More stories

  • in

    Soil bacterial community structures in relation to different oil palm management practices

    Site description and soil sampling
    The experiment was established as part of the EFForTS project (Ecological and socioeconomic Functions of tropical lowland rainForest Transformation Systems) in the Jambi province, located in Sumatra, Indonesia8.
    The experimental sites are located in the state-owned oil palm plantation PTPNVI, which was planted in 2002 (Fig. 1). All planted palms were derived from Tenera seedlings, which are a crossing between Dura and Psifera palms, supplied by Marihat (Medan, Indonesia). Four different locations (referred to as OM1-4) harbor four treatments, which were established in November 2016. In each of these 16 plots (50 × 50 m), five subplots were randomly established, resulting in 80 samples total.
    Fertilizer treatment was conducted in two intensities: for one application the conventional treatment usually used in the entire plantation with 130 kg nitrogen, 25 kg phosphorus and 110 kg potassium ha−1 and reduced fertilization with 68 kg nitrogen, 8.5 kg phosphorous and 93.5 kg potassium ha−1. Additionally, liming was conducted in all plots with equal amounts (213 kg dolomite and 71 kg micromag (micronutrients) ha−1). Fertilizer application and liming was done twice per year. The herbicide treatment used 375 cm3 glyphosate ha−1 sprayed within the palm circle four times per year and 375 cm3 glyphosate ha−1 in inter-rows applied twice per year15. The last application before sampling was done in April 2017. Mechanical weeding was done by cutting vegetation four times per year within the palm circle and two times per year in interrows with a brush cutter. The combination of these applications resulted in four different treatments: conventional fertilization with herbicide spraying (ch), conventional fertilization with mechanical weeding (cw), reduced fertilization with herbicide spraying (rh) and reduced fertilization with mechanical weeding (rw) (Table 1).
    Topsoil was sampled in May 2017 with a soil corer from the upper seven centimeters in each subplot with a diameter of five cm. A soil corer was used to take three cores in each subplot with a distance of 1 m to each other and at least 1 m distance to trees. The three bulk soil samples per subplot were homogenized and coarse roots and stones were removed. To prevent nucleic acids, especially RNA, from degradation RNAprotect Bacteria Reagent (Qiagen, Hilden, Germany) was applied in a ratio of 1:1. For measurements of soil parameters, we collected an additional sample, which was not supplemented with RNAprotect solution. All samples were transported in cooling boxes and stored at −80 °C until further use.
    Nucleic acid extraction
    Frozen samples were thawed on ice. RNAprotect was removed from all samples by centrifuging for 20 min at 804.96 g and 4 °C and discarding the resulting supernatant. DNA and RNA were co-extracted from 1 g of soil by using the Qiagen RNeasy PowerSoil Total RNA kit and the RNeasy PowerSoil DNA Elution kit as recommended by the manufacturer (Qiagen), except that RNA was eluted with 50 µl elution buffer instead of 100 µl. DNA contamination was removed from RNA preparations by using the TurboDNAfree kit (Applied Biosystems, Darmstadt, Germany). For this purpose, 0.1 volume DNAse buffer and 1 µl DNAse were added and incubated for 30 min at 37 °C. Subsequently, a second digestion cycle was performed with 0.5 µl DNAse at 37 °C for 15 min. RNA was then purified with the RNeasy MiniElute Cleanup kit (Qiagen). In order to verify complete DNA removal, a control amplification of the 16 S rRNA gene was performed as described below for 16 S rRNA gene amplification. Purified RNA was then reverse-transcribed into cDNA with the Superscript IV reverse transcriptase and a specific primer (5′-CCGTCAATTCMTTTGAGT-′3) as recommended by the manufacturer (Thermo Fisher Scientific, Schwerte, Germany). After cDNA synthesis, we removed residual RNA by adding 1 µl RNase H (New England Biolabs, Frankfurt am Main, Germany) to each reaction and incubation for 20 min at 37 °C. Obtained DNA and cDNA were stored at −20 °C until further use.
    16 S rRNA gene amplification and sequencing
    For amplification of 16 S rRNA sequences, we used 16 S rRNA gene primers targeting the V3-V4 region (forward primer: S-D-Bact-0341-b-S-17 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-CCTACGGGNGGCWGCAG-3′, reverse primer: S-D-Bact-0785-a-A-21 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-GACTACHVGGGTATCTAATCC-3′) as described by Klindworth22 and Herlemann23 and added adapters for MiSeq sequencing (underlined). PCR reactions were performed in a total volume 50 µl containing 10 µl of 5-fold Phusion GC buffer, 0.2 µl 50 mM MgCl2 solution, 2.5 µl DMSO, 200 µM of each of the four deoxynucleoside triphosphates and 1 U of Phusion High-Fidelity DNA Polymerase (Thermo Fisher Scientific). We used 20 to 30 ng of DNA and 1 µl cDNA per reaction. The PCR reaction was started by an initial denaturation at 98 °C for 1 min, followed by 25 cycles of denaturation at 98 °C for 45 s, annealing at 60 °C for 45 s and elongation at 72 °C for 30 s. The final elongation was at 72 °C for 5 minutes. Amplicons were then purified by using MagSi-NGS PREP Plus magnetic beads following the procedure recommended by the manufacturer (Steinbrenner Laborsysteme GmbH, Wiesenbach, Germany) with the Janus Automated Workstation from Perkin Elmer (Perkin Elmer, Waltham Massachusetts, USA). Illumina MiSeq sequencing adapters were attached to the purified amplicons with the Nextera XT Index kit (Illumina, San Diego, USA). The Index PCR was done by using 5 µl of template PCR product, 2.5 µl of each index primer, 12.5 µl of 2x KAPA HiFi HotStart ReadyMix and 2.5 µl PCR grade water. Thermal cycling scheme was as follows: 95 °C for 3 min, 8 cycles of 30 s at 95 °C, 30 s at 55 °C and 30 s at 72 °C and a final extension at 72 °C for 5 min. The indexed products were purified as described before. Products were quantified by using the Quant-iT dsDNA HS assay kit and a Qubit fluorometer following the instructions of the manufacturer (Invitrogen GmbH, Karlsruhe, Germany). Purified amplicons were sequenced by the Göttingen Genomics Laboratory with a MiSeq instrument with a read length of 2 × 300 bp using dual indexing and reagent kit v3 (600 cycles) as recommended by the manufacturer (Illumina).
    Sequence processing
    We obtained 6,817,019 amplicon sequences with 5,183,993 remaining sequences after quality-filtering from DNA samples. At RNA level 6,412,838 raw sequences with 3,601,637 remaining sequences after quality-filtering were obtained24.
    Obtained paired-end sequences were first quality-filtered with fastp version 0.2025 using a minimum phred score of 20, a minimum length of 50 bases, the default sliding window size (–cut_window_size = 4), read correction by overlap (option “correction”), adapter removal of the sequencing primers (option “adapter_fasta”), and the provided index sequences of Illumina. Quality-filtered paired-end reads were merged with PEAR version 0.9.11 and default settings26. Primer sequences were clipped with cutadapt version 2.5 and default settings27. All further steps, except mapping of sequences to ASVs (Amplicon Sequence Variant) were performed with functions implemented in vsearch version 2.1.4.128. Sequences were filtered by size with “sortbylength” with a set minimum length of 300 bp. Dereplication of identical sequences was done by “derep_fulllength”. Denoising and removal of low abundant sequences with less than eight replicates were done with the vsearch UNOISE3 module “cluster_unoise”. Chimeric sequences were removed by employing the UCHIME module of vsearch. This included a de novo chimera removal (“uchime3_denovo”) and a reference-based chimera removal (“uchime_ref”) against the SILVA SSU 138 NR database29. Sequences were mapped to ASVs by vsearch (“usearch_global”) with a set sequence identity threshold of 0.97. Taxonomy assignments were performed with BLASTN30 (version 2.9.0) against the SILVA SSU 138 NR database29 with an minimum identity threshold of 90%31. In addition to the taxonomy identity, we added the taxonomy id of the database, length of fragment, query percentage identity, query coverage and e-value in the taxonomy string of the table. We used identity (pident) and query coverage (qcovs) per ASV of the blast output to exclude uncertain blast hits. As recommended by the SILVA ribosomal RNA database project32, we removed the taxonomic assignment for blast hits if dividing the sum of percent identity and percent query coverage by 2 resulted in ≤93%. In total, 31,987 ASVs were used for downstream analysis.
    Bacterial community analysis
    The bacterial community composition was further analysed in R33 (version 3.6.1) and RStudio34 (version 1.1.463). ASV counts were normalized by using the Geometric Mean of Pairwise Ratios (GMPR) of the GMPR package version 0.1.335. Community compositions were then analysed by the ampvis2 package version 2.4.11 and “amp_heatmap” at genus level36. The fifteen most abundant genera were displayed as relative abundance and clustered at treatment level. Heat-trees were displayed by the metacoder37 package (version 0.3.2.9001).
    For heat-tree calculation all counts were summed at order level and all taxa with a relative abundance of More

  • in

    Enhancement of Aedes aegypti susceptibility to dengue by Wolbachia is not supported

    1.
    Nazni, W. A. et al. Establishment of Wolbachia Strain wAlbB in Malaysian populations of Aedes aegypti for Dengue control. Curr. Biol. 29, 4241–4248 (2019). e4245.
    CAS  Article  Google Scholar 
    2.
    Ryan, P. A. et al. Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia. Gates Open Res. 3, 1547 (2019).
    Article  Google Scholar 

    3.
    King, J. G., Souto-Maior, C., Sartori, L. M., Maciel-de-Freitas, R. & Gomes, M. G. M. Variation in Wolbachia effects on Aedes mosquitoes as a determinant of invasiveness and vectorial capacity. Nat. Commun. 9, 1483 (2018).
    ADS  Article  Google Scholar 

    4.
    Souto-Maior, C., Sylvestre, G., Braga Stehling Dias, F., Gomes, M. G. M. & Maciel-de-Freitas, R. Model-based inference from multiple dose, time course data reveals Wolbachia effects on infection profiles of type 1 dengue virus in Aedes aegypti. PLoS Negl. Trop. Dis. 12, e0006339 (2018).
    Article  Google Scholar 

    5.
    Ferguson, N. M. et al. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. Sci. Transl. Med. 7, 279ra237 (2015).
    Article  Google Scholar 

    6.
    Ant, T. H., Herd, C. S., Geoghegan, V., Hoffmann, A. A. & Sinkins, S. P. The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti. PLoS Pathog. 14, e1006815 (2018).
    Article  Google Scholar 

    7.
    Walker, T. et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476, 450–453 (2011).
    ADS  CAS  Article  Google Scholar 

    8.
    Frentiu, F. D. et al. Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia. PLoS Negl. Trop. Dis. 8, e2688 (2014).
    Article  Google Scholar 

    9.
    Moreira, L. A. et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139, 1268–1278 (2009).
    Article  Google Scholar 

    10.
    Fraser, J. E. et al. Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes. PLoS Pathog. 13, e1006751 (2017).
    Article  Google Scholar 

    11.
    Joubert, D. A. et al. Establishment of a Wolbachia superinfection in Aedes aegypti Mosquitoes as a potential approach for future resistance management. PLoS Pathog. 12, e1005434 (2016).
    Article  Google Scholar 

    12.
    Bian, G., Xu, Y., Lu, P., Xie, Y. & Xi, Z. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog. 6, e1000833 (2010).
    Article  Google Scholar 

    13.
    Chouin-Carneiro, T. et al. Wolbachia strain wAlbA blocks Zika virus transmission in Aedes aegypti. Med. Vet. Entomol. https://doi.org/10.1111/mve.12384 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    14.
    Pacidonio, E. C., Caragata, E. P., Alves, D. M., Marques, J. T. & Moreira, L. A. The impact of Wolbachia infection on the rate of vertical transmission of dengue virus in Brazilian Aedes aegypti. Parasit. Vectors 10, 296 (2017).
    Article  Google Scholar 

    15.
    Duong, V. et al. Asymptomatic humans transmit dengue virus to mosquitoes. Proc. Natl Acad. Sci. USA 112, 14688–14693 (2015).
    ADS  CAS  Article  Google Scholar  More

  • in

    Carbon and nitrogen cycling in Yedoma permafrost controlled by microbial functional limitations

    1.
    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).
    Google Scholar 
    2.
    Harden, J. W. et al. Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys. Res. Lett. 39, L15704 (2012).
    Google Scholar 

    3.
    Schädel, C. et al. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Glob. Change Biol. 20, 641–652 (2014).
    Google Scholar 

    4.
    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
    Google Scholar 

    5.
    Koven, C. D. et al. A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Philos. Trans. R. Soc. A 373, 20140423 (2015).
    Google Scholar 

    6.
    Nannipieri, P. et al. Microbial diversity and soil functions. Eur. J. Soil Sci. 68, 12–26 (2003).
    Google Scholar 

    7.
    Harding, T., Jungblut, A. D., Lovejoy, C. & Vincent, W. F. Microbes in High Arctic snow and implications for the cold biosphere. Appl. Environ. Microbiol. 77, 3234–3243 (2011).
    Google Scholar 

    8.
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).
    Google Scholar 

    9.
    Bier, R. L. et al. Linking microbial community structure and microbial processes: an empirical and conceptual overview. FEMS Microbiol. Ecol. 91, fiv113 (2015).
    Google Scholar 

    10.
    Nunan, N., Leloup, J., Ruamps, L. S., Pouteau, V. & Chenu, C. Effects of habitat constraints on soil microbial community function. Sci. Rep. 7, 4280 (2017).
    Google Scholar 

    11.
    Graham, E. B. et al. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front. Microbiol. 7, 214 (2016).
    Google Scholar 

    12.
    Schimel, J. in Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences (eds Chapin, F. S. & Körner, C.) 239–254 (Springer, 1995).

    13.
    Schimel, J. & Schaeffer, S. M. Microbial control over carbon cycling in soil. Front. Microbiol. 3, 348 (2012).
    Google Scholar 

    14.
    Bottos, E. M. et al. Dispersal limitation and thermodynamic constraints govern spatial structure of permafrost microbial communities. FEMS Microbiol. Ecol. 94, fiy110 (2018).
    Google Scholar 

    15.
    Jansson, J. K. & Tas, N. The microbial ecology of permafrost. Nat. Rev. Microbiol. 12, 414–425 (2014).
    Google Scholar 

    16.
    Mackelprang, R. et al. Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME J. 11, 2305–2318 (2017).
    Google Scholar 

    17.
    Philippot, L. et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7, 1609–1619 (2013).
    Google Scholar 

    18.
    Monteux, S. et al. Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration. ISME J. 12, 2129–2141 (2018).
    Google Scholar 

    19.
    Johnston, E. R. et al. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths. Proc. Natl Acad. Sci. USA 116, 15096–15105 (2019).
    Google Scholar 

    20.
    Fierer, N. et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl Acad. Sci. USA 109, 21390–21395 (2012).
    Google Scholar 

    21.
    Sanders, T., Fiencke, C., Hüpeden, J., Pfeiffer, E. M. & Spieck, E. Cold adapted Nitrosospira sp.: a potential crucial contributor of ammonia oxidation in cryosols of permafrost-affected landscapes in Northeast Siberia. Microorganisms 7, 699 (2019).
    Google Scholar 

    22.
    Hill, K. A. et al. Processing of atmospheric nitrogen by clouds above a forest environment. J. Geophys. Res. Atmos. 112, D11301 (2007).
    Google Scholar 

    23.
    Knoblauch, C., Beer, C., Sosnin, A., Wagner, D. & Pfeiffer, E.-M. Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Glob. Change Biol. 19, 1160–1172 (2013).
    Google Scholar 

    24.
    Wild, B. et al. Plant-derived compounds stimulate the decomposition of organic matter in Arctic permafrost soils. Sci. Rep. 6, 25607 (2016).
    Google Scholar 

    25.
    Strauss, J. et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth-Sci. Rev. 172, 75–86 (2017).
    Google Scholar 

    26.
    Wertz, S. et al. Maintenance of soil functioning following erosion of microbial diversity. Environ. Microbiol. 8, 2162–2169 (2006).
    Google Scholar 

    27.
    Fontaine, S. et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450, 277–280 (2007).
    Google Scholar 

    28.
    Rillig, M. C. et al. Interchange of entire communities: microbial community coalescence. Trends Ecol. Evol. 30, 470–476 (2015).
    Google Scholar 

    29.
    Mackelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011).
    Google Scholar 

    30.
    Keuper, F. et al. A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. Glob. Change Biol. 18, 1998–2007 (2012).
    Google Scholar 

    31.
    Elberling, B., Christiansen, H. H. & Hansen, B. U. High nitrous oxide production from thawing permafrost. Nat. Geosci. 3, 332–335 (2010).
    Google Scholar 

    32.
    Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).
    Google Scholar 

    33.
    Gittel, A. et al. Distinct microbial communities associated with buried soils in the Siberian tundra. ISME J. 8, 841–853 (2014).
    Google Scholar 

    34.
    Weiss, N. et al. Thermokarst dynamics and soil organic matter characteristics controlling initial carbon release from permafrost soils in the Siberian Yedoma region. Sediment. Geol. 340, 38–48 (2016).
    Google Scholar 

    35.
    Inglese, C. N. et al. Examination of soil microbial communities after permafrost thaw subsequent to an active layer detachment in the High Arctic. Arct. Antarct. Alp. Res. 49, 455–472 (2017).
    Google Scholar 

    36.
    Wild, B. et al. Microbial nitrogen dynamics in organic and mineral soil horizons along a latitudinal transect in Western Siberia. Glob. Biogeochem. Cycles 29, 567–582 (2015).
    Google Scholar 

    37.
    Voigt, C. et al. Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw. Proc. Natl Acad. Sci. USA 114, 6238–6243 (2017).
    Google Scholar 

    38.
    Wrage-Mönnig, N. et al. The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biol. Biochem. 123, A3–A16 (2018).
    Google Scholar 

    39.
    Siljanen, H. M. P. et al. Archaeal nitrification is a key driver of high nitrous oxide emissions from Arctic peatlands. Soil Biol. Biochem. 137, 107539 (2019).
    Google Scholar 

    40.
    Voigt, C. et al. Nitrous oxide emissions from permafrost-affected soils. Nat. Rev. Earth Environ. 1, 420–434 (2020).
    Google Scholar 

    41.
    Keuper, F. et al. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species. Glob. Change Biol. 23, 4257–4266 (2017).
    Google Scholar 

    42.
    Liu, X.-Y. et al. Nitrate is an important nitrogen source for Arctic tundra plants. Proc. Natl Acad. Sci. USA 115, 3398–3403 (2018).
    Google Scholar 

    43.
    Myrstener, M. et al. Persistent nitrogen limitation of stream biofilm communities along climate gradients in the Arctic. Glob. Change Biol. 24, 3680–3691 (2018).
    Google Scholar 

    44.
    Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N. & Pfeiffer, E.-M. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Change 8, 309–312 (2018).
    Google Scholar 

    45.
    Holm, S. et al. Methanogenic response to long-term permafrost thaw is determined by paleoenvironment. FEMS Microbiol. Ecol. 96, fiaa021 (2020).
    Google Scholar 

    46.
    Douglas, T. A. et al. Biogeochemical and geocryological characteristics of wedge and thermokarst-cave ice in the CRREL permafrost tunnel, Alaska. Permafr. Periglac. Process. 22, 120–128 (2011).
    Google Scholar 

    47.
    Long, A. & Péwé, T. L. Radiocarbon dating by high-sensitivity liquid scintillation counting of wood from the Fox permafrost tunnel near Fairbanks, Alaska. Permafr. Periglac. Process. 7, 281–285 (1996).
    Google Scholar 

    48.
    Hamilton, T. D., Craig, J. L. & Sellmann, P. V. The Fox permafrost tunnel: a late Quaternary geologic record in central Alaska. GSA Bull. 100, 948–969 (1988).
    Google Scholar 

    49.
    Shur, Y., French, H. M., Bray, M. T. & Anderson, D. A. Syngenetic permafrost growth: cryostratigraphic observations from the CRREL tunnel near Fairbanks, Alaska. Permafr. Periglac. Process. 15, 339–347 (2004).
    Google Scholar 

    50.
    Howard, M. M., Bell, T. H. & Kao-Kniffin, J. Soil microbiome transfer method affects microbiome composition, including dominant microorganisms, in a novel environment. FEMS Microbiol. Lett. 364, fnx092 (2017).
    Google Scholar 

    51.
    Patra, A. K. et al. Effects of grazing on microbial functional groups involved in soil N dynamics. Ecol. Monogr. 75, 65–80 (2005).
    Google Scholar 

    52.
    Fontaine, S. et al. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol. Biochem. 43, 86–96 (2011).
    Google Scholar 

    53.
    Elberling, B. et al. Long-term CO2 production following permafrost thaw. Nat. Clim. Change 3, 890–894 (2013).
    Google Scholar 

    54.
    Walz, J., Knoblauch, C., Böhme, L. & Pfeiffer, E.-M. Regulation of soil organic matter decomposition in permafrost-affected Siberian tundra soils—impact of oxygen availability, freezing and thawing, temperature, and labile organic matter. Soil Biol. Biochem. 110, 34–43 (2017).
    Google Scholar 

    55.
    Weedon, J. T. et al. Temperature sensitivity of peatland C and N cycling: does substrate supply play a role? Soil Biol. Biochem. 61, 109–120 (2013).
    Google Scholar 

    56.
    Ping, C. L. Soil temperature profiles of two Alaskan soils. Soil Sci. Soc. Am. J. 51, 1010–1018 (1987).
    Google Scholar 

    57.
    D’Amico, S. et al. Psychrophilic microorganisms: challenges for life. EMBO Rep. 7, 385–389 (2006).
    Google Scholar 

    58.
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).
    Google Scholar 

    59.
    Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R. & Brookes, P. C. Measurement of soil microbial biomass C by fumigation–extraction—an automated procedure. Soil Biol. Biochem. 22, 1167–1169 (1990).
    Google Scholar 

    60.
    Rotthauwe, J. H., Witzel, K. P. & Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63, 4704–4712 (1997).
    Google Scholar 

    61.
    Tourna, M., Freitag, T. E., Nicol, G. W. & Prosser, J. I. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ. Microbiol. 10, 1357–1364 (2008).
    Google Scholar 

    62.
    Fowler, S. J., Palomo, A., Dechesne, A., Mines, P. D. & Smets, B. F. Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities. Environ. Microbiol. 20, 1002–1015 (2018).
    Google Scholar 

    63.
    Pjevac, P. et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front. Microbiol. 8, 1508 (2017).
    Google Scholar 

    64.
    Muyzer, G., Waal, E. Cde & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993).
    Google Scholar 

    65.
    Bartram, A. K., Lynch, M. D. J., Stearns, J. C., Moreno-Hagelsieb, G. & Neufeld, J. D. Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Appl. Environ. Microbiol. 77, 3846–3852 (2011).
    Google Scholar 

    66.
    Smith, D. P. & Peay, K. G. Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS ONE 9, e90234 (2014).
    Google Scholar 

    67.
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
    Google Scholar 

    68.
    Morgan, M. et al. ShortRead: a Bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics 25, 2607–2608 (2009).
    Google Scholar 

    69.
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).
    Google Scholar 

    70.
    Haas, B. J. et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21, 494–504 (2011).
    Google Scholar 

    71.
    Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).
    Google Scholar 

    72.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
    Google Scholar 

    73.
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
    Google Scholar 

    74.
    Caporaso, J. G. et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267 (2010).
    Google Scholar 

    75.
    McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).
    Google Scholar 

    76.
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
    Google Scholar 

    77.
    Lagkouvardos, I., Fischer, S., Kumar, N. & Clavel, T. Rhea: a transparent and modular R pipeline for microbial profiling based on 16S rRNA gene amplicons. PeerJ 5, e2836 (2017).
    Google Scholar 

    78.
    White, D. C., Davis, W. M., Nickels, J. S., King, J. D. & Bobbie, R. J. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40, 51–62 (1979).
    Google Scholar 

    79.
    Olsson, P. A., Bååth, E., Jakobsen, I. & Söderström, B. The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol. Res. 99, 623–629 (1995).
    Google Scholar 

    80.
    Ruess, L. & Chamberlain, P. M. The fat that matters: soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biol. Biochem. 42, 1898–1910 (2010).
    Google Scholar 

    81.
    Zelles, L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol. Fertil. Soils 29, 111–129 (1999).
    Google Scholar 

    82.
    Frostegård, A. & Bååth, E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 22, 59–65 (1996).
    Google Scholar 

    83.
    Lenth, R. Least-squares means: the R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).
    Google Scholar 

    84.
    Wang, Y., Naumann, U., Wright, S. T. & Warton, D. I. mvabund—an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474 (2012).
    Google Scholar 

    85.
    Warton, D. I., Wright, S. T. & Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 3, 89–101 (2012).
    Google Scholar 

    86.
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
    Google Scholar 

    87.
    McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 10, e1003531 (2014).
    Google Scholar 

    88.
    Pinto, A. J. et al. Metagenomic evidence for the presence of comammox Nitrospira-like bacteria in a drinking water system. mSphere 1, e00054-15 (2016).
    Google Scholar 

    89.
    Kozlowski, J. A., Kits, K. D. & Stein, L. Y. Comparison of nitrogen oxide metabolism among diverse ammonia-oxidizing bacteria. Front. Microbiol. 7, 1090 (2016).
    Google Scholar 

    90.
    Kits, K. D. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549, 269–272 (2017).
    Google Scholar 

    91.
    Kuhn, M. caret: Classification and Regression Training v.6.0-86 (2020); https://CRAN.R-project.org/package=caret

    92.
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
    Google Scholar 

    93.
    Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2nd edn (Springer, 2009).

    94.
    Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. VSURF: an R package for variable selection using random forests. R J. 7, 19–33 (2015).
    Google Scholar 

    95.
    R Core Team. R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019). More

  • in

    Diversification of methanogens into hyperalkaline serpentinizing environments through adaptations to minimize oxidant limitation

    1.
    Boyd ES, Amenabar MJ, Poudel S, Templeton AS. Bioenergetic constraints on the origin of autotrophic metabolism. Philos Trans R Soc A. 2020;378:1471–2962.
    Article  CAS  Google Scholar 
    2.
    Boyd ES, Schut GJ, Adams MWW, Peters JW. Hydrogen metabolism and the evolution of biological respiration. Microbe. 2014;9:361–7.
    Google Scholar 

    3.
    Hoehler TM. Biogeochemistry of dihydrogen (H2). In: Sigel H, and Sigel R (eds.). Metal ions in biological systems. Vol 43. (Taylor & Francis Group, Boca Raton, FL, 2005) pp 9-48.

    4.
    Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, et al. The physiology and habitat of the last universal common ancestor. Nat Microbiol. 2016;1:1–8.
    Google Scholar 

    5.
    McCollom TM, Klein F, Robbins M, Moskowitz B, Berquó TS, Jöns N, et al. Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine. Geochim Cosmochim Acta. 2016;181:175–200.
    CAS  Article  Google Scholar 

    6.
    Schulte M, Blake D, Hoehler T, McCollom T. Serpentinization and its implications for life on the early Earth and Mars. Astrobiology. 2006;6:364–76.
    CAS  PubMed  Article  Google Scholar 

    7.
    Russell M, Hall A, Martin W. Serpentinization as a source of energy at the origin of life. Geobiology. 2010;8:355–71.
    CAS  PubMed  Article  Google Scholar 

    8.
    Seewald JS, Zolotov MY, McCollom T. Experimental investigation of single carbon compounds under hydrothermal conditions. Geochim Cosmochim Acta. 2006;70:446–60.
    CAS  Article  Google Scholar 

    9.
    McCollom TM, Seewald JS. Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chem Rev. 2007;107:382–401.
    CAS  PubMed  Article  Google Scholar 

    10.
    Twing KI, Brazelton WJ, Kubo MDY, Hyer AJ, Cardace D, Hoehler TM, et al. Serpentinization-influenced groundwater harbors extremely low diversity microbial communities adapted to high pH. Front Microbiol. 2017;8:308.
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Brazelton WJ, Nelson B, Schrenk MO. Metagenomic evidence for H2 oxidation and H2 production by serpentinite-hosted subsurface microbial communities. Front Microbiol. 2012;2:268.
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Morrill PL, Brazelton WJ, Kohl L, Rietze A, Miles SM, Kavanagh H, et al. Investigations of potential microbial methanogenic and carbon monoxide utilization pathways in ultra-basic reducing springs associated with present-day continental serpentinization: the Tablelands, NL, CAN. Front Microbiol. 2014;5:613.
    PubMed  PubMed Central  Article  Google Scholar 

    13.
    Crespo-Medina M, Twing KI, Sánchez-Murillo R, Brazelton WJ, McCollom TM, Schrenk MO. Methane dynamics in a tropical serpentinizing environment: the Santa Elena Ophiolite, Costa Rica. Front Microbiol. 2017;8:916.
    PubMed  PubMed Central  Article  Google Scholar 

    14.
    Woycheese KM, Meyer-Dombard DR, Cardace D, Argayosa AM, Arcilla CA. Out of the dark: transitional subsurface-to-surface microbial diversity in a terrestrial serpentinizing seep (Manleluag, Pangasinan, the Philippines). Front Microbiol. 2015;6:44.
    PubMed  PubMed Central  Article  Google Scholar 

    15.
    Neubeck A, Sun L, Müller B, Ivarsson M, Hosgörmez H, Özcan D, et al. Microbial community structure in a serpentine-hosted abiotic gas seepage at the Chimaera Ophiolite, Turkey. Appl Environ Microbiol. 2017;83:e03430–16.
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Lang SQ, Früh-Green G, Bernasconi SM, Brazelton WJ, Schrenk MO, McGonigle JM. Deeply-sourced formate fuels sulfate reducers but not methanogens at Lost City hydrothermal field. Sci Rep. 2018;8:1–10.
    Article  CAS  Google Scholar 

    17.
    Brazelton WJ, Morrill PL, Szponar N, Schrenk MO. Bacterial communities associated with subsurface geochemical processes in continental serpentinite springs. Appl Environ Microbiol. 2013;79:3906–16.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Fones EM, Colman DR, Kraus EA, Nothaft DB, Poudel S, Rempfert KR, et al. Physiological adaptations to serpentinization in the Samail Ophiolite, Oman. ISME J. 2019;13:1750–62.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Rempfert KR, Miller HM, Bompard N, Nothaft D, Matter JM, Kelemen P, et al. Geological and geochemical controls on subsurface microbial life in the Samail Ophiolite, Oman. Front Microbiol. 2017;8:56.
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Kelemen PB, Matter J, Streit EE, Rudge JF, Curry WB, Blusztajn J. Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO2 capture and storage. Annu Rev Earth Planet Sci. 2011;39:545–76.
    CAS  Article  Google Scholar 

    21.
    Canovas PA, Hoehler T, Shock EL. Geochemical bioenergetics during low-temperature serpentinization: an example from the Samail ophiolite, Sultanate of Oman. J Geophys Res. 2017;122:1821–47.
    Article  Google Scholar 

    22.
    Suzuki S, Ishii S, Wu A, Cheung A, Tenney A, Wanger G, et al. Microbial diversity in The Cedars, an ultrabasic, ultrareducing, and low salinity serpentinizing ecosystem. Proc Natl Acad Sci USA. 2013;110:15336–41.
    CAS  PubMed  Article  Google Scholar 

    23.
    Brazelton WJ, Thornton CN, Hyer A, Twing KI, Longino AA, Lang SQ, et al. Metagenomic identification of active methanogens and methanotrophs in serpentinite springs of the Voltri Massif, Italy. Peer J. 2017;5:e2945.
    PubMed  Article  CAS  Google Scholar 

    24.
    Morrill PL, Kuenen JG, Johnson OJ, Suzuki S, Rietze A, Sessions AL, et al. Geochemistry and geobiology of a present-day serpentinization site in California: The Cedars. Geochim Cosmochim Acta. 2013;109:222–40.
    CAS  Article  Google Scholar 

    25.
    Miller HM, Matter JM, Kelemen P, Ellison ET, Conrad ME, Fierer N, et al. Modern water/rock reactions in Oman hyperalkaline peridotite aquifers and implications for microbial habitability. Geochim Cosmochim Acta. 2016;179:217–41.
    CAS  Article  Google Scholar 

    26.
    Russell MJ, Martin W. The rocky roots of the acetyl-CoA pathway. Trends Biochem Sci. 2004;29:358–63.
    CAS  PubMed  Article  Google Scholar 

    27.
    Martin WF, Weiss MC, Neukirchen S, Nelson-Sathi S, Sousa FL. Physiology, phylogeny, and LUCA. Microbial. Cell. 2016;3:582–7.
    Google Scholar 

    28.
    Ueno Y, Yamada K, Yoshida N, Maruyama S, Isozake Y. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature. 2006;440:516–9.
    CAS  PubMed  Article  Google Scholar 

    29.
    Moore EK, Jelen BI, Giovannelli D, Raanan H, Falkowski PG. Metal availability and the expanding network of microbial metabolisms in the Archaean eon. Nat Geosci. 2017;10:629–36.
    CAS  Article  Google Scholar 

    30.
    Etiope G, Vadillo I, Whiticar MJ, Marques JM, Carreira PM, Tiago I, et al. Abiotic methane seepage in the Ronda peridotite massif, southern Spain. Appl Geochem. 2016;66:101–13.
    CAS  Google Scholar 

    31.
    Proskurowski G, Lilley MD, Seewald JS, Früh-Green G, Olson EJ, Lupton JE, et al. Abiogenic hydrocarbon production at Lost City hydrothermal field. Science. 2008;319:604–7.
    CAS  PubMed  Article  Google Scholar 

    32.
    Etiope G. Methane origin in the Samail ophiolite: Comment on “Modern water/rock reactions in Oman hyperalkaline peridotite aquifers and implications for microbial habitability”. Geochim Cosmochim Acta. 2017;197:467–70.
    CAS  Article  Google Scholar 

    33.
    Miller HM, Matter JM, Kelemen P, Ellison ET, Conrad ME, Fierer N, et al. Reply to “Methane origin in the Samail ophiolite: Comment on ‘Modern water/rock reactions in Oman hyperalkaline peridotite aquifers and implications for microbial habitability’”. Geochim Cosmochim Acta. 2017;197:471–3.
    CAS  Article  Google Scholar 

    34.
    Miller HM, Chaudhry N, Conrad ME, Markus B, Kopf SH, Templeton AS. Large carbon isotope variability during methanogenesis under alkaline conditions. Geochim Cosmochim Acta. 2018;237:18–31.
    CAS  Article  Google Scholar 

    35.
    Bradley AS, Hayes JM, Summons RE. Extraordinary 13C enrichment of diether lipids at the Lost City Hydrothermal Field indicates a carbon-limited ecosystem. Geochim Cosmochim Acta. 2009;73:102–18.
    CAS  Article  Google Scholar 

    36.
    Zwicker J, Birgel D, Bach W, Richoz S, Smrzka D, Grasemann B, et al. Evidence for archaeal methanogenesis within veins at the onshore serpentinite-hosted Chimaera seeps, Turkey. Chem Geol. 2018;483:567–80.
    CAS  Article  Google Scholar 

    37.
    Kraus EA, Stamps BW, Rempfert KR, Nothaft DB, Boyd ES, Matter JM, et al. Biological methane cycling in serpentinization-impacted fluids of the Samail ophiolite of Oman. AGU Fall Meeting Abstracts. 2018; (abstract #V13E-0139).

    38.
    Miller HM, Mayhew LE, Ellison ET, Kelemen P, Kubo M, Templeton AS. Low temperature hydrogen production during experimental hydration of partially-serpentinized dunite. Geochim Cosmochim Acta. 2017;209:161–83.
    CAS  Article  Google Scholar 

    39.
    Neal C, Stanger G. Hydrogen generation from mantle source rocks in Oman. Earth Planet Sci Lett. 1983;66:315–20.
    CAS  Article  Google Scholar 

    40.
    Streit E, Kelemen P, Eiler J. Coexisting serpentine and quartz from carbonate-bearing serpentinized peridotite in the Samail Ophiolite, Oman. Contrib Miner Petr. 2012;164:821–37.
    CAS  Article  Google Scholar 

    41.
    Chavagnac V, Monnin C, Ceuleneer G, Boulart C, Hoareau G. Characterization of hyperalkaline fluids produced by low-temperature serpentinization of mantle peridotites in the Oman and Ligurian ophiolites. Geochem Geophys. 2013;14:2496–522.
    CAS  Article  Google Scholar 

    42.
    Mervine EM, Humphris SE, Sims KWW, Kelemen PB, Jenkins WJ. Carbonation rates of peridotite in the Samail Ophiolite, Sultanate of Oman, constrained through 14C dating and stable isotopes. Geochim Cosmochim Acta. 2014;126:371–97.
    CAS  Article  Google Scholar 

    43.
    Kang DWD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Stepanauskas R, Fergusson EA, Brown J, Poulton NJ, Tupper B, Labonté JM, et al. Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat Commun. 2017;8:84.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    45.
    Colman DR, Lindsay MR, Boyd ES. Mixing of meteoric and geothermal fluids supports hyperdiverse chemosynthetic hydrothermal communities. Nat Commun. 2019;10:1–13.
    Article  CAS  Google Scholar 

    46.
    Wu M, Scott AJ. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. J Bioinform. 2012;28:1033–4.
    CAS  Article  Google Scholar 

    47.
    Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of highquality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Nguyen LT, Schmidt HA, von Haesler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haesler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.
    Article  CAS  Google Scholar 

    51.
    Seemann T. Prokka: rapid prokaryotic genome annotation. J Bioinform. 2014;30:2068–9.
    CAS  Article  Google Scholar 

    52.
    Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:W182–5.
    PubMed  PubMed Central  Article  Google Scholar 

    54.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–77.
    CAS  PubMed  Article  Google Scholar 

    57.
    Peters JW, Schut GJ, Boyd ES, Mulder DW, Shepard EM, Broderick JB, et al. [FeFe]-and [NiFe]-hydrogenase diversity, mechanism, and maturation. BBA-Mol Cell Res. 2015;1853:1350–69.
    CAS  Google Scholar 

    58.
    Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2016;45:D200–3.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    59.
    Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. MUMmer4: a fast and versatile genome alignment system. PLoS Comput Biol. 2018;14:e1005944.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    60.
    R Core Team, R: a language and environment for statistical computing. Version 3.0.1. R Foundation for Statistical Computing. 2013.

    61.
    Leplae R, Lima-Mendez G, Toussaint A. ACLAME: a CLAssification of Mobile genetic Elements, update 2010. Nucleic Acids Res. 2010;38:D57–D61.
    CAS  PubMed  Article  Google Scholar 

    62.
    Lefort V, Longueville J-E, Gascuel O. SMS: smart model selection in PhyML. Mol Biol Evol. 2017;34:2422–4.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21.
    CAS  PubMed  Article  Google Scholar 

    64.
    Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PloS One. 2010;5:e11147.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    65.
    Harrison KJ, Crécy-Lagard V, Zallot R. Gene Graphics: a genomic neighborhood data visualization web application. J Bioinform. 2018;34:1406–8.
    CAS  Article  Google Scholar 

    66.
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, and O’Hara RB vegan: community ecology package. R Foundation for Statistical Computing. 2015.

    67.
    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;25:725–31.
    Article  CAS  Google Scholar 

    68.
    Suzuki S, Ishii S, Hoshino T, Rietze A, Tenney A, Morrill PL, et al. Unusual metabolic diversity of hyperalkaliphilic microbial communities associated with subterranean serpentinization at The Cedars. ISME J. 2017;11:2584–98.
    PubMed  PubMed Central  Article  Google Scholar 

    69.
    Giovannoni SJ, Thrash JC, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.
    PubMed  PubMed Central  Article  Google Scholar 

    70.
    Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol. 2008;6:579–91.
    CAS  PubMed  Article  Google Scholar 

    71.
    Hendrickson EL, Leigh JA. Roles of coenzyme F420-reducing hydrogenases and hydrogen-and F420-dependent methylenetetrahydromethanopterin dehydrogenases in reduction of F420 and production of hydrogen during methanogenesis. J Bacteriol. 2008;190:4818–21.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Goldman AD, Leigh JA, Samudrala R. Comprehensive computational analysis of Hmd enzymes and paralogs in methanogenic Archaea. BMC Evol Biol. 2009;9:199.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    73.
    Tersteegen A, Hedderich R. Methanobacterium thermoautotrophicum encodes two multisubunit membrane‐bound [NiFe] hydrogenases: transcription of the operons and sequence analysis of the deduced proteins. Eur J Biochem. 1999;264:930–43.
    CAS  PubMed  Article  Google Scholar 

    74.
    Lie TJ, Costa KC, Lupa B, Korpole S, Whitman WB, Leigh JA. Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis. Proc Natl Acad Sci USA. 2012;109:15473–8.
    CAS  PubMed  Article  Google Scholar 

    75.
    Thauer RK. The Wolfe cycle comes full circle. Proc Natl Acad Sci USA. 2012;109:15084–5.
    CAS  PubMed  Article  Google Scholar 

    76.
    Costa KC, Wong PM, Wang T, Lie TJ, Dodsworth JA, Swanson I, et al. Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase. Proc Natl Acad Sci USA. 2010;107:11050–5.
    CAS  PubMed  Article  Google Scholar 

    77.
    Greening C, Ahmed FA, Mohamed AE, Lee BM, Pandey G, Warden AC, et al. Physiology, biochemistry, and applications of F420-and Fo-dependent redox reactions. Microbiol Mol Biol Rev. 2016;80:451–93.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    78.
    Yan Z, Ferry JG. Electron bifurcation and confurcation in methanogenesis and reverse methanogenesis. Front Microbiol. 2018;9:1322.
    PubMed  PubMed Central  Article  Google Scholar 

    79.
    Costa KC, Lie TJ, Xia Q, Leigh JA. VhuD facilitates electron flow from H2 or formate to heterodisulfide reductase in Methanococcus maripaludis. J Bacteriol. 2013;195:5160–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Schauer NL, Ferry JG. Properties of formate dehydrogenase in Methanobacterium formicicum. J Bacteriol. 1982;150:1–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    81.
    Schauer NL, Ferry JG, Honek JF, Orme-Johnson WH, Walsh C. Mechanistic studies of the coenzyme F420-reducing formate dehydrogenase from Methanobacterium formicicum. Biochemistry. 1986;25:7163–8.
    CAS  PubMed  Article  Google Scholar 

    82.
    Mills DJ, Vitt S, Strauss M, Shima S, Vonck J. De novo modeling of the F420-reducing [NiFe]-hydrogenase from a methanogenic archaeon by cryo-electron microscopy. Elife. 2013;2:e00218.
    PubMed  PubMed Central  Article  Google Scholar 

    83.
    Schut GJ, Boyd ES, Peters JW, Adams MWW. The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications. FEMS Microbiol Rev. 2013;37:182–203.
    CAS  PubMed  Article  Google Scholar 

    84.
    Hamamoto T, Hashimoto M, Hino M, Kitada M, Seto Y, Kudo T, et al. Characterization of a gene responsible for the Na+/H+ antiporter system of alkalophilic Bacillus species strain C125. Mol Microbiol. 1994;14:939–46.
    CAS  PubMed  Article  Google Scholar 

    85.
    Buckel W, Thauer RK. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. BBA-Bioenerg. 2013;1827:94–113.
    CAS  Article  Google Scholar 

    86.
    Boone DR, Johnson RL, Liu Y. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl Environ Microbiol. 1989;55:1735–41.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    87.
    Suzuki S, Nealson KH, Ishii S. Genomic and in-situ transcriptomic characterization of the candidate phylum NPL-UPL2 from highly alkaline highly reducing serpentinized groundwater. Front Micrbiol. 2018;9:3141.
    Article  Google Scholar 

    88.
    Lang SQ, Butterfield DA, Schulte M, Kelley DS, Lilley MD. Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochim Cosmochim Acta. 2010;74:941–52.
    CAS  Article  Google Scholar 

    89.
    McCollom TM, Seewald JS. Experimental constraints on the hydrothermal reactivity of organic acids and acid anions: I. Formic acid and formate. Geochim Cosmochim Acta. 2003;67:3625–44.  
    CAS  Article  Google Scholar 

    90.
    Zeng Y, Liu J. Short-chain carboxylates in fluid inclusions in minerals. Appl Geochem. 2000;15:13–25.
    CAS  Article  Google Scholar 

    91.
    Brazelton WJ, Baross JA. Abundant transposases encoded by the metagenome of a hydrothermal chimney biofilm. ISME J. 2009;3:1420–4.
    CAS  PubMed  Article  Google Scholar 

    92.
    Zhang J, Kasciukovic T, White MF. The CRISPR associated protein Cas4 Is a 5′ to 3′ DNA exonuclease with an iron-sulfur cluster. PloS One. 2012;7:e47232.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    93.
    Rath D, Amlinger L, Rath A, Lundgren M. The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie. 2015;117:119–28.
    CAS  PubMed  Article  Google Scholar 

    94.
    Jansen R, van Embden JDA, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002;43:1565–75.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    95.
    Reno ML, Held NL, Fields CJ, Burke PV, Whitaker RJ. Biogeography of the Sulfolobus islandicus pan-genome. Proc Natl Acad Sci USA. 2009;106:8605–10.
    CAS  PubMed  Article  Google Scholar 

    96.
    Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome.”. Proc Natl Acad Sci USA. 2005;102:13950–5.
    CAS  PubMed  Article  Google Scholar 

    97.
    Labonté JM, Field EK, Lau M, Chivian D, Van Heerden E, Wommack KE, et al. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population. Front Microbiol. 2015;6:349.
    PubMed  PubMed Central  Google Scholar 

    98.
    Karnachuk OV, Frank YA, Lukina AP, Kadnikov VV, Beletsky AV, Mardanov AV, et al. Domestication of previously uncultivated Candidatus Desulforudis audaxviator from a deep aquifer in Siberia sheds light on its physiology and evolution. ISME J. 2019;13:1947–59.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    99.
    Paul BG, Burstein D, Castelle CJ, Handa S, Arambula D, Czornyj E, et al. Retroelement-guided protein diversificiation abounds in vast lineages of bacteria and archaea. Nat Microbiol. 2017;2:17045.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    100.
    Dirix G, Monsieurs P, Dombrecht B, Daniels R, Marchal K, Vanderleyden J, et al. Peptide signal molecules and bacteriocins in Gram-negative bacteria: a genome-wide in silico screening for peptides containing a double-glycine leader sequence and their cognate transporters. Peptides. 2004;25:1425–40.
    CAS  PubMed  Article  Google Scholar  More

  • in

    Ingestive behaviors in bearded capuchins (Sapajus libidinosus)

    1.
    Hylander, W. L., Johnson, K. R. & Picq, P. G. Masticatory-stress hypotheses and the supraorbital region of primates. Am. J. Phys. Anthropol. 86, 1–36 (1991).
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Taylor, A. B. Diet and mandibular morphology in African apes. Int. J. Primatol. 27, 181–201 (2006).
    Article  Google Scholar 

    3.
    Vogel, E. R. et al. Functional ecology and evolution of hominoid molar enamel thickness: Pan troglodytes schweinfurthii and Pongo pygmaeus wurmbii. J. Hum. Evol. 55, 60–74 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Strait, D. S. et al. The feeding biomechanics and dietary ecology of Australopithecus africanus. Proc. Natl. Acad. Sci. U. S. A. 106, 2124–2129 (2009).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    5.
    Daegling, D. J. & McGraw, W. S. Functional morphology of the mangabey mandibular corpus: Relationship to dental specializations and feeding behavior. Am. J. Phys. Anthropol. 134, 50–62 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Daegling, D. J. et al. Hard-object feeding in sooty mangabeys (Cercocebus atys) and interpretation of early hominin feeding ecology. PLoS ONE 6, e23095 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Hylander, W. L. Mandibular function in Galago crassicaudatus and Macaca fascicularis: An in vivo approach to stress analysis of the mandible. J. Morphol. 159, 253–296 (1979).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Hylander, W. L. Stress and strain in the mandibular symphysis of primates: A test of competing hypotheses. Am. J. Phys. Anthropol. 64, 1–46 (1984).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Ungar, P. S. Patterns of ingestive behavior and anterior tooth use differences in sympatric anthropoid primates. Am. J. Phys. Anthropol. 95, 197–219 (1994).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Yamashita, N. Food procurement and tooth use in two sympatric lemur species. Am. J. Phys. Anthropol. 121, 125–133 (2003).
    PubMed  Article  Google Scholar 

    11.
    McGraw, W. S., Vick, A. E. & Daegling, D. J. Sex and age differences in the diet and ingestive behaviors of sooty mangabeys (Cercocebus atys) in the Tai Forest, Ivory Coast. Am. J. Phys. Anthropol. 144, 140–153 (2011).
    PubMed  Article  Google Scholar 

    12.
    McGraw, W. S. et al. Feeding and oral processing behaviors of two colobine monkeys in Tai Forest, Ivory Coast. J. Hum. Evol. 98, 90–102 (2016).
    PubMed  Article  Google Scholar 

    13.
    Ross, C. F., Iriarte-Diaz, J., Reed, D. A., Stewart, T. A. & Taylor, A. B. In vivo bone strain in the mandibular corpus of Sapajus during a range of oral food processing behaviors. J. Hum. Evol. 98, 36–65 (2016).
    PubMed  Article  Google Scholar 

    14.
    Ross, C. F. et al. In vivo bone strain and finite-element modeling of the craniofacial haft in catarrhine primates. J. Anat. 218, 112–141 (2011).
    PubMed  Article  Google Scholar 

    15.
    Smith, R. J. Comparative functional morphology of maximum mandibular opening (gape) in primates. In Food Acquisition and Processing in Primates (eds Chivers, D. J. et al.) 231–255 (Plenum Press, New York, 1984).
    Google Scholar 

    16.
    Daegling, D. J. Mandibular morphology and diet in the genus Cebus. Int. J. Primatol. 13, 545–570 (1992).
    Article  Google Scholar 

    17.
    Daegling, D. J. Relationship of bone utilization and biomechanical competence in hominoid mandibles. Arch. Oral Biol. 52, 51–63 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Daegling, D. J. & Grine, F. E. Mandibular biomechanics and the paleontological evidence for the evolution of human diet. In Evolution of the Human Diet: The Known, the Unknown, and the Unknowable (ed. Ungar, P. S.) 77–105 (Oxford University Press, New York, 2006).
    Google Scholar 

    19.
    Ross, C. F., Iriarte-Diaz, J. & Nunn, C. L. Innovative approaches to the relationship between diet and mandibular morphology in primates. Int. J. Primatol. 33, 632–660 (2012).
    Article  Google Scholar 

    20.
    Chalk, J. et al. Age-related variation in the mechanical properties of foods processed by Sapajus libidinosus. Am. J. Phys. Anthropol. 159, 199–209 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    21.
    Vinyard, C. J., Thompson, C. L., Doherty, A. & Robl, N. Preference and consequences: A preliminary look at whether preference impacts oral processing in non-human primates. J. Hum. Evol. 98, 27–35 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    22.
    Strait, D. S. et al. Craniofacial strain patterns during premolar loading: implications for human evolution. In Primate Craniofacial Function and Biology (eds Vinyard, C. J. et al.) 173–198 (Springer, New York, 2008).
    Google Scholar 

    23.
    Ravosa, M. J. Functional assessment of subfamily variation in maxillomandibular morphology among Old World monkeys. Am. J. Phys. Anthropol. 82, 199–212 (1990).
    CAS  PubMed  Article  Google Scholar 

    24.
    Ravosa, M. J. Jaw morphology and function in living and fossil Old World monkeys. Int. J. Primatol. 17, 909–932 (1996).
    Article  Google Scholar 

    25.
    Wright, B. W. et al. Taking a big bite: Working together to better understand the evolution of feeding in primates. Am. J. Primatol. 81, e22981 (2019).
    PubMed  Google Scholar 

    26.
    Greaves, W. S. The jaw lever system in ungulates: A new model. J. Zool. 184, 271–285 (1978).
    Article  Google Scholar 

    27.
    Spencer, M. A. Force production in the primate masticatory system: Electromyographic tests of biomechanical hypotheses. J. Hum. Evol. 34, 25–54 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Wright, B. W. Craniodental biomechanics and dietary toughness in the genus Cebus. J. Hum. Evol. 48, 473–492 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    29.
    Wright, B. W. Ecological distinctions in diet, food toughness, and masticatory anatomy in a community of six Neotropical primates in Guyana, South America. Ph.D. Dissertation, University of Illinois at Urbana-Champaign (2004).

    30.
    Liu, Q. et al. Kinematics and energetics of nut-cracking in wild capuchin monkeys (Cebus libidinosus) in Piauí, Brazil. Am. J. Phys. Anthropol. 138, 210–220 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Taylor, A. B. & Vinyard, C. J. Jaw-muscle fiber architecture in tufted capuchins favors generating relatively large muscle forces without compromising jaw gape. J. Hum. Evol. 57, 710–720 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Wright, B. W. et al. Fallback foraging as a way of life: Using dietary toughness to compare the fallback signal among capuchins and implications for interpreting morphological variation. Am. J. Phys. Anthropol. 140, 687–699 (2009).
    PubMed  Article  Google Scholar 

    33.
    Kay, R. F. The nut-crackers—A new theory of the adaptations of the Ramapithecinae. Am. J. Phys. Anthropol. 55, 141–151 (1981).
    Article  Google Scholar 

    34.
    Masterson, T. Cranial form in Cebus: An ontogenetic analysis of cranial form and sexual dimorphism. Ph.D. Dissertation, University of Wisconsin (1996).

    35.
    Thiery, G. & Sha, J. C. M. Low occurrence of molar use in black-tufted capuchin monkeys: Should adaptation to seed ingestion be inferred from molars in primates? Palaeogeogr. Palaeoclimatol. Palaeoecol. 109853 (2020).

    36.
    Ottoni, E. B. & Izar, P. Capuchin monkey tool use: Overview and implications. Evol. Anthropol. 17, 171–178 (2008).
    Article  Google Scholar 

    37.
    Taylor, A. B., Vogel, E. R. & Dominy, N. J. Food material properties and mandibular load resistance abilities in large-bodied hominoids. J. Hum. Evol. 55, 604–616 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Vogel, E. R. et al. Food mechanical properties, feeding ecology, and the mandibular morphology of wild orangutans. J. Hum. Evol. 75, 110–124 (2014).
    PubMed  Article  Google Scholar 

    39.
    Ashby, M. F. Materials Selection in Mechanical Design (Pergamon Press, Oxford, 2002).
    Google Scholar 

    40.
    Lucas, P. W. Dental Functional Morphology: How Teeth Work (Cambridge University Press, Cambridge, 2004).
    Google Scholar 

    41.
    Marshall, A. J. & Wrangham, R. W. Evolutionary consequences of fallback foods. Int. J. Primatol. 28, 1219 (2007).
    Article  Google Scholar 

    42.
    Foegeding, E. A. et al. A comprehensive approach to understanding textural properties of semi-and soft-solid foods. J. Text. Stud. 42, 103–129 (2011).
    Article  Google Scholar 

    43.
    Herring, S. W. & Herring, S. E. The superficial masseter and gape in mammals. Am. Nat. 108, 561–576 (1974).
    Article  Google Scholar 

    44.
    Perry, J. M. & Hartstone-Rose, A. Maximum ingested food size in captive strepsirrhine primates: Scaling and the effects of diet. Am. J. Phys. Anthropol. 142, 625–635 (2010).
    PubMed  Article  Google Scholar 

    45.
    Hylander, W. L. Functional links between canine height and jaw gape in catarrhines with special reference to early hominins. Am. J. Phys. Anthropol. 150, 247–259 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Izawa, K. Foods and feeding behavior of monkeys in the upper Amazon basin. Primates 16, 295–316 (1975).
    Article  Google Scholar 

    47.
    Izawa, K. Foods and feeding behavior of wild black-capped capuchin (Cebus apella). Primates 20, 57–76 (1979).
    Article  Google Scholar 

    48.
    Izawa, K. & Mizuno, A. Palm-fruit cracking behavior of wild black-capped capuchin (Cebus apella). Primates 18, 773–792 (1977).
    Article  Google Scholar 

    49.
    Fogaça, M. D. Comportamento alimentar e propriedades físicas dos alimentos consumidos por macacos-prego (Sapajus nigritus), no Parque Estadual Carlos Botelho, SP. Ph.D. Dissertation, Universidade de São Paulo (2014).

    50.
    Bouvier, M. Biomechanical scaling of mandibular dimensions in New World monkeys. Int. J. Primatol. 7, 551–567 (1986).
    Article  Google Scholar 

    51.
    Taylor, A. B., Eng, C. M., Anapol, F. C. & Vinyard, C. J. The functional significance of jaw-muscle fiber architecture in tree-gouging marmosets. In The Smallest Anthropoids (eds Ford, S. M. et al.) 381–394 (Springer, Boston, 2009).
    Google Scholar 

    52.
    McGraw, W. S., Vick, A. E. & Daegling, D. J. Dietary variation and food hardness in sooty mangabeys (Cercocebus atys): Implications for fallback foods and dental adaptation. Am. J. Phys. Anthropol. 154, 413–423 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    McGraw, W. S. & Daegling, D. J. Primate feeding and foraging: Integrating studies of behavior and morphology. Annu. Rev. Anthropol. 41, 203–219 (2012).
    Article  Google Scholar 

    54.
    Terborgh, J. W. Five New World Primates (Princeton University Press, Princeton, 1983).
    Google Scholar 

    55.
    Oliveira, P. S. & Marquis, R. J. The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna (Columbia University Press, New York, 2002).
    Google Scholar 

    56.
    Howard, A. S., Bernardes, N., Nibbelink, L., Biondi, A., Presotto, D. M., Fragaszy, M. & Madden. A maximum entropy model of the bearded capuchin monkey habitat incorporating topography and spectral unmixing analysis. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 1, 7–11 (2012).

    57.
    Izar, P. et al. Flexible and conservative features of social systems in tufted capuchin monkeys: Comparing the socioecology of Sapajus libidinosus and Sapajus nigritus. Am. J. Primatol. 74, 315–331 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    58.
    Chalk-Wilayto, J., Ossi-Lupo, K. & Raguet-Schofield, M. Growing up tough: Comparing the effects of food toughness on juvenile feeding in Sapajus libidinosus and Trachypithecus phayrei crepusculus. J. Hum. Evol. 98, 76–89 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    59.
    Altmann, J. Observational study of behavior: Sampling methods. Behaviour 49, 227–266 (1974).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Darvell, B. W., Lee, P. K. D., Yuen, T. D. B. & Lucas, P. W. A portable fracture toughness tester for biological materials. Meas. Sci. Technol. 7, 954 (1996).
    ADS  CAS  Article  Google Scholar 

    61.
    Lucas, P. W. et al. Field kit to characterize physical, chemical and spatial aspects of potential primate foods. Folia Primatol. 72, 11–25 (2001).
    CAS  Article  Google Scholar 

    62.
    Lucas, P. W. et al. Indentation as a technique to assess the mechanical properties of fallback foods. Am. J. Phys. Anthropol. 140, 643–652 (2009).
    PubMed  Article  Google Scholar 

    63.
    Lucas, P. W. et al. Measuring the toughness of primate foods and its ecological value. Int. J. Primatol. 33, 598–610 (2011).
    Article  Google Scholar 

    64.
    Berthaume, M. A. Food mechanical properties and dietary ecology. Am. J. Phys. Anthropol. 159, 79–104 (2016).
    Article  Google Scholar 

    65.
    van Casteren, A., Venkataraman, V., Ennos, A. R. & Lucas, P. W. Novel developments in field mechanics. J. Hum. Evol. 98, 5–17 (2016).
    PubMed  Article  Google Scholar 

    66.
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometr. J. 50, 346–363 (2008).
    MathSciNet  MATH  Article  Google Scholar 

    67.
    R Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, 2017).

    68.
    Hiiemae, K. M. & Kay, R. F. Evolutionary trends in the dynamics of primate mastication. Craniofac. Biol. Primates 3, 28–64 (1973).
    Google Scholar 

    69.
    Santos, L. P. C. D. Parâmetros nutricionais da dieta de duas populações de macacos-prego: Sapajus libidinosus no ecótono cerrado/caatinga e Sapajus nigritus na Mata Atlântica. Ph.D. dissertation, Universidade de São Paulo, São Paulo, Brazil (2015). More

  • in

    Elevated temperature, but not decreased pH, impairs reproduction in a temperate fish

    1.
    Bögner, D. Life under climate change scenarios: sea urchins’ cellular mechanisms for reproductive success. J. Mar. Sci. Eng. 4, 28 (2016).
    Article  Google Scholar 
    2.
    Milazzo, M. et al. Ocean acidification affects fish spawning but not paternity at CO2 seeps. Proc. R. Soc. B Biol. Sci. 283, 20161021 (2016).
    Article  CAS  Google Scholar 

    3.
    Faria, A. M. et al. Reproductive trade-offs in a temperate reef fish under high pCO2 levels. Mar. Environ. Res. 137, 8–15 (2018).
    CAS  PubMed  Article  Google Scholar 

    4.
    Amundsen, T. Sex roles and sexual selection: lessons from a dynamic model system. Curr. Zool. 64, 363–392 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    5.
    Borg, Å. A., Forsgren, E. & Amundsen, T. Seasonal change in female choice for male size in the two-spotted goby. Anim. Behav. 72, 763–771 (2006).
    Article  Google Scholar 

    6.
    Skolbekken, R. & Utne-Palm, A. C. Parental investment of male two-spotted goby, Gobiusculus flavescens (Fabricius). J. Exp. Mar. Biol. Ecol. 261, 137–157 (2001).
    CAS  PubMed  Article  Google Scholar 

    7.
    Utne-Palm, A. C., Eduard, K., Jensen, K. H., Mayer, I. & Jakobsen, P. J. Size dependent male reproductive tactic in the two-spotted goby (Gobiusculus flavescens). PLoS ONE 10, 1–23 (2015).
    Article  CAS  Google Scholar 

    8.
    Donelson, J., Munday, P., McCormick, M., Pankhurst, N. & Pankhurst, P. Effects of elevated water temperature and food availability on the reproductive performance of a coral reef fish. Mar. Ecol. Prog. Ser. 401, 233–243 (2010).
    ADS  Article  Google Scholar 

    9.
    Veilleux, H. D., Donelson, J. M. & Munday, P. L. Reproductive gene expression in a coral reef fish exposed to increasing temperature across generations. Conserv. Physiol. 6, 1–12 (2018).
    Article  CAS  Google Scholar 

    10.
    IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Summaries, Frequently Asked Questions, and Cross-Chapter Boxes. Climate Change 2014: Impacts, Adaptation, and vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014). https://doi.org/10.1016/j.renene.2009.11.012.

    11.
    Fabry, V. J., Seibel, B. A., Feely, R. A. & Orr, J. C. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 65, 414–432 (2008).
    CAS  Article  Google Scholar 

    12.
    Cai, W.-J. et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 4, 766–770 (2011).
    ADS  CAS  Article  Google Scholar 

    13.
    Moser, S. C. et al. Coastal zone development and ecosystems. Clim. Chang. Impacts United States Third Natl. Clim. Assess. 579–618 (2014). https://doi.org/10.7930/J0MS3QNW.On.

    14.
    Donelson, J. M., Wong, M., Booth, D. J. & Munday, P. L. Transgenerational plasticity of reproduction depends on rate of warming across generations. Evol. Appl. 9, 1072–1081 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    15.
    Philippart, C. J. M. et al. Climate-related changes in recruitment of the Bivalve Macoma balthica Bos Gerhard C. Cadée and Rob Dekker. 48, 2171–2185 (2003).
    Google Scholar 

    16.
    Miller, L. P., Matassa, C. M. & Trussell, G. C. Climate change enhances the negative effects of predation risk on an intermediate consumer. Glob. Change Biol. 20, 3834–3844 (2014).
    ADS  Article  Google Scholar 

    17.
    Pistevos, J. C. A., Nagelkerken, I., Rossi, T., Olmos, M. & Connell, S. D. Ocean acidification and global warming impair shark hunting behaviour and growth. Sci. Rep. 5, 1–10 (2015).
    Article  CAS  Google Scholar 

    18.
    Goldenberg, S. U. et al. Ecological complexity buffers the impacts of future climate on marine consumers. Nat. Clim. Change 8, 229–233 (2018).
    ADS  Article  Google Scholar 

    19.
    Welch, M. J. & Munday, P. L. Contrasting effects of ocean acidification on reproduction in reef fishes. Coral Reefs 35, 485–493 (2016).
    ADS  Article  Google Scholar 

    20.
    Miller, G. M., Watson, S.-A., McCormick, M. I. & Munday, P. L. Increased CO2 stimulates reproduction in a coral reef fish. Glob. Change Biol. 19, 3037–3045 (2013).
    ADS  Article  Google Scholar 

    21.
    Forsgren, E., Dupont, S., Jutfelt, F. & Amundsen, T. Elevated CO2 affects embryonic development and larval phototaxis in a temperate marine fish. Ecol. Evol. 3, 3637–3646 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Ishimatsu, A., Hayashi, M. & Kikkawa, T. Fishes in high-CO2, acidified oceans. Mar. Ecol. Prog. Ser. 373, 295–302 (2008).
    ADS  CAS  Article  Google Scholar 

    23.
    Melzner, F. et al. Physiological basis for high CO2 tolerance in marine ectothermic animals: Pre-adaptation through lifestyle and ontogeny?. Biogeosciences 6, 2313–2331 (2009).
    ADS  CAS  Article  Google Scholar 

    24.
    Gianguzza, P. et al. Temperature modulates the response of the thermophilous sea urchin Arbacia lixula early life stages to CO2 -driven acidi fi cation. Mar. Environ. Res. 93, 70–77 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Domenici, P., Allan, B. J. M., Watson, S.-A., McCormick, M. I. & Munday, P. L. Shifting from right to left: the combined effect of elevated CO2 and temperature on behavioural lateralization in a coral reef fish. PLoS ONE 9, e87969 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Schram, J. B., Schoenrock, K. M., McClintock, J. B., Amsler, C. D. & Angus, R. A. Multiple stressor effects of near-future elevated seawater temperature and decreased pH on righting and escape behaviors of two common Antarctic gastropods. J. Exp. Mar. Biol. Ecol. 457, 90–96 (2014).
    Article  Google Scholar 

    27.
    Garzke, J., Hansen, T., Ismar, S. M. H. & Sommer, U. Combined effects of ocean warming and acidification on copepod abundance, body size and fatty acid content. PLoS ONE 11, e0155952 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    28.
    Gobler, C. J., Merlo, L. R., Morrell, B. K. & Griffith, A. W. Temperature, acidification, and food supply interact to negatively affect the growth and survival of the forage fish, Menidia beryllina (Inland Silverside), and Cyprinodon variegatus (Sheepshead Minnow). Front. Mar. Sci. 5, 1–12 (2018).
    Article  Google Scholar 

    29.
    Sswat, M., Stiasny, M. H., Jutfelt, F., Riebesell, U. & Clemmesen, C. Growth performance and survival of larval Atlantic herring, under the combined effects of elevated temperatures and CO2. PLoS ONE https://doi.org/10.1371/journal.pone.0191947 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    30.
    Miller, G. M., Kroon, F. J., Metcalfe, S. & Munday, P. L. Temperature is the evil twin: effects of increased temperature and ocean acidification on reproduction in a reef fish. Ecol. Appl. 25, 603–620 (2015).
    CAS  PubMed  Article  Google Scholar 

    31.
    Utne-Palm, A. C. Response of naïve two-spotted gobies Gobiusculus flavescens to visual and chemical stimuli of their natural predator, cod Gadus morhua. Mar. Ecol. Prog. Ser. 218, 267–274 (2001).
    ADS  Article  Google Scholar 

    32.
    Leo, E., Dahlke, F. T., Storch, D., Pörtner, H.-O. & Mark, F. C. Impact of ocean acidification and warming on the bioenergetics of developing eggs of Atlantic herring Clupea harengus. Conserv. Physiol. 6, coy050 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 1–7 (2017).
    CAS  Article  Google Scholar 

    34.
    Dorey, N., Lançon, P., Thorndyke, M. & Dupont, S. Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH. Glob. Change Biol. 19, 3355–3367 (2013).
    Google Scholar 

    35.
    Magnhagen, C. et al. Context consistency and seasonal variation in boldness of male two-spotted gobies. PLoS ONE 9, e93354 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Torricelli, P., Lugli, M. & Gandolfi, G. A quantitative analysis of the fanning activity in the male Padogobius martensi (Pisces: Gobiidae). Behaviour 92, 288–301 (1985).
    Google Scholar 

    37.
    Kraak, S. B. M. Female preference and filial cannibalism in Aidablennius sphynx (Teleostei, Blenniidae); a combined field and laboratory study. Behav. Processes 36, 85–97 (1996).
    CAS  PubMed  Article  Google Scholar 

    38.
    Jan, M., Jan, U. & Shah, G. M. Studies on fecundity and Gonadosomatic index of Schizothorax plagiostomus (Cypriniformes: Cyprinidae). J. Threat. Taxa 6, 5375–5379 (2014).
    Article  Google Scholar 

    39.
    Forsgren, E., Amundsen, T., Borg, Å. A. & Bjelvenmark, J. Unusually dynamic sex roles in a fish. Nature 429, 551–554 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    40.
    Donelson, J. M., Munday, P. L., McCormick, M. I. & Pitcher, C. R. Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat. Clim. Change 2, 30–32 (2012).
    ADS  Article  Google Scholar 

    41.
    Bernal, M. A. et al. Phenotypic and molecular consequences of step-wise temperature increase across generations in a coral reef fish. Mol. Ecol. https://doi.org/10.1111/mec.14884 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    42.
    Hopkins, K., Moss, B. R. & Gill, A. B. Increased ambient temperature alters the parental care behaviour and reproductive success of the three-spined stickleback (Gasterosteus aculeatus). Environ. Biol. Fishes 90, 121–129 (2011).
    Article  Google Scholar 

    43.
    Stillman, J. H. Acclimation capacity underlies susceptibility to climate change. Science 301, 65 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Laubenstein, T. D., Rummer, J. L., McCormick, M. I. & Munday, P. L. A negative correlation between behavioural and physiological performance under ocean acidification and warming. Sci. Rep. 9, 1–10 (2019).
    CAS  Article  Google Scholar 

    45.
    Dickson, A. G., Sabine, C. L. & Christian, J. R. Guide to Best Practices for Ocean CO2 measurements. PICES Special Publication. Guide to Best Practices for Ocean CO2 measurements. PICES Special Publication 3, (2007).

    46.
    Lewis, E. & Wallace, D. Program developed for CO2 system calculations. Ornl/Cdiac 105, 1–21 (1998).
    Google Scholar 

    47.
    Lissåker, M. & Kvarnemo, C. Ventilation or nest defense—parental care trade-offs in a fish with male care. Behav. Ecol. Sociobiol. 60, 864–873 (2006).
    Article  Google Scholar 

    48.
    Baklow, G. W. Ethology of the Asian Teleost Badis badis. V. dynamics of fanning and other parental activities, with comments on the behavior of the larvae and Postlarvae 2, 3. Z. Tierpsychol. 21, 99–123 (1964).
    Google Scholar 

    49.
    Blumer, L. S. Male parental care in the bony fishes. Q. Rev. Biol. 54, 149–161 (1979).
    Article  Google Scholar  More