Interactions between coral propagules in aquarium and field conditions
1.
Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233. https://doi.org/10.1016/s0921-8009(99)00009-9 (1999).
Article Google Scholar
2.
Lai, S., Loke, L. H. L., Hilton, M. J., Bouma, T. J. & Todd, P. A. The effects of urbanisation on coastal habitats and the potential for ecological engineering: a Singapore case study. Ocean Coast Manage. 103, 78–85. https://doi.org/10.1016/j.ocecoaman.2014.11.006 (2015).
Article Google Scholar
3.
Ng, C. S. L., Toh, T. C. & Chou, L. M. Current status of coral reef restoration in Singapore. in Proceedings of the Asian Conference on Sustainability, Energy & the Environment, 546–558 (2013).
4.
Ng, C. S. L., Chen, D. & Chou, L. M. Hard coral assemblages on seawalls in Singapore. In Contributions to Marine Science (ed. Tan, K. S.) 75–79 (Tropical Marine Science Institute, Singapore, 2012).
Google Scholar
5.
Horoszowski-Fridman, Y. B. & Rinkevich, B. Restoration of the animal forests: harnessing silviculture biodiversity concepts for coral transplantation. In Marine Animal Forests (ed. Rossi, S.) 1313–1335 (Springer, Cham, 2016).
Google Scholar
6.
Ng, C. S. L. et al. Enhancing the biodiversity of coastal defence structures: transplantation of nursery-reared reef biota onto intertidal seawalls. Ecol. Eng. 82, 480–486. https://doi.org/10.1016/j.ecoleng.2015.05.016 (2015).
Article Google Scholar
7.
Karlson, R. H. Dynamics of Coral Communities (Kluwer Academic Publishers, Dordrecht, 2002).
Google Scholar
8.
Glynn, P. W. & Enochs, I. C. Invertebrates and their roles in coral reef ecosystems. In Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) 273–325 (Springer, Dordrecht, 2010).
Google Scholar
9.
Fong, P. & Paul, J. V. Coral reef algae: the good, the bad, and the ugly. In Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) (Springer, Dordrecht, 2010).
Google Scholar
10.
Swierts, T. & Vermeij, M. J. A. Competitive interactions between corals and turf algae depend on coral colony form. PeerJ 4, e1984. https://doi.org/10.7717/peerj.1984 (2016).
CAS Article PubMed PubMed Central Google Scholar
11.
Lang, J. C. & Chornesky, E. A. Competition between scleractinian reef corals—a review of mechanisms and effects. In Ecosystems of the World (ed. Dubinsky, Z.) 133–206 (Elsevier, Amsterdam, 1990).
Google Scholar
12.
Tanner, J. E. Interspecific competition reduces fitness in scleractinian corals. J. Exp. Mar. Biol. Ecol. 214, 19–34. https://doi.org/10.1016/S0022-0981(97)00024-5 (1997).
Article Google Scholar
13.
Birrell, C. L., McCook, L. J., Willis, B. L. & Diaz-Pulido, G. A. Effects of benthic algae on the replenishment of corals and the implications for the resilience of coral reefs. Oceanogr. Mar. Biol. Ann. Rev. 46, 25–63 (2008).
Google Scholar
14.
Connell, J. H. et al. A long-term study of competition and diversity of corals. Ecol. Monogr. 74, 179–210. https://doi.org/10.1890/02-4043 (2004).
Article Google Scholar
15.
Paine, R. T. Ecological determinism in the competition for space: the Robert H. MacArthur award lecture. Ecology 65, 1339–1348. https://doi.org/10.2307/1939114 (1984).
Article Google Scholar
16.
Buss, L. W. Competition and community organization on hard surfaces in the sea. In Community Ecology (eds Diamond, J. & Case, T. J.) (Harper and Row, New York, 1986).
Google Scholar
17.
Chadwick, N. E. Spatial distribution and the effects of competition on some temperate scleractinia and coralliomorpharia. Mar. Ecol. Prog. Ser. 70, 39–48 (1991).
ADS Article Google Scholar
18.
Romano, S. L. Long-term effects of interspecific aggression on growth of the reef-building corals Cyphastrea ocellina (Dana) and Pocilloporu damicornis (Linnaeus). J. Exp. Mar. Biol. Ecol. 140, 135–146. https://doi.org/10.1016/0022-0981(90)90087-S (1990).
Article Google Scholar
19.
Rinkevich, B. & Loya, Y. Intraspecific competition in a reef coral: effects on growth and reproduction. Oecologia 66, 100–105. https://doi.org/10.1007/BF00378559 (1985).
ADS CAS Article PubMed Google Scholar
20.
Chadwick, N. E. & Morrow, K. M. Competition among sessile organisms on coral reefs. In Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) 347–371 (Springer, Dordrecht, 2011).
Google Scholar
21.
Rinkevich, B. & Loya, Y. Intraspecific competitive networks in the Red Sea coral Stylophora pistillata. Coral Reefs 1, 161–172. https://doi.org/10.1007/BF00571193 (1983).
ADS Article Google Scholar
22.
Leslie, P. H. On the use of matrices in certain population mathematics. Biometrika 33, 183–212 (1945).
MathSciNet CAS Article Google Scholar
23.
Connell, J. H. On the prevalence and relative importance of interspecific competition: evidence from field experiments. Am. Nat. 122, 661–669. https://doi.org/10.1086/284165 (1983).
Article Google Scholar
24.
Schoener, T. W. Field experiments on interspecific competition. Am. Nat. 122, 240–285. https://doi.org/10.1086/284133 (1983).
Article Google Scholar
25.
Barnes, R. S. K. & Hughes, R. N. An Introduction to Marine Ecology (Blackwell Scientific, Hoboken, 1988).
Google Scholar
26.
Abelson, A. & Loya, Y. Interspecific aggression among stony corals in Eilat, Red Sea: a hierarchy of aggression ability and related parameters. Br. Mar. Sci. 65, 851–860 (1999).
Google Scholar
27.
Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363. https://doi.org/10.1111/j.1461-0248.2008.01250.x (2008).
Article PubMed Google Scholar
28.
Breeuwer, A., Heijmans, M. P. D., Robroek, B. J. M. & Berendse, F. The effect of temperature on growth and competition between Sphagnum species. Oecologia 156, 155–167. https://doi.org/10.1007/s00442-008-0963-8 (2008).
ADS Article PubMed PubMed Central Google Scholar
29.
Edmunds, P. J. et al. Persistence and change in community composition of reef corals through present, past, and future climates. PLoS ONE 9, e107525. https://doi.org/10.1371/journal.pone.0107525 (2014).
ADS CAS Article PubMed PubMed Central Google Scholar
30.
Hidaka, M. & Yamazato, K. Intraspecific interactions in a scleractinian coral, Galaxea fascicularis: induced formation of sweeper tentacles. Coral Reefs 3, 77–85. https://doi.org/10.1007/BF00263757 (1984).
ADS Article Google Scholar
31.
Lapid, E. D., Wielgus, J. & Chadwick-Furman, N. E. Sweeper tentacles of the brain coral Platygyra daedalea: induced development and effects on competitors. Mar. Ecol. Prog. Ser. 282, 161–171. https://doi.org/10.3354/meps282161 (2004).
ADS Article Google Scholar
32.
Bak, R. P. M., Termaat, R. M. & Dekker, R. Complexity of coral interactions: influence of time, location of interaction and epifauna. Mar. Biol. 69, 215–222. https://doi.org/10.1007/BF00396901 (1982).
Article Google Scholar
33.
Lapid, E. D. & Chadwick, N. E. Long-term effects of competition on coral growth and sweeper tentacle development. Mar. Ecol. Prog. Ser. 313, 115–123. https://doi.org/10.3354/meps313115 (2006).
ADS Article Google Scholar
34.
Millar, K. J. The Platygyra species complex: implications for coral taxonomy and evolution. Dissertation, James Cook University of North Queensland (1994).
35.
Dai, C. F. Interspecific competition in Taiwanese corals with special reference to interactions between alcyonaceans and scleractinians. Mar. Ecol. Prog. Ser. 60, 291–297 (1990).
ADS Article Google Scholar
36.
Forsman, Z. H., Page, C. A., Toonen, R. J. & Vaughan, D. Growing coral larger and faster: micro-colony-fusion as a strategy for accelerating coral cover. PeerJ 3, e1313. https://doi.org/10.7717/peerj.1313 (2015).
CAS Article PubMed PubMed Central Google Scholar
37.
Colinvaux, P. A. Introduction to Ecology (Wiley, New York, 1973).
Google Scholar
38.
Lang, J. C. Interspecific aggression by scleractinian corals. II. Why the race is not always to the swift. Bull. Mar. Sci. 23, 260–279 (1973).
Google Scholar
39.
Rinkevich, B. & Loya, Y. Oriented translocation of energy in grafted reef corals. Coral Reefs 1, 243–247. https://doi.org/10.1007/BF00304422 (1983).
ADS Article Google Scholar
40.
Chornesky, E. A. The ties that bind: inter-clonal cooperation may help a fragile coral dominate shallow high-energy reefs. Mar. Biol. 109, 41–51. https://doi.org/10.1007/BF01320230 (1991).
Article Google Scholar
41.
Rejmanek, M. Intraspecific aggregation and species coexistence. Trends Ecol. Evol. 17, 209–210 (2002).
Article Google Scholar
42.
Karlson, R. H., Cornell, H. V. & Hughes, T. P. Aggregation influences coral species richness at multiple spatial scales. Ecology 88, 170–177. https://doi.org/10.1890/0012-9658(2007)88[170:AICSRA]2.0.CO;2 (2007).
Article PubMed Google Scholar
43.
Idjadi, J. A. & Karlson, R. H. Spatial arrangement of competitors influences coexistence of reef-building corals. Ecology 88, 2449–2454. https://doi.org/10.1890/06-2031.1 (2007).
Article PubMed Google Scholar
44.
Edmunds, P. J. & Davies, P. S. An energy budget for Porites porites (Scleractinia). Mar. Biol. 92, 339–347. https://doi.org/10.1007/BF00392674 (1986).
Article Google Scholar
45.
Vollmer, S. V. & Edmunds, P. J. Allometric scaling in small colonies of the scleractinian coral Siderastrea siderea (Ellis and Solander). Biol. Bull. 199, 21–28. https://doi.org/10.2307/1542703 (2000).
CAS Article PubMed Google Scholar
46.
Buss, L. W. Bryozoan overgrowth interactions—the interdependence of competition for space and food. Nature 281, 475–477. https://doi.org/10.1038/281475a0 (1979).
ADS Article Google Scholar
47.
Thongtham, N. & Chansang, H. Transplantation of Porites lutea to rehabilitate degraded coral reef at Maiton Island, Phuket, Thailand. in Proceedings of the 11th International Coral Reef Symposium, 1271–1274 (2009).
48.
dela Cruz, D. W., Rinkevich, B., Gomez, E. D. & Yap, H. T. Assessing an abridged nursery phase for slow growing corals used in coral restoration. Ecol. Eng. 84, 408–415. https://doi.org/10.1016/j.ecoleng.2015.09.042 (2015).
Article Google Scholar
49.
Forrester, G. E., Ferguson, M. A., O’Connell-Rodwell, C. E. & Jarecki, L. L. Long-term survival and colony growth of Acropora palmata fragments transplanted by volunteers for restoration. Aquat. Conserv. 24, 81–91. https://doi.org/10.1002/aqc.2374 (2014).
Article Google Scholar
50.
Edwards, A. J. & Clark, S. Coral transplantation: a useful management tool or misguided meddling?. Mar. Pollut. Bull. 37, 474–487. https://doi.org/10.1016/S0025-326X(99)00145-9 (1999).
Article Google Scholar
51.
Harrison, P. L. & Wallace, C. C. Reproduction, dispersal and recruitment of scleractinian corals. In Coral Reefs. Ecosystems of the World (ed. Dubinski, Z.) 133–206 (Elsevier, Amsterdam, 1990).
Google Scholar
52.
Koh, E. G. L. & Sweatman, H. Chemical warfare among scleractinians: bioactive natural products from Tubastrea faulkneri Wells kill larvae of potential competitors. J. Exp. Mar. Biol. Ecol. 251, 141–160. https://doi.org/10.1016/S0022-0981(00)00222-7 (2000).
CAS Article PubMed Google Scholar
53.
Van Veghel, M. L. J., Cleary, D. F. R. & Bak, R. P. M. Interspecific interactions and the competitive ability of the polymorphic reef-building coral Montastraea annularis. Bull. Mar. Sci. 58, 792–803 (1996).
Google Scholar
54.
Edwards, A. J. et al. Evaluating costs of restoration. In Reef Restoration Manual (ed. Edwards, A. J.) 113–128 (Coral Reef Targeted Research & Capacity Building for Management Program, St Lucia, 2010).
Google Scholar
55.
Huang, D. W., Tun, K. P. P., Chou, L. M. & Todd, P. A. An inventory of zooxanthellate scleractinian corals in Singapore, including 33 new records. Raffles B Zool. 22, 69–80 (2009).
CAS Google Scholar
56.
Forsman, Z. H., Rinkevich, B. & Hubter, C. L. Investigating fragment size for culturing reef-building corals (Porites lobata and P. compressa) in ex situ nurseries. Aquaculture 261, 89–97. https://doi.org/10.1016/j.aquaculture.2006.06.040 (2006).
Article Google Scholar More
