More stories

  • in

    Nutrients cause grassland biomass to outpace herbivory

    1.
    Running, S. W. A measurable planetary boundary for the biosphere. Science 337, 1458–1459 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in Earth’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 12942–12945 (2007).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Xia, J. et al. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006. Remote Sens. 6, 1783 (2014).
    ADS  Article  Google Scholar 

    4.
    Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    5.
    Del Grosso, S. et al. Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology 89, 2117–2126 (2008).
    PubMed  Article  Google Scholar 

    6.
    Galloway, J. N. et al. Nitrogen cycles: past, present, and future. Biogeochemistry 70, 153–226 (2004).
    CAS  Article  Google Scholar 

    7.
    Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J. & Hedin, L. O. Changing sources of nutrients during four million years of ecosystem development. Nature 397, 491–497 (1999).
    ADS  CAS  Article  Google Scholar 

    8.
    McNaughton, S. J., Oesterheld, M., Frank, D. A. & Williams, K. J. Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341, 142–144 (1989).
    ADS  CAS  PubMed  Article  Google Scholar 

    9.
    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    10.
    White, R. P., Murray, S. & Rohweder, M. Pilot Analysis of Global Ecosystems (PAGE): Grassland Ecosystems, 70 (World Resources Institute, Washington, DC, 2000).

    11.
    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).

    12.
    Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 151 (Geneva, Switzerland, 2014).

    13.
    Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of earth’s nitrogen cycle. Science 330, 192–196 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Stevens, C. J. Nitrogen in the environment. Science 363, 578–580 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Stevens, C. J. et al. Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology 96, 1459–1465 (2015).
    Article  Google Scholar 

    16.
    Reyer, C. P. O. et al. A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. Glob. Change Biol. 19, 75–89 (2013).
    ADS  Article  Google Scholar 

    17.
    Knapp, A. K. et al. Consequences of more extreme precipitation regimes for terrestrial ecosystems. BioScience 58, 811–821 (2008).
    MathSciNet  Article  Google Scholar 

    18.
    LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Fay, P. A. et al. Grassland productivity limited by multiple nutrients. Nat. Plants 1, 15080 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Borer, E. T. et al. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508, 517–520 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Knapp, A. K. & Seastedt, T. R. Detritus accumulation limits productivity of tallgrass prairie: the effects of its plant litter on ecosystem function make the tallgrass prairie unique among North American biomes. BioScience 36, 662–668 (1986).
    Article  Google Scholar 

    22.
    Volterra, V. Variations and fluctuations of the numbers of individuals in animal species living together. Nature 118, 558–560 (1926).
    ADS  Article  Google Scholar 

    23.
    Crawley, M. J. Herbivory: The Dynamics of Animal-Plant Interactions, Vol. 10, 437 (University of California Press, 1983).

    24.
    Oksanen, L. & Oksanen, T. The logic and realism of the hypothesis of exploitation ecosystems. Am. Nat. 155, 703–723 (2000).
    PubMed  Article  PubMed Central  Google Scholar 

    25.
    Gruner, D. S. et al. A cross-system synthesis of consumer and nutrient resource control on producer biomass. Ecol. Lett. 11, 740–755 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    Hillebrand, H. et al. Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proc. Natl Acad. Sci. USA 104, 10904–10909 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Worm, B., Lotze, H. K., Hillebrand, H. & Sommer, U. Consumer versus resource control of species diversity and ecosystem functioning. Nature 417, 848–851 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Turkington, R. Top-down and bottom-up forces in mammalian herbivore – vegetation systems: an essay review. Botany 87, 723–739 (2009).
    Article  Google Scholar 

    29.
    DeAngelis, D. L. Dynamics of Nutrient Cycling and Food Webs (Chapman and Hall, London, 1992).

    30.
    Arditi, R. & Ginzburg, L. R. Coupling in predator-prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326 (1989).
    Article  Google Scholar 

    31.
    Chase, J. M., Leibold, M. A., Downing, A. L. & Shurin, J. B. The effects of productivity, herbivory, and plant species turnover in grassland food webs. Ecology 81, 2485–2497 (2000).
    Article  Google Scholar 

    32.
    Leibold, M. A. Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. Am. Nat. 134, 922–949 (1989).
    Article  Google Scholar 

    33.
    Endara, M. J. & Coley, P. D. The resource availability hypothesis revisited: a meta-analysis. Funct. Ecol. 25, 389–398 (2011).
    Article  Google Scholar 

    34.
    Milchunas, D. G. & Lauenroth, W. K. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol. Monogr. 63, 327–366 (1993).
    Article  Google Scholar 

    35.
    Polis, G. A. & Strong, D. R. Food web complexity and community dynamics. Am. Nat. 147, 813–846 (1996).
    Article  Google Scholar 

    36.
    Murdoch, W. Community structure, population control, and competition – a critique. Am. Nat. 100, 219–226 (1966).
    Article  Google Scholar 

    37.
    Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evolution 5, 65–73 (2014).
    Article  Google Scholar 

    38.
    Anderson, T. M. et al. Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecology 99, 822–831 (2018).

    39.
    Zhu, D. et al. The large mean body size of mammalian herbivores explains the productivity paradox during the Last Glacial Maximum. Nat. Ecol. Evol. 2, 640–649 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Hillebrand, H. Top-down versus bottom-up control of autotrophic biomass – a meta-analysis on experiments with periphyton. J. North Am. Benthol. Soc. 21, 349–369 (2002).
    Article  Google Scholar 

    41.
    Frank, R. & Merle, L. F. Effects of annual applications of low N fertilizer rates on a mixed grass prairie. J. Range Manag. 36, 359–362 (1983).
    Article  Google Scholar 

    42.
    Olofsson, J. et al. Long-term experiments reveal strong interactions between lemmings and plants in the Fennoscandian highland tundra. Ecosystems 17, 606–615 (2014).
    Article  Google Scholar 

    43.
    Lemaire, G., Jeuffroy, M.-H. & Gastal, F. Diagnosis tool for plant and crop N status in vegetative stage: theory and practices for crop N management. Eur. J. Agron. 28, 614–624 (2008).
    CAS  Article  Google Scholar 

    44.
    Hillebrand, H. et al. Herbivore metabolism and stoichiometry each constrain herbivory at different organizational scales across ecosystems. Ecol. Lett. 12, 516–527 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Hempson, G. P., Illius, A. W., Hendricks, H. H., Bond, W. J. & Vetter, S. Herbivore population regulation and resource heterogeneity in a stochastic environment. Ecology 96, 2170–2180 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Sickman, J. O. et al. Quantifying atmospheric N deposition in dryland ecosystems: a test of the Integrated Total Nitrogen Input (ITNI) method. Sci. Total Environ. 646, 1253–1264 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Yahdjian, L., Gherardi, L. & Sala, O. E. Nitrogen limitation in arid-subhumid ecosystems: a meta-analysis of fertilization studies. J. Arid Environ. 75, 675–680 (2011).
    ADS  Article  Google Scholar 

    48.
    Koerner, S. E. et al. Plant community response to loss of large herbivores differs between North American and South African savanna grasslands. Ecology 95, 808–816 (2014).
    PubMed  Article  Google Scholar 

    49.
    Frank, D. A., McNaughton, S. J. & Tracy, B. F. The ecology of the Earth’s grazing ecosystems: profound functional similarities exist between the Serengeti and Yellowstone. Bioscience 48, 513–521 (1998).
    Article  Google Scholar 

    50.
    Augustine, D. J. & McNaughton, S. J. Interactive effects of ungulate herbivores, soil fertility, and variable rainfall on ecosystem processes in a semi-arid savanna. Ecosystems 9, 1242–1256 (2006).
    CAS  Article  Google Scholar 

    51.
    Ritchie, M. E., Tilman, D. & Knops, J. M. H. Herbivore effects on plant and nitrogen dynamics in oak savanna. Ecology 79, 165–177 (1998).
    Article  Google Scholar 

    52.
    Pastor, J., Dewey, B., Naiman, R. J., McInnes, P. F. & Cohen, Y. Moose browsing and soil fertility in the boreal forests of Isle Royale National Park. Ecology 74, 467–480 (1993).
    Article  Google Scholar 

    53.
    Grellmann, D. Plant responses to fertilization and exclusion of grazers on an Arctic tundra heath. Oikos 98, 190–204 (2002).
    Article  Google Scholar 

    54.
    Hartley, S. E. & Mitchell, R. J. Manipulation of nutrients and grazing levels on heather moorland: changes in Calluna dominance and consequences for community composition. J. Ecol. 93, 990–1004 (2005).
    Article  Google Scholar 

    55.
    Lind, E. M. et al. Increased grassland arthropod production with mammalian herbivory and eutrophication: a test of mediation pathways. Ecology 98, 3022–3033 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    56.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Article  Google Scholar 

    57.
    Trabucco, A., Zomer, R. J., Bossio, D. A., van Straaten, O. & Verchot, L. V. Climate change mitigation through afforestation/reforestation: a global analysis of hydrologic impacts with four case studies. Agric. Ecosyst. Environ. 126, 81–97 (2008).
    Article  Google Scholar 

    58.
    Dentener, F. J. Global Maps of Atmospheric Nitrogen Deposition, 1860, 1993, and 2050. Oak Ridge National Laboratory Distributed Active Archive Center. https://doi.org/10.3334/ORNLDAAC/830 (2006).

    59.
    Borer, E. T. et al. Environmental Data Initiative https://doi.org/10.6073/pasta/a318fe0fb11eb43c1a2c8233b2e3494f (2020). More

  • in

    Dispersal-induced instability in complex ecosystems

    1.
    Odum, E. P. & Barrett, G. W. Fundamentals of Ecology (Saunders, Philadelphia, 1953).
    Google Scholar 
    2.
    Elton, C. S. Ecology of Invasions by Animals And Plants (Methuen, London, 1958).
    Google Scholar 

    3.
    MacArthur, R. Fluctuations of animal populations and a measure of community stability. Ecology 36, 533–536 (1955).
    Article  Google Scholar 

    4.
    Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).
    Article  Google Scholar 

    5.
    Landi, P., Minoarivelo, H. O., Å, Brännström, Hui, C. & Dieckmann, U. Complexity and stability of ecological networks: a review of the theory. Popul. Ecol. 60, 319–345 (2018).
    Article  Google Scholar 

    6.
    McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).
    CAS  PubMed  Article  Google Scholar 

    7.
    May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    May, R. M. Stability in multispecies community models. Math. Biosci. 12, 59–79 (1971).
    MathSciNet  MATH  Article  Google Scholar 

    9.
    Namba, T. Multi-faceted approaches toward unravelling complex ecological networks. Popul. Ecol. 57, 3–19 (2015).
    Article  Google Scholar 

    10.
    Justus, J. A case study in concept determination: Ecological diversity. in Philosophy of Ecology, Handbook of the Philosophy of Science, Vol. 11, (eds deLaplante, K., Brown, B. & Peacock, K. A.) (North-Holland, Amsterdam, 2011) pp. 147–168.

    11.
    Grilli, J., Rogers, T. & Allesina, S. Modularity and stability in ecological communities. Nat. Commun. 7, 1–10 (2016).
    Article  CAS  Google Scholar 

    12.
    Allesina, S. & Tang, S. The stability–complexity relationship at age 40: a random matrix perspective. Popul. Ecol. 57, 63–75 (2015).
    Article  Google Scholar 

    13.
    Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    14.
    Hutchinson, M. C. Seeing the forest for the trees: putting multilayer networks to work for community ecology. Funct. Ecol. 33, 206–217 (2019).
    Article  Google Scholar 

    15.
    Pilosof, S., Porter, M. A., Pascual, M. & Kéfi, S. The multilayer nature of ecological networks. Nat. Ecol. Evolut. 1, 1–9 (2017).
    Article  Google Scholar 

    16.
    Stone, L. The feasibility and stability of large complex biological networks: a random matrix approach. Sci. Rep. 8, 1–12 (2018).
    CAS  Article  Google Scholar 

    17.
    Gibbs, T., Grilli, J., Rogers, T. & Allesina, S. Effect of population abundances on the stability of large random ecosystems. Phys. Rev. E 98, 022410 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Fyodorov, Y. V. & Khoruzhenko, B. A. Nonlinear analogue of the may-wigner instability transition. Proc. Natl Acad. Sci. USA 113, 6827–6832 (2016).
    MathSciNet  CAS  PubMed  MATH  Article  Google Scholar 

    19.
    Gross, T., Rudolf, L., Levin, S. A. & Dieckmann, U. Generalized models reveal stabilizing factors in food webs. Science 325, 747–750 (2009).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Berlow, E. L. et al. Interaction strengths in food webs: issues and opportunities. J. Anim. Ecol. 73, 585–598 (2004).
    Article  Google Scholar 

    21.
    Chesson, P. & Huntly, N. The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am. Nat. 150, 519–553 (1997).
    CAS  PubMed  Article  Google Scholar 

    22.
    McNaughton, S. J. Diversity and stability of ecological communities: a comment on the role of empiricism in ecology. Am. Nat. 111, 515–525 (1977).
    Article  Google Scholar 

    23.
    Thébault, E. & Loreau, M. Trophic interactions and the relationship between species diversity and ecosystem stability. Am. Nat. 166, E95–E114 (2005).
    PubMed  Article  Google Scholar 

    24.
    Tilman, D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80, 1455–1474 (1999).
    Google Scholar 

    25.
    Gravel, D., Massol, F. & Leibold, M. A. Stability and complexity in model meta-ecosystems. Nat. Commun. 7, 12457 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Turing, A. M. The chemical basis of morphogenesis. Bull. Math. Biol. 52, 153–197 (1990).
    CAS  PubMed  Article  Google Scholar 

    27.
    Hanski, I. Metapopulation dynamics. Nature 396, 41–49 (1998).
    ADS  CAS  Article  Google Scholar 

    28.
    Hanski, I. Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos 87, 209–219 (1999).

    29.
    Hassell, M. P., Comins, H. N. & May, R. M. Spatial structure and chaos in insect population dynamics. Nature 353, 255–258 (1991).
    ADS  Article  Google Scholar 

    30.
    Hassell, M. P., Comins, H. N. & May, R. M. Species coexistence and self-organizing spatial dynamics. Nature 370, 290–292 (1994).
    ADS  Article  Google Scholar 

    31.
    Levin, S. A. & Segel, L. A. Hypothesis for origin of planktonic patchiness. Nature 259, 659 (1976).
    ADS  Article  Google Scholar 

    32.
    Brechtel, A., Gramlich, P., Ritterskamp, D., Drossel, B. & Gross, T. Master stability functions reveal diffusion-driven pattern formation in networks. Phys. Rev. E 97, 032307 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    33.
    Cross, M. & Hohenberg, P. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993).
    ADS  CAS  MATH  Article  Google Scholar 

    34.
    Grilli, J. et al. Feasibility and coexistence of large ecological communities. Nat. Commun. 8, 14389 (2017).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    35.
    Allesina, S. et al. Predicting the stability of large structured food webs. Nat. Commun. 6, 1–6 (2015).
    Article  CAS  Google Scholar 

    36.
    Neubert, M. G., Kot, M. & Lewis, M. A. Dispersal and pattern formation in a discrete-time predator-prey model. Theor. Popul. Biol. 48, 7–43 (1995).
    MATH  Article  Google Scholar 

    37.
    Rietkerk, M. & Van de Koppel, J. Regular pattern formation in real ecosystems. Trends Ecol. Evolut. 23, 169–175 (2008).
    Article  Google Scholar 

    38.
    HilleRisLambers, R., Rietkerk, M., van den Bosch, F., Prins, H. H. T. & de Kroon, H. Vegetation pattern formation in semi-arid grazing systems. Ecology 82, 50–61 (2001).
    Article  Google Scholar 

    39.
    Levin, S. Dispersion and population interactions. Am. Nat. 108, 207–228 (1974).
    Article  Google Scholar 

    40.
    Murray, J. D. Mathematical Biology II: Spatial Models and Biomedical Applications (Springer: New York, 2001).
    Google Scholar 

    41.
    Baron, J. W. & Galla, T. Stochastic fluctuations and quasipattern formation in reaction-diffusion systems with anomalous transport. Phys. Rev. E 99, 052124 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    42.
    Kuramoto, Y. Diffusion-induced chaos in reaction systems. Progr. Theor. Phys. Suppl. 64, 346–367 (1978).
    ADS  CAS  Article  Google Scholar 

    43.
    Pascual, M. Diffusion-induced chaos in a spatial predator–prey system. Proc. R. Soc. Lond. Ser. B 251, 1–7 (1993).
    ADS  Article  Google Scholar 

    44.
    Rietkerk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    45.
    Rietkerk, M. & van de Koppel, J. Regular pattern formation in real ecosystems. Trends Ecol. Evolut. 23, 169–175 (2008).
    Article  Google Scholar 

    46.
    van de Koppel, J. et al. Experimental evidence for spatial self-organization and its emergent effects in mussel bed ecosystems. Science 322, 739–742 (2008).
    ADS  PubMed  Article  CAS  Google Scholar 

    47.
    Meron, E. Pattern-formation approach to modelling spatially extended ecosystems. Ecol. Model. 234, 70–82 (2012).
    Article  Google Scholar 

    48.
    Liu, Q. et al. Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems. Nat. Commun. 5, 5234 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    49.
    Karig, D. et al. Stochastic turing patterns in a synthetic bacterial population. Proc. Natl Acad. Sci. USA 115, 6572–6577 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    50.
    Lengyel, I. & Epstein, I. A chemical approach to designing turing patterns in reaction-diffusion systems. Proc. Natl Acad. Sci. USA 89, 3977–3979 (1992).
    ADS  CAS  PubMed  MATH  Article  Google Scholar 

    51.
    Castets, V., Dulos, E., Boissonade, J. & De Kepper, P. Experimental evidence of a sustained standing turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64, 2953–2956 (1990).
    ADS  CAS  PubMed  Article  Google Scholar 

    52.
    Barabás, G., Michalska-Smith, M. J. & Allesina, S. Self-regulation and the stability of large ecological networks. Nat. Ecol. Evolut. 1, 1870–1875 (2017).
    Article  Google Scholar 

    53.
    Tao, T. & Vu, V. Random matrices: universality of local eigenvalue statistics up to the edge. Commun. Math. Phys. 298, 549–572 (2010).
    ADS  MathSciNet  MATH  Article  Google Scholar 

    54.
    Tao, T. et al. Random matrices: universality of ESDs and the circular law. Ann. Probab. 38, 2023–2065 (2010).
    MathSciNet  MATH  Article  Google Scholar 

    55.
    O’Sullivan, J. D., Knell, R. J. & Rossberg, A. G. Metacommunity-scale biodiversity regulation and the self-organised emergence of macroecological patterns. Ecol. Lett. 22, 1428–1438 (2019).
    PubMed  Article  Google Scholar 

    56.
    Gotelli, N. J. et al. Community-level regulation of temporal trends in biodiversity. Sci. Adv. 3, e1700315 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Magurran, A. E. et al. Divergent biodiversity change within ecosystems. Proc. Natl Acad. Sci. USA 115, 1843–1847 (2018).
    CAS  PubMed  Article  Google Scholar 

    58.
    Brown, J. H., Ernest, S. K. M., Parody, J. M. & Haskell, J. P. Regulation of diversity: maintenance of species richness in changing environments. Oecologia 126, 321–332 (2001).
    ADS  PubMed  Article  Google Scholar 

    59.
    Parody, J. M., Cuthbert, F. J. & Decker, E. H. The effect of 50 years of landscape change on species richness and community composition. Glob. Ecol. Biogeogr. 10, 305–313 (2001).
    Article  Google Scholar 

    60.
    Haake, F., Izrailev, F., Lehmann, N., Saher, D. & Sommers, H.-J. Statistics of complex levels of random matrices for decaying systems. Z. Phys. B Condens. Matter 88, 359–370 (1992).
    ADS  Article  Google Scholar 

    61.
    Sommers, H.-J., Crisanti, A., Sompolinsky, H. & Stein, Y. Spectrum of large random asymmetric matrices. Phys. Rev. Lett. 60, 1895–1898 (1988).
    ADS  MathSciNet  CAS  PubMed  Article  Google Scholar 

    62.
    O’Rourke, S. et al. Low rank perturbations of large elliptic random matrices. Electron. J. Probab. 19, 1–65 (2014).

    63.
    Süli, E. & Mayers, D. F. An Introduction to Numerical Analysis (Cambridge University Press, 2003).

    64.
    Baron, J. W. & Galla, T. Dispersal-induced instability in complex ecosystems. GitHub https://doi.org/10.5281/zenodo.4068257 (2020). More

  • in

    The complete chloroplast genome sequences of five pinnate-leaved Primula species and phylogenetic analyses

    Basic characters of the six chloroplast genomes
    The cp genomes of P. cicutarrifolia, P. hubeiensis, P. jiugongshanensis, P. merrilliana and P. ranunculoides (GenBank accessions: MT268974, MT268976, MT937162, MT268977, MT268978) were reported for the first time here, and that of P. filchnerae was downloaded from NCBI (MK88869821).
    The sequencing coverage of our five newly assembled cp genomes was from 923 to 6237 (Figure S1). The six cp genomes possessed typical quadripartite structure: IRa, IRb, LSC and SSC (Table 1), and they exhibited the same gene order, no gene rearrangement or inversion occurred (Figure S2). The physical map of the cp genome of P. hubeiensis was shown in Fig. 1. The GC content was ~ 37%. The newly sequenced genomes ranged from 150,187 bp to 151,972 bp, harboring 113 genes: four ribosomal RNA genes, 29 tRNA genes and 80 protein-coding genes, and among them 14 genes was duplicated in IRa and IRb (Table 1). Due to presence of multiple stop codons, the gene infA was pseudogenized in the five newly sequenced species. The open reading frame (ORF) in accD of P. filchnerae (MK888698) was truncated to be only 1305 bp compared with 1455 or 1464 bp ORF of other five species. Lee et al.34 identified five conserved amino acid sequence motifs in accD gene. Conserved amino acid sequence motifs IV and V were absent in accD of P. filchnerae. Therefore, accD was nonfunctional in P. filchnerae.
    Table 1 Basic characteristics of cp genomes of the six Primula species (Pc: P. cicutarrifolia; Pf: P. filchnerae; Ph: P. hubeiensis; Pj: P. jiugongshanensis; Pm: P. merrilliana; Pr: P. ranunculoides).
    Full size table

    Figure 1

    Physical map of the P. hubeiensis chloroplast genome.

    Full size image

    SSRs and repeats
    Five categories of SSRs were identified for the six species (Table 2). The least number of SSRs was 41 for P. ranunculoides and the most 59 for P. merrilliana. Three types of SSRs were detected for P. filchnerae, and in the rest species four types could be found. While mono-, di- and tetra-nucleotide repeats existed across all the six species, tri- and penta-inucleotide repeats resided in three and two species respectively. Mono- and dinucleotide repeats accounted for the vast majority of SSRs (65.1% for P. cicutariifolia, 87.5% for P. filchnerae, 69.0% for P. hubeiensis, 62.8% for P. jiugongshanensis, 72.9% for P. merrilliana, 73.2% for P. ranunculoides). Most or all mono- repeats were A/T repeats including 10 to 16 nucleotides. The number of repeat units ranged from five to eight for dinucleotide repeats. The tri- and penta-nucleotide SSRs consisted of four motifs, and tetra-nucleotide SSRs of four to five repeat units.
    Table 2 Types and numbers of SSRs in the cp genomes of six Primula species, the numbers in the bracket indicating total number of SSRs (Pc: P. cicutarrifolia; Pf: P. filchnerae; Ph: P. hubeiensis; Pj: P. jiugongshanensis; Pm: P. merrilliana; Pr: P. ranunculoides).
    Full size table

    Except the largest repeat for each genome (i.e. IRs), a total of 183 repeat pairs (three types: forward (F), reverse (R), and palindromic repeats (P)) were detected in the six genomes (Fig. 2), which ranged from 30 to 137 bp in length. Palindromic repeats were the most common, accounting for 55.2% (101 of 183), followed by forward repeats (44.3%, 81 of 183). No complement repeats were identified in all species and one pair of reverse repeats existed specifically in P. ranunculoides. In the six species, 96.7% (177 of 183 repeat pairs) repeats were 30–59 bp in length, consistent with the length reported in other Primula species20. The longest repeat (137 bp) was found in P. cicutariifolia, and this species contained the most repeats (44 pairs), while P. jiugongshanensis had the least (24 pairs).
    Figure 2

    Types and numbers of repeat pairs in the cp genomes of six Primula species (Pc: P. cicutarrifolia; Pf: P. filchnerae; Ph: P. hubeiensis; Pj: P. jiugongshanensis; Pm: P. merrilliana; Pr: P. ranunculoides).

    Full size image

    IR/SC boundary
    The IR/SC boundary regions of the six Primula cp genomes were compared, and the IR/SC junction regions showed slight differences in the length of organization genes flanking the junctions or the distance between the junctions and the organization genes (Fig. 3). The genes spanning or flanking the junction of LSC/IRb, IRb/SSC, SSC/IRa and IRa/LSC were rps19/rpl2, ndhF, ycf1, rpl2/trnH, respectively. IR expansion and contraction was observed. P. cicutarrifolia had the smallest size of IR but largest size of both LSC and SSC; though largest size of IR was detected in P. filchnerae, the LSC or SSC was not the smallest in this species. The gene trnH was located in LSC, 0–24 bp away from the IRa/LSC border. The largest extensions of ycf1 into both SSC and IRa occurred in P. filchnerae (4566 bp and 1023 bp, respectively) and ycf1 of P. filchnerae were the longest among the six species. The gene ndhF was utterly situated in SSC and 108 bp distant from the IRb/SSC junction in P. cicutarrifolia; in the rest five species the fragment size of ndhF in SSC was largest in P. hubeiensis (2194 bp). In P. cicutarrifolia, P. jiugongshanensis and P. merrilliana, rps19 and rpl2 were located in the upstream and downstream of the LSC/IRb junction, respectively; rps19 ran across the LSC/IRb junction in P. filchnerae, P. hubeiensis, P. ranunculoides with 161, 62, 56 bp extension in IRb, respectively.
    Figure 3

    LSC/IR, and SSC/IR border regions of the six Primula cp genomes.

    Full size image

    Divergent hotspots in the Primula chloroplast genome
    As indicated by the value of Pi, the nucleotide variability of the 22 Primula species (Table S1) was evaluated by DnaSP 6.1231 using noncoding sequences (intron and intergenic spacer) or protein coding sequences (CDS) at least 200 bp long. The variation level of DNA polymorphorism was 0.00444–0.11369 for noncoding sequences or 0.00094–0.05036 for CDSs. For the CDSs, the highest Pi value were detected for ycf1 (0.05036), followed by matK (0.04878), rpl22 (0.04364), ndhF (0.03975), rps8 (0.03658), ndhD (0.03455), ccsA (0.03292), rpl33 (0.0303), rps15 (0.03022), and rpoC2 (0.02954). These markers had higher Pi than rbcL (0.02149). Obviously, the gene ycf1 exhibited the greatest diversity and harbored the most abundant variation. The ten most divergent regions among noncoding regons included trnH (GUG)-psbA (0.11369), trnW (CCA)-trnP (UGG) (0.09463), rpl32-trnL (UAG) (0.09337), ndhC-trnV (UAC) (0.09148), ccsA-ndhD (0.08745), ndhG-ndhI (0.08363), trnK (UUU)-rps16 (0.08334), trnM (CAU)-atpE (0.08273), trnS (GGA)-rps4 (0.08028), and trnC (GCA)-petN (0.07971). No intron ranked among the top ten variable noncoding regions.
    Phylogenetic analysis
    The ML tree of 22 Primula species was constructed with RAxML32 (Fig. 4), based on the whole cp genomes. The six pinnate-leaved Primula species did not form a monophyly, but separated into two distant clades. P. filchnerae grouped with P. sinensis, the other five species clustered together and constituted the clade Sect. Ranunculoides with 100% bootstrap. In the ML tree, Sect. Proliferae exhibited monophyly, while species of Sect. Crystallophlomis separated into different clades.
    Figure 4

    ML phylogenetic tree of Primula species based on cp genomes. Bootstrap support at nodes are all 100%.

    Full size image

    The topology of the ML tree based on ycf1 (Figure S3) was consistent with that based on whole cp genomes (Fig. 4), except that the clade formed by P. veris and P. knuthiana were sister to the clade consisting of Sects. Auganthus, Obconicolisteri, Carolinella and Monocarpicae instead of being sister to the clade of Sects. Proliferae, Ranunculoides and Crystallophlomis.
    We also constructed both ML and NJ tree of 71 Primula species based on the concatenation of three common barcoding markers (ITS, matK and rbcL). Only the results of NJ analysis (Fig. 5) showed consistency with those of Yan et al.12, Liu et al.35, and ML analysis based on whole cp genomes (Fig. 4). The six pinnate-leaved Primula species were separated into two distantly related groups. The clade consisting of P. filchnerae and P. sinensis (Sect. Auganthus) was sister to the clade formed by Sects. Carolinella, Obconicolisteri, Monocarpicae, Cortusoides, Malvacea, Pycnoloba. The five pinnatisect-leaved species P. cicutarrifolia, P. hubeiensis, P. jiugonshanensis, P. merrilliana and P. ranunculoides (Sect. Ranunculoides) comprised a 100% supported clade, which was sister to the group containing Sects. Crystallophlomis, Petiolares, Proliferae, Amethystina. Sect. Carolinella and Sect. Crystallophlomis, and Sect. Malvacea were polyphyletic.
    Figure 5

    NJ bootstrap consensus tree of Primula based on concatenation of ITS, matK and rbcL.

    Full size image More

  • in

    Continuous moulting by Antarctic krill drives major pulses of carbon export in the north Scotia Sea, Southern Ocean

    1.
    Murphy, E. J. et al. Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centred food web. Philos. T. Roy. Soc. B 362, 113–148 (2007a).
    2.
    Atkinson, A., Schmidt, K., Fielding, S., Kawaguchi, S. & Geissler, P. A. Variable food absorption by Antarctic krill: relationships between diet, egestion rate and the composition and sinking rates of their faecal pellets. Deep-Sea Res. PT II 59–60, 147–158 (2012).
    ADS  Article  CAS  Google Scholar 

    3.
    Le Fèvrea, J., Legendre, L. & Rivkinc, R. B. Fluxes of biogenic carbon in the Southern Ocean: roles of large microphagous zooplankton. J. Mar. Syst. 17, 325–345 (1998).
    Article  Google Scholar 

    4.
    Lehette, P., Tovar-Sánchez, A., Duarte, C. M. & Hernández-León, S. Krill excretion and its effect on primary production. Mar. Ecol. Prog. Ser. 459, 29–38 (2012).
    ADS  CAS  Article  Google Scholar 

    5.
    Steinberg, K. D. et al. Long-term (1993–2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep-Sea Res. PT I 101, 54–70 (2015).
    Article  Google Scholar 

    6.
    Accornero, A., Manno, C., Esposito, F. & Gambi, M. The vertical flux of particulate matter in the polynya of Terra Nova Bay. Part II. Biological components. Antarct. Sci. 15, 175–188 (2003).
    ADS  Article  Google Scholar 

    7.
    Dunbar, R. B., Leventer, A. R. & Mucciarone, D. A. Water column sediment fluxes in the Ross Sea, Antarctica: atmospheric and sea-iceforcing. J. Geophys. Res. 1093, 741–760 (1998).
    Google Scholar 

    8.
    Bathmann, U., Fisher, G., Muller, P. J. & Gerdes, D. Short-term variations in particulate matter sedimentation off Kapp Norvegia,Weddell Sea, Antarctica: relation to water mass advection, ice cover, plankton biomass and feeding activity. Polar Biol. 11, 185–195 (1991).
    Article  Google Scholar 

    9.
    Cadée, G. C., González, H. & Schnack-Schiel, S. B. Krill diet affects faecal string settling. Polar Biol. 12, 75–80 (1992).
    Google Scholar 

    10.
    Manno, C., Stowasser, G., Enderlein, P., Fielding, S. & Tarling, G. A. The contribution of zooplankton faecal pellets to deep carbon transport in the Scotia Sea (Southern Ocean). Biogeosciences 12, 1955–1965 (2015).
    ADS  Article  Google Scholar 

    11.
    Belcher, A. et al. Krill faecal pellets drive hidden pulses of particulate organic carbon in the marginal ice zone. Nat. Commun. 10, 889 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Tang, K. W., Gladyshev, M. I., Dubovskaya, O. P., Kirillin, G. & Grossart, H. Zooplankton carcasses and non-predatory mortality in freshwater and inland sea environments. J. Plankton Res. 36, 597–612 (2014).
    CAS  Article  Google Scholar 

    13.
    Mauchline, J. & Fisher, L. R. The biology of euphausiids. Adv. Mar. Biol. 7, 1–454 (1969).
    Article  Google Scholar 

    14.
    Gomez-Gutierrez, J., Peterson, W. T., De Robertis, A. & Brodeur, R. D. Mass mortality of krill caused by parasitoid ciliates. Science 301, 339 (2003).
    CAS  PubMed  Article  Google Scholar 

    15.
    Buchholz, F., Buchholz, C. & Weslawski, J. M. Ten years after: krill as indicator of changes in the macro-zooplankton communities of two Arctic fjords. Polar Biol. 33, 101–113 (2010).
    Article  Google Scholar 

    16.
    Nelson, K. In Scheduling of Reproduction in Relation to Molting and Growth in Malacostracan Crustaceans. Crustacean Egg Production. 77–113 (A. A. Balkema, Rotterdam, 1991).

    17.
    Segawa, S., Kato, M. & Murano, M. Growth, moult and filtering rate of krill in laboratory conditions. Mem. Natl. Inst. Polar Res. Tokyo 27, 93–103 (1983).
    Google Scholar 

    18.
    Ikeda, T. & Dixon, P. Observations on moulting in Antarctic krill (Euphausia superba Dana). Aust. J. Mar. Freshw. Res. 33, 71–76 (1982).
    Article  Google Scholar 

    19.
    Yoshikoshi, K. & Ko, Y. Structure and function of the peritrophic membranes of copepods. Nippon Suisan Gakk. 54, 1077–1082 (1988).
    Article  Google Scholar 

    20.
    Nicol, S. & Stolp, M. Sinking rates of cast exoskeletons of Antarctic krill (Euphausia superba Dana) and their role in the vertical flux of particulate matter and fluoride in the Southern Ocean. Deep-Sea Res. 36, 1753–1762 (1989).
    ADS  CAS  Article  Google Scholar 

    21.
    Hamner, W. M., Hamner, P. P., Obst, B. S. & Carleton, J. H. Field observations on the ontogeny of schooling of Euphausia superba furciliae and its relationship to ice in Antarctic waters. Limn. Oceanogr. 34, 451–456 (1989).
    Article  Google Scholar 

    22.
    Tarling, G. A. et al. Variability and predictability of Antarctic krill swarm structure. Deep-Sea Res. PT I 56, 1994–2012 (2009).
    Article  Google Scholar 

    23.
    Siegel, V. & Watkins, J. L. In Biology and Ecology of Antarctic Krill. Advances in Polar Ecology. 21–100 (Springer, Cham, 2016).

    24.
    Nicol, S. & Foster, J. In Advances in Polar Ecology. 387–421 (Springer, Cham, 2016).

    25.
    Cavan, E. L. et al. The importance of Antarctic krill in biogeochemical cycles. Nat. Commun. 10, 4742 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Tarling, G. A. & Johnson, M. L. Satiation gives krill that sinking feeling. Curr. Biol. 16, 83–84 (2006).
    Article  CAS  Google Scholar 

    27.
    Tarling, G. A. et al. Natural growth rates in Antarctic krill (Euphausia superba): I. Improving methodology and predicting intermolt period. Limnol. Oceanogr. 51, 959–972 (2006).
    ADS  Article  Google Scholar 

    28.
    Buchholz, F. Moult cycle and growth of Antarctic krill Euphausia superba in the laboratory. Mar. Ecol. Prog. Ser. 69, 217–229 (1991).
    ADS  Article  Google Scholar 

    29.
    Jones, E. M., Bakker, D. C. E., Venables, H. J. & Watson, A. J. Dynamic seasonal cycling of inorganic carbon downstream of South Georgia, Southern Ocean. Deep-Sea Res. PT II 59–60, 25–35 (2012).
    ADS  Article  CAS  Google Scholar 

    30.
    Schiermeier, Q. The real holes in climate science: like any other field, research on climate change has some fundamental gaps, although not the ones typically claimed by sceptics. Quirin Schiermeier takes a hard look at some of the biggest problem areas. Nature 463(7279), 284 (2010).
    CAS  PubMed  Article  Google Scholar 

    31.
    Flores, H. et al. Impact of climate change on Antarctic krill. Mar. Ecol. Prog. Ser. 458, 1–19 (2012).
    ADS  Article  Google Scholar 

    32.
    Tarling, G. A. & Fielding, S. In Advances in Polar Ecology 279–319 (Springer, Cham, 2016).

    33.
    Fielding, S. et al. Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997–2013, ICES J. Mar. Sci. 71, 2578–2588 (2014).

    34.
    Rembauville, M., Salter, I., Leblond, N., Gueneugues, A. & Blain, S. Export fluxes in a naturally iron-fertilized area of the Southern Ocean–Part 1: seasonal dynamics of particulate organic carbon export from a moored sediment trap. Biogeosciences 12, 3153–3170 (2015).
    ADS  Article  Google Scholar 

    35.
    Wefer, G., Fischer, G., Fuetterer, D. & Gersonde, R. Seasonal particle flux in the Bransfield Strait. Antarctica. Deep-Sea Res. 35, 891–898 (1988).
    CAS  Article  Google Scholar 

    36.
    Saunders, R. A. et al. Intra-annual variability in the density of Antarctic krill (Euphausia superba) at South Georgia, 2002–2005: within-year variation provides a new framework for interpreting previous ‘annual’ estimates of krill density. CCAMLR Sci. 14, 27–41 (2007).
    Google Scholar 

    37.
    Kawaguchi, S., Nicol, S. & Press, A. J. Direct effects of climate change on the Antarctic krill fishery. Fish. Manag. Ecol. 16, 424–427 (2009).
    Article  Google Scholar 

    38.
    CCAMLR https://www.ccamlr.org/en/system/files/00%20KRI48%202018.pdf (2018).

    39.
    Meyer B. & Teschke M. In Advances in Polar Ecology. 145–174 (Springer, Cham, 2016).

    40.
    Buchholz, F. Moult cycle and seasonal activities of chitinolytic enzymes in the integument and digestive tract of the Antarctic krill, Euphausia superba. Polar Biol. 9, 311–317 (1989).
    Article  Google Scholar 

    41.
    Atkinson, A. et al. Natural growth rates in Antarctic krill (Euphausia superba): II. Predictive models based on food, temperature, body length, sex, and maturity stage. Limnol. Oceanogr. 51, 973–987 (2006).
    ADS  Article  Google Scholar 

    42.
    Murphy, E. J. et al. Restricted regions of enhanced growth of Antarctic krill in the circumpolar Southern Ocean. Sci. Rep. UK 7, 14 (2017b).
    ADS  Article  CAS  Google Scholar 

    43.
    Young, E. F., Thorpe, S. E., Banglawala, N. & Murphy, E. J. Variability in transport pathways on and around the South Georgia shelf, Southern Ocean: implications for recruitment and retention. J. Geophys. Res. Oceans 119, 1–12 (2014).
    Article  Google Scholar 

    44.
    Lascara, C. M., Hofmann, E. E., Ross, R. M. & Quetin, L. B. Seasonal variability in the distribution of Antarctic krill, Euphausia superba, west of the Antarctic Peninsula. Deep-Sea Res. PT I 46, 951–984 (1999).
    Article  Google Scholar 

    45.
    Lawson, G. L., Wiebe, P. H., Stanton, T. K. & Ashjian, C. J. Euphausiid distribution along the Western Antarctic Peninsula—Part A: development of robust multi-frequency acoustic techniques to identify euphausiid aggregations and quantify euphausiid size, abundance, and biomass. Deep-Sea Res PT II 55, 412–431 (2008).
    ADS  Article  Google Scholar 

    46.
    Kane, M. K., Yopak, R., Roman, C. & Menden-Deuer, S. Krill motion in the Southern Ocean: quantifying in situ krill movement behaviors and distributions during the late austral autumn and spring. Limnol. Oceanogr. 63, 2839–2857 (2018).
    ADS  Article  Google Scholar 

    47.
    Schmidt, K. et al. Seabed foraging by Antarctic krill: implications for stock assessment, benthic‐pelagic coupling, and the vertical transfer of iron. Limnol. Oceanogr. 56, 1411–1428 (2011).
    ADS  CAS  Article  Google Scholar 

    48.
    Reiss, C. S. et al. Overwinter habitat selection by Antarctic krill under varying sea-ice conditions: implications for top predators and fishery management. Mar. Ecol. Prog. Ser. 568, 1–16 (2017).
    ADS  CAS  Article  Google Scholar 

    49.
    Brierley, A. et al. Use of moored acoustic instruments to measure short-term variability in abundance of Antarctic krill. Limnol. Oceanogr.-Meth. 4, 18–29 (2006).
    Article  Google Scholar 

    50.
    Marr, J. W. S. The natural history and geography of the Antarctic krill (Euphausia superba Dana). Discov. Rep. 32, 33–464 (1962).
    Google Scholar 

    51.
    Ross, R. M. & Quetin, L. B. In Krill: Biology, Ecology and Fisheries 150–181 (Blackwells, New York, 2000).

    52.
    Murphy, E. J. et al. Climatically driven fluctuations in Southern Ocean ecosystems. Proc. R. Soc. B 274, 3057–3067 (2007).
    PubMed  Article  Google Scholar 

    53.
    Reid, K. et al. Krill population dynamics at South Georgia: implications for ecosystem-based fisheries management. Mar. Ecol. Prog. Ser. 399, 243–252 (2010).
    ADS  Article  Google Scholar 

    54.
    Cavan, E. L. et al. Attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean, is controlled by zooplankton faecal pellets. J. Geophys. Res. 3, 821–830 (2015).
    Google Scholar 

    55.
    Belcher, A. et al. The potential role of Antarctic krill faecal pellets in efficient carbon export at the marginal ice zone of the South Orkney Islands in spring. Polar Biol. 40, 2001–2013 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Atkinson, A., Siegel, V., Pakhomov, E. A., Jessopp, M. J. & Loeb, V. A. Re-appraisal of the total biomass and annual production of Antarctic krill. Deep-Res. PT I 56, 727–740 (2009).
    Article  Google Scholar 

    57.
    Hill, S. L., Phillips, T. & Atkinson, A. Potential climate change effects on the habitat of Antarctic krill in the Weddell quadrant of the Southern Ocean. PLoS ONE 8, e72246 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Klein, E. S., Hill, S. L., Hinke, J. T., Phillips, T. & Watters, G. M. Impacts of rising sea temperature on krill increase risks for predators in the Scotia Sea. PLoS ONE 13, e0191011 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    59.
    Schlitzer, R. Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite-based estimates. Deep-Sea Res. PT II 49, 1623–1644 (2002).
    ADS  CAS  Article  Google Scholar 

    60.
    González, H. The distribution and abundance of krill faecal material and oval pellets in the Scotia and Weddell Seas (Antarctica) and their role in particle flux. Polar Biol. 12, 81–91 (1992).
    Article  Google Scholar 

    61.
    Miller, D. G. M. Variation in body length measurement of Euphausia superba Dana. Polar Biol. 2, 17–20 (1983).
    Article  Google Scholar 

    62.
    Whitehouse, M. J. et al. Substantial primary production in the land-remote region of the central and northern Scotia Sea. Deep-Sea Res. PT II 59–60, 47–56 (2012).
    ADS  Article  Google Scholar 

    63.
    Kils, U. The swimming behaviour, swimming performance and energy balance of Antarctic krill Euphausia superba. Biomass Sci. Ser. 3, 122 (1981).
    Google Scholar  More

  • in

    Spatio-temporal processes drive fine-scale genetic structure in an otherwise panmictic seabird population

    1.
    Garroway, C. J. et al. Fine-scale genetic structure in a wild bird population: The role of limited disperal and environmentally based selection as causal factors. Evolution 67, 3488–3500. https://doi.org/10.1111/evo.12121 (2013).
    CAS  Article  PubMed  Google Scholar 
    2.
    Reudink, M. W. et al. Linking isotopes and panmixia: High within-colony variation in feather δ2H, δ13C, and δ15N across the range of the American White Pelican. PLoS ONE 11, e0150810. https://doi.org/10.1371/journal.pone.0150810 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    3.
    Ward, R. D., Skibinski, D. O. & Woodwark, M. Protein heterozygosity, protein structure, and taxonomic differentiation. In Evolutionary Biology, Vol. 26 (eds Hecht M.K., Wallace B., & Macintyre R.J.) 73–159 (Springer, New York, 1992).

    4.
    White, T. A., Fotherby, H. A., Stephens, P. A. & Hoelzel, A. R. Genetic panmixia and demographic dependence across the North Atlantic in the deep-sea fish, blue hake (Antimora rostrata). Heredity 106, 690–699. https://doi.org/10.1038/hdy.2010.108 (2011).
    CAS  Article  PubMed  Google Scholar 

    5.
    Mayr, E. Animal Species and Evolution. (Belknap Press of Harvard University Press, Cambridge, 1963).

    6.
    Frankham, R. Do island populations have less genetic variation than mainland populations?. Heredity 78, 311–327. https://doi.org/10.1038/hdy.1997.46 (1997).
    Article  PubMed  Google Scholar 

    7.
    Küpper, C. et al. High gene flow on a continental scale in the polyandrous Kentish plover Charadrius alexandrinus. Mol. Ecol. 21, 5864–5879 (2012).
    Article  Google Scholar 

    8.
    Friesen, V. L., Burg, T. M. & McCoy, K. D. Mechanisms of population differentiation in seabirds. Mol. Ecol. 16, 1765–1785. https://doi.org/10.1111/j.1365-294X.2006.03197.x (2007).
    CAS  Article  PubMed  Google Scholar 

    9.
    Ibarguchi, G., Gaston, A. J. & Friesen, V. L. Philopatry, morphological divergence, and kin groups: Structuring in thick-billed murres Uria lomvia within a colony in Arctic Canada. J. Avian Biol. 42, 134–150. https://doi.org/10.1111/j.1600-048X.2010.05023.x (2011).
    Article  Google Scholar 

    10.
    Griesser, M. Referential calls signal predator behavior in a group-living bird species. Curr. Biol. 18, 69–73. https://doi.org/10.1016/j.cub.2007.11.069 (2008).
    CAS  Article  PubMed  Google Scholar 

    11.
    Wright, S. Isolation by distance. Genetics 28, 114–138 (1943).
    CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Innes, R. J. et al. Genetic relatedness and spatial associations of dusky-footed woodrats (Neotoma fuscipes). J. Mammal. 93, 439–446. https://doi.org/10.1644/11-mamm-a-171.1 (2012).
    Article  Google Scholar 

    13.
    Foerster, K., Valcu, M., Johnsen, A. & Kempenaers, B. A spatial genetic structure and effects of relatedness on mate choice in a wild bird population. Mol. Ecol. 15, 4555–4567. https://doi.org/10.1111/j.1365-294X.2006.03091.x (2006).
    CAS  Article  PubMed  Google Scholar 

    14.
    Planes, S. & Fauvelot, C. Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean. Evolution 56, 378–399. https://doi.org/10.1111/j.0014-3820.2002.tb01348.x (2002).
    CAS  Article  PubMed  Google Scholar 

    15.
    Hendry, A. P. & Day, T. Population structure attributable to reproductive time: Isolation by time and adaptation by time. Mol. Ecol. 14, 901–916. https://doi.org/10.1111/j.1365-294X.2005.02480.x (2005).
    CAS  Article  PubMed  Google Scholar 

    16.
    Ribolli, J. et al. Isolation-by-time population structure in potamodromous Dourado Salminus brasiliensis in southern Brazil. Conserv. Genet. 18, 67–76. https://doi.org/10.1007/s10592-016-0882-x (2017).
    Article  Google Scholar 

    17.
    Weis, A. E. & Kossler, T. M. Genetic variation in flowering time induces phenological assortative mating: Quantitative genetic methods applied to Brassica rapa. Am. J. Bot. 91, 825–836. https://doi.org/10.3732/ajb.91.6.825 (2004).
    Article  PubMed  Google Scholar 

    18.
    Coulson, M., Bradbury, I. & Bentzen, P. Temporal genetic differentiation: Continuous v. discontinuous spawning runs in anadromous rainbow smelt Osmerus mordax (Mitchill). J. Fish Biol. 69, 209–216 (2006).
    Article  Google Scholar 

    19.
    Woody, C. A., Olsen, J., Reynolds, J. & Bentzen, P. Temporal variation in phenotypic and genotypic traits in two sockeye salmon populations, Tustumena Lake, Alaska. Trans. Am. Fish. Soc. 129, 1031–1043 (2000).
    Article  Google Scholar 

    20.
    Cooley, J. R., Simon, C. & Marshall, D. C. Temporal separation and speciation in periodical cicadas. Bioscience 53, 151–157. https://doi.org/10.1641/0006-3568(2003)053[0151:TSASIP]2.0.CO;2 (2003).
    Article  Google Scholar 

    21.
    Rolshausen, G., Hobson, K. A. & Schaefer, H. M. Spring arrival along a migratory divide of sympatric blackcaps (Sylvia atricapilla). Oecologia 162, 175–183. https://doi.org/10.1007/s00442-009-1445-3 (2009).
    ADS  Article  PubMed  Google Scholar 

    22.
    Friesen, V. L. et al. Sympatric speciation by allochrony in a seabird. Proc. Natl. Acad. Sci. U.S.A. 107, 18589–18594 (2007).
    ADS  Article  Google Scholar 

    23.
    Braga-Silva, A. & Galetti, P. M. Evidence of isolation by time in freshwater migratory fish Prochilodus costatus (Characiformes, Prochilodontidae). Hydrobiologia 765, 159–167. https://doi.org/10.1007/s10750-015-2409-8 (2016).
    Article  Google Scholar 

    24.
    Schreiber, E. & Burger, J. Biology of Marine Birds (CRC Press, Boca Raton, 2001).
    Google Scholar 

    25.
    Lawrence, H. A., Lyver, P. O. B. & Gleeson, D. M. Genetic panmixia in New Zealand’s Grey-faced Petrel: Implications for conservation and restoration. Emu 114, 249–258. https://doi.org/10.1071/MU13078 (2014).
    Article  Google Scholar 

    26.
    Cristofari, R. et al. Spatial heterogeneity as a genetic mixing mechanism in highly philopatric colonial seabirds. PLoS ONE 10, e0117981. https://doi.org/10.1371/journal.pone.0117981 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Avise, J. C., Nelson, W. S., Bowen, B. W. & Walker, D. Phylogeography of colonially nesting seabirds, with special reference to global matrilineal patterns in the sooty tern (Sterna fuscata). Mol. Ecol. 9, 1783–1792 (2000).
    CAS  Article  Google Scholar 

    28.
    Votier, S. C. & Sherley, R. B. Seabirds. Curr. Biol. 27, R448–R450. https://doi.org/10.1016/j.cub.2017.01.042 (2017).
    CAS  Article  PubMed  Google Scholar 

    29.
    Hughes, B. J., Martin, G. R., Giles, A. D. & Reynolds, S. J. Long-term population trends of Sooty Terns Onychoprion fuscatus: Implications for conservation status. Popul. Ecol. 59, 213–224. https://doi.org/10.1007/s10144-017-0588-z (2017).
    Article  Google Scholar 

    30.
    Reynolds, S. J. et al. Long-term dietary shift and population decline of a pelagic seabird—A health check on the tropical Atlantic?. Glob. Change Biol. 25, 1383–1394. https://doi.org/10.1111/gcb.14560 (2019).
    ADS  Article  Google Scholar 

    31.
    Schreiber, E. et al. In Birds of North America No. 665 (eds A Poole & F Gill) 1–32 (American Ornithologists’ Union, Washington, DC, 2002).

    32.
    Maxwell, S. M. & Morgan, L. E. Foraging of seabirds on pelagic fishes: Implications for management of pelagic marine protected areas. Mar. Ecol. Prog. Ser. 481, 289–303 (2013).
    ADS  Article  Google Scholar 

    33.
    Ashmole, N. P. The biology of the Wideawake or Sooty Tern Sterna fuscata on Ascension Island. Ibis 103b, 297–351 (1963).
    Article  Google Scholar 

    34.
    Hughes, B. J., Martin, G. R. & Reynolds, S. J. Cats and seabirds: Effects of feral Domestic Cat Felis silvestris catus eradication on the population of Sooty Terns Onychoprion fuscata on Ascension Island, South Atlantic. Ibis 150, 122–131. https://doi.org/10.1111/j.1474-919X.2008.00838.x (2008).
    Article  Google Scholar 

    35.
    ArcGIS Desktop: Release 10.2 (Environmental Systems Research Institute, Redlands, CA, USA, 2013).

    36.
    Garrett, L. J., Dawson, D. A., Horsburgh, G. J. & Reynolds, S. J. A multiplex marker set for microsatellite typing and sexing of sooty terns Onychoprion fuscatus. BMC Res. Notes 10, 756 (2017).
    Article  Google Scholar 

    37.
    Dawson, D. A. Genomic analysis of passerine birds using conserved microsatellite loci. PhD thesis, University of Sheffield, UK, (2007).

    38.
    Dawson, D. A., dos Remedios, N. & Horsburgh, G. J. A new marker based on the avian spindlin gene that is able to sex most birds, including species problematic to sex with CHD markers. Zoo Biol. 35, 533–545. https://doi.org/10.1002/zoo.21326 (2016).
    CAS  Article  PubMed  Google Scholar 

    39.
    Rousset, F. GENEPOP ’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).
    Article  PubMed  Google Scholar 

    40.
    Anderson, C. A. et al. Data quality control in genetic case-control association studies. Nat. Protoc. 5, 1564–1573. https://doi.org/10.1038/nprot.2010.116 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    41.
    de Jager, D., Swarts, P., Harper, C. & Bloomer, P. Friends and family: A software program for identification of unrelated individuals from molecular marker data. Mol. Ecol. Resour. 17, e225–e233. https://doi.org/10.1111/1755-0998.12691 (2017).
    Article  PubMed  Google Scholar 

    42.
    Verhoeven, K. J. F., Simonsen, K. L. & McIntyre, L. M. Implementing false discovery rate control: Increasing your power. Oikos 108, 643–647. https://doi.org/10.1111/j.0030-1299.2005.13727.x (2005).
    Article  Google Scholar 

    43.
    Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program Cervus accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x (2007).
    Article  PubMed  Google Scholar 

    44.
    Torati, L. S. et al. Genetic diversity and structure in Arapaima gigas populations from Amazon and Araguaia-Tocantins river basins. BMC Genet. 20, 13. https://doi.org/10.1186/s12863-018-0711-y (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    45.
    Bonin, A. et al. How to track and assess genotyping errors in population genetics studies. Mol. Ecol. 13, 3261–3273. https://doi.org/10.1111/j.1365-294X.2004.02346.x (2004).
    CAS  Article  PubMed  Google Scholar 

    46.
    Johnson, P. C. D. & Haydon, D. T. Software for quantifying and simulating microsatellite genotyping error. Bioinform. Biol. Insights 1, 71–75 (2007).
    Article  Google Scholar 

    47.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    48.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).
    CAS  Article  PubMed  Google Scholar 

    49.
    Earl, D. A. & von Holdt, B. M. Structure harvester: A website and program for visualizing Structure output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).
    Article  Google Scholar 

    50.
    Pew, J., Muir, P. H., Wang, J. & Frasier, T. R. Related: An R package for analysing pairwise relatedness from codominant molecular markers. Mol. Ecol. Resour. 15, 557–561. https://doi.org/10.1111/1755-0998.12323 (2015).
    Article  PubMed  Google Scholar 

    51.
    Wang, J. An estimator for pairwise relatedness using molecular markers. Genetics 160, 1203–1215 (2002).
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Ritland, K. Estimators for pairwise relatedness and individual inbreeding coefficients. Genet. Res. 67, 175–185. https://doi.org/10.1017/S0016672300033620 (1996).
    Article  Google Scholar 

    53.
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    54.
    Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 11, 5–18. https://doi.org/10.1111/j.1755-0998.2010.02927.x (2011).
    Article  PubMed  Google Scholar 

    55.
    Peakall, R. & Smouse, P. E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x (2006).
    Article  Google Scholar 

    56.
    Smouse, P. E., Peakall, R. O. D. & Gonzales, E. V. A. A heterogeneity test for fine-scale genetic structure. Mol. Ecol. 17, 3389–3400. https://doi.org/10.1111/j.1365-294X.2008.03839.x (2008).
    Article  PubMed  Google Scholar 

    57.
    Banks, S. C. & Peakall, R. O. D. Genetic spatial autocorrelation can readily detect sex-biased dispersal. Mol. Ecol. 21, 2092–2105. https://doi.org/10.1111/j.1365-294X.2012.05485.x (2012).
    Article  PubMed  Google Scholar 

    58.
    Jacob, G., Prévot, A.-C. & Baudry, E. Feral Pigeons (Columba livia) prefer genetically similar mates despite inbreeding depression. PLoS ONE 11, e0162451. https://doi.org/10.1371/journal.pone.0162451 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    59.
    Double, M. C., Peakall, R., Beck, N. R. & Cockburn, A. Dispersal, philopatry, and infidelity: Dissecting local genetic structure in superb fairy-wren (Malurus cyaneus). Evolution 59, 625–635. https://doi.org/10.1111/j.0014-3820.2005.tb01021.x (2005).
    CAS  Article  PubMed  Google Scholar 

    60.
    R Core Team. R: A language and environment for statistical computing. http://www.R-project.org/ (2019).

    61.
    rcompanion: Functions to support extension education program evaluation (2017).

    62.
    Bicknell, A. W. J. et al. Population genetic structure and long-distance dispersal among seabird populations: Implications for colony persistence. Mol. Ecol. 21, 2863–2876. https://doi.org/10.1111/j.1365-294X.2012.05558.x (2012).
    CAS  Article  PubMed  Google Scholar 

    63.
    Palestis, B. G. The role of behaviour in tern conservation. Curr. Zool. 60, 500–514 (2014).
    Article  Google Scholar 

    64.
    Lebreton, J. D., Hines, J. E., Pradel, R., Nichols, J. D. & Spendelow, J. A. Estimation by capture-recapture of recruitment and dispersal over several sites. Oikos 101, 253–264. https://doi.org/10.1034/j.1600-0706.2003.11848.x (2003).
    Article  Google Scholar 

    65.
    Bicknell, A. W. J. et al. Intercolony movement of pre-breeding seabirds over oceanic scales: Implications of cryptic age-classes for conservation and metapopulation dynamics. Divers. Distrib. 20, 160–168. https://doi.org/10.1111/ddi.12137 (2014).
    Article  Google Scholar 

    66.
    Hughes, B. J., Martin, G. R. & Reynolds, S. J. Sooty Terns Onychoprion fuscatus on Ascension Island in the south Atlantic are a reproductively isolated population. Revista Brasileira de Ornitologia 18, 194–198 (2010).
    Google Scholar 

    67.
    Robertson, W. B. Jr. Transatlantic migration of juvenile sooty terns. Nature 223, 632–634 (1969).
    ADS  Article  Google Scholar 

    68.
    Peck, D. R. & Congdon, B. C. Reconciling historical processes and population structure in the sooty tern Sterna fuscata. J. Avian Biol. 35, 327–335 (2004).
    Article  Google Scholar 

    69.
    Conradt, L. & Roper, T. J. Deciding group movements: Where and when to go. Behav. Proc. 84, 675–677. https://doi.org/10.1016/j.beproc.2010.03.005 (2010).
    Article  Google Scholar 

    70.
    Sonsthagen, S. A., Talbot, S. L., Lanctot, R. B. & McCracken, K. G. Do common eiders nest in kin groups? Microgeographic genetic structure in a philopatric sea duck. Mol. Ecol. 19, 647–657. https://doi.org/10.1111/j.1365-294X.2009.04495.x (2010).
    Article  PubMed  Google Scholar 

    71.
    Hatchwell, B. J. Cryptic kin selection: Kin structure in vertebrate populations and opportunities for kin-directed cooperation. Ethology 116, 203–216. https://doi.org/10.1111/j.1439-0310.2009.01732.x (2010).
    Article  Google Scholar 

    72.
    Péron, G. et al. Capture–recapture models with heterogeneity to study survival senescence in the wild. Oikos 119, 524–532. https://doi.org/10.1111/j.1600-1706.2009.17882.x (2010).
    Article  Google Scholar 

    73.
    Prince, P. A., Rothery, P., Croxall, J. P. & Wood, A. G. Population dynamics of Black-browed and Grey-headed Albatrosses Diomedea melanophris and D. chrysostoma at Bird Island, South Georgia. Ibis 136, 50–71. https://doi.org/10.1111/j.1474-919X.1994.tb08131.x (1994).
    Article  Google Scholar 

    74.
    Monteiro, L. R. & Furness, R. W. Speciation through temporal segregation of Madeiran storm petrel (Oceanodroma castro) populations in the Azores?. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 945–953. https://doi.org/10.1098/rstb.1998.0259 (1998).
    Article  PubMed Central  Google Scholar 

    75.
    Dobson, F. S., Becker, P. H., Arnaud, C. M., Bouwhuis, S. & Charmantier, A. Plasticity results in delayed breeding in a long-distant migrant seabird. Ecol. Evol. 7, 3100–3109. https://doi.org/10.1002/ece3.2777 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    76.
    Casagrande, S., Dell’Omo, G., Costantini, D. & Tagliavini, J. Genetic differences between early-and late-breeding Eurasian kestrels. Evol. Ecol. Res. 8, 1029–1038 (2006).
    Google Scholar 

    77.
    Danchin, É., Giraldeau, L.-A., Valone, T. J. & Wagner, R. H. Public information: From nosy neighbors to cultural evolution. Science 305, 487–491. https://doi.org/10.1126/science.1098254 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    78.
    Boulinier, T., McCoy, K. D., Yoccoz, N. G., Gasparini, J. & Tveraa, T. Public information affects breeding dispersal in a colonial bird: Kittiwakes cue on neighbours. Biol. Lett. 4, 538–540. https://doi.org/10.1098/rsbl.2008.0291 (2008).
    Article  PubMed  PubMed Central  Google Scholar 

    79.
    Francesiaz, C. et al. Familiarity drives social philopatry in an obligate colonial breeder with weak interannual breeding-site fidelity. Anim. Behav. 124, 125–133. https://doi.org/10.1016/j.anbehav.2016.12.011 (2017).
    Article  Google Scholar 

    80.
    Reusch, T. B., Ehlers, A., Hämmerli, A. & Worm, B. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc. Natl. Acad. Sci. U.S.A. 102, 2826–2831. https://doi.org/10.1073/pnas.0500008102 (2005).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    81.
    Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359, 83–86. https://doi.org/10.1126/science.aan4380 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    82.
    Durant, J. M., Krasnov, Y. V., Nikolaeva, N. G. & Stenseth, N. C. Within and between species competition in a seabird community: Statistical exploration and modeling of time-series data. Oecologia 169, 685–694. https://doi.org/10.1007/s00442-011-2226-3 (2012).
    ADS  CAS  Article  PubMed  Google Scholar 

    83.
    Cury, P. M. et al. Global seabird response to forage fish depletion—One-third for the birds. Science 334, 1703–1706. https://doi.org/10.1126/science.1212928 (2011).
    ADS  CAS  Article  PubMed  Google Scholar 

    84.
    Paleczny, M., Hammill, E., Karpouzi, V. & Pauly, D. Population trend of the world’s monitored seabirds, 1950–2010. PLoS ONE 10, e0129342. https://doi.org/10.1371/journal.pone.0129342 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    85.
    Feare, C. J. & Lesperance, C. Intra- and inter-colony movements of breeding adult Sooty Terns in Seychelles. Waterbirds 25, 52–55. https://doi.org/10.1675/1524-4695(2002)025[0052:IAIMOB]2.0.CO;2 (2002).
    Article  Google Scholar 

    86.
    Grémillet, D. & Boulinier, T. Spatial ecology and conservation of seabirds facing global climate change: A review. Mar. Ecol. Prog. Ser. 391, 121–137. https://doi.org/10.3354/meps08212 (2009).
    ADS  Article  Google Scholar 

    87.
    Colchero, F., Bass, O. L., Zambrano, R. & Gore, J. A. Clustered nesting and vegetation thresholds reduce egg predation in Sooty Terns. Waterbirds 33, 169–178. https://doi.org/10.1675/063.033.0205 (2010).
    Article  Google Scholar  More

  • in

    Depthwise microbiome and isotopic profiling of a moderately saline microbial mat in a solar saltern

    1.
    Sorgeloos, P., Dhert, P. & Candreva, P. Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture 200, 147–159 (2001).
    Article  Google Scholar 
    2.
    Cantrell, S. A., Casillas-Martinez, L. & Molina, M. Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol. Res. 110, 962–970 (2006).
    CAS  PubMed  Article  Google Scholar 

    3.
    Gunde-Cimerman, N., Oren, A. & Plemenitaš, A. Introduction in Cellular Origin Life in Extreme Habitats and Astrobiology Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya 1–6 (Springer, Amsterdam, 2006).
    Google Scholar 

    4.
    Margesin, R. & Schinner, F. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5, 73–83 (2001).
    CAS  PubMed  Article  Google Scholar 

    5.
    Begemann, M. B., Mormile, M. R., Paul, V. G. & Vidt, D. J. Potential Enhancement of Biofuel Production Through Enzymatic Biomass Degradation Activity and Biodiesel Production by Halophilic Microorganisms. In Halophiles and Hypersaline Environments (eds Ventosa, A. et al.) 341–357 (Springer, Berlin, 2011).
    Google Scholar 

    6.
    Paul, V. G., Minteer, S. D., Treu, B. L. & Mormile, M. R. Ability of a haloalkaliphilic bacterium isolated from Soap Lake, Washington to generate electricity at pH 11.0 and 7% salinity. Environ. Tech. 35, 1003–1011 (2013).
    Article  CAS  Google Scholar 

    7.
    Paul, V. G., Wronkiewicz, D. J., Mormile, M. R. & Foster, J. S. Mineralogy and microbial diversity of the microbialites in the hypersaline storrs lake, the Bahamas. Astrobiology 16, 282–300 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    Mormile, M. R. et al. Halomonas campisalis sp. nov., a denitrifying, moderately haloalkaliphilic bacterium. Syst. Appl. Microbiol. 22, 551–558 (1999).
    CAS  PubMed  Article  Google Scholar 

    9.
    Anton, J., Rossello-Mora, R., Rodriguez-Valera, F. & Amann, R. Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl. Environ. Microbiol. 66, 3052–3057 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Boschker, H. T. S., Kromkamp, J. C. & Middelburg, J. J. Biomarker and carbon isotopic constraints on bacterial and algal community structure and functioning in a turbid, tidal estuary. Limnol. Oceanograph. 50, 70–80 (2005).
    ADS  CAS  Article  Google Scholar 

    11.
    Baati, H. et al. Prokaryotic diversity of a Tunisian multipond solar saltern. Extremophiles 12, 505–518 (2008).
    CAS  PubMed  Article  Google Scholar 

    12.
    Ballav, S., Kerkar, S., Thomas, S. & Augustine, N. Halophilic and halotolerant actinomycetes from a marine saltern of Goa, India producing anti-bacterial metabolites. J. Biosci. Bioeng. 119, 323–330 (2015).
    CAS  PubMed  Article  Google Scholar 

    13.
    Casamayor, E. O. et al. Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ. Microbiol. 4, 338–348 (2002).
    PubMed  Article  Google Scholar 

    14.
    Wong, H., Ahmed-Cox, A. & Burns, B. Molecular ecology of hypersaline microbial mats: current insights and new directions. Microorganisms 4, 6. https://doi.org/10.3390/microorganisms4010006 (2016).
    CAS  Article  PubMed Central  PubMed  Google Scholar 

    15.
    Villanueva, J. et al. Chlorophyll and carotenoid pigments in solar saltern microbial mats. Geochim. Cosmochim. Ac. 58, 4703–4715 (1994).
    ADS  Article  Google Scholar 

    16.
    Sørensen, K. B., Canfield, D. E. & Oren, A. Salinity responses of benthic microbial communities in a solar saltern (Eilat, Israel). Appl. Environ. Microbiol. 70, 1608–1616 (2004).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    17.
    Myshrall, K. L. et al. Biogeochemical cycling and microbial diversity in the thrombolitic microbialites of Highborne Cay, Bahamas. Geobiology 8, 337–354 (2010).
    CAS  PubMed  Article  Google Scholar 

    18.
    Schneider, D. et al. Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the kiritimati atoll, Central Pacific. PLoS ONE 8, e66662. https://doi.org/10.1371/journal.pone.0066662 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    19.
    Louyakis, A. S. et al. A year in the life of a thrombolite: comparative metatranscriptomics reveals dynamic metabolic changes over diel and seasonal cycles. Environ. Microbiol. 20, 842–861 (2018).
    CAS  PubMed  Article  Google Scholar 

    20.
    Louyakis, A. S. et al. A study of the microbial spatial heterogeneity of bahamian thrombolites using molecular, biochemical, and stable isotope analyses. Astrobiology 17, 413–430 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Uritskiy, G. & Diruggiero, J. Applying genome-resolved metagenomics to deconvolute the halophilic microbiome. Genes 10, 220. https://doi.org/10.3390/genes10030220 (2019).
    CAS  Article  PubMed Central  PubMed  Google Scholar 

    22.
    Kunin, V. et al. Millimeter-scale genetic gradients and community-level molecular convergence in a hypersaline microbial mat. Mol. Syst. Biol. 4, 198. https://doi.org/10.1038/msb.2008.35 (2008).
    Article  PubMed  PubMed Central  Google Scholar 

    23.
    Robertson, C. E., Spear, J. R., Harris, J. K. & Pace, N. R. Diversity and stratification of archaea in a hypersaline microbial mat. Appl. Environ. Microbiol. 75, 1801–1810 (2009).
    CAS  PubMed  Article  Google Scholar 

    24.
    Harris, J. K. et al. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J. 7, 50–60 (2013).
    PubMed  Article  CAS  Google Scholar 

    25.
    Isaji, Y. et al. Efficient recycling of nutrients in modern and past hypersaline environments. Sci. Rep. 9, 1–12 (2019).
    CAS  Article  Google Scholar 

    26.
    Kelley, C. A., Prufert-Bebout, L. E. & Bebout, B. M. Changes in carbon cycling ascertained by stable isotopic analyses in a hypersaline microbial mat. J. Geophys. Res. Biogeosci. 111, G4. https://doi.org/10.1029/2006jg000212 (2006).
    Article  Google Scholar 

    27.
    Vasconcelos, C. et al. Lithifying microbial mats in Lagoa Vermelha, Brazil: modern precambrian relics?. Sed. Geol. 185, 175–183 (2006).
    CAS  Article  Google Scholar 

    28.
    Breitbart, M. et al. Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Ciénegas, Mexico. Environ. Microbiol. 11, 16–34 (2009).
    CAS  PubMed  Article  Google Scholar 

    29.
    Belan, M. A. et al. Spatial distribution and preservation of carbon isotope biosignatures in freshwater microbialite carbonate. ACS Earth Space Chem. 3, 335–343 (2019).
    CAS  Article  Google Scholar 

    30.
    Awramik, S. M. The oldest records of photosynthesis. Photosynthesis Res. 33, 75–89 (1992).
    CAS  Article  Google Scholar 

    31.
    Marais, D. J. D. & Canfield, D. E. The carbon isotope biogeochemistry of microbial mats. In Microbial Mats (eds Stal, L. & Caumette, P.) 289–298 (Springer, Berlin, 1994).
    Google Scholar 

    32.
    Ghosh, P. et al. 13C–18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim. Cosmochim. Ac. 70, 1439–1456 (2006).
    ADS  CAS  Article  Google Scholar 

    33.
    Ghelani, A., Patel, R., Mangrola, A. & Dudhagara, P. Cultivation-independent comprehensive survey of bacterial diversity in Tulsi Shyam Hot Springs, India. Genom. Data 4, 54–56 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Nagasathya, A. & Thajuddin, N. Cyanobacterial diversity in the hypersaline environment of the saltpans of Southeastern Coast of India. Asian J. Plant. Sci. 7, 473–478 (2008).
    Article  Google Scholar 

    35.
    Ahmad, N. et al. Phylogenetic characterization of archaea in Saltpan Sediments. Indian J. Microbiol. 51, 132–137 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    36.
    Jose, P. & Jebakumar, S. R. Phylogenetic diversity of actinomycetes cultured from coastal multipond solar saltern in Tuticorin, India. Aqua. Biosyst. 8, 23. https://doi.org/10.1186/2046-9063-8-23 (2012).
    CAS  Article  Google Scholar 

    37.
    Santhanakrishnan, T. et al. Microalgae richness and assemblage of man-made solar saltpans of Thoothukudi, TamilNadu. J. Oceanograph. Mar. Sci. 6, 20–24 (2015).
    Article  Google Scholar 

    38.
    Ghosh, P. et al. Trace element and isotopic studies of Permo-Carboniferous carbonate nodules from Talchir sediments of peninsular India: environmental and provenance implications. J. Earth Syst. Sci. 111, 87–93 (2002).
    ADS  CAS  Article  Google Scholar 

    39.
    Chakraborty, P. P., Sarkar, A., Bhattacharya, S. K. & Sanyal, P. Isotopic and sedimentological clues to productivity change in Late Riphean Sea: a case study from two intracratonic basins of India. J. Earth Sys. Sci. 111, 379–390 (2002).
    ADS  CAS  Article  Google Scholar 

    40.
    Mazumdar, A. & Bhattacharya, S. K. Stable isotopic study of late Neoproterozoic-early Cambrian (?) sediments from Nagaur-Ganganagar basin, western India: possible signatures of global and regional C-isotopic events. Geochem. J. 38, 163–175 (2004).
    ADS  CAS  Article  Google Scholar 

    41.
    Banerjee, S., Bhattacharya, S. & Sarkar, S. Carbon and oxygen isotopic variations in peritidal stromatolite cycles, Paleoproterozoic Kajrahat Limestone, Vindhyan basin of central India. J. Asian Earth Sci. 29, 823–831 (2007).
    ADS  Article  Google Scholar 

    42.
    Oren, A. Microbiology and Biogeochemistry of Hypersaline Environments Vol. 5 (CRC Press, Boca Raton, 1998).
    Google Scholar 

    43.
    Ley, R. E. et al. Unexpected diversity and complexity of the guerrero negro hypersaline microbial mat. Appl. Environ. Microbiol. 72, 3685–3695 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Tkavc, R. et al. Bacterial communities in the ‘petola’ microbial mat from the Sečovlje salterns (Slovenia). FEMS Microbiol. Ecol. 75, 48–62 (2010).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    45.
    Oren, A. Cyanobacteria in hypersaline environments: biodiversity and physiological properties. Biodivers. Conserv. 24, 781–798 (2015).
    Article  Google Scholar 

    46.
    Bebout, B. M. & Garcia-Pichel, F. UV B-induced vertical migrations of cyanobacteria in a microbial mat. Appl. Environ. Microbiol. 61, 4215–4222 (1995).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Zhang, H., Schroder, J., Pittman, J., Wang, J. & Payton, M. Soil salinity using saturated paste and 1:1 soil to water extracts. Soil Sci. Soc. Am. J. 69, 1146–1151 (2005).
    ADS  CAS  Article  Google Scholar 

    48.
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Kuczynski, J. et al. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr. Protocols Microbiol. 27, 1E – 5. https://doi.org/10.1002/9780471729259.mc01e05s27 (2012).
    MathSciNet  Article  Google Scholar 

    50.
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10. https://doi.org/10.14806/ej.17.1.200 (2011).
    Article  Google Scholar 

    51.
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
    CAS  Article  Google Scholar 

    52.
    Magoc, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl. Acids Res. 41, 590–596 (2012).
    Article  CAS  Google Scholar 

    55.
    Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 12, 385. https://doi.org/10.1186/1471-2105-12-385 (2011).
    Article  Google Scholar 

    56.
    Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electronica 4, 9 (2001).
    Google Scholar 

    57.
    Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucl. Acids Res. 28, 27–30 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Aßhauer, K. P., Wemheuer, B., Daniel, R. & Meinicke, P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31, 2882–2884 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    59.
    Koo, H. et al. Comparison of two bioinformatics tools used to characterize the microbial diversity and predictive functional attributes of microbial mats from Lake Obersee, Antarctica. J. Microbiol. Met. 140, 15–22 (2017).
    Article  Google Scholar 

    60.
    Sun, S., Jones, R. B. & Fodor, A. A. Inference-based accuracy of metagenome prediction tools varies across sample types and functional categories. Microbiome 8, 1–9 (2020).
    CAS  Article  Google Scholar 

    61.
    Kaushal, R., Ghosh, P. & Pokharia, A. K. Stable isotopic composition of rice grain organic matter marking an abrupt shift of hydroclimatic condition during the cultural transformation of Harappan civilization. Quatern. Int. 512, 144–154 (2019).
    Article  Google Scholar 

    62.
    Rahul, P., Ghosh, P. & Bhattacharya, S. K. Rainouts over the Arabian Sea and Western Ghats during moisture advection and recycling explain the isotopic composition of Bangalore summer rains. J. Geophys. Res. Atmos. 121, 6148–6163 (2016).
    ADS  Article  Google Scholar 

    63.
    Sorokin, D. Y. et al. Halanaeroarchaeum sulfurireducens gen. nov., sp. nov., the first obligately anaerobic sulfur-respiring haloarchaeon, isolated from a hypersaline lake. Int. J. Syst. Evol. Microbiol. 66, 2377–2381 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Wood, A. P., Woodall, C. A. & Kelly, D. P. Halothiobacillus neapolitanus strain OSWA isolated from “The old sulphur well” at Harrogate (Yorkshire, England). Sys. Appl. Microbiol. 28, 746–748 (2005).
    CAS  Article  Google Scholar 

    65.
    Naushad, H. S. & Gupta, R. S. Phylogenomics and molecular signatures for species from the plant pathogen-containing order xanthomonadales. PloS ONE 8, e55216. https://doi.org/10.1371/journal.pone.0055216 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    66.
    Liang, B. et al. Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express 5, 37. https://doi.org/10.1186/s13568-015-0117-4 (2015).
    CAS  Article  PubMed Central  PubMed  Google Scholar 

    67.
    Fukunaga, Y. et al. Phycisphaera mikurensis gen. nov., sp. nov., isolated from a marine alga, and proposal of Phycisphaeraceae fam. nov., Phycisphaerales ord. nov. and Phycisphaerae classis nov. in the phylum Planctomycetes. J. Gen. Appl. Microbiol. 55, 267–275 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Strömpl, C. Oceanicaulis alexandrii gen. nov., sp. nov., a novel stalked bacterium isolated from a culture of the dinoflagellate Alexandrium tamarense (Lebour) Balech. Int. J. Syst. Evol. Microbiol. 53, 1901–1906 (2003).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    69.
    Dunfield, P. F. et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450, 879–882 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Oren, A. Pyruvate: a key nutrient in hypersaline environments?. Microorganism 3, 407–416 (2015).
    CAS  Article  Google Scholar 

    71.
    Oren, A. et al. Microbial communities and processes within a hypersaline gypsum crust in a saltern evaporation pond (Eilat, Israel). Hydrobiology 626, 15–26 (2009).
    CAS  Article  Google Scholar 

    72.
    Cadena, S., García-Maldonado, J. Q., López-Lozano, N. E. & Cervantes, F. J. Methanogenic and sulfate-reducing activities in a hypersaline microbial mat and associated microbial diversity. Microb. Ecol. 75, 930–940 (2018).
    CAS  PubMed  Article  Google Scholar 

    73.
    Singh, A. K., Chakravarthy, D., Singh, T. P. K. & Singh, H. N. Evidence for a role for L-proline as a salinity protectant in the cyanobacterium Nostoc muscorum. Plant Cell. Environ. 19, 490–494 (1996).
    CAS  Article  Google Scholar 

    74.
    Bolhuis, H., Fillinger, L. & Stal, L. J. Coastal microbial mat diversity along a natural salinity gradient. PLoS ONE 8, e63166. https://doi.org/10.1371/journal.pone.0063166 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    75.
    Dillon, J. G. et al. Patterns of microbial diversity along a salinity gradient in the Guerrero Negro solar saltern, Baja CA Sur. Mexico. Front. Microbiol. 4, 399. https://doi.org/10.3389/fmicb.2013.00399 (2013).
    Article  PubMed  Google Scholar 

    76.
    Nobu, M. K. et al. Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J. 10, 2478–2487 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    Al-Thani, R. et al. Community structure and activity of a highly dynamic and nutrient-limited hypersaline microbial mat in Um Alhool Sabkha. Qatar. PLoS ONE 9, e92405. https://doi.org/10.1371/journal.pone.0092405 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    78.
    McIlroy, S. J. et al. Culture-independent analyses reveal novel anaerolineaceae as abundant primary fermenters in anaerobic digesters treating waste activated sludge. Front. Microbiol. 8, 1134. https://doi.org/10.3389/fmicb.2017.01134 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    79.
    Benhizia, Y. et al. Gamma proteobacteria can nodulate legumes of the genus hedysarum. Sys. Appl. Microbiol. 27, 462–468 (2004).
    CAS  Article  Google Scholar 

    80.
    Finster, K. W. et al. Complete genome sequence of Desulfocapsa sulfexigens, a marine deltaproteobacterium specialized in disproportionating inorganic sulfur compounds. Stand. Genomic Sci. 8, 58–68 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    81.
    Abed, R. M. M., Beer, D. D. & Stief, P. Functional-structural analysis of nitrogen-cycle bacteria in a hypersaline mat from the Omani Desert. Geomicrobiol. J. 32, 119–129 (2014).
    Article  CAS  Google Scholar 

    82.
    Santos, P. C. D. et al. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genom. 13, 162. https://doi.org/10.1186/1471-2164-13-162 (2012).
    CAS  Article  Google Scholar 

    83.
    Francis, C. A., Beman, J. M. & Kuypers, M. M. M. New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J. 1, 19–27 (2007).
    CAS  PubMed  Article  Google Scholar 

    84.
    Minz, D. et al. Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl. Environ. Microbiol. 65, 4666–4671 (1999).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    85.
    Baumgartner, L. et al. Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries. Sed. Geol. 185, 131–145 (2006).
    CAS  Article  Google Scholar 

    86.
    Wong, H. L. et al. Dynamics of archaea at fine spatial scales in Shark Bay mat microbiomes. Sci. Rep. 7, 46160. https://doi.org/10.1038/srep46160 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    87.
    Yoon, J., Matsuo, Y., Kasai, H. & Yokota, A. Limibacter armeniacum gen. nov., sp. nov., novel representative of the family ‘Flammeovirgaceae’isolated from marine sediment. Int. J. Sys. Evol. Microbiol. 58, 982–986 (2008).
    Article  Google Scholar 

    88.
    Cort, J. R. et al. Allochromatium vinosum DsrC: solution-state NMR structure, redox properties, and interaction with DsrEFH, a protein essential for purple sulfur bacterial sulfur oxidation. J. Mol. Biol. 382, 692–707 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    89.
    Garcia-Pichel, F., Mechling, M. & Castenholz, R. W. Diel migrations of microorganisms within a benthic, hypersaline mat community. Appl. Environ. Microbiol. 60, 1500–1511 (1994).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    90.
    Pinckney, J., Paerl, H. & Fitzpatrick, M. Impacts of seasonality and nutrients on microbial mat community structure and function. Mar. Ecol. Prog. Ser. 123, 207–216 (1995).
    ADS  Article  Google Scholar 

    91.
    Pages, A. et al. Diel fluctuations in solute distributions and biogeochemical cycling in a hypersaline microbial mat from Shark Bay, WA. Mar. Chem. 167, 102–112 (2014).
    CAS  Article  Google Scholar 

    92.
    Chen, Z. et al. Phaeodactylibacter xiamenensis gen. nov., sp. nov., a member of the family Saprospiraceae isolated from the marine alga Phaeodactylum tricornutum. Int. J. Syst. Evol. Microbiol. 64, 3496–3502 (2014).
    PubMed  Article  CAS  Google Scholar 

    93.
    Bernstein, H. C. et al. Primary and heterotrophic productivity relate to multikingdom diversity in a hypersaline mat. FEMS Microbiol. Ecol. 93, 121. https://doi.org/10.1093/femsec/fix121 (2017).
    CAS  Article  Google Scholar 

    94.
    Green, S. J. et al. A salinity and sulfate manipulation of hypersaline microbial mats reveals stasis in the cyanobacterial community structure. ISME J. 2, 457–470 (2008).
    CAS  PubMed  Article  Google Scholar 

    95.
    Paul, V. G., Wronkiewicz, D. J. & Mormile, M. R. Impact of elevated CO2 concentrations on carbonate mineral precipitation ability of sulfate-reducing bacteria and implications for CO2 sequestration. Appl. Geochem. 78, 250–271 (2017).
    CAS  Article  Google Scholar 

    96.
    Oren, A. The ecology of Dunaliella in high-salt environments. J. Biol. Res. Thessalon 21, 1–8 (2014).
    Article  Google Scholar 

    97.
    Houghton, J. et al. Spatial variability in photosynthetic and heterotrophic activity drives localized δ13Corg fluctuations and carbonate precipitation in hypersaline microbial mats. Geobiology 12, 557–574 (2014).
    CAS  PubMed  Article  Google Scholar 

    98.
    Planavsky, N. et al. Formation and diagenesis of modern marine calcified cyanobacteria. Geobiology 7, 566–576 (2009).
    CAS  PubMed  Article  Google Scholar 

    99.
    Schobben, M. & Schootbrugge, B. V. D. Increased stability in carbon isotope records reflects emerging complexity of the biosphere. Front. Earth Sci. 7, 87. https://doi.org/10.3389/feart.2019.00087 (2019).
    ADS  Article  Google Scholar 

    100.
    Wieland, A. et al. Carbon pools and isotopic trends in a hypersaline cyanobacterial mat. Geobiology 6, 171–186 (2008).
    CAS  PubMed  Article  Google Scholar 

    101.
    Peer, N., Rishworth, G. M. & Perissinotto, R. Coexistence of habitat specialists under environmental change: investigating dietary overlap in two brachyuran species at peritidal stromatolite ecosystems. Est. Coasts 4, 1149–1155 (2019).
    Article  Google Scholar 

    102.
    Severin, I., Confurius-Guns, V. & Stal, L. J. Effect of salinity on nitrogenase activity and composition of the active diazotrophic community in intertidal microbial mats. Arch. Microbiol. 194, 483–491 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    103.
    Calder, J. A. & Parker, P. L. Geochemical implications of induced changes in C13 fractionation by blue-green algae. Geochim. Cosmochim. Ac. 37, 133–140 (1973).
    ADS  CAS  Article  Google Scholar 

    104.
    Nitti, A. et al. Spatially resolved genomic, stable isotopic, and lipid analyses of a modern freshwater microbialite from Cuatro Ciénegas, Mexico. Astrobiology 12, 685–698 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    105.
    Higgins, M. B. et al. Paleoenvironmental implications of taxonomic variation among δ15N values of chloropigments. Geochim. Cosmochim. Ac. 75, 7351–7363 (2011).
    ADS  CAS  Article  Google Scholar 

    106.
    Steppe, T. & Paerl, H. Potential N2 fixation by sulfate-reducing bacteria in a marine intertidal microbial mat. Aqua. Microb. Ecol. 28, 1–12 (2002).
    Article  Google Scholar 

    107.
    Wada, E., Kadonaga, T. & Matsuo, S. 15N aboundance in nitrogen of naturally occurring substances and global assessment of denitrification from isotopic viewpoint. Geochem. J. 9, 139–148 (1975).
    ADS  CAS  Article  Google Scholar 

    108.
    Wit, R. D., Falcon, L. I. & Charpy-Roubaud, C. Heterotrophic dinitrogen fixation (acetylene reduction) in phosphate-fertilised Microcoleus chthonoplastes microbial mat from the hypersaline inland lake ‘la Salada de Chiprana’ (NE Spain). Hydrobiology 534, 245–253 (2005).
    Article  CAS  Google Scholar 

    109.
    Buck, D. G. et al. Physical and chemical properties of hypersaline Lago Enriquillo, Dominican Republic. Int. Vereinigung für theoretische und angewandte Limnologie: Verhandlungen 29, 725–731 (2005).
    CAS  Google Scholar 

    110.
    King, G. M. Carbon monoxide as a metabolic energy source for extremely halophilic microbes: implications for microbial activity in Mars regolith. Proc. Natl. Acad. Sci. 112, 4465–4470 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    111.
    Carmona, N. B. et al. Microbially induced sedimentary structures in Neogene tidal flats from Argentina: paleoenvironmental, stratigraphic and taphonomic implications. Palaeogeog. Palaeoecol. 353, 1–9 (2012).
    Article  Google Scholar 

    112.
    Noffke, N. & Awramik, S. Stromatolites and MISS—differences between relatives. GSA Today 23, 4–9 (2013).
    Article  Google Scholar 

    113.
    Knauth, L. P. Salinity history of the Earth’s early ocean. Nature 395, 554–555 (1998).
    ADS  CAS  PubMed  Article  Google Scholar 

    114.
    Noffke, N., Christian, D., Wacey, D. & Hazen, R. M. Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia. Astrobiology 13, 1103–1124 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    115.
    Isaji, Y. et al. Biological and physical modification of carbonate system parameters along the salinity gradient in shallow hypersaline solar salterns in Trapani, Italy. Geochim. Cosmochim. Ac. 208, 354–367 (2017).
    ADS  CAS  Article  Google Scholar 

    116.
    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    117.
    Poretsky, R. et al. Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PloS ONE 9, e93827. https://doi.org/10.1371/journal.pone.0093827 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    118.
    Ranjan, R. et al. Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem. Biophys. Res. Commun. 469, 967–977 (2016).
    CAS  PubMed  Article  Google Scholar 

    119.
    Reese, B. K. et al. Nitrogen cycling of active bacteria within oligotrophic sediment of the Mid-Atlantic Ridge flank. Geomicrobiol. J. 35, 468–483 (2018).
    CAS  Article  Google Scholar 

    120.
    Roume, H. et al. A biomolecular isolation framework for eco-systems biology. ISME J. 7, 110–121 (2012).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    121.
    Dhariwal, A. et al. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucl. Acids Res. 45, 180–188 (2017).
    Article  CAS  Google Scholar  More

  • in

    Identification and motif analyses of candidate nonreceptor olfactory genes of Dendroctonus adjunctus Blandford (Coleoptera: Curculionidae) from the head transcriptome

    1.
    Salinas-Moreno, Y. et al. Areography of the genus Dendroctonus (Coleoptera: Curculionidae: Scolytinae) in Mexico. J. Biogeogr. 31, 1163–1177 (2004).
    Article  Google Scholar 
    2.
    Salinas-Moreno, Y., Ager, A., Vargas, C. F., Hayes, J. L. & Zúñiga, G. Determining the vulnerability of Mexican pine forest to bark beetles of the genus Dendroctonus Erichson (Coleoptera: Curculionidae: Scolytinae). Forest Ecol. Manag. 260, 52–61 (2010).
    Article  Google Scholar 

    3.
    FAO. 2009. The impacts of climate change on forest health. Preprint at https://www.fao.org/3/a-k3837s.pdf (2016).

    4.
    Cervantes-Martínez, R. et al. Historical bark beetle outbreaks in Mexico, Guatemala and Honduras (1895–2015) and their relationship with droughts. Rev. Chapingo Serie Ciencias Forestales y del Ambiente. 25, 269–290 (2019).

    5.
    Byers, J. Chemical ecology of bark beetles in a complex olfactory landscape. in Bark and wood boring insects in living trees in Europe, a synthesis (eds. Lieutier, F., Day, K.R., Battisti, A., Grégoire, J. C. & Evans H. F.) 89–134 (Springer, 2007).

    6.
    Raffa, K. F., Andersson M. N. & Schlyter, F. Host selection by bark beetles: playing the odds in a high-stakes game. in Advances in insect physiology, pine bark beetles (eds. Tittiger, C. & Bloquist, G. J.) 1–74 (Oxford, 2016).

    7.
    Bakke, A. Using pheromones in the management of bark beetle outbreaks. In Forest insects guild: patterns of interaction with host trees. (eds. Baranchikov, Y. N., Mattson, W. J., Hain, F. P. & Payne, T. L.) 371–377 (U.S.D.A. Forest Service, 1991).

    8.
    Galko, J. et al. Effectiveness of pheromone traps for the European spruce bark beetle: a comparative study of four commercial products and two new models. Lesn. Cas. For. J. 62, 207–215 (2016).
    Google Scholar 

    9.
    Suwannapong, C. & Benbow, M. E. Sources of insect odors: pheromone glands and odor production. in The biology of odors: sources, olfaction and response. (eds. Logan, E. W. & Atwood, J. M.) 153–184 (Nova Science Publishers, 2011).

    10.
    Hansson, S. B. & Stensmyr, M. C. Evolution of insect olfaction. Neuron 72, 698–711 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Sachse, S. & Krieger, J. Olfaction in insects: the primary processes of odor recognition and coding. E-Neuroforum. 2, 49–60 (2011).
    Google Scholar 

    12.
    Leal, W. S. Pheromone reception. Top. Curr. Chem. 240, 1–36 (2005).
    CAS  Google Scholar 

    13.
    Pelosi, P., Zhou, J.-J., Ban, L. P. & Calvello, M. Soluble proteins in insect chemical communication. Cell. Mol. Life Sci. 63, 1658–1676 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Leal, W. S. Odorant Reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu. Rev. Entomol. 58, 373–391 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Gómez-Díaz, C., Martín, F., García-Fernandez, J. M. & Alcorta, E. The two main olfactory receptor families in Drosophila, ORs and IRs: a comparative approach. Front. Cell. Neurosci. 12, 253. https://doi.org/10.3389/fncel.2018.00253 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Depetris-Chauvin, A., Galagovsky, D. & Grosjean, Y. Chemicals and chemoreceptors: ecologically relevant signals driving behavior in Drosophila. Front. Ecol. Evol. 3, 41. https://doi.org/10.3389/fevo.2015.00041 (2015).
    Article  Google Scholar 

    17.
    Pelosi, P., Iovinella, I., Felicioli, A. & Dani, F. R. Soluble proteins of chemical communication: an overview across arthropods. Frontiers in Physiology. 5, 1–13 (2014).
    CAS  Article  Google Scholar 

    18.
    Benton, R., Vannice, K. S. & Vosshall, L. B. An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450, 289–295 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Pelosi, P., Calvello, M. & Ban. L. Diversity of odorant-binding proteins and chemosensory proteins in insects. Chem. Senses. 30, 291–292 (2005).

    20.
    Tegoni, M., Campanacci, V. & Cambillau, C. Structural aspects of sexual attraction and chemical communication in insects. Trends Biochem Sci. 29, 257–264 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Zhou, J.-J. Odorant-binding proteins in insects. Pheromones. 83, 241–272. https://doi.org/10.1016/s0083-6729(10)83010-9 (2010).
    CAS  Article  Google Scholar 

    22.
    Sánchez-Gracia, A., Vieira, G. F. & Rozas, J. Molecular evolution of the major chemosensory gene families in insects. Heredity 103, 208–216 (2009).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    23.
    Kulmuni, J. & Havukainen, H. Insights into the evolution of the CSP gene family through the integration of evolutionary analysis and comparative protein modeling. PLoS ONE 8, e63688. https://doi.org/10.1371/journal.pone.0063688 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Pelosi, P., Iovinella, I., Zhu, J., Wang, G. & Dani, F. R. Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects. Biol. Rev. 93, 184–200 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    25.
    Dani, F. R. et al. Odorant-binding proteins and chemosensory proteins in pheromone detection and release in the silkmoth Bombyx mori. Chem. Senses 36, 335–344 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Gu, S.-H. et al. Identification of genes expressed in the sex pheromone gland of the black cutworm Agrotis ipsilon with putative roles in sex pheromone biosynthesis and transport. BMC Genomics. 14, 636 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Zhang, Y.-N. et al. Identification and expression profiles of sex pheromone biosynthesis and transport related genes in Spodoptera litura. PLoS ONE 10, e0140019. https://doi.org/10.1371/journal.pone.0140019 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    28.
    Nagnan-Le, M. P. et al. Chemosensory proteins from the proboscis of Mamestra brassicae. Chem. Senses 25, 541–553 (2000).
    Article  Google Scholar 

    29.
    Zhu, J. et al. Conserved chemosensory proteins in the proboscis and eyes of Lepidoptera. International Journal of Biological Sciences. 11, 1394–1404 (2016).
    Article  CAS  Google Scholar 

    30.
    Liu, G. et al. Biotype characterization, developmental profiling, insecticide response and binding property of Bemisia tabaci chemosensory proteins: role of CSP in insect defense. PLoS ONE 11, e0154706. https://doi.org/10.1371/journal.pone.0154706 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Bautista, M. A. et al. Evidence for trade-offs in detoxification and chemosensation gene signatures in Plutella xylostella. Pest Manag. Sci. 71, 423–432 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Vogt, R. G. et al. The insect SNMP gene family. Insect Biochem. Mol. Biol. 39, 448–456 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Jiang, X., Pregitzer, P., Grosse-Wilde, E., Breer, H. & Krieger, J. Identification and characterization of two “sensory neuron membrane proteins” (SNMPs) of the desert locust, Schistocerca gregaria (Orthoptera: Acrididae). J. Insect Sci. 16, 1–10 (2016).
    Article  CAS  Google Scholar 

    34.
    Zhang, G., Chen, F. J., Wang, L. G. & Zhang, J. Characterization and levels of expression of sensory neuron membrane proteins in the adult citrus fuit fly (Diptera: Tephritidae). J. Insect Sci. 18, 1–8. https://doi.org/10.1093/jisesa/iey117 (2018).
    ADS  CAS  Article  PubMed Central  Google Scholar 

    35.
    Jin, X., Ha, T. S. & Smith, D. P. SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc. Natl. Acad. Sci. USA 105, 10996–11001 (2018).
    ADS  Article  Google Scholar 

    36.
    Zhang, J., Liu, Y., Walker, W. B., Dong, S.-L. & Wang, G.-R. Identification and localization of two sensory neuron membrane proteins from Spodoptera litura (Lepidoptera: Noctuidae). Insect Sci. 22, 399–408 (2015).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    37.
    Zhou, J.-J., Field, L. M. & Li, X. Insect odorant-binding proteins: do they offer an alternative pest control strategy?. Outlooks Pest Manag. 21, 31–34 (2010).
    CAS  Article  Google Scholar 

    38.
    Venthur, H. & Zhou, J.-J. Odorant receptors and odorant-binding proteins as insect pest control targets: a comparative analysis. Chemosensory Targets for Insect Control. 9, 1–16 (2018).
    Google Scholar 

    39.
    Lu, Y. et al. Olfactory biosensor for insect semiochemicals analysis by impedance sensing of odorant-binding proteins on interdigitated electrodes. Biosens. Bioelectron. 67, 662–669. https://doi.org/10.1016/j.bios.2014.09.098 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Yi, X. et al. Ligands binding and molecular simulation: the potential investigation of a biosensor based on an insect odorant binding protein. Int. J. Biol. Sci. 11, 75–87. https://doi.org/10.7150/ijbs.9872 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    41.
    Plettner, E. Insect pheromone olfaction: new targets for the design of species-selective pest control agents. Curr. Med. Chem. 9, 1075–1085 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Devillers, J. In Computational design of chemicals for the control of mosquitoes and their diseases (ed. Devillers, J.) 25–468 (CRC Press, Boca Raton, 2018).
    Google Scholar 

    43.
    Pelletier, J., Guidolin, A., Syed, Z., Cornel, A. J. & Leal, W. S. Knockdown of a mosquito odorant-binding protein involved in the sensitive detection of oviposition attractants. J. Chem. Ecol. 36, 245–248 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Antony, B., Johny, J. & Aldosari, S. A. Silencing the odorant binding protein RferOBP1768 reduces the strong preference of palm weevil for the major aggregation pheromone compound ferrugineol. Front. Physiol. 9, 252. https://doi.org/10.3389/fphys.2018.00252 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    45.
    Andersson, N. M. et al. Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae). BMC Genomics 14, 198 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Gu, X.-C., Zhang, Y.-N., Kang, K., Dong, S.-L. & Zhang, L.-W. Antennal transcriptome analysis of odorant reception genes in the red turpentine beetle (RTB) Dendroctonus valens. PLoS ONE 10, e0125159. https://doi.org/10.1371/journal.pone.0125159 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    47.
    Zhu, J.-Y., Zhao, N. & Yang, B. Global transcriptome profiling of the pine shoot beetle Tomicus yunnanensis (Coleoptera: Scolytinae). PLoS ONE 7, e32291. https://doi.org/10.1371/journal.pone.0032291 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    48.
    Yi, J.-K. et al. Identification of candidate chemosensory receptors in the antennal transcriptome of the large black chafer Holotrichia parallela Motschulsky (Coleoptera: Scarabaeidae). Comp. Biochem. Physiol. 28, 63–71 (2018).
    CAS  Google Scholar 

    49.
    Hu, P., Wang, J., Cui, M., Tao, J. & Luo, Y. Antennal transcriptome analysis of the asian longhorned beetle Anoplophora glabripennis. Sci. Rep. 6, 26652. https://doi.org/10.1038/srep26652 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Chen, H., Lin, L., Xie, M., Zhang, G. & Su, W. D. novo sequencing, assembly and characterization of antennal transcriptome of Anomala corpulenta Motschulsky (Coleoptera: Rutelidae). PLoS ONE 9, e114238. https://doi.org/10.1371/journal.pone.0114238 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    51.
    Dippel, S. et al. Tissue-specific transcriptomics, chromosomal localization, and phylogeny of chemosensory and odorant binding proteins from the red flour beetle Tribolium castaneum reveal subgroup specificities for olfaction or more general functions. BMC Genomic 15, 1141 (2014).
    Article  Google Scholar 

    52.
    Oppenheim, J. S., Baker, H. R., Simon, S. & DeSalle, R. We can’t all be supermodels: the value of comparative transcriptomics to the study of non-model insects. Insect Mol. Biol. 24, 139–215 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Keeling, C. et al. Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins a major forest pest. Genome Biol. 14, R27. https://doi.org/10.1186/gb-2013-14-3-r27 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    54.
    Goldman-Huertas, B. et al. Evolution of herbivory in Drosophilidae linked to loss of behaviors, antennal responses, odorant receptors, and ancestral diet. Proc. Natl. Acad. Sci. USA 112, 3026–3031. https://doi.org/10.1073/pnas.1424656112 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    55.
    Zhou, X. et al. Phylogenetic and transcriptomic analysis of chemosensory receptors in a pair of divergent ant species reveals sex-specific signatures of odor coding. PLoS Genet. 8, e1002930. https://doi.org/10.1371/journal.pgen.1002930 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    56.
    Lavagnino, N., Serra, F., Arbiza, L., Dopazo, H. & Hasson, E. Evolutionary genomics of genes involved in olfactory behavior in the Drosophila melanogaster species group. Evol Bioinform. 8, 89–104. https://doi.org/10.4137/EBO.S8484 (2012).
    Article  Google Scholar 

    57.
    Fan, J., Francis, F., Lim, Y., Chen, J. L. & Cheng, D. F. An overview of odorant-binding protein functions in insect peripheral olfactory reception. Genet. Mol. Res. 10, 3056–3069 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58
    Zhou, J.-J. Odorant-binding proteins in insects. In Vitamins and hormones (ed. Litwack, G.) (Academic Press, Cambridge, 2010).
    Google Scholar 

    59.
    Gu, S.-H. et al. Identification and comparative expression analysis of odorant binding protein genes in the tobacco cutworm Spodoptera litura. Sci. Rep. 5, 13800. https://doi.org/10.1038/srep13800 (2015).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    60.
    Zhang, S., Zhang, Z., Kong, X., Wang, H. & Liu, F. Dynamic changes in chemosensory gene expression during the Dendrolimus punctatus mating process. Front. Physiol. 8, 1127. https://doi.org/10.3389/fphys.2017.01127 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    61.
    Wang, Y., Chen, Q., Zhao, H. & Ren, B. Identification and comparison of candidate olfactory genes in the olfactory and non-olfactory organs of elm pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) based on transcriptome analysis. PLoS ONE 11, e0147144. https://doi.org/10.1371/journal.Pone.0147144 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    62.
    Xu, Y.-L. et al. Large-scale identification of odorant-binding proteins and chemosensory proteins from expressed sequence tags in insects. BMC Genomics 10, 632 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    63.
    Vogt, R. G. & Riddiford, L. M. Pheromone binding and inactivation by moth antennae. Nature 293, 161–163 (1981).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Nikonov, A. A., Peng, G., Tsurupa, G. & Leal, W. S. Unisex pheromone detectors and pheromone-binding proteins in Scarab beetles. Chem. Senses 27, 495–504 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65
    Oliveira, D. S. et al. Functional characterization of odorant binding protein 27 (RproOBP27) from Rhodnius prolixus antennae. Front. Physiol. 9, 1175. https://doi.org/10.3389/fphys.2018.01175 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    66.
    Li, Z. et al. Identification, expression patterns, and functional characterization of chemosensory proteins in Dendroctonus armandi (Coleoptera: Curculionidae: Scolytinae). Front. Physiol. 9, 291. https://doi.org/10.3389/fphys.2018.00291 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    67.
    Langeswaran, K., Jeyaraman, J., Mariadasse, R. & Soorangkattan, S. Insights from the molecular modeling, docking analysis of illicit drugs and bomb compounds with honey bee odorant binding proteins (OBPs). Bioinformation 14, 219–231 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    Jayanthi, K. P. et al. Computational reverse chemical ecology: virtual screening and predicting behaviorally active semiochemicals for Bactrocera dorsalis. BMC Genomics 15, 209. https://doi.org/10.1186/1471-2164-15-209 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    69.
    Vieira, F. G. & Rozas, J. Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: origin and evolutionary history of the chemosensory system. Genome Biol. Evol. 3, 476–490 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Li, Z.-Q. et al. Two minus-C odorant binding proteins from Helicoverpa armigera display higher ligand binding affinity at acidic pH than neutral pH. J. Insect Physiol. 59, 263–272 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Spinelli, S. et al. Crystal structure of Apis mellifera OBP14, a C-minus odorant-binding protein, and its complexes with odorant molecules. Insect Biochem. Mol. Biol. 42, 41–50 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    72.
    Zheng, Z.-C. et al. Predicted structure of a minus-C OBP from Batocera horsfieldi (Hope) suggests an intermediate structure in evolution of OBPs. Sci. Rep. 6, 33981. https://doi.org/10.1038/srep33981 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    73.
    Li, Z.-Q., He, P., Zhang, Y.-N. & Dong, S.-L. Molecular and functional characterization of three odorant-binding protein from Periplaneta americana. PLoS ONE 12, e0170072. https://doi.org/10.1371/journal.pone.0170072 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    74.
    Li, D.-Z. et al. Structure-Based analysis of the ligand-binding mechanism for DhelOBP21, a c-minus odorant binding protein, from Dastarcus helophoroides Fairmaire (Coleoptera: Bothrideridae). Int. J. Biol. Sci. 11, 1281–1295 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Zhou, J.-J., Huangb, W., Zhang, G.-A., Picketta, J. A. & Fielda, L. M. ‘Plus-C’’ odorant binding protein genes in two Drosophila species and the malaria mosquito Anopheles gambiae. Gene 327, 117–212 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    76
    Song, Y.-Q., Sun, H.-Z. & Du, J. Identification and tissue distribution of chemosensory protein and odorant binding protein genes in Tropidothorax elegans Distant(Hemiptera: Lygaeidae). Sci. Rep. 8, 7803. https://doi.org/10.1038/s41598-018-26137-6 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    77.
    Mei, T., Fu, W.-B., Li, B., He, Z.-B. & Chen, B. Comparative genomics of chemosensory protein genes (CSPs) in twenty-two mosquito species (Diptera: Culicidae): Identification, characterization and evolution. PLoS ONE 13, e0190412. https://doi.org/10.1371/journal.pone.0190412 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    78.
    Nichols, Z. & Vogt, R. G. The SNMP/CD36 gene family in Diptera, Hymenoptera and Coleoptera: Drosophila melanogaster, D. pseudoobscura, Anopheles gambiae, Aedes aegypti, Apis mellifera, and Tribolium castaneum. Insect Biochem. Mol. Biol. 38, 398–415 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    79.
    Forstner, M. et al. Differential expression of SNMP-1 and SNMP-2 proteins in pheromone-sensitive hairs of moths. Chem. Senses 33, 291–299. https://doi.org/10.1093/chemse/bjm087 (2008).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    80.
    Gu, S.-H. et al. Molecular identification and differential ex- pression of sensory neuron membrane proteins in the antennae of the black cutworm moth Agrotis ipsilon. J. Insect Physiol. 59, 430–443 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    81.
    Wu, Z. et al. Candidates for chemosensory genes identified in the Chinese citrus fly, Bactrocera minax, through a transcriptomic analysis. BMC Genomics 20, 646. https://doi.org/10.1186/s12864-019-6022-5 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    82.
    Liu, C., Zhang, J., Liu, Y., Wang, G. & Dong, S. Expression of SNMP1 and SNMP2 genes in antennal sensilla of Spodoptera exigua (HÜBNER). Arch. Insect Biochem. Physiol. 85, 114–126 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    83.
    Tateno, Y. et al. Evolutionary motif and its biological and structural significance. J. Mol. Evol. 44, S38–S43 (1997).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    84.
    Armendáriz-Toledano, F. & Zuñiga, G. Illustrated key to species of genus Dendroctonus (Coleoptera: Curculionidae) occurring in Mexico and Central America. J. Insect Sci. 17, 1–15. https://doi.org/10.1093/jisesa/iex009 (2016).
    Article  Google Scholar 

    85.
    Timothy, L. B. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208. https://doi.org/10.1093/nar/gkp335 (2009).
    CAS  Article  Google Scholar 

    86.
    Whelan, S. & Goldman, N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 18, 691–699 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Impacts of sub-micrometer sediment particles on early-stage growth and survival of the kelp Ecklonia bicyclis

    Influence on zoospore attachment
    A slide glass with various sub-micro particles was deposited in a container (outer diameter 61.8 mm, height 125.2 mm) filled with seawater. Zoospores were poured from the surface of the water, and the number of zoospores that had attached to the slide glass was counted. The effect of the particles on attachment was investigated. Here, particles A, B and C were used (silicon carbide–SiC–particles with different size distributions) as the sediment particles. Particles A and B had one peak in the size distribution, and average particle sizes of 1.1 µm and 3.9 µm, respectively. Particle C had two peaks at 0.090 µm and 4.6 µm, and the average particle size was 1.5 µm (Supplementary Fig. S1 online).
    When about 5 × 104 of E. bicyclis zoospores were placed in the container, after 12 h an average attachment of 13.5 ind./mm2 was observed on the slide glass without sediment particles. The relationship between the attachment percentage (%) of zoospores and amount of sediment particles of SiC is shown in Fig. 1a. The attachment percentage, expressed as the number of attached zoospores without sediments, was 100%.
    Figure 1

    Negative influences of sediment on zoospore attachment and gametophyte survival; (a,b) zoospore attachment percentage and gametophyte survival percentage, respectively.

    Full size image

    In the case of particle A (mean diameter 1.1 µm), which had one peak in the size distribution, the zoospore attachment percentage (mean ± SD) at 0.05 mg/cm2 and 0.1 mg/cm2 of sediments were 25.9 ± 14.2% and 10.2 ± 6.17%, respectively (Fig. 1a, Supplementary Table S1 online). In the case of particle B (mean diameter 3.9 µm), the attachment percentage was 53.9 ± 24.8% at 0.05 mg/cm2 and 41.1 ± 23.1% at 0.1 mg/cm2. In the case of particle A, few attachments were found at sediment levels of 0.3 mg/cm2.
    The attachment percentage decreased exponentially as the amount of sediment on the substrate increased at any particle size. A significant negative correlation (Spearman’s rank correlation, p  More