More stories

  • in

    The impact of injury on apparent survival of whale sharks (Rhincodon typus) in South Ari Atoll Marine Protected Area, Maldives

    1.
    McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 1255641 (2015).
    PubMed  Article  CAS  Google Scholar 
    2.
    Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. eLife 3, 590 (2014).
    Article  Google Scholar 

    3.
    Hutchings, J. A., Myers, R. A., García, V. B., Lucifora, L. O. & Kuparinen, A. Life-history correlates of extinction risk and recovery potential. Ecol. Appl. 22, 1061–1067 (2012).
    PubMed  Article  Google Scholar 

    4.
    Frisk, M. & Miller, T. J. Life histories and vulnerability to exploitation of elasmobranchs: Inferences from elasticity, perturbation and phylogenetic analyses. Artic. J. Northwest Atl. Fish. Sci. https://doi.org/10.2960/J.v35.m514 (2005).
    Article  Google Scholar 

    5.
    Carr, L. A. et al. Illegal shark fishing in the Galápagos Marine Reserve. Mar. Policy 39, 317–321 (2013).
    Article  Google Scholar 

    6.
    Dharmadi, F. & Satria, F. African Journal of Marine Science Fisheries management and conservation of sharks in Indonesia. Afr. J. Mar. Sci. 37, 249–258 (2015).
    Article  Google Scholar 

    7.
    Heupel, M., Carlson, J. & Simpfendorfer, C. Shark nursery areas: Concepts, definition, characterization and assumptions. Mar. Ecol. Prog. Ser. 337, 287–297 (2007).
    ADS  Article  Google Scholar 

    8.
    Meylan, P. A., Meylan, A. B. & Gray, J. A. The ecology and migrations of sea turtles 8. Tests of the developmental habitat hypothesis. Bull. Am. Museum Nat. Hist. 357, 1–70 (2011).
    Article  Google Scholar 

    9.
    Jennings, D. E., Gruber, S. H., Franks, B. R., Kessel, S. T. & Robertson, A. L. Effects of large-scale anthropogenic development on juvenile lemon shark (Negaprion brevirostris) populations of Bimini, Bahamas. Environ. Biol. Fishes 83, 369–377 (2008).
    Article  Google Scholar 

    10.
    Kinney, M. J. & Simpfendorfer, C. A. Reassessing the value of nursery areas to shark conservation and management. Conserv. Lett. 2, 53–60 (2009).
    Article  Google Scholar 

    11.
    Healy, T. J., Hill, N. J., Chin, A. & Barnett, A. A global review of elasmobranch tourism activities, management and risk. Mar. Policy 118, 103964 (2020).
    Article  Google Scholar 

    12.
    White, T. D. et al. Assessing the effectiveness of a large marine protected area for reef shark conservation. Biol. Conserv. 207, 64–71 (2017).
    Article  Google Scholar 

    13.
    Claudet, J., Loiseau, C., Sostres, M. & Correspondence, M. Z. Underprotected marine protected areas in a global biodiversity hotspot. One Earth https://doi.org/10.1016/j.oneear.2020.03.008 (2020).
    Article  Google Scholar 

    14.
    Pierce, S. & Norman, B. Rhincodon typus. IUCN Red List Threat. Species e-T19488A2, (2016).

    15.
    CITES. Convention on international trade in endangered species of wild fauna and flora. Amendments to Appendices I and II of CITES. (2000).

    16.
    Convention on Migratory Species. Proposal for the inclusion of the whale shark (Rhincodon typus) on Appendix I of the convention CMS convention on migratory species. (2017).

    17.
    Simpfendorfer, C. A. & Dulvy, N. K. Bright spots of sustainable shark fishing. Curr. Biol. 27, R97–R98 (2017).
    CAS  PubMed  Article  Google Scholar 

    18.
    Reeve-Arnold, K. E., Kinni, J., Newbigging, R., Pierce, S. J. & Roques, K. Sustaining whale shark tourism in a diminishing population. In (Hamad bin Khalifa University Press, HBKU Press, 2016). https://doi.org/10.5339/qproc.2016.iwsc4.49.

    19.
    Pravin, P. Whale Shark in the Indian Coast—Need for conservation. Curr. Sci. 79, 310–315 (2000).
    Google Scholar 

    20.
    Li, W., Wang, Y. & Norman, B. A preliminary survey of whale shark Rhincodon typus catch and trade in China: An emerging crisis. J. Fish Biol. 80, 1608–1618 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Hearn, A. R. et al. Adult female whale sharks make long-distance movements past Darwin Island (Galapagos, Ecuador) in the Eastern Tropical Pacific. Mar. Biol. 163, 1–12 (2016).
    Article  Google Scholar 

    22.
    Wilson, S. G., Polovina, J. J., Stewart, B. S. & Meekan, M. G. Movements of whale sharks (Rhincodon typus) tagged at Ningaloo Reef, Western Australia. Mar. Biol. 148, 1157–1166 (2006).
    Article  Google Scholar 

    23.
    Hueter, R. E., Tyminski, J. P. & de la Parra, R. Horizontal movements, migration patterns, and population structure of whale sharks in the Gulf of Mexico and northwestern Caribbean Sea. PLoS ONE 8, e71883 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Robinson, D. P. et al. Some like it hot: Repeat migration and residency of whale sharks within an extreme natural environment. PLoS ONE 12, e0185360 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Araujo, G. et al. Photo-ID and telemetry highlight a global whale shark hotspot in Palawan, Philippines. Sci. Rep. 9, 1–12 (2019).
    Article  CAS  Google Scholar 

    26.
    Bradshaw, C. J. A., Fitzpatrick, B. M., Steinberg, C. C., Brook, B. W. & Meekan, M. G. Decline in whale shark size and abundance at Ningaloo Reef over the past decade: The world’s largest fish is getting smaller. Biol. Conserv. 141, 1894–1905 (2008).
    Article  Google Scholar 

    27.
    Speed, C. W. et al. Scarring patterns and relative mortality rates of Indian Ocean whale sharks. J. Fish Biol. 72, 1488–1503 (2008).
    Article  Google Scholar 

    28.
    Lester, E. et al. Multi-year patterns in scarring, survival and residency of whale sharks in Ningaloo Marine Park, Western Australia. Mar. Ecol. Prog. Ser. 634, 115–125 (2020).
    ADS  Article  Google Scholar 

    29.
    Rowat, D. & Brooks, K. S. A review of the biology, fisheries and conservation of the whale shark Rhincodon typus. J. Fish Biol. 80, 1019–1056 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Cochran, J. E. M. et al. Multi-method assessment of whale shark (Rhincodon typus) residency, distribution, and dispersal behavior at an aggregation site in the Red Sea. PLoS ONE 14, e0222285 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Copping, J. P., Stewart, B. D., McClean, C. J., Hancock, J. & Rees, R. Does bathymetry drive coastal whale shark (Rhincodon typus) aggregations?. PeerJ 6, e4904 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Norman, B. M. et al. Undersea constellations: The global biology of an endangered marine megavertebrate further informed through citizen science. Bioscience 67, 1029–1043 (2017).
    Article  Google Scholar 

    33.
    Donati, G. et al. New insights into the South Ari atoll whale shark, Rhincodon typus, aggregation. In (Hamad bin Khalifa University Press, HBKU Press, 2016). https://doi.org/10.5339/qproc.2016.iwsc4.16.

    34.
    Riley, M. J., Hale, M. S., Harman, A. & Rees, R. G. Analysis of whale shark Rhincodon typus aggregations near South Ari Atoll, Maldives Archipelago. Aquat. Biol. 8, 145–150 (2010).
    Article  Google Scholar 

    35.
    Rowat, D., Meekan, M. G., Engelhardt, U., Pardigon, B. & Vely, M. Aggregations of juvenile whale sharks (Rhincodon typus) in the Gulf of Tadjoura, Djibouti. Environ. Biol. Fishes 80, 465–472 (2007).
    Article  Google Scholar 

    36.
    Cagua, E. F. et al. Acoustic telemetry reveals cryptic residency of whale sharks. Biol. Lett. 11, 20150092 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Thomson, J. A. et al. Feeding the world’s largest fish: Highly variable whale shark residency patterns at a provisioning site in the Philippines. R. Soc. Open Sci. 4, 170394 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Perry, C. T. et al. Comparing length-measurement methods and estimating growth parameters of free-swimming whale sharks (Rhincodon typus) near the South Ari Atoll, Maldives. Mar. Freshw. Res. 69, 1487 (2018).
    Article  Google Scholar 

    39.
    Riley, M. J., Harman, A. & Rees, R. G. Evidence of continued hunting of whale sharks Rhincodon typus in the Maldives. Environ. Biol. Fishes 86, 371–374 (2009).
    Article  Google Scholar 

    40.
    Cagua, E. F., Collins, N., Hancock, J. & Rees, R. Whale shark economics: A valuation of wildlife tourism in South Ari Atoll. Maldives. PeerJ 2, e515 (2014).
    PubMed  Article  Google Scholar 

    41.
    Arzoumanian, Z., Holmberg, J. & Norman, B. An astronomical pattern-matching algorithm for computer-aided identification of whale sharks Rhincodon typus. J. Appl. Ecol. 42, 999–1011 (2005).
    Article  Google Scholar 

    42.
    Bradshaw, C. J. A., Mollett, H. F. & Meekan, M. G. Inferring population trends for the world’s largest fish from mark recapture estimates of survival. J. Anim. Ecol. 76, 480–489 (2007).
    PubMed  Article  Google Scholar 

    43.
    Holmberg, J., Norman, B. & Arzoumanian, Z. Estimating population size, structure, and residency time for whale sharks Rhincodon typus through collaborative photo-identification. Endanger. Species Res. 7, 39–53 (2009).
    Article  Google Scholar 

    44.
    Rowat, D., Gore, M., Meekan, M. G., Lawler, I. R. & Bradshaw, C. J. A. Aerial survey as a tool to estimate whale shark abundance trends. J. Exp. Mar. Biol. Ecol. 368, 1–8 (2009).
    Article  Google Scholar 

    45.
    Acuña-Marrero, D. et al. Whale shark (Rhincodon typus) seasonal presence, residence time and habitat use at darwin island, galapagos marine reserve. PLoS ONE 9, e115946 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    46.
    Schwarz, C. J., Bailey, R. E., Irvine, J. R. & Dalziel, F. C. Estimating salmon spawning escapement using capture-recapture methods. Can. J. Fish. Aquat. Sci. 50, 1181–1197 (1993).
    Article  Google Scholar 

    47.
    Schwarz, C. J. & Arnason, A. N. A general methodology for the analysis of capture-recapture experiments in open populations. Biometrics 52, 860 (1996).
    MathSciNet  MATH  Article  Google Scholar 

    48.
    Whitehead, H. Analysis of animal movement using opportunistic individual identifications: Application to sperm whales. Ecology 82, 1417–1432 (2001).
    Article  Google Scholar 

    49.
    QGIS.org. QGIS Geographic Information System. Open Source Geospatial Foundation Project. (2020).

    50.
    Van Tienhoven, A. M., Den Hartog, J. E., Reijns, R. A. & Peddemors, V. M. A computer-aided program for pattern-matching of natural marks on the spotted raggedtooth shark Carcharias taurus. J. Appl. Ecol. 44, 273–280 (2007).
    Article  Google Scholar 

    51.
    RStudio Team. RStudio: Integrated Development for R. (2015).

    52.
    Laake, J. L. RMark: An R interface for analysis of capture-recapture data with MARK. AFSC Processed Rep. 2013-01 Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., (2013). https://doi.org/10.1017/CBO9781107415324.004.

    53.
    Schwarz, C., Arnason, A., Cooch, E. & White, G. Jolly-Seber models in MARK. Progr. MARK–a gentle Introd. 18th Ed. (2018).

    54.
    Cooch, E. & White, G. Program MARK: A gentle introduction (13th ed.). available online with MARK Program. (2006).

    55.
    Whitehead, H. SOCPROG programs: Analysing animal social structures. Behav. Ecol. Sociobiol. 63, 765–778 (2009).
    Article  Google Scholar 

    56.
    Whitehead, H. Selection of models of lagged identification rates and lagged association rates using AIC and QAIC. Commun. Stat. Simul. Comput. 36, 1233–1246 (2007).
    MathSciNet  MATH  Article  Google Scholar 

    57.
    Buckland, S. T. & Garthwaite, P. H. Quantifying precision of mark-recapture estimates using the bootstrap and related methods. Biometrics 47, 255 (1991).
    Article  Google Scholar 

    58.
    Rohner, C. A. et al. No place like home? High residency and predictable seasonal movement of whale sharks off Tanzania. Front. Mar. Sci. 7, 423 (2020).
    Article  Google Scholar 

    59.
    Norman, B. M., Whitty, J. M., Beatty, S. J., Reynolds, S. D. & Morgan, D. L. Do they stay or do they go? Acoustic monitoring of whale sharks at Ningaloo Marine Park, Western Australia. J. Fish Biol. 91, 1713–1720 (2017).
    CAS  PubMed  Article  Google Scholar 

    60.
    Araujo, G. et al. Population structure and residency patterns of whale sharks, Rhincodon typus, at a provisioning site in Cebu, Philippines. PeerJ 2014, e543 (2014).
    Article  Google Scholar 

    61.
    Prebble, C. et al. Limited latitudinal ranging of juvenile whale sharks in the Western Indian Ocean suggests the existence of regional management units. Mar. Ecol. Prog. Ser. 601, 167–183 (2018).
    ADS  Article  Google Scholar 

    62.
    Araujo, G. et al. Population structure and residency patterns of whale sharks, Rhincodon typus, at a provisioning site in Cebu, Philippines. PeerJ 2, e543 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    63.
    Akhilesh, K. V. et al. Landings of whale sharks Rhincodon typus Smith, 1828 in Indian waters since protection in 2001 through the Indian Wildlife (Protection) Act, 1972. Environ. Biol. Fishes 96, 713–722 (2013).
    Article  Google Scholar 

    64.
    Heyman, W., Graham, R., Kjerfve, B. & Johannes, R. Whale sharks Rhincodon typus aggregate to feed on fish spawn in Belize. Mar. Ecol. Prog. Ser. 215, 275–282 (2001).
    ADS  Article  Google Scholar 

    65.
    Meekan, M. et al. Population size and structure of whale sharks Rhincodon typus at Ningaloo Reef, Western Australia. Mar. Ecol. Prog. Ser. 319, 275–285 (2006).
    ADS  Article  Google Scholar 

    66.
    Cochran, J. E. M. et al. Population structure of a whale shark Rhincodon typus aggregation in the Red Sea. J. Fish Biol. 89, 1570–1582 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Araujo, G. et al. Population structure, residency patterns and movements of whale sharks in Southern Leyte, Philippines: Results from dedicated photo-ID and citizen science. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 237–252 (2017).
    Article  Google Scholar 

    68.
    Robinson, D. P. et al. Population structure, abundance and movement of whale sharks in the Arabian Gulf and the Gulf of Oman. PLoS ONE 11, e0158593 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    McCoy, E. et al. Long-term photo-identification reveals the population dynamics and strong site fidelity of adult whale sharks to the coastal waters of Donsol, Philippines. Front. Mar. Sci. 5, 271 (2018).
    Article  Google Scholar 

    70.
    Araujo, G. et al. In-water methods reveal population dynamics of a green turtle Chelonia mydas foraging aggregation in the Philippines. Endanger. Species Res. 40, 207–218 (2019).
    Article  Google Scholar 

    71.
    Sleeman, J. C. et al. To go or not to go with the flow: Environmental influences on whale shark movement patterns. J. Exp. Mar. Biol. Ecol. 390, 84–98 (2010).
    Article  Google Scholar 

    72.
    Calambokidis, J., Laake, J. L. & Klimek, A. Abundance and population structure of seasonal gray whales in the Pacific Northwest, 1998–2008. Sc/62/Brg32, Vol. 2008 (2010).

    73.
    Branstetter, S. Early Life-History Implications of Selected Carcharhinoid and Lamnoid Sharks of the Northwest Atlantic. Elasmobranchs as Living Resour. Adv. Biol. Ecol. Syst. Status Fish. (1990).

    74.
    Parker, J. H. & Gischler, E. Modern foraminiferal distribution and diversity in two atolls from the Maldives, Indian Ocean. Mar. Micropaleontol. 78, 30–49 (2011).
    ADS  Article  Google Scholar 

    75.
    Halvorsen, M. B., Casper, B. M., Woodley, C. M., Carlson, T. J. & Popper, A. N. Threshold for onset of injury in Chinook salmon from exposure to impulsive pile driving sounds. PLoS ONE 7, e38968 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Haskell, P. J. et al. Monitoring the effects of tourism on whale shark Rhincodon typus behaviour in Mozambique. ORYX 49, 492–499 (2015).
    Article  Google Scholar 

    77.
    Quiros, A. L. Tourist compliance to a Code of Conduct and the resulting effects on whale shark (Rhincodon typus) behavior in Donsol, Philippines. Fish. Res. 84, 102–108 (2007).
    Article  Google Scholar 

    78.
    Araujo, G., Vivier, F., Labaja, J. J., Hartley, D. & Ponzo, A. Assessing the impacts of tourism on the world’s largest fish Rhincodon typus at Panaon Island, Southern Leyte, Philippines. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 986–994 (2017).
    Article  Google Scholar 

    79.
    Finger, J. S. et al. Rate of movement of juvenile lemon sharks in a novel open field, are we measuring activity or reaction to novelty?. Anim. Behav. 116, 75–82 (2016).
    Article  Google Scholar 

    80.
    Cade, D. E. et al. Whale sharks increase swimming effort while filter feeding, but appear to maintain high foraging efficiencies. J. Exp. Biol. 223, jeb.224402 (2020).
    Article  Google Scholar 

    81.
    Archie, E. A. Wound healing in the wild: stress, sociality, and energetic costs affect wound healing in natural populations. Parasite Immunol. 35, n/a-n/a (2013).

    82.
    Baker, M. R., Swanson, P. & Young, G. Injuries from non-retention in gillnet fisheries suppress reproductive maturation in escaped fish. PLoS ONE 8, e69615 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    83.
    Neat, F. C., Taylor, A. C. & Huntingford, F. A. Proximate costs of fighting in male cichlid fish: The role of injuries and energy metabolism. Anim. Behav. 55, 875–882 (1998).
    CAS  PubMed  Article  Google Scholar 

    84.
    Meekan, M. G., Fuiman, L. A., Davis, R., Berger, Y. & Thums, M. Swimming strategy and body plan of the world’s largest fish: Implications for foraging efficiency and thermoregulation. Front. Mar. Sci. 2, 64 (2015).
    Article  Google Scholar 

    85.
    Chin, A., Mourier, J. & Rummer, J. L. Blacktip reef sharks (Carcharhinus melanopterus) show high capacity for wound healing and recovery following injury. Conserv. Physiol. 3(1) (2015).

    86.
    Tierney, K. B. & Farrell, A. P. The relationships between fish health, metabolic rate, swimming performance and recovery in return-run sockeye salmon, Oncorhynchus nerka (Walbaum). J. Fish Dis. 27, 663–671 (2004).
    CAS  PubMed  Article  Google Scholar 

    87.
    McGregor, F., Richardson, A. J., Armstrong, A. J., Armstrong, A. O. & Dudgeon, C. L. Rapid wound healing in a reef manta ray masks the extent of vessel strike. PLoS ONE 14, e0225681 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Tort, L. Stress and immune modulation in fish. Dev. Comp. Immunol. 35, 1366–1375 (2011).
    CAS  PubMed  Article  Google Scholar 

    89.
    Mateus, A. P., Anjos, L., Cardoso, J. R. & Power, D. M. Chronic stress impairs the local immune response during cutaneous repair in gilthead sea bream (Sparus aurata L.). Mol. Immunol. 87, 267–283 (2017).
    CAS  PubMed  Article  Google Scholar 

    90.
    Environmental Protection Agency. Maldivian Whale Shark Tourist Encounter Guidelines. (2009).

    91.
    Leston, F. A. L. Monitoring Tourist Pressure on Whale Shark (Rhincodon typus) Behaviour in South Ari MPA, Maldive) Behaviour in South Ari MPA, Maldive (The University of Edinburgh, Edinburgh, 2016).
    Google Scholar 

    92.
    Kallsen, H. Regulation of Whale Shark Tourism: A Data Driven Approach for the South Ari Marine Protected Area (Syddansk Universitet, Odense, 2018).
    Google Scholar 

    93.
    Montero-Quintana, A. N., Vázquez-Haikin, J. A., Merkling, T., Blanchard, P. & Osorio-Beristain, M. Ecotourism impacts on the behaviour of whale sharks: An experimental approach. ORYX 54, 270–275 (2020).
    Article  Google Scholar 

    94.
    Bouyoucos, I. A., Simpfendorfer, C. A. & Rummer, J. L. Estimating oxygen uptake rates to understand stress in sharks and rays. Rev. Fish Biol. Fish. 29, 297–311 (2019).
    Article  Google Scholar 

    95.
    Semeniuk, C. A. D., Bourgeon, S., Smith, S. L. & Rothley, K. D. Hematological differences between stingrays at tourist and non-visited sites suggest physiological costs of wildlife tourism. Biol. Conserv. 142, 1818–1829 (2009).
    Article  Google Scholar 

    96.
    Van Rijn, J. A. & Reina, R. D. Distribution of leukocytes as indicators of stress in the Australian swellshark, Cephaloscyllium laticeps. Fish Shellfish Immunol. 29, 534–538 (2010).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    97.
    Barnett, A., Payne, N. L., Semmens, J. M. & Fitzpatrick, R. Ecotourism increases the field metabolic rate of whitetip reef sharks. Biol. Conserv. 199, 132–136 (2016).
    Article  Google Scholar 

    98.
    Mau, R. Managing for conservation and recreation: The Ningaloo whale shark experience. J. Ecotourism 7, 213–225 (2008).
    Article  Google Scholar 

    99.
    Martin, R. A. A review of behavioural ecology of whale sharks (Rhincodon typus). Fish. Res. 84, 10–16 (2007).
    ADS  Article  Google Scholar 

    100.
    Skomal, G. B. & Mandelman, J. W. The physiological response to anthropogenic stressors in marine elasmobranch fishes: A review with a focus on the secondary response. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 126, 146–155 (2012).
    Article  CAS  Google Scholar 

    101.
    Pankhurst, N. W. The endocrinology of stress in fish: An environmental perspective. Gen. Comp. Endocrinol. 170, 265–275 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    102.
    Renshaw, G. M. C., Kutek, A. K., Grant, G. D. & Anoopkumar-Dukie, S. Forecasting elasmobranch survival following exposure to severe stressors. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 126, 101–112 (2012).
    Article  CAS  Google Scholar 

    103.
    Lester, E. et al. Using an electronic monitoring system and photo identification to understand effects of tourism encounters on whale sharks in Ningaloo Marine Park. Tour. Mar. Environ. 14, 121–131 (2019).
    Article  Google Scholar  More

  • in

    Nematode epibionts on skin of the Florida manatee, Trichechus manatus latirostris

    1.
    Cobb, N. A. Nematodes and their relationships.Yearbook Dept. Agric. 1914, 457–490 (Dept. Agric, Washington DC, 1914).
    2.
    Blaxter, M. Nematodes: The worm and its relatives. PLoS Biol. 9, 4 (2011).
    Article  Google Scholar 

    3.
    Kiontke, K. & Fitch, D. H. A. Nematodes. Curr. Biol. 23, 19 (2013).
    Article  Google Scholar 

    4.
    Sommer, R. J. Pristionchus pacificus. In A Nematode Model for Comparative and Evolutionary Biology (ed. Sommer, R.) (Brill, Netherlands, 2015).
    Google Scholar 

    5.
    Beck, C. & Forrester, D. J. Helminths of the Florida manatee, Trichechus manatus latirostris, with a discussion and summary of the parasites of Sirenians. J. Parasitol. 74, 628–637. https://doi.org/10.2307/3282182 (1988).
    CAS  Article  PubMed  Google Scholar 

    6.
    Fürst von Lieven, A., Uni, S., Ueda, K., Barbuto, M. & Bain, O. Cutidiplogaster manati n. gen., n. sp. (Nematoda: Diplogastridae) from skin lesions of a West Indian manatee (Sirenia) from the Okinawa Churaumi Aquarium. Nematology. 13, 51–59. https://doi.org/10.1163/138855410X500082 (2011).
    Article  Google Scholar 

    7.
    Bledsoe, E. L. et al. A comparison of biofouling communities associated with free-ranging and captive Florida manatees (Trichechus manatus latirostris). Mar. Mammal. Sci. 22, 997–1003. https://doi.org/10.1111/j.1748-7692.2006.00053.x (2006).
    Article  Google Scholar 

    8.
    Kanzaki, N. & Giblin-Davis, R. M. Diplogastrid systematics and phylogeny. In Nematology Monographs & Perspectives 11: Pristionchus pacificus—A Nematode Model for Comparative and Evolutionary Biology (ed. Sommer, R.) 43–76 (Brill, Amsterdam, 2015).
    Google Scholar 

    9.
    Abolafia, J. Order Rhabditida: suborder Rhabditina. In Freshwater Nematodes: Ecology and Taxonomy (eds Abebe, E. et al.) 696–721 (CABI Publishing, Wallingford, 2006).
    Google Scholar 

    10.
    Kanzaki, N., Ragsdale, E. J. & Giblin-Davis, R. M. Revision of the paraphyletic genus Koerneria Meyl, 1960 and resurrection of two other genera of Diplogastridae (Nematoda). ZooKeys. 442, 17–30. https://doi.org/10.3897/zookeys.442.7459 (2014).
    Article  Google Scholar 

    11.
    Romeyn, K., Bouwman, L. A. & Admiraal, W. Ecology and cultivation of the herbivorous brackish-water nematode Eudiplogaster pararmatus. Mar. Ecol. Prog. Ser. 12, 145–153 (1983).
    ADS  Article  Google Scholar 

    12.
    Kanzaki, N., Giblin-Davis, R. M., Gonzalez, R. & Manzoor, M. Nematodes associated with palm and sugarcane weevils in South Florida with description of Acrostichus floridensis n. sp. Nematology. 19, 515–531. https://doi.org/10.1163/15685411-00003065 (2017).
    Article  Google Scholar 

    13.
    Troccoli, A., Oreste, M., Tarasco, E., Fanelli, E. & De Luca, F. Mononchoides macrospiculum n. sp. (Nematoda: Neodiplogaster) and Teratorhabditis synpapillata Sudhaus, 1985 (Nematoda: Rhabditidae): Nematode associates of Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae) in Italy. Nematology 17, 953–966. https://doi.org/10.1163/15685411-00002916 (2015).
    Article  Google Scholar 

    14.
    Steel, H. et al. Mononchoides composticola n. sp. (Nematoda: Diplogastridae) associated with composting processes: Morphological, molecular and autecological characterization. Nematology 13, 347–363. https://doi.org/10.1163/138855410X523023 (2011).
    Article  Google Scholar 

    15.
    Susoy, V. et al. Large-scale diversification without genetic isolation in nematode symbionts of figs. Sci. Adv. 2, e1501031. https://doi.org/10.1126/sciadv.1501031 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Mayer, W. E., Herrmann, M. & Sommer, R. J. Molecular phylogeny of beetle associated diplogastrid nematodes suggests host switching rather than nematode-beetle coevolution. BMC Evol. Biol. 9, 212. https://doi.org/10.1186/1471-2148-9-212 (2009).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    17.
    Sudhaus, W. & Fürst von Lieven, A. A phylogenetic classification and catalogue of the Diplogastridae (Secernentea, Nematoda). J. Nematode Morph. Syst. 6, 43–90 (2003).
    Google Scholar 

    18.
    Halvorsen, K. M. & Keith, E. O. Immunosuppression cascade in the Florida manatee (Trichechus manatus latirostris). Aquat. Mamm. 34, 412–419. https://doi.org/10.1578/AM.34.4.2008.412 (2008).
    Article  Google Scholar 

    19.
    Palopoli, M. F. et al. Global divergence of the human follicle mite Demodex folliculorum: Persistent associations between host ancestry and mite lineages. Proc. Natl. Acad. Sci. USA 112, 15958–15963. https://doi.org/10.1073/pnas.1512609112 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    20.
    Ingels, J., Valdes, Y. & Pontes, L. P. Meiofauna life on loggerhead sea turtles-diversely structured abundance and biodiversity hotspots that challenge the meiofauna paradox. Diversity. 12(5), 203 (2020).
    Article  Google Scholar 

    21.
    Kanzaki, N., Giblin-Davis, R. M., Gonzalez, R., Wood, L. A. & Kaufman, P. E. Sudhausia floridensis n. sp. (Diplogastridae) isolated from Onthophagus tuberculifrons (Scarabaeidae) from Florida, USA. Nematology. 19, 575–586. https://doi.org/10.1163/15685411-00003071 (2017).
    Article  Google Scholar 

    22.
    Giblin-Davis, R. M. et al. Stomatal ultrastructure, molecular phylogeny, and description of Parasitodiplogaster laevigata n. sp. (Nematoda: Diplogastridae), a parasite of fig wasps. J. Nematol. 38, 137–149 (2006).
    CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Kanzaki, N., Giblin-Davis, R. M., Ye, W., Herre, E. A. & Center, B. J. Parasitodiplogaster species associated with Pharmacosycea figs in Panama. Nematology. 16, 607–619. https://doi.org/10.1163/15685411-00002791 (2014).
    Article  Google Scholar 

    24.
    Shih, P.-Y. et al. Newly identified nematodes from Mono Lake exhibit extreme arsenic resistance. Curr. Biol. 29, 3339–3344. https://doi.org/10.1016/j.cub.2019.08.024 (2019).
    CAS  Article  PubMed  Google Scholar 

    25.
    Bonde, R. K. et al. Biomedical health assessments of the Florida manatee in Crystal River—Providing opportunities for training during the capture, handling, and processing of this endangered aquatic mammal. J. Mar. Anim. Ecol. 5, 17–28 (2012).
    Google Scholar 

    26.
    Yoder, M. et al. DESS: A versatile solution for preserving morphology and extractable DNA of nematodes. Nematology 8, 367–376. https://doi.org/10.1163/156854106778493448 (2006).
    CAS  Article  Google Scholar 

    27.
    Kikuchi, T., Aikawa, T., Oeda, Y., Karim, N. & Kanzaki, N. A rapid and precise diagnostic method for detecting the pinewood nematode Bursaphelenchus xylophilus by loop-mediated isothermal amplification. Phytopathology 99, 1365–1369. https://doi.org/10.1094/PHYTO-99-12-1365 (2009).
    CAS  Article  PubMed  Google Scholar 

    28.
    Tanaka, R., Kikuchi, T., Aikawa, T. & Kanzaki, N. Simple and quick methods for nematode DNA preparation. Appl. Entomol. Zool. 47, 291–294. https://doi.org/10.1007/s13355-012-0115-9 (2012).
    CAS  Article  Google Scholar 

    29.
    Ye, W., Giblin-Davis, R. M., Braasch, H., Morris, K. & Thomas, W. K. Phylogenetic relationships among Bursaphelenchus species (Nematoda: Parasitaphelenchidae) inferred from nuclear ribosomal and mitochondrial DNA sequence data. Mol. Phylogenet. Evol. 43, 1185–1197. https://doi.org/10.1016/j.ympev.2007.02.006 (2007).
    CAS  Article  PubMed  Google Scholar 

    30.
    Holterman, M. et al. Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Mol. Biol. Evol. 23, 1792–1800. https://doi.org/10.1093/molbev/msl044 (2006).
    CAS  Article  PubMed  Google Scholar 

    31.
    Slos, D., Couvreur, M. & Bert, W. Hidden diversity in mushrooms explored: A new nematode species, Neodiplogaster unguispiculata sp. n. (Rhabditida, Diplogastridae), with a key to the species of Neodiplogaster. Zool. Anz. 276, 71–85. https://doi.org/10.1016/j.jcz.2018.07.004 (2018).
    Article  Google Scholar 

    32.
    Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066. https://doi.org/10.1093/nar/gkf436 (2002).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Kuraku, S., Zmasek, C. M., Nishimura, O. & Katoh, K. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res. 41, W22–W28. https://doi.org/10.1093/nar/gkt389 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    34.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755. https://doi.org/10.1093/bioinformatics/17.8.754 (2001).
    CAS  Article  Google Scholar 

    36.
    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large modelspace. Syst. Biol. 61, 539–542. https://doi.org/10.1093/sysbio/sys029 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    37.
    Kanzaki, N., Ekino, T., Ide, T., Masuya, H. & Degawa, Y. Three new species of parasitaphelenchids, Parasitaphelenchus frontalis n. sp., P. costati n. sp., and Bursaphelenchus hirsutae n. sp. (Nematoda: Aphelenchoididae), isolated from bark beetles from Japan. Nematology 20, 957–1005. https://doi.org/10.1163/15685411-00003189 (2018).
    Article  Google Scholar  More

  • in

    Carryover effects of long-distance avian migration are weaker than effects of breeding environment in a partially migratory bird

    1.
    Norris, D. R. Carry-over effects and habitat quality in migratory populations. Oikos 109(1), 178–186 (2005).
    Article  Google Scholar 
    2.
    Ockendon, N., Leech, D. & Pearce-Higgins, J. W. Climatic effects on breeding grounds are more important drivers of breeding phenology in migrant birds than carryover effects from wintering grounds. Biol. Lett. 9(6). https://doi.org/10.1098/rsbl.2013.0669 (2013).

    3.
    Lehikoinen, A., Kilpi, M. & Öst, M. Winter climate affects subsequent breeding success of common eiders. Glob. Change Biol. 12(7), 1355–1365 (2006).
    ADS  Article  Google Scholar 

    4.
    Bearhop, S., Hilton, G. M., Votier, S. C. & Waldron, S. Stable isotope ratios indicate that body condition in migrating passerines is influenced by winter habitat. Biol. Lett. 271. https://doi.org/10.1098/rsbl.2003.0129 (2004).

    5.
    Rowe, L., Ludwig, D. & Schluter, D. Time, condition, and the seasonal decline of avian clutch size. Am. Nat. 143(4), 698–722 (1994).
    Article  Google Scholar 

    6.
    Morrison, C. A., Alves, J. A., Gunnarsson, T. G., Þórisson, B. & Gill, J. A. Why do earlier-arriving migratory birds have better breeding success? Ecol. Evol. 9(15), 8856–8864 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Gill, J. A. et al. The buffer effect and large-scale population regulation in migratory birds. Nature 412, 436–438 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    Finch, T., Pearce-Higgins, J. W., Leech, D. I. & Evans, K. L. Carry-over effects from passage regions are more important than breeding climate in determining the breeding phenology and performance of three avian migrants of conservation concern. Biodivers. Conserv. 23, 2427–2444 (2014).
    Article  Google Scholar 

    9.
    Legagneux, P., Fast, P. L. F., Gauthier, G. & Bêty, J. Manipulating individual state during migration provides evidence for carry-over effects modulated by environmental conditions. Proc. R. Soc. B. 279, 876–883 (2012).
    PubMed  Article  Google Scholar 

    10.
    Newton, I. The Migration Ecology of Birds (Academic Press, London, 2008).
    Google Scholar 

    11.
    Lok, T., Overdijk, O. & Piersma, T. The cost of migration: spoonbills suffer higher mortality during trans-Saharan spring migrations only. Biol. Lett., 11(1). https://doi.org/10.1098/rsbl.2014.0944 (2015).

    12.
    Bregnballe, T., Frederiksen, M. & Gregersen, J. Effects of distance to wintering area on arrival date and breeding performance in Great Cormorants Phalacrocorax carbo. Ardea. 94(3), 619–630 (2006).
    Google Scholar 

    13.
    Hötker, H. Arrival of Pied Avocets Recurvirostra avosetta at the breeding site: effects of winter quarters and consequences for reproductive success. Ardea. 90(3), 379–387 (2002).
    Google Scholar 

    14.
    Lundberg, P. The evolution of partial migration in birds. Trends Ecol. Evol. 3(7), 172–175 (1988).
    CAS  PubMed  Article  Google Scholar 

    15.
    Chapman, B. B., Brönmark, C., Nilsson, J. -Å. & Hansson, L.-A. Partial migration: An introduction. Oikos 120(12), 1761–1763 (2011).
    Article  Google Scholar 

    16.
    Buchan, C., Gilroy, J. J., Catry, I. & Franco, A. M. A. Fitness consequences of different migratory strategies in partially migratory populations: A multi-taxa meta-analysis. J. Anim. Ecol. 89, 678–690 (2020).
    PubMed  Article  Google Scholar 

    17.
    Mueller, J. C., Pulido, F. & Kempenaers, B. Identification of a gene associated with avian migratory behaviour. Proc. R. Soc. B. 278, 2848–2856 (2011).
    CAS  PubMed  Article  Google Scholar 

    18.
    Griswold, C. K., Taylor, C. M. & Norris, D. R. The evolution of migration in a seasonal environment. Proc. R. Soc. B. 277, 2711–2720 (2010).
    PubMed  Article  Google Scholar 

    19.
    Chapman, B. B., Brönmark, C., Nilsson, J-Å. & Hansson, L-A. The ecology and evolution of partial migration. Oikos. 120(12), 1764–1775 (2011).
    Article  Google Scholar 

    20.
    Kokko, H. Directions in modelling partial migration: How adaptation can cause a population decline and why the rules of territory acquisition matter. Oikos 120(12), 1826–1837 (2011).
    Article  Google Scholar 

    21.
    Newton, I. Population limitation in migrants. Ibis. 146(2), 197–226 (2004).
    Article  Google Scholar 

    22.
    Robinson, R. A. et al. Travelling through a warming world: Climate change and migratory species. Endanger. Species Res. 7(2), 87–99 (2009).
    ADS  Article  Google Scholar 

    23.
    IPCC. Summary for Policymakers in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (eds. Stocker, T.F. et al.) (Cambridge University Press, 2013).

    24.
    Berthold, P. Genetic basis and evolutionary aspects of bird migration. Adv. Study Behav. 33, 175–229 (2003).
    Article  Google Scholar 

    25.
    Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl. Acad. Sci. U.S.A. 105(42), 16195–16200 (2008).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    de Zoeten, T. & Pulido, F. How migratory populations become resident. Proc. R. Soc. B, 287, 20193011. https://doi.org/10.1098/rspb.2019.3011 (2020).

    27.
    Negro, J. J., de la Riva, M. & Bustamante, J. Patterns of winter distribution and abundance of Lesser Kestrel (Falco naumanni) in Spain. J. Raptor Res. 25, 30–35 (1991).
    Google Scholar 

    28.
    Anderson, A. M., Novak, S. J., Smith, J. F., Steenhof, K. & Heath, J. Nesting phenology, mate choice, and genetic divergence within a partially migratory population of American Kestrels. Auk. 133(1), 99–109 (2016).
    Article  Google Scholar 

    29.
    Lok, T., Veldhoen, L., Overdijk, O., Tinbergen, J. M. & Piersma, T. An age-dependent fitness cost of migration? Old trans-Saharan migrating spoonbills breed later than those staying in Europe, and late breeders have lower recruitment. J. Anim. Ecol. 86(5), 998–1009 (2017).
    PubMed  Article  Google Scholar 

    30.
    Catry, I. et al. Individual variation in migratory movements and winter behaviour of Iberian Lesser Kestrels Falco naumanni revealed by geolocators. Ibis. 153(1), 154–164 (2011).
    Article  Google Scholar 

    31.
    Rodríguez, C., Tapia, L., Kieny, F. & Bustamante, J. Temporal changes in lesser kestrel (Falco naumanni) diet during the breeding season in southern Spain. J. Raptor Res. 44(2), 120–128 (2010).
    Article  Google Scholar 

    32.
    Grist, H. et al. Reproductive performance of resident and migrant males, females and pairs in a partially migratory bird. J. Anim. Ecol. 86(5), 1010–1021 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Morganti, M., Ambrosini, R. & Sarà, M. Different trends of neighboring populations of Lesser Kestrel: effects of climate and other environmental conditions. Popul. Ecol. 61(3), 300–314 (2019).
    Article  Google Scholar 

    34.
    Hegemann, A., Marra, P. P. & Tieleman, B. I. Causes and consequences of partial migration in a passerine bird. Am. Nat. 186(4), 531–546 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Palacín, C., Alonso, J. C., Martín, C. A. & Alonso, J. A. Changes in bird-migration patterns associated with human-induced mortality. Conserv. Biol. 31(1), 106–115 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    36.
    Clausen, K. K., Madsen, J. & Tombre, I. M. Carry-over or compensation? The impact of winter harshness and post-winter body condition on spring-fattening in a migratory goose species. PLoS One 10(7). https://doi.org/10.1371/journal.pone.0132312 (2015).

    37.
    Wilson, S., LaDeau, S. L., Tøttrup, A. P. & Marra, P. P. Range-wide effects of breeding- and nonbreeding-season climate on the abundance of a Neotropical migrant songbird. Ecology 92(9), 1789–1798 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Pilard, P., Lelong, V., Sonko, A. & Riols, C. Suivi et conservation du dortoir de rapaces insectivores (faucon crécerellette Falco naumanni et elanion naucler Chelictinia riocourii) de l’Ile de Kousmar (Kaolack/Sénégal). Alauda. 79(4), 295–312 (2011).
    Google Scholar 

    39.
    Rodríguez, A., Negro, J. J., Bustamante, J., Fox, J. & Afanasyev, V. Geolocators map the wintering grounds of threatened lesser kestrels in Africa. Divers. Distrib. 15(6), 1010–1016 (2009).
    Article  Google Scholar 

    40.
    Norris, D. R. & Taylor, C. M. Predicting the consequences of carry-over effects for migratory populations. Biol. Lett. 2(1). https://doi.org/10.1098/rsbl.2005.0397 (2006).

    41.
    Marra, P. P. et al. Non-breeding season habitat quality mediates the strength of density-dependence for a migratory bird. Proc. R. Soc. B. 282, 20150624. https://doi.org/10.1098/rspb.2015.0624 (2015).
    Article  Google Scholar 

    42.
    Negro, J. J. Falco naumanni Lesser Kestrel. BWP Update. 1, 49–56 (1997).
    Google Scholar 

    43.
    Bustamante, J. Predictive models for lesser kestrel Falco naumanni distribution, abundance and extinction in southern Spain. Bio. Conserv. 80(2), 153–160 (1997).
    Article  Google Scholar 

    44.
    Lepley, M., Brun, L., Foucart, A. & Pilard, P. Régime et comportement alimentaires du faucon crécerellette Falco naumanni en crau en période de reproduction et post-reproduction. Alauda. 68(3), 177–184 (2000).
    Google Scholar 

    45.
    Donázar, J. A., Negro, J. J. & Hiraldo, F. Functional analysis of mate-feeding in the Lesser Kestrel Falco naumanni. Ornis Scand. 23, 190–194 (1992).
    Article  Google Scholar 

    46.
    Braziotis, S. et al. Patterns of postnatal growth in a small falcon, the lesser kestrel Falco naumanni (Fleischer, 1818) (Aves: Falconidae). Eur. Zool. J. 84(1), 277–285 (2017).
    Article  Google Scholar 

    47.
    Donázar, J. A., Negro, J. J. & Hiraldo, F. A note on the adoption of alien young by lesser kestrels Falco naumanni. Ardea. 77, 443–444 (1991).
    Google Scholar 

    48.
    Rakhimberdiev, E. et al. Comparing inferences of solar geolocation data against high-precision GPS data: Annual movements of a double-tagged black-tailed godwit. J. Avian Biol. 47(4), 589–596 (2016).
    Article  Google Scholar 

    49.
    Lisovski, S. et al. Light-level geolocator analyses: A user’s guide. J Anim. Ecol. 89, 221–236 (2020).
    PubMed  Article  Google Scholar 

    50.
    Forsman, D. The Raptors of Europe and the Middle East: A Handbook of Field Identification (Christopher Helm, London, 2006).
    Google Scholar 

    51.
    Bounas, A. Premigratory moult in the lesser kestrel Falco naumanni. Avocetta. 43, 49–54 (2019).
    Google Scholar 

    52.
    Gilbert, N. Movement and Foraging Ecology of Partially Migrant Birds in a Changing World (University of East Anglia, Norwich, 2015).
    Google Scholar 

    53.
    Hobson, K. A. et al. A multi-isotope (δ13C, δ15N, δ2H) feather isoscape to assign Afrotropical migrant birds to origins. Ecosphere. 3, 44. https://doi.org/10.1890/ES12-00018.1 (2012).
    Article  Google Scholar 

    54.
    Tella, J. L. & Forero, M. G. Farmland habitat selection of wintering lesser kestrels in a Spanish pseudosteppe: implications for conservation strategies. Biodivers. Conserv. 9, 433–441 (2000).
    Article  Google Scholar 

    55.
    Piersma, T. & Davidson, N. Confusions of mass and size. Auk 108, 441–444 (1991).
    Google Scholar 

    56.
    Wood, A. S. & Scheipl, F. gamm4: Generalized additive mixed models using ‘mgcv’ and ‘lme4’. in R Package Version 0.2-5. https://CRAN.R-project.org/package=gamm4 (2017).

    57.
    Bates, D., Machler, M., Bolker, B., & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67. https://doi.org/10.18637/jss.v067.i01 (2015).

    58.
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometric. J. 50(3), 346–363 (2008).
    MathSciNet  MATH  Article  Google Scholar 

    59.
    Rousset, F. & Ferdy, J. B. Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography 37(8), 781–790 (2014).
    Article  Google Scholar 

    60.
    Shmueli, G. A useful distribution for fitting discrete data: Revival of the Conway–Maxwell–Poisson distribution. J. R. Stat. Soc. Ser. C App. Stat. 54, 127–142 (2005).
    MathSciNet  MATH  Article  Google Scholar 

    61.
    Lynch, H. J., Thorson, J. T. & Shelton, A. O. Dealing with under- and over-dispersed count data in life history, spatial, and community ecology. Ecology 95(11), 3173–3180 (2014).
    Article  Google Scholar 

    62.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, New York, 2002).
    Google Scholar 

    63.
    Bartoń, K. MuMIn: Multi-model inference. in R Package Version 1.43.6. https://CRAN.R-project.org/package=MuMIn (2019).

    64.
    Cade, B. S. Model averaging and muddled multimodel inferences. Ecology 96(9), 2370–2382 (2015).
    PubMed  Article  Google Scholar 

    65.
    R Core Development Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, http://www.r-project.org, 2018).

    66.
    Didan, K. MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN grid V006. NASA EOSDIS Land. Process. DAAC. https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).
    Article  Google Scholar 

    67.
    Büttner, G. CORINE land cover and land cover change products. in Land Use and Cover Mapping in Europe. (eds. Manakos, I. & Braun, M.) 55–74 (Springer, 2014).

    68.
    Franco, A. M. A., Catry, I., Sutherland, W. J. & Palmeirim, J. M. Do different habitat preference survey methods produce the same conservation recommendations for lesser kestrels?. Anim. Conserv. 7(3), 291–300 (2004).
    Article  Google Scholar  More

  • in

    Co-application of a biosolids product and biochar to two coarse-textured pasture soils influenced microbial N cycling genes and potential for N leaching

    1.
    Sullivan, D. Composting biosolids into high quality agricultural product. BioCycle 51, 39–40 (2010).
    Google Scholar 
    2.
    Wang, X., Chen, T., Ge, Y. & Jia, Y. Studies on land application of sewage sludge and its limiting factors. J. Hazard. Mater. 160, 554–558 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Borjesson, G. & Katterer, T. Soil fertility effects of repeated application of sewage sludge in two 30-year-old field experiments. Nutr. Cycl. Agroecosyst. 112, 369–385 (2018).
    Article  Google Scholar 

    4.
    Kelly, J. J., Favila, E., Hundal, L. S. & Marlin, J. C. Assessment of soil microbial communities in surface applied mixtures of Illinois River sediments and biosolids. Appl. Soil Ecol. 36, 176–183 (2007).
    Article  Google Scholar 

    5.
    Kelly, J. J., Polocht, K., Grancharova, T. & Hundal, L. S. Distinct responses in ammonia-oxidizing archaea and bacteria after addition of biosolids to an agricultural soil. Appl. Environ. Microbiol. 77, 6551–6558 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Nakatani, A. S. et al. Changes in the genetic structure of bacteria and microbial activity in an agricultural soil amended with tannery sludge. Soil Biol. Biochem. 43, 106–114 (2011).
    CAS  Article  Google Scholar 

    7.
    Wang, M. & Xue., J., Horswell, J., Kimberley, M.O. & Huang, Z. ,. Long-term biosolids application alters the composition of soil microbiakl groups and nutrient status in a pine plantation. Biol. Fert. Soils 53, 799–809 (2017).
    CAS  Article  Google Scholar 

    8.
    Zaleski, K. J., Josephson, K. L., Gerba, C. P. & Pepper, I. L. Potential regrowth and recolonization of Salmonellae and indicators in biosolids and biosolid-amended soil. Appl. Environ. Microbiol. 71, 3701–3708 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Singh, R. P. & Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manage. 28, 347–358 (2008).
    CAS  Article  Google Scholar 

    10.
    Sigua, C. Recycling biosolids and lack-dredged materials to pasture-based animal agriculture: alternative nutrient sources for forage productivity and sustainability. A review. Agron. Sustain. Dev. 29, 143–160 (2009).
    CAS  Article  Google Scholar 

    11.
    McBride, M. B. Toxic metal accumulation from agricultural use of sludge—are USEPA regulations protective?. J. Environ. Qual. 24, 5–18 (1995).
    CAS  Article  Google Scholar 

    12.
    Navarro, I. et al. Environmental risk assessment of perfluoroalkyl substances and halogenated flame retardants released from biosolids-amended soils. Chemosphere 210, 147–155 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Mantovi, P., Baldoni, G. & Toderi, G. Reuse of liquid, dewatered, and composted sewage sludge on agricultural land: effects of long-term application on soil and crop. Water Res. 39, 289–296 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Paramashivam, D. et al. Effect of pine waste and pine biochar on nitrogen mobility in biosolids. J. Environ. Qual. 45, 360–367 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Willen, A., Junestedt, C., Rodhe, L., Pell, M. & Jonsson, H. Sewage sludge as fertiliser—environmental assessment of storage and land application options. Water Sci. Technol. 75, 1034–1050 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Weaver, D. M. & Reed, A. E. G. Patterns of nutrient status and fertiliser practice on soils of the south coast of Western Australia. Agric. Ecosyst. Environ. 67, 37–53 (1998).
    Article  Google Scholar 

    17.
    Knowles, O. A., Robinson, B. H., Contangelo, A. & Clucas, L. Biochar for the mitigation of nitrate leaching from soil amended with biosolids. Sci. Total Environ. 409, 3206–3210 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Dempster, D. N., Gleeson, D. B., Solaiman, Z. M., Jones, D. L. & Murphy, D. V. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil 354, 311–324 (2012).
    CAS  Article  Google Scholar 

    19.
    Dempster, D. N., Jones, D. L. & Murphy, D. V. Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil. Soil Res. 50, 216–221 (2012).
    CAS  Article  Google Scholar 

    20.
    Shanmugam, S., Abbott, L. K. & Murphy, D. V. Clay addition to lime-amended biosolids overcomes water repellence and provides nitrogen supply in an acid sandy soil. Soil Biol. Fert. Soils 50, 1047–1059 (2014).
    CAS  Article  Google Scholar 

    21.
    Paramashivam, D., Dickinson, N. M., Clough, T. J., Horswell, J. & Robinson, B. H. Potential environmental benefits from blending biosolids with other organic amendments before application to land. J. Environ. Qual. 46, 481–489 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Samara, E., Matsi, T., Zdragas, A. & Barbayiannis, N. Use of clay minerals for sewage sludge stabilization and a preliminary assessment of the treated sludge’s fertilization capacity. Environ. Sci. Polut. R. 26, 35387–35398 (2019).
    CAS  Article  Google Scholar 

    23.
    Djajadi, Abbott, L. K. & Hinz, C. Synergistic impacts of clay and organic matter on structural and biological properties of a sandy soil. Geoderma 183, 19–24 (2012).
    ADS  Article  Google Scholar 

    24.
    Ma, B., Lv, X., Cai, Y., Chang, S. X. & Dyke, M. F. Liming does not counteract the influence of long-term fertilization on soil bacterial community structure and its co-occurrence pattern. Soil Biol. Biochem. 123, 45–53 (2018).
    CAS  Article  Google Scholar 

    25.
    Dilly, O., Blume, H.-P. & Munch, J. C. Soil microbial activities in Luvisols and Anthrosols during 9 years of region-typical tillage and fertilisation practices in northern Germany. Biogeochemistry 65, 319–339 (2003).
    CAS  Article  Google Scholar 

    26.
    Lehmann, J. et al. Biochar effects on soil biota—a review. Soil Biol. Biochem. 43, 1812–1836 (2011).
    CAS  Article  Google Scholar 

    27.
    Liang, B. et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 70, 1719–1730 (2006).
    ADS  CAS  Article  Google Scholar 

    28.
    Taghizadeh-Toosi, A., Clough, T. J., Sherlock, R. R. & Condron, L. M. A wood based low-temperature biochar captures NH3-N generated from ruminant urine-N, retaining its bioavailability. Plant Soil 353, 73–84 (2012).
    CAS  Article  Google Scholar 

    29.
    Enders, A., Hanley, K., Whitman, T., Joseph, S. & Lehmann, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 114, 644–653 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Singh, B. P., Hatton, B. J., Singh, B., Cowie, A. L. & Kathuria, A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 39, 1224–1235 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Wang, D., Felice, M. L. & Scow, K. M. Impacts and interactions of biochar and biosolids on agricultural soil microbial communities during dry and wet-dry cycles. Appl. Soil Ecol. 152, 103570 (2020).
    Article  Google Scholar 

    32.
    Wu, H. et al. Responses of bacterial community and functional marker genes of nitrogen cycling to biochar, compost and combined amendments in soil. Appl. Microbiol. Biotechnol. 100, 8583–8591 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Xu, H.-J. et al. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape. Environ. Sci. Technol. 48, 9391–9399 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    34.
    Solaiman, Z. M., Abbott, L. K. & Murphy, D. V. Biochar phosphorus concentration dictates mycorrhizal colonisation, plant growth and soil phorphorus cycling. Sci. Rep.-U.K. 9, 5062 (2019).
    ADS  Article  CAS  Google Scholar 

    35.
    Cao, H. et al. Biochar can increase nitrogen use efficiency of Malus hupehensis by modulating nitrate reduction of soil and root. Appl. Soil Ecol. 135, 25–32 (2019).
    Article  Google Scholar 

    36.
    Zhang, K. et al. The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers. Biol. Fert. Soils 53, 77–87 (2017).
    CAS  Article  Google Scholar 

    37.
    Gartler, J., Robinson, B., Burton, K. & Clucas, L. Carbonaceous soil amendments to biofortify crop plants with zinc. Sci. Total Environ. 465, 308–313 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Hassink, J. Effects of soil texture and grassland management on soil organic C and N and rates of C and N mineralisation. Soil Biol. Biochem. 26, 1221–1231 (1994).
    Article  Google Scholar 

    39.
    Wang, H., Kimberley, M. O. & Schlegelmilch, M. Biosolids-derived nitrogen mineralisation and transformation in forest soils. J. Environ. Qual. 32, 1851–1856 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Atkinson, C. J., Fitzgerald, J. & Hipps, N. Potential mechanisms for achieving agricultural benefits fromm biochar application to temperate soils: a review. Plant Soil 337, 1–18 (2010).
    CAS  Article  Google Scholar 

    41.
    Jaafar, N. M., Clode, P. L. & Abbott, L. K. Microscopy observations of habitable space in biochar for colonization by fungal hyphae from soil. J. Integr. Agric. 13, 483–490 (2014).
    Article  Google Scholar 

    42.
    Jaafar, N. M., Clode, P. L. & Abbott, L. K. Soil microbial responses to biochar varying in particle size, surface and pore properties. Pedosphere 25, 770–780 (2015).
    Article  Google Scholar 

    43.
    Jaafar, N. M., Clode, P. L. & Abbott, L. K. Biochar-soil interactions in four agricultural soils. Pedosphere 25, 729–736 (2015).
    CAS  Article  Google Scholar 

    44.
    Petersen, S. O. et al. Recycling of sewage sludge and household compost to arable land: fate and effects of organic contaminants, and impact on soil fertility. Soil Till Res. 72, 139–152 (2003).
    Article  Google Scholar 

    45.
    Warman, P. R. & Termeer, W. C. Evaluation of sewage sludge, septic waste and sludge compost applications to corn and forage: yields and N, P and K content of crops and soils. Bioresour. Technol. 96, 955–961 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Campos, T., Chear, G., Leles, P. D., Silva, M. & Santos, F. Leaching of heavy metals in soils conditioned with biosolids from sewage sludge. Floresta e Amniente 26, e20180399 (2019).
    Article  Google Scholar 

    47.
    Peoples, M. et al. Factors affecting the potential contributions of N2 Fuxation by legumes in Australian pasture systems. Crop Pasture Sci. 63, 759–786 (2012).
    CAS  Article  Google Scholar 

    48.
    Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H. & Murphy, D. V. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 45, 113–124 (2012).
    CAS  Article  Google Scholar 

    49.
    Mickan, B. S., Abbott, L. K., Stefanova, K. & Solaiman, Z. M. Interactions between biochar and mycorrhizal fungi in water-stressed agricultural soil. Mycorrhiza 26, 565–574 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Hale, S. E. et al. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere 91, 1612–1619 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Zheng, J., Stewart, C. E. & Cotrufo, M. F. Biochar and nitrogen fertilizer alters soil nitrogen dynamics and greenhouse gas fluxes from two temperate soils. J. Environ. Qual. 41, 1361–1370 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Dempster, D. N., Jones, D. L. & Murphy, D. V. Organic nitrogen mineralisation in two contrasting agro-ecosystems is unchanged by biochar addition. Soil Biol. Biochem. 48, 47–50 (2012).
    CAS  Article  Google Scholar 

    53.
    Verhoeven, E. & Six, J. Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard: an assessment across two years. Agric. Ecosyst. Environ. 191, 27–38 (2014).
    CAS  Article  Google Scholar 

    54.
    Hamza, M. A. & Anderson, W. K. Responses of soil properties and grain yields to deep ripping and gypsum application in a compacted loamy sand soil contrasted with a sandy clay loam soil in Western Australia. Aust. J. Agric. Res. 54, 273–282 (2003).
    Article  Google Scholar 

    55.
    Asadishad, B. et al. Amendment of agricultural soil with metal nanoparticles: effects on soil enzyme activity and microbial community composition. Environ. Sci. Technol. 52, 1908–1918 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Mossa, A.-W., Dickinson, M. J., West, H. M., Young, S. D. & Crout, N. M. J. The response of soil microbial diversity and abundance to long-term application of biosolids. Environ. Pollut. 224, 16–25 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Sullivan, T. S., Stromberger, M. E. & Paschke, M. W. Parallel shifts in plant and soil microbial communities in response to biosolids in a semi-arid grassland. Soil Biol. Biochem. 38, 449–459 (2006).
    CAS  Article  Google Scholar 

    58.
    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U.S.A. 103, 626–631 (2006).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Jenkins, S. N. et al. Actinobacterial community dynamics in long term managed grasslands. Anton Van Leeuwenhoek 95, 319–334 (2009).
    Article  Google Scholar 

    60.
    Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Zhang, X., Liu, W., Zhang, G., Jiang, L. & Han, X. Mechanisms of soil acidification reducing bacterial diversity. Soil Biol. Biochem. 81, 275–281 (2015).
    CAS  Article  Google Scholar 

    62.
    Jenkins, S. N., Murphy, D. V., Waite, I. S., Rushton, S. P. & O’Donnell, A. G. Ancient landscapes and the relationship with microbial nitrification. Sci. Rep. 6, 30733 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    O’Brien, F. J. M. et al. Soil salinity and pH drive soil bacterial community composition and diversity along a lateritic slope in the Avon River critical zone observatory, Western Australia. Front. Microbiol. 10, 1486. https://doi.org/10.3389/fmicb.2019.01486 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    64.
    Janssen, P. H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72, 1719–1728 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Zeng, Q. C., Dong, Y. H. & An, S. S. Bacterial community responses to soils along a latitudinal and vegetation gradient on the Loess Plateau. China. Plos One. 11, e015289 (2016).
    Google Scholar 

    66.
    Gigliucci, F., Brambilla, G., Tozzoli, R., Michelacci, V. & Morabito, S. Comparative analysis of metagenomes of Italian top soil improvers. Environ. Res. 155, 108–115 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    DeBruyn, J. M., Nixon, L. T., Fawaz, M. N., Johnson, A. M. & Radosevich, M. Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Appl. Environ. Microbiol. 77, 6295–6300 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Mendez, M. O., Neilson, J. W. & Maier, R. M. Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site. Appl. Environ. Microbiol. 74, 3899–3907 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Kim, J.-S., Dungan, R. S. & Crowley, D. Microarray analysis of bacterial diversity and distribution in aggregates from a desert agricultural soil. Biol. Fert. Soils 44, 1003–1011 (2008).
    CAS  Article  Google Scholar 

    70.
    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    71.
    Jenkins, S. N. et al. Taxon-specific responses of soil bacteria to the addition of low level C inputs. Soil Biol. Biochem. 42, 1624–1631 (2010).
    CAS  Article  Google Scholar 

    72.
    Hartmann, M., Frey, B., Mayer, J., Mäder, P. & Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9, 1177–1194 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    73.
    Trivedi, P., Anderson, I. C. & Singh, B. K. Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol. 21, 641–651 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of Acidobacteria: moving beyond genes and genomes. Front. Microbiol. 7, 744–744 (2016).
    PubMed  PubMed Central  Google Scholar 

    75.
    Barton, L., Gleeson, D. B., Maccarone, L. D., Zuniga, L. P. & Murphy, D. V. Is liming soil a strategy for mitigating nitrous oxide emissions from semi-arid soils?. Soil Biol. Biochem. 62, 28–35 (2013).
    CAS  Article  Google Scholar 

    76.
    Barton, L., Murphy, D. V. & Butterbach-Bahl, K. Influence of crop rotation and liming on greenhouse gas emissions from a semi-arid soil. Agric. Ecosyst. Environ. 167, 23–32 (2013).
    CAS  Article  Google Scholar 

    77.
    Fisk, L. M., Barton, L., Jones, D. L., Glanville, H. C. & Murphy, D. V. Root exudate carbon mitigates nitrogen loss in a semi-arid soil. Soil Biol. Biochem. 88, 380–389 (2015).
    CAS  Article  Google Scholar 

    78.
    Fisk, L. M., Maccarone, L. D., Barton, L. & Murphy, D. V. Nitrapyrin decreased nitrification of nitrogen released from soil organic matter but not amoA gene abundance at high soil temperature. Soil Biol. Biochem. 88, 214–223 (2015).
    CAS  Article  Google Scholar 

    79.
    Wu, J. & Brookes, P. C. The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil. Soil Biol. Biochem. 37, 507–515 (2005).
    CAS  Article  Google Scholar 

    80.
    Rayment, G. & Higginson, F. Australian Laboratory Handbook of Soil and Water Chemical Methods (Inkata Press, Melbourne, 1992).
    Google Scholar 

    81.
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass-C. Soil Biol. Biochem. 19, 703–707 (1987).
    CAS  Article  Google Scholar 

    82.
    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnol. 31, 814–821 (2013).
    CAS  Article  Google Scholar 

    83.
    Mori, H. et al. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes. DNA Res. 21, 217–227 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    84.
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME 6, 1621–1624 (2012).
    CAS  Article  Google Scholar 

    85.
    Mickan, B. S., Abbott, L. K., Fan, J., Hart, M. M., Siddique, K. H. M., Solaiman, Z. M. & Jenkins, S. N. Application of compost and clay under water-stressed conditions influences functional diversity of rhizosphere bacteria. Biol Fert Soils. 54, 55–70 (2018).
    Article  Google Scholar 

    86.
    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 75, 7537–7541 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    87.
    Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 27, 2194–2200 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    89.
    Oksanen, J. et al. Vegan: community ecology package. R package version 1.17-4. http://CRAN.R-project.org/package=vegan. (2010). More

  • in

    Past and future potential range changes in one of the last large vertebrates of the Australian continent, the emu Dromaius novaehollandiae

    1.
    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907 (2000).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Graham, C. H., Moritz, C. & Williams, S. E. Habitat history improves prediction of biodiversity in rainforest fauna. Proc. Natl. Acad. Sci. 103, 632–636 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Latinne, A. et al. Influence of past and future climate changes on the distribution of three Southeast Asian murine rodents. J. Biogeogr. 42, 1714–1726 (2015).
    Article  Google Scholar 

    4.
    Davis, A. J., Jenkinson, L. S., Lawton, J. H., Shorrocks, B. & Wood, S. Making mistakes when predicting shifts in species range in response to global warming. Nature 391, 783 (1998).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Knick, S. T. & Rotenberry, J. T. Ghosts of habitats past: Contribution of landscape change to current habitats used by shrubland birds. Ecology 81, 220–227 (2000).
    Article  Google Scholar 

    6.
    Enright, N. J. & Thomas, I. Pre-European fire regimes in Australian ecosystems. Geogr. Compass 2, 979–1011 (2008).
    Article  Google Scholar 

    7.
    Bowman, D. M. The impact of Aboriginal landscape burning on the Australian biota. N. Phytolog. 140, 385–410 (1998).
    Article  Google Scholar 

    8.
    Rule, S. et al. The aftermath of megafaunal extinction: Ecosystem transformation in Pleistocene Australia. Science 335, 1483–1486 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    9.
    Gillespie, R., Brook, B. W. & Baynes, A. Short overlap of humans and megafauna in Pleistocene Australia. Alcheringa Aust. J Palaeontol. 30, 163–186 (2006).
    Article  Google Scholar 

    10.
    Roberts, R. G. et al. New ages for the last Australian megafauna: Continent-wide extinction about 46,000 years ago. Science 292, 1888–1892 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Miller, G. H. et al. Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science 309, 287–290 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. Ongoing unraveling of a continental fauna: Decline and extinction of Australian mammals since European settlement. Proc. Nat. Acad. Sci. 112, 4531–4540 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Guimarães, P. R. Jr., Galetti, M. & Jordano, P. Seed dispersal anachronisms: Rethinking the fruits extinct megafauna ate. PLoS One 3, e1745 (2008).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    14.
    Bradshaw, C. J. Little left to lose: Deforestation and forest degradation in Australia since European colonization. J. Plant Ecol. 5, 109–120 (2012).
    Article  Google Scholar 

    15.
    Dunstan, H., Florentine, S. K., Calviño-Cancela, M., Westbrooke, M. E. & Palmer, G. C. Dietary characteristics of Emus (Dromaius novaehollandiae) in semi-arid New South Wales, Australia, and dispersal and germination of ingested seeds. Emu 113, 168–176 (2013).
    Article  Google Scholar 

    16.
    Rogers, R. Dispersal of germinable seeds by emus in semi-arid Queensland. Emu 94, 132–134 (1994).
    Article  Google Scholar 

    17.
    Bradford, M. G. & Westcott, D. A. Consequences of Southern Cassowary (Casuarius casuarius, L) gut passage and deposition pattern on the germination of rainforest seeds. Austral. Ecol. 35, 325–333 (2010).
    Article  Google Scholar 

    18.
    Dawson, T., Read, D., Russell, E. & Herd, R. Seasonal variation in daily activity patterns, water relations and diet of emus. Emu 84, 93–102 (1984).
    Article  Google Scholar 

    19.
    Quin, B. Diet and habitat of Emus Dromaius novaehollandiae in the Grampians Ranges, south-western Victoria. Emu 96, 114–122 (1996).
    Article  Google Scholar 

    20.
    Higgins, S., Nathan, R. & Cain, M. Are long-distance dispersal events in plants usually caused by nonstandard means of dispersal?. Ecology 84, 1945–1956 (2003).
    Article  Google Scholar 

    21.
    Calviño-Cancela, M., Dunn, R. R., Van Etten, E. J. & Lamont, B. Emus as non-standard seed dispersers and their potential for long-distance dispersal. Ecography 29, 632–640 (2006).
    Article  Google Scholar 

    22.
    Calviño-Cancela, M., He, T. & Lamont, B. B. Distribution of myrmecochorous species over the landscape and their potential long-distance dispersal by emus and kangaroos. Divers. Distrib. 14, 11–17 (2008).
    Article  Google Scholar 

    23.
    McGrath, R. & Bass, D. Seed dispersal by emus on the New South Wales north-east coast. Emu 99, 248–252 (1999).
    Article  Google Scholar 

    24.
    Cain, M. L., Milligan, B. G. & Strand, A. E. Long-distance seed dispersal in plant populations. Am. J. Bot. 87, 1217–1227 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Vidal, M. M., Pires, M. M. & Guimarães, P. R. Jr. Large vertebrates as the missing components of seed-dispersal networks. Biol. Cons. 163, 42–48 (2013).
    Article  Google Scholar 

    26.
    Ruxton, G. D. & Schaefer, H. M. The conservation physiology of seed dispersal. Philos. Trans. R. Soc. B Biol. Sci. 367, 1708–1718 (2012).
    Article  Google Scholar 

    27.
    Johnson, C. N. Ecological consequences of Late Quaternary extinctions of megafauna. Proc. R. Soc. B Biol. Sci. 276, 2509–2519 (2009).
    CAS  Article  Google Scholar 

    28.
    Miller, G. H. & Fogel, M. L. Calibrating δ18O in Dromaius novaehollandiae (emu) eggshell calcite as a paleo-aridity proxy for the Quaternary of Australia. Geochim. Cosmochim. Acta 193, 1–13 (2016).
    ADS  CAS  Article  Google Scholar 

    29.
    Breckwoldt, R. Wildlife in the home paddock. Nat. Conserv. Farm. 20, 20 (1983).
    Google Scholar 

    30.
    Le Souëf, D. Extinct Tasmanian Emu. Emu Austral. Ornithol. 3, 229–231 (1904).
    Article  Google Scholar 

    31.
    Thomson, V. A. et al. Genetic diversity and drivers of dwarfism in extinct island emu populations. Biol. Lett. 14, 20 (2018).
    Article  Google Scholar 

    32.
    Department of Planning, Industry and Environment (DPIE) (2002). Emu population in the New South Wales North Coast Bioregion and Port Stephens local government area. NSW Sci. Determ. 20, 20 (2018).
    Google Scholar 

    33.
    Franklin, J. Moving beyond static species distribution models in support of conservation biogeography. Divers. Distrib. 16, 321–330 (2010).
    Article  Google Scholar 

    34.
    Colles, A., Liow, L. H. & Prinzing, A. Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol. Lett. 12, 849–863 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Glazier, D. S. & Eckert, S. E. Competitive ability, body size and geographical range size in small mammals. J. Biogeogr. 29, 81–92 (2002).
    Article  Google Scholar 

    36.
    Gaston, K. J. How large is a species’ geographic range?. Oikos 20, 434–438 (1991).
    Article  Google Scholar 

    37.
    Devictor, V., Julliard, R. & Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514 (2008).
    Article  Google Scholar 

    38.
    Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233 (1988).
    Article  Google Scholar 

    39.
    Östergård, H. & Ehrlén, J. Among population variation in specialist and generalist seed predation—the importance of host plant distribution, alternative hosts and environmental variation. Oikos 111, 39–46 (2005).
    Article  Google Scholar 

    40.
    Kassen, R. The experimental evolution of specialists, generalists, and the maintenance of diversity. J. Evol. Biol. 15, 173–190 (2002).
    Article  Google Scholar 

    41.
    Thuiller, W., Araújo, M. B. & Lavorel, S. Do we need land-cover data to model species distributions in Europe?. J. Biogeogr. 31, 353–361 (2004).
    Article  Google Scholar 

    42.
    Rahbek, C. & Graves, G. R. Multiscale assessment of patterns of avian species richness. Proc. Natl. Acad. Sci. 98, 4534–4539 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    43.
    Davies, S. J. J. F., Beck, M. W. R. & Kruiskamp, J. P. Results of banding 154 emus in Western Australia. Wildl. Res. 16, 77–79 (1971).
    Article  Google Scholar 

    44.
    Pople, A., Cairns, S. & Grigg, G. Distribution and abundance of emus Dromaius novaehollandiae in relation to the environment in the South Australian pastoral zone. Emu 91, 222–229 (1991).
    Article  Google Scholar 

    45.
    Davies, S. Aspects of a study of emus in semi-arid Western Australia. Proc. Ecol. Soc. Aust. 3, 160–166 (1968).
    Google Scholar 

    46.
    Coddington, C. L. & Cockburn, A. The mating system of free-living emus. Aust. J. Zool. 43, 365–372 (1995).
    Article  Google Scholar 

    47.
    Taylor, E. L., Blache, D., Groth, D., Wetherall, J. D. & Martin, G. B. Genetic evidence for mixed parentage in nests of the emu (Dromaius novaehollandiae). Behav. Ecol. Sociobiol. 47, 359–364 (2000).
    Article  Google Scholar 

    48.
    Bradford, M. G., Dennis, A. J. & Westcott, D. A. Diet and dietary preferences of the southern cassowary (Casuarius casuarius) in North Queensland, Australia. Biotropica 40, 338–343 (2008).
    Article  Google Scholar 

    49.
    Moore, L. Population ecology of the southern cassowary Casuarius casuarius johnsonii, Mission Beach north Queensland. J. Ornithol. 148, 357–366 (2007).
    Article  Google Scholar 

    50.
    Fourcade, Y., Besnard, A. G. & Secondi, J. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Glob. Ecol. Biogeogr. 27, 245–256 (2018).
    Article  Google Scholar 

    51.
    Grice, D., Caughley, G. & Short, J. Density and distribution of emus. Wildl. Res. 12, 69–73 (1985).
    Article  Google Scholar 

    52.
    Nield, A. P., Enright, N. J. & Ladd, P. G. Study of seed dispersal by Emu (Dromaius novaehollandiae) in the Jarrah (Eucalyptus marginata) forests of south-western Australia through satellite telemetry. Emu 115, 29–34 (2015).
    Article  Google Scholar 

    53.
    Davies, S. The food of emus. Aust. J. Ecol. 3, 411–422 (1978).
    Article  Google Scholar 

    54.
    Osborne, W. & Green, K. Seasonal changes in composition, abundance and foraging behavior of birds in the snowy mountains. Emu 92, 93–105 (1992).
    Article  Google Scholar 

    55.
    Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
    Article  Google Scholar 

    56.
    Mackey, B. G. & Lindenmayer, D. B. Towards a hierarchical framework for modelling the spatial distribution of animals. J. Biogeogr. 28, 1147–1166 (2001).
    Article  Google Scholar 

    57.
    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12, 361–371 (2003).
    Article  Google Scholar 

    58.
    Warren, M. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Thomas, C. D. Dispersal and extinction in fragmented landscapes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 267, 139–145 (2000).
    CAS  Article  Google Scholar 

    60.
    Quigley, M. C., Horton, T., Hellstrom, J. C., Cupper, M. L. & Sandiford, M. Holocene climate change in arid Australia from speleothem and alluvial records. Holocene 20, 1093–1104 (2010).
    ADS  Article  Google Scholar 

    61.
    Shulmeister, J. & Lees, B. G. Pollen evidence from tropical Australia for the onset of an ENSO-dominated climate at c. 4000 BP. Holocene 5, 10–18 (1995).
    ADS  Article  Google Scholar 

    62.
    Weber, L. C., VanDerWal, J., Schmidt, S., McDonald, W. J. & Shoo, L. P. Patterns of rain forest plant endemism in subtropical Australia relate to stable mesic refugia and species dispersal limitations. J. Biogeogr. 41, 222–238 (2014).
    Article  Google Scholar 

    63.
    Avilés, J. M., Soler, J. J. & Pérez-Contreras, T. Dark nests and egg colour in birds: A possible functional role of ultraviolet reflectance in egg detectability. Proc. R. Soc. Lond. B Biol. Sci. 273, 2821–2829 (2006).
    Google Scholar 

    64.
    Lahti, D. C. & Ardia, D. R. Shedding light on bird egg color: Pigment as parasol and the dark car effect. Am. Nat. 187, 547–563 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Magige, F. J., Moe, B. & Røskaft, E. The white colour of the Ostrich (Struthio camelus) egg is a trade-off between predation and overheating. J. Ornithol. 149, 323–328 (2008).
    Article  Google Scholar 

    66.
    Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).
    Article  Google Scholar 

    67.
    Maloney, S. & Dawson, T. Thermoregulation in a large bird, the emu (Dromaius novaehollandiae). J. Comp. Physiol. B. 164, 464–472 (1994).
    Article  Google Scholar 

    68.
    Dawson, T., Herd, R. & Skadhauge, E. Water turnover and body water distribution during dehydration in a large arid-zone bird, the emu, Dromaius novaehollandiae. J. Comp. Physiol. 153, 235–240 (1983).
    Article  Google Scholar 

    69.
    McKinney, M. L. Extinction vulnerability and selectivity: Combining ecological and paleontological views. Annu. Rev. Ecol. Syst. 28, 495–516 (1997).
    Article  Google Scholar 

    70.
    Crandall, K. A., Bininda-Emonds, O. R., Mace, G. M. & Wayne, R. K. Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15, 290–295 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Dickman, C. R. Impact of exotic generalist predators on the native fauna of Australia. Wildl. Biol. 2, 185–195 (1996).
    Article  Google Scholar 

    72.
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
    Article  Google Scholar 

    73.
    Araújo, M. B., Pearson, R. G., Thuiller, W. & Erhard, M. Validation of species—climate impact models under climate change. Glob. Change Biol. 11, 1504–1513 (2005).
    ADS  Article  Google Scholar 

    74.
    Thuiller, W. et al. Large-scale environmental correlates of forest tree distributions in Catalonia (NE Spain). Glob. Ecol. Biogeogr. 12, 313–325 (2003).
    Article  Google Scholar 

    75.
    Pfennigwerth, S. “The mighty cassowary”: The discovery and demise of the King Island emu. Arch. Nat. Hist. 37, 74–90 (2010).
    Article  Google Scholar 

    76.
    Heupink, T. H., Huynen, L. & Lambert, D. M. Ancient DNA suggests Dwarf and ‘Giant’Emu are conspecific. PLoS One 6, e18728 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    Zizka, A. et al. CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 7, 744–751 (2019).
    Article  Google Scholar 

    78.
    RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com (2020).

    79.
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    80.
    Fithian, W., Elith, J., Hastie, T. & Keith, D. A. Bias correction in species distribution models: Pooling survey and collection data for multiple species. Methods Ecol. Evol. 6, 424–438 (2015).
    PubMed  Article  Google Scholar 

    81.
    Molloy, S. W., Davis, R. A., Dunlop, J. A. & van Etten, E. Applying surrogate species presences to correct sample bias in species distribution models: A case study using the Pilbara population of the Northern Quoll. Nat. Conserv. 18, 27–46 (2017).
    Google Scholar 

    82.
    Baddeley, A., Rubak, E. & Turner, R. Spatial Point Patterns: Methodology and Applications with R (Chapman and Hall, London, 2015).
    Google Scholar 

    83.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. A J. R. Meteorol. Soc. 25, 1965–1978 (2005).
    Article  Google Scholar 

    84.
    Rabus, B., Eineder, M., Roth, A. & Bamler, R. The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramme. Remote Sens. 57, 241–262 (2003).
    ADS  Article  Google Scholar 

    85.
    Werner, M. Shuttle radar topography mission (SRTM) mission overview. Frequenz 55, 75–79 (2001).
    ADS  Article  Google Scholar 

    86.
    ESRI, ArcGIS Desktop: Release 10. Redlands: Environmental Systems Research Institute (2011).

    87.
    Hill, M. J., Lesslie, R., Barry, A. & Barry, S. A simple, portable, spatial multi-criteria analysis shell–MCAS-S. In MODSIM 2005 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand. 12–15 (2005).

    88.
    Australian Government Department of Agriculture, Water and the Environment (ABARES), Australian Fire Frequency (1988–2015), Australian Government. http://www.agriculture.gov.au/abares/aclump/land-use/alum-classification (2016).

    89.
    Australian Government Department of Environmen and Energy, Australian Vegetation Attribute Manual: National Vegetation Information System, Version 6.0, Canberra (2018).

    90.
    National Aeronautics and Space Administration Socioeconomic Data and Applications Center. Gridded Population of the World v4 (2017).

    91.
    Wildlife Conservation Society (WCS), and Center for International Earth Science Information Network (CIESIN). Last of the Wild Project, Version 2: Global Human Footprint Dataset (Geographic). NASA Socioeconomic Data and Applications Center (SEDAC). Columbia University. Palisades, NY (2005).

    92.
    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
    Article  Google Scholar 

    93.
    Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).
    Article  Google Scholar 

    94.
    Guisan, A., Edwards, T. C. Jr. & Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 157, 89–100 (2002).
    Article  Google Scholar 

    95.
    Marquaridt, D. W. Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics 12, 591–612 (1970).
    Article  Google Scholar 

    96.
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).
    Article  Google Scholar 

    97.
    Araújo, M. B., Whittaker, R. J., Ladle, R. J. & Erhard, M. Reducing uncertainty in projections of extinction risk from climate change. Glob. Ecol. Biogeogr. 14, 529–538 (2005).
    Article  Google Scholar 

    98.
    Anderson, R. P. & Gonzalez, I. Jr. Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecol. Model. 222, 2796–2811 (2011).
    Article  Google Scholar 

    99.
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).
    Article  Google Scholar 

    100.
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
    Article  Google Scholar 

    101.
    Hegel, T. M., Cushman, S. A., Evans, J. & Huettmann, F. Spatial Complexity, Informatics, and Wildlife Conservation 273–311 (Springer, Tokoyo, 2010).
    Google Scholar 

    102.
    Pearce, J. L. & Boyce, M. S. Modelling distribution and abundance with presence-only data. J. Appl. Ecol. 43, 405–412 (2006).
    Article  Google Scholar 

    103.
    Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).
    Article  Google Scholar 

    104.
    Otto-Bliesner, B. L. et al. Last glacial maximum and Holocene climate in CCSM3. J. Clim. 19, 2526–2544 (2006).
    ADS  Article  Google Scholar 

    105.
    Bi, D. et al. The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteorol. Oceanogr. J. 63, 41–64 (2012).
    Article  Google Scholar 

    106.
    Cooper, A. et al. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409, 704–707 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    107.
    Yonezawa, T. et al. Phylogenomics and morphology of extinct paleognaths reveal the origin and evolution of the ratites. Curr. Biol. 27, 68–77 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    108.
    Guillera-Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 (2015).
    Article  Google Scholar 

    109.
    Hijmans, R. J., Phillips, S., Leathwick, J., & Elith, J. dismo: Species distribution modeling. R package v1.1-4 (2017). More

  • in

    Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants

    1.
    Becerra, J. X. On the factors that promote the diversity of herbivorous insects and plants in tropical forests. Proc. Natl Acad. Sci. USA 112, 6098–6103 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Stork, N. E. How many species of insects and other terrestrial arthropods are there on earth? Annu. Rev. Entomol. 63, 31–45 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Grimaldi, D. A. & Engel, M. S. Evolution of the Insects (Cambridge University Press, 2005).

    4.
    Strong, D. R., Lawton, J. H. & Southwood, R. Insects on Plants: Community Patterns and Mechanisms (Harvard University Press, 1984).

    5.
    Ehrlich, P. R. & Raven, P. H. Butterflies and plants: a study in coevolution. Evolution 18, 586–608 (1964).
    Article  Google Scholar 

    6.
    Thompson, J. N. Concepts of coevolution. Trends Ecol. Evol. 4, 179–183 (1989).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Mitter, C., Farrell, B. & Wiegmann, B. The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification? Am. Nat. 132, 107–128 (1988).
    Article  Google Scholar 

    8.
    Farrell, B. D. ‘Inordinate fondness’ explained: why are there so many beetles? Science 281, 555–559 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Berenbaum, M. & Specialization, P. F. Chemical Mediation of Host-plant Specialization: The Papilionid Paradigm. Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects (University of California Press, 2008).

    10.
    Winter, S., Friedman, A. L. L., Astrin, J. J., Gottsberger, B. & Letsch, H. Timing and host plant associations in the evolution of the weevil tribe Apionini (Apioninae, Brentidae, Curculionoidea, Coleoptera) indicate an ancient co-diversification pattern of beetles and flowering plants. Mol. Phylogenet. Evol. 107, 179–190 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Kergoat, G. J. et al. Opposite macroevolutionary responses to environmental changes in grasses and insects during the Neogene grassland expansion. Nat. Commun. 9, 5089 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    12.
    Wheat, C. W. et al. The genetic basis of a plant–insect coevolutionary key innovation. Proc. Natl Acad. Sci. USA 104, 20427–20431 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Edger, P. P. et al. The butterfly plant arms-race escalated by gene and genome duplications. Proc. Natl Acad. Sci. USA 112, 8362–8366 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Calla, B. et al. Cytochrome P450 diversification and hostplant utilization patterns in specialist and generalist moths: Birth, death and adaptation. Mol. Ecol. 26, 6021–6035 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Nallu, S. et al. The molecular genetic basis of herbivory between butterflies and their host plants. Nat. Ecol. Evol. 2, 1418–1427 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Karageorgi, M. et al. Genome editing retraces the evolution of toxin resistance in the monarch butterfly. Nature 574, 409–412 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Sahoo, R. K., Warren, A. D., Collins, S. C. & Kodandaramaiah, U. Hostplant change and paleoclimatic events explain diversification shifts in skipper butterflies (Family: Hesperiidae). BMC Evol. Biol. 17, 174 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Condamine, F. L., Rolland, J., Höhna, S., Sperling, F. A. H. & Sanmartín, I. Testing the role of the red queen and court jester as drivers of the macroevolution of apollo butterflies. Syst. Biol. 67, 940–964 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Letsch, H. et al. Climate and host-plant associations shaped the evolution of ceutorhynch weevils throughout the Cenozoic. Evolution 72, 1815–1828 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Forister, M. L. et al. The global distribution of diet breadth in insect herbivores. Proc. Natl Acad. Sci. USA 112, 442–447 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    21.
    Winkler, I. S., Mitter, C. & Scheffer, S. J. Repeated climate-linked host shifts have promoted diversification in a temperate clade of leaf-mining flies. Proc. Natl Acad. Sci. USA 106, 18103–18108 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    22.
    Chomicki, G., Weber, M., Antonelli, A., Bascompte, J. & Kiers, E. T. The impact of mutualisms on species richness. Trends Ecol. Evol. 34, 698–711 (2019).
    PubMed  Article  Google Scholar 

    23.
    Janz, N. Ehrlich and Raven revisited: mechanisms underlying codiversification of plants and enemies. Annu. Rev. Ecol. Evol. Syst. 42, 71–89 (2011).
    Article  Google Scholar 

    24.
    Suchan, T. & Alvarez, N. Fifty years after Ehrlich and Raven, is there support for plant–insect coevolution as a major driver of species diversification? Entomol. Exp. Appl. 157, 98–112 (2015).
    Article  Google Scholar 

    25.
    Endara, M.-J. et al. Coevolutionary arms race versus host defense chase in a tropical herbivore-plant system. Proc. Natl Acad. Sci. USA 114, E7499–E7505 (2017).
    CAS  PubMed  Article  Google Scholar 

    26.
    Simon, J.-C. et al. Genomics of adaptation to host-plants in herbivorous insects. Brief. Funct. Genomics 14, 413–423 (2015).
    CAS  PubMed  Article  Google Scholar 

    27.
    Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl Acad. Sci. USA 114, 9641–9646 (2017).
    CAS  PubMed  Article  Google Scholar 

    28.
    Hua, X. & Bromham, L. Darwinism for the genomic age: connecting mutation to diversification. Front. Genet. 8, 12 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    Hembry, D. H. & Weber, M. G. Ecological interactions and macroevolution: a new field with old roots. Annu. Rev. Ecol. Evol. Syst. 51, (2020).

    30.
    Scriber, J. M., Tsubaki, Y. & Lederhouse, R. C. Swallowtail Butterflies: Their Ecology and Evolutionary Biology (Scientific Publishers, 1995).

    31.
    Nishida, R. Sequestration of defensive substances from plants by Lepidoptera. Annu. Rev. Entomol. 47, 57–92 (2002).
    CAS  PubMed  Article  Google Scholar 

    32.
    Schmeiser, H. H., Stiborovà, M. & Arlt, V. M. Chemical and molecular basis of the carcinogenicity of Aristolochia plants. Curr. Opin. Drug Discov. Dev. 12, 141–148 (2009).
    CAS  Google Scholar 

    33.
    Poon, S. L. et al. Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci. Transl. Med. 5, 197ra101 (2013).
    PubMed  Article  CAS  Google Scholar 

    34.
    Condamine, F. L., Sperling, F. A. H., Wahlberg, N., Rasplus, J.-Y. & Kergoat, G. J. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. Ecol. Lett. 15, 267–277 (2012).
    PubMed  Article  Google Scholar 

    35.
    Simonsen, T. J. et al. Phylogenetics and divergence times of Papilioninae (Lepidoptera) with special reference to the enigmatic genera Teinopalpus and Meandrusa. Cladistics 27, 113–137 (2011).
    Article  Google Scholar 

    36.
    Berenbaum, M. R., Favret, C. & Schuler, M. A. On defining ‘Key Innovations’ in an adaptive radiation: cytochrome P450s and Papilionidae. Am. Nat. 148, S139–S155 (1996).
    Article  Google Scholar 

    37.
    Cohen, M. B., Schuler, M. A. & Berenbaum, M. R. A host-inducible cytochrome P-450 from a host-specific caterpillar: molecular cloning and evolution. Proc. Natl Acad. Sci. USA 89, 10920–10924 (1992).
    ADS  CAS  PubMed  Article  Google Scholar 

    38.
    Li, W., Schuler, M. A. & Berenbaum, M. R. Diversification of furanocoumarin-metabolizing cytochrome P450 monooxygenases in two papilionids: specificity and substrate encounter rate. Proc. Natl Acad. Sci. USA 100(Suppl.), 14593–14598 (2003).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Thompson, J. N. Variation in preference and specificity in monophagous and oligophagous swallowtail butterflies. Evolution 42, 118–128 (1988).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Thompson, J. N., Wehling, W. & Podolsky, R. Evolutionary genetics of host use in swallowtail butterflies. Nature 344, 148–150 (1990).
    ADS  Article  Google Scholar 

    41.
    Berenbaum, M. R. & Feeny, P. P. in Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects (ed. Tilmon, K.) 2–19 (University of California Press, 2008).

    42.
    Zakharov, E. V., Caterino, M. S. & Sperling, F. A. H. Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera: Papilionidae). Syst. Biol. 53, 193–215 (2004).
    PubMed  Article  Google Scholar 

    43.
    Braby, M., Trueman, J. & Eastwood, R. When and where did troidine butterflies (Lepidoptera: Papilionidae) evolve? Phylogenetic and biogeographic evidence suggests an origin in remnant Gondwana in the Late Cretaceous. Invertebr. Syst. 19, 113–143 (2005).
    Article  Google Scholar 

    44.
    Condamine, F. L., Silva-Brandão, K. L., Kergoat, G. J. & Sperling, F. A. Biogeographic and diversification patterns of Neotropical Troidini butterflies (Papilionidae) support a museum model of diversity dynamics for Amazonia. BMC Evol. Biol. 12, 82 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Condamine, F. L. et al. Deciphering the evolution of birdwing butterflies 150 years after Alfred Russel Wallace. Sci. Rep. 5, 11860 (2015).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Allio, R. et al. Whole genome shotgun phylogenomics resolves the pattern and timing of swallowtail butterfly evolution. Syst. Biol. 69, 38–60 (2020).
    CAS  PubMed  Article  Google Scholar 

    47.
    McKenna, D. D., Sequeira, A. S., Marvaldi, A. E. & Farrell, B. D. Temporal lags and overlap in the diversification of weevils and flowering plants. Proc. Natl Acad. Sci. USA.106, 7083–7088 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    48.
    Takahashi, D. & Setoguchi, H. Molecular phylogeny and taxonomic implications of Asarum (Aristolochiaceae) based on ITS and matK sequences. Plant Species Biol. 33, 28–41 (2018).
    Article  Google Scholar 

    49.
    Wanke, S. et al. Evolution of Piperales—matK gene and trnK intron sequence data reveal lineage specific resolution contrast. Mol. Phylogenet. Evol. 42, 477–497 (2007).
    CAS  PubMed  Article  Google Scholar 

    50.
    Neinhuis, C., Wanke, S., Hilu, K. W., Müller, K. & Borsch, T. Phylogeny of Aristolochiaceae based on parsimony, likelihood, and Bayesian analyses of trnL-trnF sequences. Plant Syst. Evol. 250, 7–26 (2005).
    Article  Google Scholar 

    51.
    Wanke, S., González, F. & Neinhuis, C. Systematics of pipevines: combining morphological and fast‐evolving molecular characters to investigate the relationships within subfamily Aristolochioideae. Int. J. Plant Sci. 167, 1215–1227 (2006).
    CAS  Article  Google Scholar 

    52.
    González, F. et al. Present trans-Pacific disjunct distribution of Aristolochia subgenus Isotrema (Aristolochiaceae) was shaped by dispersal, vicariance and extinction. J. Biogeogr. 41, 380–391 (2014).
    Article  Google Scholar 

    53.
    Durden, C. J. & Rose, H. Butterflies from the Middle Eocene: The Earliest Occurrence of Fossil Papilionoidea (Lepidoptera) (Prarce-Sellards Ser. Tax. Mem. Mus., 1978).

    54.
    Sohn, J., Labandeira, C., Davis, D. & Mitter, C. An annotated catalog of fossil and subfossil Lepidoptera (Insecta: Holometabola) of the world. Zootaxa 3286, 1–132 (2012).
    Article  Google Scholar 

    55.
    de Jong, R. Estimating time and space in the evolution of the Lepidoptera. Tijdschr. voor Entomol. 150, 319–346 (2007).
    Article  Google Scholar 

    56.
    Hofmann, C.-C. & Zetter, R. Upper Cretaceous sulcate pollen from the Timerdyakh formation, Vilui Basin (Siberia). Grana 49, 170–193 (2010).
    Article  Google Scholar 

    57.
    Meller, B. The first fossil Aristolochia (Aristolochiaceae, Piperales) leaves from Austria. Palaeontol. Electron 17, 1–17 (2014).
    Google Scholar 

    58.
    Nee, S., May, R. M. & Harvey, P. H. The reconstructed evolutionary process. Philos. Trans. R. Soc. Lond. Ser. B 344, 305–311 (1994).
    ADS  CAS  Article  Google Scholar 

    59.
    Nee, S. Birth-death models in macroevolution. Annu. Rev. Ecol. Evol. Syst. 37, 1–17 (2006).
    Article  Google Scholar 

    60.
    Rabosky, D. L. & Lovette, I. J. Explosive evolutionary radiations: Decreasing speciation or increasing extinction through time? Evolution 62, 1866–1875 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    61.
    Crisp, M. D. & Cook, L. G. Explosive radiation or cryptic mass extinction? Interpreting signatures in molecular phylogenies. Evolution 63, 2257–2265 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    62.
    Quental, T. B. & Marshall, C. R. Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol. Evol. 25, 434–441 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Morlon, H. Phylogenetic approaches for studying diversification. Ecol. Lett. 17, 508–525 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    64.
    Xue, B. et al. Accelerated diversification correlated with functional traits shapes extant diversity of the early divergent angiosperm family Annonaceae. Mol. Phylogenet. Evol. 142, 106659 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Folk, R. A. et al. Rates of niche and phenotype evolution lag behind diversification in a temperate radiation. Proc. Natl Acad. Sci. USA 116, 10874–10882 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Sun, M. et al. Recent accelerated diversification in rosids occurred outside the tropics. Nat. Commun. 11, 3333 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism. Am. Nat. 175, 623–639 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    68.
    Cheng, T. et al. Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. Nat. Ecol. Evol. 1, 1747–1756 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    Rane, R. V. et al. Detoxifying enzyme complements and host use phenotypes in 160 insect species. Curr. Opin. Insect Sci. 31, 131–138 (2019).
    MathSciNet  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Cong, Q., Borek, D., Otwinowski, Z. & Grishin, N. V. Tiger swallowtail genome reveals mechanisms for speciation and caterpillar chemical defense. Cell Rep. 10, 910–919 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Li, X. et al. Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies. Nat. Commun. 6, 8212 (2015).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Nishikawa, H. et al. A genetic mechanism for female-limited Batesian mimicry in Papilio butterfly. Nat. Genet. 47, 405–409 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Thomas, G. W. C. & Hahn, M. W. Determining the null model for detecting adaptive convergence from genomic data: a case study using echolocating mammals. Mol. Biol. Evol. 32, 1232–1236 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Zou, Z. & Zhang, J. No genome-wide protein sequence convergence for echolocation. Mol. Biol. Evol. 32, 1237–1241 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge University Press, 1983).

    76.
    Yang, Z. Computational Molecular Evolution (Oxford University Press, 2006).

    77.
    Venkat, A., Hahn, M. W. & Thornton, J. W. Multinucleotide mutations cause false inferences of lineage-specific positive selection. Nat. Ecol. Evol. 2, 1280–1288 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    78.
    Mendes, F. K. & Hahn, M. W. Gene tree discordance causes apparent substitution rate variation. Syst. Biol. 65, 711–721 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    79.
    Dasmahapatra, K. K. et al. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487, 94–98 (2012).
    ADS  CAS  PubMed Central  Article  Google Scholar 

    80.
    Walden, N. et al. Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae. Nat. Commun. 11, 3795 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    81.
    McGee, M. D. et al. The ecological and genomic basis of explosive adaptive radiation. Nature 586, 75–79 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    82.
    Thomas, G. W. C. et al. Gene content evolution in the arthropods. Genome Biol. 21, 15 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    83.
    de Medeiros, B. A. S. & Farrell, B. D. Evaluating species interactions as a driver of phytophagous insect divergence. bioRxiv https://doi.org/10.1101/842153 (2019).

    84.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    85.
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2016).
    Google Scholar 

    86.
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    87.
    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Chernomor, O., von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65, 997–1008 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    89.
    Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    90.
    Ronquist, F. et al. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    91.
    Huelsenbeck, J. P., Larget, B. & Alfaro, M. E. Bayesian phylogenetic model selection using reversible jump Markov Chain Monte Carlo. Mol. Biol. Evol. 21, 1123–1133 (2004).
    CAS  PubMed  Article  Google Scholar 

    92.
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    93.
    Douady, C. J., Delsuc, F., Boucher, Y., Doolittle, W. F. & Douzery, E. J. P. Comparison of bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Mol. Biol. Evol. 20, 248–254 (2003).
    CAS  PubMed  Article  Google Scholar 

    94.
    Miller, M. A. et al. A RESTful API for access to phylogenetic tools via the CIPRES Science Gateway. Evol. Bioinforma. 11, EBO.S21501 (2015).
    Article  Google Scholar 

    95.
    Ayres, D. L. et al. BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Syst. Biol. 61, 170–173 (2012).
    PubMed  Article  Google Scholar 

    96.
    Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    97.
    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    98.
    Smith, M. E., Singer, B. & Carroll, A. 40Ar/39Ar geochronology of the Eocene Green River Formation, Wyoming. Geol. Soc. Am. Bull. 115, 549–565 (2003).
    ADS  CAS  Article  Google Scholar 

    99.
    de Jong, R. Fossil butterflies, calibration points and the molecular clock (Lepidoptera: Papilionoidea). Zootaxa 4270, 1–63 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    100.
    Scudder, S. H. Fossil butterflies. Mem. Am. Assoc. Adv. Sci. 1, 1–99 (1875).
    Google Scholar 

    101.
    Rasnitsyn, A. P. & Zherikhin, V. V. in History of Insects 437–446 (Kluwer Academic Publishers, 2002).

    102.
    Rebel, H. Doritites bosniaskii. Sitzungsberichte der akademie der wissenschaften. Mathematischen-Naturwissenschaftliche classe. Abt. 1 Mineral. Biol. Erdkd. 1, 734–741 (1898).
    Google Scholar 

    103.
    Carpenter, F. Treatise on Invertebrate Paleontology: Arthropoda 4. Superclass Hexapoda (Geological Society of America, 1992).

    104.
    Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. & Hernández-Hernández, T. A metacalibrated time‐tree documents the early rise of flowering plant phylogenetic diversity. N. Phytol. 207, 437–453 (2015).
    Article  Google Scholar 

    105.
    Sohn, J.-C., Labandeira, C. C. & Davis, D. R. The fossil record and taphonomy of butterflies and moths (Insecta, Lepidoptera): implications for evolutionary diversity and divergence-time estimates. BMC Evol. Biol. 15, 12 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    106.
    Toussaint, E. F. A. & Condamine, F. L. To what extent do new fossil discoveries change our understanding of clade evolution? A cautionary tale from burying beetles (Coleoptera: Nicrophorus). Biol. J. Linn. Soc. 117, 686–704 (2016).
    Article  Google Scholar 

    107.
    Gernhard, T. The conditioned reconstructed process. J. Theor. Biol. 253, 769–778 (2008).
    MathSciNet  PubMed  MATH  Article  Google Scholar 

    108.
    Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).
    CAS  PubMed  Article  Google Scholar 

    109.
    Ree, R. H. & Smith, S. A. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57, 4–14 (2008).
    PubMed  Article  Google Scholar 

    110.
    Pagel, M. & Meade, A. Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am. Nat. 167, 808–825 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    111.
    Igarashi, S. The classification of the Papilionidae mainly based on the morphology of their immature stages. Lepid. Sci. 34, 41–96 (1984).
    Google Scholar 

    112.
    Collins, N. M. & Morris, M. Threatened Swallowtail Butterflies of the World: the IUCN Red Data Book (IUCN, 1985).

    113.
    Tyler, H. A., Brown, K. S. & Wilson, K. H. Swallowtail Butterflies of the Americas: A Study in Biological Dynamics, Ecological Diversity, Biosystematics, and Conservation (Scientific Publishers, 1994).

    114.
    Ree, R. H., Moore, B. R., Webb, C. O. & Donoghue, M. J. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59, 2299–2311 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    115.
    Massoni, J., Couvreur, T. L. & Sauquet, H. Five major shifts of diversification through the long evolutionary history of Magnoliidae (Angiosperms). BMC Evol. Biol. 15, 49 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    116.
    Kyalangalilwa, B., Boatwright, J. S., Daru, B. H., Maurin, O. & van der Bank, M. Phylogenetic position and revised classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia. Bot. J. Linn. Soc. 172, 500–523 (2013).
    Article  Google Scholar 

    117.
    Miller, J. T., Murphy, D. J., Ho, S. Y. W., Cantrill, D. J. & Seigler, D. Comparative dating of Acacia: combining fossils and multiple phylogenies to infer ages of clades with poor fossil records. Aust. J. Bot. 61, 436–445 (2013).
    Article  Google Scholar 

    118.
    Michalak, I., Zhang, L.-B. & Renner, S. S. Trans-Atlantic, trans-Pacific and trans-Indian Ocean dispersal in the small Gondwanan Laurales family Hernandiaceae. J. Biogeogr. 37, 1214–1226 (2010).
    Article  Google Scholar 

    119.
    Wu, S.-D. et al. Evolution of asian interior arid-zone biota: Evidence from the diversification of asian Zygophyllum (Zygophyllaceae). PLoS ONE 10, e0138697 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    120.
    Chase, M. W. et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).
    Article  Google Scholar 

    121.
    Christenhusz, M. J. M., Vorontsova, M. S., Fay, M. F. & Chase, M. W. Results from an online survey of family delimitation in angiosperms and ferns: recommendations to the Angiosperm Phylogeny Group for thorny problems in plant classification. Bot. J. Linn. Soc. 178, 501–528 (2015).
    Article  Google Scholar 

    122.
    Gonzáles, F., Rudall, P. J. & Furness, C. A. Microsporogenesis and systematics of Aristolochiaceae. Bot. J. Linn. Soc. 137, 221–242 (2001).
    Article  Google Scholar 

    123.
    González, F. & Rudall, P. The questionable affinities of Lactoris: evidence from branching pattern, inflorescence morphology, and stipule development. Am. J. Bot. 88, 2143–2150 (2001).
    PubMed  Article  PubMed Central  Google Scholar 

    124.
    Isnard, S. et al. Growth form evolution in Piperales and its relevance for understanding angiosperm diversification: An integrative approach combining plant architecture, anatomy, and biomechanics. Int. J. Plant Sci. 173, 610–639 (2012).
    Article  Google Scholar 

    125.
    Wagner, S. T. et al. Major trends in stem anatomy and growth forms in the perianth-bearing Piperales, with special focus on Aristolochia. Ann. Bot. 113, 1139–1154 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    126.
    Nickrent, D. L. et al. Molecular data place Hydnoraceae with Aristolochiaceae. Am. J. Bot. 89, 1809–1817 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    127.
    Kelly, L. M. & González, F. Phylogenetic relationships in Aristolochiaceae. Syst. Bot. 28, 236–249 (2003).
    Google Scholar 

    128.
    Naumann, J. et al. Single-copy nuclear genes place haustorial Hydnoraceae within piperales and reveal a cretaceous origin of multiple parasitic angiosperm lineages. PLoS ONE 8, e79204 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    129.
    Salomo, K. et al. The emergence of earliest angiosperms may be earlier than fossil evidence indicates. Syst. Bot. 42, 607–619 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    130.
    Christenhusz, M. J. M. & Byng, J. W. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201–217 (2016).
    Article  Google Scholar 

    131.
    Naumann, J. et al. Detecting and characterizing the highly divergent plastid genome of the nonphotosynthetic parasitic plant Hydnora visseri (Hydnoraceae). Genome Biol. Evol. 8, 345–363 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    132.
    Jost, M., Naumann, J., Rocamundi, N., Cocucci, A. A. & Wanke, S. The first plastid genome of the Holoparasitic genus Prosopanche (Hydnoraceae). Plants 9, 306 (2020).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    133.
    Zavada, M. S. & Benson, J. M. First fossil evidence for the primitive angiosperm family Lactoricidae. Am. J. Bot. 74, 1590–1594 (1987).
    Article  Google Scholar 

    134.
    Gamerro, J. C. & Barreda, V. New fossil record of Lactoridaceae in southern South America: a palaeobiogeographical approach. Bot. J. Linn. Soc. 158, 41–50 (2008).
    Article  Google Scholar 

    135.
    Smith, S. Y. & Stockey, R. A. Establishing a fossil record for the perianthless Piperales: Saururus tuckerae sp. nov. (Saururaceae) from the Middle Eocene Princeton Chert. Am. J. Bot. 94, 1642–1657 (2007).
    PubMed  Article  Google Scholar 

    136.
    Massoni, J., Doyle, J. & Sauquet, H. Fossil calibration of Magnoliidae, an ancient lineage of angiosperms. Palaeontol. Electron. 18, 1–25 (2015).
    Google Scholar 

    137.
    Smith, S. A. Taking into account phylogenetic and divergence-time uncertainty in a parametric biogeographical analysis of the Northern Hemisphere plant clade Caprifolieae. J. Biogeogr. 36, 2324–2337 (2009).
    Article  Google Scholar 

    138.
    Beeravolu, C. R. & Condamine, F. L. An extended maximum likelihood inference of geographic range evolution by dispersal, local extinction and cladogenesis. bioRxiv https://doi.org/10.1101/038695 (2016).

    139.
    Scotese, C. R. A continental drift flipbook. J. Geol. 112, 729–741 (2004).
    ADS  Article  Google Scholar 

    140.
    Blakey, R. C. Gondwana paleogeography from assembly to breakup—a 500 m.y. odyssey. Geol. Soc. Am. Spec. Pap. 441, 1–28 (2008).
    Google Scholar 

    141.
    Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270 (2012).
    ADS  Article  Google Scholar 

    142.
    Chacón, J. & Renner, S. S. Assessing model sensitivity in ancestral area reconstruction using Lagrange: a case study using the Colchicaceae family. J. Biogeogr. 41, 1414–1427 (2014).
    Article  Google Scholar 

    143.
    Maddison, W. P., Midford, P. E. & Otto, S. P. Estimating a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701–710 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    144.
    FitzJohn, R. G., Maddison, W. P. & Otto, S. P. Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst. Biol. 58, 595–611 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    145.
    Morlon, H., Parsons, T. L. & Plotkin, J. B. Reconciling molecular phylogenies with the fossil record. Proc. Natl Acad. Sci. USA 108, 16327–16332 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    146.
    Rabosky, D. L. et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4, 1958 (2013).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    147.
    Höhna, S. et al. A Bayesian approach for estimating branch-specific speciation and extinction rates. bioRxiv https://doi.org/10.1101/555805 (2019).

    148.
    May, M. R., Höhna, S. & Moore, B. R. A Bayesian approach for detecting the impact of mass-extinction events on molecular phylogenies when rates of lineage diversification may vary. Methods Ecol. Evol. 7, 947–959 (2016).
    Article  Google Scholar 

    149.
    Magallon, S. & Sanderson, M. J. Absolute diversification rates in angiosperm clades. Evolution 55, 1762–1780 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    150.
    Rabosky, D. L. Likelihood methods for detecting temporal shifts in diversification rates. Evolution 60, 1152–1164 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    151.
    FitzJohn, R. G. Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol. Evol. 3, 1084–1092 (2012).
    Article  Google Scholar 

    152.
    Scriber, J. M. in Chemical Ecology of Insects (eds Bell, W. J. & Cardé, R. T.) 159–202 (Springer US, 1984).

    153.
    Davis, M. P., Midford, P. E. & Maddison, W. Exploring power and parameter estimation of the BiSSE method for analyzing species diversification. BMC Evol. Biol. 13, 38 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    154.
    Maddison, W. P. & FitzJohn, R. G. The unsolved challenge to phylogenetic correlation tests for categorical characters. Syst. Biol. 64, 127–136 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    155.
    Rabosky, D. L. & Goldberg, E. E. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst. Biol. 64, 340–355 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    156.
    Morlon, H. et al. RPANDA: an R package for macroevolutionary analyses on phylogenetic trees. Methods Ecol. Evol. 7, 589–597 (2016).
    Article  Google Scholar 

    157.
    Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    158.
    Moore, B. R., Höhna, S., May, M. R., Rannala, B. & Huelsenbeck, J. P. Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. Proc. Natl Acad. Sci. USA 113, 9569–9574 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    159.
    Rabosky, D. L. et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014).
    Article  Google Scholar 

    160.
    Rabosky, D. L., Mitchell, J. S. & Chang, J. Is BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification models. Syst. Biol. 66, 477–498 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    161.
    Höhna, S. et al. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Syst. Biol. 65, 726–736 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    162.
    Höhna, S., May, M. R. & Moore, B. R. TESS: an R package for efficiently simulating phylogenetic trees and performing Bayesian inference of lineage diversification rates. Bioinformatics 32, 789–791 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    163.
    Stadler, T. Mammalian phylogeny reveals recent diversification rate shifts. Proc. Natl Acad. Sci. USA 108, 6187–6192 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    164.
    Partha, R. et al. Subterranean mammals show convergent regression in ocular genes and enhancers, along with adaptation to tunneling. eLife 6, e25884 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    165.
    Wu, J., Yonezawa, T. & Kishino, H. Rates of molecular evolution suggest natural history of life history traits and a Post-K-Pg nocturnal bottleneck of placentals. Curr. Biol. 27, 3025–3033 (2017).
    CAS  PubMed  Article  Google Scholar 

    166.
    Zhang, G. et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346, 1311–1320 (2014).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    167.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    168.
    Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    169.
    Abascal, F., Zardoya, R. & Telford, M. J. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 38, W7–W13 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    170.
    Simion, P. et al. A software tool ‘CroCo’ detects pervasive cross-species contamination in next generation sequencing data. BMC Biol. 16, 28 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    171.
    Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    172.
    Di Franco, A., Poujol, R., Baurain, D. & Philippe, H. Evaluating the usefulness of alignment filtering methods to reduce the impact of errors on evolutionary inferences. BMC Evol. Biol. 19, 21 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    173.
    Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    174.
    Yang, Z. & Nielsen, R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 17, 32–43 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    175.
    Zhang, J., Nielsen, R. & Yang, Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol. Biol. Evol. 22, 2472–2479 (2005).
    CAS  PubMed  Article  Google Scholar 

    176.
    Yang, Z. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol. Biol. Evol. 15, 568–573 (1998).
    CAS  PubMed  Article  Google Scholar 

    177.
    Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
    CAS  Article  PubMed  Google Scholar 

    178.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    179.
    Bauer, D. F. Constructing confidence sets using rank statistics. J. Am. Stat. Assoc. 67, 687–690 (1972).
    MATH  Article  Google Scholar 

    180.
    Diekmann, Y. & Pereira-Leal, J. B. Gene tree affects inference of sites under selection by the branch-site test of positive selection. Evol. Bioinforma. 11, 11–17 (2015).
    Article  Google Scholar 

    181.
    Mallick, S., Gnerre, S., Muller, P. & Reich, D. The difficulty of avoiding false positives in genome scans for natural selection. Genome Res. 19, 922–933 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    182.
    Fletcher, W. & Yang, Z. The effect of insertions, deletions, and alignment errors on the branch-site test of positive selection. Mol. Biol. Evol. 27, 2257–2267 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    183.
    Jordan, G. & Goldman, N. The effects of alignment error and alignment filtering on the sitewise detection of positive selection. Mol. Biol. Evol. 29, 1125–1139 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    184.
    Duret, L. & Galtier, N. Biased gene conversion and the evolution of mammalian genomic landscapes. Annu. Rev. Genomics Hum. Genet. 10, 285–311 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    185.
    Galtier, N. & Duret, L. Adaptation or biased gene conversion? Extending the null hypothesis of molecular evolution. Trends Genet. 23, 273–277 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    186.
    Ratnakumar, A. et al. Detecting positive selection within genomes: the problem of biased gene conversion. Philos. Trans. R. Soc. Ser. B 365, 2571–2580 (2010).
    CAS  Article  Google Scholar 

    187.
    Guéguen, L. et al. Bio++: efficient extensible libraries and tools for computational molecular evolution. Mol. Biol. Evol. 30, 1745–1750 (2013).
    PubMed  Article  CAS  Google Scholar 

    188.
    Wickham, H. & Grolemund, G. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data (O’Reilly Media, Inc., Canada, 2016).

    189.
    Wilke, C. O. cowplot: streamlined plot theme and plot annotations for ‘ggplot2.’ CRAN Repos. 2, R2 (2016).

    190.
    Gouy, M., Guindon, S. & Gascuel, O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).
    CAS  PubMed  Article  Google Scholar 

    191.
    Redelings, B. Erasing errors due to alignment ambiguity when estimating positive selection. Mol. Biol. Evol. 31, 1979–1993 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    192.
    Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419–D426 (2019).
    CAS  Article  PubMed  Google Scholar 

    193.
    Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    194.
    Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).
    CAS  PubMed  Article  Google Scholar  More

  • in

    Variation in size and shape of toxin glands among cane toads from native-range and invasive populations

    1.
    Caro, T. M. Antipredator Defenses in Birds and Mammals (University of Chicago Press, 2005).
    2.
    Emlen, D. J. The evolution of animal weapons. Annu. Rev. Ecol. Evol. Syst. 39, 387–413 (2008).
    Article  Google Scholar 

    3.
    Toledo, L. F., Sazima, I. & Haddad, C. F. Behavioural defences of anurans: An overview. Ethol. Ecol. Evol. 23, 1–25 (2011).
    Article  Google Scholar 

    4.
    Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).
    Article  Google Scholar 

    5.
    Pettorelli, N., Coulson, T., Durant, S. M. & Gaillard, J. Predation, individual variability and vertebrate population dynamics. Oecologia 167, 305–314 (2011).
    ADS  PubMed  Article  Google Scholar 

    6.
    Stankowich, T. Armed and dangerous: predicting the presence and function of defensive weaponry in mammals. Adapt. Behav. 20, 32–43 (2011).
    Article  Google Scholar 

    7.
    Longson, C. G. & Joss, J. M. P. Optimal toxicity in animals: Predicting the optimal level of chemical defences. Funct. Ecol. 20, 731–735 (2006).
    Article  Google Scholar 

    8.
    Relyea, R. A. Predators come and predators go: The reversibility of predator-induced traits. Ecology 84, 1840–1848 (2003).
    Article  Google Scholar 

    9.
    Tollrian, R. & Harvell, D. The Ecology and Evolution of Inducible Defenses (Princeton University Press, 1999).

    10.
    Daly, D., Higginson, A. D., Chen, D., Ruxton, G. D. & Speed, M. P. Density-dependent investment in costly anti-predator defenses: An explanation for the weak survival benefit of group living. Ecol. Lett. 15, 576–583 (2012).
    PubMed  Article  Google Scholar 

    11.
    Kosmala, G., Brown, G. P. & Shine, R. Thin-skinned invaders: Geographic variation in the structure of the skin among populations of cane toads (Rhinella marina). Biol. J. Linn. Soc. 131, 611–621 (2020).
    Article  Google Scholar 

    12.
    Duellman, W. E. & Trueb, L. Biology of Amphibians (McGraw-Hill, 1994).

    13.
    Wells, K. The Ecology and Behavior of Amphibians (University of Chicago Press, 2007).

    14.
    König, E., Bininda-Emonds, O. R. P. & Shaw, C. The diversity and evolution of anuran skin peptides. Peptides 63, 96–117 (2014).
    PubMed  Article  CAS  Google Scholar 

    15.
    Hettyey, A., Tóth, Z. & Van Buskirk, J. Inducible chemical defences in animals. Oikos 123, 1025–1028 (2014).
    Article  Google Scholar 

    16.
    Blennerhasset, R., Bell-Anderson, K., Shine, R. & Brown, G. P. The cost of chemical defence: The impact of toxin depletion on growth and behaviour of cane toads (Rhinella marina). Proc. R. Soc. B. 286, 20190867 (2019).
    Article  CAS  Google Scholar 

    17.
    Chen, W., Hudson, C. M., DeVore, J. L. & Shine, R. Sex and weaponry: The distribution of toxin-storage glands on the bodies of male and female cane toads (Rhinella marina). Ecol. Evol. 7, 8950–8957 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    O’Donohoe, M. A. et al. Diversity and evolution of the parotoid macrogland in true toads (Anura: Bufonidae). Zool. J. Linn. Soc. 187, 453–478 (2019).
    Article  Google Scholar 

    19.
    Shine, R. The ecological impact of invasive cane toads (Bufo marinus) in Australia. Q. Rev. Biol. 85, 253–291 (2010).
    PubMed  Article  Google Scholar 

    20.
    Ujvari, B. et al. Isolation breeds naivety: island living robs Australian varanid lizards of toad-toxin immunity via four-base-pair mutation. Evolution 67, 289–294 (2013).
    PubMed  Article  Google Scholar 

    21.
    Pearcy, A. Selective feeding in Keelback snakes Tropidonophis mairii in an Australian wetland. Aust. Zool. 35, 843–845 (2011).
    Article  Google Scholar 

    22.
    Llewelyn, J. et al. Behavioural responses of an Australian colubrid snake (Dendrelaphis punctulatus) to a novel toxic prey item (the Cane Toad Rhinella marina). Biol. Invasions 20, 2507–2516 (2018).
    Article  Google Scholar 

    23.
    van Bocxlaer, I. et al. Gradual adaptation toward a range-expansion phenotype initiated the global radiation of toads. Science 327, 679–682 (2010).
    ADS  PubMed  Article  CAS  Google Scholar 

    24.
    Hudson, C. M., Vidal-García, M., Murray, T. G. & Shine, R. The accelerating anuran: evolution of locomotor performance in cane toads (Rhinella marina, Bufonidae) at an invasion front. Proc. R. Soc. B 287, 20201964 (2020).
    PubMed  Article  Google Scholar 

    25.
    Ward-Fear, G., Greenlees, M. J. & Shine, R. Toads on lava: spatial ecology and habitat use of invasive cane toads (Rhinella marina) in Hawai’i. PLoS ONE 11, e0151700 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Ward-Fear, G., Pearson, D. J., Brown, G. P. & Shine, R. Ecological immunization: in situ training of free-ranging predatory lizards reduces their vulnerability to invasive toxic prey. Biol. Lett. 12, 20150863 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Crossland, M. R., Brown, G. P., Anstis, M., Shilton, C. & Shine, R. Mass mortality of native anuran tadpoles in tropical Australia due to the invasive cane toad (Bufo marinus). Biol. Conserv. 141, 2387–2394 (2008).
    Article  Google Scholar 

    28.
    Hayes, R. A., Crossland, M. R., Hagman, M., Capon, R. J. & Shine, R. Ontogenetic variation in the chemical defences of cane toads (Bufo marinus): Toxin profiles and effects on predators. J. Chem. Ecol. 35, 391–399 (2009).
    CAS  PubMed  Article  Google Scholar 

    29.
    Hagman, M., Hayes, R. A., Capon, R. J. & Shine, R. Alarm cues experienced by cane toad tadpoles affect post-metamorphic morphology and chemical defences. Funct. Ecol. 23, 126–132 (2009).
    Article  Google Scholar 

    30.
    Üveges, B. et al. Age-and environment-dependent changes in chemical defences of larval and post-metamorphic toads. BMC Evol. Biol. 17, 137 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    31.
    Üveges, B. et al. Chemical defense of toad tadpoles under risk by four predator species. Ecol. Evol. 9, 6287–6299 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Bókony, V., Üveges, B., Verebélyi, V., Ujhegyi, N. & Móricz, Á. M. Toads phenotypically adjust their chemical defences to anthropogenic habitat change. Sci. Rep. 9, 3163 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Hettyey, A. et al. Predator-induced changes in the chemical defence of a vertebrate. J. Anim. Ecol. 88, 1925–1935 (2019).
    PubMed  Article  Google Scholar 

    34.
    Hudson, C. M, Brown, G. P., Stuart, K. & Shine, R. Sexual and geographic divergence in head widths of invasive cane toads, Rhinella marina (Anura: Bufonidae) is driven by both rapid evolution and plasticity. Biol. J. Linn. Soc. 124, 188–199 (2018).

    35.
    Phillips, B. L., Brown, G. P., Webb, J. K. & Shine, R. Invasion and the evolution of speed in toads. Nature 439, 803 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    36.
    Hudson, C. M., McCurry, M. R., Lundgren, P., McHenry, C. R. & Shine, R. Constructing an invasion machine: The rapid evolution of a dispersal-enhancing phenotype during the cane toad invasion of Australia. PLoS ONE 11, e0156950 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Hudson, C. M., Brown, G. P. & Shine, R. It is lonely at the front: Contrasting evolutionary trajectories in male and female invaders. R. Soc. Open Sci. 3, 160687 (2016).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Brown, G., Kelehear, C. & Shine, R. The early toad gets the worm: Cane toads at an invasion front benefit from higher prey availability. J. Anim. Ecol. 82, 854–862 (2013).
    PubMed  Article  Google Scholar 

    39.
    Shine, R., Brown, G. P. & Phillips, B. L. An evolutionary process that assembles phenotypes through space rather than time. Proc. Natl Acad. Sci. USA 108, 5708–5711 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    40.
    Phillips, B. & Shine, R. The morphology, and hence impact, of an invasive species (the cane toad, Bufo marinus) changes with time since colonization. Anim. Conserv. 8, 407–413 (2005).
    Article  Google Scholar 

    41.
    Roff, D. A. Comparing sire and dam estimates of heritability: Jackknife and likelihood approaches. Heredity 100, 32–38 (2008).
    CAS  PubMed  Article  Google Scholar 

    42.
    Kliber, A. & Eckert, C. G. Interaction between founder effect and selection during biological invasion in an aquatic plant. Evolution 59, 1900–1913 (2005).
    CAS  PubMed  Google Scholar 

    43.
    Shine, R. Cane Toad Wars (University of California Press, 2018).

    44.
    Toledo, R. C. & Jared, C. Cutaneous adaptations to water balance in amphibians. Comp. Biochem. Physiol. A 105, 593–608 (1993).
    Article  Google Scholar 

    45.
    Kosmala, G., Brown, G. P., Shine, R. & Christian, K. Skin resistance to water gain and loss has changed in cane toads (Rhinella marina) during their Australian invasion. Ecol. Evol. 10, 13071–13079 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    46.
    Crossland, M. R. & Shine, R. Cues for cannibalism: Cane toad tadpoles use chemical signals to locate and consume conspecific eggs. Oikos 120, 327–332 (2011).
    Article  Google Scholar 

    47.
    DeVore, J. L., Crossland, M. & Shine, R. Tradeoffs affect the adaptive value of plasticity: Stronger cannibal-induced defenses incur greater costs in toad larvae. Ecol. Monogr. https://doi.org/10.1002/ecm.1426 (2020).
    Article  Google Scholar 

    48.
    Greenlees, M. J. & Shine, R. Impacts of eggs and tadpoles of the invasive cane toad (Bufo marinus) on aquatic predators in tropical Australia. Austral Ecol. 36, 53–58 (2011).
    Article  Google Scholar 

    49.
    Somaweera, R., Crossland, M. R. & Shine, R. Assessing the potential impact of invasive cane toads on a commercial freshwater fishery in tropical Australia. Wildl. Res. 38, 380–385 (2011).
    Article  Google Scholar 

    50.
    Cao, Y., Cui, K., Pan, H., Wu, J. & Wang, L. The impact of multiple climatic and geographic factors on the chemical defences of Asian toads (Bufo gargarizans Cantor). Sci. Rep. 9, 17236 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    Hague, M. T. J., Stokes, A. N., Feldman, C. R., Brodie, E. D. Jr. & Brodie, E. D. III. The geographic mosaic of arms race coevolution is closely matched to prey population structure. Evol. Lett. 4, 317–332 (2020).

    52.
    Jared, C. et al. Parotoid macroglands in toad (Rhinella jimi): Their structure and functioning in passive defence. Toxicon 54, 197–207 (2009).
    CAS  PubMed  Article  Google Scholar 

    53.
    Toledo, R. C. & Jared, C. Cutaneous granular glands and amphibian venoms. Comp. Biochem. Physiol. A 111, 1–29 (1995).
    ADS  Article  Google Scholar 

    54.
    Maciel, N. M. et al. Composition of indolealkylamines of Bufo rubescens cutaneous secretions compared to six other Brazilian bufonids with phylogenetic implications. Comp. Biochem. Physiol. B 134, 641–649 (2003).
    PubMed  Article  CAS  Google Scholar 

    55.
    Sciani, J. M., Angeli, C. B., Antoniazzi, M. M., Jared, C. & Pimenta, D. C. Differences and similarities among parotoid macrogland secretions in South American toads: A preliminary biochemical delineation. Sci. World J. 2013, 937407 (2013).
    Article  CAS  Google Scholar 

    56.
    Habermehl, G. Venomous Animals and Their Toxins (Springer-Verlag, 1981).

    57.
    Garrett, C. M. & Boyer, D. M. Bufo marinus (cane toad) predation. Herpetol. Rev. 24, 148 (1993).
    Google Scholar 

    58.
    Pineau, X. & Romanoff, C. Envenomation of domestic carnivores. Rec. Méd. Vét. 171, 182–192 (1995).
    Google Scholar 

    59.
    Sakate, M. & Lucas de Oliveira, P. C. Toad envenoming in dogs: effects and treatment. J. Venom. Anim. Toxins 6, 52–62 (2000).

    60.
    Slade, R. W. & Moritz, C. Phylogeography of Bufo marinus from its natural and introduced ranges. Proc. R. Soc. B 265, 769–777 (1998).
    CAS  PubMed  Article  Google Scholar 

    61.
    Urban, M. C., Phillips, B. L., Skelly, D. K. & Shine, R. The cane toad’s (Chaunus [Bufo] marinus) increasing ability to invade Australia is revealed by a dynamically updated range model. Proc. R. Soc. B 274, 1413–1419 (2007).
    PubMed  Article  Google Scholar 

    62.
    Urban, M., Phillips, B. L., Skelly, D. K. & Shine, R. A toad more traveled: The heterogeneous invasion dynamics of cane toads in Australia. Am. Nat. 171, 134–148 (2008).
    Article  Google Scholar 

    63.
    Nullet, D., Juvik, J. O. & Wall, A. A Hawaiian mountain climate cross-section. Clim. Res. 5, 131–137 (1995).
    Article  Google Scholar 

    64.
    Kelehear, C. & Shine, R. Non-reproductive male cane toads (Rhinella marina) withhold sex-identifying information from their rivals. Biol. Lett. 15, 2019046 (2019).
    Article  Google Scholar 

    65.
    Shine, R., Everitt, C., Woods, D. & Pearson, D. J. An evaluation of methods used to cull invasive cane toads in tropical Australia. J. Pest Sci. 91, 1081–1091 (2018).
    Article  Google Scholar 

    66.
    Phillips, B. L. et al. Parasites and pathogens lag behind their host during periods of host range-advance. Ecology 91, 872–881 (2010).
    PubMed  Article  Google Scholar 

    67.
    Hudson, C. M., Brown, G. P. & Shine, R. Effects of toe-clipping on growth, body condition, and locomotion of cane toads (Rhinella marina). Copeia 105, 257–260 (2017).
    Article  Google Scholar 

    68.
    Wilson, A. J. et al. An ecologist’s guide to the animal model. J. Anim. Ecol. 79, 13–26 (2010).
    PubMed  Article  Google Scholar  More

  • in

    Biological performance and oviposition preference of tomato pinworm Tuta absoluta when offered a range of Solanaceous host plants

    1.
    di Castri, F. History of biological invasions with emphasis on the Old World. In Biological invasions: a global perspective, (ed. Drake J., di Castri, F., Groves, R., Kruger, F., Mooney, H. A., Rejmanek, M., Williamson, M.) 1–30 (Wiley, New York, 1989).
    2.
    Reeve, E. Domestication of Plants in the Old World: The origin and spread of cultivated plants in West Asia, Europe, and the Nile Valley (ed. Zohary, D. & Hopf, M.) (Clarendon Press, Oxford, 1994).

    3.
    Mack, R. N. et al. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).
    Article  Google Scholar 

    4.
    Worner, S. P. & Gevrey, M. Modelling global insect pest species assemblages to determine risk of invasion. J. Appl. Ecol. 43, 858–867 (2006).
    Article  Google Scholar 

    5.
    Desneux, N., Luna, M. G., Guillemaud, T. & Urbaneja, A. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J. Pest Sci. 84, 403–408 (2011).
    Article  Google Scholar 

    6.
    Desneux, N. et al. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J. Pest Sci. 83, 197–215 (2010).
    Article  Google Scholar 

    7.
    Sridhar, V., Chakravarthy, A. K. & Asokan, R. New record of the invasive South American tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in India. Pest. Manag. Hort. 20, 148–154 (2014).
    Google Scholar 

    8.
    Galdino, T. V. S. et al. Is the performance of a specialist herbivore affected by female choices and the adaptability of the offspring?. PLoS ONE 10, 1–18 (2015).
    Article  CAS  Google Scholar 

    9.
    Campos, M. R., Biondi, A., Adiga, A., Guedes, R. N. C. & Desneux, N. From the Western Palaearctic region to beyond: Tuta absoluta 10 years after invading Europe. J. Pest Sci. 90, 787–796 (2017).
    Article  Google Scholar 

    10.
    Cherif, A. & François, V. A review of Tuta absoluta (Lepidoptera: Gelechiidae) host plants and their impact on management strategies. Biotechnol. Agron. Soc. Environ. 23 (4) (2019).

    11.
    Picanço, M. C., Bacci, L., Crespo, A. L. B., Miranda, M. M. M. & Martins, J. C. Effect of integrated pest management practices on tomato production and conservation of natural enemies. Agric. For. Entomol. 9, 327–335 (2007).
    Article  Google Scholar 

    12.
    Biondi, A., Guedes, R. N. C., Wan, F. H. & Desneux, N. Ecology, worldwide spread, and Management of the Invasive South American Tomato Pinworm, Tuta absoluta: past, present, and future. Annu. Rev. Entomol. 63, 239–258 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Guedes, R. N. C. et al. Insecticide resistance in the tomato pinworm Tuta absoluta: patterns, spread, mechanisms, management and outlook. J. Pest Sci. https://doi.org/10.1007/s10340-019-01086-9 (2019).
    Article  Google Scholar 

    14.
    Santana, P. A., Kumar, L., Da Silva, R. S. & Picanço, M. C. Global geographic distribution of Tuta absoluta as affected by climate change. J. Pest Sci. 92, 1373–1385 (2019).
    Article  Google Scholar 

    15.
    Luna, M. G. et al. Biological control of Tuta absoluta in Argentina and Italy: evaluation of indigenous insects as natural enemies. EPPO Bulletin 42, 260–267 (2012).
    ADS  Article  Google Scholar 

    16.
    Bacci, L. et al. Natural mortality factors influencing the tomato leafminer Tuta absoluta in open-field tomato crops in South America. Pest Manage. Sci. https://doi.org/10.1002/ps.5173 (2019).
    Article  Google Scholar 

    17.
    Megido, R. C., Brostaux, Y., Haubruge, E. & Verheggen, F. J. Propensity of the tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), to develop on four potato plant varieties. Am. Potato J. 90, 255–260 (2013).
    Article  Google Scholar 

    18.
    Sylla, S., Brévault, T., Monticelli, L. S., Diarra, K. & Desneux, N. Geographic variation of host preference by the invasive tomato leaf miner Tuta absoluta: implications for host range expansion. J. Pest Sci. https://doi.org/10.1007/s10340-019-01094-9 (2019).
    Article  Google Scholar 

    19.
    Vargas, H. C. Observaciones sobre la biologıa y enemigos naturales de la polilla del tomate, Gnorimoschema absoluta (Meyrick) (Lepidoptera: Gelechiidae). Idesia 1, 75–110 (1970).
    Google Scholar 

    20.
    Gilardón, E., Pocovi, M., Hernández, C., Collavino, G. & Olsen, A. Papel da 2-tridecanona e dos tricomas glandulares tipo VI na resistência do tomateiro a Tuta absoluta. Pesqui. Agropecu. Bras. 36, 929–933 (2001).
    Article  Google Scholar 

    21.
    Pereyra, P. C. & Sánchez, N. E. Effect of two solanaceous plants on developmental and population parameters of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotrop. Entomol. 35, 671–676 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    22.
    Moreira, L. A. et al. Antibiosis of eight Lycopersicon genotypes to Tuta absoluta (Lepidoptera: Gelechiidae). Rer. Ceres 56, 283–287 (2009).
    Google Scholar 

    23.
    Negi, S., Sharma, P. L., Sharma, K. C. & Verma, S. C. Effect of host plants on developmental and population parameters of invasive leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Phytoparasitica 46, 213–221 (2018).
    Article  Google Scholar 

    24.
    Satishchandra, K. N., Chakravarthy, A. K., Özgökçe, M. S. & Atlihan, R. Population growth potential of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) on tomato, potato, and eggplant. J. Appl. Entomol. 143, 518–526 (2019).
    Article  Google Scholar 

    25.
    Younes, A. A., Zohdy, N. Z. M., Abulfadl, H. A. & Fathy, R. Life table parameters of the tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), on three solanaceous host plants. Afr. Entomol. 27, 461–467 (2019).
    Article  Google Scholar 

    26.
    Cherif, A., Attia-Barhoumi, S., Mansour, R., Zappalà, L. & Grissa-Lebdi, K. Elucidating key biological parameters of Tuta absoluta on different host plants and under various temperature and relative humidity regimes. Entomol. Gen. https://doi.org/10.1127/entomologia/2019/0685 (2019).
    Article  Google Scholar 

    27.
    Knapp, S. Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae. J. Exp. Bot. 53, 2001–2022 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Silva, G. A. et al. Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest Manage. Sci. 67, 913–920 (2011).
    ADS  CAS  Article  Google Scholar 

    29.
    Southwood, T. R. E. & Hendersen, P. A. Ecological Methods (ed. Southwood, T. R. E. & Hendersen, P. A.) (Blackwell Science, 2000).

    30.
    Maia, H. N., Luiz, A. A. J. & Campanhola, C. Statistical inference on associated fertility life table parameters using jackknife technique: computational aspects. J. Econ. Entomol. 93, 511–518 (2000).
    Article  Google Scholar 

    31.
    Paré, P. W. & Tumlinson, J. H. Plant volatiles as a defense against insect herbivores. Plant Physiol. 121, 325–332 (1999).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Feeny, P., Stadler, E., Ahman, I. & Carter, M. Effects of plant odor on oviposition by the black swallowtail butterfly, Papilio polyxenes (Lepidoptera: Papilionidae). J. Insect. Behav. 2, 803–827 (1989).
    Article  Google Scholar 

    33.
    Proffit, M. et al. Attraction and oviposition of Tuta absoluta females in response to tomato leaf volatiles. J. Chem. Ecol. 37, 565–574 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Friedman, M. Analysis of biologically active compounds in potatoes (Solanum tuberosum), tomatoes (Lycopersicon esculentum), and jimson weed (Datura stramonium) seeds. J. Chromatogr. A 1054, 143–155 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Antônio, A. D. C., Silva, D. J. H. D., Picanço, M. C., Santos, N. T. & Fernandes, M. E. S. Tomato plant inheritance of antixenotic resistance to tomato leafminer. Pesqui. Agropecu. Bras. 46, 74–80 (2011).
    Article  Google Scholar 

    36.
    Miranda, M. M. M., Picanço, M., Zanuncio, J. C. & Guedes, R. N. C. Ecological life table of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Biocontrol Sci. Technol. 8, 597–606 (1998).
    Article  Google Scholar 

    37.
    Zalucki, M. P., Clarke, A. R. & Malcolm, S. B. Ecology and behavior of first instar larval lepidoptera. Annu. Rev. Entomol. 47, 361–393 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Krainacker, D. A., Carey, J. R. & Vargas, R. I. Effect of larval host on life history traits on the Mediterranean fruit fly Ceratitis capitata. Oecologia 73, 583–590 (1987).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Razmjou, J., Naseri, B. & Hemati, S. A. Comparative performance of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on various host plants. J. Pest. Sci. 87, 29–37 (2014).
    Article  Google Scholar 

    40.
    Calvo, D. & Molina, J. M. Fecundity-body size relationship and other reproductive aspects of Streblote panda (Lepidoptera: Lasiocampidae). Ann. Entomol. Soc. Am. 98, 191–196 (2005).
    Article  Google Scholar 

    41.
    Awmack, C. S. & Leather, S. R. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817–844 (2000).
    Article  Google Scholar 

    42.
    Boggs, C. L. & Freeman, K. D. Larval food limitation in butterflies: effects on adult resource allocation and fitness. Oecologia 144, 353–361 (2005).
    ADS  PubMed  Article  Google Scholar 

    43.
    Tammaru, T., Esperk, T. & Castellanos, I. No evidence for costs of being large in females of Orgyia spp. (Lepidoptera, Lymantriidae): larger is always better. Oecologia 133, 430–438 (2002).
    ADS  PubMed  Article  Google Scholar 

    44.
    Calvo, D. & Molina, J. M. Utilization of blueberry by the lappet moth Streblote panda Hübner (Lepidoptera: Lasiocampidae): survival, development and larval performance. J. Econ. Entomol. 97, 957–963 (2004).
    CAS  PubMed  Article  Google Scholar 

    45.
    Kanle Satishchandra, N., Chakravarthy, A. K., Özgökçe, M. S. & Atlihan, R. Population growth potential of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) on tomato, potato, and eggplant. J. Appl. Entomol. 143, 518–526 (2019).
    Article  Google Scholar 

    46.
    Gotelli, N. J. A primer of ecology (ed. Gotelli, N. J.) (Sinauer Associates Incorporated Press, 1995).

    47.
    Birch, L. The intrinsic rate of natural increase of an insect population. J. Econ. Entomol. 17, 15–26 (1948).
    Google Scholar 

    48.
    Lage, J., Skovmand, B. & Andersen, S. B. Characterization of greenbug (Homoptera: Aphididae) resistance in synthetic hexaploid wheats. J. Econ. Entomol. 96, 1922–1928 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Smith, C. M. Plant Resistance to Arthropods: Molecular and Conventional Approaches (ed. Smith, C. M.) (Springer, Berlin, 2005).

    50.
    Fathi, S. A. A., Bozorg-Amirkalaee, M. & Sarfaraz, R. M. Preference and performance of Plutella xylostella (L.) (Lepidoptera: Plutellidae) on canola cultivars. J. Pest Sci. 84, 41–47 (2011).
    Article  Google Scholar 

    51.
    Thomazini, A. P. B. W., Vendramim, J. D., Brunherotto, R. & Lopes, M. T. Efeito de genótipos de tomateiro sobre a biologia e oviposição de Tuta absoluta (Meyrick) (Lep.: Gelechiidae). Neotrop. Entomol. 30, 283–288 (2001).
    Article  Google Scholar 

    52.
    Boiça Junior, A. L., Bottega, D. B., Lourenção, A. L. & Rodrigues, N. E. L. Não preferência para oviposição e alimentação por Tuta absoluta (Meyrick) em genótipos de tomateiro. Arq. Inst. Biol. 79, 541–548 (2012).
    Article  Google Scholar 

    53.
    Erdogan, P. & Babaroglu, N. E. Life table of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). J. Agric. Facul. Gaziosmanpasa Univ. 31, 80–89 (2014).
    Google Scholar 

    54.
    Malakar, R. & Tingey, W. M. Glandular trichomes of Solanum berthaultii and its hybrids with potato deter oviposition and impair growth of potato tuber moth. Entomol. Exp. Appl. 94, 249–257 (2000).
    Article  Google Scholar 

    55.
    Horgan, F. G., Quiring, D. T., Lagnaoui, A., Salas, A. R. & Pelletier, Y. Periderm and cortex based resistance to tuber feeding Phthorimaea operculella in two wild potato species. Entomol. Exp. Appl. 125, 249–258 (2007).
    Article  Google Scholar 

    56.
    Mackauer, M. Genetic problems in the production of biological control agents. Annu. Rev. Entomol. 21, 369–385 (1976).
    Article  Google Scholar 

    57.
    Spielman, D. & Brook, B. W. Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc. Natl. Acad. Sci. USA 101, 15261–15264 (2000).
    ADS  Article  CAS  Google Scholar 

    58.
    Urbaneja, A., Vercher, R., Navarro, V., García Marí, F. & Porcuna, J. L. La polilla del tomate, Tuta absoluta. Phytoma 194, 16–23 (2007).
    Google Scholar 

    59.
    Campos, R. G. Control químico del “minador de hojas y tallos de la papa” (Scrobipalpula absoluta Meyrick) en el valle del Cañete. Rev. Peru Entomol. 19, 102–106 (1976).
    Google Scholar 

    60.
    Garzia, T. G. Physalis peruviana L. (Solanaceae), a host plant of Tuta absoluta in Italy. IOBC/WPRS Bull 49, 231–232 (2009).

    61.
    Bawin, T., Dujeu, D., De Backer, L., Francis, F. & Verheggen, F. J. Ability of Tuta absoluta (Lepidoptera: Gelechiidae) to develop on alternative host plant species. Can. Entomol. 148, 434–442 (2016).
    Article  Google Scholar  More