More stories

  • in

    Bowhead whales use two foraging strategies in response to fine-scale differences in zooplankton vertical distribution

    1.
    Laidre, K. L., Heide-Jørgensen, M. P., Nielsen, T. G. & Gissel Nielsen, T. Role of the bowhead whale as a predator in West Greenland. Mar. Ecol. Prog. Ser. 346, 285–297 (2007).
    ADS  Article  Google Scholar 
    2.
    Pomerleau, C., Ferguson, S. H. & Walkusz, W. Stomach contents of bowhead whales (Balaena mysticetus) from four locations in the Canadian Arctic. Polar Biol. 34, 615–620 (2011).
    Article  Google Scholar 

    3.
    Pomerleau, C. et al. Prey assemblage isotopic variability as a tool for assessing diet and the spatial distribution of bowhead whale Balaena mysticetus foraging in the Canadian eastern Arctic. Mar. Ecol. Prog. Ser. 469, 161–174 (2012).
    ADS  Article  Google Scholar 

    4.
    Kenney, R. D., Hyman, M. A. M., Owen, R. E., Scott, G. P. & Winn, H. E. Estimation of prey densities required by western North Atlantic right whales. Mar. Mamm. Sci. 2, 1–13 (1986).
    Article  Google Scholar 

    5.
    Baumgartner, M. F. & Tarrant, A. M. The physiology and ecology of diapause in marine copepods. Ann. Rev. Mar. Sci. 9, 387–411 (2017).
    PubMed  Article  Google Scholar 

    6.
    Fortune, S. M., Trites, A. W., Mayo, C. A., Rosen, D. A. S. & Hamilton, P. K. Energetic requirements of North Atlantic right whales and the implications for species recovery. Mar. Ecol. Prog. Ser. 478, 253–272 (2013).
    ADS  Article  Google Scholar 

    7.
    Hays, G. C., Richardson, A. J. & Robinson, C. Climate change and marine plankton. Trends Ecol. Evol. 20, 337–344 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    8.
    Beaugrand, G., Mackas, D. & Goberville, E. Applying the concept of the ecological niche and a macroecological approach to understand how climate influences zooplankton: advantages, assumptions, limitations and requirements. Prog. Oceanogr. 111, 75–90 (2013).
    ADS  Article  Google Scholar 

    9.
    Beaugrand, G., Reid, P. C., Ibañez, F., Lindley, J. A. & Edwards, M. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Beaugrand, G. Decadal changes in climate and ecosystems in the North Atlantic Ocean and adjacent seas. Deep Res. Part II Top. Stud. Oceanogr. 56, 656–673 (2009).
    ADS  Article  Google Scholar 

    11.
    Chust, G. et al. Are Calanus spp. shifting poleward in the North Atlantic? A habitat modelling approach. ICES J. Mar. Sci. 71, 241–253 (2014).
    Article  Google Scholar 

    12.
    Grieve, B. D., Hare, J. A. & Saba, V. S. Projecting the effects of climate change on Calanus finmarchicus distribution within the U.S. Northeast Continental Shelf. Sci. Rep. 7, 6264 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Feng, Z., Ji, R., Campbell, R. G., Ashjian, C. J. & Zhang, J. Early ice retreat and ocean warming may induce copepod biogeographic boundary shifts in the Arctic Ocean. J. Geophys. Res. Ocean. 121, 6137–6158 (2016).
    ADS  Article  Google Scholar 

    14.
    Feng, Z., Ji, R., Ashjian, C., Campbell, R. & Zhang, J. Biogeographic responses of the copepod Calanus glacialis to a changing Arctic marine environment. Glob. Chang. Biol. 24, e159–e170 (2018).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Kwok, R. et al. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J. Geophys. Res. Ocean. 114, 1–16 (2009).
    Article  Google Scholar 

    16.
    Stroeve, J., Holland, M. M., Meier, W., Scambos, T. & Serreze, M. Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett. 34, 1–5 (2007).
    Article  Google Scholar 

    17.
    Notz, D. & Stroeve, J. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science 354, 747–750 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Pomerleau, C. et al. Spatial patterns in zooplankton communities across the eastern Canadian sub-Arctic and Arctic waters: insights from stable carbon (delta C-13) and nitrogen (delta N-15) isotope ratios. J. Plankton Res. 33, 1779–1792 (2011).
    CAS  Article  Google Scholar 

    19.
    Pomerleau, C., Lesage, V., Winkler, G., Rosenberg, B. & Ferguson, S. H. Contemporary diet of bowhead whales (Balaena mysticetus) from the eastern Canadian Arctic inferred from fatty acid biomarkers. Arctic 67, 84–92 (2014).
    Article  Google Scholar 

    20.
    Heide-Jørgensen, M. P. et al. Large scale sexual segregation of bowhead whales. Endang. Species Res. 13, 73–78 (2010).
    Article  Google Scholar 

    21.
    Heide-Jørgensen, M. P. et al. Winter and spring diving behavior of bowhead whales relative to prey. Anim. Biotelemetry 1, 1–15 (2013).
    Article  Google Scholar 

    22.
    Curry, B., Lee, C. M., Petrie, B., Moritz, R. E. & Kwok, R. Multiyear volume, liquid freshwater, and sea ice transports through Davis Strait, 2004–10. J. Phys. Oceanogr. 44, 1244–1266 (2014).
    ADS  Article  Google Scholar 

    23.
    Pomerleau, C. et al. Mercury and stable isotope cycles in baleen plates are consistent with year-round feeding in two bowhead whale (Balaena mysticetus) populations. Polar Biol. 41, 1881–1893 (2018).
    Article  Google Scholar 

    24.
    Doniol-Valcroze, T. et al. Abundance estimate of the Eastern Canada-West Greenland bowhead whale population based on the 2013 High Arctic Cetacean Survey. (2015).

    25.
    Frasier, T. et al. Abundance estimates of the Eastern Canada-West Greenland bowhead whale (Balaena mysticetus) population based on genetic capture-mark-recapture analyses. (2015).

    26.
    Frasier, T. R. et al. Abundance estimation from genetic mark-recapture data when not all sites are sampled: an example with the bowhead whale. Glob. Ecol. Conserv. 22, e00903 (2020).
    Article  Google Scholar 

    27.
    Dunbar, M. J. Physical oceanographic results of the ‘Calanus’ expeditions in Ungava Bay, Frobisher Bay, Cumberland Sound, Hudson Strait and Northern Hudson Bay, 1949–1955. J. Fish. Res. Board Canada 15, 155–201 (1958).
    Article  Google Scholar 

    28.
    Aitken, A. & Gilbert, R. Holocene nearshore environments and sea-level history in Pangnirtung fjord, Baffin Island, NWT, Canada. Arct. Alp. Res. 21, 34–44 (1989).
    Article  Google Scholar 

    29.
    McMeans, B. C. et al. Seasonal patterns in fatty acids of Calanus hyperboreus (Copepoda, Calanoida) from Cumberland Sound, Baffin Island, Nunavut. Mar. Biol. 159, 1095–1105 (2012).
    CAS  Article  Google Scholar 

    30.
    Bedard, J. M. et al. Outside influences on the water column of Cumberland Sound, Baffin Island. J. Geophys. Res. C Ocean. 120, 5000–5018 (2015).
    ADS  Article  Google Scholar 

    31.
    Tang, C. C. L. et al. The circulation, water masses and sea-ice of Baffin Bay. Prog. Oceanogr. 63, 183–228 (2004).
    ADS  Article  Google Scholar 

    32.
    Falk-Petersen, S., Mayzaud, P., Kattner, G. & Sargent, J. R. Lipids and life strategy of Arctic Calanus. Mar. Biol. Res. 5, 18–39 (2009).
    Article  Google Scholar 

    33.
    Davies, K. T. A., Ryan, A. & Taggart, C. T. Measured and inferred gross energy content in diapausing Calanus spp. in a Scotian shelf basin. J. Plankton Res. 34, 614–625 (2012).
    Article  Google Scholar 

    34.
    Koski, W. R., Davis, R. A., Miller, G. W. & Withrow, D. E. Reproduction. in The bowhead whale (eds. Burns, J. J., Montague, J. J. & Cowles, C. J.) 239–274 (Special Publication Number 2. The Society of Marine Mammalogy, Lawrence, KS, 1993).

    35.
    George, J. C. et al. Inferences from bowhead whale ovarian and pregnancy data: age estimates, length at sexual maturity and ovulation rates. International Whaling Commission Scientific Paper 56 (2004).

    36.
    Higdon, J. W. & Ferguson, S. H. Past, present, and future for bowhead whales (Balaena mysticetus) in northwest Hudson Bay. In A Little Less Arctic: Top Predators in the World’s Largest Northern Inland Sea, Hudson Bay (eds Ferguson, S. H. et al.) 159–177 (Springer, New York, 2010).
    Google Scholar 

    37.
    Liu, H. & Hopcroft, R. R. Growth and development of Pseudocalanus spp. in the northern Gulf of Alaska. J. Plankton Res. 30, 923–935 (2008).
    Article  Google Scholar 

    38.
    DeLorenzo Costa, A., Durbin, E. G. & Mayo, C. A. Variability in the nutritional value of the major copepods in Cape Cod Bay (Massachusetts, USA) with implications for right whales. Mar. Ecol. 27, 109–123 (2006).
    ADS  Article  CAS  Google Scholar 

    39.
    Madsen, S. D., Nielsen, T. G. & Hansen, B. W. Annual population development and production by Calanus finmarchicus, C. glacialisand C. hyperboreus in Disko Bay, western Greenland. Mar. Biol. 139, 75–93 (2001).
    Article  Google Scholar 

    40.
    Reeves, R., Mitchell, E., Mansfield, A. & McLaughlin, M. Distribution and migration of the bowhead whale, Balaena mysticetus, in the Eastern North American. Arctic 36, 60 (1983).
    Article  Google Scholar 

    41.
    Holland, C. A. William penny, 1809–92: Arctic whaling master. Polar Rec. 15, 25–43 (1970).
    Article  Google Scholar 

    42.
    Higdon, J. W. Commercial and subsistence harvests of bowhead whales (Balaena mysticetus) in eastern Canada and West Greenland. J. Cetacean Res. Manag. 11, 185–216 (2010).
    Google Scholar 

    43.
    Diemer, K. M. et al. Marine mammal and seabird summer distribution and abundance in the fjords of northeast Cumberland Sound of Baffin Island, Nunavut, Canada. Polar Biol. 34, 41–48 (2011).
    Article  Google Scholar 

    44.
    Matthews, C. et al. Boat-based surveys for marine mammals and seabirds in Cumberland Sound. Field report. (2012).

    45.
    Baumgartner, M. F., Wenzel, F. W., Lysiak, N. S. J. & Patrician, M. R. North Atlantic right whale foraging ecology and its role in human-caused mortality. Mar. Ecol. Prog. Ser. 581, 165–181 (2017).
    ADS  Article  Google Scholar 

    46.
    Fortune, S. et al. Seasonal diving and foraging behaviour of Eastern Canada-West Greenland bowhead whales. Mar. Ecol. Prog. Ser. 643, 197–217 (2020).
    ADS  Article  Google Scholar 

    47.
    Block, B. A. Physiological ecology in the 21st century: Advancements in biologging science. Integr. Comp. Biol. 45, 305–320 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    48.
    Hays, G. C. New insights: animal-borne cameras and accelerometers reveal the secret lives of cryptic species. J. Anim. Ecol. 84, 587–589 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    49.
    Bograd, S. J., Block, B. A., Costa, D. P. & Godley, B. J. Biologging technologies: new tools for conservation. Introduction. Endanger. Species Res. 10, 1–7 (2010).
    Article  Google Scholar 

    50.
    Unstad, K. H. & Tande, K. S. Depth distribution of Calanus finmarchicus and C. glacialis in relation to environmental conditions in the Barents Sea. Polar Res. 10, 409–420 (1991).
    Article  Google Scholar 

    51.
    Hirche, H. J. & Niehoff, B. Reproduction of the Arctic copepod Calanus hyperboreus in the Greenland Sea-field and laboratory observations. Polar Biol. 16, 209–219 (1996).
    Article  Google Scholar 

    52.
    Madsen, S. J., Nielsen, T. G., Tervo, O. M. & Söderkvist, J. Importance of feeding for egg production in Calanus finmarchicus and C. glacialis during the Arctic spring. Mar. Ecol. Prog. Ser. 353, 177–190 (2008).
    ADS  CAS  Article  Google Scholar 

    53.
    Darnis, G. & Fortier, L. Temperature, food and the seasonal vertical migration of key arctic copepods in the thermally stratified Amundsen Gulf (Beaufort Sea, Arctic Ocean) GE. J. Plankton Res. 36, 1092–1108 (2014).
    CAS  Article  Google Scholar 

    54.
    Parent, G. J., Plourde, S. & Turgeon, J. Overlapping size ranges of Calanus spp. off the Canadian Arctic and Atlantic Coasts: impact on species abundances. J. Plankton Res. 33, 1654–1665 (2011).
    CAS  Article  Google Scholar 

    55.
    Hyslop, E. J. Stomach contents analysis—a review of methods and their application. J. Fish Biol. 17, 411–429 (1980).
    Article  Google Scholar 

    56.
    Dunweber, M. et al. Succession and fate of the spring diatom bloom in Disko Bay, western Greenland. Mar. Ecol. Prog. Ser. 419, 11–29 (2010).
    ADS  Article  CAS  Google Scholar 

    57.
    Swalethorp, R. et al. Grazing, egg production, and biochemical evidence of differences in the life strategies of Calanus finmarchicus, C. glacialis and C. hyperboreus in Disko Bay, Western Greenland. Mar. Ecol. Prog. Ser. 429, 125–144 (2011).
    ADS  Article  Google Scholar 

    58.
    Baumgartner, M. F. & Mate, B. R. Summertime foraging ecology of North Atlantic right whales. Mar. Ecol. Prog. Ser. 264, 123–135 (2003).
    ADS  Article  Google Scholar 

    59.
    Hirche, H. J. Long-term experiments on lifespan, reproductive activity and timing of reproduction in the Arctic copepod Calanus hyperboreus. Mar. Biol. 160, 2469–2481 (2013).
    Article  Google Scholar 

    60.
    Visser, A. W. & Jónasdóttir, S. H. Lipids, buoyancy and the seasonal vertical migration of Calanus finmarchicus. Fish. Oceanogr. 8, 100–106 (1999).
    Article  Google Scholar 

    61.
    Scott, C. L., Kwasniewski, S., Falk-Petersen, S. & Sargent, J. R. Lipids and life strategies of Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus in late autumn, Kongsfjorden, Svalbrad. Polar Biol. 23, 510–516 (2000).
    Article  Google Scholar 

    62.
    Heide-Jørgensen, M. P., Laidre, K. L., Logsdon, M. L. & Nielsen, T. G. Springtime coupling between chlorophyll a, sea ice and sea surface temperature in Disko Bay, West Greenland. Prog. Oceanogr. 73, 79–95 (2007).
    ADS  Article  Google Scholar 

    63.
    Baumgartner, M. F. Comparisons of Calanus finmarchicus fifth copepodite abundance estimates from nets and an optical plankton counter. J. Plankton Res. 25, 855–868 (2003).
    Article  Google Scholar 

    64.
    Herman, A. W. Design and calibration of a new optical plankton counter capable of sizing small zooplankton. Deep Sea Res. A 39, 395–415 (1992).
    ADS  Article  Google Scholar 

    65.
    Falk-Petersen, S. et al. Vertical migration in high Arctic waters during autumn 2004. Deep Sea Res. II(55), 2275–2284 (2008).
    ADS  Article  Google Scholar 

    66.
    Baumgartner, M. F., Lysiak, N. S. J., Schuman, C., Urban-Rich, J. & Wenzel, F. W. Diel vertical migration behavior of Calanus finmarchicus and its influence on right and sei whale occurrence. Mar. Ecol. Prog. Ser. 423, 167–184 (2011).
    ADS  Article  Google Scholar 

    67.
    Bollens, S. M. & Frost, B. W. Predator-induced diet vertical migration in a planktonic copepod. J. Plankton Res. 11, 1047–1065 (1989).
    Article  Google Scholar 

    68.
    Hays, G. C. Ontogenetic and seasonal variation in the diel vertical migration of the copepods Metridia lucens and Metridia longa. Limnol. Oceanogr. 40, 1461–1465 (1995).
    ADS  Article  Google Scholar 

    69.
    Huntley, M. & Brooks, E. R. Effects of age and food availability on diel vertical migration of Calanus pacificus. Mar. Biol. 71, 23–31 (1982).
    Article  Google Scholar 

    70.
    Simon, M., Johnson, M. J., Tyack, P. & Madsen, P. T. Behavior and kinematics of continous ram filtration in bowhead wahles (Balaena mysticetus). Proc. R. Soc. Lond. B. 276, 3819–3828 (2009).
    Article  Google Scholar 

    71.
    van der Hoop, J. M. et al. Foraging rates of ram-filtering North Atlantic right whales. Funct. Ecol. 33, 1290–1306 (2019).
    Article  Google Scholar 

    72.
    Goldbogen, J. A. et al. Prey density and distribution drive the three-dimensional foraging strategies of the largest filter feeder. Funct. Ecol. 29, 951–961 (2015).
    Article  Google Scholar 

    73.
    Kooyman, G. L., Wahrenbrock, E. A., Castellini, M. A., Davis, R. W. & Sinnett, E. E. Aerobic and anaerobic metabolism during voluntary diving in Weddell seals: evidence of preferred pathways from blood chemsitry and behavior. J. Comp. Physiol. B 138, 335–346 (1980).
    CAS  Article  Google Scholar 

    74.
    Kooyman, G. L., Castellini, M. A., Davis, R. W. & Maue, R. A. Aerobic diving limits of immature Weddell seals. J. Comp. Physiol. B 151, 171–174 (1983).
    Article  Google Scholar 

    75.
    Dyke, A. S., Hooper, J. & Savelle, J. M. A history of sea ice in the Canadian Arctic archipelago based on postglacial remains of the bowhead whale (Balaena mysticetus). Arctic 49, 235–255 (1996).
    Article  Google Scholar 

    76.
    Baumgartner, M. F., Hammar, T. & Robbins, J. Development and assessment of a new dermal attachment for short-term tagging studies of baleen whales. Methods Ecol. Evol. 6, 289–297 (2015).
    Article  Google Scholar 

    77.
    Reinhart, N. R. et al. Occurrence of killer whale Orcinus orca rake marks on Eastern Canada-West Greenland bowhead whales Balaena mysticetus. Polar Biol. 36, 1133–1146 (2013).
    Article  Google Scholar 

    78.
    Fortune, S. M. E. et al. Evidence of molting and the function of “rock-nosing” behavior in bowhead whales in the eastern Canadian Arctic. PLoS ONE 12, 1–15 (2017).
    MathSciNet  Article  CAS  Google Scholar 

    79.
    Silva, M. A. et al. Assessing performance of Bayesian state-space models fit to argos satellite telemetry locations processed with kalman filtering. PLoS ONE 9, e92277 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    80.
    Lowther, A. D., Lydersen, C., Fedak, M. A., Lovell, P. & Kovacs, K. M. The argos-CLS kalman filter: Error structures and state-space modelling relative to fastloc GPS data. PLoS ONE 10, e0124754 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    81.
    R Development Core Team. R: A Language and Environment for Statistical Computing. R Development Core Team, Vienna (2016). https://doi.org/10.1038/sj.hdy.6800737.

    82.
    Jonsen, I. D., Flemming, J. M. & Myers, R. A. Robust state-space modeling of animal movement data. Ecology 86, 2874–2880 (2005).
    Article  Google Scholar 

    83.
    Jonsen, I. D. et al. State-space models for bio-loggers: a methodological road map. Deep. Res. II(88–89), 34–46 (2013).
    ADS  Google Scholar 

    84.
    Tinbergen, N., Impekoven, M. & Franck, D. An experiment on spacing-out as a defence against predation. Behaviour 28, 307–320 (1967).
    Article  Google Scholar 

    85.
    Kareiva, P. & Odell, G. Swarms of predators exhibit ‘preytaxis’ if individual predators use area-restricted search. Am. Nat. 130, 233–270 (1987).
    Article  Google Scholar 

    86.
    Haskell, D. G. Experiments and a model examining learning in the area-restricted search behavior of ferrets (Mustela putorius furo). Behav. Ecol. 8, 448–455 (1997).
    Article  Google Scholar 

    87.
    Fauchald, P. & Tveraa, T. Using first-passage time in the analysis of area-restricted search and habitat selection. Ecology 84, 282–288 (2003).
    Article  Google Scholar 

    88.
    Anderwald, P. et al. Spatial scale and environmental determinants in minke whale habitat use and foraging. Mar. Ecol. Prog. Ser. 450, 259–274 (2012).
    ADS  Article  Google Scholar 

    89.
    Jonsen, I. D., Myers, R. A. & James, M. C. Identifying leatherback turtle foraging behaviour from satellite telemetry using a switching state-space model. Mar. Ecol. Prog. Ser. 337, 255–264 (2007).
    ADS  Article  Google Scholar 

    90.
    Pinheiro, J. C. & Bates, D. M. Linear mixed-effects models. in Mixed-effects models in S and S-Plus 1–56 (Springer, New York, 2000). https://doi.org/10.1198/tech.2001.s574.

    91.
    Sverdrup, H. U. On conditions for the vernal blooming of phytoplankton. ICES J. Mar. Sci. 18, 287–295 (1953).
    Article  Google Scholar 

    92.
    Thomson, R. E. & Fine, I. V. Estimating mixed layer depth from oceanic profile data. J. Atmos. Ocean. Technol. 20, 319–329 (2003).
    ADS  Article  Google Scholar 

    93.
    Smith, W. O. & Jones, R. M. Vertical mixing, critical depths, and phytoplankton growth in the Ross Sea. ICES J. Mar. Sci. 72, 1952–1960 (2015).
    Article  Google Scholar 

    94.
    Suthers, I. M., Taggart, C. T., Rissik, D. & Baird, M. E. Day and night ichthyoplankton assemblages and zooplankton biomass size spectrum in a deep ocean island wake. Mar. Ecol. Prog. Ser. 322, 225–238 (2006).
    ADS  CAS  Article  Google Scholar 

    95.
    Grainger, E. H. The copepods Calanus glacial is Jaschnov and Calanus finmarchicus (Gunnerus) in Canadian Arctic-Subarctic waters. J. Fish. Res. Board Can. 18, 663–678 (1961).
    Article  Google Scholar 

    96.
    Jaschnov, W. A. Distribution of Calanus Species in the Seas of the Northern Hemisphere. Int. Rev. Hydrobiol. Hydrogr. 55, 197–212 (1970).
    Article  Google Scholar 

    97.
    Hirche, H. J. & Mumm, N. Distribution of dominant copepods in the Nansen Basin, Arctic Ocean, in summer. Deep Sea Res. A 39, 485–505 (1992).
    ADS  Article  Google Scholar 

    98.
    Breteler, W. C. M. K., Fransz, H. G. & Gonzalez, S. R. Growth and development of four calanoid copepod species under experimental and natural conditions. Neth. J. Sea Res. 16, 195–207 (1982).
    Article  Google Scholar  More

  • in

    Analyzing long-term impacts of ungulate herbivory on forest-recruitment dynamics at community and species level contrasting tree densities versus maximum heights

    1.
    Crawley, M. Herbivory: The Dynamics of Animal–Plant Interactions (Blackwell Scientific, Oxford, 1983).
    Google Scholar 
    2.
    Putman, R. Grazing in Temperate Ecosystems: Large Herbivores and the Ecology of the New Forest (Springer, Berlin, 1986).
    Google Scholar 

    3.
    Huntly, N. Herbivores and the dynamics of communities and ecosystems. Annu. Rev. Ecol. Syst. 1, 477–503 (1991).
    Article  Google Scholar 

    4.
    Skarpe, C. Impact of grazing in savanna ecosystems. Ambio 20, 351–356 (1991).
    Google Scholar 

    5.
    Agrawal, A. A. Macroevolution of plant defense strategies. Trends Ecol. Evol. 22, 103–109 (2007).
    PubMed  Article  Google Scholar 

    6.
    Bruce, T. C. Interplay between insects and plants–dynamic and complex interactions that have coevolved over millions of years but act in milliseconds. J. Exp. Bot. 2, 391 (2014).
    Google Scholar 

    7.
    Mason, N. W. H., Peltzer, D. A., Richardson, S. J., Bellingham, P. J. & Allen, R. B. Stand development moderates effects of ungulate exclusion on foliar traits in the forests of New Zealand: Ungulate impacts on foliar traits. J. Ecol. 98, 1422–1433 (2010).
    Article  Google Scholar 

    8.
    Faison, E. K., DeStefano, S., Foster, D. R., Motzkin, G. & Rapp, J. M. Ungulate browsers promote herbaceous layer diversity in logged temperate forests. Ecol. Evol. 6, 4591–4602 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    9.
    Simončič, T., Bončina, A., Jarni, K. & Klopčič, M. Assessment of the long-term impact of deer on understory vegetation in mixed temperate forests. J. Veg. Sci. 30, 108–120 (2019).
    Article  Google Scholar 

    10.
    Schmitz, O. J. Herbivory from individuals to ecosystems. Annu. Rev. Ecol. Evol. Syst. 39, 133–152 (2008).
    Article  Google Scholar 

    11.
    Riginos, C. & Grace, J. B. Savanna tree density, herbivores, and the herbaceous community: Bottom-up vs. top-down effects. Ecology 89, 2228–2238 (2008).
    PubMed  Article  Google Scholar 

    12.
    Turkington, R. Top-down and bottom-up forces in mammalian herbivore–vegetation systems: An essay review. Botany 87, 723–739 (2009).
    Article  Google Scholar 

    13.
    Kos, M. et al. Relative importance of plant-mediated bottom-up and top-down forces on herbivore abundance on Brassica oleracea: Bottom-up and top-down effects on herbivores. Funct. Ecol. 25, 1113–1124 (2011).
    Article  Google Scholar 

    14.
    Kuijper, D. P. J. et al. Bottom-up versus top-down control of tree regeneration in the Białowieża Primeval Forest, Poland: Abiotic and biotic control of tree regeneration. J. Ecol. 98, 888–899 (2010).
    Article  Google Scholar 

    15.
    Churski, M., Bubnicki, J. W., Jędrzejewska, B., Kuijper, D. P. J. & Cromsigt, J. P. G. M. Brown world forests: Increased ungulate browsing keeps temperate trees in recruitment bottlenecks in resource hotspots. New Phytol. 214, 158–168 (2017).
    PubMed  Article  Google Scholar 

    16.
    Fretwell, S. D. Food chain dynamics: The central theory of ecology?. Oikos 50, 291–301 (1987).
    Article  Google Scholar 

    17.
    Reimoser, F. & Putman, R. Impacts of wild ungulates on vegetation: Costs and benefits. In Ungulate Management in Europe—Problems and Practices (eds Putman, R. et al.) 144–191 (Cambridge University Press, Cambridge, 2011).
    Google Scholar 

    18.
    Bellingham, P. J. & Allan, C. N. Forest regeneration and the influences of white-tailed deer (Odocoileus virginianus) in cool temperate New Zealand rain forests. For. Ecol. Manag. 175, 71–86 (2003).
    Article  Google Scholar 

    19.
    Russell, F. L. & Fowler, N. L. Effects of white-tailed deer on the population dynamics of acorns, seedlings and small saplings of Quercus buckleyi. Plant Ecol. 173, 59–72 (2004).
    Article  Google Scholar 

    20.
    Casabon, C. & Pothier, D. Browsing of tree regeneration by white-tailed deer in large clearcuts on Anticosti Island, Quebec. For. Ecol. Manag. 253, 112–119 (2007).
    Article  Google Scholar 

    21.
    Pellerin, M. et al. Impact of deer on temperate forest vegetation and woody debris as protection of forest regeneration against browsing. For. Ecol. Manag. 260, 429–437 (2010).
    Article  Google Scholar 

    22.
    Tschöpe, O., Wallschläger, D., Burkart, M. & Tielbörger, K. Managing open habitats by wild ungulate browsing and grazing: A case-study in North-Eastern Germany: Managing open habitats by wild ungulate browsing and grazing. Appl. Veg. Sci. 14, 200–209 (2011).
    Article  Google Scholar 

    23.
    Millett, J. & Edmondson, S. The impact of 36 years of grazing management on vegetation dynamics in dune slacks. J. Appl. Ecol. 50, 1367–1376 (2013).
    Article  Google Scholar 

    24.
    Beck, H., Snodgrass, J. W. & Thebpanya, P. Long-term exclosure of large terrestrial vertebrates: Implications of defaunation for seedling demographics in the Amazon rainforest. Biol. Conserv. 163, 115–121 (2013).
    Article  Google Scholar 

    25.
    Charles, G. K., Porensky, L. M., Riginos, C., Veblen, K. E. & Young, T. P. Herbivore effects on productivity vary by guild: Cattle increase mean productivity while wildlife reduce variability. Ecol. Appl. 27, 143–155 (2017).
    PubMed  Article  Google Scholar 

    26.
    Castleberry, S. B., Ford, W. M., Miller, K. V. & Smith, W. P. Influences of herbivory and canopy opening size on forest regeneration in a southern bottomland hardwood forest. For. Ecol. Manag. 131, 57–64 (2000).
    Article  Google Scholar 

    27.
    Filazzola, A., Tanentzap, A. J. & Bazely, D. R. Estimating the impacts of browsers on forest understories using a modified index of community composition. For. Ecol. Manag. 313, 10–16 (2014).
    Article  Google Scholar 

    28.
    Nishizawa, K., Tatsumi, S., Kitagawa, R. & Mori, A. S. Deer herbivory affects the functional diversity of forest floor plants via changes in competition-mediated assembly rules. Ecol. Res. 31, 569–578 (2016).
    CAS  Article  Google Scholar 

    29.
    Boulanger, V. et al. Ungulates increase forest plant species richness to the benefit of non-forest specialists. Glob. Change Biol. 24, e485–e495 (2018).
    Article  Google Scholar 

    30.
    McGarvey, J. C., Bourg, N. A., Thompson, J. R., McShea, W. J. & Shen, X. Effects of twenty years of deer exclusion on woody vegetation at three life-history stages in a mid-atlantic temperate deciduous forest. Northeast. Nat. 20, 451–468 (2013).
    Article  Google Scholar 

    31.
    Kabeya, D. & Sakai, S. The role of roots and cotyledons as storage organs in early stages of establishment in Quercus crispula: a quantitative analysis of the nonstructural carbohydrate in cotyledons and roots. Ann. Bot. 92, 537–545 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Boege, K. & Marquis, R. J. Facing herbivory as you grow up: The ontogeny of resistance in plants. Trends Ecol. Evol. 20, 441–448 (2005).
    PubMed  Article  Google Scholar 

    33.
    Hanley, M. E., Lamont, B. B., Fairbanks, M. M. & Rafferty, C. M. Plant structural traits and their role in anti-herbivore defence. Perspect. Plant Ecol. Evol. Syst. 8, 157–178 (2007).
    Article  Google Scholar 

    34.
    Diggle, P. J. Statistical Analysis of Spatial Point Patterns. (Arnold, 2003).

    35.
    Gratzer, G. & Waagepetersen, R. Seed dispersal, microsites or competition—What drives gap regeneration in an old-growth forest? An application of spatial point process modelling. Forests 9, 230 (2018).
    Article  Google Scholar 

    36.
    Szwagrzyk, J., Gratzer, G., Stępniewska, H., Szewczyk, J. & Veselinovic, B. High reproductive effort and low recruitment rates of European beech: Is there a limit for the superior competitor?. Pol. J. Ecol. 63, 198–212 (2015).
    Article  Google Scholar 

    37.
    Nopp-Mayr, U., Kempter, I., Muralt, G. & Gratzer, G. Herbivory on young tree seedlings in old-growth and managed mountain forests. Ecol. Res. 30, 479–491 (2015).
    CAS  Article  Google Scholar 

    38.
    Shugart, H. H. A theory of forest dynamics. (Springer, 1984).

    39.
    Lertzman, K. B. Patterns of gap-phase replacement in a subalpine, old-growth forest. Ecology 73, 657–669 (1992).
    Article  Google Scholar 

    40.
    Kneeshaw, D. D. & Bergeron, Y. Canopy gap characteristics and tree replacement in the Southeastern Boreal forest. Ecology 79, 783–794 (1998).
    Article  Google Scholar 

    41.
    Wakeling, J. L., Staver, A. C. & Bond, W. J. Simply the best: The transition of savanna saplings to trees. Oikos 120, 1448–1451 (2011).
    Article  Google Scholar 

    42.
    Kobe, R. K., Pacala, S. W., Silander, J. A. Jr. & Canham, C. D. Juvenile tree survivorship as a component of shade tolerance. Ecol. Appl. 5, 517–532 (1995).
    Article  Google Scholar 

    43.
    Zuidema, P. A., Brienen, R. J. W., During, H. J. & Güneralp, B. Do persistently fast-growing juveniles contribute disproportionately to population growth? A new analysis tool for matrix models and its application to rainforest trees. Am. Nat. 174, 709–719 (2009).
    PubMed  Article  Google Scholar 

    44.
    Tremblay, J.-P., Huot, J. & Potvin, F. Density-related effects of deer browsing on the regeneration dynamics of boreal forests. J. Appl. Ecol. 44, 552–562 (2007).
    Article  Google Scholar 

    45.
    Speed, J. D. M., Austrheim, G., Hester, A. J., Solberg, E. J. & Tremblay, J.-P. Regional-scale alteration of clear-cut forest regeneration caused by moose browsing. For. Ecol. Manag. 289, 289–299 (2013).
    Article  Google Scholar 

    46.
    Shelton, A. L., Henning, J. A., Schultz, P. & Clay, K. Effects of abundant white-tailed deer on vegetation, animals, mycorrhizal fungi, and soils. For. Ecol. Manag. 320, 39–49 (2014).
    Article  Google Scholar 

    47.
    Reimoser, F. & Reimoser, S. Ergebnisse aus dem Vergleichsflächenverfahren (‘Wildschaden-Kontrollzäune’) – ein Beitrag zur Objektivierung der Wildschadensbeurteilung. In Ist die natürliche Verjüngung des Bergwaldes gesichert? (ed. Müller, F.) 151–159 (Austrian Research Centre for Forests, Vienna, 2003).
    Google Scholar 

    48.
    ZAMG. Klimadaten von Österreich 1971–2000. (2013).

    49.
    Mucina, L., Grabherr, G. & Wallnöfer, S. Die Pflanzengesellschaften Österreichs. Teil III – Wälder und Gebüsche (Gustav Fischer Verlag, Stuttgart, 1993).
    Google Scholar 

    50.
    Reimoser, F., Schodterer, H. & Reimoser, S. Beurteilung des Schalenwildeinflusses auf die Waldverjüngung – Vergleich verschiedener Methoden des Wildeinfluss-Monitorings („WEM – Methodenvergleich”) (Austrian Research Centre for Forests, Vienna, 2014).
    Google Scholar 

    51.
    Reimoser, F., Armstrong, H. & Suchant, R. Measuring forest damage of ungulates: What should be considered. For. Ecol. Manag. 120, 47–58 (1999).
    Article  Google Scholar 

    52.
    Long, Z. T., Pendergast, T. H. & Carson, W. P. The impact of deer on relationships between tree growth and mortality in an old-growth beech-maple forest. For. Ecol. Manag. 252, 230–238 (2007).
    Article  Google Scholar 

    53.
    Van den Brink, P. J. & Ter Braak, C. J. Principal response curves: Analysis of time-dependent multivariate responses of biological community to stress. Environ. Toxicol. Chem. 18, 138–148 (1999).
    Article  Google Scholar 

    54.
    van den Brink, P. J., den Besten, P. J., de Bij, V. A. & ter Braak, C. J. F. Principal response curves technique for the analysis of multivariate biomonitoring time series. Environ. Monit. Assess. 152, 271–281 (2009).
    CAS  PubMed  Article  Google Scholar 

    55.
    Poulin, M., Andersen, R. & Rochefort, L. A new approach for tracking vegetation change after restoration: A case study with peatlands. Restor. Ecol. 21, 363–371 (2013).
    Article  Google Scholar 

    56.
    Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer International Publishing, Berlin, 2018).
    Google Scholar 

    57.
    Van den Brink, P. J., Van den Brink, N. W. & Ter Braak, C. J. Multivariate analysis of ecotoxicological data using ordination: demonstrations of utility on the basis of various examples. Austr. J. Ecotoxicol. 9, 141–156 (2003).
    Google Scholar 

    58.
    R Development Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).

    59.
    Oksanen, J. et al. vegan: Community Ecology Package. (2019).

    60.
    RStudio Team. RStudio: Integrated Development Environment for R. (RStudio, Inc., 2016).

    61.
    Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. (2019).

    62.
    Wickham, H. forcats: Tools for Working with Categorical Variables (Factors). (2018).

    63.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, Berlin, 2016).
    Google Scholar 

    64.
    Henry, L. & Wickham, H. purrr: Functional Programming Tools. (2019).

    65.
    Wickham, H., Hester, J. & Francois, R. readr: Read Rectangular Text Data. (2018).

    66.
    Wickham, H. stringr: Simple, Consistent Wrappers for Common String Operations. (2019).

    67.
    Müller, K. & Wickham, H. tibble: Simple Data Frames. (2019).

    68.
    Wickham, H. & Henry, L. tidyr: Easily Tidy Data with ‘spread()’ and ‘gather()’ Functions. (2019).

    69.
    McNamara, A., Rubia, E. A. de la, Zhu, H., Ellis, S. & Quinn, M. skimr: Compact and Flexible Summaries of Data. (2019).

    70.
    Allaire, J. J., Wickham, H., Ushey, K. & Ritchie, G. rstudioapi: Safely Access the RStudio API. (2017).

    71.
    Allaire, J. J. et al. rmarkdown: Dynamic Documents for R. (2018).

    72.
    Xie, Y. knitr: A General-Purpose Package for Dynamic Report Generation in R. (2018).

    73.
    Baumgartner, J. hues: Distinct Colours Palettes Based on ‘iwanthue’. (2017).

    74.
    Jones, O. R. et al. Diversity of ageing across the tree of life. Nature 505, 169–173 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    75.
    Pacala, S. W. et al. Forest models defined by field measurements: Estimation error analysis and dynamics. Ecol. Monogr. 66, 1–43 (1996).
    Article  Google Scholar 

    76.
    Beckage, B. & Clark, J. S. Seedling survival and growth of three forest tree species: The role of spatial heterogeneity. Ecology 84, 1849–1861 (2003).
    Article  Google Scholar 

    77.
    Peltzer, D. A. et al. Disentangling drivers of tree population size distributions. For. Ecol. Manag. 331, 165–179 (2014).
    Article  Google Scholar 

    78.
    Reimoser, F., Odermatt, O., Roth, R. & Suchant, R. Die Beurteilung von Wildverbiss durch SOLL-IST-Vergleich. Allg Forst Jagdztg 168, 214–227 (1997).
    Google Scholar 

    79.
    Pépin, D. et al. Relative impact of browsing by red deer on mixed coniferous and broad-leaved seedlings—An enclosure-based experiment. For. Ecol. Manag. 222, 302–313 (2006).
    Article  Google Scholar 

    80.
    Jurena, P. N. & Archer, S. Woody plant establishment and spatial heterogeneity in grasslands. Ecology 84, 907–919 (2003).
    Article  Google Scholar 

    81.
    Cramer, M. D., Chimphango, S. B. M., Cauter, A. V., Waldram, M. S. & Bond, W. J. Grass competition induces N2 fixation in some species of African Acacia. J. Ecol. 95, 1123–1133 (2007).
    CAS  Article  Google Scholar 

    82.
    Hegland, S. J., Lilleeng, M. S. & Moe, S. R. Old-growth forest floor richness increases with red deer herbivory intensity. For. Ecol. Manag. 310, 267–274 (2013).
    Article  Google Scholar 

    83.
    Lilleeng, M. S., Hegland, S. J., Rydgren, K. & Moe, S. R. Red deer mediate spatial and temporal plant heterogeneity in boreal forests. Ecol. Res. 31, 777–784 (2016).
    Article  Google Scholar 

    84.
    Laurent, L., Mårell, A., Balandier, P., Holveck, H. & Saïd, S. Understory vegetation dynamics and tree regeneration as affected by deer herbivory in temperate hardwood forests. IForest – Biogeosciences For. 10, 837–844 (2017).
    Article  Google Scholar 

    85.
    Holladay, C.-A., Kwit, C. & Collins, B. Woody regeneration in and around aging southern bottomland hardwood forest gaps: Effects of herbivory and gap size. For. Ecol. Manag. 223, 218–225 (2006).
    Article  Google Scholar 

    86.
    Smit, C., Gusberti, M. & Müller-Schärer, H. Safe for saplings; safe for seeds?. For. Ecol. Manag. 237, 471–477 (2006).
    Article  Google Scholar 

    87.
    Pröll, G., Darabant, A., Gratzer, G. & Katzensteiner, K. Unfavourable microsites, competing vegetation and browsing restrict post-disturbance tree regeneration on extreme sites in the Northern Calcareous Alps. Eur. J. For. Res. 134, 293–308 (2015).
    Article  Google Scholar 

    88.
    Stephan, J. G. et al. Long-term deer exclosure alters soil properties, plant traits, understorey plant community and insect herbivory, but not the functional relationships among them. Oecologia 184, 685–699 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    89.
    Hidding, B., Tremblay, J.-P. & Côté, S. D. A large herbivore triggers alternative successional trajectories in the boreal forest. Ecology 94, 2852–2860 (2013).
    PubMed  Article  Google Scholar 

    90.
    Augustine, D. J. & McNaughton, S. J. Ungulate effects on the functional species composition of plant communities: Herbivore selectivity and plant tolerance. J. Wildl. Manag. 62, 1165–1183 (1998).
    Article  Google Scholar 

    91.
    Owen-Smith, N. R. Adaptive Herbivore Ecology. From Resources to Populations in Variable Environments (Cambridge University Press, Cambridge, 2002).
    Google Scholar 

    92.
    Reimoser, F. & Reimoser, S. Richtiges Erkennen von Wildschäden am Wald (Zentralstelle Österr, Landesjagdverbände, 2017).
    Google Scholar 

    93.
    Ramirez, J. I. et al. Above- and below-ground cascading effects of wild ungulates in temperate forests. Ecosystems https://doi.org/10.1007/s10021-020-00509-4 (2020).
    Article  Google Scholar 

    94.
    Kral, F. Spät- und postglaziale Waldgeschichte der Alpen aufgrund der bisherigen Pollenanalysen (Österreichischer Agrarverlag, Vienna, 1979).
    Google Scholar 

    95.
    Mayer, H. & Ott, E. Gebirgswaldbau, Schutzwaldpflege: ein waldbaulicher Beitrag zur Landschaftsökologie und zum Umweltschutz (G. Fischer, Mumbai, 1991).
    Google Scholar 

    96.
    Mayer, M., Keßler, D. & Katzensteiner, K. Herbivory modulates soil CO2 fluxes after windthrow: A case study in temperate mountain forests. Eur. J. For. Res. 139, 383–391 (2020).
    CAS  Article  Google Scholar  More

  • in

    Polyrhythmic foraging and competitive coexistence

    1.
    Hutchinson, G. E. Homage to Santa Rosalia or why are there so many kinds of animals?. Am. Nat. 93, 145–159 (1959).
    Article  Google Scholar 
    2.
    Volterra, V. Variations and fluctuations of the number of individuals in animal species living together. ICES J. Mar. Sci. 3, 3–51 (1928).
    Article  Google Scholar 

    3.
    MacArthur, R. & Levins, R. Competition, habitat selection, and character displacement in a patchy environment. Proc. Natl. Acad. Sci. USA. 51, 1207–1210 (1964).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Levin, S. A. Community equilibria and stability, and an extension of the competitive exclusion principle. Am. Nat. 104, 413–423 (1970).
    Article  Google Scholar 

    5.
    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
    Article  Google Scholar 

    6.
    Chase, J. M. et al. The interaction between predation and competition: a review and synthesis. Ecol. Lett. 5, 302–315 (2002).
    Article  Google Scholar 

    7.
    Amarasekare, P. Competitive coexistence in spatially structured environments: a synthesis. Ecol. Lett. 6, 1109–1122 (2003).
    Article  Google Scholar 

    8.
    Hutchinson, G. E. The paradox of the plankton. Am. Nat. 95, 137–145 (1961).
    Article  Google Scholar 

    9.
    Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Armstrong, R. A. & McGehee, R. Competitive exclusion. Am. Nat. 115, 151–170 (1980).
    MathSciNet  Article  Google Scholar 

    11.
    Huisman, J. & Weissing, F. J. Biodiversity of plankton by species oscillations and chaos. Nature 402, 407–410 (1999).
    ADS  Article  Google Scholar 

    12.
    Abrams, P. A. & Holt, R. D. The impact of consumer–resource cycles on the coexistence of competing consumers. Theor. Popul. Biol. 62, 281–295 (2002).
    PubMed  MATH  Article  Google Scholar 

    13.
    Schwartz, M. D. et al. Phenology: An Integrative Environmental Science (Kluwer Academic Publishers, New York, 2003).
    Google Scholar 

    14.
    McMeans, B. C., McCann, K. S., Humphries, M., Rooney, N. & Fisk, A. T. Food web structure in temporally-forced ecosystems. Trends Ecol. Evol. 30, 662–672 (2015).
    PubMed  Article  Google Scholar 

    15.
    White, E. R. & Hastings, A. Seasonality in Ecology: Progress and Prospects in Theory (Springer, New York, 2018).
    Google Scholar 

    16.
    Rudolf, V. H. W. The role of seasonal timing and phenological shifts for species coexistence. Ecol. Lett. 22, 1324–1338 (2019).
    PubMed  Google Scholar 

    17.
    Stewart, F. M. & Levin, B. R. Partitioning of resources and the outcome of interspecific competition: a model and some general considerations. Am. Nat. 107, 171–198 (1973).
    Article  Google Scholar 

    18.
    Abrams, P. Variability in resource consumption rates and the coexistence of competing species. Theor. Popul. Biol. 25, 106–124 (1984).
    MATH  Article  Google Scholar 

    19.
    Cushing, J. M. Periodic two-predator, one-prey interactions and the time sharing of a resource niche. SIAM J. Appl. Math. 44, 392–410 (1984).
    MathSciNet  MATH  Article  Google Scholar 

    20.
    Grover, J. P. Resource competition in a variable environment: phytoplankton growing according to Monod’s model. Am. Nat. 136, 771–789 (1990).
    Article  Google Scholar 

    21.
    Loreau, M. Time scale of resource dynamics and coexistence through time partitioning. Theor. Popul. Biol. 41, 401–412 (1992).
    MATH  Article  Google Scholar 

    22.
    Namba, T. & Takahashi, S. Competitive coexistence in a seasonally fluctuating environment II. Multiple stable states and invasion success. Theor. Popul. Biol. 44, 374–402 (1993).
    MathSciNet  MATH  Article  Google Scholar 

    23.
    Chesson, P. Multispecies competition in variable environments. Theor. Popul. Biol. 45, 227–276 (1994).
    MATH  Article  Google Scholar 

    24.
    Abrams, P. A. When does periodic variation in resource growth allow robust coexistence of competing consumer species?. Ecology 85, 372–382 (2004).
    Article  Google Scholar 

    25.
    Gravel, D., Guichard, F. & Hochberg, M. E. Species coexistence in a variable world. Ecol. Lett. 14, 828–839 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    Sakavara, A., Tsirtsis, G., Roelke, D. L., Mancy, R. & Spatharis, S. Lumpy species coexistence arises robustly in fluctuating resource environments. Proc. Natl. Acad. Sci. USA. 115, 738–743 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Dunlap, J. C., Loros, J. J. & DeCoursey, P. J. Chronobiology: Biological Timekeeping (Sinauer Associates, London, 2004).
    Google Scholar 

    28.
    Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).
    Article  Google Scholar 

    29.
    Kronfeld-Schor, N. et al. Chronobiology by moonlight. Proc. R. Soc. Lond. B 280, 20123088 (2013).
    Google Scholar 

    30.
    Welch, K. D. & Harwood, J. D. Temporal dynamics of natural enemy-pest interactions in a changing environment. Biol. Control 75, 18–27 (2014).
    Article  Google Scholar 

    31.
    Raible, F., Takekata, H. & Tessmar-Raible, K. An overview of monthly rhythms and clocks. Front. Neurol. 8, 189 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Körtner, G. & Geiser, F. The temporal organization of daily torpor and hibernation: circadian and circannual rhythms. Chronobiol. Int. 17, 103–128 (2000).
    PubMed  Article  Google Scholar 

    33.
    Holt, R. D. & Polis, G. A. A theoretical framework for intraguild predation. Am. Nat. 149, 745–764 (1997).
    Article  Google Scholar 

    34.
    Holt, R. D. Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol. 12, 197–229 (1977).
    MathSciNet  CAS  PubMed  Article  Google Scholar 

    35.
    Connell, J. H. Some mechanisms producing structure in natural communities: a model and evidence from field experiments. Ecol. Evol. Commun. 1, 460–490 (1975).
    Google Scholar 

    36.
    Cozzi, G. et al. Fear of the dark or dinner by moonlight? Reduced temporal partitioning among africa’s large carnivores. Ecology 93, 2590–2599 (2012).
    PubMed  Article  Google Scholar 

    37.
    Campera, M. et al. Temporal niche separation between the two ecologically similar nocturnal Primates Avahi meridionalis and Lepilemur fleuretae. Behav. Ecol. Sociobiol. 73, 1–10 (2019).
    Article  Google Scholar 

    38.
    Leonard, J. P., Tewes, M. E., Lombardi, J. V., Wester, D. W. & Campbell, T. A. Effects of sun angle, lunar illumination, and diurnal temperature on temporal movement rates of sympatric ocelots and bobcats in South Texas. PLoS ONE 15, e0231732 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Shimadzu, H., Dornelas, M., Henderson, P. A. & Magurran, A. E. Diversity is maintained by seasonal variation in species abundance. BMC Biol. 11, 98 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Gaston, K. J., Bennie, J., Davies, T. W. & Hopkins, J. The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biol. Rev. 88, 912–927 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    41.
    Lovegrove, B. G. et al. Are tropical small mammals physiologically vulnerable to Arrhenius effects and climate change?. Physiol. Biochem. Zool. 87, 30–45 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    42.
    Yerushalmi, S. & Green, R. M. Evidence for the adaptive significance of circadian rhythms. Ecol. Lett. 12, 970–981 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    43.
    Bradshaw, W. E. & Holzapfel, C. M. Genetic response to rapid climate change: it’s seasonal timing that matters. Mol. Ecol. 17, 157–166 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Sauve, D., Divoky, G. & Friesen, V. L. Phenotypic plasticity or evolutionary change? An examination of the phenological response of an arctic seabird to climate change. Funct. Ecol. 33, 2180–2190 (2019).
    Article  Google Scholar 

    45.
    Abbey-Lee, R. N. & Dingemanse, N. J. Adaptive individual variation in phenological responses to perceived predation levels. Nat. Commun. 10, 1601 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Plant health status effects on arbuscular mycorrhizal fungi associated with Lavandula angustifolia and Lavandula intermedia infected by Phytoplasma in France

    1.
    Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis 3rd edn. (Academic Press, London, 2008).
    Google Scholar 
    2.
    Gianinazzi, S. et al. Agroecology: the key role of arbuscularmycorrhizas in ecosystem services. Mycorrhiza 20, 519–530 (2010).
    Article  Google Scholar 

    3.
    Lenoir, I., Fontaine, J. & Sahraoui, A. L. H. Arbuscularmycorrhizal fungal responses to abiotic stresses: a review. Phytochem 123, 4–15 (2016).
    CAS  Article  Google Scholar 

    4.
    Song, Y., Chen, D., Lu, K., Sun, Z. & Zeng, R. Enhanced tomato disease resistance primed by arbuscularmycorrhizal fungus. Front. Plant Sci. 6, 786 (2015).
    PubMed  PubMed Central  Google Scholar 

    5.
    Van Geel, M. et al. Abiotic rather than biotic filtering shapes the arbuscularmycorrhizal fungal communities of European seminatural grasslands. New Phytol. 220, 1262–1272 (2018).
    Article  Google Scholar 

    6.
    Varma, A., Prasad, R. & Tuteja, N. Mycorrhiza—Nutrient Uptake (Biocontrol, Ecorestoration Fourth Edition, Springer, 2017).
    Google Scholar 

    7.
    Yu, L., Nicolaisen, J., Larsen, J. & Ravnskov, S. Molecular characterization of root-associated fungal communities in relation to health status of Pisum sativum using barcoded pyrosequencing. Plant Soil 357, 395–405 (2012).
    CAS  Article  Google Scholar 

    8.
    Corredor, A. H., Van Rees, K. & Vujanovic, V. Host genotype and health status influence on the composition of the arbuscularmycorrhizal fungi in Salix bioenergy plantations. For. Ecol. Manag. 314, 112–119 (2014).
    Article  Google Scholar 

    9.
    Martinez, N. & Johnson, N. C. Agricultural management influences propagule densities and functioning of arbuscularmycorrhizas in low- and high-input agroecosystems in arid environments. Appl. Soil Ecol. 46, 300–306 (2010).
    Article  Google Scholar 

    10.
    Hontoria, C., García-González, I., Quemada, M., Roldánd, A. & Alguacil, M. M. The cover crop determines the AMF community composition in soil and in roots of maize after a ten-year continuous crop rotation. Sci. Total Environ. 660, 913–922 (2019).
    ADS  CAS  Article  Google Scholar 

    11.
    Lumini, E., Vallino, M., Alguacil, M. M., Romani, M. & Bianciotto, V. Different farming and water regimes in Italian rice fields affect arbuscularmycorrhizal fungal soil communities. Ecol. Appl. 21, 1696–1707 (2011).
    Article  Google Scholar 

    12.
    Manoharan, L., Rosenstock, N. P., Williams, A. & Hedlund, K. Agricultural management practices influence AMF diversity and community composition with cascading effects on plant productivity. Appl. Soil Ecol. 115, 53–59 (2017).
    Article  Google Scholar 

    13.
    Dai, M., Bainard, L. D., Hamel, C., Gan, Y. & Lynch, D. Impact of land use on arbuscularmycorrhizal fungal communities in rural Canada. Appl. Environ. Microbiol. 79, 6719–6729 (2013).
    CAS  Article  Google Scholar 

    14.
    Aghili, F. et al. Wheat plants invest more in mycorrhizae and receive more benefits from them under adverse than favorable soil conditions. Appl. Soil Ecol. 84, 93–111 (2014).
    Article  Google Scholar 

    15.
    Gaudin, J., Semetey, O., Foissac, X. & Eveillard, S. Phytoplasmatiter in diseased lavender is not correlated to lavender tolerance to stolburphytoplasma. Bull. Insectol. 64(Supplement), S179–S180 (2011).
    Google Scholar 

    16.
    Kamińska, M., Klamkowski, K., Berniak, H. & Treder, W. Effect of arbuscularmycorrhizal fungi inoculation on aster yellows phytoplasma-infected tobacco plants. Sci. Hortic. 125, 500–503 (2010).
    Article  Google Scholar 

    17.
    Batlle, A. et al. Tolerance increase to Candidatus phytoplasma prunorum in mycorrhizal plums fruit trees. Bull. Insectol. 64, 125–126 (2011).
    Google Scholar 

    18.
    D’ameli, R. et al. Increased plant tolerance against chrysanthemum yellows phytoplasma (Candidatus Phytoplasma asteris) following double inoculation with Glomusmosseae BEG12 and Pseudomonas putida S1Pf1Rif. Plant. Pathol. 60, 1014–1022 (2011).
    Article  Google Scholar 

    19.
    Fiorilli, V. et al. Omics approaches revealed how arbuscularmycorrhizal symbiosis enhances yield and resistance to leaf pathogen in wheat. Sci. Rep. 8, 9625 (2018).
    ADS  Article  Google Scholar 

    20.
    Bødker, L., Kjøller, R., Kristensen, K. & Rosendahl, S. Interactions between indigenous arbuscularmycorrhizal fungi and Aphanomyces euteiches in field-grown pea. Mycorrhiza 12, 7–12 (2002).
    Article  Google Scholar 

    21.
    Al-Askar, A. A. & Rashad, Y. M. Arbuscularmycorrhizal fungi: a biocontrol agent against common bean Fusarium root rot disease. Plant Pathol. J. 9, 31–38 (2010).
    Article  Google Scholar 

    22.
    Hugoni, M., Luis, P., Guyonnet, J. & Haichar, F. Z. Plant host habitat and root exudates shape fungal diversity. Mycorrhiza 28, 451–463 (2018).
    Article  Google Scholar 

    23.
    Bertaccini, A. & Duduk, B. Phytoplasma and phytoplasma diseases: A review of recent research. Phytopathol. Mediterr. 48, 355–378 (2009).
    CAS  Google Scholar 

    24.
    Stierlin, E., Nicolè, F., Costes, T., Fernandez, X. & Michel, T. Metabolomic study of volatile compounds emitted by lavender grown under open-field conditions: a potential approach to investigate the yellow decline disease. Metabolomics 16, 31 (2020).
    CAS  Article  Google Scholar 

    25.
    Lopez-Garcia, A. et al. Plant traits determine the phylogenetic structure of arbuscularmycorrhizal fungal communities. Mol. Ecol. 26, 6948–6959 (2017).
    Article  Google Scholar 

    26.
    Alguacil, M. M., Díaz, G., Torres, P., Rodríguez-Caballero, G. & Roldan, A. Host identity and functional traits determine the community composition of the arbuscularmycorrhizal fungi in facultative epiphytic plant species. Fungal Ecol. 39, 307–315 (2019).
    Article  Google Scholar 

    27.
    Neuenkamp, L. et al. The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscularmycorrhizal fungal communities. New Phytol. 220, 1236–1247 (2018).
    CAS  Article  Google Scholar 

    28.
    Alguacil, M. M., Torrecillas, E., García-Orenes, F. C. & Roldán, A. Changes in the composition and diversity of AMF communities mediated by management practices in a Mediterranean soil are related with increases in soil biological activity. Soil Biol. Biochem. 76, 34–44 (2014).
    CAS  Article  Google Scholar 

    29.
    Giri, B. & Mukerji, K. G. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14, 307–312 (2004).
    Article  Google Scholar 

    30.
    Phillips, J. M. & Hayman, D. S. Improved procedure for clearing roots and staining parasitic and vesicular–arbuscularmycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55, 158–163 (1970).
    Article  Google Scholar 

    31.
    Trouvelot, A., Kough, J. L. & Gianinazzi-Pearson, V. Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes ayant une signification fonctionnelle. In Physiological and genetical aspects of mycorrhizae (eds Gianinazzi-Pearson, V. & Gianinazzi, S.) 217–221 (INRA Press, Paris, 1986).
    Google Scholar 

    32.
    Gollotte, A., van Tuinen, D. & Atkinson, D. Diversity of arbuscularmycorrhizalfungicolonisingroots of the grassspeciesAgrostis capillaris and Lolium perenne in a fieldexperiment. Mycorrhiza 14, 111–117 (2004).
    Article  Google Scholar 

    33.
    Binet, M. N. et al. Responses of above- and below-ground fungal symbionts to cessation of mowing in subalpine grassland. Fungal Ecol. 25, 14–21 (2017).
    Article  Google Scholar 

    34.
    Mouhamadou, B. et al. Effects of two grass species on the composition of soil fungal communities. Biol. Fertil. Soils 49, 1131–1139 (2013).
    Article  Google Scholar 

    35.
    Boyer, F. et al. Obitools: a unix- inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).
    CAS  Article  Google Scholar 

    36.
    Lentendu, G. et al. Assessment of soil fungal diversity in different alpine tundra habitats by means of pyrosequencing. Fungal Div. 49, 113–123 (2011).
    Article  Google Scholar 

    37.
    van Dongen, S. Graph clustering by flow simulation. Ph.D. thesis, University of Utrecht (2000).

    38.
    Thompson, L. A. S-PLUS (and R) manual to accompany Agresti’s Categorical Data Analysis (2002), 2nd ed (2009).

    39.
    Oksanen, J., Kindt, R., Legendre, P., O’Hara, B. & Gavin, L. vegan: Community Ecology Package. R package version 1.15–4 (2009).

    40.
    Mouhamadou, B. et al. Molecular screening of xerophilic Aspergillus strains producing mycophenolic acid. Fungal Biol. 121, 103–111 (2017).
    CAS  Article  Google Scholar  More

  • in

    Effects of precipitation and temperature on precipitation use efficiency of alpine grassland in Northern Tibet, China

    1.
    Xu, X. et al. Interannual variability in responses of belowground net primary productivity (NPP) and NPP partitioning to long-term warming and clipping in a tallgrass prairie. Global Change Biol. 18(5), 1648–1656 (2012).
    ADS  Article  Google Scholar 
    2.
    Hui, D. & Jackson, R. B. Geographical and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data. New Phytol. 169(1), 85–93 (2006).
    CAS  Article  Google Scholar 

    3.
    Zhang, X. et al. Impact of prolonged drought on rainfall use efficiency using MODIS data across China in the early 21st century. Remote Sens. Environ. 150, 188–197 (2014).
    ADS  Article  Google Scholar 

    4.
    Jiang, Y. et al. Effects of community structure on precipitation-use efficiency of grasslands in Northern Tibet. J. Veg Sci. 28, 281–290 (2017).
    Article  Google Scholar 

    5.
    Roupsard, O. et al. Scaling-up productivity (NPP) using light or water use efficiencies (LUE, WUE) from a two-layer tropical plantation. Agrofor. Syst. 76(2), 409–422 (2009).
    Article  Google Scholar 

    6.
    Prince, S. D., De Colstoun, E. B. & Kravitz, L. L. Evidence from rain-use efficiencies does not indicate extensive Sahelian desertification. Global Change Biol. 4(4), 359–374 (1998).
    ADS  Article  Google Scholar 

    7.
    Fensholt, R. & Rasmussen, K. Analysis of trends in the Sahelian “rain-use efficiency” using GIMMS NDVI, RFE and GPCP rainfall data. Remote Sens. Environ. 115(2), 438–451 (2011).
    ADS  Article  Google Scholar 

    8.
    Ye, H., Wang, J., Huang, M. & Qi, S. Spatial pattern of vegetation precipitation use efficiency and its response to precipitation and temperature on the Qinghai-Xizang Plateau of China. Chin. J. Plant. Ecol. 36(12), 1237–1247 (2012).
    Article  Google Scholar 

    9.
    Bai, Y. et al. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology 89(8), 2140–2153 (2008).
    Article  Google Scholar 

    10.
    Paruelo, J. M., Lauenroth, W. K., Burke, I. C. & Sala, O. E. Grassland precipitation-use efficiency varies across a resource gradient. Ecosystems 2(1), 64–68 (1999).
    Article  Google Scholar 

    11.
    Yang, Y., Fang, J., Fay, P. A., Bell, J. E. & Ji, C. Rain use efficiency across a precipitation gradient on the Tibetan Plateau. Geophys. Res. Lett. 37, L15702 (2010).
    ADS  Google Scholar 

    12.
    Li, H. X., Liu, G. H. & Fu, B. J. Spatial variations of rain-use efficiency along a climate gradient on the Tibetan Plateau: a satellite-based analysis. Int. J. Remote Sens. 34(21), 7487–7503 (2013).
    ADS  Article  Google Scholar 

    13.
    Huxman, T. E. et al. Convergence across biomes to a common rain-use efficiency. Nature 429(6992), 651–654 (2004).
    ADS  CAS  Article  Google Scholar 

    14.
    Hu, Z. et al. Precipitation-use efficiency along a 4500-km grassland transect. Glob. Ecol. Biogeogr. 19(6), 842–851 (2010).
    Article  Google Scholar 

    15.
    Lauenroth, W. K., Burke, I. C. & Paruelo, J. M. Patterns of production and precipitation-use efficiency of winter wheat and native grasslands in the central Great Plains of the United States. Ecosystems 3(4), 344–351 (2000).
    Article  Google Scholar 

    16.
    Hooper, D. U. & Johnson, L. Nitrogen limitation in dryland ecosystems: Responses to geographical and temporal variation in precipitation. Biogeochemistry 46(1–3), 247–293 (1999).
    CAS  Google Scholar 

    17.
    Xu, X., Sherry, R. A., Niu, S., Li, D. & Luo, Y. Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie. Global Change Biol. 19(9), 2753–2764 (2013).
    ADS  Article  Google Scholar 

    18.
    De Boeck, H. J. et al. How do climate warming and plant species richness affect water use in experimental grasslands?. Plant Soil 288(1–2), 249–261 (2006).
    ADS  Article  Google Scholar 

    19.
    Campos, G. E. P. et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 494(7437), 349–352 (2013).
    ADS  Article  Google Scholar 

    20.
    Qiu, J., Zhang, H. & Shen, W. Spatial characteristics of precipitation use efficiency on the Qinghai-Tibet Plateau From 1982 to 2007. J. Fudan. Univ. Nat. Sci. 53(1), 126–133 (2014).
    Google Scholar 

    21.
    Wang, Q. W., Yu, D. P., Dai, L. M., Zhou, L. & Zhou, W. M. Research progress in water use efficiency of plants under global climate change. Chin. J. Appl. Ecol. 21(12), 3255–3265 (2000).
    Google Scholar 

    22.
    Chen, S. P., Bai, Y. F., Zhang, L. X. & Han, X. G. Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. Environ. Exp. Bot. 53(1), 65–75 (2005).
    Article  Google Scholar 

    23.
    Qiu, J. The third pole. Nature 454(7203), 393–396 (2008).
    CAS  Article  Google Scholar 

    24.
    Chen, B. X. et al. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 189, 11–18 (2014).
    ADS  Article  Google Scholar 

    25.
    Jiang, Y. B. et al. Effects of community structure on precipitation-use efficiency of grasslands in northern Tibet. J. Veg. Sci. 28, 281–290 (2017).
    Article  Google Scholar 

    26.
    Gao, Q. Z. et al. Effects of topography and human activity on the net primary productivity (NPP) of alpine grassland in northern Tibet from 1981 to 2004. Int. J. Remote Sens. 34(6), 2057–2069 (2013).
    ADS  Article  Google Scholar 

    27.
    Zhang, J. H., Yao, F. M., Zheng, L. G. & Yang, L. M. Evaluation of grassland dynamics in the Northern-Tibet Plateau of China using remote sensing and climate data. Sensors 7(12), 3312–3328 (2007).
    Article  Google Scholar 

    28.
    Li, Z., Huffman, T., McConkey, B. & Townley-Smith, L. Monitoring and modeling spatial and temporal patterns of grassland dynamics using time-series MODIS NDVI with climate and stocking data. Remote Sens. Environ. 138, 232–244 (2013).
    ADS  Article  Google Scholar 

    29.
    Zhang, X. K., Lu, X. Y. & Wang, X. D. Spatial-temporal NDVI variation of different alpine grassland classes and groups in Northern Tibet from 2000 to 2013. Mt. Res. Dev. 35(3), 254–263 (2015).
    Article  Google Scholar 

    30.
    Yu, D. Y., Shi, P. J., Shao, H. B., Zhu, W. Q. & Pan, Y. H. Modelling net primary productivity of terrestrial ecosystems in East Asia based on an improved CASA ecosystem model. Int. J. Remote Sens. 30(18), 4851–4866 (2009).
    ADS  Article  Google Scholar 

    31.
    Gao, Q. Z. et al. Dynamics of alpine grassland NPP and its response to climate change in Northern Tibet. Clim. Change 97(3–4), 515–528 (2009).
    ADS  CAS  Article  Google Scholar 

    32.
    Zhu, W. Q., Pan, Y. Z., He, H., Yu, D. Y. & Hu, H. B. Simulation of maximum light use efficiency for some typical vegetation types in China. Chin. Sci. Bull. 51(4), 457–463 (2006).
    CAS  Article  Google Scholar 

    33.
    Zhao, G. S. et al. Spatial-temporal variation of ANPP and rain-use efficiency along a precipitation gradient on Changtang Plateau, Tibet. Remote Sens. 11, 325 (2019).
    ADS  Article  Google Scholar 

    34.
    Sun, J. & Du, W. Effects of precipitation and temperature on net primary productivity and precipitation use efficiency across China’s grasslands. GISci. Remote Sens. 54(6), 881–897 (2017).
    Article  Google Scholar 

    35.
    Chen, Z. Q., Shao, Q. Q., Liu, J. Y. & Wang, J. B. Analysis of net primary productivity of terrestrial vegetation on the Qinghai-Tibet Plateau, based on MODIS remote sensing data. Sci. China Earth Sci. 55(8), 1306–1312 (2012).
    ADS  Article  Google Scholar 

    36.
    Piao, S. & Fang, J. Terrestrial net primary production and its spatio-temporal patterns in Qinghai-Xizang Plateau, China during 1982–1999. J. Nat. Resour. 03, 373–380 (2002).
    Google Scholar 

    37.
    Gao, Q. Z., Wan, Y. F., Li, Y. E., Lin, E. D. & Yang, K. Grassland net primary production and its spatiotemporal distribution in Northern Tibet: a study with CASA model. Chin. J. Appl. Ecol. 11, 2526–2532 (2007).
    Google Scholar 

    38.
    Zhou, C. P., Ouyang, H., Wang, Q. X., Watanabe, M. & Sun, Q. Q. Estimation net primary productivity in Tibetan Plateau. Acta Geogr. Sin. 01, 74–79 (2004).
    Google Scholar 

    39.
    Yang, Y. H. et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biol. 14, 1592–1599 (2008).
    ADS  Article  Google Scholar  More

  • in

    Arbuscular mycorrhizal fungi favor invasive Echinops sphaerocephalus when grown in competition with native Inula conyzae

    1.
    Spatafora, J. W. et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108, 1028–1046 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic Press, Amsterdam, 2008).
    Google Scholar 

    3.
    van der Heijden, M. G. A., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    4.
    Lekberg, Y., Hammer, E. C. & Olsson, P. A. Plants as resource islands and storage units—adopting the mycocentric view of arbuscular mycorrhizal networks. FEMS Microbiol. Ecol. 74, 336–345 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Allen, M. F. Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J. 6, 291–297 (2007).
    Article  Google Scholar 

    6.
    Newsham, K. K., Fitter, A. H. & Watkinson, A. R. Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J. Ecol. 83, 991–1000 (1995).
    Article  Google Scholar 

    7.
    Vigo, C., Norman, J. R. & Hooker, J. E. Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol. 49, 509–514 (2000).
    Article  Google Scholar 

    8.
    Aroca, R., Porcel, R. & Ruiz-Lozano, J. M. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses?. New Phytol. 173(4), 808–816 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Augé, R. M., Toler, H. D. & Saxton, A. M. Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta-analysis. Front Plant Sci. 5, ARTN 562. https://doi.org/10.3389/fpls.2014.00562 (2014).

    10.
    Augé, R. M., Toler, H. D. & Saxton, A. M. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25(1), 13–24 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Pfeffer, P. E., Douds, D. D., Becard, G. & Shachar-Hill, Y. Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol. 120(2), 587–598 (1999).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Bago, B., Pfeffer, P. E. & Shachar-Hill, Y. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol. 124(3), 949–958 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Horton, T. R. Mycorrhizal networks (Springer, Dordrecht, 2015).
    Google Scholar 

    14.
    Walder, F. & van der Heijden, M. G. A. Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nat. Plants 1(11), 7 (2015).
    Article  CAS  Google Scholar 

    15.
    van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396(6706), 69–72 (1998).
    ADS  Article  CAS  Google Scholar 

    16.
    Wilson, G. W. T., Hartnett, D. C. & Rice, C. W. Mycorrhizal-mediated phosphorus transfer between the tallgrass prairie plants Sorghastrum nutans and Artemisia ludoviciana. Funct. Ecol. 20, 427–435 (2006).
    Article  Google Scholar 

    17.
    Bever, J. D. et al. Rooting theories of plant community ecology in microbial interactions. Trends Ecol. Evol. 25(8), 468–478 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Walder, F. et al. Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol. 159, 789–797 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Weremijewicz, J., Sternberg, L. & Janos, D. P. Common mycorrhizal networks amplify competition by preferential mineral nutrient allocation to large host plants. New Phytol. 212(2), 461–471 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Řezáčová, V. et al. Little cross-feeding of the mycorrhizal networks shared between C3-Panicum bisulcatum and C4-Panicum maximum under different temperature regimes. Front. Plant Sci. 9, 16. https://doi.org/10.3389/fpls.2018.00449 (2018).
    Article  Google Scholar 

    21.
    Deslippe, J. R. & Simard, S. W. Below-ground carbon transfer among Betula nana may increase with warming in Arctic tundra. New Phytol. 192, 689–698 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Bever, J. D., Richardson, S. C., Lawrence, B. M., Holmes, J. & Watson, M. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol. Lett. 12(1), 13–21 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    23.
    Lendenmann, M. et al. Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi. Mycorrhiza 21(8), 689–702 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Kiers, E. T. et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333(6044), 880–882 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Rillig, M. C. Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol. Lett. 7, 740–754 (2004).
    Article  Google Scholar 

    26.
    Verbruggen, E. & Kiers, E. T. Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol Appl. 3(5–6), 547–560 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    27.
    van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525(7567), 100–103 (2015).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    28.
    Pejchar, L. & Mooney, H. A. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 24(9), 497–504 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    29.
    Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob. Change Biol. 18(5), 1725–1737 (2012).
    ADS  Article  Google Scholar 

    30.
    Blackburn, T. M. et al. A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biol. 12(5), ARTN e1001850. https://doi.org/10.1371/journal.pbio.1001850 (2014).

    31.
    Mitchell, C. E. et al. Biotic interactions and plant invasions. Ecol. Lett. 9(6), 726–740 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    32.
    Catford, J. A., Jansson, R. & Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15(1), 22–40 (2009).
    Article  Google Scholar 

    33.
    van der Putten, W. H. Impacts of soil microbial communities on exotic plant invasions. Trends Ecol. Evol. 25(9), 512–519 (2010).
    PubMed  Article  Google Scholar 

    34.
    Keane, R. M. & Crawley, M. J. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17(4), 164–170 (2002).
    Article  Google Scholar 

    35.
    Pyšek, P. et al. Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96(3), 762–774 (2015).
    PubMed  Article  Google Scholar 

    36.
    Davis, M. A., Grime, J. P. & Thompson, K. Fluctuating resources in plant communities: a generaltheory of invasibility. J. Ecol. 88, 528–534 (2000).
    Article  Google Scholar 

    37.
    Callaway, R. M., Thelen, G. C., Rodriguez, A. & Holben, W. E. Soil biota and exotic plant invasion. Nature 427(6976), 731–733 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    38.
    Rudgers, J. A. & Orr, S. Non-native grass alters growth of native tree species via leaf and soil microbes. J. Ecol 97(2), 247–255 (2009).
    Article  Google Scholar 

    39.
    Sun, Z. K. & He, W. M. Evidence for enhanced mutualism hypothesis: Solidago canadensis plants from regular soils perform better. PLoS ONE 5(11), 5. https://doi.org/10.1371/journal.pone.0015418 (2010).
    CAS  Article  Google Scholar 

    40.
    Dickie, I. A. et al. The emerging science of linked plant-fungal invasions. New Phytol. 215(4), 1314–1332 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Cronk, Q. C. B. & Fuller, J. R. Plant Invaders: The Threat to Natural Ecosystems (Earthscan Publications, London, 2001).
    Google Scholar 

    42.
    Richardson, D. M., Allsopp, N., D’Antonio, C. M., Milton, S. J. & Rejmanek, M. Plant invasions—the role of mutualisms. Biol. Rev. 75(1), 65–93 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Pringle, A. et al. Mycorrhizal symbioses and plant invasions. Ann Rev. Ecol. Evol. Syst. 40, 699–715 (2009).
    Article  Google Scholar 

    44.
    Wilson, G. W. T., Hickman, K. R. & Williamson, M. M. Invasive warm-season grasses reduce mycorrhizal root colonization and biomass production of native prairie grasses. Mycorrhiza 22, 327–336 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Nunez, M. A. & Dickie, I. A. Invasive belowground mutualists of woody plants. Biol. Invasions 16, 645–661 (2014).
    Article  Google Scholar 

    46.
    Bunn, R. A., Ramsey, P. W. & Lekberg, Y. Do native and invasive plants differ in their interactions with arbuscular mycorrhizal fungi? A meta-analysis. J. Ecol. 103, 1547–1556 (2015).
    CAS  Article  Google Scholar 

    47.
    Gucwa-Przepiora, E., Chmura, D. & Sokolowska, K. AM and DSE colonization of invasive plants in urban habitat: a study of Upper Silesia (southern Poland). J. Plant Res. 129, 603–614 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Waller, L. P., Callaway, R. M., Klironomos, J. N., Ortega, Y. K. & Maron, J. L. Reduced mycorrhizal responsiveness leads to increased competitive tolerance in an invasive exotic plant. J. Ecol. 104, 1599–1607 (2016).
    Article  Google Scholar 

    49.
    Menzel, A. et al. Mycorrhizal status helps explain invasion success of alien plant species. Ecology 98, 92–102 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    50.
    Broadbent, A. A. D., Stevens, C. J., Ostle, N. J. & Orwin, K. H. Biogeographic differences in soil biota promote invasive grass response to nutrient addition relative to co-occurring species despite lack of belowground enemy release. Oecologia 186, 611–620 (2018).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Vogelsang, K. M. & Bever, J. D. Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology 90, 399–407 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    52.
    Reinhart, K. O. & Callaway, R. M. Soil biota and invasive plants. New Phytol. 170, 445–457 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    Pakpour, S. & Klironomos, J. The invasive plant, Brassica nigra, degrades local mycorrhizas across a wide geographical landscape. R. Soc. Open Sci. 2, 4 (2015).
    Article  Google Scholar 

    54.
    Shah, M. A., Reshi, Z. A. & Khasa, D. P. Arbuscular mycorrhizas: Drivers or passengers of alien plant invasion. Bot. Rev. 75, 397–417 (2009).
    Article  Google Scholar 

    55.
    De Souza, T. A. F., Rodriguez-Echeverria, S., de Andrade, L. A. & Freitas, H. Could biological invasion by Cryptostegia madagascariensis alter the composition of the arbuscular mycorrhizal fungal community in semi-arid Brazil?. Acta Bot. Bras. 30, 93–101 (2016).
    Article  Google Scholar 

    56.
    Awaydul, A. et al. Common mycorrhizal networks influence the distribution of mineral nutrients between an invasive plant, Solidago canadensis, and a native plant, Kummerowa striata. Mycorrhiza 29, 29–38 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Štajerová, K., Šmilauerová, M. & Šmilauer, P. Arbuscular mycorrhizal symbiosis of herbaceous invasive neophytes in the Czech Republic. Preslia 81, 341–355 (2009).
    Google Scholar 

    58.
    Hempel, S. et al. Mycorrhizas in the Central European flora: relationships with plant life history traits and ecology. Ecology 94, 1389–1399 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    59.
    Callaway, R. M., Newingham, B., Zabinski, C. A. & Mahall, B. E. Compensatory growth and competitive ability of an invasive weed are enhanced by soil fungi and native neighbours. Ecol. Lett. 4, 429–433 (2001).
    Article  Google Scholar 

    60.
    Workman, R. E. & Cruzan, M. B. Common mycelial networks impact competition in an invasive grass. Am. J. Bot. 103, 1041–1049 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Zhang, Q. et al. Potential allelopathic effects of an invasive species Solidago canadensis on the mycorrhizae of native plant species. Allelopathy J. 20, 71–77 (2007).
    ADS  CAS  Google Scholar 

    62.
    Callaway, R. M. et al. Novel weapons: Invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 89, 1043–1055 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Sarma, K. K. V. Allelopathic potential of Echinops echinatus and Solanum surratense on seed germination of Argemone mexicana. Trop. Ecol. 15, 156–157 (1974).
    Google Scholar 

    64.
    Smith, M. D., Hartnett, D. C. & Wilson, G. W. T. Interacting influence of mycorrhizal symbiosis and competition on plant diversity in tallgrass prairie. Oecologia 121, 574–582 (1999).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Bennett, J. A. et al. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355, 181–184 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Liao, H. X. et al. Soil microbes regulate forest succession in a subtropical ecosystem in China: evidence from a mesocosm experiment. Plant Soil 430, 277–289 (2018).
    CAS  Article  Google Scholar 

    67.
    Řezáčová, V. et al. Mycorrhizal symbiosis induces plant carbon reallocation differently in C3 and C4Panicum grasses. Plant Soil 425, 441–456 (2018).
    Article  CAS  Google Scholar 

    68.
    Newman, E. I. A method of estimating total length of root in a sample. J. Appl. Ecol. 3, 139–145 (1966).
    Article  Google Scholar 

    69.
    Bukovská, P., Gryndler, M., Gryndlerová, H., Püschel, D. & Jansa, J. Organic nitrogen-driven stimulation of arbuscular mycorrhizal fungal hyphae correlates with abundance of ammonia oxidizers. Front. Microbiol. 7, 711 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    70.
    Hewitt, E. J. Sand and water culture methods used in the study of plant nutrition. CAB Tech. Commun. 22, 431–432 (1966).
    Google Scholar 

    71.
    Řezáčová, V. et al. Imbalanced carbon-for-phosphorus exchange between European arbuscular mycorrhizal fungi and non-native Panicum grasses—a case of dysfunctional symbiosis. Pedobiologia 62, 48–55 (2017).
    Article  Google Scholar 

    72.
    Ohno, T. & Zibilske, L. M. Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci. Soc. Am. J. 55, 892–895 (1991).
    ADS  CAS  Article  Google Scholar 

    73.
    McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L. & Swan, J. A. A new method which gives an objective-measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol. 115, 495–501 (1990).
    Article  Google Scholar 

    74.
    Koske, R. E. & Gemma, J. N. A modified procedure for staining roots to detect VA-mycorrhizas. Mycol. Res. 92, 486–505 (1989).
    Article  Google Scholar 

    75.
    Gryndler, M. et al. Tuber aestivum Vittad. mycelium quantified: advantages and limitations of a qPCR approach. Mycorrhiza 23, 341–348 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    76.
    Thonar, C., Erb, A. & Jansa, J. Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities-marker design, verification, calibration and field validation. Mol. Ecol. Res. 12, 219–232 (2012).
    CAS  Article  Google Scholar 

    77.
    von Felten, A., Défago, G. & Maurhofer, M. Quantification of Pseudomonas fluorescens strains F113, CHA0 and Pf153 in the rhizosphere of maize by strain-specific real-time PCR unaffected by the variability of DNA extraction efficiency. J. Microbiol. Methods 81, 108–115 (2010).
    Article  CAS  Google Scholar 

    78.
    Janoušková, M., Püschel, D., Hujslová, M., Slavíková, R. & Jansa, J. Quantification of arbuscular mycorrhizal fungal DNA in roots: how important is material preservation?. Mycorrhiza 25, 205–214 (2015).
    PubMed  Article  CAS  Google Scholar  More

  • in

    Effectiveness of the European Natura 2000 network to sustain a specialist wintering waterbird population in the face of climate change

    International Waterbird Census (IWC) data suggest 309,000 Scaup were wintering in North-West Europe in 1988–1991, compared with 192,300 in 2015–2018, indicating that the number of Scaup in this flyway has declined by 38.1% over 31 years (equivalent to a 30.3% decline over three generations, given a Scaup generation length of 8.2 years). Such a rate of decrease qualifies this population as vulnerable (VU) according to criterion A2(c) of the International Union for Conservation of Nature24. Thus, our results confirm the recent attribution of Scaup as a VU on the European Red List18. We suggest that the 1% threshold for the North-West Europe population of the Scaup should be revised to 1900.
    In addition to the overall decline in abundance, we also show that changes in winter temperature on the eastern and northern edges of the wintering range potentially explain the observed dramatic shift in winter distribution closer to the breeding grounds. Climate change appears to have opened up more wintering sites to Scaup, especially in the more northern and eastern areas where reductions in winter ice cover have made previous staging sites increasingly accessible in winter. This might be expected to have a positive effect on the population, given that Scaup have more potential wintering sites to choose between and that they face a diminished risk from mass starvation because of the reduced probability of unexpected ice cover of potential feeding areas25. However, the ultimate causes of shifts in wintering distribution remain unknown and could equally relate to deterioration of food quality in southern and western wintering grounds. At Lake IJsselmeer, the annual changes in the large numbers of wintering Scaup there in the 1980s and 1990s were explained by fluctuations in the abundance of their main prey, Zebra Mussel Dreissena polymorpha26. The decline in Zebra Mussels in the IJsselmeer lake and its replacement by Quagga Mussels Dreissena rostriformis bugensis27 resulted in a deterioration in the quality of food resources at the site. These are likely contributory reasons to explain the shift in the centre of gravity of the Scaup wintering grounds to Poland and eastern Germany, although we lack data to determine the magnitude of this effect (Fig. 4, Unit#3). This area now constitutes the most important wintering area for this population, although the detection of Quagga Mussels in this region in 201428 represents a potential threat to the quality of this important wintering ground.
    Assuming that some of the birds remain to winter along the migration route on sites formerly only used as stopovers, we can retrospectively infer the migration route of the Scaup population breeding in northern Russia and Fennoscandia (Fig. 1). It would appear that after birds reach the Baltic, they stop in Estonia before traversing the Baltic south-west to Gotland, migrating along the southern coast of Sweden and onwards to the main wintering area in Danish, German and Polish Baltic waters (Unit#3). Some Scaup continue west to reach Unit#2 in the Netherlands, and small numbers continue to reach France and the UK. The small population breeding in Iceland likely winter exclusively in the UK and Ireland, where fewer of the Russian/Fennoscandia population reach in recent winters. The Iceland breeding birds likely constitute a separate biogeographic population, with little contact with the main one discussed here (Fig. 1). Assuming the continuing effects of global warming, we can predict further separation of the two sub-populations and that Unit#4 (Fig. 4), the coast of Gotland and the islands and bays in Estonia will most likely play an increasingly important future role as winter quarters for this species. This is likely to be the case at other sites within eastern Baltic where this species can find suitable habitats.
    Our historical analysis has shown that after a period of most rapid decline during 1988–2003, this population could be interpreted as remaining stable during 2003–2018 (Fig. 2). We suspect that this may be partly the result of the significant decrease in the Scaup bycatch in the Netherlands29,30,31. The added mortality from fisheries bycatch represents one of the most important threats to the relatively long-lived Scaup32. Evidence showed that drowning mortality was extremely high between 1985 and 1994, when an estimated average of 17,672 birds died annually in fishing gear (6% of the total population of the time), but this has declined since the 2000s32. Of all Scaup from this flyway population that drowned in fishing nets in years 1978–1990, up to 65% died at the most important wintering site at the time—the Dutch IJsselmeer32. However, our highly uneven knowledge of the extent of the Scaup bycatch throughout its winter range should be taken into account here. Exceptionally detailed estimates from IJsselmeer during the earlier period14 contrasts our lack of data or poor estimates from elsewhere, which may result in a bias that implies a greater importance for Scaup bycatch at the IJsselmeer for the population than was actually the case. Current estimates of bycatch levels throughout the flyway suggest that Scaup death in fishing nets has decreased, amounting to c.4000 individuals yearly, partly explained by the substantial decrease in the Dutch bycatch32.
    The second highly important threat to Scaup, perhaps as important as the bycatch, is the deterioration of their food resources. Detailed energy budget studies on Lake IJsselmeer14 suggested that foraging Scaup there were operating on the margins of energetic profitability and the limited number of important wintering sites elsewhere suggest that alternative sites are really scarce, implying that food availability at core wintering sites could potentially affect winter survival.
    The specialist habitat selection of the Scaup restricts it to a narrow range of habitats during the wintering period where it aggregates in large concentrations, a factor which causes the entire wintering population to concentrate in relatively few locations. Potentially, this makes them more vulnerable at the population level than most other, more dispersed diving duck species. During the January 2015 count, 91% of counted birds were present at 31 locations in five countries (Denmark, Germany, the Netherlands, Poland and Sweden). The four most important locations supported over two-thirds of the total wintering numbers: namely IJsselmeer in the Netherlands, Barther Bodden and Greifswalder Bodden in Germany and Odra river estuary in Poland (Fig. 4). Taken together, these areas have consistently been the most important wintering areas for Scaup over the last 30 years3,14,20, with two thirds of the flyway population during winter concentrated within 5300 km2 (2000 km2 in the Netherlands and 3300 km2 in Poland/Germany).
    Wintering areas in Germany and Poland also act as stopover sites, so much larger numbers are counted there in autumn and spring migration, with up to 100,000 individuals on the Szczecin Lagoon (c.470 km29). Similarly, in Estonia, where a few hundred birds winter (Fig. 1), numbers may exceed 100,000 individuals in spring33. Therefore, cohesive planning for the effective conservation of the species, requires adequate protection at both the most important wintering sites (analysed in this article) and stopover sites along the entire migration route. During spring migration, extremely large Scaup concentrations can occur in these important sites, which provide for other biological functions such a communal courtship, displaying, pair-bonding etc.32. Given that Scaup are among the most vulnerable of diving ducks to bycatch34 (constituting more than 50% of diving birds drowned in fishing nets in the Polish Odra Estuary35) potentially high mortality during the prelude to the breeding season is likely to have severe adverse effects on the entire population. It is important to remember that this site can simultaneously support up to 75% of the total population9 and intensive fishing takes place here with gillnets35—the method of fishing recognised as the most dangerous for drowning diving birds in the Baltic Sea6.
    Other environmental pressures on Scaup are no less serious, but currently less well quantified. Many important wintering areas are situated in estuaries of large rivers that invariably host major sea ports, where large vessels cause disturbance and pollution. Maintenance of shipping channels requires dredging (as in the case of the channel leading to the port of Amsterdam on IJsselmeer in the Netherlands and that serving the port of Szczecin on the Szczecin Lagoon in Poland). Dredging of shallow marine and brackish substrates can disrupt sediment horizons, mobilising suspended material, creating turbidity and disrupting the food resource and the ability of Scaup to forage for their prey. The proximity to human settlements also makes these shallow marine waters attractive to the increasing practice of water sports, kite- and wind-surfing, boating and recreational fishing from boats, which although not a source of direct mortality, contributes to disturbance and displacement of Scaup from favoured areas36,37.
    SPAs and effectiveness of protection
    The long-term conservation aim for a decreasing qualifying species, in accordance with European Union (EU) law (Birds Directive—Council Directive 2009/147/EC), should be to recover them to former level of abundance. To achieve this aim, SPAs should be designated in sites where 1% or more of the biogeographic population regularly occurs. In the case of Scaup, all of such areas are protected in the form of SPA (Table 2). Subsequently, such a SPAs should have a Management Plan (MP) defining the conservation objectives within each site, updated every 6 years. Of the three most important Scaup SPAs in Europe, only the IJsselmeer (NL9803028, Unit#2, Core wintering area, Fig. 4) has a MP for 2013–201738, which described the long term decline (since 1994) in wintering numbers of Scaup in the IJsselmeer and identified the greatest threats for Scaup as declining food resources and disturbance by developing water sports. Although bycatch was conspicuously not listed as a threat, the MP documents previous measures, taken to reduce fishing effort, had resulted from the implementation of another EU Directive—the Water Framework Directive (WFD, Directive 2000/60/EC). The WFD committed EU Member States to achieve good qualitative and quantitative status of all water bodies by 201538. Conservation measures carried out on Lake IJsselmeer over the last 75 years aimed to maintain sustainable fishing did not bring about the intended results on fish stock39. However, they may have had a positive effect on reducing bycatch of Scaup from 11,500 killed annually during 1978–199032 to insignificant numbers in the years 2011–201231, which may have contributed to the slowing in the rate of population decline at this time. In the most important wintering area for this flyway populations—the lagoons and bays either side of the German-Polish border, out of ten SPAs forming one coherent area (Fig. 4) only two have MPs. Moreover, the key SPAs within this area that regularly hold the highest Scaup numbers do not have MPs, they are: Greifswalder Bodden und südlicher Strelasund (DE1747402) in Germany and Szczecin Lagoon (PLB320009) in Poland. The Greifswalder Bodden, Teile des Strelasundes und Nordspitze Usedom (DE1747301) Special Area of Conservation (SAC), which overlaps with the Greifswalder Bodden und südlicher Strelasund SPA, was created under the Habitats Directive (Council Directive 92/43/EEC) and has a MP that identifies the threats to Scaup (e.g. from bycatch). However, because MPs for SACs (as against SPAs) are not primarily directed towards bird conservation, there are no specific regulations to limit the current stressors upon Scaup at this site40. The existing MPs for two other SPAs (“Vorpommersche Boddenlandschaft und nördlicher Strelasund” and “Dolina Dolnej Odry”) either do not identify main threats to Scaup or fail to impose sufficient conservation measures41,42.
    Other SPAs that are less important for Scaup within Unit#3 west of the core wintering area include Östliche Kieler Bucht (DE1530491) and Ostsee östlich Wagrien (DE1633491), which have MPs identifying the threat from bycatch. This includes a voluntary agreement between the Schleswig Holstein Ministry of the Environment and local fishery associations, under which areas are closed to fishing if “concentrations of ducks” ( > 100) are present in the areas. Fishermen have two days to remove their gear after closure. There are rigid legal provisions at these two sites that prohibit fishing with gillnets within 200 m of the shore43,44. To date, there is no evidence of a positive effect and reduction of bycatch of diving birds, so we recommend a study of the effectiveness of these provisions.
    The shift in the centre of gravity of the wintering population to Germany and Poland highlights the ineffectiveness of conservation measures directed towards Scaup (and other diving birds) there. Despite the existence of SPAs in which the Scaup is specifically protected and evidence of the cost of gillnet bycatch to local diving ducks, the most serious pressure remains unchecked. In 2011–2012, results from research work in the Szczecin Lagoon37 recommended the MP proposed reducing the Scaup (and other diving birds) bycatch by spatiotemporal regulation of gillnet fisheries to avoid key areas used by the birds. Unfortunately, the effective solutions to deliver results for bird conservation were considered too far-reaching by fishing interests. The fishing lobby blocked official approval of the MP by government and so these measures were never implemented. Given the high rates of Scaup bycatch, the designation of the area as a SPA offers no effective protection to the species at this site32. The effectiveness of SPA designation for a particular species remains ineffective, as long as effective management is not implemented. Given the increasing relative importance of the German/Polish resorts to the species in recent years, the lack of effective measures within these SPAs is becoming more critical to safeguard the conservation of the North-West Europe population of Scaup. Suitably prepared MPs, containing a bycatch monitoring order, would solve this problem, setting bycatch thresholds, according to the recommendations of BirdLife International45—1% of natural mortality calculated on the basis of local species abundance. If this value is exceeded, spatiotemporal restrictions on gillnet fishery should be introduced.
    Looking to the future, areas that were formerly stopovers are already becoming wintering sites in Sweden and Estonia. Although currently not numerically significant in winter, these sites already hold significant numbers during migration. In the future, satellite areas (Unit#4) have the potential to develop into important wintering grounds and therefore require adequate protection from factors known to affect Scaup survival.
    Previous studies show that bycatch in fishing nets is one of the most serious anthropogenic pressures during the non-breeding period for many diving birds6, although we cannot exclude the influence of other factors such as food availability and quality26 and disturbance from hunting46 and water sports37. Because the majority of North-West Europe’s Scaup winter in relatively few places, conservation interventions at these key sites are particularly important. The shift in wintering distribution poses new challenges for countries increasingly responsible for the conservation of this species in winter. Lack of adequate protection in this region means that these areas may act as sink habitats (in the sense of the source-sink model 47). The shift of wintering areas to sink habitats exposes an increasing part of the population to the pressures present there. This is not only the case for Scaup but also for a range of other diving bird species. These birds concentrate in the most attractive areas rich in food, often biologically productive transitional waters, where marine and freshwater birds meet in high densities. For this reason, effective conservation measures directed at Scaup will positively impact upon a whole range of other species with similar ecology. This suggests that protection measures taken for the Scaup could also benefit associated marine species in the same areas such as Long-tailed Duck, Velvet Scoter, Common Scoter Melanitta nigra, as well as for coastal zone species such as: Tufted Duck, Smew Mergellus albellus, and Goosander Mergus merganser. More