More stories

  • in

    Characterizing the spatial distributions of spotted lanternfly (Hemiptera: Fulgoridae) in Pennsylvania vineyards

    1.
    Prasad, A. M. et al. Modeling the invasive emerald ash borer risk of spread using a spatially explicit cellular model. Landsc. Ecol. 25(3), 353–369 (2010).
    Article  Google Scholar 
    2.
    Huang, D., Zhang, R., Kim, K. C. & Suarez, A. V. Spatial pattern and determinants of the first detection locations of invasive alien species in mainland China. PLoS ONE 7(2), e31734 (2012).
    ADS  CAS  Article  Google Scholar 

    3.
    Roy, H. E. et al. Invasive alien predator causes rapid declines of native European ladybirds. Divers. Distrib. 18(7), 717–725 (2012).
    Article  Google Scholar 

    4.
    Cini, A. et al. Tracking the invasion of the alien fruit pest Drosophila suzukii in Europe. J. Pest Sci. 87(4), 559–566 (2014).
    Article  Google Scholar 

    5.
    Filipe, A. F., Quaglietta, L., Ferreira, M., Magalhães, M. F. & Beja, P. Geostatistical distribution modelling of two invasive crayfish across dendritic stream networks. Biol. Invas. 19(10), 2899–2912 (2017).
    Article  Google Scholar 

    6.
    Hahn, N. G., Rodriguez-Saona, C. & Hamilton, G. C. Characterizing the spatial distribution of brown marmorated stink bug, Halyomorpha halys Stål (Hemiptera: Pentatomidae), populations in peach orchards. PLoS ONE 12(3), e0170889 (2017).
    Article  Google Scholar 

    7.
    Carrière, Y. et al. Effects of local and landscape factors on population dynamics of a cotton pest. PLoS ONE 7(6), e39862 (2012).
    ADS  Article  Google Scholar 

    8.
    Wang, X. G., Kaçar, G., Biondi, A. & Daane, K. M. Foraging efficiency and outcomes of interactions of two pupal parasitoids attacking the invasive spotted wing drosophila. Biol. Control 96, 64–71 (2016).
    Article  Google Scholar 

    9.
    Dara, S. K., Barringer, L. & Arthurs, S. P. Lycorma delicatula (Hemiptera: Fulgoridae): a new invasive pest in the United States. J. Integr. Pest Manage. 6, 1–20 (2015).
    Article  Google Scholar 

    10.
    Kim, H. et al. Molecular comparison of Lycorma delicatula (Hemiptera: Fulgoridae) isolates in Korea, China, and Japan. J. Asia-Pac. Entomol. 16(4), 503–506 (2013).
    CAS  Article  Google Scholar 

    11.
    Han, J. M. et al. Lycorma delicatula (Hemiptera: Auchenorrhyncha: Fulgoridae: Aphaeninae) finally, but suddenly arrived in Korea. Entomol. Res. 38(4), 281–286 (2008).
    Article  Google Scholar 

    12.
    Wakie, T. T., Neven, L. G., Yee, W. L. & Lu, Z. The establishment risk of Lycorma delicatula (Hemiptera: Fulgoridae) in the United States and globally. J. Econ. Entomol. https://doi.org/10.1093/jee/toz259 (2019).
    Article  Google Scholar 

    13.
    Jung, J. M., Jung, S., Byeon, D. & Lee, W. H. Model-based prediction of potential distribution of the invasive insect pest, spotted lanternfly Lycorma delicatula (Hemiptera: Fulgoridae), by using CLIMEX. J. Asia-Pac. Biodivers. 10, 532–538 (2017).
    Article  Google Scholar 

    14.
    Harper, J. K., Stone, W., Kelsey, T. W. & Kime, L. F. Potential economic impact of the spotted lanternfly on agriculture and forestry in Pennsylvania. Control Rural Pennsylvania Rep. 1, 1–84 (2019).
    Google Scholar 

    15.
    Leach, H. & Leach, A. Seasonal phenology and activity of spotted lanternfly (Lycorma delicatula) in eastern US vineyards. J. Pest Sci. https://doi.org/10.1007/s10340-020-01233-7 (2020).
    Article  Google Scholar 

    16.
    Barringer, L. E. & Smyers, E. Predation of the spotted lanternfly, Lycorma delicatula (White) (Hemiptera: Fulgoridae) by two native Hemiptera. Entomol. News 126, 71–73 (2016).
    Article  Google Scholar 

    17.
    Cooperband, M. F., Mack, R. & Spichiger, S. E. Chipping to destroy egg masses of the spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae). J. Insect Sci. 18(3), 7–10 (2018).
    Article  Google Scholar 

    18.
    Leach, H., Biddinger, D. J., Krawczyk, G., Smyer, S. E. & Urban, J. M. Evaluation of insecticides for control of the spotted lanternfly, Lycorma delicatula, (Hemiptera: Fulgoridae), a new pest of fruit in the Northeastern US. Crop Prot. https://doi.org/10.1016/j.cropro.2019.05.027 (2019).
    Article  Google Scholar 

    19.
    Clifton, E. H., Castrillo, L. A., Gryganskyi, A. & Hajek, A. E. A pair of native fungal pathogens drives decline of a new invasive herbivore. Proc. Natl. Acad. Sci. 116(19), 9178–9180 (2019).
    CAS  Article  Google Scholar 

    20.
    Urban, J. M. Perspective: shedding light on spotted lanternfly impacts in the USA. Pest Manage. Sci. https://doi.org/10.1002/ps.5619 (2020).
    Article  Google Scholar 

    21.
    Wolfin, M. S. et al. Flight dispersal capabilities of female spotted lanternflies (Lycorma delicatula) related to size and mating status. J. Insect Behav. 32(3), 188–200 (2019).
    Article  Google Scholar 

    22.
    Clifton, E. H. et al. Applications of Beauveria bassiana (Hypocreales: Cordycipitaceae) to control populations of spotted lanternfly (Hemiptera: Fulgoridae), in semi-natural landscapes and on grapevines. Environ. Entomol. https://doi.org/10.1093/ee/nvaa064 (2020).
    Article  PubMed  Google Scholar 

    23.
    Francese, J. A. et al. Developing traps for the spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae). Environ. Entomol. 49(2), 269–276 (2020).
    Article  Google Scholar 

    24.
    Nguyen, H. D. D. & Nansen, C. Edge-biased distributions of insects. A review. Agron. Sustain. Dev. 38, 11 (2018).
    Article  Google Scholar 

    25.
    Ries, L. & Sisk, T. D. A predictive model of edge effects. Ecology https://doi.org/10.1890/03-8021 (2004).
    Article  Google Scholar 

    26.
    Leskey, T. C., Short, B. D. & Ludwick, D. Comparison and refinement of integrated pest management tactics for Halyomorpha halys (Hemiptera: Pentatomidae) management in apple orchards. J. Econ. Entomol. https://doi.org/10.1093/jee/toaa067 (2020).
    Article  PubMed  Google Scholar 

    27.
    Mason, K. S., Roubos, C. R., Teixeira, L. A. & Isaacs, R. Spatially targeted applications of reduced-risk insecticides for economical control of grape berry moth, Paralobesia viteana (Lepidoptera: Tortricidae). J. Econ. Entomol. 109(5), 2168–2174 (2016).
    CAS  Article  Google Scholar 

    28.
    Goffinet, M.C. Anatomy of grapevine winter injury and recovery. Dept. Hort. Services Res. Paper, Cornell Univ. (2004). Accessed April 20, 2020 from https://www.eaglegrapegrowers.org/uploads/1/1/8/4/118472897/anatomy_of_winter_injury_hi_res.pdf.

    29.
    Halldorson, M. M. & Keller, M. Grapevine leafroll disease alters leaf physiology but has little effect on plant cold hardiness. Planta 248(5), 1201–1211 (2018).
    CAS  Article  Google Scholar 

    30.
    Süle, S. & Burr, T. J. The effect of resistance of rootstocks to crown gall (Agrobacterium spp.) on the susceptibility of scions in grape vine cultivars. Plant Pathol. 47, 84–88 (1998).
    Article  Google Scholar 

    31.
    Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R.H.B., Singmann, H., Dai, B., Scheipl, F., Grothendieck, G. & Green, P. R Package ‘lme4’. 1.17 (2018).

    32.
    Bartoń, K. MuMIn: Multi-model Inference. R Package version 1.40.4 (2018).

    33.
    Korner-Nievergelt, F. et al. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS and Stan (Elsevier, Hoboken, 2015).
    Google Scholar 

    34.
    Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 27(2), 93–115 (1995).
    Article  Google Scholar 

    35.
    Mitchell, A. The ESRI Guide to GIS Analysis (ESRI Press, Redlands, 2005).
    Google Scholar 

    36.
    Krivoruchko, K. Spatial Statistical Data Analysis for GIS Users 928 (ESRI Press, Redland, 2011).
    Google Scholar  More

  • in

    A network of grassroots reserves protects tropical river fish diversity

    1.
    Worm, B. et al. Rebuilding global fisheries. Science 325, 578–585 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Costello, C. et al. Global fishery prospects under contrasting management regimes. Proc. Natl Acad. Sci. USA 113, 5125–5129 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Allan, J. D. et al. Overfishing of inland waters. Bioscience 55, 1041–1051 (2005).
    Article  Google Scholar 

    4.
    Lester, S. E. et al. Biological effects within no-take marine reserves: a global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46 (2009).
    ADS  Article  Google Scholar 

    5.
    Halpern, B. S., Lester, S. E. & McLeod, K. L. Placing marine protected areas onto the ecosystem-based management seascape. Proc. Natl Acad. Sci. USA 107, 18312–18317 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    6.
    Carr, M. H. et al. Marine protected areas exemplify the evolution of science and policy. Oceanography (Wash. D.C.) 32, 94–103 (2019).
    Article  Google Scholar 

    7.
    Gaines, S. D., White, C., Carr, M. H. & Palumbi, S. R. Designing marine reserve networks for both conservation and fisheries management. Proc. Natl Acad. Sci. USA 107, 18286–18293 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    9.
    Abell, R., Lehner, B., Thieme, M. & Linke, S. Looking beyond the fenceline: assessing protection gaps for the world’s rivers. Conserv. Lett. 10, 384–394 (2017).
    Article  Google Scholar 

    10.
    Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    11.
    Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).
    ADS  PubMed  Article  CAS  Google Scholar 

    12.
    McIntyre, P. B., Reidy Liermann, C. A. & Revenga, C. Linking freshwater fishery management to global food security and biodiversity conservation. Proc. Natl Acad. Sci. USA 113, 12880–12885 (2016).
    CAS  PubMed  Article  Google Scholar 

    13.
    Fluet-Chouinard, E., Funge-Smith, S. & McIntyre, P. B. Global hidden harvest of freshwater fish revealed by household surveys. Proc. Natl Acad. Sci. USA 115, 7623–7628 (2018).
    CAS  PubMed  Article  Google Scholar 

    14.
    Golden, C. D. et al. Nutrition: Fall in fish catch threatens human health. Nature 534, 317–320 (2016).
    ADS  PubMed  Article  Google Scholar 

    15.
    Botsford, L. W., Micheli, F. & Hastings, A. Principles for the design of marine reserves. Ecol. Appl. 13, 25–31 (2003).
    Article  Google Scholar 

    16.
    Gell, F. R. & Roberts, C. M. Benefits beyond boundaries: the fishery effects of marine reserves. Trends Ecol. Evol. 18, 448–455 (2003).
    Article  Google Scholar 

    17.
    Hastings, A. & Botsford, L. W. Comparing designs of marine reserves for fisheries and for biodiversity. Ecol. Appl. 13, 65–70 (2003).
    Article  Google Scholar 

    18.
    Pendleton, L. H. et al. Debating the effectiveness of marine protected areas. ICES J. Mar. Sci. 75, 1156–1159 (2018).
    Article  Google Scholar 

    19.
    Chessman, B. C. Do protected areas benefit freshwater species? A broad-scale assessment for fish in Australia’s Murray–Darling Basin. J. Appl. Ecol. 50, 969–976 (2013).
    Article  Google Scholar 

    20.
    Lawrence, D. J. et al. National parks as protected areas for U.S. freshwater fish diversity. Conserv. Lett. 4, 364–371 (2011).
    Article  Google Scholar 

    21.
    Abell, R. et al. Concordance of freshwater and terrestrial biodiversity. Conserv. Lett. 4, 127–136 (2011).
    Article  Google Scholar 

    22.
    Hilborn, R. Policy: Marine biodiversity needs more than protection. Nature 535, 224–226 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    23.
    Halpern, B. S. et al. Achieving the triple bottom line in the face of inherent trade-offs among social equity, economic return, and conservation. Proc. Natl Acad. Sci. USA 110, 6229–6234 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    24.
    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    25.
    Baird, I. G., Flaherty, M. S. & Baird, I. G. Mekong River fish conservation zones in southern Laos: assessing effectiveness using local ecological knowledge. Environ. Manage. 36, 439–454 (2005).
    PubMed  Article  Google Scholar 

    26.
    Loury, E. K. et al. Salty stories, fresh spaces: lessons for aquatic protected areas from marine and freshwater experiences. Aquat. Conserv. 28, 485–500 (2018).
    Article  Google Scholar 

    27.
    McCann, K. S. et al. Food webs and the sustainability of indiscriminate fisheries. Can. J. Fish. Aquat. Sci. 73, 656–665 (2016).
    CAS  Article  Google Scholar 

    28.
    Gutiérrez, N. L., Hilborn, R. & Defeo, O. Leadership, social capital and incentives promote successful fisheries. Nature 470, 386–389 (2011).
    ADS  PubMed  Article  CAS  Google Scholar 

    29.
    Kramer, D. L. & Chapman, M. R. Implications of fish home range size and relocation for marine reserve function. Environ. Biol. Fishes 55, 65–79 (1999).
    Article  Google Scholar 

    30.
    Morrison, S. A. A framework for conservation in a human-dominated world. Conserv. Biol. 29, 960–964 (2015).
    PubMed  Article  Google Scholar 

    31.
    Campos-Silva, J. V. & Peres, C. A. Community-based management induces rapid recovery of a high-value tropical freshwater fishery. Sci. Rep. 6, 34745 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Castello, L., Viana, J. P., Watkins, G., Pinedo-Vasquez, M. & Luzadis, V. A. Lessons from integrating fishers of arapaima in small-scale fisheries management at the Mamirauá Reserve, Amazon. Environ. Manage. 43, 197–209 (2009).
    ADS  PubMed  Article  Google Scholar 

    33.
    Pinho, P. F., Orlove, B. & Lubell, M. Overcoming barriers to collective action in community-based fisheries management in the Amazon. Hum. Organ. 71, 99–109 (2012).
    Article  Google Scholar 

    34.
    Thompson, P. M., Sultana, P. & Islam, N. Lessons from community based management of floodplain fisheries in Bangladesh. J. Environ. Manage. 69, 307–321 (2003).
    PubMed  Article  Google Scholar 

    35.
    Alexander, S. M., Epstein, G., Bodin, Ö., Armitage, D. & Campbell, D. Participation in planning and social networks increase social monitoring in community-based conservation. Conserv. Lett. 11, e12562 (2018).
    Article  Google Scholar 

    36.
    Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 325, 419–422 (2009).
    ADS  MathSciNet  CAS  PubMed  MATH  Article  Google Scholar 

    37.
    Halpern, B. S., Lester, S. E. & Kellner, J. B. Spillover from marine reserves and the replenishment of fished stocks. Environ. Conserv. 36, 268–276 (2009).
    Article  Google Scholar 

    38.
    Campbell Grant, E. H., Lowe, W. H. & Fagan, W. F. Living in the branches: population dynamics and ecological processes in dendritic networks. Ecol. Lett. 10, 165–175 (2007).
    PubMed  Article  Google Scholar 

    39.
    Palumbi, S. R. Population genetics, demographic connectivity, and the design of marine reserves. Ecol. Appl. 13, 146–158 (2003).
    Article  Google Scholar 

    40.
    Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. Habitat destruction and the extinction debt. Nature 371, 65–66 (1994).
    ADS  Article  Google Scholar 

    41.
    McIntyre, P. B. et al. in Conservation of Freshwater Fishes (eds Closs, G. P. et al.) 324–360 (Cambridge Univ. Press, 2015).

    42.
    Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–182 (2006).
    PubMed  Article  Google Scholar 

    43.
    Roberts, C. M. et al. Marine reserves can mitigate and promote adaptation to climate change. Proc. Natl Acad. Sci. USA 114, 6167–6175 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    44.
    Koning, A. A., Moore, J., Suttidate, N., Hannigan, R. & McIntyre, P. B. Aquatic ecosystem impacts of land sharing versus sparing: nutrient loading to Southeast Asian rivers. Ecosystems (N. Y.) 20, 393–405 (2017).
    CAS  Article  Google Scholar 

    45.
    Froese, R. & Pauly, D. (eds) FishBase http://www.fishbase.org (2019).

    46.
    Lamberti, G. A. & Hauer, F. R. Methods in Stream Ecology (Academic, 2017).

    47.
    Jari Oksanen, F. et al. vegan: Community Ecology Package. R package version 2.5-6 https://CRAN.R-project.org/package=vegan (2019).

    48.
    R Core Team. R: A Language and Environment for Statistical Computing https://www.R-project.org/ (R Foundation for Statistical Computing, 2019).

    49.
    Google Earth (November, 2015). Mae Ngao, Thailand. https://www.google.co.uk/earth/ (2020).

    50.
    Environmental Systems Research Institute (ESRI). ArcGIS Release 10.3 (2015).

    51.
    Yamazaki, D. et al. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 44, 5844–5853 (2017).
    ADS  Article  Google Scholar 

    52.
    Robin, X. et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12, 77 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Jordán, F., Liu, W. C. & Andrew, J. D. Topological keystone species: measures of positional importance in food webs. Oikos 112, 535–546 (2006).
    Article  Google Scholar 

    54.
    Bates, D., Maechler, M. & Ben Bolker, S. W. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    55.
    Claudet, J. et al. Marine reserves: size and age do matter. Ecol. Lett. 11, 481–489 (2008).
    PubMed  Article  Google Scholar 

    56.
    Claudet, J. et al. Marine reserves: fish life history and ecological traits matter. Ecol. Appl. 20, 830–839 (2010).
    CAS  PubMed  Article  Google Scholar 

    57.
    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).
    PubMed  Article  Google Scholar 

    58.
    Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.6 https://CRAN.R-project.org/package=MuMIn (2019). More

  • in

    Modified Ziziphus spina-christi stones as green route for the removal of heavy metals

    1.
    Vilaseca, M., Gutiérrez, M. C., López-Grimau, V., López-Mesas, M. & Crespi, M. Biological treatment of a textile effluent after electrochemical oxidation of reactive dyes. Water Environ. Res. 82, 176–182 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Mahmood, Q., Mahnoor, A., Shahida, S., Tahir, M. & Ali, S. Cadmium contamination in water and soil. In Cadmium Toxic (eds Hasanuzzaman, M. et al.) 141–161 (Elsevier, Amsterdam, Toler. Plants, 2018).
    Google Scholar 

    3.
    Wasi, S., Tabrez, S. & Ahmad, M. Toxicological effects of major environmental pollutants: an overview. Environ. Monit. Assess. 185, 2585–2593 (2013).
    PubMed  Article  Google Scholar 

    4.
    Malik, A. Environmental challenge vis a vis opportunity: the case of water hyacinth. Environ. Int. 33, 122–138 (2007).
    CAS  PubMed  Article  Google Scholar 

    5.
    Asere, T. G., Stevens, C. V. & Du Laing, G. Use of (modified) natural adsorbents for arsenic remediation: a review. Sci. Total Environ. 676, 706–720 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    6.
    Shakoor, M. B. et al. Remediation of arsenic contaminated water using agricultural wastes as biosorbents. Crit. Rev. Environ. Sci. Technol. 46, 467–499 (2016).
    CAS  Article  Google Scholar 

    7.
    Bilal, M., et al. Waste biomass adsorbents for copper removal from industrial wastewater—a review. J. Hazard. Mater. 263Pt 2, 322–333 (2013).

    8.
    Lesmana, S. O., Febriana, N., Soetaredjo, F. E., Sunarso, J. & Ismadji, S. Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem. Eng. J. 44, 19–41 (2009).
    CAS  Article  Google Scholar 

    9.
    Ofomaja, A. E. & Ho, Y. S. Effect of pH on cadmium biosorption by coconut copra meal. J. Hazard. Mater. 139, 356–362 (2007).
    CAS  PubMed  Article  Google Scholar 

    10.
    Saied, S., Gebauer, J., Hammer, K. & Buerkert, A. Ziziphus spina-christi (L.) willd: a multipurpose fruit tree. Genet. Resour. Crop Evol. 55, 929–937 (2008).
    Article  Google Scholar 

    11.
    Omri, A. & Benzina, M. Characterization of activated carbon prepared from a new raw lignocellulosic material: Ziziphus Spina-Christi seeds. J. Soc. Chim. Tunisie 14, 175–183 (2012).
    Google Scholar 

    12.
    Nazif, N.M. Phytoconstituents of Zizyphus spina-christi L. fruits and their antimicrobial activity. Food Chem. 76, 77–81 (2002).
    CAS  Article  Google Scholar 

    13.
    Amoo, I. A. & Atasie, V. N. Nutritional and functional properties of Tamarindus Indica Pulp and Zizyphus spina-christi fruit and seed. J. Food Agric. Environ. 10, 16–19 (2012).
    CAS  Google Scholar 

    14.
    Osman, M. A. & Ahmed, M. A. Chemical and proximate composition of (Zizyphus spina-christi) Nabag Fruit. Nutr. Food Sci. 39, 70–75 (2009).
    Article  Google Scholar 

    15.
    Ngah, W. S. W. & Hanafiah, M. A. K. M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour. Technol. 99, 3935–3948 (2008).
    Article  CAS  Google Scholar 

    16.
    Gautam, R.K., Chattopadhyaya, M.C. & Sharma, S.K. Biosorption of heavy metals: recent trends and challenges Ravindra. In Wastewater Reuse and Management; (Sharma, S.K., Sanghi, R., Eds).; Springer: Berlin, 305–322 (2013).

    17.
    Park, D., Yun, Y.-S. & Park, J. M. The past, present, and future trends of biosorption. Biotechnol. Bioprocess Eng. 15, 86–102 (2010).
    CAS  Article  Google Scholar 

    18.
    Won, S. W., Kotte, P., Wei, W., Lim, A. & Yun, Y.-S. Biosorbents for recovery of precious metals. Bioresour. Technol. 160, 203–212 (2014).
    CAS  PubMed  Article  Google Scholar 

    19.
    Patel, S. Potential of fruit and vegetable wastes as novel biosorbents: summarizing the recent studies. Rev. Environ. Sci. Bio/Technol. 11, 365–380 (2012).
    CAS  Article  Google Scholar 

    20.
    Volesky, B. Biosorption and me. Water Res. 41, 4017–4029 (2007).
    CAS  PubMed  Article  Google Scholar 

    21.
    Vijayaraghavan, K. & Yun, Y. S. Bacterial biosorbents and biosorption. Biotechnol. Adv. 26, 266–291 (2008).
    CAS  PubMed  Article  Google Scholar 

    22.
    Acar, F. N. & Eren, Z. Removal of Cu(II) ions by activated poplar sawdust (Samsun Clone) from aqueous solutions. J. Hazard. Mater. 137, 909–914 (2006).
    CAS  PubMed  Article  Google Scholar 

    23.
    Reddy, B. R., Mirghaffari, N. & Gaballah, I. Removal and recycling of copper from aqueous solutions using treated Indian barks. Resour. Conserv. Recycl. 21, 227–245 (1997).
    Article  Google Scholar 

    24.
    Su, P., Zhang, J., Tang, J. & Zhang, C. Preparation of nitric acid modified powder activated carbon to remove trace amount of Ni(II) in aqueous solution. Water Sci. Technol. 80, 86–97 (2019).
    CAS  PubMed  Article  Google Scholar 

    25.
    Sciban, M., Klasnja, M. & Skrbic, B. Modified softwood sawdust as adsorbent of heavy metal ions from water. J. Hazard. Mater. 136, 266–271 (2006).
    CAS  PubMed  Article  Google Scholar 

    26.
    Taty-Costodes, V. C., Fauduet, H., Porte, C. & Delacroix, A. Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. J. Hazard. Mater. 105, 121–142 (2003).
    CAS  PubMed  Article  Google Scholar 

    27.
    Gupta, V. K., Jain, C. K., Ali, I., Sharma, M. & Saini, V. K. Removal of cadmium and nickel from wastewater using bagasse fly ash—a sugar industry waste. Water Res. 37, 4038–4044 (2003).
    CAS  PubMed  Article  Google Scholar 

    28.
    Polatoğlu, I. & Karataş, D. Modeling of molecular interaction between catechol and tyrosinase by DFT. J. Mol. Struct. 1202, 127192 (2020).
    Article  CAS  Google Scholar 

    29.
    Omar, A., Ezzat, H., Elhaes, H. & Ibrahim, M. A. Molecular modeling analyses for modified biopolymers. Biointerface Res. Appl. Chem. 11(1), 7847–7859 (2021).
    Google Scholar 

    30.
    Badry, R. et al. Spectroscopic and thermal analyses for the effect of acetic acid on the plasticized sodium carboxymethyl cellulose. J. Mol. Struct. 1224, 129013 (2021).
    CAS  Article  Google Scholar 

    31.
    Menazea, A. A. et al. Chitosan/graphene oxide composite as an effective removal of Ni, Cu, As, Cd and Pb from wastewater. Comput. Theor. Chem. 1189, 112980 (2020).
    CAS  Article  Google Scholar 

    32.
    Al-Bagawi, A. H., Bayoumy, A. M. & Ibrahim, M. A. Molecular modeling analyses for graphene functionalized with Fe3O4 and NiO. Heliyon 6(7), e04456 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Assirey, E. A., Sirry, S. M., Burkani, H. A. & Ibrahim, M. Biosorption of zinc(II) and cadmium(II) using Ziziphus spina stones. J. Comput. Theor. Nanosci. 15, 3102–3108 (2018).
    CAS  Article  Google Scholar 

    34.
    Rice, E. W., Baird, R. B., Eaton, A. D. & Clesceri, L. S. Standard Methods for the Examination of Water and Wastewater 23rd edn. (American Public Health Association (APHA), Washington, DC, 2017).
    Google Scholar 

    35.
    Zhang, B. et al. Biosorption characteristics of Bacillus gibsonii S-2 waste biomass for removal of lead (II) from aqueous solution. Environ. Sci. Pollut. Res. Int. 20, 1367–1373 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918).
    CAS  Article  Google Scholar 

    37.
    Frisch, M. et al. Gaussian 09, revision C.01 (Gaussian, Inc., Wallingford, 2009).

    38.
    Becke, A. D. Density-functional thermochemistry—III: the role of exact exchange. Chem. Phys. 98, 5648 (1993).
    ADS  CAS  Google Scholar 

    39.
    Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988).
    ADS  CAS  Article  Google Scholar 

    40.
    Miehlich, B., Savin, A., Stoll, H. & Preuss, H. Results obtained with the correlation energy density functionals of Becke and Lee Yang and Parr. Chem. Phys. Lett. 157, 200–206 (1989).
    ADS  CAS  Article  Google Scholar 

    41.
    Jin, Y., Zhang, Y., Lü, Q. & Cheng, X. Biosorption of methylene blue by chemically modified cellulose waste. J. Wuhan Univ. Technol. Sci. Ed. 29, 817–823 (2014).
    CAS  Article  Google Scholar 

    42.
    Calero, M., Pérez, A., Blázquez, G., Ronda, A. & Martín-Lara, M. A. Characterization of chemically modified biosorbents from olive tree pruning for the biosorption of lead. Ecol. Eng. 58, 344–354 (2013).
    Article  Google Scholar 

    43.
    Abdolali, A. et al. Characterization of a multi-metal binding biosorbent: chemical modification and desorption studies. Bioresour. Technol. 193, 477–487 (2015).
    CAS  PubMed  Article  Google Scholar 

    44.
    Brigida, A. I. S., Calado, V. M. A., Goncalves, L. R. B. & Coelho, M. A. Z. Effect of chemical treatments on properties of green coconut fiber. Carbohydr. Polym. 79, 832–838 (2010).
    CAS  Article  Google Scholar 

    45.
    Herrera-Franco, P. J. & Valadez-Gonzalez, A. A. Study of the mechanical properties of short natural-fiber reinforced composites. Compos. Part B Eng. 36, 597–608 (2005).
    Article  CAS  Google Scholar 

    46.
    Mao, J., Won, S. W., Choi, S. B., Lee, M. W. & Yun, Y. S. Surface modification of the Corynebacterium Glutamicum biomass to increase carboxyl binding site for basic dye molecules. Biochem. Eng. J. 46, 1–6 (2009).
    Article  CAS  Google Scholar 

    47.
    Ramana, D. K. V., Reddy, K. D. H., Kumar, B. N., Harinath, Y. & Seshaiah, K. Removal of nickel from aqueous solutions by citric acid modified Ceiba Pentandra Hulls: equilibrium and kinetic studies. Can. J. Chem. Eng. 90, 111–119 (2012).
    CAS  Article  Google Scholar 

    48.
    Martín-Lara, M. A., Pagnanelli, F., Mainelli, S., Calero, M. & Toro, L. Chemical treatment of olive Pomace: effect on acid-basic properties and metal biosorption capacity. J. Hazard. Mater. 2012(156), 448–457 (2012).
    Google Scholar 

    49.
    Shadreck, M., Chigondo, F., Shumba, M., Nyamunda, B. C. & Edith, S. Removal of chromium (VI) from aqueous solution using chemically modified orange (Citrus Cinensis) peel. IOSR J. Appl. Chem. 6, 66–75 (2013).
    Article  Google Scholar 

    50.
    Olu-owolabi, B. I., Oputu, O. U., Adebowale, K. O., Ogonsolu, O. & Olujimi, O. O. Biosorption of Cd2+ and Pb2+ ions onto mango stone and cocoa pod waste: kinetic and equilibrium studies. Sci. Res. Essays 7, 1614–1629 (2012).
    CAS  Article  Google Scholar 

    51.
    Adhiambo, O.R., Lusweti, K.J. & Morang’a, G.Z. Biosorption of Pb2+ and Cr2+ Using Moringa oleifera and their adsorption isotherms. Sci. J. Anal. Chem., 3, 100–108 (2015).

    52.
    Ofomaja, A. E., Naidoo, E. B. & Modise, S. J. Biosorption of copper(II) and lead(II) onto potassium hydroxide treated pine cone powder. J. Environ. Manag. 91, 1674–1685 (2010).
    CAS  Article  Google Scholar 

    53.
    Min, S. H., Han, J. S., Shin, E. W. & Park, J. K. Improvement of cadmium ion removal by base treatment of juniper fiber. Water Res. 38, 1289–1295 (2004).
    CAS  PubMed  Article  Google Scholar 

    54.
    Kapoor, A. & Viraraghavan, T. Heavy metal biosorption sites in Aspergillus Niger. Bioresour. Technol. 61, 221–227 (1997).
    CAS  Article  Google Scholar 

    55.
    Vijayaraghavan, K. & Yun, Y. S. Utilization of fermentation waste (Corynebacterium glutamicum) for biosorption of reactive black 5 from aqueous solution. J. Hazard. Mater. 141, 45–52 (2007).
    CAS  PubMed  Article  Google Scholar 

    56.
    Alslaibi, T.M., Abustan, I., Ahmad, M.A. & Abu Foul, A. Comparative studies on the olive stone activated carbon adsorption of Zn2+, Ni2+, and Cd2+from synthetic wastewater. Desalin. Water Treat., 54, 166–177 (2015).

    57.
    Papageorgiou, S. K. et al. Heavy metal sorption by calcium alginate beads from Laminaria digitata. J. Hazard. Mater. 137, 1765–1772 (2006).
    CAS  PubMed  Article  Google Scholar 

    58.
    Usman, A. R. A. The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley Egypt. Geoderma 144, 334–343 (2008).
    ADS  CAS  Article  Google Scholar 

    59.
    Gilbert, U. A., Emmanuel, I. U., Adebanjo, A. A. & Olalere, G. A. Biosorptive removal of Pb2+ and Cd2+ onto novel biosorbent: defatted Carica papaya seeds. Biomass Bioenergy 35, 2517–2525 (2011).
    Article  CAS  Google Scholar 

    60.
    Jimoh, T. O., Yisa, J., Ajai, A. I. & Musa, A. Kinetics and thermodynamics studies of the biosorption of Pb(II), Cd(II) and Zn(II) ions from aqueous solution by sweet orange (Citrus sinensis) seeds. Int. J. Mod. Chem. 4, 19–37 (2013).
    CAS  Google Scholar 

    61.
    Shawabkeh, R., Al-Harahsheh, A., Hami, M. & Khlaifat, A. Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater. Fuel 83, 981–985 (2004).
    CAS  Article  Google Scholar 

    62.
    Politzer, P. & Murray, J.S. Molecular electrostatic potentials. In Concepts and Applications, (Theoretical and Computational Chemistry), 1st edn.; Murray, J.S., Sen, K., Eds.; Elsevier: Amsterdam, 3, 649–660 (1996).

    63.
    Ibrahim, A., Elhaes, H., Meng, F. & Ibrahim, M. Effect of hydration on the physical properties of glucose. Biointerface Res. Appl. Chem. 8, 4114–4118 (2019).
    Google Scholar 

    64.
    Ibrahim, A., Elhaes, H., Ibrahim, M., Yahia, I. S. & Zahran, H. Y. Molecular modeling analyses for polyvinylidene X (X=F, Cl, Br and I). Biointerface Res. Appl. Chem. 9, 3890–3893 (2019).
    CAS  Article  Google Scholar 

    65.
    Ezzat, H. et al. Mapping the molecular electrostatic potential of carbon nanotubes. Biointerface Res. Appl. Chem. 8, 3539–3542 (2018).
    CAS  Google Scholar 

    66.
    Msaada, A. et al. Industrial wastewater decolorization by activated carbon from Ziziphus lotus. Desalin. Water Treat. 126, 296–305 (2018).
    Article  CAS  Google Scholar 

    67.
    Msaad, A., Belbahloul, M., El Hajjaji, S. & Zouhri, A. Comparison of novel Ziziphus lotus adsorbent and industrial carbon on methylene blue removal from aqueous solutions. Water Sci. Technol. 78(10), 2055–2063 (2018).
    CAS  PubMed  Article  Google Scholar 

    68.
    Msaad, A., Belbahloul, M., El Hajjaji, S., Zouhri, A. Synthesis of H3PO4 activated carbon from Ziziphus lotus (Z. mauritiana) leaves: optimization using RSM and cationic dye adsorption. Desalin. Water Treat. 153, 288–299 (2019).
    CAS  Article  Google Scholar  More