1.
Sorgeloos, P., Dhert, P. & Candreva, P. Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture 200, 147–159 (2001).
Article Google Scholar
2.
Cantrell, S. A., Casillas-Martinez, L. & Molina, M. Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol. Res. 110, 962–970 (2006).
CAS PubMed Article Google Scholar
3.
Gunde-Cimerman, N., Oren, A. & Plemenitaš, A. Introduction in Cellular Origin Life in Extreme Habitats and Astrobiology Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya 1–6 (Springer, Amsterdam, 2006).
Google Scholar
4.
Margesin, R. & Schinner, F. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5, 73–83 (2001).
CAS PubMed Article Google Scholar
5.
Begemann, M. B., Mormile, M. R., Paul, V. G. & Vidt, D. J. Potential Enhancement of Biofuel Production Through Enzymatic Biomass Degradation Activity and Biodiesel Production by Halophilic Microorganisms. In Halophiles and Hypersaline Environments (eds Ventosa, A. et al.) 341–357 (Springer, Berlin, 2011).
Google Scholar
6.
Paul, V. G., Minteer, S. D., Treu, B. L. & Mormile, M. R. Ability of a haloalkaliphilic bacterium isolated from Soap Lake, Washington to generate electricity at pH 11.0 and 7% salinity. Environ. Tech. 35, 1003–1011 (2013).
Article CAS Google Scholar
7.
Paul, V. G., Wronkiewicz, D. J., Mormile, M. R. & Foster, J. S. Mineralogy and microbial diversity of the microbialites in the hypersaline storrs lake, the Bahamas. Astrobiology 16, 282–300 (2016).
ADS CAS PubMed Article Google Scholar
8.
Mormile, M. R. et al. Halomonas campisalis sp. nov., a denitrifying, moderately haloalkaliphilic bacterium. Syst. Appl. Microbiol. 22, 551–558 (1999).
CAS PubMed Article Google Scholar
9.
Anton, J., Rossello-Mora, R., Rodriguez-Valera, F. & Amann, R. Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl. Environ. Microbiol. 66, 3052–3057 (2000).
CAS PubMed PubMed Central Article Google Scholar
10.
Boschker, H. T. S., Kromkamp, J. C. & Middelburg, J. J. Biomarker and carbon isotopic constraints on bacterial and algal community structure and functioning in a turbid, tidal estuary. Limnol. Oceanograph. 50, 70–80 (2005).
ADS CAS Article Google Scholar
11.
Baati, H. et al. Prokaryotic diversity of a Tunisian multipond solar saltern. Extremophiles 12, 505–518 (2008).
CAS PubMed Article Google Scholar
12.
Ballav, S., Kerkar, S., Thomas, S. & Augustine, N. Halophilic and halotolerant actinomycetes from a marine saltern of Goa, India producing anti-bacterial metabolites. J. Biosci. Bioeng. 119, 323–330 (2015).
CAS PubMed Article Google Scholar
13.
Casamayor, E. O. et al. Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ. Microbiol. 4, 338–348 (2002).
PubMed Article Google Scholar
14.
Wong, H., Ahmed-Cox, A. & Burns, B. Molecular ecology of hypersaline microbial mats: current insights and new directions. Microorganisms 4, 6. https://doi.org/10.3390/microorganisms4010006 (2016).
CAS Article PubMed Central PubMed Google Scholar
15.
Villanueva, J. et al. Chlorophyll and carotenoid pigments in solar saltern microbial mats. Geochim. Cosmochim. Ac. 58, 4703–4715 (1994).
ADS Article Google Scholar
16.
Sørensen, K. B., Canfield, D. E. & Oren, A. Salinity responses of benthic microbial communities in a solar saltern (Eilat, Israel). Appl. Environ. Microbiol. 70, 1608–1616 (2004).
PubMed PubMed Central Article CAS Google Scholar
17.
Myshrall, K. L. et al. Biogeochemical cycling and microbial diversity in the thrombolitic microbialites of Highborne Cay, Bahamas. Geobiology 8, 337–354 (2010).
CAS PubMed Article Google Scholar
18.
Schneider, D. et al. Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the kiritimati atoll, Central Pacific. PLoS ONE 8, e66662. https://doi.org/10.1371/journal.pone.0066662 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
19.
Louyakis, A. S. et al. A year in the life of a thrombolite: comparative metatranscriptomics reveals dynamic metabolic changes over diel and seasonal cycles. Environ. Microbiol. 20, 842–861 (2018).
CAS PubMed Article Google Scholar
20.
Louyakis, A. S. et al. A study of the microbial spatial heterogeneity of bahamian thrombolites using molecular, biochemical, and stable isotope analyses. Astrobiology 17, 413–430 (2017).
ADS CAS PubMed PubMed Central Article Google Scholar
21.
Uritskiy, G. & Diruggiero, J. Applying genome-resolved metagenomics to deconvolute the halophilic microbiome. Genes 10, 220. https://doi.org/10.3390/genes10030220 (2019).
CAS Article PubMed Central PubMed Google Scholar
22.
Kunin, V. et al. Millimeter-scale genetic gradients and community-level molecular convergence in a hypersaline microbial mat. Mol. Syst. Biol. 4, 198. https://doi.org/10.1038/msb.2008.35 (2008).
Article PubMed PubMed Central Google Scholar
23.
Robertson, C. E., Spear, J. R., Harris, J. K. & Pace, N. R. Diversity and stratification of archaea in a hypersaline microbial mat. Appl. Environ. Microbiol. 75, 1801–1810 (2009).
CAS PubMed Article Google Scholar
24.
Harris, J. K. et al. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J. 7, 50–60 (2013).
PubMed Article CAS Google Scholar
25.
Isaji, Y. et al. Efficient recycling of nutrients in modern and past hypersaline environments. Sci. Rep. 9, 1–12 (2019).
CAS Article Google Scholar
26.
Kelley, C. A., Prufert-Bebout, L. E. & Bebout, B. M. Changes in carbon cycling ascertained by stable isotopic analyses in a hypersaline microbial mat. J. Geophys. Res. Biogeosci. 111, G4. https://doi.org/10.1029/2006jg000212 (2006).
Article Google Scholar
27.
Vasconcelos, C. et al. Lithifying microbial mats in Lagoa Vermelha, Brazil: modern precambrian relics?. Sed. Geol. 185, 175–183 (2006).
CAS Article Google Scholar
28.
Breitbart, M. et al. Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Ciénegas, Mexico. Environ. Microbiol. 11, 16–34 (2009).
CAS PubMed Article Google Scholar
29.
Belan, M. A. et al. Spatial distribution and preservation of carbon isotope biosignatures in freshwater microbialite carbonate. ACS Earth Space Chem. 3, 335–343 (2019).
CAS Article Google Scholar
30.
Awramik, S. M. The oldest records of photosynthesis. Photosynthesis Res. 33, 75–89 (1992).
CAS Article Google Scholar
31.
Marais, D. J. D. & Canfield, D. E. The carbon isotope biogeochemistry of microbial mats. In Microbial Mats (eds Stal, L. & Caumette, P.) 289–298 (Springer, Berlin, 1994).
Google Scholar
32.
Ghosh, P. et al. 13C–18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim. Cosmochim. Ac. 70, 1439–1456 (2006).
ADS CAS Article Google Scholar
33.
Ghelani, A., Patel, R., Mangrola, A. & Dudhagara, P. Cultivation-independent comprehensive survey of bacterial diversity in Tulsi Shyam Hot Springs, India. Genom. Data 4, 54–56 (2015).
PubMed PubMed Central Article Google Scholar
34.
Nagasathya, A. & Thajuddin, N. Cyanobacterial diversity in the hypersaline environment of the saltpans of Southeastern Coast of India. Asian J. Plant. Sci. 7, 473–478 (2008).
Article Google Scholar
35.
Ahmad, N. et al. Phylogenetic characterization of archaea in Saltpan Sediments. Indian J. Microbiol. 51, 132–137 (2011).
PubMed PubMed Central Article Google Scholar
36.
Jose, P. & Jebakumar, S. R. Phylogenetic diversity of actinomycetes cultured from coastal multipond solar saltern in Tuticorin, India. Aqua. Biosyst. 8, 23. https://doi.org/10.1186/2046-9063-8-23 (2012).
CAS Article Google Scholar
37.
Santhanakrishnan, T. et al. Microalgae richness and assemblage of man-made solar saltpans of Thoothukudi, TamilNadu. J. Oceanograph. Mar. Sci. 6, 20–24 (2015).
Article Google Scholar
38.
Ghosh, P. et al. Trace element and isotopic studies of Permo-Carboniferous carbonate nodules from Talchir sediments of peninsular India: environmental and provenance implications. J. Earth Syst. Sci. 111, 87–93 (2002).
ADS CAS Article Google Scholar
39.
Chakraborty, P. P., Sarkar, A., Bhattacharya, S. K. & Sanyal, P. Isotopic and sedimentological clues to productivity change in Late Riphean Sea: a case study from two intracratonic basins of India. J. Earth Sys. Sci. 111, 379–390 (2002).
ADS CAS Article Google Scholar
40.
Mazumdar, A. & Bhattacharya, S. K. Stable isotopic study of late Neoproterozoic-early Cambrian (?) sediments from Nagaur-Ganganagar basin, western India: possible signatures of global and regional C-isotopic events. Geochem. J. 38, 163–175 (2004).
ADS CAS Article Google Scholar
41.
Banerjee, S., Bhattacharya, S. & Sarkar, S. Carbon and oxygen isotopic variations in peritidal stromatolite cycles, Paleoproterozoic Kajrahat Limestone, Vindhyan basin of central India. J. Asian Earth Sci. 29, 823–831 (2007).
ADS Article Google Scholar
42.
Oren, A. Microbiology and Biogeochemistry of Hypersaline Environments Vol. 5 (CRC Press, Boca Raton, 1998).
Google Scholar
43.
Ley, R. E. et al. Unexpected diversity and complexity of the guerrero negro hypersaline microbial mat. Appl. Environ. Microbiol. 72, 3685–3695 (2006).
CAS PubMed PubMed Central Article Google Scholar
44.
Tkavc, R. et al. Bacterial communities in the ‘petola’ microbial mat from the Sečovlje salterns (Slovenia). FEMS Microbiol. Ecol. 75, 48–62 (2010).
PubMed Article CAS PubMed Central Google Scholar
45.
Oren, A. Cyanobacteria in hypersaline environments: biodiversity and physiological properties. Biodivers. Conserv. 24, 781–798 (2015).
Article Google Scholar
46.
Bebout, B. M. & Garcia-Pichel, F. UV B-induced vertical migrations of cyanobacteria in a microbial mat. Appl. Environ. Microbiol. 61, 4215–4222 (1995).
CAS PubMed PubMed Central Article Google Scholar
47.
Zhang, H., Schroder, J., Pittman, J., Wang, J. & Payton, M. Soil salinity using saturated paste and 1:1 soil to water extracts. Soil Sci. Soc. Am. J. 69, 1146–1151 (2005).
ADS CAS Article Google Scholar
48.
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).
ADS CAS PubMed Article PubMed Central Google Scholar
49.
Kuczynski, J. et al. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr. Protocols Microbiol. 27, 1E – 5. https://doi.org/10.1002/9780471729259.mc01e05s27 (2012).
MathSciNet Article Google Scholar
50.
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10. https://doi.org/10.14806/ej.17.1.200 (2011).
Article Google Scholar
51.
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
CAS Article Google Scholar
52.
Magoc, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
CAS PubMed PubMed Central Article Google Scholar
53.
Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).
CAS PubMed Article PubMed Central Google Scholar
54.
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl. Acids Res. 41, 590–596 (2012).
Article CAS Google Scholar
55.
Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 12, 385. https://doi.org/10.1186/1471-2105-12-385 (2011).
Article Google Scholar
56.
Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electronica 4, 9 (2001).
Google Scholar
57.
Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucl. Acids Res. 28, 27–30 (2000).
CAS PubMed Article PubMed Central Google Scholar
58.
Aßhauer, K. P., Wemheuer, B., Daniel, R. & Meinicke, P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31, 2882–2884 (2015).
PubMed PubMed Central Article CAS Google Scholar
59.
Koo, H. et al. Comparison of two bioinformatics tools used to characterize the microbial diversity and predictive functional attributes of microbial mats from Lake Obersee, Antarctica. J. Microbiol. Met. 140, 15–22 (2017).
Article Google Scholar
60.
Sun, S., Jones, R. B. & Fodor, A. A. Inference-based accuracy of metagenome prediction tools varies across sample types and functional categories. Microbiome 8, 1–9 (2020).
CAS Article Google Scholar
61.
Kaushal, R., Ghosh, P. & Pokharia, A. K. Stable isotopic composition of rice grain organic matter marking an abrupt shift of hydroclimatic condition during the cultural transformation of Harappan civilization. Quatern. Int. 512, 144–154 (2019).
Article Google Scholar
62.
Rahul, P., Ghosh, P. & Bhattacharya, S. K. Rainouts over the Arabian Sea and Western Ghats during moisture advection and recycling explain the isotopic composition of Bangalore summer rains. J. Geophys. Res. Atmos. 121, 6148–6163 (2016).
ADS Article Google Scholar
63.
Sorokin, D. Y. et al. Halanaeroarchaeum sulfurireducens gen. nov., sp. nov., the first obligately anaerobic sulfur-respiring haloarchaeon, isolated from a hypersaline lake. Int. J. Syst. Evol. Microbiol. 66, 2377–2381 (2016).
CAS PubMed Article PubMed Central Google Scholar
64.
Wood, A. P., Woodall, C. A. & Kelly, D. P. Halothiobacillus neapolitanus strain OSWA isolated from “The old sulphur well” at Harrogate (Yorkshire, England). Sys. Appl. Microbiol. 28, 746–748 (2005).
CAS Article Google Scholar
65.
Naushad, H. S. & Gupta, R. S. Phylogenomics and molecular signatures for species from the plant pathogen-containing order xanthomonadales. PloS ONE 8, e55216. https://doi.org/10.1371/journal.pone.0055216 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
66.
Liang, B. et al. Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express 5, 37. https://doi.org/10.1186/s13568-015-0117-4 (2015).
CAS Article PubMed Central PubMed Google Scholar
67.
Fukunaga, Y. et al. Phycisphaera mikurensis gen. nov., sp. nov., isolated from a marine alga, and proposal of Phycisphaeraceae fam. nov., Phycisphaerales ord. nov. and Phycisphaerae classis nov. in the phylum Planctomycetes. J. Gen. Appl. Microbiol. 55, 267–275 (2009).
CAS PubMed Article PubMed Central Google Scholar
68.
Strömpl, C. Oceanicaulis alexandrii gen. nov., sp. nov., a novel stalked bacterium isolated from a culture of the dinoflagellate Alexandrium tamarense (Lebour) Balech. Int. J. Syst. Evol. Microbiol. 53, 1901–1906 (2003).
PubMed Article CAS PubMed Central Google Scholar
69.
Dunfield, P. F. et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450, 879–882 (2007).
ADS CAS PubMed Article PubMed Central Google Scholar
70.
Oren, A. Pyruvate: a key nutrient in hypersaline environments?. Microorganism 3, 407–416 (2015).
CAS Article Google Scholar
71.
Oren, A. et al. Microbial communities and processes within a hypersaline gypsum crust in a saltern evaporation pond (Eilat, Israel). Hydrobiology 626, 15–26 (2009).
CAS Article Google Scholar
72.
Cadena, S., García-Maldonado, J. Q., López-Lozano, N. E. & Cervantes, F. J. Methanogenic and sulfate-reducing activities in a hypersaline microbial mat and associated microbial diversity. Microb. Ecol. 75, 930–940 (2018).
CAS PubMed Article Google Scholar
73.
Singh, A. K., Chakravarthy, D., Singh, T. P. K. & Singh, H. N. Evidence for a role for L-proline as a salinity protectant in the cyanobacterium Nostoc muscorum. Plant Cell. Environ. 19, 490–494 (1996).
CAS Article Google Scholar
74.
Bolhuis, H., Fillinger, L. & Stal, L. J. Coastal microbial mat diversity along a natural salinity gradient. PLoS ONE 8, e63166. https://doi.org/10.1371/journal.pone.0063166 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
75.
Dillon, J. G. et al. Patterns of microbial diversity along a salinity gradient in the Guerrero Negro solar saltern, Baja CA Sur. Mexico. Front. Microbiol. 4, 399. https://doi.org/10.3389/fmicb.2013.00399 (2013).
Article PubMed Google Scholar
76.
Nobu, M. K. et al. Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J. 10, 2478–2487 (2016).
CAS PubMed PubMed Central Article Google Scholar
77.
Al-Thani, R. et al. Community structure and activity of a highly dynamic and nutrient-limited hypersaline microbial mat in Um Alhool Sabkha. Qatar. PLoS ONE 9, e92405. https://doi.org/10.1371/journal.pone.0092405 (2014).
ADS CAS Article PubMed Google Scholar
78.
McIlroy, S. J. et al. Culture-independent analyses reveal novel anaerolineaceae as abundant primary fermenters in anaerobic digesters treating waste activated sludge. Front. Microbiol. 8, 1134. https://doi.org/10.3389/fmicb.2017.01134 (2017).
Article PubMed PubMed Central Google Scholar
79.
Benhizia, Y. et al. Gamma proteobacteria can nodulate legumes of the genus hedysarum. Sys. Appl. Microbiol. 27, 462–468 (2004).
CAS Article Google Scholar
80.
Finster, K. W. et al. Complete genome sequence of Desulfocapsa sulfexigens, a marine deltaproteobacterium specialized in disproportionating inorganic sulfur compounds. Stand. Genomic Sci. 8, 58–68 (2013).
CAS PubMed PubMed Central Article Google Scholar
81.
Abed, R. M. M., Beer, D. D. & Stief, P. Functional-structural analysis of nitrogen-cycle bacteria in a hypersaline mat from the Omani Desert. Geomicrobiol. J. 32, 119–129 (2014).
Article CAS Google Scholar
82.
Santos, P. C. D. et al. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genom. 13, 162. https://doi.org/10.1186/1471-2164-13-162 (2012).
CAS Article Google Scholar
83.
Francis, C. A., Beman, J. M. & Kuypers, M. M. M. New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J. 1, 19–27 (2007).
CAS PubMed Article Google Scholar
84.
Minz, D. et al. Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl. Environ. Microbiol. 65, 4666–4671 (1999).
CAS PubMed PubMed Central Article Google Scholar
85.
Baumgartner, L. et al. Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries. Sed. Geol. 185, 131–145 (2006).
CAS Article Google Scholar
86.
Wong, H. L. et al. Dynamics of archaea at fine spatial scales in Shark Bay mat microbiomes. Sci. Rep. 7, 46160. https://doi.org/10.1038/srep46160 (2017).
ADS CAS Article PubMed PubMed Central Google Scholar
87.
Yoon, J., Matsuo, Y., Kasai, H. & Yokota, A. Limibacter armeniacum gen. nov., sp. nov., novel representative of the family ‘Flammeovirgaceae’isolated from marine sediment. Int. J. Sys. Evol. Microbiol. 58, 982–986 (2008).
Article Google Scholar
88.
Cort, J. R. et al. Allochromatium vinosum DsrC: solution-state NMR structure, redox properties, and interaction with DsrEFH, a protein essential for purple sulfur bacterial sulfur oxidation. J. Mol. Biol. 382, 692–707 (2008).
CAS PubMed PubMed Central Article Google Scholar
89.
Garcia-Pichel, F., Mechling, M. & Castenholz, R. W. Diel migrations of microorganisms within a benthic, hypersaline mat community. Appl. Environ. Microbiol. 60, 1500–1511 (1994).
CAS PubMed PubMed Central Article Google Scholar
90.
Pinckney, J., Paerl, H. & Fitzpatrick, M. Impacts of seasonality and nutrients on microbial mat community structure and function. Mar. Ecol. Prog. Ser. 123, 207–216 (1995).
ADS Article Google Scholar
91.
Pages, A. et al. Diel fluctuations in solute distributions and biogeochemical cycling in a hypersaline microbial mat from Shark Bay, WA. Mar. Chem. 167, 102–112 (2014).
CAS Article Google Scholar
92.
Chen, Z. et al. Phaeodactylibacter xiamenensis gen. nov., sp. nov., a member of the family Saprospiraceae isolated from the marine alga Phaeodactylum tricornutum. Int. J. Syst. Evol. Microbiol. 64, 3496–3502 (2014).
PubMed Article CAS Google Scholar
93.
Bernstein, H. C. et al. Primary and heterotrophic productivity relate to multikingdom diversity in a hypersaline mat. FEMS Microbiol. Ecol. 93, 121. https://doi.org/10.1093/femsec/fix121 (2017).
CAS Article Google Scholar
94.
Green, S. J. et al. A salinity and sulfate manipulation of hypersaline microbial mats reveals stasis in the cyanobacterial community structure. ISME J. 2, 457–470 (2008).
CAS PubMed Article Google Scholar
95.
Paul, V. G., Wronkiewicz, D. J. & Mormile, M. R. Impact of elevated CO2 concentrations on carbonate mineral precipitation ability of sulfate-reducing bacteria and implications for CO2 sequestration. Appl. Geochem. 78, 250–271 (2017).
CAS Article Google Scholar
96.
Oren, A. The ecology of Dunaliella in high-salt environments. J. Biol. Res. Thessalon 21, 1–8 (2014).
Article Google Scholar
97.
Houghton, J. et al. Spatial variability in photosynthetic and heterotrophic activity drives localized δ13Corg fluctuations and carbonate precipitation in hypersaline microbial mats. Geobiology 12, 557–574 (2014).
CAS PubMed Article Google Scholar
98.
Planavsky, N. et al. Formation and diagenesis of modern marine calcified cyanobacteria. Geobiology 7, 566–576 (2009).
CAS PubMed Article Google Scholar
99.
Schobben, M. & Schootbrugge, B. V. D. Increased stability in carbon isotope records reflects emerging complexity of the biosphere. Front. Earth Sci. 7, 87. https://doi.org/10.3389/feart.2019.00087 (2019).
ADS Article Google Scholar
100.
Wieland, A. et al. Carbon pools and isotopic trends in a hypersaline cyanobacterial mat. Geobiology 6, 171–186 (2008).
CAS PubMed Article Google Scholar
101.
Peer, N., Rishworth, G. M. & Perissinotto, R. Coexistence of habitat specialists under environmental change: investigating dietary overlap in two brachyuran species at peritidal stromatolite ecosystems. Est. Coasts 4, 1149–1155 (2019).
Article Google Scholar
102.
Severin, I., Confurius-Guns, V. & Stal, L. J. Effect of salinity on nitrogenase activity and composition of the active diazotrophic community in intertidal microbial mats. Arch. Microbiol. 194, 483–491 (2012).
CAS PubMed PubMed Central Article Google Scholar
103.
Calder, J. A. & Parker, P. L. Geochemical implications of induced changes in C13 fractionation by blue-green algae. Geochim. Cosmochim. Ac. 37, 133–140 (1973).
ADS CAS Article Google Scholar
104.
Nitti, A. et al. Spatially resolved genomic, stable isotopic, and lipid analyses of a modern freshwater microbialite from Cuatro Ciénegas, Mexico. Astrobiology 12, 685–698 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
105.
Higgins, M. B. et al. Paleoenvironmental implications of taxonomic variation among δ15N values of chloropigments. Geochim. Cosmochim. Ac. 75, 7351–7363 (2011).
ADS CAS Article Google Scholar
106.
Steppe, T. & Paerl, H. Potential N2 fixation by sulfate-reducing bacteria in a marine intertidal microbial mat. Aqua. Microb. Ecol. 28, 1–12 (2002).
Article Google Scholar
107.
Wada, E., Kadonaga, T. & Matsuo, S. 15N aboundance in nitrogen of naturally occurring substances and global assessment of denitrification from isotopic viewpoint. Geochem. J. 9, 139–148 (1975).
ADS CAS Article Google Scholar
108.
Wit, R. D., Falcon, L. I. & Charpy-Roubaud, C. Heterotrophic dinitrogen fixation (acetylene reduction) in phosphate-fertilised Microcoleus chthonoplastes microbial mat from the hypersaline inland lake ‘la Salada de Chiprana’ (NE Spain). Hydrobiology 534, 245–253 (2005).
Article CAS Google Scholar
109.
Buck, D. G. et al. Physical and chemical properties of hypersaline Lago Enriquillo, Dominican Republic. Int. Vereinigung für theoretische und angewandte Limnologie: Verhandlungen 29, 725–731 (2005).
CAS Google Scholar
110.
King, G. M. Carbon monoxide as a metabolic energy source for extremely halophilic microbes: implications for microbial activity in Mars regolith. Proc. Natl. Acad. Sci. 112, 4465–4470 (2015).
ADS CAS PubMed Article Google Scholar
111.
Carmona, N. B. et al. Microbially induced sedimentary structures in Neogene tidal flats from Argentina: paleoenvironmental, stratigraphic and taphonomic implications. Palaeogeog. Palaeoecol. 353, 1–9 (2012).
Article Google Scholar
112.
Noffke, N. & Awramik, S. Stromatolites and MISS—differences between relatives. GSA Today 23, 4–9 (2013).
Article Google Scholar
113.
Knauth, L. P. Salinity history of the Earth’s early ocean. Nature 395, 554–555 (1998).
ADS CAS PubMed Article Google Scholar
114.
Noffke, N., Christian, D., Wacey, D. & Hazen, R. M. Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia. Astrobiology 13, 1103–1124 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
115.
Isaji, Y. et al. Biological and physical modification of carbonate system parameters along the salinity gradient in shallow hypersaline solar salterns in Trapani, Italy. Geochim. Cosmochim. Ac. 208, 354–367 (2017).
ADS CAS Article Google Scholar
116.
Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).
CAS PubMed PubMed Central Article Google Scholar
117.
Poretsky, R. et al. Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PloS ONE 9, e93827. https://doi.org/10.1371/journal.pone.0093827 (2014).
ADS CAS Article PubMed PubMed Central Google Scholar
118.
Ranjan, R. et al. Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem. Biophys. Res. Commun. 469, 967–977 (2016).
CAS PubMed Article Google Scholar
119.
Reese, B. K. et al. Nitrogen cycling of active bacteria within oligotrophic sediment of the Mid-Atlantic Ridge flank. Geomicrobiol. J. 35, 468–483 (2018).
CAS Article Google Scholar
120.
Roume, H. et al. A biomolecular isolation framework for eco-systems biology. ISME J. 7, 110–121 (2012).
PubMed PubMed Central Article CAS Google Scholar
121.
Dhariwal, A. et al. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucl. Acids Res. 45, 180–188 (2017).
Article CAS Google Scholar More