More stories

  • in

    The preference of Trichopria drosophilae for pupae of Drosophila suzukii is independent of host size

    1.
    DiGiacomo, G., Hadrich, J., Hutchison, W. D., Peterson, H. & Rogers, M. Economic impact of spotted wing drosophila (Diptera: Drosophilidae) yield loss on Minnesota Raspberry farms: A grower survey. J. Integr. Pest Manag. 10, https://doi.org/10.1093/jipm/pmz006 (2019).
    2.
    Farnsworth, D. et al. Economic analysis of revenue losses and control costs associated with the spotted wing drosophila, Drosophila suzukii (Matsumura), in the California raspberry industry. Pest Manag. Sci. 73, 1083–1090. https://doi.org/10.1002/ps.4497 (2017).
    CAS  Article  PubMed  Google Scholar 

    3.
    Cini, A., Ioriatti, C. & Anfora, G. A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull. Insectol. 65, 149–160 (2012).
    Google Scholar 

    4.
    Okada, T. Systematic Study of Drosophilidae and Allied Families of Japan. 95–106 (Gihodo Co. Ltd., 1956).

    5.
    Walsh, D. B. et al. Drosophila suzukii (Diptera: Drosophilidae): Invasive pest of ripening soft fruit expanding its geographic range and damage potential. J. Integr. Pest Manag. 2, G1–G7. https://doi.org/10.1603/Ipm10010 (2011).
    Article  Google Scholar 

    6.
    Kanzawa, T. Studies on Drosophila suzukii mats. J. Plant Proteom. 23, 66–70, 127–132, 183–191 (1939).

    7.
    Bolda, M. P. & Goodhue, R. E. Spotted wing Drosophila: Potential economic impact of a newly established pest. Agric. Resour. Econ. Updates Univ. Calif. Giannini Found. 13, 5–8, https://doi.org/10.1016/j.jff.2015.04.027 (2010).

    8.
    Schetelig, M. F. et al. Environmentally sustainable pest control options for Drosophila suzukii. J. Appl. Entomol. 142, 3–17. https://doi.org/10.1111/jen.12469 (2017).
    Article  Google Scholar 

    9.
    Lee, J. C. et al. Biological control of spotted-wing Drosophila (Diptera: Drosophilidae)—Current and pending tactics. J. Integr. Pest Manag. 10, https://doi.org/10.1093/jipm/pmz012 (2019).

    10.
    Fleury, F., Gibert, P., Ris, N. & Allemand, R. Chapter 1 Ecology and life history evolution of frugivorous Drosophila parasitoids. 70, 3–44, https://doi.org/10.1016/s0065-308x(09)70001-6 (2009).

    11.
    Daane, K. M. et al. First exploration of parasitoids of Drosophila suzukii in South Korea as potential classical biological agents. J. Pest Sci. 89, 823–835. https://doi.org/10.1007/s10340-016-0740-0 (2016).
    ADS  Article  Google Scholar 

    12.
    Girod, P. et al. The parasitoid complex of D. suzukii and other fruit feeding Drosophila species in Asia. Sci. Rep. 8, 11839, https://doi.org/10.1038/s41598-018-29555-8 (2018).

    13.
    Girod, P. et al. Host specificity of Asian parasitoids for potential classical biological control of Drosophila suzukii. J. Pest. Sci. 2004(91), 1241–1250. https://doi.org/10.1007/s10340-018-1003-z (2018).
    Article  Google Scholar 

    14.
    Matsuura, A., Mitsui, H. & Kimura, M. T. A preliminary study on distributions and oviposition sites of Drosophila suzukii (Diptera: Drosophilidae) and its parasitoids on wild cherry tree in Tokyo, central Japan. Appl. Entomol. Zool. 53, 47–53. https://doi.org/10.1007/s13355-017-0527-7 (2018).
    Article  Google Scholar 

    15.
    Wang, X. G., Nance, A. H., Jones, J. M. L., Hoelmer, K. A. & Daane, K. M. Aspects of the biology and reproductive strategy of two Asian larval parasitoids evaluated for classical biological control of Drosophila suzukii. Biol. Control 121, 58–65. https://doi.org/10.1016/j.biocontrol.2018.02.010 (2018).
    Article  Google Scholar 

    16.
    Abram, P. K. et al. New records of Leptopilina, Ganaspis, and Asobara species associated with Drosophila suzukii in North America, including detections of L. japonica and G. brasiliensis. J. Hymenoptera Res. 78, 1–17, https://doi.org/10.3897/jhr.78.55026 (2020).

    17.
    Puppato, S., Grassi, A., Pedrazzoli, F., De Cristofaro, A. & Ioriatti, C. First report of Leptopilina japonica in Europe. Insects 11, https://doi.org/10.3390/insects11090611 (2020).

    18.
    Kacsoh, B. Z. & Schlenke, T. A. High hemocyte load is associated with increased resistance against parasitoids in Drosophila suzukii, a relative of D. melanogaster. PLoS One 7, e34721, https://doi.org/10.1371/journal.pone.0034721 (2012).

    19.
    Chabert, S., Allemand, R., Poyet, M., Eslin, P. & Gibert, P. Ability of European parasitoids (Hymenoptera) to control a new invasive Asiatic pest, Drosophila suzukii. Biol. Control 63, 40–47. https://doi.org/10.1016/j.biocontrol.2012.05.005 (2012).
    Article  Google Scholar 

    20.
    Nagaraja, H. in Biological Control of Insect Pests Using Egg Parasitoids (eds S. Sithanantham, Chandish R. Ballal, S. K. Jalali, & N. Bakthavatsalam) Chapter 8, 175–189 (Springer, 2013).

    21.
    Rossi Stacconi, M. V., Grassi, A., Ioriatti, C. & Anfora, G. Augmentative releases of Trichopria drosophilae for the suppression of early season Drosophila suzukii populations. BioControl 64, 9–19, https://doi.org/10.1007/s10526-018-09914-0 (2018).

    22.
    Rossi-Stacconi, M. V. et al. Multiple lines of evidence for reproductive winter diapause in the invasive pest Drosophila suzukii: Useful clues for control strategies. J. Pest Sci. 89, 689–700. https://doi.org/10.1007/s10340-016-0753-8 (2016).
    Article  Google Scholar 

    23.
    Mazzetto, F. et al. Drosophila parasitoids in northern Italy and their potential to attack the exotic pest Drosophila suzukii. J. Pest Sci. 89, 837–850. https://doi.org/10.1007/s10340-016-0746-7 (2016).
    Article  Google Scholar 

    24.
    Wang, X. G., Kacar, G., Biondi, A. & Daane, K. M. Foraging efficiency and outcomes of interactions of two pupal parasitoids attacking the invasive spotted wing drosophila. Biol. Control 96, 64–71. https://doi.org/10.1016/j.biocontrol.2016.02.004 (2016).
    Article  Google Scholar 

    25.
    Kacar, G., Wang, X. G., Biondi, A. & Daane, K. M. Linear functional response by two pupal Drosophila parasitoids foraging within single or multiple patch environments. PLoS ONE 12, e0183525. https://doi.org/10.1371/journal.pone.0183525 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Zhu, C. J., Li, J., Wang, H., Zhang, M. & Hu, H. Y. Demographic potential of the pupal parasitoid Trichopria drosophilae (Hymenoptera: Diapriidae) reared on Drosophila suzukii (Diptera: Drosophilidae). J. Asia-Pac. Entomol. 20, 747–751. https://doi.org/10.1016/j.aspen.2017.04.008 (2017).
    Article  Google Scholar 

    27.
    Kruitwagen, A., Beukeboom, L. W. & Wertheim, B. Optimization of native biocontrol agents, with parasitoids of the invasive pest Drosophila suzukii as an example. Evol. Appl. 11, 1473–1497. https://doi.org/10.1111/eva.12648 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    28.
    Rossi Stacconi, M. V. et al. Host location and dispersal ability of the cosmopolitan parasitoid Trichopria drosophilae released to control the invasive spotted wing Drosophila. Biol. Control 117, 188–196, https://doi.org/10.1016/j.biocontrol.2017.11.013 (2018).

    29.
    Wolf, S., Boycheva-Woltering, S., Romeis, J. & Collatz, J. Trichopria drosophilae parasitizes Drosophila suzukii in seven common non-crop fruits. J. Pest Sci. 93, 627–638. https://doi.org/10.1007/s10340-019-01180-y (2019).
    Article  Google Scholar 

    30.
    Wang, X. G. et al. Thermal performance of two indigenous pupal parasitoids attacking the invasive Drosophila suzukii (Diptera: Drosophilidae). Environ. Entomol. 47, 764–772. https://doi.org/10.1093/ee/nvy053 (2018).
    Article  PubMed  Google Scholar 

    31.
    Rossi Stacconi, M. V. et al. Comparative life history traits of indigenous Italian parasitoids of Drosophila suzukii and their effectiveness at different temperatures. Biol. Control 112, 20–27, https://doi.org/10.1016/j.biocontrol.2017.06.003 (2017).

    32.
    Colombari, F., Tonina, L., Battisti, A. & Mori, N. Performance of Trichopria drosophilae (Hymenoptera: Diapriidae), a generalist parasitoid of Drosophila suzukii (Diptera: Drosophilidae), at low temperature. J. Insect Sci. 20, https://doi.org/10.1093/jisesa/ieaa039 (2020).

    33.
    Carton, Y., Bouletreau, M., Alphen, J. J. M. V. & Lenteren, J. C. V. in The Genetics and Biology of Drosophila Vol. 3 (eds M. Ashburner, H.L. Carson, & J.N. Thompson) Chap. 39, 348–394 (Academic Press, 1986).

    34.
    Wang, X. G., Kacar, G., Biondi, A. & Daane, K. M. Life-history and host preference of Trichopria drosophilae, a pupal parasitoid of spotted wing drosophila. Biocontrol 61, 387–397. https://doi.org/10.1007/s10526-016-9720-9 (2016).
    CAS  Article  Google Scholar 

    35.
    Boycheva Woltering, S., Romeis, J. & Collatz, J. Influence of the rearing host on biological parameters of Trichopria drosophilae, a potential biological control agent of Drosophila suzukii. Insects 10, https://doi.org/10.3390/insects10060183 (2019).

    36.
    Yi, C. et al. Life history and host preference of Trichopria drosophilae from Southern China, one of the effective pupal parasitoids on the Drosophila species. Insects 11, https://doi.org/10.3390/insects11020103 (2020).

    37.
    Lynch, Z. R., Schlenke, T. A. & de Roode, J. C. Evolution of behavioural and cellular defences against parasitoid wasps in the Drosophila melanogaster subgroup. J. Evol. Biol. 29, 1016–1029. https://doi.org/10.1111/jeb.12842 (2016).
    CAS  Article  PubMed  Google Scholar 

    38.
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. https://doi.org/10.1038/nmeth.2089 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Otto, M. & Mackauer, M. The developmental strategy of an idiobiont ectoparasitoid, Dendrocerus carpenteri : Influence of variations in host quality on offspring growth and fitness. Oecologia 117, 353–364. https://doi.org/10.1007/s004420050668 (1998).
    ADS  Article  PubMed  Google Scholar 

    40.
    Friard, O., Gamba, M. & Fitzjohn, R. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330. https://doi.org/10.1111/2041-210x.12584 (2016).
    Article  Google Scholar 

    41.
    Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).
    Article  Google Scholar 

    42.
    R: A Language and Environment for Statistical Computing (R, Vienna, 2008).

    43.
    Steidle, J. L. M. & van Loon, J. J. A. in Chemoecology of Insect Eggs and Egg Deposition (eds Monika Hilker & Torsten Meiners) 291–317 (Blackwell, 2003).

    44.
    Romani, R., Isidoro, N., Bin, F. & Vinson, S. B. Host recognition in the pupal parasitoid Trichopria drosophilae: A morpho-functional approach. Entomol. Exp. Appl. 105, 119–128. https://doi.org/10.1046/j.1570-7458.2002.01040.x (2002).
    CAS  Article  Google Scholar 

    45.
    Ballman, E. S., Collins, J. A. & Drummond, F. A. Pupation behavior and predation on Drosophila suzukii (Diptera: Drosophilidae) pupae in maine wild blueberry fields. J. Econ. Entomol. 110, 2308–2317. https://doi.org/10.1093/jee/tox233 (2017).
    Article  PubMed  Google Scholar 

    46.
    Carton, Y. Biologie de pimpla instigator (Ichneumonidae: Pimplinae). Entomol. Exp. Appl. 17, 265–278. https://doi.org/10.1111/j.1570-7458.1974.tb00344.x (1974).
    Article  Google Scholar 

    47.
    Vinson, S. B. Host selection by insect parasitoids. Annu. Rev. Entomol. 21, 109–133. https://doi.org/10.1146/annurev.en.21.010176.000545 (1976).
    Article  Google Scholar 

    48.
    Poyet, M. et al. Resistance of Drosophila suzukii to the larval parasitoids Leptopilina heterotoma and Asobara japonica is related to haemocyte load. Physiol. Entomol. 38, 45–53. https://doi.org/10.1111/phen.12002 (2013).
    Article  Google Scholar 

    49.
    Honti, V., Csordas, G., Kurucz, E., Markus, R. & Ando, I. The cell-mediated immunity of Drosophila melanogaster: Hemocyte lineages, immune compartments, microanatomy and regulation. Dev. Comp. Immunol. 42, 47–56. https://doi.org/10.1016/j.dci.2013.06.005 (2014).
    CAS  Article  PubMed  Google Scholar 

    50.
    Iacovone, A., Ris, N., Poirie, M. & Gatti, J. L. Time-course analysis of Drosophila suzukii interaction with endoparasitoid wasps evidences a delayed encapsulation response compared to D. melanogaster. PLoS One 13, e0201573, https://doi.org/10.1371/journal.pone.0201573 (2018).

    51.
    Bozler, J., Kacsoh, B. Z. & Bosco, G. Maternal priming of offspring immune system in Drosophila. G3 (Bethesda) 10, 165–175, https://doi.org/10.1534/g3.119.400852 (2020).

    52.
    Charnov, E. L., Los-den Hartogh, R. L., Jones, W. T. & van den Assem, J. Sex ratio evolution in a variable environment. Nature 289, 27–33, https://doi.org/10.1038/289027a0 (1981).

    53.
    Sandlan, K. Sex-ratio regulation in Coccygomimus-Turionella Linnaeus (Hymenoptera, Ichneumonidae) and its ecological implications. Ecol. Entomol. 4, 365–378. https://doi.org/10.1111/j.1365-2311.1979.tb00596.x (1979).
    Article  Google Scholar 

    54.
    King, B. H. Offspring sex-ratios in parasitoid wasps. Q. Rev. Biol. 62, 367–396. https://doi.org/10.1086/415618 (1987).
    Article  Google Scholar  More

  • in

    Quality of Pinus sp. pellets with kraft lignin and starch addition

    The fines content of the pellets, agglutinated with wheat starch and kraft lignin (both at 4%), was 125 higher and 75% lower than in the control, respectively (Table 1). The fines generation of the pellets in all treatments was lower than 1% (0.03 to 0.27%) and, therefore, they met the marketing standard EN 14961-232.
    Table 1 Fine content (%), hardness (%), bulk density (g m−3), apparent density (g m−3) by gravimetric method and apparent density (g m−3) by X-ray densitometry of Pinus wood pellets produced with different percentages of the additives (A) corn and wheat and kraft lignin and in the control.
    Full size table

    The lower values of the fines content of the pellets produced with kraft lignin are possibly due to the densification process of the pellet matrix with higher contents of this additive, generating pellets with better bonding characteristics between the particles and, consequently, less fines. In addition, lignin has a cementing action between the cells9 during the pressing process, and high temperature causes this compound to reach the glass transition stage, ensuring a strong bond between the particles8,33. Pellets with lower fines production during handling and transport should be preferred commercially34. The fines content increases with the moisture level of the material, causing cracks to exhaust gases, mainly water vapor, and, consequently, reducing their mechanical resistance during handling35. On the other hand, the low moisture content makes biomass compaction difficult, due to the water’s characteristic of helping the heat transfer and promoting lignin plasticization as a natural biomass binder36. The moisture content between 8 and 12% in the dry basis is ideal for reducing fines generation to within the European standard EN 14961-232.
    The hardness of the pellets was similar with the different percentages of corn starch, but it was higher with wheat starch (Table 1). The hardness increased by 22% when the percentage of kraft lignin reached 5%, in relation to the control. The hardness of the pellets with 3 and 5% of corn starch and 4% of kraft lignin was similar to the control.
    The similar hardness of the pellets with the different percentages of wheat starch confirms studies that binders can reduce the mechanical properties of pellets at a higher moisture content, because water takes the place of hydrogen bonds, affecting cohesion between the particles37. Higher hardness affects pellet length, because the higher the hardness, the greater the breaking strength after contact with the pelletizing press knife15. In addition, pellets with lower hardness have points for water ingress, increasing the moisture content and consequently the breaking point and causing higher fine generation38. The higher hardness of pellets produced with 5% kraft lignin is possibly due to the decrease of their hygroscopic equilibrium moisture, due to the hydrophobic character of this compound. The kraft lignin residue is a compound of C–C and C–O–C phenylpropane units with low water relationship39. In addition, the constant pressing temperature of 120 °C plasticizes kraft lignin as an adhesive, increasing particle contact and reducing expansion due to lower hygroscopicity, consequently increasing hardness40. Kraft lignin, as an additive, facilitates the use of this residue and confers better properties to pellets by increasing their mechanical strength13,14,15.
    The bulk density of pellets with 1% corn or wheat starches and 3% kraft lignin was higher than other mixtures (Table 1). The bulk density of kraft lignin pellets was higher than those with corn or wheat starch. The bulk density of pellets with 1% corn starch and 5% kraft lignin was lower than those with 3% lignin, which were denser than those with only wood (control).
    The higher bulk density values for 3% kraft lignin pellets may be associated with a higher amount of lignin in the mixture (wood + additive), which plasticizes more efficiently, generating a smooth and uniform texture in the pellets and improving their density. The pelletizing matrix temperature influences the durability and bulk density of pellets36, as lignin is a natural wood binder and requires temperatures above the glass transition (75–100 °C) to produce bonding between the particles. Temperatures above 90 °C improve pellet characteristics, and require lower compaction pressure at increasing compaction matrix temperatures4,41. The lower density values of wheat starch pellets may be due to the high moisture content of the steam generated during the high temperatures in the compaction process (120 °C), causing micro-cracks in the pellet structure and reducing its density35. Starch acts as a lubricating agent in the pelletizing process, facilitating the flow of raw material through the pelletizing matrix36. The bulk density of the pellets was greater than the minimum required by the European Marketing Standard EN 14961-232, equal to or greater than 0.60 g cm−3 in all treatments. This highlights the potential use of additives in pelletizing, which should be at most 2% relative to the dry mass of primary raw material.
    The apparent density of pellets varied in a fashion similar to that of bulk density (Table 1), with no effect from the type and amount of additive added to the particles mass, comparing the three different additives and considering the same proportion used, except for pellets produced with 3% wheat starch, with lower apparent density. The apparent density of pellets produced with 1 and 2% corn starch and 1, 3, 4 and 5% kraft lignin was higher, and the other treatments were similar to the control (Table 1). Lignin and corn starch promoted better connection between particles, favoring biomass compaction and increasing pellet density.
    The variation in the apparent density of the pellets, similar to that of bulk density between 1.15 g m−3 (3% wheat) and 1.23 g m−3 (3% lignin), is possibly due to the wheat starch gelatinization process starting at lower temperatures (± 70 °C) than that of corn starch (± 85 °C)42. This leads to the starch adhering to the pellet feeder system wall, reducing the proportion of additive that reaches the pelletizing matrix and consequently diminishing the unit density of the pellet. The higher apparent density of pellets produced with 1 and 2% corn starch and 1, 3, 4 and 5% kraft lignin is due to the lower rate of return of the pelletizing process and the higher molecular weight of the additives, influencing the pellet density7,36. Bulk density and apparent density determine pellet storage and transport conditions, and are directly related to energy density in those with 1 and 2% corn starch and 1, 3, 4 and 5% lignin, with higher density and a higher amount of energy per volume unit43.
    The apparent density of the pellets produced with additives and evaluated by X-ray densitometry ranged from 1.00 to 1.31 g m−3 in their longitudinal axis (Table 1), with the lowest value for pellets produced with 1% wheat starch, and the highest value with 1% corn starch.
    The lower apparent density values of wheat starch pellets can be associated with the presence of cracks (empty spaces), directly related to the susceptibility to rupture2. Low density peaks indicate small cracks that are attributed to a moisture content of the mixture or particle sizes inadequate for pelletizing4, affecting the physical properties of biomass densification44. The average apparent density of pellets is within the range established by the German standard DIN 51731, from 1.00 to 1.40 g m−345.
    Pellet density varied in longitudinal density profiles, with one uniform and one irregular pattern (Fig. 1). The apparent density variation of pellets produced without additives along the longitudinal axis (coefficient of variation of 5.29%) was higher. On the other hand, the apparent density variation of the profile (coefficient of variation of 4.19%) with additives was lower, showing greater cohesion between the particles and the additives. X-ray densitometry showed pellet density variations for all additives and in the control.
    Figure 1

    Longitudinal variation of pellet density with different proportions of the additives kraft lignin and corn and wheat starch.

    Full size image

    Uniform or irregular density patterns according to longitudinal pellet density profiles are due to variations in pellet internal density, which can be attributed to factors such as additive molecular weight, particle size, and temperature and pressure during pelletization46,47,48. Cracks are common in compacted material during pelletizing4,6, and can be attributed to inadequate pellet moisture content or particle sizes. The density of biomass varies with the moisture content44 and with the temperature strengthening the adhesion between the particles. Density profiles can explain the performance of pellets, whose cracks and high density variability affect their durability and final quality, since reductions in density are associated with cracks and, consequently, pellet breakage or rupture points, which can generate fines5. The apparent density of the pellets by gravimetric and X-ray densitometry, similar between treatments with additives, confirm that this technique, commonly used to evaluate the apparent density of materials and easier to apply than other methodologies, can be used to evaluate the quality of the pellets. Variations in the apparent density and longitudinal density profile obtained with the gravimetric and X-ray densitometry demonstrate that factors such as moisture, binder type, pressure and particle size interfere with the pelletizing process, causing variations in the material’s internal structure46,47. In addition, this technique accesses different parts of the pellet and therefore identifies point variations in the product density as reported for the 2% wheat starch pellet.
    In conclusion, the additives reduced the fines content and increased the hardness and density of the pellets. Therefore, they have the potential to produce pellets with greater resistance to the transport, storage and handling processes. Apparent density along the longitudinal axis of the pellets without starch was higher. The apparent density of pellets containing starch increased the cohesion between the particles and reduced the density variation as shown by their densitometric profiles. More

  • in

    Myopic reallocation of extraction improves collective outcomes in networked common-pool resource games

    Myopic reallocation improves collective wealth
    Beginning from some initial extraction state, agents within a networked population of multiple common-pool resources play an iterated game in which they observe current resource conditions at each round, and incrementally shift their extraction efforts from lower-quality sources toward higher-quality sources in order to maximize their payoffs in the following round (Eq. 3). Agents’ extraction efforts are thus redirected away from over-exploited sources toward less-exploited sources so that the system approaches a steady state in which all sources equally share the burden of over-extraction. In the process, some sources increase in quality, while others are further degraded; nonetheless, the overall result of these reallocations is a net increase in collective wealth.
    To show this, we consider an arbitrary initial extraction state, in which the population’s collective extraction effort is (Q=Nlangle overrightarrow{q}rangle). In this state, the initial collective payoff extracted by the population is ({F}_{0}={sum }_{sin mathbf{S}}overrightarrow{q}(s)cdot b(s)) (where we ignore cost terms, since these remain constant under reallocation), and so the population’s collective wealth per unit extraction effort is

    $$frac{{F}_{0}}{Q}=frac{sum_{sin mathbf{S}}overrightarrow{q}(s)cdot left[alpha -beta (s)overleftarrow{q}(s)right]}{sum_{sin mathbf{S}}overrightarrow{q}(s)}=alpha -frac{langle beta {overrightarrow{q}}^{2}rangle }{langle overrightarrow{q}rangle }.$$
    (4)

    Under reallocation dynamics (Eq. 3), this total extraction (Q) is conserved, and the system will approach a steady state in which all sources share a common quality value

    $${b}_{f}=alpha -frac{langle overrightarrow{q}rangle }{langle {beta }^{-1}rangle }.$$
    (5)

    The population’s collective wealth approaches the steady-state value

    $${F}_{f}={sum }_{sin mathbf{S}}left[overrightarrow{q}(s)cdot {b}_{f}right]=Q{b}_{f}.$$
    (6)

    Collective wealth is increased (or at least conserved) if ({F}_{0}le {F}_{f}), or equivalently, if (frac{{F}_{0}}{Q}le {b}_{f}). Using Eqs. 4 and 5, this condition reduces to

    $$langle overrightarrow{q}{rangle }^{2}le langle beta {overleftarrow{q}}^{2}rangle langle {beta }^{-1}rangle .$$
    (7)

    The validity of this inequality is guaranteed by the Cauchy–Schwarz inequality29, (langle XY{rangle }^{2}le langle {X}^{2}rangle langle {Y}^{2}rangle) for random variables (X) and (Y), with the identifications (X=sqrt{beta (s)}overrightarrow{q}(s)) and (Y=sqrt{beta (s{)}^{-1}}). Furthermore, equality occurs if and only if the quantity (beta left(sright)overrightarrow{q}left(sright)) shares the same value for all sources, that is, when initial conditions are already steady states where all sources share a common quality value. Reallocation dynamics thus increase collective wealth for any initial condition where sources vary from one another in quality (see Section S2.1 of the Supplementary Information). This includes Nash equilibrium initial conditions, upon which we will now focus our attention.
    CPR degree heterogeneity leads to greater improvements in efficiency under myopic reallocation
    In the unique Nash equilibrium state of a given network26, each agent sets its extraction at each source to the point beyond which further extraction would increase its costs more than it would increase its payoffs, given that all other agents are doing the same. In this state, no agent can increase its payoffs by unilaterally adjusting its extraction levels while other agents hold their extraction levels constant. However, when all agents simultaneously adapt their extraction levels according to the reallocation update rule (Eq. 3), under which each increase in extraction at one source is matched by an equal decrease at another source, then higher payoffs can be achieved. To quantify the extent to which reallocation alone can help alleviate the “tragedy of the commons” represented by Nash equilibrium, we now apply reallocation dynamics to Nash equilibrium initial conditions on a variety of network types, and compare the population’s collective wealth values before and after reallocation.
    When network-structured populations of rational individuals extract benefits from multiple linearly-degrading CPRs, the burdens of over-exploitation tend to fall upon sources in a degree-dependent manner. Myopic reallocation tends to shift these burdens among sources of different degrees, and to distribute the resulting increases in collective wealth among individuals of different degree classes. In order to understand how these reallocations shift extraction pressure and agent payoffs among nodes of different degrees, we use a heterogeneous mean-field approach to derive estimates for these shifts. Under this perspective, the conditions defining Nash equilibrium ((frac{partial f(a)}{partial q(a,s)}=0)) lead us to estimate the expected values for extraction pressure on degree-(n) sources, (langle overrightarrow{q}{rangle }_{n}), by solving a linear system defined by

    $$langle overrightarrow{q}{rangle }_{n}=frac{1}{{beta }_{n}}left[frac{n}{n+1}right]left[alpha -sum_{m=1}^{{m}_{mathrm{max}}}{P}_{mathbf{A}}left(mright)frac{m}{langle mrangle }cdot left(frac{gamma m}{[gamma mlangle {beta }^{-1}{rangle }_{m}+1]}left[alpha langle {beta }^{-1}{rangle }_{m}-sum_{{n}^{^{prime}}=1}^{{n}_{mathrm{max}}}{P}_{mathbf{S}}({n}^{^{prime}})frac{{n}^{^{prime}}}{langle nrangle }cdot langle overrightarrow{q}{rangle }_{{n}^{^{prime}}}right]right)right],$$
    (8)

    with one such condition for each unique source degree (nin {1,dots , {n}_{mathrm{max}}}) represented in the network, where brackets subscripted by agent degree (m) indicate expected values (langle x{rangle }_{m}={sum }_{n=1}^{{n}_{mathrm{max}}}{P}_{mathbf{S}}left(nright)frac{n}{langle nrangle }cdot {x}_{n}) and we have assumed no degree-degree correlations (see the Supplementary Information Section S3 for details). Solving this system numerically (here we use Python 3.7.3 with SciPy 1.2.130) for each of the 9 network types under consideration by inserting the corresponding ensemble degree distributions ({P}_{mathbf{A}}left(mright)) and ({P}_{mathbf{S}}left(nright)) (Fig. 1), we use the resulting values of (langle overrightarrow{q}{rangle }_{n}) to compute the expected total extraction by a degree-m agent (langle overleftarrow{q}{rangle }_{m}) at equilbrium as

    $$langle overleftarrow{q}{rangle }_{m}=left(frac{m}{mgamma langle {beta }^{-1}{rangle }_{m}+1}right)left[alpha langle {beta }^{-1}{rangle }_{m}-left(sum_{n=1}^{{n}_{mathrm{max}}}{P}_{mathbf{S}}left(nright)frac{n}{langle nrangle }cdot langle overrightarrow{q}{rangle }_{n}right)right],$$
    (9)

    from which (langle q{rangle }_{m,n}), the expected equilibrium extraction by a degree-(m) agent from a degree-(n) source, can be computed using the Nash equilbrium condition:

    $$langle q{rangle }_{m,n}=frac{alpha }{{beta }_{n}}-langle overrightarrow{q}{rangle }_{n}-frac{upgamma }{{beta }_{n}}langle overleftarrow{q}{rangle }_{m}.$$
    (10)

    These values are then used to compute the corresponding estimated collective wealth (i.e. the sum of all agent payoffs, (F=sum_{ain mathbf{A}}f(a))) and wealth equality (as quantified by Gini index (G)) attained at Nash equilibrium, as well as the subsequent shifts that are brought by myopic reallocation dynamics toward steady states. These values are shown in Fig. 2 for a range of values of the cost parameter (gamma), which quantifies the influence of diminishing marginal utility. The expected changes in extraction pressure for sources of different degrees, as well as the changes in agent fitness expected for agents of each degree class, are illustrated for each network type for cost-free extraction ((gamma =0)) in Fig. 3, and similarly for a representative case of costly extraction ((gamma =0.2)) in Fig. 4. The estimates presented here correspond to a uniform capacity scenario where all CPRs degrade in proportion to the total amount of extraction exerted upon their users. However, we find that qualitatively similar results also hold for a degree-proportional capacity scenario in which sources degrade in proportion to the total extraction per user that they receive (see Section S4 in the Supplementary Information).
    Figure 2

    Estimates of (a) Ratio of total collective wealth of equilibrium (“Eq”) states relative to efficient (“Ef”) states, ({F}_{mathrm{Eq}}/{F}_{mathrm{Ef}}); (b) increase in efficiency from equilibrium to steady states (“SS”), (({F}_{mathrm{SS}}-{F}_{mathrm{Eq}})/{F}_{mathrm{Ef}}); (c) Gini index of equilibrium states ({G}_{mathrm{Eq}}); and (d) decrease in Gini index from equilibrium to steady states, (({G}_{mathrm{Eq}}-{G}_{mathrm{SS}})), all as functions of cost parameter (gamma). Results shown correspond to a uniform capacity scenario with (alpha =beta =1).

    Full size image

    Figure 3

    Estimated shifts in extraction patterns due to reallocation dynamics from Nash equilibrium (“Eq”) to steady states (“SS”) under cost-free extraction: (a) Change in total extraction pressure (Delta langle overrightarrow{q}{rangle }_{n}=langle overrightarrow{q}{rangle }_{n,mathrm{SS}}-langle overrightarrow{q}{rangle }_{n,mathrm{Eq}}), as a function of source degree (n); and (b) change in expected agent fitness, (Delta langle f{rangle }_{m}=langle f{rangle }_{m,mathrm{SS}}-langle f{rangle }_{m,mathrm{Eq}}) as a function of agent degree (m). Results shown correspond to a uniform capacity scenario with (alpha =beta =1) and (gamma =0). Note that results for all network types sharing a common source degree distribution type (“D”, “N”, or “PL”) are overlapping.

    Full size image

    Figure 4

    Estimated shifts in extraction patterns due to reallocation dynamics from Nash equilibrium (“Eq”) to steady states (“SS”) under costly extraction: (a) Change in total extraction pressure (Delta langle overrightarrow{q}{rangle }_{n}=langle overrightarrow{q}{rangle }_{n,mathrm{SS}}-langle overrightarrow{q}{rangle }_{n,mathrm{Eq}}), as a function of source degree (n); and (b) change in expected agent fitness, (Delta langle f{rangle }_{m}=langle f{rangle }_{m,mathrm{SS}}-langle f{rangle }_{m,mathrm{Eq}}) as a function of agent degree (m). Results shown correspond to a uniform capacity scenario with (alpha =beta =1) and (gamma =0.2).

    Full size image

    In Nash equilibrium states of the uniform capacity scenario, sources with fewer users (i.e. lower degree) experience lower extraction pressure. Since all networks under comparison here share an equal number of edges, networks having greater heterogeneity among source degrees—and thus a greater abundance of low-degree sources—suffer less over-exploitation overall, and so tend to operate more efficiently at equilibrium (Fig. 2). As agents then shift their extraction away from over-burdened, lower-quality sources toward higher-quality sources, these systems approach steady states where their multiple CPR sources all share a uniform quality value. In this way, steady states of reallocation dynamics qualitatively resemble Pareto efficient extraction states, which are characterized by uniform quality among all CPR sources (though, unlike these steady states, optimal efficiency also requires uniform extraction levels among all agents regardless of degree; see Section S3.2 in the Supplementary Information). The resulting shifts in efficiency (Fig. 2b), source extraction pressure (Figs. 3a and 4a), and agent payoffs (Figs. 3b and 4b) are more pronounced for networks having greater heterogeneity among CPR source degrees due to the greater initial discrepancies among source quality values that these networks support at Nash equilibrium. When simulations of reallocation dynamics from equilbrium are performed on individual networks (see Section S6 in the Supplementary Information), then the shifts in extraction pressure and agent payoffs observed are often more exaggerated than those estimated here. Since the heterogeneous mean-field perspective treats all sources of a common degree as a single class, it does not distinguish higher-order differences among nodes that share the same degree. As a result, the model predicts no shifts under reallocation dynamics for networks in which all sources share a common degree, i.e. delta-function (“D”) source degree distributions, for example. However, on actual networks of this type, reallocation dynamics nonetheless do increase collective wealth by equalizing differences in quality among sources.
    When extraction is costly ((gamma >0)), agent degree heterogeneity also plays a secondary role to source degree heterogeneity in determining equilibrium efficiency and the effects of reallocation dynamics (Figs. 2 and 4). Diminishing marginal utility motivates agents to moderate their overall extraction levels; all sources affiliated with any given agent will be affected by its tendency to reduce extraction, and the extent of this reduction will depend in turn on each source’s degree, the degrees of its other users, and so on. Higher agent degree heterogeneity is thus predicted to slightly increase equilibrium efficiency due to the presence of higher-degree agents that reduce their extraction per source by larger amounts than do lower-degree agents. While the overall gains in collective wealth expected to be achieved by way of reallocations are thus slightly reduced by the presence of these higher-degree agents, greater agent degree heterogeneity is also associated with faster times of convergence toward steady states, since high-degree agents are able to simultaneously shift efforts directly between a large number of sources, and so to more rapidly equalize source quality values (see Section S5.1 in the Supplementary Information).
    Myopic reallocation from Nash equilibrium reduces wealth inequality
    Since reallocation dynamics increase collective wealth, many—if not all—agents will attain improved payoffs under reallocation dynamics from suboptimal states like Nash equilibrium. We now turn our attention to how these increases in collective wealth are distributed throughout a population with respect to agent degree. Under the heterogeneous mean-field approach, we estimate that the shift in expected payoffs due to reallocations from Nash equilibrium are given by

    $$Delta langle f{rangle }_{m}=mleft[left(frac{1}{langle nrangle }left[langle frac{n{b}_{n}}{{beta }_{n}}rangle {b}_{f}-langle frac{n{b}_{n}^{2}}{{beta }_{n}}rangle right]right)-upgamma langle overleftarrow{q}{rangle }_{m}left(frac{1}{langle nrangle }left[langle frac{n}{{beta }_{n}}rangle -langle frac{n{b}_{n}^{2}}{{beta }_{n}}rangle right]right)right],$$
    (11)

    where ({b}_{n}=alpha -{beta }_{n}langle overrightarrow{q}{rangle }_{n}) (see Section S3.1.3 in the Supplementary Information). When extraction is cost-free ((gamma =0)), the increased payoffs brought about by reallocation dynamics are expected to affect each edge in a uniform way, on average, and thus tend to be shared among agents of all degree classes in proportion to their degree (m). This is reflected in the linear increase of expected agent payoff with respect to degree (Fig. 3b), and also in the lack of change in the expected Gini index predicted for all network types under cost-free ((gamma =0)) extraction (Fig. 2d). However, when extraction is costly ((gamma >0)) and diminishing marginal utility acts to disincentivize increased extraction for higher-degree agents, the overall efficiency (Fig. 2a) and equality (Fig. 2c) of equilibrium states are increased from those observed under cost-free extraction. In these cases, reallocation dynamics also tend to increase the equality of the population’s wealth distribution, as reflected in the decreasing—and eventually negative—shifts in payoffs expected for agents of increasingly high degree (Fig. 4b), and also in the expected reductions in Gini index (Fig. 2d), caused by reallocation dynamics. This occurs because diminishing marginal utility motivates high-degree agents to exert less overall extraction effort per source at Nash equilibrium than do lower-degree agents. In the steady states subsequently reached under reallocation dynamics, all sources share a uniform quality value; each agent’s total extracted benefits then becomes strictly proportional to the overall magnitude of its extraction effort. Higher-degree agents end up receiving a smaller payoff per source than do their lower-degree counterparts in steady states. As Eq. (11) suggests, agents with higher initial extraction levels (langle overleftarrow{q}{rangle }_{m}) will experience a lower (and possibly even negative) shift in payoff per source (Delta langle f{rangle }_{m}/m) as a result of reallocations. This levelling-out of degree-based payoff inequities has its most pronounced effects at intermediate levels of the cost parameter (here, for values of (gamma approx .35), as shown in Fig. 2d). In simulations performed on specific networks, we find that reallocation dynamics lead not only to increased collective wealth, but also to increased equality, even on networks with homogeneous, “delta-function” (“D”) source degree distributions, although the heterogeneous mean-field approach predicts no such shift. Networks of other types similarly tend to undergo greater increases in equality than those predicted here due to higher-order types of heterogeneity not captured by the model (see Section S6 in the Supplementary Information). More

  • in

    Comprehensive characterisation of Culicoides clastrieri and C. festivipennis (Diptera: Ceratopogonidae) according to morphological and morphometric characters using a multivariate approach and DNA barcode

    Molecular analyses
    Results of molecular analyses
    The sequences obtained are available in GenBank (Supplementary Information 1). Sequence alignments were 399 bp for COI and 587 bp for 28S including gaps.
    Phylogenetic analysis
    Our molecular analysis (Fig. 1) with both markers generated seven supported clusters, six of which were in agreement with the morphological determination (i.e. C. alazanicus, C. brunnicans, C. circumscriptus, C. furcillatus, C. nubeculous and C. pictipennis). However, one cluster (i.e. two species) corresponded to undistinguished C. clastrieri and C. festivipennis.
    Figure 1

    Block diagram of the study.

    Full size image

    In addition, the COI mtDNA tree shows that C. furcillatus is the sister of the “C. clastrieri/festivipennis” clade. Indeed, C. pictipennis is the sister species of C. brunnicans while C. circumscriptus is positioned between the two clades.
    Moreover, the 28S rDNA tree shows that C. pictipennis is the sister of the “C. clastrieri/festivipennis” clade. The other species are positioned in several places without a clade.
    Intra- and inter-specific comparison
    The COI Genbank sequences show little intraspecific divergence in both C. clastrieri (0.1 ± 0.1%) and C. festivipennis (1.2 ± 0.4%). The interspecific difference between C. clastrieri and in C. festivipennis is 0.7 ± 0.2%.
    Small intraspecific divergences with COI sequences were observed in our sample: C. alazanicus (1.2 ± 0.4%), C. brunnicans (0.7 ± 0.2%), C. circumscriptus (2.2 ± 0.5%), C. clastrieri (0.3 ± 0.1%), C. festivipennis (0.4 ± 0.1%), C. furcillatus (1.5 ± 0.4%), C. nubeculosus (0.2 ± 0.1%) and C. pictipennis (1.1 ± 0.3%).
    Finally, C. festivipennis and C. clastrieri—grouped in the same main clade—showed small interspecific distances (0.4 ± 0.2%); these were not identified as separate species based on DNA barcodes. We therefore decided to create a new group (C. clastrieri/festivipennis clade) based on interspecific distance. The overall mean genetic distance (K2P) computed for the different species of Culicoides was found to be 16.6 ± 1.4%. Interspecific K2P values for different (Table 1) species and taxa ranged from 27.3% (between C. furcillatus and C. nubeculosus; between C. circumscriptus-and C. furcillatus) to 17.2 ± 2.1% (between C. circumscriptus and the C. clastrieri/festivipennis clade) for our samples. For the COI Genbank sequences, we observed approximatively the same proportion and the same species (Table 1). We remarked very little interspecific divergence between our sample of the C. clastrieri/festivipennis clade and the C. clastrieri/festivipennis Genbank clade (0.6 ± 0.4%).
    Table 1 Estimation of pairwise distance (± SD) of the Culicoides species for the COI domain of the mtDNA and D1D2 region of the rDNA.
    Full size table

    Analysis from 28S rDNA sequences did not show any intraspecific divergence whatever the taxa (0.000) with the exception of C. nubeculosus (0.1 ± 0.1%) and C. festivipennis/C.clastrieri (0.1 ± 0%). The overall mean genetic distance (K2P) computed for the different species of Culicoides was found to be 2.1 ± 0.03%. Interspecific K2P values for different species (Table 1) and taxa ranged from 1.2% (between C. circumscriptus and C. furcillatus; C. furcillatus and C. brunnicans, the main C. clastrieri/festivipennis clade and C. furcillatus) to 5.3 ± 0.9% (between C. circumscriptus and C. nubeculosus).
    Morphometric and morphological analyses
    In all, 148 specimens identified as C. alazanicus (n = 10), C. brunnicans (n = 27), C. circumscriptus (n = 27), C. clastrieri (n = 21), C. festivipennis (n = 20), C. furcillatus (n = 14), C. nubeculosus (n = 19) and C. pictipennis (n = 20) were analysed with 11 wing landmarks/specimens (Fig. 2).
    Figure 2

    Trees obtained from nucleotide analysis of: (a) COI mtDNA; (b) 28S rDNA (with MP method) sequences of C. alazanicus, C. brunnicans, C. circumscriptus C. clastrieri, C. festivipennis, C. furcillatus, C. nubeculosus and C. pictipennis and bootstrap values are shown in nodes (1000 replicates).

    Full size image

    Principal component analyses
    Principal component analysis (PCA) was used to observe possible grouping trends.
    Firstly, we performed a first normed PCA using the “Wing landmarks” model. The first three axes accounted for 76%, 15% and 8% of the total variance, which suggests a weak structuration of the data. This was confirmed by a scatterplot of PCA axes 1 and 2 that was unable to separate the species (Fig. 3).
    Figure 3

    Principal component analysis (PCA): percentage of variance explained for each PCA dimension and results.

    Full size image

    Secondly, we performed a first normed PCA on the “Wing morphological characters” model. The various specimens of each species are represented by a single point suggesting a close correlation of wing morphological characters. This model, without variance, is not validated and does not permit species separation.
    We studied the “Full wing (landmarks and morphological, characters)” model through a normed PCA on raw data. C. clastrieri could be clearly separated from C. festivipennis. The first five axes accounted for 40%, 25%, 12%, 10% and 5% of the total variance. The scatterplot separated unambiguously and without overlap C. clastrieri-C. festivipennis on the one hand and the six species on the other hand (Fig. 3).
    Finally, we performed a first normed PCA on the “Full model” (Morphological characters—wing, head, abdomen, legs—and wing landmarks). The first nine axes accounted for 26%, 23%, 22%, 10%, 8%., 4%, 3%, 2% and 1% of the total variance, which reveals good structuration of the data. This was confirmed by a scatterplot of PCA axes 1 and 2 that presents the same topology as the wing morphological model (Fig. 3).
    This supports discrimination according to the species’ wing pattern. Similarly, and some body pattern characters could be used to identify Culicoides from the clastrieri/festivipennis clade better and quicker. With that objective in mind, we performed analyses on three datasets: (1) “Wing landmarks” (11 landmarks); (2) “Full wing” (38 items) and (3) the “Full model” that includes 71 items.
    Discriminant analyses
    PLS-DA and sPLS-DA models were used in order to discriminate the extremes (i.e. the most sensitive and most robust groups) using the three datasets (species, models and components) as described. The accuracy and the balanced error rate (BER) for the two models were compared and are summarised in Supplementary Information 2 and Fig. 4.
    Figure 4

    Balanced error rate (BER) choosing the number of dimensions. Performance and ncomp selection.

    Full size image

    The tuning step of the number of components to select showed that 16 components were necessary to lower the BER (Fig. 4A,B) for the “Wing landmarks” data. The AUC values with 16 components are as follows: C. alazanicus (0.97, p  More

  • in

    Planting period is the main factor for controlling maize rough dwarf disease

    1.
    Rockström, J. et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46, 4–17 (2017).
    PubMed  Article  Google Scholar 
    2.
    García-Arenal, F. & McDonald, B. A. An analysis of the durability of resistance to plant viruses. Phytopathology 93, 941–952 (2003).
    PubMed  Article  Google Scholar 

    3.
    Anderson, P. K. et al. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19, 535–544 (2004).
    PubMed  Article  Google Scholar 

    4.
    Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201 (2000).
    CAS  PubMed  Article  Google Scholar 

    5.
    Stukenbrock, E. H. & McDonald, B. A. The origins of plant pathogens in agro-ecosystems. Annu. Rev. Phytopathol. 46, 75–100 (2008).
    CAS  PubMed  Article  Google Scholar 

    6.
    Biek, R. & Real, L. A. The landscape genetics of infectious disease emergence and spread. Mol. Ecol. 19, 3515–3531 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Meentemeyer, R. K., Haas, S. E. & Václavík, T. Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems. Annu. Rev. Phytopathol. 50, 379–402 (2012).
    CAS  PubMed  Article  Google Scholar 

    8.
    Boccardo, G. & Milne, R.G. Plant Reovirus Group. Description of Plant Viruses. No. 294. CM/AAB (1984).

    9.
    Dovas, C. I., Eythymiou, K. & Katis, N. I. First report of maize rough dwarf virus (MRDV) on maize crops in Greece. Plant Pathol. 53, 238–238 (2004).
    Article  Google Scholar 

    10.
    Lenardon, S. L., March, G. J., Nome, S. F. & Ornaghi, J. A. Recent outbreak of “Mal de Rio Cuarto” virus on corn in Argentina. Plant Dis. 82, 448 (1998).
    CAS  PubMed  Article  Google Scholar 

    11.
    Zhang, H., Chen, J., Lei, J. & Adams, M. J. Sequence analysis shows that a dwarfing disease on rice, wheat and maize in China is caused by rice black-streaked dwarf virus. Eur. J. Plant Pathol. 107, 563–567 (2001).
    CAS  Article  Google Scholar 

    12.
    Hoang, A. T. et al. Identification, characterization, and distribution of southern rice black-streaked dwarf virus in Vietnam. Plant Dis. 95, 1063–1069 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Achon, M. A., Serrano, L., Clemente-Orta, G. & Barcelo, A. The virome of maize rough dwarf disease: molecular genome diversification, phylogeny and selection. Ann Appl Biol. 176, 192–202 (2020).
    CAS  Article  Google Scholar 

    14.
    Lovisolo, O. Maize Rough Dwarf Virus. Descriptions of Plant Viruses No. 72. Commonw. Mycol. Inst. Asso. Appl. Biol. (1971).

    15.
    Achon, M. A. & Sobrepere, M. Incidence of potyviruses in commercial maize fields and their seasonal cycles in Spain. JPDP 108, 399–406 (2001).
    CAS  Google Scholar 

    16.
    Achon, M. A. & Alonso-Dueñas, N. Impact of 9 years of Bt-maize cultivation on the distribution of maize viruses. Transgenic Res. 18, 387–397 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Achon, M. A., Subira, J. & Sin, E. Seasonal occurrence of Laodelphax striatellus in Spain: effect on the incidence of Maize rough dwarf virus. Crop Prot. 47, 1–5 (2013).
    Article  Google Scholar 

    18.
    Achon, M. A., Serrano, L., Sabate, J. & Porta, C. Understanding the epidemiological factors that intensify the incidence of maize rough dwarf disease in Spain. Ann. Appl. Biol. 166, 311–320 (2015).
    CAS  Article  Google Scholar 

    19.
    CABI, 2017. Laodelphax striatellus. Crop protection compendium, Wallingford, UK: CAB International. https://www.cabi.org/isc/datasheet/10935 (2017).

    20.
    Milne, R. G. & Lovisolo, O. Maize rough dwarf and related viruses. Adv. Virus. Res. 21, 267–341 (1977).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Häni, A., Günthart, H. & Brunetti, R. Identifikation des Rauhverzwergungsvirus an Mais im Tessin. Landwirtschaft Schweiz 2, 131–136 (1989).
    Google Scholar 

    22.
    Hibino, H. Biology and epidemiology of rice viruses. Annu. Rev. Phytopathol. 34, 249–274 (1996).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Bar-Tsur, A., Saadi, H. & Antignu, Y. Resistance of corn genotypes to maize rough darf virus. Maydica 33, 189–200 (1988).
    Google Scholar 

    24.
    Rodriguez-Pardina, P. E., Gimenez-Pecci, M. P. & Laguna, I. G. Wheat: a new natural host for the Mal de rio cuarto virus in the endemic disease area, Rio Cuarto, Cordoba province, Argentina. Plant Dis. 82, 149–152 (1998).
    Article  Google Scholar 

    25.
    Wang, H. D. et al. Recent rice stripe virus epidemics in Zhejiang province, China, and experiments on sowing date, disease–yield loss relationships, and seedling susceptibility. Plant Dis. 92, 1190–1196 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    Wang, H. D. et al. Studies on the epidemiology and yield losses from rice black-streaked dwarf disease in a recent epidemic in Zhejiang province, China. Plant Pathol. 58, 815–825 (2009).
    Article  Google Scholar 

    27.
    Cirilo, A. G. & Andrade, F. Sowing date and maize productivity: I. Crop growth and dry matter partitioning. Crop Sci. 34, 1039–1043 (1994).
    Article  Google Scholar 

    28.
    Farnham, D. E. Row spacing, plant density, and hybrid effects on corn grain yield and moisture. Agron. J. 93, 1049–1053 (2001).
    Article  Google Scholar 

    29.
    Kucharik, C. J. A multidecadal trend of earlier corn planting in the central USA. Agron. J. 98, 1544–1550 (2006).
    Article  Google Scholar 

    30.
    Bruns, H. A. & Abbas, H. K. Planting date effects on Bt and non-Bt corn in the mid-south USA. Agron. J. 98, 100–106 (2006).
    Article  Google Scholar 

    31.
    Achon, M. A. & Clemente, G. Nuevos retos en el control de las enfermedades virales del maíz. Vida rural 424, 44–50 (2017).
    Google Scholar 

    32.
    Maresma, A., Ballesta, A., Santiveri, F. & Lloveras, J. Sowing date affects maize development and yield in irrigated Mediterranean Environments. Agriculture 9, 67 (2019).
    Article  Google Scholar 

    33.
    Chaplin-Kramer, R. et al. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    34.
    Harpaz, I. Maize Rough Dwarf (Israel Universities Press, Jerusalem, 1972).
    Google Scholar 

    35.
    Conti, M. Investigations on the epidemiology of maize rough dwarf virus. I. Overwintering of virus in its planthopper vector, Acta HI Congr. Un. Fitopat. Medit., Oeiras 22–28 Outubro 1972, 11. (1972).  

    36.
    Thresh, J. M. The origins and epidemiology of some important plant virus diseases. Appl. Biol. 5, 1–65 (1980).
    Google Scholar 

    37.
    Grilli, M. P. The role of landscape structure on the abundance of a disease vector planthopper: a quantitative approach. Landsc. Ecol. 25, 383–394 (2010).
    Article  Google Scholar 

    38.
    Conti, M. Investigations on the epidemiology of maize rough dwarf virus III. Field symptoms, incidence and control. Maydica 21, 165–175 (1976).
    Google Scholar 

    39.
    Syobu, S. I., Otuka, A. & Matsumura, M. Trap catches of the small brown planthopper, Laodelphax striatellus (Fallén) (Hemiptera: Delphacidae), in northern Kyushu district, Japan in relation to weather conditions. Appl. Entomol. Zool. 46, 41–50 (2011).
    Article  Google Scholar 

    40.
    Clemente-Orta, G., Albajes, R. & Achon, M. A. Early planting, management of edges and non-crop habitats reduce potyvirus infection in maize. Agron. Sustain. Dev. 40, 21 (2020).
    Article  Google Scholar 

    41.
    Clemente-Orta, G. et al. Changes in landscape composition influence the abundance of insects on maize: the role of fruit orchards and alfalfa crops. Agric. Ecosyst. Environ. 291, 106805 (2020).
    CAS  Article  Google Scholar 

    42.
    Grilli, M. P. & Bruno, M. Regional abundance of a planthopper pest: the effect of host match area and configuration. Entomol. Exp. Appl. 122, 133–143 (2007).
    Article  Google Scholar 

    43.
    Grilli, M. P. & Gorla, D. E. The effect of agroecosystem management on the abundance of Delphacodes kuscheli (Homopteran: Delphacidae), vector of the maize rough dwarf virus, in central Argentina. Maydica 43, 77–82 (1998).
    Google Scholar 

    44.
    MacArthur, R. H. & Wilson, E. O. Island Biogeography (Princeton University Press, Princeton, 1967).
    Google Scholar 

    45.
    Root, R. B. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleraceae). Ecol. Monogr. 43, 95–124 (1973).
    Article  Google Scholar 

    46.
    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes-eight hypotheses. Biol. Rev. 87, 661–685 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    47.
    Trumper, E.V. Modelos de epidemiologia matemática aplicados al estudio de1 sistema Virus MRC-maiz-Delphacidae (“Ma1 de Rio Cuarto”). Tesis doctoral. Universidad National de Cordoba (1996).

    48.
    Cheng, J. A. Rice Planthoppers in the Past Half Century in China. Rice Planthoppers: Ecology, Management Social Economics and Policy 1–32 (Springer, Dordrecht, 2015).
    Google Scholar 

    49.
    Liu, Z. et al. (2016) The effect of landscape composition on the abundance of Laodelphax striatellus Fallén in fragmented agricultural landscapes. Land 5, 36 (2016).
    Article  Google Scholar 

    50.
    Clemente-Orta, G. & Álvarez, H. A. L. influencia del paisaje agrícola en el control biológico desde una perspectiva espacial. Revista Ecosistemas 28, 13–25 (2019).
    Article  Google Scholar 

    51.
    Madeira, F. et al. Stable carbon and nitrogen isotope signatures to determine predator dispersal between alfalfa and maize. Biol. Control. 77, 66–75 (2014).
    Article  Google Scholar 

    52.
    Cantero-Martínez, C. & Moncunill, J. Sistemas agrícolas de la Plana de Lleida: Descripción y evaluación de los sistemas de producción en el área del canal Segarra-Garrigues antes de su puesta en funcionamiento. (2012).

    53.
    Braun-Blanquet, J. Fitosociología. Bases para el estudio de las comunidades vegetales (Blume, Madrid, 1979).
    Google Scholar 

    54.
    DePaulo, J. J. & Powell, C. A. Extraction of double-stranded RNA from plant tissues without the use of organic solvents. Plant Dis. 79, 246–248 (1995).
    CAS  Article  Google Scholar 

    55.
    Albajes, R., Lumbierres, B., Pons, X. & Comas, J. Representative taxa in field trials for environmental risk assessment of genetically modified maize. Bull. Entomol. Res. 103, 724–733 (2013).
    CAS  PubMed  Article  Google Scholar 

    56.
    Ardanuy, A., Lee, M. S. & Albajes, R. Landscape context influences leafhopper and predatory Orius spp. abundances in maize fields. Agric. Forest. Entomol. 20, 81–92 (2018).
    Article  Google Scholar 

    57.
    Holzinger, W. E., Kammerlander, I. & Nickel, H. The Auchenorrhyncha of Central Europe. In Fulgoromorpha, Cicadomorpha Excl-Cicadellidae Vol. 1 (ed. Brill) (Brill, Leiden-Boston, 2003).
    Google Scholar 

    58.
    ESRI. ArcGIS Desktop Version 10.3.1 (Environmental Systems Research Institute, Redlands, 2015).
    Google Scholar 

    59.
    Bartoń, K. (2018). Package “MuMIn” Title Multi-Model Inference. In: CRAN-R. https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf

    60.
    Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).
    MathSciNet  Article  Google Scholar 

    61.
    Paradis, E. Package “ape” Title Analyses of Phylogenetics and Evolution Depends R. https://cran.r-project.org/web/packages/ape/ape.pdf (2019).

    62.
    Max, K. et al. Caret: Title Classification and Regression Training. R package version: 6.0-84. https://cran.r-project.org/web/packages/caret/caret.pdf (2018).

    63.
    Bates, D. et al. Lme4: Linear Mixed-Effects Models using ‘Eigen’ and S4. R package version 1.1-21. https://cran.r-project.org/web/packages/lme4/lme4.pdf (2019).

    64.
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
    Article  Google Scholar 

    65.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ R version 3.6.2. (2019). More

  • in

    Multiple life-stage inbreeding depression impacts demography and extinction risk in an extinct-in-the-wild species

    1.
    Keller, L. F. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230–241 (2002).
    Article  Google Scholar 
    2.
    Boakes, E. H., Wang, J. & Amos, W. An investigation of inbreeding depression and purging in captive pedigreed populations. Heredity (Edinb). 98, 172–182 (2007).
    CAS  PubMed  Article  Google Scholar 

    3.
    Bozzuto, C., Biebach, I., Muff, S., Ives, A. R. & Keller, L. F. Inbreeding reduces long-term growth of Alpine ibex populations. Nat. Ecol. Evol. 3, 1359–1364 (2019).
    PubMed  Article  Google Scholar 

    4.
    Saccheri, I., Kuussaari, M., Kankare, M., Vikman, P. & Hanski, I. Inbreeding and extinction in a butterfly metapopulation. Nature 392, 491–494 (1998).
    ADS  CAS  Article  Google Scholar 

    5.
    Kardos, M., Taylor, H. R., Ellegren, H., Luikart, G. & Allendorf, F. W. Genomics advances the study of inbreeding depression in the wild. Evol. Appl. 9, 1205–1218 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    6.
    Allendorf, F. W., Luikart, G. & Aitken, S. N. Conservation and the genetics of populations. (Wiley-Blackwell, 2013).

    7.
    Johnson, H. E., Mills, L. S., Wehausen, J. D., Stephenson, T. R. & Luikart, G. Translating effects of inbreeding depression on component vital rates to overall population growth in endangered bighorn sheep. Conserv. Biol. 25, 1240–1249 (2011).
    PubMed  Article  Google Scholar 

    8.
    Frankham, R. Where are we in conservation genetics and where do we need to go?. Conserv. Genet. 11, 661–663 (2010).
    Article  Google Scholar 

    9.
    Pierson, J. C. et al. Incorporating evolutionary processes into population viability models. Conserv. Biol. 29, 755–764 (2015).
    PubMed  Article  Google Scholar 

    10.
    Huisman, J., Kruuk, L. E. B., Ellisa, P. A., Clutton-Brock, T. & Pemberton, J. M. Inbreeding depression across the lifespan in a wild mammal population. Proc. Natl. Acad. Sci. U. S. A. 113, 3585–3590 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Grueber, C. E., Laws, R. J., Nakagawa, S. & Jamieson, I. G. Inbreeding depression accumulation across life-history stages of the endangered takahe. Conserv. Biol. 24, 1617–1625 (2010).
    PubMed  Article  Google Scholar 

    12.
    Harrisson, K. A. et al. Lifetime fitness costs of inbreeding and being inbred in a critically endangered bird. Curr. Biol. 29, 2711-2717.e4 (2019).
    CAS  PubMed  Article  Google Scholar 

    13.
    Ralls, K., Ballou, J. D. & Templeton, A. Estimates of lethal equivalents and the cost of inbreeding in mammals. Conserv. Biol. 2, 185–192 (1988).
    Article  Google Scholar 

    14.
    Hoeck, P. E. A., Wolak, M. E., Switzer, R. A., Kuehler, C. M. & Lieberman, A. A. Effects of inbreeding and parental incubation on captive breeding success in Hawaiian crows. Biol. Conserv. 184, 357–364 (2015).
    Article  Google Scholar 

    15.
    Jimenez, J. A., Hughes, K. A., Alaks, G., Graham, L. & Lacy, R. C. An experimental study of inbreeding depression in a natural habitat. Science (80-. ). 266, 271–273 (1994).

    16.
    Van Oosterhout, C., Zijlstra, W. G., Van Heuven, M. K. & Brakefield, P. M. Inbreeding depression and genetic load in laboratory metapopulations of the butterfly Bicyclus anynana. Evolution (N. Y). 54, 218–225 (2000).

    17.
    Szulkin, M., Garant, D., Mccleery, R. H. & Sheldon, B. C. Inbreeding depression along a life-history continuum in the great tit. J. Evol. Biol. 20, 1531–1543 (2007).
    CAS  PubMed  Article  Google Scholar 

    18.
    Wolak, M. E., Arcese, P., Keller, L. F., Nietlisbach, P. & Reid, J. M. Sex-specific additive genetic variances and correlations for fitness in a song sparrow (Melospiza melodia) population subject to natural immigration and inbreeding. Evolution (N. Y). 72, 2057–2075 (2018).

    19.
    Kennedy, E. S., Grueber, C. E., Duncan, R. P. & Jamieson, I. G. Severe inbreeding depression and no evidence of purging in an extremely inbred wild species-the chatham island black robin. Evolution (N. Y). 68, 987–995 (2014).

    20.
    Jamieson, I. G., Tracy, L. N., Fletcher, D. & Armstrong, D. P. Moderate inbreeding depression in a reintroduced population of North Island robins. Anim. Conserv. 10, 95–102 (2007).
    Article  Google Scholar 

    21.
    Norén, K., Godoy, E., Dalén, L., Meijer, T. & Angerbjörn, A. Inbreeding depression in a critically endangered carnivore. Mol. Ecol. https://doi.org/10.1111/mec.13674 (2016).
    Article  PubMed  Google Scholar 

    22.
    Sæther, B. E. & Bakke, Ø. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642–653 (2000).
    Article  Google Scholar 

    23.
    Beissinger, S. R. & McCullough, D. R. Population viability analysis. (University of Chicago Press, 2002).

    24.
    Lacy, R. C. Lessons from 30 years of population viability analysis of wildlife populations. Zoo Biol. 38, 67–77 (2019).
    PubMed  Article  Google Scholar 

    25.
    Traill, L. W., Bradshaw, C. J. A. & Brook, B. W. Minimum viable population size: A meta-analysis of 30 years of published estimates. Biol. Conserv. 139, 159–166 (2007).
    Article  Google Scholar 

    26.
    O’Grady, J. J. et al. Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol. Conserv. 133, 42–51 (2006).
    Article  Google Scholar 

    27.
    Lacy, R. C., Miller, P. S. & Traylor-Holzer, K. Vortex 10 user’s manual. (2017).

    28.
    Ballou, J. D. & Lacy, R. C. in Population management for survival and recovery (eds. Ballou, J. D., Gilpin, M. & Foose, T. J.) 76–111 (Columbia University Press, 1995).

    29.
    Armbruster, P. & Reed, D. H. Inbreeding depression in benign and stressful environments. Heredity (Edinb). 95, 235–242 (2005).
    CAS  PubMed  Article  Google Scholar 

    30.
    Fox, C. W. & Reed, D. H. Inbreeding depression increases with environmental stress: an experimental study and meta-analysis. Evolution (N. Y). 65, 246–258 (2011).

    31.
    Baker, R. H. The avifauna of Micronesia, its origin, evolution and distribution. (University of Kansas Publications, 1951).

    32.
    Marshall, J. T. The endemic avifauna of Sapan, Tinian Guam and Palau. Condor 51, 200–221 (1949).
    Article  Google Scholar 

    33.
    Wiles, G. J., Bart, J., Beck, R. E. & Aguon, C. F. Impacts of the brown tree snake: patterns of decline and species persistence in Guam’s avifauna. Conserv. Biol. 17, 1350–1360 (2003).
    Article  Google Scholar 

    34.
    Savidge, J. A. Extinction of an island forest avifauna by an introduced snake. Ecology 68, 660–668 (1987).
    Article  Google Scholar 

    35.
    Haig, S. M., Ballou, J. D. & Casna, N. J. Genetic identification of kin in Micronesian kingfishers. J. Hered. 86, 423–431 (1995).
    Article  Google Scholar 

    36.
    Lacy, R. C., Ballou, J. D. & Pollak, J. P. PMx: Software package for demographic and genetic analysis and management of pedigreed populations. Methods Ecol. Evol. 3, 433–437 (2012).
    Article  Google Scholar 

    37.
    Ferrie, G. Using molecular genetic and demographic tools to improve management of ex situ avian populations. (University of Central Florida, 2017). http://stars.library.ucf.edu/etd/5709

    38.
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
    Article  Google Scholar 

    39.
    Burnham, K. . & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach. (Springer, 2002).

    40.
    Whittingham, M. J., Stephens, P. A., Bradbury, R. B. & Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour?. J. Anim. Ecol. 75, 1182–1189 (2006).
    PubMed  Article  Google Scholar 

    41.
    Nietlisbach, P., Muff, S., Reid, J. M., Whitlock, M. C. & Keller, L. F. Nonequivalent lethal equivalents: Models and inbreeding metrics for unbiased estimation of inbreeding load. Evol. Appl. 12, 266–279 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Zou, G. A modified poisson regression approach to prospective studies with binary data. Am. J. Epidemiol. 159, 702–706 (2004).
    PubMed  Article  Google Scholar 

    43.
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    44.
    R Development Core Team. R: A language and environment for statistical computing. (2019).

    45.
    Lacy, R. C. & Pollak, J. P. Vortex: A stochastic simulation of the extinction process. (2017).

    46.
    Hemmings, N. L., Slate, J. & Birkhead, T. R. Inbreeding causes early death in a passerine bird. Nat. Commun. 3, 1–4 (2012).
    Article  CAS  Google Scholar 

    47.
    Tiira, K., Piironen, J. & Primmer, C. R. Evidence for reduced genetic variation in severely deformed juvenile salmonids. Can. J. Fish. Aquat. Sci. 63, 2700–2707 (2006).
    Article  Google Scholar 

    48.
    Wang, J., Hill, W. G., Charlesworth, D. & Charlesworth, B. Dynamics of inbreeding depression due to deleterious mutations in small populations: mutation parameters and inbreeding rate. Genet. Res. 74, 165–178 (1999).
    CAS  PubMed  Article  Google Scholar 

    49.
    Husband, B. C. & Schemske, D. W. Evolution of the magnitude and timing of inbreeding depression in plants. Evolution (N. Y). 50, 54–70 (1996).

    50.
    de Boer, R. A., Eens, M. & Müller, W. Sex-specific effects of inbreeding on reproductive senescence. Proc. R. Soc. B Biol. Sci. 285, (2018).

    51.
    Keller, L. F., Reid, J. M. & Arcese, P. Testing evolutionary models of senescence in a natural population: Age and inbreeding effects on fitness components in song sparrows. Proc. R. Soc. B Biol. Sci. 275, 597–604 (2008).
    CAS  Article  Google Scholar 

    52.
    Partridge, L. & Mangel, M. Messages from mortality: The evolution of death rates in the old. Trends Ecol. Evol. 14, 438–442 (1999).
    CAS  PubMed  Article  Google Scholar 

    53.
    Charlesworth, B. & Hughes, K. A. Age-specific inbreeding depression and components of genetic variance in relation to the evolution of senescence. Proc. Natl. Acad. Sci. U. S. A. 93, 6140–6145 (1996).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Kristensen, T. N., Loeschcke, V. & Hoffmann, A. A. Linking inbreeding effects in captive populations with fitness in the wild: Release of replicated Drosophila melanogaster lines under different temperatures. Conserv. Biol. 22, 189–199 (2008).
    PubMed  Article  Google Scholar 

    55.
    Ryman, N. & Laikre, L. Effects of supportive breeding on the genetically effective population size. Conserv. Biol. 5, 325–329 (1991).
    Article  Google Scholar 

    56.
    Hedrick, P. W. & Garcia-Dorado, A. Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol. Evol. 31, 940–952 (2016).
    PubMed  Article  Google Scholar 

    57.
    Kalinowski, S. T., Hedrick, P. W. & Miller, P. S. Inbreeding Depression in the Speke’s Gazelle Captive Breeding Program. Conserv. Biol. 14, 1375–1384 (2000).
    Article  Google Scholar 

    58.
    Gilligan, D. M. & Frankham, R. Dynamics of individual adaptation processes. Conserv. Genet. 4, 189–197 (2003).
    Article  Google Scholar 

    59.
    Christie, M. R., Marine, M. L., French, R. A. & Blouin, M. S. Genetic adaptation to captivity can occur in a single generation. Proc. Natl. Acad. Sci. U. S. A. 109, 238–242 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    60.
    Grueber, C. E., Waters, J. M. & Jamieson, I. G. The imprecision of heterozygosity-fitness correlations hinders the detection of inbreeding and inbreeding depression in a threatened species. Mol. Ecol. 20, 67–79 (2011).
    PubMed  Article  Google Scholar 

    61.
    Milligan, M. C., Wells, S. L. & McNew, L. B. A population viability analysis for sharp-tailed grouse to inform reintroductions. J. Fish Wildl. Manag. 9, 565–581 (2018).
    Article  Google Scholar 

    62.
    Research needs & implications for population management. Moßbrucker, A. M., Imron, M. A., Pudtatmoko, S., Pratje, P. & Sumardi. Modelling the fate of Sumatran elephants in Bukit Tigapuluh, Indonesia. J. For. Sci. 10, 5–18 (2016).
    Google Scholar 

    63.
    Sharpe, M. & Berggren, P. Indian Ocean humpback dolphin in the Menai Bay off the south coast of Zanzibar, East Africa is Critically Endangered. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 2133–2146 (2019).
    Article  Google Scholar 

    64.
    McQuillan, R. et al. Runs of homozygosity in European populations. Am. J. Hum. Genet. 83, 359–372 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Caballero, A., Bravo, I. & Wang, J. Inbreeding load and purging: Implications for the short-term survival and the conservation management of small populations. Heredity (Edinb). 118, 177–185 (2017).
    CAS  PubMed  Article  Google Scholar 

    66.
    Liao, W. & Reed, D. H. Inbreeding-environment interactions increase extinction risk. Anim. Conserv. 12, 54–61 (2009).
    CAS  Article  Google Scholar 

    67.
    Melbourne, B. A. & Hastings, A. Extinction risk depends strongly on factors contributing to stochasticity. Nature 454, 100–103 (2008).
    ADS  CAS  PubMed  Article  Google Scholar  More

  • in

    Monkeys fight more in polluted air

    Monkey conflict data
    We obtained social conflict data ofNorthern China Rhesus Monkeys from Hongshan Forest Zoo of Nanjing, China. Nanjing (31° 14′–32° 37′ N, 118° 22′–119° 14′ E) is located in the central region of the lower Yangtze River and southwest of Jiangsu Province. It is an important national gateway city for the development of the central and western regions in the Yangtze River Delta, with an area of 6587 km2 covering a population of more than 8 Million. Average annual temperature is about 15.4 °C. Annual precipitation is 1106 mm, 60% of which occurs from Jun to Sep.
    There are about 90 monkeys in the Hongshan Zoo in 2017, about 35 adults, 20 sub-adults and 35 juveniles or new-borns. The round monkey park was located in the central part of the zoo, with an area of about 2000 m2. Although a thick and 3-m high glass wall has been built to prevent artificial feedings, visitors sometimes throw food into the monkey park, causing a social conflict due to the food competition. Usually the zookeeper feeds these monkeys twice a day at about 9:30 am and 3:30 pm respectively.
    We established a monitoring camera web (Haikang DS-7104N-SN/P) covering the monkey park in September 2016 and video-recorded the whole population since then. We defined social conflicts of monkeys as aggressive or fighting behaviors between individuals, including chasing (one chases another until it escapes), wrestling (one grapples and wrestles with another, until one escapes or gives up), biting (one opens its mouth and bites or tries to bites another), scratching (One scratches or scrapes another using its hands), threating (One warns or threats another through calling or behavioural display), etc. The age of participants and the occurrence time were recorded for each aggression46. We considered a conflict ends if there is no continuation within 10 s after the aggression. Since these monkeys are inactive during the night, we only recorded their diurnal aggressive behaviors from 6:30 till 18:30 and then summed the fights as daily social conflicts. One-year round data were collected from Mar 2017 to Feb 2018.
    Air Quality Index
    We obtained Air Quality Index (AQI) data of Nanjing from the Data Centre of the Ministry of Environmental Protection of the People’s Republic of China (MEP, http://datacenter.mep.gov.cn/)17. Based on established criteria (GB3095-2012). AQI is calculated for six major air pollutants separately: particle matter  More

  • in

    Anthropogenic interferences lead to gut microbiome dysbiosis in Asian elephants and may alter adaptation processes to surrounding environments

    1.
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105 (2012).
    ADS  CAS  Article  Google Scholar 

    3.
    Taylor-Brown, A. et al. The impact of human activities on Australian wildlife. PLoS ONE 14(1), e0206958 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Hunter, P. The human impact on biological diversity. How species adapt to urban challenges sheds light on evolution and provides clues about conservation. EMBO Rep. 8(4), 316–318 (2007).

    5.
    Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. Ongoing unraveling of a continental fauna: Decline and extinction of Australian mammals since European settlement. Proc. Natl. Acad. Sci. 112(15), 4531 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Cho, I. & Blaser, M. J. The human microbiome: At the interface of health and disease. Nat. Rev. Genet. 13(4), 260–270 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13(10), 701–712 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut microbiome and the immune system. Nature 474(7351), 327–336 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Inserra, A. et al. Mice lacking Casp 1, Ifngr and Nos2 genes exhibit altered depressive- and anxiety-like behaviour, and gut microbiome composition. Sci. Rep. 9(1), 6456 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    10.
    Kuti, D. et al. Gastrointestinal (non-systemic) antibiotic rifaximin differentially affects chronic stress-induced changes in colon microbiome and gut permeability without effect on behavior. Brain Behav. Immun. 84, 218–228 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Bharwani, A. et al. Structural & functional consequences of chronic psychosocial stress on the microbiome & host. Psychoneuroendocrinology. 63, 217–227 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Wasimuddin, Menke, S., Melzheimer, J., Thalwitzer, S., Heinrich, S., Wachter, B. et al. Gut microbiomes of free-ranging and captive Namibian cheetahs: Diversity, putative functions and occurrence of potential pathogens. Mol. Ecol. 26(20), 5515–5527 (2017).

    13.
    Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14(7), 1655–1661 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Ley, R. E. et al. Evolution of mammals and their gut microbes. Science (New York, NY). 320(5883), 1647–1651 (2008).
    ADS  CAS  Article  Google Scholar 

    15.
    Wang, J. et al. Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc. Natl. Acad. Sci. U.S.A. 111(26), E2703–E2710 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Koch, H. & Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl. Acad. Sci. U.S.A. 108(48), 19288–19292 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Schmidt, E., Mykytczuk, N. & Schulte-Hostedde, A. I. Effects of the captive and wild environment on diversity of the gut microbiome of deer mice (Peromyscus maniculatus). ISME J. 13(5), 1293–1305 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Lahdenperä, M., Mar, K.U., Courtiol, A., Lummaa, V. Differences in age-specific mortality between wild-caught and captive-born Asian elephants. Nat. Commun. 9(1), 3023 (2018).

    19.
    Sun, C. H., Liu, H. Y., Liu, B., Yuan, B. D. & Lu, C. H. Analysis of the gut microbiome of wild and captive Pere David’s deer. Front. Microbiol. 10, 2331 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Ryser-Degiorgis, M.-P. Wildlife health investigations: Needs, challenges and recommendations. BMC Vet. Res. 9(1), 223 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Stallknecht, D. E. Impediments to wildlife disease surveillance, research, and diagnostics. Curr. Top. Microbiol. Immunol. 315, 445–461 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    22.
    Soulsbury, C. D. et al. The welfare and ethics of research involving wild animals: A primer. Methods Ecol. Evol. 11(10), 1164–1181 (2020).
    Article  Google Scholar 

    23.
    Amato, K. R. et al. Using the gut microbiota as a novel tool for examining colobine primate GI health. Global Ecol. Conserv. 7, 225–237 (2016).
    Article  Google Scholar 

    24.
    Gehrig, J.L., Venkatesh, S., Chang, H.W., Hibberd, M.C., Kung, V.L., Cheng, J. et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science (New York, NY). 365(6449) (2019).

    25.
    Choudhury, A., Lahiri Choudhury, D.K., Desai, A., Duckworth, J.W., Easa, P.S., Johnsingh, A.J.T. et al. Elephas maximus. The IUCN red list of threatened species. p. e.T7140A12828813 (2008).

    26.
    Zhang, C., Xu, B., Lu, T. & Huang, Z. Metagenomic analysis of the fecal microbiomes of wild asian elephants reveals microflora and enzymes that mainly digest hemicellulose. J. Microbiol. Biotechnol. 29(8), 1255–1265 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Ilmberger, N. et al. A comparative metagenome survey of the fecal microbiota of a breast- and a plant-fed Asian elephant reveals an unexpectedly high diversity of glycoside hydrolase family enzymes. PLoS ONE 9(9), e106707 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    28.
    Songer, M., Aung, M., Allendorf, T. D., Calabrese, J. M. & Leimgruber, P. Drivers of change in Myanmar’s wild elephant distribution. Trop. Conserv. Sci. 9(4), 1940082916673749 (2016).
    Article  Google Scholar 

    29.
    Crawley, J. A. H. et al. Investigating changes within the handling system of the largest semi-captive population of Asian elephants. PLoS ONE 14(1), e0209701 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Oo, Z. M. Health issues of captive Asian elephants in Myanmar. Gajah. 36, 21–22 (2012).
    Google Scholar 

    31.
    Chel, H.M., Iwaki, T., Hmoon, M., Thaw, Y.N., Chan Soe, N., Win, S.Y., et al. Morphological and molecular identification of cyathostomine gastrointestinal nematodes of Murshidia and Quilonia species from Asian elephants in Myanmar. Int. J. Parasitol. Parasites Wildl. (2020).

    32.
    Sukumar, R., Santiapillai, C. Elephas maximus: Status and distribution. in The Proboscidea: Evolution and Palaeoecology of Elephants and their Relatives 327–331 (Oxford University Press, New York, 1996).

    33.
    Leimgruber, P. et al. Current status of Asian elephants in Myanmar. Gajah. 35, 76–86 (2011).
    Google Scholar 

    34.
    Prakash, T.G.S.L., Indrajith, W.A.A.D.U., Aththanayaka, A.M.C.P., Karunarathna, S., Botejue, M., Nijman, V. et al. Illegal capture and internal trade of wild Asian elephants (Elephas maximus) in Sri Lanka. Nat. Conserv. 42, 51–69 (2020).

    35.
    Clubb, R. & Mason, G. A Review of the Welfare of Zoo Elephants in Europe: A Report Commissioned by the RSPCA (Animal BehaviourResearch Group, University of Oxford, Oxford, 2002).
    Google Scholar 

    36.
    Millspaugh, J.J., Burke, T., Van Dyk, G., Slotow, R., Washburn, B.E., Woods, R.J. Stress response of working African elephants to transportation and safari adventures. J. Wildl. Manag. 1257–1260 (2007).

    37.
    Clubb, R. et al. Compromised survivorship in zoo elephants. Science (New York, NY). 322(5908), 1649 (2008).
    ADS  CAS  Article  Google Scholar 

    38.
    Easton, A.V., Quinones, M., Vujkovic-Cvijin, I., Oliveira, R.G., Kepha, S., Odiere, M.R. et al. The impact of anthelmintic treatment on human gut microbiota based on cross-sectional and pre- and postdeworming comparisons in western Kenya. mBio. 10(2) (2019).

    39.
    Martin, I. et al. Dynamic changes in human-gut microbiome in relation to a placebo-controlled anthelminthic trial in Indonesia. PLoS Negl. Trop. Dis. 12(8), e0006620 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    He, F. et al. Variations in gut microbiota and fecal metabolic phenotype associated with Fenbendazole and Ivermectin tablets by 16S rRNA gene sequencing and LC/MS-based metabolomics in Amur tiger. Biochem. Biophys. Res. Commun. 499(3), 447–453 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Kunz, I. G. Z. et al. Equine fecal microbiota changes associated with anthelmintic administration. J. Equine Vet. Sci. 77, 98–106 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    42.
    Gagliardi, A. et al. Rebuilding the gut microbiota ecosystem. Int. J. Environ. Res. Public Health. 15(8), 1679 (2018).
    PubMed Central  Article  CAS  Google Scholar 

    43.
    Clayton, J. B. et al. Captivity humanizes the primate microbiome. Proc. Natl. Acad. Sci. U.S.A. 113(37), 10376–10381 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57(4), 690–704 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Monfort, S.L. “Mayday mayday mayday”, the millennium ark is sinking! in (Holt, W.V., Brown, J.L., Comizzoli, P. eds.) Reproductive Sciences in Animal Conservation: Progress and Prospects 15–31 (Springer, New York, 2014).

    46.
    Gerber, L. R. Conservation triage or injurious neglect in endangered species recovery. Proc. Natl. Acad. Sci. U.S.A. 113(13), 3563–3566 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Haworth, S.E., White, K.S., Côté, S.D., Shafer, A.B.A. Space, time and captivity: Quantifying the factors influencing the fecal microbiome of an alpine ungulate. FEMS Microbiol. Ecol. 95(7) (2019).

    48.
    Gibson, K. M. et al. Gut microbiome differences between wild and captive black rhinoceros—Implications for rhino health. Sci. Rep. 9(1), 7570 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Montonye, D. R. et al. Acclimation and institutionalization of the mouse microbiota following transportation. Front. Microbiol. 9, 1085 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Conour, L. A., Murray, K. A. & Brown, M. J. Preparation of animals for research–issues to consider for rodents and rabbits. ILAR J. 47(4), 283–293 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Obernier, J. A. & Baldwin, R. L. Establishing an appropriate period of acclimatization following transportation of laboratory animals. ILAR J. 47(4), 364–369 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Mir, R. A., Kleinhenz, M. D., Coetzee, J. F., Allen, H. K. & Kudva, I. T. Fecal microbiota changes associated with dehorning and castration stress primarily affects light-weight dairy calves. PLoS ONE 14(1), e0210203 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Abhijith, T.V., Ashokkumar, M., Dencin, R.T., George, C. Gastrointestinal parasites of Asian elephants (Elephas maximus L. 1798) in south Wayanad forest division, Kerala, India. J. Parasit. Dis. 42(3), 382–390 (2018).

    54.
    Bansiddhi, P., Brown, J.L., Thitaram, C., Punyapornwithaya, V., Somgird, C., Edwards, K.L. et al. Changing trends in elephant camp management in northern Thailand and implications for welfare. PeerJ. 6, e5996-e (2018).

    55.
    Leung, J. M. & Loke, P. N. A role for IL-22 in the relationship between intestinal helminths, gut microbiota and mucosal immunity. Int. J. Parasitol. 43(3–4), 253–257 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Kreisinger, J., Bastien, G., Hauffe, H.C., Marchesi, J., Perkins, S.E. Interactions between multiple helminths and the gut microbiota in wild rodents. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 370(1675) (2015).

    57.
    Lee, S. C. et al. Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Negl. Trop. Dis. 8(5), e2880 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Ditgen, D. et al. Harnessing the helminth secretome for therapeutic immunomodulators. Biomed. Res. Int. 2014, 964350 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    59.
    Hewitson, J. P. et al. Proteomic analysis of secretory products from the model gastrointestinal nematode Heligmosomoides polygyrus reveals dominance of venom allergen-like (VAL) proteins. J. Proteom. 74(9), 1573–1594 (2011).
    CAS  Article  Google Scholar 

    60.
    Chong, R. et al. Looking like the locals—Gut microbiome changes post-release in an endangered species. Anim. Microbiome. 1(1), 8 (2019).
    Article  Google Scholar 

    61.
    Wienemann, T. et al. The bacterial microbiota in the ceca of Capercaillie (Tetrao urogallus) differs between wild and captive birds. Syst. Appl. Microbiol. 34(7), 542–551 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    62.
    Pilla, R. & Suchodolski, J. S. The role of the canine gut microbiome and metabolome in health and gastrointestinal disease. Front. Vet. Sci. 6, 498 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Hemarajata, P. & Versalovic, J. Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Therap. Adv. Gastroenterol. 6(1), 39–51 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Pertoldi, C., Randi, E., Ruiz-González, A., Vergeer, P. & Ouborg, J. How can genomic tools contribute to the conservation of endangered organisms. Int. J. Genomics. 2016, 4712487 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    65.
    Roth, T. L. et al. Reduced gut microbiome diversity and metabolome differences in Rhinoceros species at risk for iron overload disorder. Front. Microbiol. 10, 2291 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    66.
    Youngblut, N. D. et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10(1), 2200 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    67.
    Tatsika, S., Karamanoli, K., Karayanni, H. & Genitsaris, S. Metagenomic characterization of bacterial communities on ready-to-eat vegetables and effects of household washing on their diversity and composition. Pathogens. 8(1), 37 (2019).
    CAS  PubMed Central  Article  Google Scholar 

    68.
    Allan, N., Knotts, T.A., Pesapane, R., Ramsey, J.J., Castle, S., Clifford, D. et al. Conservation implications of shifting gut microbiomes in captive-reared endangered voles intended for reintroduction into the wild. Microorganisms. 6(3) (2018).

    69.
    Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69(2), 434–443 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Eid, H. M. et al. Significance of microbiota in obesity and metabolic diseases and the modulatory potential by medicinal plant and food ingredients. Front. Pharmacol. 8, 387 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    71.
    Lay, C. et al. Design and validation of 16S rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ. Microbiol. 7(7), 933–946 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    72.
    Kartzinel, T. R., Hsing, J. C., Musili, P. M., Brown, B. R. P. & Pringle, R. M. Covariation of diet and gut microbiome in African megafauna. Proc. Natl. Acad. Sci. 116(47), 23588–23593 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Pope, P. B. et al. Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS ONE 7(6), e38571 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Warnecke, F. et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450(7169), 560–565 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Evans, N. J. et al. Characterization of novel bovine gastrointestinal tract Treponema isolates and comparison with bovine digital dermatitis treponemes. Appl. Environ. Microbiol. 77(1), 138 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    76.
    Kay, G. L. et al. Differences in the faecal microbiome in Schistosoma haematobium infected children vs. uninfected children. PLoS Negl. Trop. Dis. 9(6), 0003861 (2015).
    Article  CAS  Google Scholar 

    77.
    Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: A call for the consideration of host-associated microbiota in wildlife management practices. Proc. Biol. Sci. 2019(286), 20182448 (1895).
    Google Scholar 

    78.
    Borody, T. J., Paramsothy, S. & Agrawal, G. Fecal microbiota transplantation: Indications, methods, evidence, and future directions. Curr. Gastroenterol. Rep. 15(8), 337 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    79.
    Blyton, M. D. J. et al. Faecal inoculations alter the gastrointestinal microbiome and allow dietary expansion in a wild specialist herbivore, the koala. Anim. Microbiome. 1(1), 6 (2019).
    Article  Google Scholar 

    80.
    Guo, W. et al. Fecal microbiota transplantation provides new insight into wildlife conservation. Glob. Ecol. Conserv. 24, e01234 (2020).
    Article  Google Scholar 

    81.
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37(8), 852–857 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13(7), 581–583 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    83.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26(1), 32–46 (2001).
    Google Scholar 

    84.
    Vazquez-Baeza, Y., Pirrung, M., Gonzalez, A. & Knight, R. EMPeror: A tool for visualizing high-throughput microbial community data. GigaScience. 2(1), 16 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    85.
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 6(1), 90 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    86.
    Morton, J. T. et al. Balance trees reveal microbial niche differentiation. mSystems 2(1), e00162-00166 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    87.
    Mandal, S. et al. Analysis of composition of microbiomes: A novel method for studying microbial composition. Microb. Ecol. Health Dis. 26, 27663 (2015).
    PubMed  PubMed Central  Google Scholar  More