Bowhead whales use two foraging strategies in response to fine-scale differences in zooplankton vertical distribution
1.
Laidre, K. L., Heide-Jørgensen, M. P., Nielsen, T. G. & Gissel Nielsen, T. Role of the bowhead whale as a predator in West Greenland. Mar. Ecol. Prog. Ser. 346, 285–297 (2007).
ADS Article Google Scholar
2.
Pomerleau, C., Ferguson, S. H. & Walkusz, W. Stomach contents of bowhead whales (Balaena mysticetus) from four locations in the Canadian Arctic. Polar Biol. 34, 615–620 (2011).
Article Google Scholar
3.
Pomerleau, C. et al. Prey assemblage isotopic variability as a tool for assessing diet and the spatial distribution of bowhead whale Balaena mysticetus foraging in the Canadian eastern Arctic. Mar. Ecol. Prog. Ser. 469, 161–174 (2012).
ADS Article Google Scholar
4.
Kenney, R. D., Hyman, M. A. M., Owen, R. E., Scott, G. P. & Winn, H. E. Estimation of prey densities required by western North Atlantic right whales. Mar. Mamm. Sci. 2, 1–13 (1986).
Article Google Scholar
5.
Baumgartner, M. F. & Tarrant, A. M. The physiology and ecology of diapause in marine copepods. Ann. Rev. Mar. Sci. 9, 387–411 (2017).
PubMed Article Google Scholar
6.
Fortune, S. M., Trites, A. W., Mayo, C. A., Rosen, D. A. S. & Hamilton, P. K. Energetic requirements of North Atlantic right whales and the implications for species recovery. Mar. Ecol. Prog. Ser. 478, 253–272 (2013).
ADS Article Google Scholar
7.
Hays, G. C., Richardson, A. J. & Robinson, C. Climate change and marine plankton. Trends Ecol. Evol. 20, 337–344 (2005).
PubMed Article PubMed Central Google Scholar
8.
Beaugrand, G., Mackas, D. & Goberville, E. Applying the concept of the ecological niche and a macroecological approach to understand how climate influences zooplankton: advantages, assumptions, limitations and requirements. Prog. Oceanogr. 111, 75–90 (2013).
ADS Article Google Scholar
9.
Beaugrand, G., Reid, P. C., Ibañez, F., Lindley, J. A. & Edwards, M. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694 (2002).
ADS CAS PubMed Article PubMed Central Google Scholar
10.
Beaugrand, G. Decadal changes in climate and ecosystems in the North Atlantic Ocean and adjacent seas. Deep Res. Part II Top. Stud. Oceanogr. 56, 656–673 (2009).
ADS Article Google Scholar
11.
Chust, G. et al. Are Calanus spp. shifting poleward in the North Atlantic? A habitat modelling approach. ICES J. Mar. Sci. 71, 241–253 (2014).
Article Google Scholar
12.
Grieve, B. D., Hare, J. A. & Saba, V. S. Projecting the effects of climate change on Calanus finmarchicus distribution within the U.S. Northeast Continental Shelf. Sci. Rep. 7, 6264 (2017).
ADS PubMed PubMed Central Article CAS Google Scholar
13.
Feng, Z., Ji, R., Campbell, R. G., Ashjian, C. J. & Zhang, J. Early ice retreat and ocean warming may induce copepod biogeographic boundary shifts in the Arctic Ocean. J. Geophys. Res. Ocean. 121, 6137–6158 (2016).
ADS Article Google Scholar
14.
Feng, Z., Ji, R., Ashjian, C., Campbell, R. & Zhang, J. Biogeographic responses of the copepod Calanus glacialis to a changing Arctic marine environment. Glob. Chang. Biol. 24, e159–e170 (2018).
ADS PubMed Article PubMed Central Google Scholar
15.
Kwok, R. et al. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J. Geophys. Res. Ocean. 114, 1–16 (2009).
Article Google Scholar
16.
Stroeve, J., Holland, M. M., Meier, W., Scambos, T. & Serreze, M. Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett. 34, 1–5 (2007).
Article Google Scholar
17.
Notz, D. & Stroeve, J. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science 354, 747–750 (2016).
ADS CAS PubMed Article PubMed Central Google Scholar
18.
Pomerleau, C. et al. Spatial patterns in zooplankton communities across the eastern Canadian sub-Arctic and Arctic waters: insights from stable carbon (delta C-13) and nitrogen (delta N-15) isotope ratios. J. Plankton Res. 33, 1779–1792 (2011).
CAS Article Google Scholar
19.
Pomerleau, C., Lesage, V., Winkler, G., Rosenberg, B. & Ferguson, S. H. Contemporary diet of bowhead whales (Balaena mysticetus) from the eastern Canadian Arctic inferred from fatty acid biomarkers. Arctic 67, 84–92 (2014).
Article Google Scholar
20.
Heide-Jørgensen, M. P. et al. Large scale sexual segregation of bowhead whales. Endang. Species Res. 13, 73–78 (2010).
Article Google Scholar
21.
Heide-Jørgensen, M. P. et al. Winter and spring diving behavior of bowhead whales relative to prey. Anim. Biotelemetry 1, 1–15 (2013).
Article Google Scholar
22.
Curry, B., Lee, C. M., Petrie, B., Moritz, R. E. & Kwok, R. Multiyear volume, liquid freshwater, and sea ice transports through Davis Strait, 2004–10. J. Phys. Oceanogr. 44, 1244–1266 (2014).
ADS Article Google Scholar
23.
Pomerleau, C. et al. Mercury and stable isotope cycles in baleen plates are consistent with year-round feeding in two bowhead whale (Balaena mysticetus) populations. Polar Biol. 41, 1881–1893 (2018).
Article Google Scholar
24.
Doniol-Valcroze, T. et al. Abundance estimate of the Eastern Canada-West Greenland bowhead whale population based on the 2013 High Arctic Cetacean Survey. (2015).
25.
Frasier, T. et al. Abundance estimates of the Eastern Canada-West Greenland bowhead whale (Balaena mysticetus) population based on genetic capture-mark-recapture analyses. (2015).
26.
Frasier, T. R. et al. Abundance estimation from genetic mark-recapture data when not all sites are sampled: an example with the bowhead whale. Glob. Ecol. Conserv. 22, e00903 (2020).
Article Google Scholar
27.
Dunbar, M. J. Physical oceanographic results of the ‘Calanus’ expeditions in Ungava Bay, Frobisher Bay, Cumberland Sound, Hudson Strait and Northern Hudson Bay, 1949–1955. J. Fish. Res. Board Canada 15, 155–201 (1958).
Article Google Scholar
28.
Aitken, A. & Gilbert, R. Holocene nearshore environments and sea-level history in Pangnirtung fjord, Baffin Island, NWT, Canada. Arct. Alp. Res. 21, 34–44 (1989).
Article Google Scholar
29.
McMeans, B. C. et al. Seasonal patterns in fatty acids of Calanus hyperboreus (Copepoda, Calanoida) from Cumberland Sound, Baffin Island, Nunavut. Mar. Biol. 159, 1095–1105 (2012).
CAS Article Google Scholar
30.
Bedard, J. M. et al. Outside influences on the water column of Cumberland Sound, Baffin Island. J. Geophys. Res. C Ocean. 120, 5000–5018 (2015).
ADS Article Google Scholar
31.
Tang, C. C. L. et al. The circulation, water masses and sea-ice of Baffin Bay. Prog. Oceanogr. 63, 183–228 (2004).
ADS Article Google Scholar
32.
Falk-Petersen, S., Mayzaud, P., Kattner, G. & Sargent, J. R. Lipids and life strategy of Arctic Calanus. Mar. Biol. Res. 5, 18–39 (2009).
Article Google Scholar
33.
Davies, K. T. A., Ryan, A. & Taggart, C. T. Measured and inferred gross energy content in diapausing Calanus spp. in a Scotian shelf basin. J. Plankton Res. 34, 614–625 (2012).
Article Google Scholar
34.
Koski, W. R., Davis, R. A., Miller, G. W. & Withrow, D. E. Reproduction. in The bowhead whale (eds. Burns, J. J., Montague, J. J. & Cowles, C. J.) 239–274 (Special Publication Number 2. The Society of Marine Mammalogy, Lawrence, KS, 1993).
35.
George, J. C. et al. Inferences from bowhead whale ovarian and pregnancy data: age estimates, length at sexual maturity and ovulation rates. International Whaling Commission Scientific Paper 56 (2004).
36.
Higdon, J. W. & Ferguson, S. H. Past, present, and future for bowhead whales (Balaena mysticetus) in northwest Hudson Bay. In A Little Less Arctic: Top Predators in the World’s Largest Northern Inland Sea, Hudson Bay (eds Ferguson, S. H. et al.) 159–177 (Springer, New York, 2010).
Google Scholar
37.
Liu, H. & Hopcroft, R. R. Growth and development of Pseudocalanus spp. in the northern Gulf of Alaska. J. Plankton Res. 30, 923–935 (2008).
Article Google Scholar
38.
DeLorenzo Costa, A., Durbin, E. G. & Mayo, C. A. Variability in the nutritional value of the major copepods in Cape Cod Bay (Massachusetts, USA) with implications for right whales. Mar. Ecol. 27, 109–123 (2006).
ADS Article CAS Google Scholar
39.
Madsen, S. D., Nielsen, T. G. & Hansen, B. W. Annual population development and production by Calanus finmarchicus, C. glacialisand C. hyperboreus in Disko Bay, western Greenland. Mar. Biol. 139, 75–93 (2001).
Article Google Scholar
40.
Reeves, R., Mitchell, E., Mansfield, A. & McLaughlin, M. Distribution and migration of the bowhead whale, Balaena mysticetus, in the Eastern North American. Arctic 36, 60 (1983).
Article Google Scholar
41.
Holland, C. A. William penny, 1809–92: Arctic whaling master. Polar Rec. 15, 25–43 (1970).
Article Google Scholar
42.
Higdon, J. W. Commercial and subsistence harvests of bowhead whales (Balaena mysticetus) in eastern Canada and West Greenland. J. Cetacean Res. Manag. 11, 185–216 (2010).
Google Scholar
43.
Diemer, K. M. et al. Marine mammal and seabird summer distribution and abundance in the fjords of northeast Cumberland Sound of Baffin Island, Nunavut, Canada. Polar Biol. 34, 41–48 (2011).
Article Google Scholar
44.
Matthews, C. et al. Boat-based surveys for marine mammals and seabirds in Cumberland Sound. Field report. (2012).
45.
Baumgartner, M. F., Wenzel, F. W., Lysiak, N. S. J. & Patrician, M. R. North Atlantic right whale foraging ecology and its role in human-caused mortality. Mar. Ecol. Prog. Ser. 581, 165–181 (2017).
ADS Article Google Scholar
46.
Fortune, S. et al. Seasonal diving and foraging behaviour of Eastern Canada-West Greenland bowhead whales. Mar. Ecol. Prog. Ser. 643, 197–217 (2020).
ADS Article Google Scholar
47.
Block, B. A. Physiological ecology in the 21st century: Advancements in biologging science. Integr. Comp. Biol. 45, 305–320 (2005).
PubMed Article PubMed Central Google Scholar
48.
Hays, G. C. New insights: animal-borne cameras and accelerometers reveal the secret lives of cryptic species. J. Anim. Ecol. 84, 587–589 (2015).
PubMed Article PubMed Central Google Scholar
49.
Bograd, S. J., Block, B. A., Costa, D. P. & Godley, B. J. Biologging technologies: new tools for conservation. Introduction. Endanger. Species Res. 10, 1–7 (2010).
Article Google Scholar
50.
Unstad, K. H. & Tande, K. S. Depth distribution of Calanus finmarchicus and C. glacialis in relation to environmental conditions in the Barents Sea. Polar Res. 10, 409–420 (1991).
Article Google Scholar
51.
Hirche, H. J. & Niehoff, B. Reproduction of the Arctic copepod Calanus hyperboreus in the Greenland Sea-field and laboratory observations. Polar Biol. 16, 209–219 (1996).
Article Google Scholar
52.
Madsen, S. J., Nielsen, T. G., Tervo, O. M. & Söderkvist, J. Importance of feeding for egg production in Calanus finmarchicus and C. glacialis during the Arctic spring. Mar. Ecol. Prog. Ser. 353, 177–190 (2008).
ADS CAS Article Google Scholar
53.
Darnis, G. & Fortier, L. Temperature, food and the seasonal vertical migration of key arctic copepods in the thermally stratified Amundsen Gulf (Beaufort Sea, Arctic Ocean) GE. J. Plankton Res. 36, 1092–1108 (2014).
CAS Article Google Scholar
54.
Parent, G. J., Plourde, S. & Turgeon, J. Overlapping size ranges of Calanus spp. off the Canadian Arctic and Atlantic Coasts: impact on species abundances. J. Plankton Res. 33, 1654–1665 (2011).
CAS Article Google Scholar
55.
Hyslop, E. J. Stomach contents analysis—a review of methods and their application. J. Fish Biol. 17, 411–429 (1980).
Article Google Scholar
56.
Dunweber, M. et al. Succession and fate of the spring diatom bloom in Disko Bay, western Greenland. Mar. Ecol. Prog. Ser. 419, 11–29 (2010).
ADS Article CAS Google Scholar
57.
Swalethorp, R. et al. Grazing, egg production, and biochemical evidence of differences in the life strategies of Calanus finmarchicus, C. glacialis and C. hyperboreus in Disko Bay, Western Greenland. Mar. Ecol. Prog. Ser. 429, 125–144 (2011).
ADS Article Google Scholar
58.
Baumgartner, M. F. & Mate, B. R. Summertime foraging ecology of North Atlantic right whales. Mar. Ecol. Prog. Ser. 264, 123–135 (2003).
ADS Article Google Scholar
59.
Hirche, H. J. Long-term experiments on lifespan, reproductive activity and timing of reproduction in the Arctic copepod Calanus hyperboreus. Mar. Biol. 160, 2469–2481 (2013).
Article Google Scholar
60.
Visser, A. W. & Jónasdóttir, S. H. Lipids, buoyancy and the seasonal vertical migration of Calanus finmarchicus. Fish. Oceanogr. 8, 100–106 (1999).
Article Google Scholar
61.
Scott, C. L., Kwasniewski, S., Falk-Petersen, S. & Sargent, J. R. Lipids and life strategies of Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus in late autumn, Kongsfjorden, Svalbrad. Polar Biol. 23, 510–516 (2000).
Article Google Scholar
62.
Heide-Jørgensen, M. P., Laidre, K. L., Logsdon, M. L. & Nielsen, T. G. Springtime coupling between chlorophyll a, sea ice and sea surface temperature in Disko Bay, West Greenland. Prog. Oceanogr. 73, 79–95 (2007).
ADS Article Google Scholar
63.
Baumgartner, M. F. Comparisons of Calanus finmarchicus fifth copepodite abundance estimates from nets and an optical plankton counter. J. Plankton Res. 25, 855–868 (2003).
Article Google Scholar
64.
Herman, A. W. Design and calibration of a new optical plankton counter capable of sizing small zooplankton. Deep Sea Res. A 39, 395–415 (1992).
ADS Article Google Scholar
65.
Falk-Petersen, S. et al. Vertical migration in high Arctic waters during autumn 2004. Deep Sea Res. II(55), 2275–2284 (2008).
ADS Article Google Scholar
66.
Baumgartner, M. F., Lysiak, N. S. J., Schuman, C., Urban-Rich, J. & Wenzel, F. W. Diel vertical migration behavior of Calanus finmarchicus and its influence on right and sei whale occurrence. Mar. Ecol. Prog. Ser. 423, 167–184 (2011).
ADS Article Google Scholar
67.
Bollens, S. M. & Frost, B. W. Predator-induced diet vertical migration in a planktonic copepod. J. Plankton Res. 11, 1047–1065 (1989).
Article Google Scholar
68.
Hays, G. C. Ontogenetic and seasonal variation in the diel vertical migration of the copepods Metridia lucens and Metridia longa. Limnol. Oceanogr. 40, 1461–1465 (1995).
ADS Article Google Scholar
69.
Huntley, M. & Brooks, E. R. Effects of age and food availability on diel vertical migration of Calanus pacificus. Mar. Biol. 71, 23–31 (1982).
Article Google Scholar
70.
Simon, M., Johnson, M. J., Tyack, P. & Madsen, P. T. Behavior and kinematics of continous ram filtration in bowhead wahles (Balaena mysticetus). Proc. R. Soc. Lond. B. 276, 3819–3828 (2009).
Article Google Scholar
71.
van der Hoop, J. M. et al. Foraging rates of ram-filtering North Atlantic right whales. Funct. Ecol. 33, 1290–1306 (2019).
Article Google Scholar
72.
Goldbogen, J. A. et al. Prey density and distribution drive the three-dimensional foraging strategies of the largest filter feeder. Funct. Ecol. 29, 951–961 (2015).
Article Google Scholar
73.
Kooyman, G. L., Wahrenbrock, E. A., Castellini, M. A., Davis, R. W. & Sinnett, E. E. Aerobic and anaerobic metabolism during voluntary diving in Weddell seals: evidence of preferred pathways from blood chemsitry and behavior. J. Comp. Physiol. B 138, 335–346 (1980).
CAS Article Google Scholar
74.
Kooyman, G. L., Castellini, M. A., Davis, R. W. & Maue, R. A. Aerobic diving limits of immature Weddell seals. J. Comp. Physiol. B 151, 171–174 (1983).
Article Google Scholar
75.
Dyke, A. S., Hooper, J. & Savelle, J. M. A history of sea ice in the Canadian Arctic archipelago based on postglacial remains of the bowhead whale (Balaena mysticetus). Arctic 49, 235–255 (1996).
Article Google Scholar
76.
Baumgartner, M. F., Hammar, T. & Robbins, J. Development and assessment of a new dermal attachment for short-term tagging studies of baleen whales. Methods Ecol. Evol. 6, 289–297 (2015).
Article Google Scholar
77.
Reinhart, N. R. et al. Occurrence of killer whale Orcinus orca rake marks on Eastern Canada-West Greenland bowhead whales Balaena mysticetus. Polar Biol. 36, 1133–1146 (2013).
Article Google Scholar
78.
Fortune, S. M. E. et al. Evidence of molting and the function of “rock-nosing” behavior in bowhead whales in the eastern Canadian Arctic. PLoS ONE 12, 1–15 (2017).
MathSciNet Article CAS Google Scholar
79.
Silva, M. A. et al. Assessing performance of Bayesian state-space models fit to argos satellite telemetry locations processed with kalman filtering. PLoS ONE 9, e92277 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
80.
Lowther, A. D., Lydersen, C., Fedak, M. A., Lovell, P. & Kovacs, K. M. The argos-CLS kalman filter: Error structures and state-space modelling relative to fastloc GPS data. PLoS ONE 10, e0124754 (2015).
PubMed PubMed Central Article CAS Google Scholar
81.
R Development Core Team. R: A Language and Environment for Statistical Computing. R Development Core Team, Vienna (2016). https://doi.org/10.1038/sj.hdy.6800737.
82.
Jonsen, I. D., Flemming, J. M. & Myers, R. A. Robust state-space modeling of animal movement data. Ecology 86, 2874–2880 (2005).
Article Google Scholar
83.
Jonsen, I. D. et al. State-space models for bio-loggers: a methodological road map. Deep. Res. II(88–89), 34–46 (2013).
ADS Google Scholar
84.
Tinbergen, N., Impekoven, M. & Franck, D. An experiment on spacing-out as a defence against predation. Behaviour 28, 307–320 (1967).
Article Google Scholar
85.
Kareiva, P. & Odell, G. Swarms of predators exhibit ‘preytaxis’ if individual predators use area-restricted search. Am. Nat. 130, 233–270 (1987).
Article Google Scholar
86.
Haskell, D. G. Experiments and a model examining learning in the area-restricted search behavior of ferrets (Mustela putorius furo). Behav. Ecol. 8, 448–455 (1997).
Article Google Scholar
87.
Fauchald, P. & Tveraa, T. Using first-passage time in the analysis of area-restricted search and habitat selection. Ecology 84, 282–288 (2003).
Article Google Scholar
88.
Anderwald, P. et al. Spatial scale and environmental determinants in minke whale habitat use and foraging. Mar. Ecol. Prog. Ser. 450, 259–274 (2012).
ADS Article Google Scholar
89.
Jonsen, I. D., Myers, R. A. & James, M. C. Identifying leatherback turtle foraging behaviour from satellite telemetry using a switching state-space model. Mar. Ecol. Prog. Ser. 337, 255–264 (2007).
ADS Article Google Scholar
90.
Pinheiro, J. C. & Bates, D. M. Linear mixed-effects models. in Mixed-effects models in S and S-Plus 1–56 (Springer, New York, 2000). https://doi.org/10.1198/tech.2001.s574.
91.
Sverdrup, H. U. On conditions for the vernal blooming of phytoplankton. ICES J. Mar. Sci. 18, 287–295 (1953).
Article Google Scholar
92.
Thomson, R. E. & Fine, I. V. Estimating mixed layer depth from oceanic profile data. J. Atmos. Ocean. Technol. 20, 319–329 (2003).
ADS Article Google Scholar
93.
Smith, W. O. & Jones, R. M. Vertical mixing, critical depths, and phytoplankton growth in the Ross Sea. ICES J. Mar. Sci. 72, 1952–1960 (2015).
Article Google Scholar
94.
Suthers, I. M., Taggart, C. T., Rissik, D. & Baird, M. E. Day and night ichthyoplankton assemblages and zooplankton biomass size spectrum in a deep ocean island wake. Mar. Ecol. Prog. Ser. 322, 225–238 (2006).
ADS CAS Article Google Scholar
95.
Grainger, E. H. The copepods Calanus glacial is Jaschnov and Calanus finmarchicus (Gunnerus) in Canadian Arctic-Subarctic waters. J. Fish. Res. Board Can. 18, 663–678 (1961).
Article Google Scholar
96.
Jaschnov, W. A. Distribution of Calanus Species in the Seas of the Northern Hemisphere. Int. Rev. Hydrobiol. Hydrogr. 55, 197–212 (1970).
Article Google Scholar
97.
Hirche, H. J. & Mumm, N. Distribution of dominant copepods in the Nansen Basin, Arctic Ocean, in summer. Deep Sea Res. A 39, 485–505 (1992).
ADS Article Google Scholar
98.
Breteler, W. C. M. K., Fransz, H. G. & Gonzalez, S. R. Growth and development of four calanoid copepod species under experimental and natural conditions. Neth. J. Sea Res. 16, 195–207 (1982).
Article Google Scholar More