulsed marine prey: A review and the example of spawning herring. Rev. Fish Biol. Fish. 16, 183–200 (2006).
Article Google Scholar
82.
Mizrahi, D. S. & Peters, K. A. Relationships between sandpipers and horseshoe crab in Delaware Bay: A synthesis. In Biology and Conservation of Horseshoe Crabs (eds Tanacredi, J. et al.) 65–87 (Springer, Berlin, 2009).
Google Scholar
83.
Johansson, J. & Jonzén, N. Effects of territory competition and climate change on timing of arrival to breeding grounds: A game-theory approach. Am. Nat. 179, 463–474 (2012).
PubMed Article Google Scholar
84.
Verhulst, S. & Nilsson, J. -Å. The timing of birds’ breeding seasons: A review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. B Biol. Sci. 363, 399–410 (2008).
Article Google Scholar
85.
Hatchwell, B. J. An Experimental study of the effects of timing of breeding on the reproductive success of common guillemots (Uria aalge). J. Anim. Ecol. 60, 721–736 (1991).
Article Google Scholar
86.
McKinnon, L. et al. Lower predation risk for migratory birds at high latitudes. Science 327, 326–327 (2010).
87.
Ruskin, K. J. et al. Demographic analysis demonstrates systematic but independent spatial variation in abiotic and biotic stressors across 59 percent of a global species range. The Auk 134, 903–916 (2017).
88.
Karagicheva, J. et al. Seasonal time keeping in a long-distance migrating shorebird. J. Biol. Rhythms 5, 509–521 (2016).
Article Google Scholar
89.
Daan, S., Dijkstra, C., Drent, R. & Meijer, T. Food supply and the annual timing of avian reproduction. In Proceedings of the International Ornithological Congress vol. 19 392–407 (University of Ottawa Press, Ottawa, 1988).
90.
Krebs, C. T. & Burns, K. A. Long-term effects of an oil spill on populations of the salt-marsh crab Uca pugnax. Science 197, 484–487 (1977).
ADS CAS PubMed Article Google Scholar
91.
Williams, R. B. & Murdoch, M. B. Potential Importance of Spartina alterniflora in Conveying Zinc, Manganese, and Iron into Estuarine Food Chains in Conveying Zinc, Manganese, and Iron into Estuarine Food Chains (Radiobiological Lab, Bureau of Commercial Fisheries, Beaufort, NC, 1969).
Google Scholar
92.
Anthes, N. Long-distance migration timing of Tringa sandpipers adjusted to recent climate change: Capsule evidence for earlier spring migration of Tringa sandpipers after warmer winters, but no clear pattern concerning autumn migration timing. Bird Study 51, 203–211 (2004).
Article Google Scholar
93.
Gill, J. A. et al. Why is timing of bird migration advancing when individuals are not?. Proc. R. Soc. B Biol. Sci. 281, 20132161 (2014).
Article Google Scholar
94.
Cotton, P. A. Avian migration phenology and global climate change. Proc. Natl. Acad. Sci. 100, 12219–12222 (2003).
ADS CAS PubMed Article Google Scholar
95.
Crozier, L. G. et al. Potential responses to climate change in organisms with complex life histories: Evolution and plasticity in Pacific salmon. Evol. Appl. 1, 252–270 (2008).
CAS PubMed PubMed Central Article Google Scholar More