More stories

  • in

    Carbon and nitrogen cycling in Yedoma permafrost controlled by microbial functional limitations

    1.
    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).
    Google Scholar 
    2.
    Harden, J. W. et al. Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys. Res. Lett. 39, L15704 (2012).
    Google Scholar 

    3.
    Schädel, C. et al. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Glob. Change Biol. 20, 641–652 (2014).
    Google Scholar 

    4.
    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
    Google Scholar 

    5.
    Koven, C. D. et al. A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Philos. Trans. R. Soc. A 373, 20140423 (2015).
    Google Scholar 

    6.
    Nannipieri, P. et al. Microbial diversity and soil functions. Eur. J. Soil Sci. 68, 12–26 (2003).
    Google Scholar 

    7.
    Harding, T., Jungblut, A. D., Lovejoy, C. & Vincent, W. F. Microbes in High Arctic snow and implications for the cold biosphere. Appl. Environ. Microbiol. 77, 3234–3243 (2011).
    Google Scholar 

    8.
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).
    Google Scholar 

    9.
    Bier, R. L. et al. Linking microbial community structure and microbial processes: an empirical and conceptual overview. FEMS Microbiol. Ecol. 91, fiv113 (2015).
    Google Scholar 

    10.
    Nunan, N., Leloup, J., Ruamps, L. S., Pouteau, V. & Chenu, C. Effects of habitat constraints on soil microbial community function. Sci. Rep. 7, 4280 (2017).
    Google Scholar 

    11.
    Graham, E. B. et al. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front. Microbiol. 7, 214 (2016).
    Google Scholar 

    12.
    Schimel, J. in Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences (eds Chapin, F. S. & Körner, C.) 239–254 (Springer, 1995).

    13.
    Schimel, J. & Schaeffer, S. M. Microbial control over carbon cycling in soil. Front. Microbiol. 3, 348 (2012).
    Google Scholar 

    14.
    Bottos, E. M. et al. Dispersal limitation and thermodynamic constraints govern spatial structure of permafrost microbial communities. FEMS Microbiol. Ecol. 94, fiy110 (2018).
    Google Scholar 

    15.
    Jansson, J. K. & Tas, N. The microbial ecology of permafrost. Nat. Rev. Microbiol. 12, 414–425 (2014).
    Google Scholar 

    16.
    Mackelprang, R. et al. Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME J. 11, 2305–2318 (2017).
    Google Scholar 

    17.
    Philippot, L. et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7, 1609–1619 (2013).
    Google Scholar 

    18.
    Monteux, S. et al. Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration. ISME J. 12, 2129–2141 (2018).
    Google Scholar 

    19.
    Johnston, E. R. et al. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths. Proc. Natl Acad. Sci. USA 116, 15096–15105 (2019).
    Google Scholar 

    20.
    Fierer, N. et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl Acad. Sci. USA 109, 21390–21395 (2012).
    Google Scholar 

    21.
    Sanders, T., Fiencke, C., Hüpeden, J., Pfeiffer, E. M. & Spieck, E. Cold adapted Nitrosospira sp.: a potential crucial contributor of ammonia oxidation in cryosols of permafrost-affected landscapes in Northeast Siberia. Microorganisms 7, 699 (2019).
    Google Scholar 

    22.
    Hill, K. A. et al. Processing of atmospheric nitrogen by clouds above a forest environment. J. Geophys. Res. Atmos. 112, D11301 (2007).
    Google Scholar 

    23.
    Knoblauch, C., Beer, C., Sosnin, A., Wagner, D. & Pfeiffer, E.-M. Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Glob. Change Biol. 19, 1160–1172 (2013).
    Google Scholar 

    24.
    Wild, B. et al. Plant-derived compounds stimulate the decomposition of organic matter in Arctic permafrost soils. Sci. Rep. 6, 25607 (2016).
    Google Scholar 

    25.
    Strauss, J. et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth-Sci. Rev. 172, 75–86 (2017).
    Google Scholar 

    26.
    Wertz, S. et al. Maintenance of soil functioning following erosion of microbial diversity. Environ. Microbiol. 8, 2162–2169 (2006).
    Google Scholar 

    27.
    Fontaine, S. et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450, 277–280 (2007).
    Google Scholar 

    28.
    Rillig, M. C. et al. Interchange of entire communities: microbial community coalescence. Trends Ecol. Evol. 30, 470–476 (2015).
    Google Scholar 

    29.
    Mackelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011).
    Google Scholar 

    30.
    Keuper, F. et al. A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. Glob. Change Biol. 18, 1998–2007 (2012).
    Google Scholar 

    31.
    Elberling, B., Christiansen, H. H. & Hansen, B. U. High nitrous oxide production from thawing permafrost. Nat. Geosci. 3, 332–335 (2010).
    Google Scholar 

    32.
    Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).
    Google Scholar 

    33.
    Gittel, A. et al. Distinct microbial communities associated with buried soils in the Siberian tundra. ISME J. 8, 841–853 (2014).
    Google Scholar 

    34.
    Weiss, N. et al. Thermokarst dynamics and soil organic matter characteristics controlling initial carbon release from permafrost soils in the Siberian Yedoma region. Sediment. Geol. 340, 38–48 (2016).
    Google Scholar 

    35.
    Inglese, C. N. et al. Examination of soil microbial communities after permafrost thaw subsequent to an active layer detachment in the High Arctic. Arct. Antarct. Alp. Res. 49, 455–472 (2017).
    Google Scholar 

    36.
    Wild, B. et al. Microbial nitrogen dynamics in organic and mineral soil horizons along a latitudinal transect in Western Siberia. Glob. Biogeochem. Cycles 29, 567–582 (2015).
    Google Scholar 

    37.
    Voigt, C. et al. Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw. Proc. Natl Acad. Sci. USA 114, 6238–6243 (2017).
    Google Scholar 

    38.
    Wrage-Mönnig, N. et al. The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biol. Biochem. 123, A3–A16 (2018).
    Google Scholar 

    39.
    Siljanen, H. M. P. et al. Archaeal nitrification is a key driver of high nitrous oxide emissions from Arctic peatlands. Soil Biol. Biochem. 137, 107539 (2019).
    Google Scholar 

    40.
    Voigt, C. et al. Nitrous oxide emissions from permafrost-affected soils. Nat. Rev. Earth Environ. 1, 420–434 (2020).
    Google Scholar 

    41.
    Keuper, F. et al. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species. Glob. Change Biol. 23, 4257–4266 (2017).
    Google Scholar 

    42.
    Liu, X.-Y. et al. Nitrate is an important nitrogen source for Arctic tundra plants. Proc. Natl Acad. Sci. USA 115, 3398–3403 (2018).
    Google Scholar 

    43.
    Myrstener, M. et al. Persistent nitrogen limitation of stream biofilm communities along climate gradients in the Arctic. Glob. Change Biol. 24, 3680–3691 (2018).
    Google Scholar 

    44.
    Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N. & Pfeiffer, E.-M. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Change 8, 309–312 (2018).
    Google Scholar 

    45.
    Holm, S. et al. Methanogenic response to long-term permafrost thaw is determined by paleoenvironment. FEMS Microbiol. Ecol. 96, fiaa021 (2020).
    Google Scholar 

    46.
    Douglas, T. A. et al. Biogeochemical and geocryological characteristics of wedge and thermokarst-cave ice in the CRREL permafrost tunnel, Alaska. Permafr. Periglac. Process. 22, 120–128 (2011).
    Google Scholar 

    47.
    Long, A. & Péwé, T. L. Radiocarbon dating by high-sensitivity liquid scintillation counting of wood from the Fox permafrost tunnel near Fairbanks, Alaska. Permafr. Periglac. Process. 7, 281–285 (1996).
    Google Scholar 

    48.
    Hamilton, T. D., Craig, J. L. & Sellmann, P. V. The Fox permafrost tunnel: a late Quaternary geologic record in central Alaska. GSA Bull. 100, 948–969 (1988).
    Google Scholar 

    49.
    Shur, Y., French, H. M., Bray, M. T. & Anderson, D. A. Syngenetic permafrost growth: cryostratigraphic observations from the CRREL tunnel near Fairbanks, Alaska. Permafr. Periglac. Process. 15, 339–347 (2004).
    Google Scholar 

    50.
    Howard, M. M., Bell, T. H. & Kao-Kniffin, J. Soil microbiome transfer method affects microbiome composition, including dominant microorganisms, in a novel environment. FEMS Microbiol. Lett. 364, fnx092 (2017).
    Google Scholar 

    51.
    Patra, A. K. et al. Effects of grazing on microbial functional groups involved in soil N dynamics. Ecol. Monogr. 75, 65–80 (2005).
    Google Scholar 

    52.
    Fontaine, S. et al. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol. Biochem. 43, 86–96 (2011).
    Google Scholar 

    53.
    Elberling, B. et al. Long-term CO2 production following permafrost thaw. Nat. Clim. Change 3, 890–894 (2013).
    Google Scholar 

    54.
    Walz, J., Knoblauch, C., Böhme, L. & Pfeiffer, E.-M. Regulation of soil organic matter decomposition in permafrost-affected Siberian tundra soils—impact of oxygen availability, freezing and thawing, temperature, and labile organic matter. Soil Biol. Biochem. 110, 34–43 (2017).
    Google Scholar 

    55.
    Weedon, J. T. et al. Temperature sensitivity of peatland C and N cycling: does substrate supply play a role? Soil Biol. Biochem. 61, 109–120 (2013).
    Google Scholar 

    56.
    Ping, C. L. Soil temperature profiles of two Alaskan soils. Soil Sci. Soc. Am. J. 51, 1010–1018 (1987).
    Google Scholar 

    57.
    D’Amico, S. et al. Psychrophilic microorganisms: challenges for life. EMBO Rep. 7, 385–389 (2006).
    Google Scholar 

    58.
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).
    Google Scholar 

    59.
    Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R. & Brookes, P. C. Measurement of soil microbial biomass C by fumigation–extraction—an automated procedure. Soil Biol. Biochem. 22, 1167–1169 (1990).
    Google Scholar 

    60.
    Rotthauwe, J. H., Witzel, K. P. & Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63, 4704–4712 (1997).
    Google Scholar 

    61.
    Tourna, M., Freitag, T. E., Nicol, G. W. & Prosser, J. I. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ. Microbiol. 10, 1357–1364 (2008).
    Google Scholar 

    62.
    Fowler, S. J., Palomo, A., Dechesne, A., Mines, P. D. & Smets, B. F. Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities. Environ. Microbiol. 20, 1002–1015 (2018).
    Google Scholar 

    63.
    Pjevac, P. et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front. Microbiol. 8, 1508 (2017).
    Google Scholar 

    64.
    Muyzer, G., Waal, E. Cde & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993).
    Google Scholar 

    65.
    Bartram, A. K., Lynch, M. D. J., Stearns, J. C., Moreno-Hagelsieb, G. & Neufeld, J. D. Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Appl. Environ. Microbiol. 77, 3846–3852 (2011).
    Google Scholar 

    66.
    Smith, D. P. & Peay, K. G. Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS ONE 9, e90234 (2014).
    Google Scholar 

    67.
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
    Google Scholar 

    68.
    Morgan, M. et al. ShortRead: a Bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics 25, 2607–2608 (2009).
    Google Scholar 

    69.
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).
    Google Scholar 

    70.
    Haas, B. J. et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21, 494–504 (2011).
    Google Scholar 

    71.
    Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).
    Google Scholar 

    72.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
    Google Scholar 

    73.
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
    Google Scholar 

    74.
    Caporaso, J. G. et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267 (2010).
    Google Scholar 

    75.
    McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).
    Google Scholar 

    76.
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
    Google Scholar 

    77.
    Lagkouvardos, I., Fischer, S., Kumar, N. & Clavel, T. Rhea: a transparent and modular R pipeline for microbial profiling based on 16S rRNA gene amplicons. PeerJ 5, e2836 (2017).
    Google Scholar 

    78.
    White, D. C., Davis, W. M., Nickels, J. S., King, J. D. & Bobbie, R. J. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40, 51–62 (1979).
    Google Scholar 

    79.
    Olsson, P. A., Bååth, E., Jakobsen, I. & Söderström, B. The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol. Res. 99, 623–629 (1995).
    Google Scholar 

    80.
    Ruess, L. & Chamberlain, P. M. The fat that matters: soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biol. Biochem. 42, 1898–1910 (2010).
    Google Scholar 

    81.
    Zelles, L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol. Fertil. Soils 29, 111–129 (1999).
    Google Scholar 

    82.
    Frostegård, A. & Bååth, E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 22, 59–65 (1996).
    Google Scholar 

    83.
    Lenth, R. Least-squares means: the R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).
    Google Scholar 

    84.
    Wang, Y., Naumann, U., Wright, S. T. & Warton, D. I. mvabund—an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474 (2012).
    Google Scholar 

    85.
    Warton, D. I., Wright, S. T. & Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 3, 89–101 (2012).
    Google Scholar 

    86.
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
    Google Scholar 

    87.
    McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 10, e1003531 (2014).
    Google Scholar 

    88.
    Pinto, A. J. et al. Metagenomic evidence for the presence of comammox Nitrospira-like bacteria in a drinking water system. mSphere 1, e00054-15 (2016).
    Google Scholar 

    89.
    Kozlowski, J. A., Kits, K. D. & Stein, L. Y. Comparison of nitrogen oxide metabolism among diverse ammonia-oxidizing bacteria. Front. Microbiol. 7, 1090 (2016).
    Google Scholar 

    90.
    Kits, K. D. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549, 269–272 (2017).
    Google Scholar 

    91.
    Kuhn, M. caret: Classification and Regression Training v.6.0-86 (2020); https://CRAN.R-project.org/package=caret

    92.
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
    Google Scholar 

    93.
    Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2nd edn (Springer, 2009).

    94.
    Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. VSURF: an R package for variable selection using random forests. R J. 7, 19–33 (2015).
    Google Scholar 

    95.
    R Core Team. R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019). More

  • in

    Nutrients cause grassland biomass to outpace herbivory

    1.
    Running, S. W. A measurable planetary boundary for the biosphere. Science 337, 1458–1459 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in Earth’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 12942–12945 (2007).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Xia, J. et al. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006. Remote Sens. 6, 1783 (2014).
    ADS  Article  Google Scholar 

    4.
    Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    5.
    Del Grosso, S. et al. Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology 89, 2117–2126 (2008).
    PubMed  Article  Google Scholar 

    6.
    Galloway, J. N. et al. Nitrogen cycles: past, present, and future. Biogeochemistry 70, 153–226 (2004).
    CAS  Article  Google Scholar 

    7.
    Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J. & Hedin, L. O. Changing sources of nutrients during four million years of ecosystem development. Nature 397, 491–497 (1999).
    ADS  CAS  Article  Google Scholar 

    8.
    McNaughton, S. J., Oesterheld, M., Frank, D. A. & Williams, K. J. Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341, 142–144 (1989).
    ADS  CAS  PubMed  Article  Google Scholar 

    9.
    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    10.
    White, R. P., Murray, S. & Rohweder, M. Pilot Analysis of Global Ecosystems (PAGE): Grassland Ecosystems, 70 (World Resources Institute, Washington, DC, 2000).

    11.
    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).

    12.
    Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 151 (Geneva, Switzerland, 2014).

    13.
    Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of earth’s nitrogen cycle. Science 330, 192–196 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Stevens, C. J. Nitrogen in the environment. Science 363, 578–580 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Stevens, C. J. et al. Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology 96, 1459–1465 (2015).
    Article  Google Scholar 

    16.
    Reyer, C. P. O. et al. A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. Glob. Change Biol. 19, 75–89 (2013).
    ADS  Article  Google Scholar 

    17.
    Knapp, A. K. et al. Consequences of more extreme precipitation regimes for terrestrial ecosystems. BioScience 58, 811–821 (2008).
    MathSciNet  Article  Google Scholar 

    18.
    LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Fay, P. A. et al. Grassland productivity limited by multiple nutrients. Nat. Plants 1, 15080 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Borer, E. T. et al. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508, 517–520 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Knapp, A. K. & Seastedt, T. R. Detritus accumulation limits productivity of tallgrass prairie: the effects of its plant litter on ecosystem function make the tallgrass prairie unique among North American biomes. BioScience 36, 662–668 (1986).
    Article  Google Scholar 

    22.
    Volterra, V. Variations and fluctuations of the numbers of individuals in animal species living together. Nature 118, 558–560 (1926).
    ADS  Article  Google Scholar 

    23.
    Crawley, M. J. Herbivory: The Dynamics of Animal-Plant Interactions, Vol. 10, 437 (University of California Press, 1983).

    24.
    Oksanen, L. & Oksanen, T. The logic and realism of the hypothesis of exploitation ecosystems. Am. Nat. 155, 703–723 (2000).
    PubMed  Article  PubMed Central  Google Scholar 

    25.
    Gruner, D. S. et al. A cross-system synthesis of consumer and nutrient resource control on producer biomass. Ecol. Lett. 11, 740–755 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    Hillebrand, H. et al. Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proc. Natl Acad. Sci. USA 104, 10904–10909 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Worm, B., Lotze, H. K., Hillebrand, H. & Sommer, U. Consumer versus resource control of species diversity and ecosystem functioning. Nature 417, 848–851 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Turkington, R. Top-down and bottom-up forces in mammalian herbivore – vegetation systems: an essay review. Botany 87, 723–739 (2009).
    Article  Google Scholar 

    29.
    DeAngelis, D. L. Dynamics of Nutrient Cycling and Food Webs (Chapman and Hall, London, 1992).

    30.
    Arditi, R. & Ginzburg, L. R. Coupling in predator-prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326 (1989).
    Article  Google Scholar 

    31.
    Chase, J. M., Leibold, M. A., Downing, A. L. & Shurin, J. B. The effects of productivity, herbivory, and plant species turnover in grassland food webs. Ecology 81, 2485–2497 (2000).
    Article  Google Scholar 

    32.
    Leibold, M. A. Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. Am. Nat. 134, 922–949 (1989).
    Article  Google Scholar 

    33.
    Endara, M. J. & Coley, P. D. The resource availability hypothesis revisited: a meta-analysis. Funct. Ecol. 25, 389–398 (2011).
    Article  Google Scholar 

    34.
    Milchunas, D. G. & Lauenroth, W. K. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol. Monogr. 63, 327–366 (1993).
    Article  Google Scholar 

    35.
    Polis, G. A. & Strong, D. R. Food web complexity and community dynamics. Am. Nat. 147, 813–846 (1996).
    Article  Google Scholar 

    36.
    Murdoch, W. Community structure, population control, and competition – a critique. Am. Nat. 100, 219–226 (1966).
    Article  Google Scholar 

    37.
    Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evolution 5, 65–73 (2014).
    Article  Google Scholar 

    38.
    Anderson, T. M. et al. Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecology 99, 822–831 (2018).

    39.
    Zhu, D. et al. The large mean body size of mammalian herbivores explains the productivity paradox during the Last Glacial Maximum. Nat. Ecol. Evol. 2, 640–649 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Hillebrand, H. Top-down versus bottom-up control of autotrophic biomass – a meta-analysis on experiments with periphyton. J. North Am. Benthol. Soc. 21, 349–369 (2002).
    Article  Google Scholar 

    41.
    Frank, R. & Merle, L. F. Effects of annual applications of low N fertilizer rates on a mixed grass prairie. J. Range Manag. 36, 359–362 (1983).
    Article  Google Scholar 

    42.
    Olofsson, J. et al. Long-term experiments reveal strong interactions between lemmings and plants in the Fennoscandian highland tundra. Ecosystems 17, 606–615 (2014).
    Article  Google Scholar 

    43.
    Lemaire, G., Jeuffroy, M.-H. & Gastal, F. Diagnosis tool for plant and crop N status in vegetative stage: theory and practices for crop N management. Eur. J. Agron. 28, 614–624 (2008).
    CAS  Article  Google Scholar 

    44.
    Hillebrand, H. et al. Herbivore metabolism and stoichiometry each constrain herbivory at different organizational scales across ecosystems. Ecol. Lett. 12, 516–527 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Hempson, G. P., Illius, A. W., Hendricks, H. H., Bond, W. J. & Vetter, S. Herbivore population regulation and resource heterogeneity in a stochastic environment. Ecology 96, 2170–2180 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Sickman, J. O. et al. Quantifying atmospheric N deposition in dryland ecosystems: a test of the Integrated Total Nitrogen Input (ITNI) method. Sci. Total Environ. 646, 1253–1264 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Yahdjian, L., Gherardi, L. & Sala, O. E. Nitrogen limitation in arid-subhumid ecosystems: a meta-analysis of fertilization studies. J. Arid Environ. 75, 675–680 (2011).
    ADS  Article  Google Scholar 

    48.
    Koerner, S. E. et al. Plant community response to loss of large herbivores differs between North American and South African savanna grasslands. Ecology 95, 808–816 (2014).
    PubMed  Article  Google Scholar 

    49.
    Frank, D. A., McNaughton, S. J. & Tracy, B. F. The ecology of the Earth’s grazing ecosystems: profound functional similarities exist between the Serengeti and Yellowstone. Bioscience 48, 513–521 (1998).
    Article  Google Scholar 

    50.
    Augustine, D. J. & McNaughton, S. J. Interactive effects of ungulate herbivores, soil fertility, and variable rainfall on ecosystem processes in a semi-arid savanna. Ecosystems 9, 1242–1256 (2006).
    CAS  Article  Google Scholar 

    51.
    Ritchie, M. E., Tilman, D. & Knops, J. M. H. Herbivore effects on plant and nitrogen dynamics in oak savanna. Ecology 79, 165–177 (1998).
    Article  Google Scholar 

    52.
    Pastor, J., Dewey, B., Naiman, R. J., McInnes, P. F. & Cohen, Y. Moose browsing and soil fertility in the boreal forests of Isle Royale National Park. Ecology 74, 467–480 (1993).
    Article  Google Scholar 

    53.
    Grellmann, D. Plant responses to fertilization and exclusion of grazers on an Arctic tundra heath. Oikos 98, 190–204 (2002).
    Article  Google Scholar 

    54.
    Hartley, S. E. & Mitchell, R. J. Manipulation of nutrients and grazing levels on heather moorland: changes in Calluna dominance and consequences for community composition. J. Ecol. 93, 990–1004 (2005).
    Article  Google Scholar 

    55.
    Lind, E. M. et al. Increased grassland arthropod production with mammalian herbivory and eutrophication: a test of mediation pathways. Ecology 98, 3022–3033 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    56.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Article  Google Scholar 

    57.
    Trabucco, A., Zomer, R. J., Bossio, D. A., van Straaten, O. & Verchot, L. V. Climate change mitigation through afforestation/reforestation: a global analysis of hydrologic impacts with four case studies. Agric. Ecosyst. Environ. 126, 81–97 (2008).
    Article  Google Scholar 

    58.
    Dentener, F. J. Global Maps of Atmospheric Nitrogen Deposition, 1860, 1993, and 2050. Oak Ridge National Laboratory Distributed Active Archive Center. https://doi.org/10.3334/ORNLDAAC/830 (2006).

    59.
    Borer, E. T. et al. Environmental Data Initiative https://doi.org/10.6073/pasta/a318fe0fb11eb43c1a2c8233b2e3494f (2020). More

  • in

    Dispersal-induced instability in complex ecosystems

    1.
    Odum, E. P. & Barrett, G. W. Fundamentals of Ecology (Saunders, Philadelphia, 1953).
    Google Scholar 
    2.
    Elton, C. S. Ecology of Invasions by Animals And Plants (Methuen, London, 1958).
    Google Scholar 

    3.
    MacArthur, R. Fluctuations of animal populations and a measure of community stability. Ecology 36, 533–536 (1955).
    Article  Google Scholar 

    4.
    Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).
    Article  Google Scholar 

    5.
    Landi, P., Minoarivelo, H. O., Å, Brännström, Hui, C. & Dieckmann, U. Complexity and stability of ecological networks: a review of the theory. Popul. Ecol. 60, 319–345 (2018).
    Article  Google Scholar 

    6.
    McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).
    CAS  PubMed  Article  Google Scholar 

    7.
    May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    May, R. M. Stability in multispecies community models. Math. Biosci. 12, 59–79 (1971).
    MathSciNet  MATH  Article  Google Scholar 

    9.
    Namba, T. Multi-faceted approaches toward unravelling complex ecological networks. Popul. Ecol. 57, 3–19 (2015).
    Article  Google Scholar 

    10.
    Justus, J. A case study in concept determination: Ecological diversity. in Philosophy of Ecology, Handbook of the Philosophy of Science, Vol. 11, (eds deLaplante, K., Brown, B. & Peacock, K. A.) (North-Holland, Amsterdam, 2011) pp. 147–168.

    11.
    Grilli, J., Rogers, T. & Allesina, S. Modularity and stability in ecological communities. Nat. Commun. 7, 1–10 (2016).
    Article  CAS  Google Scholar 

    12.
    Allesina, S. & Tang, S. The stability–complexity relationship at age 40: a random matrix perspective. Popul. Ecol. 57, 63–75 (2015).
    Article  Google Scholar 

    13.
    Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    14.
    Hutchinson, M. C. Seeing the forest for the trees: putting multilayer networks to work for community ecology. Funct. Ecol. 33, 206–217 (2019).
    Article  Google Scholar 

    15.
    Pilosof, S., Porter, M. A., Pascual, M. & Kéfi, S. The multilayer nature of ecological networks. Nat. Ecol. Evolut. 1, 1–9 (2017).
    Article  Google Scholar 

    16.
    Stone, L. The feasibility and stability of large complex biological networks: a random matrix approach. Sci. Rep. 8, 1–12 (2018).
    CAS  Article  Google Scholar 

    17.
    Gibbs, T., Grilli, J., Rogers, T. & Allesina, S. Effect of population abundances on the stability of large random ecosystems. Phys. Rev. E 98, 022410 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Fyodorov, Y. V. & Khoruzhenko, B. A. Nonlinear analogue of the may-wigner instability transition. Proc. Natl Acad. Sci. USA 113, 6827–6832 (2016).
    MathSciNet  CAS  PubMed  MATH  Article  Google Scholar 

    19.
    Gross, T., Rudolf, L., Levin, S. A. & Dieckmann, U. Generalized models reveal stabilizing factors in food webs. Science 325, 747–750 (2009).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Berlow, E. L. et al. Interaction strengths in food webs: issues and opportunities. J. Anim. Ecol. 73, 585–598 (2004).
    Article  Google Scholar 

    21.
    Chesson, P. & Huntly, N. The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am. Nat. 150, 519–553 (1997).
    CAS  PubMed  Article  Google Scholar 

    22.
    McNaughton, S. J. Diversity and stability of ecological communities: a comment on the role of empiricism in ecology. Am. Nat. 111, 515–525 (1977).
    Article  Google Scholar 

    23.
    Thébault, E. & Loreau, M. Trophic interactions and the relationship between species diversity and ecosystem stability. Am. Nat. 166, E95–E114 (2005).
    PubMed  Article  Google Scholar 

    24.
    Tilman, D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80, 1455–1474 (1999).
    Google Scholar 

    25.
    Gravel, D., Massol, F. & Leibold, M. A. Stability and complexity in model meta-ecosystems. Nat. Commun. 7, 12457 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Turing, A. M. The chemical basis of morphogenesis. Bull. Math. Biol. 52, 153–197 (1990).
    CAS  PubMed  Article  Google Scholar 

    27.
    Hanski, I. Metapopulation dynamics. Nature 396, 41–49 (1998).
    ADS  CAS  Article  Google Scholar 

    28.
    Hanski, I. Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos 87, 209–219 (1999).

    29.
    Hassell, M. P., Comins, H. N. & May, R. M. Spatial structure and chaos in insect population dynamics. Nature 353, 255–258 (1991).
    ADS  Article  Google Scholar 

    30.
    Hassell, M. P., Comins, H. N. & May, R. M. Species coexistence and self-organizing spatial dynamics. Nature 370, 290–292 (1994).
    ADS  Article  Google Scholar 

    31.
    Levin, S. A. & Segel, L. A. Hypothesis for origin of planktonic patchiness. Nature 259, 659 (1976).
    ADS  Article  Google Scholar 

    32.
    Brechtel, A., Gramlich, P., Ritterskamp, D., Drossel, B. & Gross, T. Master stability functions reveal diffusion-driven pattern formation in networks. Phys. Rev. E 97, 032307 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    33.
    Cross, M. & Hohenberg, P. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993).
    ADS  CAS  MATH  Article  Google Scholar 

    34.
    Grilli, J. et al. Feasibility and coexistence of large ecological communities. Nat. Commun. 8, 14389 (2017).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    35.
    Allesina, S. et al. Predicting the stability of large structured food webs. Nat. Commun. 6, 1–6 (2015).
    Article  CAS  Google Scholar 

    36.
    Neubert, M. G., Kot, M. & Lewis, M. A. Dispersal and pattern formation in a discrete-time predator-prey model. Theor. Popul. Biol. 48, 7–43 (1995).
    MATH  Article  Google Scholar 

    37.
    Rietkerk, M. & Van de Koppel, J. Regular pattern formation in real ecosystems. Trends Ecol. Evolut. 23, 169–175 (2008).
    Article  Google Scholar 

    38.
    HilleRisLambers, R., Rietkerk, M., van den Bosch, F., Prins, H. H. T. & de Kroon, H. Vegetation pattern formation in semi-arid grazing systems. Ecology 82, 50–61 (2001).
    Article  Google Scholar 

    39.
    Levin, S. Dispersion and population interactions. Am. Nat. 108, 207–228 (1974).
    Article  Google Scholar 

    40.
    Murray, J. D. Mathematical Biology II: Spatial Models and Biomedical Applications (Springer: New York, 2001).
    Google Scholar 

    41.
    Baron, J. W. & Galla, T. Stochastic fluctuations and quasipattern formation in reaction-diffusion systems with anomalous transport. Phys. Rev. E 99, 052124 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    42.
    Kuramoto, Y. Diffusion-induced chaos in reaction systems. Progr. Theor. Phys. Suppl. 64, 346–367 (1978).
    ADS  CAS  Article  Google Scholar 

    43.
    Pascual, M. Diffusion-induced chaos in a spatial predator–prey system. Proc. R. Soc. Lond. Ser. B 251, 1–7 (1993).
    ADS  Article  Google Scholar 

    44.
    Rietkerk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    45.
    Rietkerk, M. & van de Koppel, J. Regular pattern formation in real ecosystems. Trends Ecol. Evolut. 23, 169–175 (2008).
    Article  Google Scholar 

    46.
    van de Koppel, J. et al. Experimental evidence for spatial self-organization and its emergent effects in mussel bed ecosystems. Science 322, 739–742 (2008).
    ADS  PubMed  Article  CAS  Google Scholar 

    47.
    Meron, E. Pattern-formation approach to modelling spatially extended ecosystems. Ecol. Model. 234, 70–82 (2012).
    Article  Google Scholar 

    48.
    Liu, Q. et al. Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems. Nat. Commun. 5, 5234 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    49.
    Karig, D. et al. Stochastic turing patterns in a synthetic bacterial population. Proc. Natl Acad. Sci. USA 115, 6572–6577 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    50.
    Lengyel, I. & Epstein, I. A chemical approach to designing turing patterns in reaction-diffusion systems. Proc. Natl Acad. Sci. USA 89, 3977–3979 (1992).
    ADS  CAS  PubMed  MATH  Article  Google Scholar 

    51.
    Castets, V., Dulos, E., Boissonade, J. & De Kepper, P. Experimental evidence of a sustained standing turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64, 2953–2956 (1990).
    ADS  CAS  PubMed  Article  Google Scholar 

    52.
    Barabás, G., Michalska-Smith, M. J. & Allesina, S. Self-regulation and the stability of large ecological networks. Nat. Ecol. Evolut. 1, 1870–1875 (2017).
    Article  Google Scholar 

    53.
    Tao, T. & Vu, V. Random matrices: universality of local eigenvalue statistics up to the edge. Commun. Math. Phys. 298, 549–572 (2010).
    ADS  MathSciNet  MATH  Article  Google Scholar 

    54.
    Tao, T. et al. Random matrices: universality of ESDs and the circular law. Ann. Probab. 38, 2023–2065 (2010).
    MathSciNet  MATH  Article  Google Scholar 

    55.
    O’Sullivan, J. D., Knell, R. J. & Rossberg, A. G. Metacommunity-scale biodiversity regulation and the self-organised emergence of macroecological patterns. Ecol. Lett. 22, 1428–1438 (2019).
    PubMed  Article  Google Scholar 

    56.
    Gotelli, N. J. et al. Community-level regulation of temporal trends in biodiversity. Sci. Adv. 3, e1700315 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Magurran, A. E. et al. Divergent biodiversity change within ecosystems. Proc. Natl Acad. Sci. USA 115, 1843–1847 (2018).
    CAS  PubMed  Article  Google Scholar 

    58.
    Brown, J. H., Ernest, S. K. M., Parody, J. M. & Haskell, J. P. Regulation of diversity: maintenance of species richness in changing environments. Oecologia 126, 321–332 (2001).
    ADS  PubMed  Article  Google Scholar 

    59.
    Parody, J. M., Cuthbert, F. J. & Decker, E. H. The effect of 50 years of landscape change on species richness and community composition. Glob. Ecol. Biogeogr. 10, 305–313 (2001).
    Article  Google Scholar 

    60.
    Haake, F., Izrailev, F., Lehmann, N., Saher, D. & Sommers, H.-J. Statistics of complex levels of random matrices for decaying systems. Z. Phys. B Condens. Matter 88, 359–370 (1992).
    ADS  Article  Google Scholar 

    61.
    Sommers, H.-J., Crisanti, A., Sompolinsky, H. & Stein, Y. Spectrum of large random asymmetric matrices. Phys. Rev. Lett. 60, 1895–1898 (1988).
    ADS  MathSciNet  CAS  PubMed  Article  Google Scholar 

    62.
    O’Rourke, S. et al. Low rank perturbations of large elliptic random matrices. Electron. J. Probab. 19, 1–65 (2014).

    63.
    Süli, E. & Mayers, D. F. An Introduction to Numerical Analysis (Cambridge University Press, 2003).

    64.
    Baron, J. W. & Galla, T. Dispersal-induced instability in complex ecosystems. GitHub https://doi.org/10.5281/zenodo.4068257 (2020). More

  • in

    The complete chloroplast genome sequences of five pinnate-leaved Primula species and phylogenetic analyses

    Basic characters of the six chloroplast genomes
    The cp genomes of P. cicutarrifolia, P. hubeiensis, P. jiugongshanensis, P. merrilliana and P. ranunculoides (GenBank accessions: MT268974, MT268976, MT937162, MT268977, MT268978) were reported for the first time here, and that of P. filchnerae was downloaded from NCBI (MK88869821).
    The sequencing coverage of our five newly assembled cp genomes was from 923 to 6237 (Figure S1). The six cp genomes possessed typical quadripartite structure: IRa, IRb, LSC and SSC (Table 1), and they exhibited the same gene order, no gene rearrangement or inversion occurred (Figure S2). The physical map of the cp genome of P. hubeiensis was shown in Fig. 1. The GC content was ~ 37%. The newly sequenced genomes ranged from 150,187 bp to 151,972 bp, harboring 113 genes: four ribosomal RNA genes, 29 tRNA genes and 80 protein-coding genes, and among them 14 genes was duplicated in IRa and IRb (Table 1). Due to presence of multiple stop codons, the gene infA was pseudogenized in the five newly sequenced species. The open reading frame (ORF) in accD of P. filchnerae (MK888698) was truncated to be only 1305 bp compared with 1455 or 1464 bp ORF of other five species. Lee et al.34 identified five conserved amino acid sequence motifs in accD gene. Conserved amino acid sequence motifs IV and V were absent in accD of P. filchnerae. Therefore, accD was nonfunctional in P. filchnerae.
    Table 1 Basic characteristics of cp genomes of the six Primula species (Pc: P. cicutarrifolia; Pf: P. filchnerae; Ph: P. hubeiensis; Pj: P. jiugongshanensis; Pm: P. merrilliana; Pr: P. ranunculoides).
    Full size table

    Figure 1

    Physical map of the P. hubeiensis chloroplast genome.

    Full size image

    SSRs and repeats
    Five categories of SSRs were identified for the six species (Table 2). The least number of SSRs was 41 for P. ranunculoides and the most 59 for P. merrilliana. Three types of SSRs were detected for P. filchnerae, and in the rest species four types could be found. While mono-, di- and tetra-nucleotide repeats existed across all the six species, tri- and penta-inucleotide repeats resided in three and two species respectively. Mono- and dinucleotide repeats accounted for the vast majority of SSRs (65.1% for P. cicutariifolia, 87.5% for P. filchnerae, 69.0% for P. hubeiensis, 62.8% for P. jiugongshanensis, 72.9% for P. merrilliana, 73.2% for P. ranunculoides). Most or all mono- repeats were A/T repeats including 10 to 16 nucleotides. The number of repeat units ranged from five to eight for dinucleotide repeats. The tri- and penta-nucleotide SSRs consisted of four motifs, and tetra-nucleotide SSRs of four to five repeat units.
    Table 2 Types and numbers of SSRs in the cp genomes of six Primula species, the numbers in the bracket indicating total number of SSRs (Pc: P. cicutarrifolia; Pf: P. filchnerae; Ph: P. hubeiensis; Pj: P. jiugongshanensis; Pm: P. merrilliana; Pr: P. ranunculoides).
    Full size table

    Except the largest repeat for each genome (i.e. IRs), a total of 183 repeat pairs (three types: forward (F), reverse (R), and palindromic repeats (P)) were detected in the six genomes (Fig. 2), which ranged from 30 to 137 bp in length. Palindromic repeats were the most common, accounting for 55.2% (101 of 183), followed by forward repeats (44.3%, 81 of 183). No complement repeats were identified in all species and one pair of reverse repeats existed specifically in P. ranunculoides. In the six species, 96.7% (177 of 183 repeat pairs) repeats were 30–59 bp in length, consistent with the length reported in other Primula species20. The longest repeat (137 bp) was found in P. cicutariifolia, and this species contained the most repeats (44 pairs), while P. jiugongshanensis had the least (24 pairs).
    Figure 2

    Types and numbers of repeat pairs in the cp genomes of six Primula species (Pc: P. cicutarrifolia; Pf: P. filchnerae; Ph: P. hubeiensis; Pj: P. jiugongshanensis; Pm: P. merrilliana; Pr: P. ranunculoides).

    Full size image

    IR/SC boundary
    The IR/SC boundary regions of the six Primula cp genomes were compared, and the IR/SC junction regions showed slight differences in the length of organization genes flanking the junctions or the distance between the junctions and the organization genes (Fig. 3). The genes spanning or flanking the junction of LSC/IRb, IRb/SSC, SSC/IRa and IRa/LSC were rps19/rpl2, ndhF, ycf1, rpl2/trnH, respectively. IR expansion and contraction was observed. P. cicutarrifolia had the smallest size of IR but largest size of both LSC and SSC; though largest size of IR was detected in P. filchnerae, the LSC or SSC was not the smallest in this species. The gene trnH was located in LSC, 0–24 bp away from the IRa/LSC border. The largest extensions of ycf1 into both SSC and IRa occurred in P. filchnerae (4566 bp and 1023 bp, respectively) and ycf1 of P. filchnerae were the longest among the six species. The gene ndhF was utterly situated in SSC and 108 bp distant from the IRb/SSC junction in P. cicutarrifolia; in the rest five species the fragment size of ndhF in SSC was largest in P. hubeiensis (2194 bp). In P. cicutarrifolia, P. jiugongshanensis and P. merrilliana, rps19 and rpl2 were located in the upstream and downstream of the LSC/IRb junction, respectively; rps19 ran across the LSC/IRb junction in P. filchnerae, P. hubeiensis, P. ranunculoides with 161, 62, 56 bp extension in IRb, respectively.
    Figure 3

    LSC/IR, and SSC/IR border regions of the six Primula cp genomes.

    Full size image

    Divergent hotspots in the Primula chloroplast genome
    As indicated by the value of Pi, the nucleotide variability of the 22 Primula species (Table S1) was evaluated by DnaSP 6.1231 using noncoding sequences (intron and intergenic spacer) or protein coding sequences (CDS) at least 200 bp long. The variation level of DNA polymorphorism was 0.00444–0.11369 for noncoding sequences or 0.00094–0.05036 for CDSs. For the CDSs, the highest Pi value were detected for ycf1 (0.05036), followed by matK (0.04878), rpl22 (0.04364), ndhF (0.03975), rps8 (0.03658), ndhD (0.03455), ccsA (0.03292), rpl33 (0.0303), rps15 (0.03022), and rpoC2 (0.02954). These markers had higher Pi than rbcL (0.02149). Obviously, the gene ycf1 exhibited the greatest diversity and harbored the most abundant variation. The ten most divergent regions among noncoding regons included trnH (GUG)-psbA (0.11369), trnW (CCA)-trnP (UGG) (0.09463), rpl32-trnL (UAG) (0.09337), ndhC-trnV (UAC) (0.09148), ccsA-ndhD (0.08745), ndhG-ndhI (0.08363), trnK (UUU)-rps16 (0.08334), trnM (CAU)-atpE (0.08273), trnS (GGA)-rps4 (0.08028), and trnC (GCA)-petN (0.07971). No intron ranked among the top ten variable noncoding regions.
    Phylogenetic analysis
    The ML tree of 22 Primula species was constructed with RAxML32 (Fig. 4), based on the whole cp genomes. The six pinnate-leaved Primula species did not form a monophyly, but separated into two distant clades. P. filchnerae grouped with P. sinensis, the other five species clustered together and constituted the clade Sect. Ranunculoides with 100% bootstrap. In the ML tree, Sect. Proliferae exhibited monophyly, while species of Sect. Crystallophlomis separated into different clades.
    Figure 4

    ML phylogenetic tree of Primula species based on cp genomes. Bootstrap support at nodes are all 100%.

    Full size image

    The topology of the ML tree based on ycf1 (Figure S3) was consistent with that based on whole cp genomes (Fig. 4), except that the clade formed by P. veris and P. knuthiana were sister to the clade consisting of Sects. Auganthus, Obconicolisteri, Carolinella and Monocarpicae instead of being sister to the clade of Sects. Proliferae, Ranunculoides and Crystallophlomis.
    We also constructed both ML and NJ tree of 71 Primula species based on the concatenation of three common barcoding markers (ITS, matK and rbcL). Only the results of NJ analysis (Fig. 5) showed consistency with those of Yan et al.12, Liu et al.35, and ML analysis based on whole cp genomes (Fig. 4). The six pinnate-leaved Primula species were separated into two distantly related groups. The clade consisting of P. filchnerae and P. sinensis (Sect. Auganthus) was sister to the clade formed by Sects. Carolinella, Obconicolisteri, Monocarpicae, Cortusoides, Malvacea, Pycnoloba. The five pinnatisect-leaved species P. cicutarrifolia, P. hubeiensis, P. jiugonshanensis, P. merrilliana and P. ranunculoides (Sect. Ranunculoides) comprised a 100% supported clade, which was sister to the group containing Sects. Crystallophlomis, Petiolares, Proliferae, Amethystina. Sect. Carolinella and Sect. Crystallophlomis, and Sect. Malvacea were polyphyletic.
    Figure 5

    NJ bootstrap consensus tree of Primula based on concatenation of ITS, matK and rbcL.

    Full size image More

  • in

    Continuous moulting by Antarctic krill drives major pulses of carbon export in the north Scotia Sea, Southern Ocean

    1.
    Murphy, E. J. et al. Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centred food web. Philos. T. Roy. Soc. B 362, 113–148 (2007a).
    2.
    Atkinson, A., Schmidt, K., Fielding, S., Kawaguchi, S. & Geissler, P. A. Variable food absorption by Antarctic krill: relationships between diet, egestion rate and the composition and sinking rates of their faecal pellets. Deep-Sea Res. PT II 59–60, 147–158 (2012).
    ADS  Article  CAS  Google Scholar 

    3.
    Le Fèvrea, J., Legendre, L. & Rivkinc, R. B. Fluxes of biogenic carbon in the Southern Ocean: roles of large microphagous zooplankton. J. Mar. Syst. 17, 325–345 (1998).
    Article  Google Scholar 

    4.
    Lehette, P., Tovar-Sánchez, A., Duarte, C. M. & Hernández-León, S. Krill excretion and its effect on primary production. Mar. Ecol. Prog. Ser. 459, 29–38 (2012).
    ADS  CAS  Article  Google Scholar 

    5.
    Steinberg, K. D. et al. Long-term (1993–2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep-Sea Res. PT I 101, 54–70 (2015).
    Article  Google Scholar 

    6.
    Accornero, A., Manno, C., Esposito, F. & Gambi, M. The vertical flux of particulate matter in the polynya of Terra Nova Bay. Part II. Biological components. Antarct. Sci. 15, 175–188 (2003).
    ADS  Article  Google Scholar 

    7.
    Dunbar, R. B., Leventer, A. R. & Mucciarone, D. A. Water column sediment fluxes in the Ross Sea, Antarctica: atmospheric and sea-iceforcing. J. Geophys. Res. 1093, 741–760 (1998).
    Google Scholar 

    8.
    Bathmann, U., Fisher, G., Muller, P. J. & Gerdes, D. Short-term variations in particulate matter sedimentation off Kapp Norvegia,Weddell Sea, Antarctica: relation to water mass advection, ice cover, plankton biomass and feeding activity. Polar Biol. 11, 185–195 (1991).
    Article  Google Scholar 

    9.
    Cadée, G. C., González, H. & Schnack-Schiel, S. B. Krill diet affects faecal string settling. Polar Biol. 12, 75–80 (1992).
    Google Scholar 

    10.
    Manno, C., Stowasser, G., Enderlein, P., Fielding, S. & Tarling, G. A. The contribution of zooplankton faecal pellets to deep carbon transport in the Scotia Sea (Southern Ocean). Biogeosciences 12, 1955–1965 (2015).
    ADS  Article  Google Scholar 

    11.
    Belcher, A. et al. Krill faecal pellets drive hidden pulses of particulate organic carbon in the marginal ice zone. Nat. Commun. 10, 889 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Tang, K. W., Gladyshev, M. I., Dubovskaya, O. P., Kirillin, G. & Grossart, H. Zooplankton carcasses and non-predatory mortality in freshwater and inland sea environments. J. Plankton Res. 36, 597–612 (2014).
    CAS  Article  Google Scholar 

    13.
    Mauchline, J. & Fisher, L. R. The biology of euphausiids. Adv. Mar. Biol. 7, 1–454 (1969).
    Article  Google Scholar 

    14.
    Gomez-Gutierrez, J., Peterson, W. T., De Robertis, A. & Brodeur, R. D. Mass mortality of krill caused by parasitoid ciliates. Science 301, 339 (2003).
    CAS  PubMed  Article  Google Scholar 

    15.
    Buchholz, F., Buchholz, C. & Weslawski, J. M. Ten years after: krill as indicator of changes in the macro-zooplankton communities of two Arctic fjords. Polar Biol. 33, 101–113 (2010).
    Article  Google Scholar 

    16.
    Nelson, K. In Scheduling of Reproduction in Relation to Molting and Growth in Malacostracan Crustaceans. Crustacean Egg Production. 77–113 (A. A. Balkema, Rotterdam, 1991).

    17.
    Segawa, S., Kato, M. & Murano, M. Growth, moult and filtering rate of krill in laboratory conditions. Mem. Natl. Inst. Polar Res. Tokyo 27, 93–103 (1983).
    Google Scholar 

    18.
    Ikeda, T. & Dixon, P. Observations on moulting in Antarctic krill (Euphausia superba Dana). Aust. J. Mar. Freshw. Res. 33, 71–76 (1982).
    Article  Google Scholar 

    19.
    Yoshikoshi, K. & Ko, Y. Structure and function of the peritrophic membranes of copepods. Nippon Suisan Gakk. 54, 1077–1082 (1988).
    Article  Google Scholar 

    20.
    Nicol, S. & Stolp, M. Sinking rates of cast exoskeletons of Antarctic krill (Euphausia superba Dana) and their role in the vertical flux of particulate matter and fluoride in the Southern Ocean. Deep-Sea Res. 36, 1753–1762 (1989).
    ADS  CAS  Article  Google Scholar 

    21.
    Hamner, W. M., Hamner, P. P., Obst, B. S. & Carleton, J. H. Field observations on the ontogeny of schooling of Euphausia superba furciliae and its relationship to ice in Antarctic waters. Limn. Oceanogr. 34, 451–456 (1989).
    Article  Google Scholar 

    22.
    Tarling, G. A. et al. Variability and predictability of Antarctic krill swarm structure. Deep-Sea Res. PT I 56, 1994–2012 (2009).
    Article  Google Scholar 

    23.
    Siegel, V. & Watkins, J. L. In Biology and Ecology of Antarctic Krill. Advances in Polar Ecology. 21–100 (Springer, Cham, 2016).

    24.
    Nicol, S. & Foster, J. In Advances in Polar Ecology. 387–421 (Springer, Cham, 2016).

    25.
    Cavan, E. L. et al. The importance of Antarctic krill in biogeochemical cycles. Nat. Commun. 10, 4742 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Tarling, G. A. & Johnson, M. L. Satiation gives krill that sinking feeling. Curr. Biol. 16, 83–84 (2006).
    Article  CAS  Google Scholar 

    27.
    Tarling, G. A. et al. Natural growth rates in Antarctic krill (Euphausia superba): I. Improving methodology and predicting intermolt period. Limnol. Oceanogr. 51, 959–972 (2006).
    ADS  Article  Google Scholar 

    28.
    Buchholz, F. Moult cycle and growth of Antarctic krill Euphausia superba in the laboratory. Mar. Ecol. Prog. Ser. 69, 217–229 (1991).
    ADS  Article  Google Scholar 

    29.
    Jones, E. M., Bakker, D. C. E., Venables, H. J. & Watson, A. J. Dynamic seasonal cycling of inorganic carbon downstream of South Georgia, Southern Ocean. Deep-Sea Res. PT II 59–60, 25–35 (2012).
    ADS  Article  CAS  Google Scholar 

    30.
    Schiermeier, Q. The real holes in climate science: like any other field, research on climate change has some fundamental gaps, although not the ones typically claimed by sceptics. Quirin Schiermeier takes a hard look at some of the biggest problem areas. Nature 463(7279), 284 (2010).
    CAS  PubMed  Article  Google Scholar 

    31.
    Flores, H. et al. Impact of climate change on Antarctic krill. Mar. Ecol. Prog. Ser. 458, 1–19 (2012).
    ADS  Article  Google Scholar 

    32.
    Tarling, G. A. & Fielding, S. In Advances in Polar Ecology 279–319 (Springer, Cham, 2016).

    33.
    Fielding, S. et al. Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997–2013, ICES J. Mar. Sci. 71, 2578–2588 (2014).

    34.
    Rembauville, M., Salter, I., Leblond, N., Gueneugues, A. & Blain, S. Export fluxes in a naturally iron-fertilized area of the Southern Ocean–Part 1: seasonal dynamics of particulate organic carbon export from a moored sediment trap. Biogeosciences 12, 3153–3170 (2015).
    ADS  Article  Google Scholar 

    35.
    Wefer, G., Fischer, G., Fuetterer, D. & Gersonde, R. Seasonal particle flux in the Bransfield Strait. Antarctica. Deep-Sea Res. 35, 891–898 (1988).
    CAS  Article  Google Scholar 

    36.
    Saunders, R. A. et al. Intra-annual variability in the density of Antarctic krill (Euphausia superba) at South Georgia, 2002–2005: within-year variation provides a new framework for interpreting previous ‘annual’ estimates of krill density. CCAMLR Sci. 14, 27–41 (2007).
    Google Scholar 

    37.
    Kawaguchi, S., Nicol, S. & Press, A. J. Direct effects of climate change on the Antarctic krill fishery. Fish. Manag. Ecol. 16, 424–427 (2009).
    Article  Google Scholar 

    38.
    CCAMLR https://www.ccamlr.org/en/system/files/00%20KRI48%202018.pdf (2018).

    39.
    Meyer B. & Teschke M. In Advances in Polar Ecology. 145–174 (Springer, Cham, 2016).

    40.
    Buchholz, F. Moult cycle and seasonal activities of chitinolytic enzymes in the integument and digestive tract of the Antarctic krill, Euphausia superba. Polar Biol. 9, 311–317 (1989).
    Article  Google Scholar 

    41.
    Atkinson, A. et al. Natural growth rates in Antarctic krill (Euphausia superba): II. Predictive models based on food, temperature, body length, sex, and maturity stage. Limnol. Oceanogr. 51, 973–987 (2006).
    ADS  Article  Google Scholar 

    42.
    Murphy, E. J. et al. Restricted regions of enhanced growth of Antarctic krill in the circumpolar Southern Ocean. Sci. Rep. UK 7, 14 (2017b).
    ADS  Article  CAS  Google Scholar 

    43.
    Young, E. F., Thorpe, S. E., Banglawala, N. & Murphy, E. J. Variability in transport pathways on and around the South Georgia shelf, Southern Ocean: implications for recruitment and retention. J. Geophys. Res. Oceans 119, 1–12 (2014).
    Article  Google Scholar 

    44.
    Lascara, C. M., Hofmann, E. E., Ross, R. M. & Quetin, L. B. Seasonal variability in the distribution of Antarctic krill, Euphausia superba, west of the Antarctic Peninsula. Deep-Sea Res. PT I 46, 951–984 (1999).
    Article  Google Scholar 

    45.
    Lawson, G. L., Wiebe, P. H., Stanton, T. K. & Ashjian, C. J. Euphausiid distribution along the Western Antarctic Peninsula—Part A: development of robust multi-frequency acoustic techniques to identify euphausiid aggregations and quantify euphausiid size, abundance, and biomass. Deep-Sea Res PT II 55, 412–431 (2008).
    ADS  Article  Google Scholar 

    46.
    Kane, M. K., Yopak, R., Roman, C. & Menden-Deuer, S. Krill motion in the Southern Ocean: quantifying in situ krill movement behaviors and distributions during the late austral autumn and spring. Limnol. Oceanogr. 63, 2839–2857 (2018).
    ADS  Article  Google Scholar 

    47.
    Schmidt, K. et al. Seabed foraging by Antarctic krill: implications for stock assessment, benthic‐pelagic coupling, and the vertical transfer of iron. Limnol. Oceanogr. 56, 1411–1428 (2011).
    ADS  CAS  Article  Google Scholar 

    48.
    Reiss, C. S. et al. Overwinter habitat selection by Antarctic krill under varying sea-ice conditions: implications for top predators and fishery management. Mar. Ecol. Prog. Ser. 568, 1–16 (2017).
    ADS  CAS  Article  Google Scholar 

    49.
    Brierley, A. et al. Use of moored acoustic instruments to measure short-term variability in abundance of Antarctic krill. Limnol. Oceanogr.-Meth. 4, 18–29 (2006).
    Article  Google Scholar 

    50.
    Marr, J. W. S. The natural history and geography of the Antarctic krill (Euphausia superba Dana). Discov. Rep. 32, 33–464 (1962).
    Google Scholar 

    51.
    Ross, R. M. & Quetin, L. B. In Krill: Biology, Ecology and Fisheries 150–181 (Blackwells, New York, 2000).

    52.
    Murphy, E. J. et al. Climatically driven fluctuations in Southern Ocean ecosystems. Proc. R. Soc. B 274, 3057–3067 (2007).
    PubMed  Article  Google Scholar 

    53.
    Reid, K. et al. Krill population dynamics at South Georgia: implications for ecosystem-based fisheries management. Mar. Ecol. Prog. Ser. 399, 243–252 (2010).
    ADS  Article  Google Scholar 

    54.
    Cavan, E. L. et al. Attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean, is controlled by zooplankton faecal pellets. J. Geophys. Res. 3, 821–830 (2015).
    Google Scholar 

    55.
    Belcher, A. et al. The potential role of Antarctic krill faecal pellets in efficient carbon export at the marginal ice zone of the South Orkney Islands in spring. Polar Biol. 40, 2001–2013 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Atkinson, A., Siegel, V., Pakhomov, E. A., Jessopp, M. J. & Loeb, V. A. Re-appraisal of the total biomass and annual production of Antarctic krill. Deep-Res. PT I 56, 727–740 (2009).
    Article  Google Scholar 

    57.
    Hill, S. L., Phillips, T. & Atkinson, A. Potential climate change effects on the habitat of Antarctic krill in the Weddell quadrant of the Southern Ocean. PLoS ONE 8, e72246 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Klein, E. S., Hill, S. L., Hinke, J. T., Phillips, T. & Watters, G. M. Impacts of rising sea temperature on krill increase risks for predators in the Scotia Sea. PLoS ONE 13, e0191011 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    59.
    Schlitzer, R. Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite-based estimates. Deep-Sea Res. PT II 49, 1623–1644 (2002).
    ADS  CAS  Article  Google Scholar 

    60.
    González, H. The distribution and abundance of krill faecal material and oval pellets in the Scotia and Weddell Seas (Antarctica) and their role in particle flux. Polar Biol. 12, 81–91 (1992).
    Article  Google Scholar 

    61.
    Miller, D. G. M. Variation in body length measurement of Euphausia superba Dana. Polar Biol. 2, 17–20 (1983).
    Article  Google Scholar 

    62.
    Whitehouse, M. J. et al. Substantial primary production in the land-remote region of the central and northern Scotia Sea. Deep-Sea Res. PT II 59–60, 47–56 (2012).
    ADS  Article  Google Scholar 

    63.
    Kils, U. The swimming behaviour, swimming performance and energy balance of Antarctic krill Euphausia superba. Biomass Sci. Ser. 3, 122 (1981).
    Google Scholar  More

  • in

    Population viability in a host-parasitoid system is mediated by interactions between population stage structure and life stage differential susceptibility to toxicants

    1.
    Croft, B. A. Arthropod Biological Control Agents and Pesticides (Wiley, New York, 1990).
    Google Scholar 
    2.
    Stark, J. D., Vargas, R. & Banks, J. E. Incorporating ecologically relevant measures of pesticide effect for estimating the compatibility of pesticides and biocontrol agents. J. Econ. Entomol. 100, 1027–1032 (2007).
    Article  Google Scholar 

    3.
    Roubos, C. R., Rodriguez-Saona, C. & Isaacs, R. Mitigating the effects of insecticides on arthropod biological control at field and landscape scales. Biol. Control 75, 28–38 (2014).
    CAS  Article  Google Scholar 

    4.
    Stark, J. D., Banks, J. E. & Vargas, R. I. How risky is risk assessment? The role that life history strategies play in susceptibility of species to pesticides and other toxicants. Proc. Nat. Acad. Sci. 101, 732–736 (2004).
    ADS  CAS  Article  Google Scholar 

    5.
    Macfadyen, S., Banks, J. E., Stark, J. D. & Davies, A. P. Using semifield studies to examine the effect of pesticides on mobile terrestrial invertebrates. Annu. Rev. Entomol. 59, 383–404 (2014).
    CAS  Article  Google Scholar 

    6.
    Hill, M. P., Macfadyen, S. & Nash, M. A. Broad spectrum pesticide application alters natural enemy communities and may facilitate secondary pest outbreaks. PeerJ 5, e4179 (2017).
    Article  Google Scholar 

    7.
    Main, A. R., Webb, E. B., Goyne, K. W. & Mengel, D. Neonicotinoid insecticides negatively affect performance measures of non-target terrestrial arthropods: A meta-analysis. Ecol. Appl. 28, 1232–1244 (2018).
    Article  Google Scholar 

    8.
    Stark, J. D., Banks, J. E. & Acheampong, S. Estimating susceptibility of biological control agents to pesticides: Influence of life history strategies and population structure. Biol. Control 29, 392–398 (2004).
    Article  Google Scholar 

    9.
    Zehnder, G. W. Timing of insecticides for control of Colorado Potato Beetle (Coleoptera: Chrysomelidae) in eastern Virginia based on differential susceptibility of life stages. J. Econ. Entomol. 79, 851–856 (1986).
    CAS  Article  Google Scholar 

    10.
    Banken, J. A. O. & Stark, J. D. Stage and age influence on the susceptibility of Coccinella septempunctata L. (Coleoptera: Cocinellidae) after direct exposure to the neem insecticide. Neemix. J. Econ. Entomol. 90, 1102–1105 (1997).
    Article  Google Scholar 

    11.
    Suh, C.P.-C., Orr, D. B. & Van Duyn, J. W. Effect of insecticides on Trichogramma exiguum (Trichogrammatidae: Hymenoptera) preimaginal development and adult survival. J. Econ. Entomol. 93, 577–583 (2000).
    CAS  Article  Google Scholar 

    12.
    Medina, P., Budia, F., Tirry, L., Smagghe, G. & Vinuela, E. Compatibility of spinosad, tebufenozide and azadirachtin with eggs and pupae of the predator Chrysoperla carnea (Stephens) under laboratory conditions. Biocontrol Sci. Technol. 11, 597–610 (2001).
    Article  Google Scholar 

    13.
    Greulich, K. & Pflugmacher, S. Differences in susceptibility of various life stages of amphibians to pesticide exposure. Aquat. Toxicol. 65, 329–336 (2003).
    CAS  Article  Google Scholar 

    14.
    Saber, M., Hejazi, M. J. & Hassan, S. A. Effects of Azadirachtin/Neemazal on different stages and adult life table parameters of Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae). J. Econ. Entomol. 97, 905–910 (2004).
    CAS  Article  Google Scholar 

    15.
    Stark, J. D. & Acheampong, S. A. A demographic and modeling approach to determine the suitability of two hosts, Brevicoryne brassicae (Linnaeus) (Aphididae) and Myzus persicae (Sulzer) (Aphididae) of the aphid parasitoid, Diaeretiella rapae (McIntosh) (Aphidiidae). Pan. Pac. Entomol. 83, 1–8 (2007).
    Article  Google Scholar 

    16.
    Madour, N. S. Influence of spinosad on immature and adult stages of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Biocontrol 54, 93–102 (2009).
    Article  Google Scholar 

    17.
    Brühl, C. et al. Terrestrial pesticide exposure of amphibians: An underestimated cause of global decline?. Sci. Rep. 3, 1135 (2013).
    Article  Google Scholar 

    18.
    Buck, J. C. et al. Effects of pesticide mixtures on host-pathogen dynamics of the amphibian chytrid fungus. PLoS ONE 10(e0132832), 2015. https://doi.org/10.1371/journal.pone.0132832 (2015).
    CAS  Article  Google Scholar 

    19.
    Svartz, G., Aronzon, C. & Perez Coll, C. Comparative sensitivity among early life stages of the South American toad to cypermethrin-based pesticide. Environ. Sci. Poll. Res. 23, 2906–2913 (2016).
    CAS  Article  Google Scholar 

    20.
    Liu, A. Z., Ru, T. Q., Wang, X. J. & Li, S. G. Susceptibility of both aphid species to some insecticides. Plant Prot. 39, 20–21 (2001).
    Google Scholar 

    21.
    Lu, Y. & Gao, X. Multiple mechanisms responsible for differential susceptibilities of Sitobion avenae (Fabricius) and Rhopalosiphum padi (Linnaeus) to pirimicarb. Bull. Entomol. Res. 99, 611–617 (2009).
    CAS  Article  Google Scholar 

    22.
    Hilton, S. A., Tolman, J. H., MacArthur, D. C. & Harris, C. R. Toxicity of selected insecticides to several life stages of Colorado potato beetle, Leptinotarsa decemlineata (Say). Can. Entomol. 130, 187–194 (1998).
    Article  Google Scholar 

    23.
    Stark, J. D. & Banken, J. A. O. Importance of population structure at the time of toxicant exposure. Ecotoxicol. Environ. Saf. 42, 282–287 (1999).
    CAS  Article  Google Scholar 

    24.
    Pourmirza, A. A. Local variation in susceptibility of Colorado potato beetle (Coleoptera: Chrysomelidae) to insecticide. J. Econ. Entomol. 98, 2176–2180 (2005).
    CAS  Article  Google Scholar 

    25.
    Forbes, V. E. & Calow, P. Is the per capita rate of increase a good measure of population-level effects in ecotoxicology?. Environ. Toxicol. Chem. 18, 1544–1556 (1999).
    CAS  Article  Google Scholar 

    26.
    Stark, J. D. & Banks, J. E. Population-level effects of pesticides and other toxicants on arthropods. Annu. Rev. Entomol. 48, 505–519 (2003).
    CAS  Article  Google Scholar 

    27.
    Banks, H. T., Banks, J. E., Everett, R. A. & Stark, J. D. An adaptive feedback methodology for determining information content in stable population studies. Math. Biosci. Eng. 13, 653–671 (2016).
    MathSciNet  CAS  Article  Google Scholar 

    28.
    Stark, J. D. & Banks, J. E. Developing demographic toxicity data: Optimizing effort for predicting population outcomes. PeerJ 4, e2067 (2016).
    Article  Google Scholar 

    29.
    Stark, J. D. & Wennergren, U. Can population effects of pesticides be predicted from demographic toxicological studies?. J. Econ. Entomol. 88, 1089–1096 (1995).
    Article  Google Scholar 

    30.
    Wennergren, U. & Stark, J. D. Modeling long-term effects of pesticides on populations: Beyond just counting dead animals. Ecol. Appl. 10, 295–302 (2000).
    Article  Google Scholar 

    31.
    Veprauskas, A., Ackleh, A. S., Banks, J. E. & Stark, J. D. The evolution of toxicant resistance in daphniids and its role on surrogate species. Theor. Pop. Biol. 119, 15–25 (2018).
    Article  Google Scholar 

    32.
    Ackleh, A. S., Hossain, M. I., Veprauskas, A. & Zhang, A. Persistence and stability analysis of discrete-time predator–prey models: a study of population and evolutionary dynamics. J. Differ. Eq Appl. 25, 1568–1603 (2019).
    MathSciNet  Article  Google Scholar 

    33.
    Acheampong, S. & Stark, J. D. Effects of the agricultural adjuvant Sylgard 309 and the insecticide pymetrozine on demographic parameters of the aphid parasitoid, Diaeretiella rapae. Biol. Control 31, 133–137 (2004).
    CAS  Article  Google Scholar 

    34.
    Lefkovitch, L. P. The study of population growth in organisms grouped by stages. Biometrics 21, 1–18 (1965).
    Article  Google Scholar 

    35.
    Caswell, H. Matrix Population Models: Construction, Analysis, and Interpretation 2nd edn. (Sinauer, Sunderland, MA, 2001).
    Google Scholar 

    36.
    Carey, J. R. Applied Demography for Biologists: With Special Emphasis on Insects (Oxford University Press, Oxford, 1993).
    Google Scholar 

    37.
    Banks, J. E., Stark, J. D., Vargas, R. I. & Ackleh, A. Parasitoids and ecological risk assessment: Can toxicity data developed for one species be used to protect an entire guild?. Biol. Control 59, 336–339 (2011).
    Article  Google Scholar 

    38.
    Banks, J. E., Stark, J. D., Vargas, R. I. & Ackleh, A. S. Deconstructing the surrogate species concept: A life history approach to the protection of ecosystem services. Ecol. Appl. 24, 770–778 (2014).
    Article  Google Scholar 

    39.
    Institute, S. A. S. SAS User’s Guide: Statistics (SAS Institute, Cary, 2013).
    Google Scholar  More

  • in

    The dehydrins gene expression differs across ecotypes in Norway spruce and relates to weather fluctuations

    1.
    Oleksyn, J., Modrzýnski, J., Tjoelker, M. G., Reich, P. B. & Karolewski, P. Growth and physiology of Picea abies populations from elevational transects: Common garden evidence for altitudinal ecotypes and cold adaptation. Funct. ecol. 12(4), 573–590 (1998).
    Article  Google Scholar 
    2.
    Jansson, G. et al. Norway spruce (Picea abies (L.) H. Karst.) Pâques L. (ed.) forest tree breeding in Europe. Manag. Ecosyst. 25, 123–176 (2013).
    Google Scholar 

    3.
    Müller-Starck, G., Baradat, Ph. & Bergmann, F. Genetic variation within European tree species. New For. 6(1–4), 23–47 (1992).
    Article  Google Scholar 

    4.
    Morgenstern, E. K. of tree ecotypes in Geographic Variation in Forest Trees: Genetic Basis and Application of Knowledge in Silviculture 109–115 (Vancouver, Amsterdam, 1996).

    5.
    Androsiuk, P. et al. Genetic status of Norway spruce (Picea abies) breeding populations for northern Sweden. Silvae Genet. 62(1–6), 127–136 (2013).
    Article  Google Scholar 

    6.
    Farjon, A. & Filer, D. Specific Adaptations in An atlas of the world’s conifers: An Analysis of Their Distribution, Biogeography, Diversity and Conservation Status (Springer, The Netherlands, 2013).
    Google Scholar 

    7.
    Chakraborty, D. et al. Selecting populations for non-analogous climate conditions using universal response functions: The case of Douglas-fir in central Europe. PLoS ONE 10(8), e0136357 (2015).
    Article  Google Scholar 

    8.
    van der Maaten-Theunissen, M., Kahle, H. P., & van der Maaten, E. Drought sensitivity of Norway spruce is higher than that of silver fir along an altitudinal gradient in southwestern Germany. Ann. Sci. 70(2), 185–193 (2013).

    9.
    Trujillo-Moya, C. et al. Drought sensitivity of norway spruce at the species’ warmest fringe: Quantitative and molecular analysis reveals high genetic variation among and within provenances. G3 Genes Genom. Genet. g3, 300524 (2018).
    Google Scholar 

    10.
    Close, T. J. Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plantarum. 97(4), 795–803 (1996).
    ADS  CAS  Article  Google Scholar 

    11.
    Campbell, S. A. & Close, T. J. Dehydrins: Genes, proteins, and associations with phenotypic traits. New Phytol. 137(1), 61–74 (1997).
    CAS  Article  Google Scholar 

    12.
    Yakovlev, I. A. et al. Dehydrins expression related to timing of bud burst in Norway spruce. Planta 228(3), 459–472 (2008).
    MathSciNet  CAS  Article  Google Scholar 

    13.
    Eldhuset, T. D. et al. Drought affects tracheid structure, dehydrin expression, and above-and below ground growth in 5-year-old Norway spruce. Plant Soil 366(1–2), 305–320 (2013).
    CAS  Article  Google Scholar 

    14.
    Hara, M. The multifunctionality of dehydrins: An overview. Plant Signal. Behav. 5(5), 503–508 (2010).
    CAS  Article  Google Scholar 

    15.
    Graether, S. P. & Boddington, K. F. Disorder and function: A review of the dehydrin protein family. Front. Plant Sci. 5, 576 (2014).
    Article  Google Scholar 

    16.
    Hanin, M. et al. Plant dehydrins and stress tolerance: Versatile proteins for complex mechanisms. Plant Signal. Behav. 6(10), 1503–1509 (2011).
    CAS  Article  Google Scholar 

    17.
    Kosová, K. et al. Expression of dehydrin 5 during the development of frost tolerance in barley (Hordeum vulgare). J. Plant Physiol. 165(11), 1142–1151 (2008).
    Article  Google Scholar 

    18.
    Yamasaki, Y., Koehler, G., Blacklock, B. J. & Randall, S. K. Dehydrin expression in soybean. Plant Physiol. Biochem. 70, 213–220 (2013).
    CAS  Article  Google Scholar 

    19.
    Liu, H. et al. Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Sci. 231, 198–211 (2015).
    CAS  Article  Google Scholar 

    20.
    Velasco-Conde, T., Yakovlev, I., Majada, J. P., Aranda, I. & Johnsen, Ø. Dehydrins in maritime pine (Pinus pinaster) and their expression related to drought stress response. Tree Genet. Genomes. 8(5), 957–973 (2012).
    Article  Google Scholar 

    21.
    Stival Sena, J., Giguère, I., Rigault, P., Bousquet, J. & Mackay, J. Expansion of the dehydrin gene family in the Pinaceae is associated with considerable structural diversity and drought-responsive expression. Tree Physiol. 38(3), 442–456 (2018).
    Article  Google Scholar 

    22.
    Šindelář J. of experimental plot in Klonové Archivy Smrku Ztepilého Picea abies Karst. na PLO Zbraslav-Strnady—Polesí Jíloviště (VÚLHM, 1975).

    23.
    Elshire, R. J. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5), e19379 (2011).
    ADS  CAS  Article  Google Scholar 

    24.
    Yakovlev, I. A., Fossdal, C. G., Johnsen, O., Junttila, O. & Skrøppa, T. Analysis of gene expression during bud burst initiation in Norway spruce via ESTs from subtracted cDNA libraries. Tree Genet. Genomes. 2(1), 39–52 (2006).
    Article  Google Scholar 

    25.
    Kjellsen, T. D., Yakovlev, I. A., Fossdal, C. G. & Strimbeck, G. R. Dehydrin accumulation and extreme low-temperature tolerance in Siberian spruce (Picea obovata). Tree Physiol. 33(12), 1354–1366 (2013).
    CAS  Article  Google Scholar 

    26.
    R Core Team. R. A language and environment for statistical computing. Preprint at https://www.R-project.org/ (2018).

    27.
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27(15), 2156–2158 (2011).
    CAS  Article  Google Scholar 

    28.
    Jombart, T. & Ahmed, I. New tools for the analysis of genome-wide SNP data. Bioinformatics 27(21), 3070–3071 (2011).
    CAS  Article  Google Scholar 

    29.
    Gömöry, D., Foffová, E., Kmeť, J., Longauer, R. & Romšáková, I. Norway spruce (Picea abies [L.] Karst.) provenance variation in autumn cold hardiness: Adaptation or acclimation?. Acta Biol. Cracov. Bot. 52(2), 42–49 (2010).
    Google Scholar 

    30.
    Cortleven, A. et al. Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ. 42, 998–1018 (2019).
    CAS  Article  Google Scholar 

    31.
    Szabados, L. & Savoure, A. Proline: A multifunctional amino acid. Trends Plant Sci. 15, 89–97 (2010).
    CAS  Article  Google Scholar 

    32.
    Zulfiqar, F., Akram, N. A. & Ashraf, M. Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon. Planta 251, 3 (2020).
    CAS  Article  Google Scholar 

    33.
    Ciereszko, I. Regulatory roles of sugars in plant growth and development. Acta Soc. Bot. Pol. 87(2), 66 (2018).
    Article  Google Scholar 

    34.
    Rowland, L. J. & Arora, R. Proteins related to endodormancy (rest) in woody perennials. Plant Sci. 126(2), 119–144 (1997).
    CAS  Article  Google Scholar 

    35.
    Erez, A., Faust, M. & Line, M. J. Changes in water status in peach buds on induction, development and release from dormancy. Sci. Hortic. 73(2–3), 111–123 (1998).
    Article  Google Scholar 

    36.
    Kalberer, S. R., Wisniewski, M. & Arora, R. Deacclimation and reacclimation of cold-hardy plants: Current understanding and emerging concepts. Plant Sci. 171(1), 3–16 (2006).
    CAS  Article  Google Scholar 

    37.
    Welling, A., Moritz, T., Palva, E. T. & Junttila, O. Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen. Plant Physiol. 129(4), 1633–1641 (2002).
    CAS  Article  Google Scholar 

    38.
    Welling, A. et al. Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.). J. Exp. Bot. 55(396), 507–516 (2004).
    CAS  Article  Google Scholar 

    39.
    Karlson, D. T., Zeng, Y., Stirm, V. E., Joly, R. J. & Ashworth, E. N. Photoperiodic regulation of a 24-kD dehydrin-like protein in red-osier dogwood (Cornus sericea L.) in relation to freeze-tolerance. Plant Cell Physiol. 44(1), 25–34 (2003).
    CAS  Article  Google Scholar 

    40.
    Carneros, E., Yakovlev, I., Viejo, M., Olsen, J. E. & Fossdal, C. G. The epigenetic memory of temperature during embryogenesis modifies the expression of bud burst-related genes in Norway spruce epitypes. Planta 246(3), 553–566 (2017).
    CAS  Article  Google Scholar 

    41.
    Asante, D. K. et al. Gene expression changes during short day induced terminal bud formation in Norway spruce. Plant Cell Environ. 34(2), 332–346 (2011).
    CAS  Article  Google Scholar 

    42.
    Asante, D. K. et al. Effect of bud burst forcing on transcript expression of selected genes in needles of Norway spruce during autumn. Plant Physiol. Bioch. 47(8), 681–689 (2009).
    CAS  Article  Google Scholar 

    43.
    Ruttink, T. et al. A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19(8), 2370–2390 (2007).
    CAS  Article  Google Scholar  More

  • in

    Diet induces parallel changes to the gut microbiota and problem solving performance in a wild bird

    1.
    Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).
    CAS  PubMed  Article  Google Scholar 
    2.
    Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T. G. & Cryan, J. F. Microbiota and the social brain. Science (80-) 366, eaar2016 (2019).
    CAS  Article  Google Scholar 

    3.
    Heijtz, R. D. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. 108, 3047–3052 (2011).
    ADS  CAS  Article  Google Scholar 

    4.
    Foster, J. A. & McVey Neufeld, K.-A. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 36, 305–312 (2013).
    CAS  PubMed  Article  Google Scholar 

    5.
    Clarke, G. et al. The microbiome-gut–brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 18, 666–673 (2013).
    CAS  PubMed  Article  Google Scholar 

    6.
    Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T. G. & Cryan, J. F. Microbiota is essential for social development in the mouse. Mol. Psychiatry 19, 146–148 (2014).
    CAS  PubMed  Article  Google Scholar 

    7.
    Hoban, A. E. et al. The microbiome regulates amygdala-dependent fear recall. Mol. Psychiatry 23, 1134–1144 (2018).
    CAS  PubMed  Article  Google Scholar 

    8.
    Magnusson, K. R. et al. Relationships between diet-related changes in the gut microbiome and cognitive flexibility. Neuroscience 300, 128–140 (2015).
    CAS  PubMed  Article  Google Scholar 

    9.
    Ogbonnaya, E. S. et al. Adult Hippocampal Neurogenesis Is Regulated by the Microbiome. Biol. Psychiat. 78, e7–e9 (2015).
    PubMed  Article  Google Scholar 

    10.
    Gareau, M. G. et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60, 307–317 (2011).
    PubMed  Article  Google Scholar 

    11.
    Stilling, R. M. et al. The neuropharmacology of butyrate: the bread and butter of the microbiota-gut–brain axis?. Neurochem. Int. 99, 110–132 (2016).
    CAS  PubMed  Article  Google Scholar 

    12.
    Davidson, G. L., Raulo, A. & Knowles, S. C. L. Identifying microbiome-mediated behaviour in wild vertebrates. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2020.06.014 (2020).
    Article  PubMed  Google Scholar 

    13.
    Davidson, G. L., Cooke, A. C., Johnson, C. N. & Quinn, J. L. The gut microbiome as a driver of individual variation in cognition and functional behaviour. Philos. Trans. R. Soc. B Biol. https://doi.org/10.1098/rstb.2017.0286 (2018).
    Article  Google Scholar 

    14.
    Morand-Ferron, J., Cole, E. F. & Quinn, J. L. Studying the evolutionary ecology of cognition in the wild: a review of practical and conceptual challenges. Biol. Rev. 91, 367–389 (2016).
    PubMed  Article  Google Scholar 

    15.
    Stephens, D. W. & Krebs, J. R. Foraging Theory (Princeton University Press, Princeton, 2019).https://doi.org/10.2307/j.ctvs32s6b
    Google Scholar 

    16.
    De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U. S. A. 107, 14691–14696 (2010).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Gillingham, M. A. F. et al. Offspring microbiomes differ across breeding sites in a panmictic species. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.00035 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    18.
    Costa, S., Lopes, I., Proença, D. N., Ribeiro, R. & Morais, P. V. Diversity of cutaneous microbiome of Pelophylax perezi populations inhabiting different environments. Sci. Total Environ. 572, 995–1004 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    19.
    Knutie, S. A., Chaves, J. A. & Gotanda, K. M. Human activity can influence the gut microbiota of Darwin’s finches in the Galapagos Islands. Mol. Ecol. 28, 2441–2450 (2019).
    PubMed  Article  Google Scholar 

    20.
    Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the Wild Black Howler Monkey (Alouatta pigra). Microb. Ecol. 69, 434–443 (2014).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    21.
    Hicks, A. L. et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat. Commun. 9, 1786 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Maurice, C. F. et al. Marked seasonal variation in the wild mouse gut microbiota. ISME J. 9, 2423–2434 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Pan, D. & Yu, Z. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes 5, 108–119 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Teyssier, A. et al. Diet contributes to urban-induced alterations in gut microbiota: experimental evidence from a wild passerine. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2019.2182 (2020).
    Article  Google Scholar 

    26.
    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    27.
    Clarke, S. F. et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63, 1913–1920 (2014).
    CAS  PubMed  Article  Google Scholar 

    28.
    Fava, F. et al. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. Int. J. Obes. 37, 216–223 (2013).
    CAS  Article  Google Scholar 

    29.
    Wu, G. D. et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 65, 63–72 (2016).
    CAS  PubMed  Article  Google Scholar 

    30.
    Zimmer, J. et al. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur. J. Clin. Nutr. 66, 53–60 (2012).
    CAS  PubMed  Article  Google Scholar 

    31.
    Youngblut, N. D. et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10, 2200 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Hird, S. M., Sánchez, C., Carstens, B. C. & Brumfield, R. T. Comparative gut microbiota of 59 neotropical bird species. Front. Microbiol. 6, 1403 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Kartzinel, T. R., Hsing, J. C., Musili, P. M., Brown, B. R. P. & Pringle, R. M. Covariation of diet and gut microbiome in African megafauna. Proc. Natl. Acad. Sci. U. S. A. 116, 23588–23593 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Bolnick, et al. The ecology of individuals: incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).
    MathSciNet  PubMed  Article  Google Scholar 

    35.
    Li, W., Dowd, S. E., Scurlock, B., Acosta-Martinez, V. & Lyte, M. Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria. Physiol. Behav. 96, 557–567 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Ezra-Nevo, G., Henriques, S. F. & Ribeiro, C. The diet-microbiome tango: how nutrients lead the gut brain axis. Curr. Opin. Neurobiol. 62, 122–132 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Psaltopoulou, T. et al. Mediterranean diet, stroke, cognitive impairment, and depression: a meta-analysis. Ann. Neurol. 74, 580–591 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Carlson, A. L. et al. Infant gut microbiome associated with cognitive development. Biol. Psychiatry 83, 148–159 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    39.
    Dunn, J. C., Cole, E. F. & Quinn, J. L. Personality and parasites: Sex-dependent associations between avian malaria infection and multiple behavioural traits. Behav. Ecol. Sociobiol. 65, 1459–1471 (2011).
    Article  Google Scholar 

    40.
    Cole, E. F., Morand-Ferron, J., Hinks, A. E. & Quinn, J. L. Cognitive ability influences reproductive life history variation in the wild. Curr. Biol. 22, 1808–1812 (2012).
    CAS  PubMed  Article  Google Scholar 

    41.
    Seed, A. & Mayer, C. Problem Solving. in APA handbook of comparative psychology: Perception, learning, and cognition, Vol. 2 601–625 (American Psychological Association, 2017).

    42.
    Cole, E. F., Cram, D. L. & Quinn, J. L. Individual variation in spontaneous problem-solving performance among wild great tits. Anim. Behav. 81, 491–498 (2011).
    Article  Google Scholar 

    43.
    Morand-Ferron, J., Cole, E. F., Rawles, J. E. C. & Quinn, J. L. Who are the innovators? A field experiment with 2 passerine species. Behav. Ecol. 22, 1241–1248 (2011).
    Article  Google Scholar 

    44.
    Quinn, J. L., Cole, E. F., Reed, T. E. & Morand-Ferron, J. Environmental and genetic determinants of innovativeness in a natural population of birds. Philos. Trans. R. Soc. Biol. B Sci. 371, 20150184 (2016).
    Article  CAS  Google Scholar 

    45.
    Ducatez, S., Clavel, J. & Lefebvre, L. Ecological generalism and behavioural innovation in birds: technical intelligence or the simple incorporation of new foods?. J. Anim. Ecol. 84, 79–89 (2015).
    PubMed  Article  Google Scholar 

    46.
    Reader, S. M. & MacDonald, K. Environmental variability and primate behavioural flexibility. Anim. Innov. https://doi.org/10.1093/acprof:oso/9780198526223.003.0004 (2012).
    Article  Google Scholar 

    47.
    Biard, C. et al. Growing in cities: an urban penalty for wild birds? A study of phenotypic differences between urban and rural great tit chicks (Parus major). Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00079 (2017).
    Article  Google Scholar 

    48.
    Teyssier, A. et al. Inside the guts of the city: urban-induced alterations of the gut microbiota in a wild passerine. Sci. Total Environ. 612, 1276–1286 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    49.
    Escallón, C., Belden, L. K. & Moore, I. T. The cloacal microbiome changes with the breeding season in a wild bird. Integr. Org. Biol. https://doi.org/10.1093/iob/oby009 (2019).
    Article  Google Scholar 

    50.
    Waite, D. W. & Taylor, M. W. Characterizing the avian gut microbiota: membership, driving influences, and potential function. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00223 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    51.
    Singh, R. K. et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 15, 73 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    52.
    Knutie, S. A. Food supplementation affects gut microbiota and immunological resistance to parasites in a wild bird species. J. Appl. Ecol. 57, 536–547 (2020).
    CAS  Article  Google Scholar 

    53.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Veľký, M., Kaňuch, P. & Krištín, A. Food composition of wintering great tits (Parus major): habitat and seasonal aspects. Folia Zool. 60, 228–236 (2011).
    Article  Google Scholar 

    55.
    Phillips, J. N., Berlow, M. & Derryberry, E. P. The effects of landscape urbanization on the gut microbiome: an exploration into the gut of urban and rural white-crowned Sparrows. Front. Ecol. Evol. 6, 148 (2018).
    Article  Google Scholar 

    56.
    Rosshart, S. P. et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 171, 1015–1028 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Griffin, A. S. & Guez, D. Innovation and problem solving: a review of common mechanisms. Behav. Process. 109, 121–134 (2014).
    Article  Google Scholar 

    58.
    Alcock, J., Maley, C. C. & Aktipis, C. A. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays 36, 940–949 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Maniscalco, J. W. & Rinaman, L. Vagal interoceptive modulation of motivated behavior. Physiology 33, 151–167 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Bruce-Keller, A. J. et al. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol. Psychiatry 77, 607–615 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    61.
    Greyson-Gaito, C. J. et al. Into the wild: microbiome transplant studies need broader ecological reality. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2019.2834 (2020).
    Article  Google Scholar 

    62.
    Roager, H. M. & Dragsted, L. O. Diet-derived microbial metabolites in health and disease. Nutr. Bull. 44, 216–227 (2019).
    Article  Google Scholar 

    63.
    Möhle, L. et al. Ly6Chi monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Rep. 15, 1945–1956 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    64.
    Cryan, J. F. et al. The microbiota-gut-dbrain axis. Physiol. Rev. 99, 1877–2013 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Heintz-Buschart, A. & Wilmes, P. Human gut microbiome: function matters. Trends Microbiol. 26, 563–574 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    O’Connor, R. J. Identification guide to European Passerines L. Svensson. Auk 102, (1985).

    67.
    Khan, G., Kangro, H. O., Coates, P. J. & Heath, R. B. Inhibitory effects of urine on the polymerase chain reaction for cytomegalovirus DNA. J. Clin. Pathol. 44, 360–365 (1991).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol. 27, 105–117 (2019).
    CAS  PubMed  Article  Google Scholar 

    69.
    Perrins, C. M. Tits and their caterpillar food supply. Ibis (Lond. 1859) 133, 49–54 (1991).
    Article  Google Scholar 

    70.
    Serrano-Davies, E., O’Shea, W. & Quinn, J. L. Individual foraging preferences are linked to innovativeness and personality in the great tit. Behav. Ecol. Sociobiol. 71, 161 (2017).
    Article  Google Scholar 

    71.
    Aplin, L. M., Sheldon, B. C. & McElreath, R. Conformity does not perpetuate suboptimal traditions in a wild population of songbirds. Proc. Natl. Acad. Sci. U. S. A. 114, 7830–7837 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    O’Shea, W., Serrano-Davies, E. & Quinn, J. L. Do personality and innovativeness influence competitive ability? An experimental test in the great tit. Behav. Ecol. 28, 1435–1444 (2017).
    Article  Google Scholar 

    73.
    Shutt, J. D. et al. Gradients in richness and turnover of a forest passerine’s diet prior to breeding: a mixed model approach applied to faecal metabarcoding data. Mol. Ecol. 29, 1199–1213 (2020).
    PubMed  Article  Google Scholar 

    74.
    Crouch, N. M. A., Lynch, V. M. & Clarke, J. A. A re-evaluation of the chemical composition of avian urinary excreta. J. Ornithol. 161, 17–24 (2020).
    Article  Google Scholar 

    75.
    Fouhy, F. et al. Perinatal factors affect the gut microbiota up to four years after birth. Nat. Commun. 10, 1517 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    76.
    Konstantinidis, K. T. & Tiedje, J. M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. U. S. A. 102, 2567–2572 (2005).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    78.
    R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. https://www.R-project.org/ (2014).

    79.
    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).
    CAS  PubMed  Article  Google Scholar 

    80.
    Di Rienzi, S. C. et al. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. Elife https://doi.org/10.7554/eLife.01102 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    81.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: linear mixed-effects models using Eigen and S4. R package version 1.1–7, https://CRAN.R-project.org/package=lme4. R Packag. version (2014).

    82.
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. https://doi.org/10.18637/jss.v082.i13 (2017).
    Article  Google Scholar 

    83.
    Zakrzewski, M. et al. Calypso: a user-friendly web-server for mining and visualizing microbiome-environment interactions. Bioinformatics https://doi.org/10.1093/bioinformatics/btw725 (2017).
    Article  PubMed  Google Scholar  More