More stories

  • in

    The landscape of childhood vaccine exemptions in the United States

    We collected data from all US states where school vaccine exemption information was freely available from the Department of Health website in any format. We were able to locate that data in 24 states (see Table 1 for a list of states included). Within these states, the number of years available varied relatively widely, between 19 years in California and a single year in 6 states. The most represented year in our dataset was 2017 (corresponding to school year 2017–2018). Because the dataset was compiled in June-July 2019, we note that it is likely that additional data for more recent years may be available, or that data may have become available in additional states not included in our dataset.
    Table 1 Exemption data reporting varies widely across states.
    Full size table

    The data format varied widely between states, and exemptions were reported either as a number of exemptions or as a percentage of the enrolled students. We have elected to use number of students rather than percentages, and have transformed data as needed. For most states included in our dataset, the data are provided at the county level. In several states (Arizona, Colorado, Illinois, Maine, Michigan, South Dakota, Tennessee, Vermont, Oregon, and Washington), the data was provided at the school level, which we aggregated to the county.
    Additional data processing was necessary in some cases. In Virginia, data was provided by school name, but county or city information was not included. We used a list of public and private schools to match school names with their respective county using fuzzy matching (with the ‘fuzzywuzzy’ Python package) with an 80% matching requirement. Our algorithm was unable to find a suitable match for between 3.8% and 6.8% of schools (depending on year), and these schools were not included in the final counts at the county level. Similarly, in Idaho, data at the school level included city information but county was not provided. We first matched city and county names, before aggregating the exemption data at the county level. Finally in New York state, exemptions were provided as percentages at the school level but enrollment information was not included. We obtained enrollment for public and private schools separately from the New York State Education Department, and used the school unique code to calculate exemption number from enrollment and exemption percentages. We then aggregated these numbers at the county level.
    States reported data for exemptions based on varying definitions, so we selected data records based on data availability to make the data comparable across states. We aimed to achieve parsimonious definitions of total medical exemptions (Fig. 1a), total non-medical exemptions (Fig. 1b), and total exemptions (Fig. 1c), which includes both types of exemptions. We define medical exemptions as reported total medical exemptions. In Florida, permanent medical exemptions were reported separately from temporary medical exemptions, so permanent medical exemptions was chosen to represent total medical exemptions. To define total non-medical exemptions, we considered the state law regarding non-medical exemptions and the data availability. If the state reported total aggregated non-medical exemptions, that was selected as total non-medical exemptions. If the state reported only religious exemptions and only allows religious exemptions, that was selected as total non-medical exemptions. If the state reported only religious exemptions, but also allows philosophical exemptions, that was considered missing data. If the state allows philosophical exemptions and only reports philosophical exemptions, that was selected as total non-medical exemptions, as the state may not differentiate religious from philosophical. If the state allows philosophical exemptions and reports both religious and philosophical exemptions separately, these values were summed for total non-medical exemptions. To define total exemptions, if the state reported a total exemptions value, this value was used. If the state did not report a total exemptions value, but reported values for total medical exemptions and total non-medical exemptions, as defined above, these were summed for total exemptions. If the state was missing either medical or non-medical exemptions, but reported the total number of students with completed vaccinations, the total exemptions was the difference between the number of students enrolled and the number of students completed. This classification process is visualized in Fig. 1.
    Fig. 1

    Exemptions were classified by type to standardize reporting. Exemptions were classified as medical exemptions (a), non-medical exemptions (b), and total exemptions (c) to standardize reporting across states with different values reported.

    Full size image

    We also considered disease-specific exemptions reports. If a state reported the number of exemptions for a vaccine specific to a given infection, that value was used. If the state did not report exemptions, but did provide the total number complete for that disease, the difference between the enrolled students and the completed students was used. For pertussis-specific vaccination, we used DTaP exemptions where available, and TDaP exemptions where DTaP was not available. For measles-specific vaccination, if separate reports were available for measles, mumps, and rubella, the value for measles was used. If measles was not available, then the mumps or rubella exemptions were used, if available.
    The data in the figures is only data reported for kindergartens in states where kindergarten-specific data was available, or K-12 data in states where kindergarten-specific data was not reported. States reported age groups heterogeneously, and data by other age groups is available in the data file. We note that Oregon reports kindergarten-specific data in 2014–2015, then K-12 data in 2016–2018. More

  • in

    New evidence on the earliest domesticated animals and possible small-scale husbandry in Atlantic NW Europe

    1.
    Haak, W. et al. Ancient DNA from European early neolithic farmers reveals their near eastern affinities. PLoS Biol 8(11), e1000536. https://doi.org/10.1371/journal.pbio.1000536 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 
    2.
    Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Brandt, G. et al. Ancient DNA reveals key stages in the formation of central European mitochondrial genetic diversity. Science 342, 257–261 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    5.
    Zvelebil, M. Mesolithic prelude and Neolithic revolution. In Hunters in transition. Mesolithic societies of temperate Eurasia and their transition to farming (ed Zvelebil, M.) 5–16 (Cambridge University Press, Cambridge, 1986).

    6.
    Zvelebil, M. Agricultural frontiers, Neolithic origins, and the transition to farming in the Baltic basin. In Harvesting the Sea, Farming the Forest. The Emergence of Neolithic Societies in the Baltic Region (eds Zvelebil, M., Dennell, R. & Domanska, L.) 9–27 (Sheffield Archaeological Monographs 10, Sheffield, 1998).

    7.
    Raemaekers, D.C.M. The articulation of a “New Neolithic”. The meaning of the Swifterbant culture for the process of Neolithisation in the western part of the North European Plain (Archaeological Series Leiden University 3, Leiden, 1999).

    8.
    Louwe Kooijmans, L.P. The Hardinxveld sites in the Rhine/Meuse Delta, The Netherlands, 5500–4500 cal BC. In Mesolithic on the move. Papers presented at the Sixth International Conference on the Mesolithic in Europe, Stockholm 2000 (eds Larsson, L., Kindgren, H., Knutsson, K., Loeffler, D. & Åkerlund, A.) 608–624 (Owbow Books, Oxford, 2003).

    9.
    Louwe Kooijmans, L.P. The gradual transition to farming in the Lower Rhine Basin. In Going over. The Mesolithic–Neolithic transition in north-west Europe (eds Whittle, A. & Cummings, V.) 287–309 (Oxford University Press, Oxford, 2007).

    10.
    Out, W. A. Growing habits? Delayed introduction of crop cultivation at marginal wetland sites. Vegetat Hist Archaeobot 17, 131–138 (2008).
    Article  Google Scholar 

    11.
    Çakırlar, C., Breider, R., Koolstra, F., Cohen, K. M. & Raemaekers, D. C. M. Dealing with domestic animals in the fifth millennium cal BC Dutch wetlands: new insights from old Swifterbant assemblages. In Farmers at the Frontier : A Pan European Perspective on Neolithisation (eds Gron, K. J. et al.) 263–287 (Oxbow Books, Oxford, 2020).
    Google Scholar 

    12.
    Rowley-Conwy, P. North of the frontier: early domestic animals in northern Europe. In The Origins and Spread of Domestic Animals in Southwest Asia and Europe (eds Colledge, S. et al.) 283–311 (Left Coast Press, Walnut Creek, 2013).
    Google Scholar 

    13.
    Hartz, S., Lübke, H. & Terberger, T. From fish and seal to sheep and cattle: new research into the process of neolithisation in northern Germany. In Going over. The Mesolithic–Neolithic transition in north-west Europe (eds Whittle, A. & Cummings, V.) 567–594 (Oxford University Press, Oxford, 2007).

    14.
    Kirleis, W., Klooβ, S., Kroll, H. & Müller, J. Crop growing and gathering in the northern German Neolithic : a review supplemented by new results. Vegetat. Hist. Archaeobot. 21, 221–242 (2012).
    Article  Google Scholar 

    15.
    Price, T. D. The introduction of farming in northern Europe. In Europe’s first farmers (ed. Price, T. D.) 260–300 (Cambridge University Press, Cambridge, 2000).
    Google Scholar 

    16.
    Noe-Nygaard, N., Price, T. D. & Hede. S. U. Diet of Aurochs and Early Cattle in Southern Scandinavia: Evidence from 15N and 13C Stable Isotopes. J. Archaeol. Sci. 32, 855–871 (2005).

    17.
    Sørensen, L. & Karg, S. The expansion of agrarian societies towards the north – new evidence for agriculture during the Mesolithic/Neolithic transition in Southern Scandinavia. J. Archaeol. Sci. 51, 98–114 (2014).
    Article  Google Scholar 

    18.
    Gron, K. J. & Sørensen, L. Cultural and economic negotiation: a new perspective on the Neolithic Transition of Southern Scandinavia. Antiquity 92, 958–974 (2018).
    Article  Google Scholar 

    19.
    Rowley-Conwy, P. Westward Ho! The spread of agriculture from central Europe to the Atlantic. Curr. Anthropol. 52, 431–451 (2011).
    Article  Google Scholar 

    20.
    Fischer, A. Food for Feasting? An evaluation of explanations of the neolithisation of Denmark and southern Sweden. In Food for Feasting. The Neolithisation of Denmark – 150 years of Debate (eds Fischer, A. & Kristiansen, K.) 341–393 (J. R. Collis Publications, Sheffield, 2002).

    21.
    Scheu, A. et al. Ancient DNA provides no evidence for independent domestication of cattle in mesolithic rosenhof Northern Germany. J. Archaeol. Sci. 35, 1257–1264 (2008).
    Article  Google Scholar 

    22.
    Krause-Kyora, B. et al. Use of domesticated pigs by Mesolithic hunter-gatherers in northwestern Europe. Nat. Commun. 4, 2348 (2013).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Rowley-Conwy, P. & Zeder, M. Mesolithic domestic pigs at Rosenhof – or wild boar? A critical re-appraisal of ancient DNA and geometric morphometrics. World Archaeol. 46(5), 813–824 (2014).
    Article  Google Scholar 

    24.
    Meylemans, E. et al. The oldest cereals in the coversand area along the North Sea coast of NW Europe, between ca. 4800 and 3500 cal BC, at the wetland site of ‘Bazel-Sluis’ (Belgium). J. Anthropol. Archaeol. 49, 1–7 (2018).
    Article  Google Scholar 

    25.
    Ervynck, A., Lentacker, A., Muylaert, L. & Van Neer, W. Dierenresten. In Archeologische opgraving van een midden-mesolithische tot midden-neolithische vindplaats te Bazel-sluis 5” (gemeente Kruibeke, provincie Oost-Vlaanderen (eds Meylemans, E. et al.) 57–84 (Brussel, Agentschap Onroerend Erfgoed, 2016).
    Google Scholar 

    26.
    Perdaen, Y. & Meylemans, E. Het lithisch materiaal In Archeologische opgraving van een midden-mesolithische tot midden-neolithische vindplaats te Bazel-sluis 5” (gemeente Kruibeke, provincie Oost-Vlaanderen (eds Meylemans, E. et al.) 86–145 (Agentschap Onroerend Erfgoed, Brussel, 2016).

    27.
    Crombé, Ph., Sergant, J., Perdaen, Y., Meylemans, E. & Deforce, K. Neolithic pottery finds at the wetland site of Bazel-Kruibeke (Flanders, Belgium): evidence of long-distance forager-farmer contact during the late 6th and 5th millennium cal BC in the Rhine-Meuse-Scheldt area. Archäol. Korresp. 45, 21–39 (2015).
    Google Scholar 

    28.
    Crombé, Ph., Verhegge, J., Deforce, K., Meylemans, E. & Robinson, E. Wetland landscape dynamics, Swifterbant land use systems, and the Mesolithic-Neolithic transition in the southern North Sea basin. Quat. Internat. 378, 119–133 (2015).
    ADS  Article  Google Scholar 

    29.
    Crombé, Ph. et al. Bioturbation and the formation of latent stratigraphies on prehistoric sites. Two case studies from the Belgian-Dutch coversand area. In Soils as records of past and present. From soil surveys to archaeological sites: research strategies for interpreting soil characteristics. Proceedings of the Geoarchaeological Meeting, Bruges, 6 & 7 November 2019 (eds Deák, J., Ampe, C. & Mikkelsen, J.) 99–112 (Raakvlak, Bruges, 2019).

    30.
    Deforce, K. et al. Middle-Holocene alluvial forests and associated fluvial environments: A multi-proxy reconstruction from the lower Scheldt N Belgium. The Holocene 24, 1150–1564 (2014).
    Article  Google Scholar 

    31.
    Luikart, G. et al. Multiple maternal origins and weak phylogeographic structure in domestic goats. PNAS 98(10), 5927–5932 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    32.
    Fernández, H. et al. Divergent mtDNA lineages of goats in an Early Neolithic site, far from the initial domestication areas. PNAS 103(42), 15375–15379 (2006).
    ADS  PubMed  Article  CAS  Google Scholar 

    33.
    Goude, G. & Fontugne, M. Carbon and nitrogen isotopic variability in bone collagen during the Neolithic period: Influence of environmental factors and diet. J. Archaeol. Sci. 70, 117–131 (2016).
    CAS  Article  Google Scholar 

    34.
    Rey, L., Goude, G. & Rottier, S. Comportements alimentaires au Néolithique : nouveaux résultats dans le Bassin parisien à partir de l’étude isotopique (δ13C, δ15N) de la nécropole de Gurgy « Les Noisats » (Yonne, Ve millénaire av. J.-C.). BMSAP 29, 54–69 (2017).

    35.
    Bickle, P. Stable isotopes and dynamic diets: The Mesolithic-Neolithic dietary transition in terrestrial central Europe. J. Archaeol. Sci.: Reports 22, 444–451 (2018).

    36.
    Bocherens, H., Polet, C. & Toussaint, M. Palaeodiet of mesolithic and neolithic populations of Meuse Basin (Belgium): evidence from stable isotopes. J. Archaeol. Sci. 34, 10–27 (2007).
    Article  Google Scholar 

    37.
    Evans, J. A., Montgomery, J., Wildman, G. & Boulton, N. Spatial variations in biosphere 87Sr/86Sr in Britain. J. Geol. Soc. 167(1), 1–4 (2010).
    ADS  CAS  Article  Google Scholar 

    38.
    Willmes, M. et al. Mapping of bioavailable strontium isotope ratios in France for archaeological provenance studies. Appl. Geochem 90, 75–86 (2018).
    CAS  Article  Google Scholar 

    39.
    Snoeck, C. et al. Towards a biologically available strontium isotope baseline for Ireland. Sc. Total Envir. 712, 136248 (2020).
    CAS  Article  Google Scholar 

    40.
    Dalle, S. et al. Preliminary results in the collecting of protohistoric cremation samples for the CRUMBEL project. Lunula 27, 9–14 (2019).
    Google Scholar 

    41.
    de Winter, N. J., Snoeck, C. & Claeys, Ph. Seasonal cyclicity in trace elements and isotopes of modern horse enamel. PLoS ONE 11(11), e0166678 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Buchan, M., Müldner, G., Ervynck, A. & Britton, K. Season of birth and sheep husbandry in late Roman and Medieval coastal Flanders: A pilot study using tooth enamel δ 18O analysis. Environ. Archaeol. 21(3), 260–270 (2016).
    Article  Google Scholar 

    43.
    Balasse, M., Boury, L., Ughetto-Monfrin, J. & Tresset, A. Stable isotope insights (δ18O, δ13C) into cattle and sheep husbandry at Bercy (Paris, France, 4th millennium BC): birth seasonality and winter leaf foddering. Environ. Archaeol. 17, 29–44 (2012).
    Article  Google Scholar 

    44.
    Bonafini, M., Pellegrini, M., Ditchfield, P. & Pollard, A. M. Investigation of the ‘canopy effect’ in the isotope ecology of temperate woodlands. J. Archaeol. Sci. 40, 3926–3935 (2013).
    Article  Google Scholar 

    45.
    Deforce, K. et al. Wood charcoal and seeds as indicators for animal husbandry in a wetland site during the late Mesolithic/early Neolithic transition period (Swifterbant culture, ca. 4600–4000 BC) in NW-Belgium. Vegetat. Hist. Archaeobot. 22, 51–60 (2013).
    Article  Google Scholar 

    46.
    Deforce, K., Bastiaens, J. & Crombé, Ph. A reconstruction of middle Holocene alluvial hardwood forests (Lower Scheldt River, N-Belgium) and their exploitation during the Mesolithic-Neolithic transition period (Swifterbant Culture, c. 4500–4000 BC). Quaternaire 251, 9–21 (2014).

    47.
    Storme, A. et al. The significance of palaeoecological indicators in reconstructing estuarine environments: A multi-proxy study of increased Middle Holocene tidal influence in the lower Scheldt river N-Belgium. Quat. Sci. Rev. 230, 106–113 (2020).
    Article  Google Scholar 

    48.
    Verhegge, J., Van Strydonck, M., Missiaen, T. & Crombé, Ph. chronology of wetland hydrological dynamics and the mesolithic-neolithic transition along the lower scheldt: a Bayesian approach. Radiocarbon 56(2), 883–898 (2014).
    CAS  Article  Google Scholar 

    49.
    Messiaen, L. Lithics in contact. The neolithization process in the lower-Scheldt basin (mid-6th to mid-4th millennium BC) from a lithic perspective (PhD thesis, Ghent University, 2020).

    50.
    Teetaert, D. Routes of technology: pottery production and mobility during the Mesolithic-Neolithic transition in the Scheldt river valley (Belgium) (PhD thesis, Ghent University, 2020).

    51.
    Arnold, D.E. Ceramic theory and cultural process ( Cambridge University Press, Cambridge, 1985).

    52.
    Gosselain, O. P. Materializing identities: an african perspective. J. Archaeol. Method and Theory 7(3), 187–217 (2000).
    Article  Google Scholar 

    53.
    Brunel, S. et al. Ancient genomes from present-day France unveil 7,000 years of its demographic history. PNAS 117(23), 12791–12798. https://doi.org/10.1073/pnas.1918034117 (2020).
    CAS  Article  PubMed  Google Scholar 

    54.
    Rivollat, M. et al. Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. Sci. Adv. 6, eaaz5344 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Manning, K. et al. The origins and spread of stock-keeping: The role of cultural and environmental influences on early Neolithic animal exploitation in Europe. Antiquity 87(338), 1046–1059 (2013).
    Article  Google Scholar 

    56.
    Cubas, M. et al. Latitudinal gradient in dairy production with the introduction of farming in Atlantic Europe. Nat. Commun. 11, 2036. https://doi.org/10.1038/s41467-020-15907-4 (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Lyman, R. L. Vertebrate taphonomy (Cambridge University Press, Cambridge, 1994).
    Google Scholar 

    58.
    Reitz, E. J. & Wing, E. S. Zooarchaeology (Cambridge University Press, Cambridge, 2008).
    Google Scholar 

    59.
    Groot, M. Handboek Zoöarcheologie (Archeologisch Centrum van de Vrije Universiteit (Hendrik Brunsting Stichting (ACVU-HBS), Amsterdam, 2010).
    Google Scholar 

    60.
    Boessneck, J., Müller, H.-H. & Teichert, M. Osteologische Unterscheidungsmerkmale zwischen Schaf (Ovis aries Linné) und Ziege (Capra hircus Linné). Kühn-Archiv 78(1–2), 1–129 (1964).
    Google Scholar 

    61.
    Degerbøl, M. Zoological Part. In The Urus (Bos primigenius Bojanus) and Neolithic domesticated cattle (Bos taurus domesticus Linné) in Denmark (eds Degerbøl, M. & Fredskil, B.) 5–177 (Det Kongelige Danske Videnskabernes Selskab, Biologiske Skrifter 17, 1970).

    62.
    Grigson, C. The uses and limitations of differences in absolute size in the distinction between the bones of aurochs (Bos primigenius) and domestic cattle (Bos taurus). In The domestication and exploitation of plants and animals (eds Ucko, P.J. & Dimbleby, G.W.) 277–293 (London, 1969).

    63.
    Hüster-Plogman, H., Schibler, J. & Steppan, K. The relationship between wild mammal exploitation, climatic fluctuations, and economic adaptations. A transdisciplinary study on Neolithic sites from the Lake Zurich region, southwest Germany and Bavaria. In Historia Animalium ex Ossibus, Festschrift für Angela von den Driesch (eds Becker, C., Manhart, H., Peters, J. & Schibler, J.) 189–200 (Rahden/Westf., 1999).

    64.
    Kysely, R. Aurochs and potential crossbreeding with domestic cattle in Central Europe in the Eneolithic period. A metric analysis of bones from the archaeological site of Kutná Hora-Denemark (Czech Republic). Anthropozoologica 43, 7–37 (2008).

    65.
    Manning, K. The cultural evolution of Neolithic Europe. EUROEVOL dataset 2: zooarchaeological data. J. Open Archaeol. Data 5 (2016). https://doi.org/10.5334/joad.41.

    66.
    Steppan, K. Climatic fluctuations and Neolithic economic adaptations in the 4th millennium BC: a case study from South-West Germany. In Papers from the EAA (European Association of Archaeologists) Third Annual Meeting at Ravenna 1997 (eds Pearce, M. & Tosi, M.) 38–45 (BAR International Series 717, Oxford, 1998).

    67.
    Steppan, K. The significance of aurochs in the food economy of the Jungneolithikum (Upper Neolithic) in South-west Germany. In Archäologie und Biologie des Auerochsen (ed Weniger, G-C.) 161–171 (Wissenschaftliche Schriften des Neanderthal Museums Bd. 1, 1999).

    68.
    Steppan, K. Ur oder Hausrind? Die Variabilität der Wildtieranteile in linearbandkeramischen Tierknochenkomplexen. In Rôle et statut de la chasse dans le Néolithique ancien danubien (5500 – 4900 av. J.-C.) (eds Arbogast, R.-M., Jeunesse, Ch. & Schibler, J.) 171–188 (Verlag Marie Leidorf, Rahden/Westfahlen, 2004).

    69.
    Weniger, G.-C. (Ed.) Archäologie und Biologie des Aurochsen (Wissenschaftliche Schriften des Neanderthal Museums 1, 1999).

    70.
    Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971).
    ADS  CAS  PubMed  Article  Google Scholar 

    71.
    Van Strydonck, M. & van der Borg, K. The construction of a preparation line for AMS-targets at the Royal Institute for Cultural Heritage Brussels. Bull. KIK 23, 228–234 (1990).
    Google Scholar 

    72.
    Nadeau, M.-J. et al. Sample throughput and data quality at the Leibniz-Labor AMS facility. Radiocarbon 40, 239–245 (1998).
    CAS  Article  Google Scholar 

    73.
    Boudin, M. et al. RICH – a new AMS facility at the Royal Institute for Cultural Heritage, Brussels Belgium. Nucl. Instr. and Meth. in Physics Res. B 361, 120–123 (2015).
    ADS  CAS  Article  Google Scholar 

    74.
    Stuiver, M. & Polach, H. A. Discussion—reporting of 14C data. Radiocarbon 19(3), 355–363 (1977).
    Article  Google Scholar 

    75.
    Reimer, P. J. et al. IntCal13 and MARINE13 radiocarbon age calibration curves 0–50000 years calBP. Radiocarbon 55(4), 1111–1150 (2013).
    Article  Google Scholar 

    76.
    Budd, P., Montgomery, J., Barreiro, B. & Thomas, R. G. Differential diagenesis of strontium in archaeological human dental tissues. Appl. Geochem 15, 687–694 (2000).
    CAS  Article  Google Scholar 

    77.
    Burton, J. Bone chemistry and trace element analysis. In Biological Anthropology of the Human Skeleton (eds Katzenberg, M. A. & Saunders, S. R.) 443–460 (John Wiley & Sons, Hoboken, NewJersey, 2008).
    Google Scholar 

    78.
    Snoeck, C. & Pellegrini, M. Comparing bioapatite carbonate pre-treatments for isotopic measurements: Part 1 – Impact on structure and chemical composition. Chem. Geol. 417, 394–403 (2015).
    ADS  CAS  Article  Google Scholar 

    79.
    de Winter, N.J., Snoeck, C., Schulting, R.J., Fernández-Crespo, T. & Claeys, Ph. Trace element distributions in Late Neolithic human molars from the Middle Ebro Valley (Spain): Palaeoenvironmental proxy or diagenesis? Palaeo3 532, 1092602019.

    80.
    Pellegrini, M. & Snoeck, C. Comparing bioapatite carbonate pre-treatments for isotopic measurements: Part 2 – Impact on carbon and oxygen isotope compositions. Chem. Geol. 420, 88–96 (2016).
    ADS  CAS  Article  Google Scholar 

    81.
    Snoeck, C. et al. Calcined bone provides a reliable substrate for strontium isotope ratios as shown by an enrichment experiment. Rap. Comm. Mass Spec. 29, 107–114 (2015).
    ADS  CAS  Article  Google Scholar 

    82.
    Weis, D. et al. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2006GC001283 (2006).
    Article  Google Scholar  More

  • in

    Arctic riparian shrub expansion indicates a shift from streams gaining water to those that lose flow

    1.
    Sturm, M., Racine, C. & Tape, K. Climate change: Increasing shrub abundance in the Arctic. Nature 411, 546 (2001).
    CAS  Article  Google Scholar 
    2.
    Tape, K. D., Sturm, M. & Racine, C. The evidence for shrub expansion in Northern Alaska and the Pan‐Arctic. Global Change Biol. 12, 686–702 (2006).
    Article  Google Scholar 

    3.
    Forbes, B. C., Fauria, M. M. & Zetterberg, P. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Global Change Biol. 16, 1542–1554 (2010).
    Article  Google Scholar 

    4.
    Frost, G. V. & Epstein, H. E. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biol. 20, 1264–1277 (2014).
    Article  Google Scholar 

    5.
    McManus, kM. et al. Satellite‐based evidence for shrub and graminoid tundra expansion in northern Q uebec from 1986 to 2010. Global Change Biol. 18, 2313–2323 (2012).
    Article  Google Scholar 

    6.
    Naito, A. T. & Cairns, D. M. Relationships between Arctic shrub dynamics and topographically derived hydrologic characteristics. Environ. Res. Lett. 6, 045506 (2011).
    Article  Google Scholar 

    7.
    Ropars, P. & Boudreau, S. Shrub expansion at the forest–tundra ecotone: Spatial heterogeneity linked to local topography. Environ. Res. Lett. 7, 015501 (2012).

    8.
    Tape, K. D., Hallinger, M., Welker, J. M. & Ruess, R. W. Landscape heterogeneity of shrub expansion in Arctic Alaska. Ecosystems 15, 711–724 (2012).
    CAS  Article  Google Scholar 

    9.
    Tape, K. D., Verbyla, D. & Welker, J. M. Twentieth century erosion in Arctic Alaska foothills: The influence of shrubs, runoff, and permafrost. J. Geophys. Res.: Biogeosci. 116, https://doi.org/10.1029/2011JG001795 (2011).

    10.
    Jorgenson, J. C., Raynolds, M. K., Reynolds, J. H. & Benson, A.-M. Twenty-five year record of changes in plant cover on tundra of northeastern Alaska. Arctic, Antarctic, Alpine Res. 47, 785–806, https://doi.org/10.1657/AAAR0014-097 (2015).
    Article  Google Scholar 

    11.
    Edlund, S. A. Reconnaissance vegetation studies on western Victoria Island, Canadian Arctic archipelago. in Current Research, Part B, Geological Survey of Canada, Paper 83-1B, 75–81 (Geological Survey of Canada, Ottawa, 1983).

    12.
    Edlund, S. A. & Egginton, P. A. Morphology and description of an outlier population of tree-sized willows on western Victoria Island, District of Franklin. in Current Research, Part A, Geological Survey of Canada, Paper 84-1A, 279–285 (Geological Survey of Canada, Ottawa, 1984).

    13.
    Maycock, P. F. & Matthews, B. An Arctic” forest” in the tundra of northern Ungava, Quebec. Arctic 19, 114–144, www.jstor.org/stable/40507312 (1966).
    Article  Google Scholar 

    14.
    Zalatan, R. & Gajewski, K. Dendrochronological potential of Salix alaxensis from the Kuujjua River area, western Canadian Arctic. Tree-Ring Res. 62, 75–82 (2006).
    Article  Google Scholar 

    15.
    Polunin, N. The birch ‘forests’ of Greenland. Nature 140, 939–940 (1937).
    Article  Google Scholar 

    16.
    Polunin, N. Conduction through roots in frozen soil. Nature 132, 313–314 (1933).
    Article  Google Scholar 

    17.
    Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 264 (2019).
    Article  CAS  Google Scholar 

    18.
    Jorgenson, M. T., Shur, Y. L. & Pullman, E. R. Abrupt increase in permafrost degradation in Arctic Alaska. Geophy. Res. Lett. 33, https://doi.org/10.1029/2005GL024960 (2006).

    19.
    Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9, 312 (2016).
    CAS  Article  Google Scholar 

    20.
    Stephani, E., Drage, J., Miller, D., Jones, B. M. & Kanevskiy, M. Taliks, cryopegs, and permafrost dynamics related to channel migration, Colville River Delta, Alaska. Permaf. Periglac. Processes 31, 239–254, https://doi.org/10.1002/ppp.2046 (2020).
    Article  Google Scholar 

    21.
    Smith, L. C., Pavelsky, T. M., MacDonald, G. M., Shiklomanov, A. I. & Lammers, R. B. Rising minimum daily flows in northern Eurasian rivers: A growing influence of groundwater in the high‐latitude hydrologic cycle. J. Geophys. Res.: Biogeosci. 112, https://doi.org/10.1029/2006JG000327 (2007).

    22.
    St. Jacques, J. M. & Sauchyn, D. J. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophys. Res. Lett. 36, https://doi.org/10.1029/2008GL035822 (2009).

    23.
    Harms, T. K., Abbott, B. W. & Jones, J. B. Thermo-erosion gullies increase nitrogen available for hydrologic export. Biogeochemistry 117, 299–311, https://doi.org/10.1007/s10533-013-9862-0 (2014).
    CAS  Article  Google Scholar 

    24.
    McClelland, J. W., Stieglitz, M., Pan, F., Holmes, R. M. & Peterson, B. J. Recent changes in nitrate and dissolved organic carbon export from the upper Kuparuk River, North Slope, Alaska. J. Geophys. Res.: Biogeosci. 112, https://doi.org/10.1029/2006JG000371 (2007).

    25.
    Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453 (2012).
    Article  Google Scholar 

    26.
    Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887 (2015).
    Article  Google Scholar 

    27.
    Ackerman, D. E. et al. Uniform shrub growth response to June temperature across the North Slope of Alaska. Environ. Res. Lett. 13, 044013, https://doi.org/10.1088/1748-9326/aab326 (2018).
    Article  Google Scholar 

    28.
    Lantz, T. C., Gergel, S. E. & Henry, G. H. Response of green alder (Alnus viridis subsp. fruticosa) patch dynamics and plant community composition to fire and regional temperature in north‐western Canada. J. Biogeogr. 37, 1597–1610 (2010).
    Google Scholar 

    29.
    Raynolds, M. K., Walker, D. A., Verbyla, D. & Munger, C. A. Patterns of change within a tundra landscape: 22-year Landsat NDVI trends in an area of the northern foothills of the Brooks Range, Alaska. Arct., Antarct., Alp. Res. 45, 249–260 (2013).
    Article  Google Scholar 

    30.
    Frost, G. V., Epstein, H. E., Walker, D. A., Matyshak, G. & Ermokhina, K. Patterned-ground facilitates shrub expansion in Low Arctic tundra. Environ. Res. Lett. 8, 015035 (2013).
    Article  Google Scholar 

    31.
    Jones, B. M. et al. Identification of unrecognized tundra fire events on the north slope of Alaska. J. Geophys. Res.: Biogeosci. 118, 1334–1344 (2013).
    Article  Google Scholar 

    32.
    Lantz, T. C., Kokelj, S. V., Gergel, S. E. & Henry, G. H. Relative impacts of disturbance and temperature: persistent changes in microenvironment and vegetation in retrogressive thaw slumps. Global Change Biol. 15, 1664–1675 (2009).
    Article  Google Scholar 

    33.
    Tape, K. D., Christie, K., Carroll, G. & O’Donnell, J. A. Novel wildlife in the Arctic: the influence of changing riparian ecosystems and shrub habitat expansion on snowshoe hares. Global Change Biol. 22, 208–219 (2016).
    Article  Google Scholar 

    34.
    Jorgenson, M. T. & Osterkamp, T. E. Response of boreal ecosystems to varying modes of permafrost degradation. Canadian J. For. Res. 35, 2100–2111 (2005).
    Article  Google Scholar 

    35.
    Schuur, E. A., Crummer, K. G., Vogel, J. G. & Mack, M. C. Plant species composition and productivity following permafrost thaw and thermokarst in Alaskan tundra. Ecosystems 10, 280–292 (2007).
    Article  Google Scholar 

    36.
    Swanson, D. K. Environmental limits of tall shrubs in Alaska’s Arctic National Parks. PLoS ONE 10, e0138387 (2015).
    Article  CAS  Google Scholar 

    37.
    Sturm, M., Douglas, T., Racine, C. & Liston, G. E. Changing snow and shrub conditions affect albedo with global implications. J.Geophys. Res.: Biogeosci. 110, https://doi.org/10.1029/2005JG000013 (2005).

    38.
    Buckeridge, K. M., Zufelt, E., Chu, H. & Grogan, P. Soil nitrogen cycling rates in low arctic shrub tundra are enhanced by litter feedbacks. Plant and Soil 330, 407–421 (2010).
    CAS  Article  Google Scholar 

    39.
    Lawrence, D. M. & Swenson, S. C. Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming. Environ. Res. Lett. 6, 045504 (2011).
    Article  Google Scholar 

    40.
    Weintraub, M. N. & Schimel, J. P. Nitrogen cycling and the spread of shrubs control changes in the carbon balance of Arctic tundra ecosystems. Bioscience 55, 408–415 (2005).
    Article  Google Scholar 

    41.
    Chapin, F. S. et al. Role of land-surface changes in Arctic summer warming. Science 310, 657–660 (2005).
    CAS  Article  Google Scholar 

    42.
    Beringer, J., Chapin, F. S. III, Thompson, C. C. & McGuire, A. D. Surface energy exchanges along a tundra-forest transition and feedbacks to climate. Agricu. For. Meteorol. 131, 143–161 (2005).
    Article  Google Scholar 

    43.
    Myers‐Smith, I. H. & Hik, D. S. Shrub canopies influence soil temperatures but not nutrient dynamics: an experimental test of tundra snow–shrub interactions. Ecol. Evol. 3, 3683–3700 (2013).
    Article  Google Scholar 

    44.
    Frost, G. V., Epstein, H. E., Walker, D. A., Matyshak, G. & Ermokhina, K. Seasonal and long-term changes to active-layer temperatures after tall shrubland expansion and succession in Arctic tundra. Ecosystems 21, 507–520 (2018).
    CAS  Article  Google Scholar 

    45.
    Liston, G. E., Mcfadden, J. P., Sturm, M. & Pielke, R. A. Modelled changes in arctic tundra snow, energy and moisture fluxes due to increased shrubs. Global Change Biol. 8, 17–32 (2002).
    Article  Google Scholar 

    46.
    Jafarov, E. E. et al. Modeling the role of preferential snow accumulation in through talik development and hillslope groundwater flow in a transitional permafrost landscape. Environ. Res. Lett. 13, 105006 (2018).
    Article  CAS  Google Scholar 

    47.
    Deslippe, J. R., Hartmann, M., Simard, S. W. & Mohn, W. W. Long-term warming alters the composition of Arctic soil microbial communities. FEMS Microbiol. Ecol. 82, 303–315 (2012).
    CAS  Article  Google Scholar 

    48.
    Geml, J., Semenova, T. A., Morgado, L. N. & Welker, J. M. Changes in composition and abundance of functional groups of arctic fungi in response to long-term summer warming. Biol. Lett. 12, 20160503 (2016).
    Article  CAS  Google Scholar 

    49.
    Koyama, A., Wallenstein, M. D., Simpson, R. T. & Moore, J. C. Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils. Front. Microbiol. 5, 516 (2014).
    Article  Google Scholar 

    50.
    Mackelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011).
    CAS  Article  Google Scholar 

    51.
    Xue, K. et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nat. Clim. Change 6, 595 (2016).
    CAS  Article  Google Scholar 

    52.
    Yang, Z. et al. Microbial community and functional gene changes in Arctic tundra soils in a microcosm warming experiment. Front. Microbiol. 8, 1741 (2017).
    Article  Google Scholar 

    53.
    Yuan, M. M. et al. Microbial functional diversity covaries with permafrost thaw-induced environmental heterogeneity in tundra soil. Global Change Biol. 24, 297–307 (2017).
    Article  Google Scholar 

    54.
    Bever, J. D., Platt, T. G. & Morton, E. R. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Ann. Rev. Microbiol. 66, 265–283 (2012).
    CAS  Article  Google Scholar 

    55.
    Van Der Heijden, M. G., Bardgett, R. D. & Van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).
    Article  Google Scholar 

    56.
    Shi, Y. et al. Vegetation-associated impacts on arctic tundra bacterial and microeukaryotic communities. Appl. Environ. Microbiol. 81, 492–501 (2015).
    Article  CAS  Google Scholar 

    57.
    Wallenstein, M. D., McMahon, S. & Schimel, J. Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiol. Ecol. 59, 428–435 (2007).
    CAS  Article  Google Scholar 

    58.
    Chu, H., Neufeld, J. D., Walker, V. K. & Grogan, P. The influence of vegetation type on the dominant soil bacteria, archaea, and fungi in a low Arctic tundra landscape. Soil Sci. Soc. Am. J. 75, 1756–1765 (2011).
    CAS  Article  Google Scholar 

    59.
    Lipson, D. A. et al. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils. Environ. Microbiol. Rep. 7, 649–657 (2015).
    CAS  Article  Google Scholar 

    60.
    Schickhoff, U., Walker, M. D. & Walker, D. A. Riparian willow communities on the Arctic Slope of Alaska and their environmental relationships: a classification and ordination analysis. Phytocoenologia 32, 145–204 (2002).
    Article  Google Scholar 

    61.
    Chu, H. et al. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ. Microbiol. 12, 2998–3006 (2010).
    CAS  Article  Google Scholar 

    62.
    Walker, D. A. et al. Vegetation of zonal patterned-ground ecosystems along the North America Arctic bioclimate gradient. Appl. Vegetation Sci. 14, 440–463 (2011).
    Article  Google Scholar 

    63.
    Fujimura, K. E. & Egger, K. N. Host plant and environment influence community assembly of High Arctic root-associated fungal communities. Fungal Ecol. 5, 409–418 (2012).
    Article  Google Scholar 

    64.
    Timling, I., Walker, D. A., Nusbaum, C., Lennon, N. J. & Taylor, D. L. Rich and cold: diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic. Mol. Ecol. 23, 3258–3272 (2014).
    CAS  Article  Google Scholar 

    65.
    Schütte, U. M. E. et al. Effect of permafrost thaw on plant and soil fungal community in a boreal forest: Does fungal community change mediate plant productivity response? J. Ecol. 107, 1737–1752 (2019).
    Article  CAS  Google Scholar 

    66.
    Natali, S. M., Schuur, E. A. G. & Rubin, R. L. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. J. Ecol. 100, 488–498 (2011).

    67.
    Johnston, E. R. et al. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths. Proc. Natl Acad. Sci. USA 116, 15096–15105, https://doi.org/10.1073/pnas.1901307116 (2019).
    CAS  Article  Google Scholar 

    68.
    Drake, T. W. et al. Increasing alkalinity export from large Russian arctic rivers. Environ. Sci. Technol. 52, 8302–8308 (2018).
    CAS  Article  Google Scholar 

    69.
    Peterson, B. J. et al. Increasing river discharge to the Arctic. Ocean. Sci. 298, 2171–2173 (2002).
    CAS  Google Scholar 

    70.
    Hamilton, T. D. Surficial Geology of the Dalton Highway (Itkillik-Sagavanirktok rivers) Area, Southern Arctic foothills, Alaska. (State of Alaska, Department of Natural Resources, Division of Geological & Geophysical Surveys, Fairbanks, AK, 2003).

    71.
    Hamilton, T. D. Glacial Geology of the Toolik Lake and Upper Kuparuk River Regions. Report No. 0568-8604, 30 (Institute of Arctic Biology, University of Alaska, Fairbank, AK, 2003).

    72.
    Osterkamp, T. & Payne, M. Estimates of permafrost thickness from well logs in northern Alaska. Cold Regions Sci. Technol. 5, 13–27 (1981).
    Article  Google Scholar 

    73.
    Kane, D. L. et al. Hydrology and Meteorology of the Central Alaskan Arctic: Data Collection and Analysis. Final Report 169 (Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK, 2014).

    74.
    Pavelsky, T. M. & Zarnetske, J. P. Rapid decline in river icings detected in Arctic Alaska: implications for a changing hydrologic cycle and river ecosystems. Geophys. Res. Lett. 44, 3228–3235 (2017).
    Article  Google Scholar 

    75.
    Walker, D. A. et al. The circumpolar Arctic vegetation map. J. Vegetation Sci. 16, 267–282 (2005).
    Article  Google Scholar 

    76.
    Minsley, BurkeJ. et al. Airborne electromagnetic imaging of discontinuous permafrost. Geophys. Res. Lett. 39, 2 (2012).
    Article  Google Scholar 

    77.
    Minsley, BurkeJ. et al. Sensitivity of airborne geophysical data to sublacustrine and near-surface permafrost thaw. Cryosphere 9, 2 (2015).
    Article  Google Scholar 

    78.
    Kreig, R. A. & Reger, R. D. Air-Photo Analysis and Summary of Landform Soil Properties Along the Route of the Trans-Alaska Pipeline System. Vol. 149 (Division of Geological & Geophysical Surveys, 1982).

    79.
    Williams, J. R. Engineering-geologic Maps of Northern Alaska, Wainwright Quadrangle. Vol. 28 (US Geological Survey, Menlo Park, CA, 1983).

    80.
    Rawlinson, S. E. Surficial Geology and Morphology of the Alaskan Central Arctic Coastal Plain. Vol. 172 (Alaska Division of Geology and Geophysical Survey, Fairbanks, AK, 1990).

    81.
    Frost, G. V. Vegetation, soils, and environmental data in Arctic Riparian Shrublands, North Slope Alaska, 2016. Arctic Data Center, https://doi.org/10.18739/A2G15TB43 (2017).

    82.
    Timling, I. Riparian Shrub expansion: soil analysis data, microbial communities and microarray gene data from the North Slope of Alaska, 2016. Arctic Data Center, https://doi.org/10.18739/A2GB1XH26 (2017).

    83.
    Liljedahl, A. K. Synoptic stream discharge August 2016, Dalton Highway, Alaska. Arctic Data Center, https://doi.org/10.18739/A2WD3Q190 (2017).

    84.
    Daanen, R. P. Elevation and permafrost active layer observations near two creeks in the foothills of the Brooks Range, Alaska, May 2017. Arctic Data Center, https://doi.org/10.18739/A2H708100 (2017).

    85.
    Daanen, R. P. Ground resistivity near two creeks in the foothills of the Brooks Range, Alaska, May 2017. Arctic Data Center, https://doi.org/10.18739/A2CF9J66P (2017).

    86.
    Brown, J., Ferrians, O. J. J., Heginbottom, J. & Melnikov, E. Circum-Arctic Map of Permafrost and Ground-Ice Conditions Version 2 [Permafrost] (National Snow and Ice Data Center), http://nsidc.org/data/GGD318 (2002). More

  • in

    Clustered versus catastrophic global vertebrate declines

    1.
    IUCN. The IUCN Red List of Threatened Species. version 2019-3 http://www.iucnredlist.org (2019).
    2.
    WWF. Living Planet Report 2018: Aiming Higher (eds. Grooten, N. & Almond, R. E. A.) (WWF, 2018).

    3.
    Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).
    ADS  CAS  Article  Google Scholar 

    4.
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).
    Article  Google Scholar 

    5.
    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).
    CAS  Article  Google Scholar 

    6.
    Willig, M. R. et al. Populations are not declining and food webs are not collapsing at the Luquillo Experimental Forest. Proc. Natl Acad. Sci. USA 116, 12143–12144 (2019).
    CAS  Article  Google Scholar 

    7.
    Daskalova, G. N., Myers-Smith, I. H. & Godlee, J. L. All is not decline across global vertebrate populations. Preprint at https://doi.org/10.1101/272898 (2018).

    8.
    Dornelas, M. et al. A balance of winners and losers in the Anthropocene. Ecol. Lett. 22, 847–854 (2019).
    Article  Google Scholar 

    9.
    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).
    ADS  CAS  Article  Google Scholar 

    10.
    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).
    ADS  CAS  Article  Google Scholar 

    11.
    Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).
    Article  Google Scholar 

    12.
    Leung, B., Greenberg, D. A. & Green, D. M. Trends in mean growth and stability in temperate vertebrate populations. Divers. Distrib. 23, 1372–1380 (2017).
    Article  Google Scholar 

    13.
    McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 30, 104–113 (2015).
    Article  Google Scholar 

    14.
    Anderson, S. C., Branch, T. A., Cooper, A. B. & Dulvy, N. K. Black-swan events in animal populations. Proc. Natl Acad. Sci. USA 114, 3252–3257 (2017).
    CAS  Article  Google Scholar 

    15.
    LPI. Living Planet Index. www.livingplanetindex.org/ (2016).

    16.
    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).
    ADS  CAS  Article  Google Scholar 

    17.
    Connors, B. M., Cooper, A. B., Peterman, R. M. & Dulvy, N. K. The false classification of extinction risk in noisy environments. Proc. R. Soc. Lond. B 281, 20132935 (2014).
    Google Scholar 

    18.
    Hanks, E. M., Hooten, M. B. & Baker, F. A. Reconciling multiple data sources to improve accuracy of large-scale prediction of forest disease incidence. Ecol. Appl. 21, 1173–1188 (2011).
    Article  Google Scholar 

    19.
    Youngflesh, C. & Lynch, H. J. Black-swan events: population crashes or temporary emigration? Proc. Natl Acad. Sci. USA 114, E8953–E8954 (2017).
    CAS  Article  Google Scholar 

    20.
    Fournier, A. M. V., White, E. R. & Heard, S. B. Site-selection bias and apparent population declines in long-term studies. Conserv. Biol. 33, 1370–1379 (2019).
    Article  Google Scholar 

    21.
    Newbold, T. et al. Ecological traits affect the response of tropical forest bird species to land-use intensity. Proc. R. Soc. Lond. B 280, 20122131 (2013).
    Google Scholar 

    22.
    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).
    ADS  CAS  Article  Google Scholar 

    23.
    Allan, J. R. et al. Hotspots of human impact on threatened terrestrial vertebrates. PLoS Biol. 17, e3000158 (2019).
    Article  Google Scholar 

    24.
    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).
    ADS  CAS  Article  Google Scholar 

    25.
    O’Neill, S. & Nicholson-Cole, S. “Fear won’t do it”: promoting positive engagement with climate change through visual and iconic representations Sci. Commun. 30, 355–379 (2009).
    Article  Google Scholar 

    26.
    Brennan, L. & Binney, W. Fear, guilt, and shame appeals in social marketing. J. Bus. Res. 63, 140–146 (2010).
    Article  Google Scholar 

    27.
    Myhrvold, N. P. et al. An amniote life-history database to perform comparative analyses with birds, mammals, and reptiles. Ecology 96, 3109 (2015).
    Article  Google Scholar 

    28.
    Froese, R. & Pauly, D. FishBase version 12/2019 www.fishbase.org (2019).

    29.
    Boettiger, C., Lang, D. T. & Wainwright, P. C. rfishbase: exploring, manipulating and visualizing FishBase data from R. J. Fish Biol. 81, 2030–2039 (2012).
    CAS  Article  Google Scholar 

    30.
    Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci. Data 4, 170123 (2017).
    Article  Google Scholar 

    31.
    Collen, B. et al. Monitoring change in vertebrate abundance: the living planet index. Conserv. Biol. 23, 317–327 (2009).
    Article  Google Scholar 

    32.
    Gelman, A., Hwang, J. & Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 24, 997–1016 (2014).
    MathSciNet  Article  Google Scholar 

    33.
    Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).
    Article  Google Scholar 

    34.
    R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org/ (R Foundation for Statistical Computing, 2016).

    35.
    McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).
    Article  Google Scholar  More

  • in

    Anaerobic bacterial degradation of protein and lipid macromolecules in subarctic marine sediment

    1.
    Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, et al. The marine ecosystem of Kongsfjorden, Svalbard. Polar Res. 2002;21:167–208.
    Article  Google Scholar 
    2.
    Arndt S, Jørgensen BB, LaRowe DE, Middelburg JJ, Pancost RD, Regnier P. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth-Sci Rev. 2013;123:53–86.
    CAS  Article  Google Scholar 

    3.
    Dunne JP, Sarmiento JL, Gnanadesikan A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Glob Biogeochem Cycles. 2007;21:1–16.
    Article  CAS  Google Scholar 

    4.
    Christian JR, Karl DM. Bacterial ectoenzymes in m`arine waters: activity ratios and temperature responses in three oceanographic provinces. Limnol Oceanogr. 1995;40:1042–9.
    CAS  Article  Google Scholar 

    5.
    Fabiano M, Pusceddu A. Total and hydrolizable particulate organic matter (carbohydrates, proteins and lipids) at a coastal station in Terra Nova Bay (Ross Sea, Antarctica). Polar Biol. 1998;19:125–32.
    Article  Google Scholar 

    6.
    Bradley JA, Amend JP, LaRowe DE. Necromass as a limited source of energy for microorganisms in marine sediments. J Geophys Res Biogeosci. 2018;123:577–90.
    Article  Google Scholar 

    7.
    Wehrmann LM, Formolo MJ, Owens JD, Raiswell R, Ferdelman TG, Riedinger N, et al. Iron and manganese speciation and cycling in glacially influenced high-latitude fjord sediments (West Spitsbergen, Svalbard): evidence for a benthic recycling-transport mechanism. Geochim Cosmochim Acta. 2014;141:628–55.
    CAS  Article  Google Scholar 

    8.
    Burdige DJ. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem Rev. 2007;107:467–85.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Hedges JI, Oades JM. Comparative organic geochemistries of soils and marine sediments. Org Geochem. 1997;27:319–61.
    CAS  Article  Google Scholar 

    10.
    McCarthy M, Pratum T, Hedges J, Benner R. Chemical composition of dissolved organic nitrogen in the ocean. Nature. 1997;390:150–4.
    CAS  Article  Google Scholar 

    11.
    Vetter YA, Deming JW. Extracellular enzyme activity in the Arctic Northeast Water polynya. Mar Ecol Prog Ser. 1994;114:23–34.
    CAS  Article  Google Scholar 

    12.
    Parsons TR, Stephens K, Strickland JDH. On the chemical composition of eleven species of marine phytoplankters. J Fish Res Board Can. 1961;18:1001–16.
    CAS  Article  Google Scholar 

    13.
    Hudson BJ, Karis IG. The lipids of the alga Spirulina. J Sci Food Agric. 1974;25:759–63.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Wakeham SG, Lee C, Farrington JW, Gagosian RB. Biogeochemistry of particulate organic matter in the oceans: results from sediment trap experiments. Deep Sea Res A. 1984;31:509–28.
    CAS  Article  Google Scholar 

    15.
    Harvey HR, Rodger Harvey H, Fallon RD, Patton JS. The effect of organic matter and oxygen on the degradation of bacterial membrane lipids in marine sediments. Geochim Cosmochim Acta. 1986;50:795–804.
    CAS  Article  Google Scholar 

    16.
    Sousa DZ, Smidt H, Alves MM, Stams AJM. Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids. FEMS Microbiol Ecol. 2009;68:257–72.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Meyer-Reil L-A. Ecological aspects of enzymatic activity in marine sediments. Brock/Springer Series in Contemporary Bioscience; Springer New York New York, NY 1991. p. 84–95.

    18.
    Beulig F, Røy H, Glombitza C, Jørgensen BB. Control on rate and pathway of anaerobic organic carbon degradation in the seabed. Proc Natl Acad Sci USA. 2018;115:367–72.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Arnosti C. Microbial extracellular enzymes and the marine carbon cycle. Ann Rev Mar Sci. 2011;3:401–25.
    PubMed  Article  PubMed Central  Google Scholar 

    20.
    Arnosti C. Contrasting patterns of peptidase activities in seawater and sediments: an example from Arctic fjords of Svalbard. Mar Chem. 2015;168:151–6.
    CAS  Article  Google Scholar 

    21.
    Muyzer G, Stams AJM. The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol. 2008;6:441–54.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Webster G, Watt LC, Rinna J, Fry JC, Evershed RP, Parkes RJ, et al. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Environ Microbiol. 2006;8:1575–89.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Müller AL, Pelikan C, de Rezende JR, Wasmund K, Putz M, Glombitza C, et al. Bacterial interactions during sequential degradation of cyanobacterial necromass in a sulfidic arctic marine sediment. Environ Microbiol. 2018;20:2927–40.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Knoblauch C, Sahm K, Jørgensen BB. Psychrophilic sulfate-reducing bacteria isolated from permanently cold arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Int J Syst Bacteriol. 1999;49:1631–43.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Sahm K, Knoblauch C, Amann R. Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates in marine Arctic sediments. Appl Environ Microbiol. 1999;65:3976–81.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Na H, Lever MA, Kjeldsen KU, Schulz F, Jørgensen BB. Uncultured desulfobacteraceae and crenarchaeotal group C3 incorporate 13C-acetate in coastal marine sediment. Environ Microbiol Rep. 2015;7:614–22.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Wasmund K, Mußmann M, Loy A. The life sulfuric: microbial ecology of sulfur cycling in marine sediments. Environ Microbiol Rep. 2017;9:323–44.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Lloyd KG, Schreiber L, Petersen DG, Kjeldsen KU, Lever MA, Steen AD, et al. Predominant archaea in marine sediments degrade detrital proteins. Nature. 2013;496:215–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Zinke LA, Glombitza C, Bird JT, Røy H, Jørgensen BB, Lloyd KG, et al. Microbial organic matter degradation potential in Baltic Sea sediments influenced by depositional conditions and in situ geochemistry. Appl Environ Microbiol. 2018;85:e02164–18.
    Article  Google Scholar 

    30.
    Orsi WD, Richards TA, Francis WR. Predicted microbial secretomes and their target substrates in marine sediment. Nat Microbiol. 2018;3:32–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Baker BJ, Lazar CS, Teske AP, Dick GJ. Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria. Microbiome. 2015;3:14.
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Boyer T, Levitus S, Garcia H, Locarnini RA, Stephens C, Antonov J. Objective analyses of annual, seasonal, and monthly temperature and salinity for the World Ocean on a 0.25 grid. Int J Climatol. 2005;25:931–45.
    Article  Google Scholar 

    33.
    Glombitza C, Jaussi M, Røy H, Seidenkrantz M-S, Lomstein BA, Jørgensen BB. Formate, acetate, and propionate as substrates for sulfate reduction in sub-arctic sediments of Southwest Greenland. Front Microbiol. 2015;6:846.
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Graue J, Engelen B, Cypionka H. Degradation of cyanobacterial biomass in anoxic tidal-flat sediments: a microcosm study of metabolic processes and community changes. ISME J. 2012;6:660–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Newport PJ, Nedwell DB. The mechanisms of inhibition of Desulfovibrio and Desulfotomaculum species by selenate and molybdate. J Appl Bacteriol. 1988;65:419–23.
    CAS  Article  Google Scholar 

    36.
    Danovaro R, Dell’Anno A, Fabiano M. Bioavailability of organic matter in the sediments of the Porcupine Abyssal Plain, northeastern Atlantic. Mar Ecol Prog Ser. 2001;220:25–32.
    CAS  Article  Google Scholar 

    37.
    Pusceddu A, Dell’Anno A, Fabiano M, Danovaro R. Quantity and bioavailability of sediment organic matter as signatures of benthic trophic status. Mar Ecol Prog Ser. 2009;375:41–52.
    CAS  Article  Google Scholar 

    38.
    Glombitza C, Pedersen J, Røy H, Jørgensen BB. Direct analysis of volatile fatty acids in marine sediment porewater by two-dimensional ion chromatography-mass spectrometry. Limnol Oceanogr Methods. 2014;12:455–68.
    CAS  Article  Google Scholar 

    39.
    Dumont MG, Radajewski SM, Miguez CB, McDonald IR, Murrell JC. Identification of a complete methane monooxygenase operon from soil by combining stable isotope probing and metagenomic analysis. Environ Microbiol. 2006;8:1240–50.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, et al. DNA stable-isotope probing. Nat Protoc. 2007;2:860–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Pelikan C, Herbold CW, Hausmann B, Müller AL, Pester M, Loy A. Diversity analysis of sulfite- and sulfate-reducing microorganisms by multiplex dsrA and dsrB amplicon sequencing using new primers and mock community-optimized bioinformatics. Environ Microbiol. 2016;18:2994–3009.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Herbold CW, Pelikan C, Kuzyk O, Hausmann B, Angel R, Berry D, et al. A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes. Front Microbiol. 2016;6:731.
    Google Scholar 

    43.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Tikhonov M, Leach RW, Wingreen NS. Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution. ISME J. 2015;9:68–80.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    45.
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    46.
    Orsi WD, Smith JM, Liu S, Liu Z, Sakamoto CM, Wilken S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 2016;10:2158–73.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Lagkouvardos I, Joseph D, Kapfhammer M, Giritli S, Horn M, Haller D, et al. IMNGS: a comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Sci Rep. 2016;6:33721.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012;28:1420–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    52.
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    53.
    Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019 Nov 15:btz848. https://doi.org/10.1093/bioinformatics/btz848. Epub ahead of print. PMID: 31730192.

    60.
    Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30:1188–95.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2007;23:127–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    64.
    Vallenet D, Calteau A, Cruveiller S, Gachet M, Lajus A, Josso A, et al. MicroScope in 2017: an expanding and evolving integrated resource for community expertise of microbial genomes. Nucleic Acids Res. 2017;45:D517–28.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:75.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    66.
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2013;42:D222–30.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Haft DH, Selengut JD, White O. The TIGRFAMs database of protein families. Nucleic Acids Res. 2003;31:371–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2018;46:2699.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    71.
    Kall L, Krogh A, Sonnhammer ELL. Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Res. 2007;35:W429–32.
    PubMed  PubMed Central  Article  Google Scholar 

    72.
    Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010;26:1608–15.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Rawlings ND. MEROPS: the peptidase database. Nucleic Acids Res. 2000;28:323–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Lenfant N, Hotelier T, Velluet E, Bourne Y, Marchot P, Chatonnet A. ESTHER, the database of the α/β-hydrolase fold superfamily of proteins: tools to explore diversity of functions. Nucleic Acids Res. 2013;41:D423–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–95. https://doi.org/10.1093/nar/gkt1178.

    76.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    Steen AD, Kevorkian RT, Bird JT, Dombrowski N, Baker BJ, Hagen SM, et al. Kinetics and identities of extracellular peptidases in subsurface sediments of the White Oak River Estuary, North Carolina. Appl Environ Microbiol. 2019;85:e00102–19.

    78.
    Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    79.
    Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    80.
    Berger SA, Krompass D, Stamatakis A. Performance, accuracy, and Web server for evolutionary placement of short sequence reads under maximum likelihood. Syst Biol. 2011;60:291–302.
    PubMed  PubMed Central  Article  Google Scholar 

    81.
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    Zhao J-S, Manno D, Hawari J. Psychrilyobacter atlanticus gen. nov., sp. nov., a marine member of the phylum Fusobacteria that produces H2 and degrades nitramine explosives under low temperature conditions. Int J Syst Evol Microbiol. 2009;59:491–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    83.
    Hedges JI, Oades JM. Comparative organic geochemistries of soils and marine sediments. Org Geochem. 1997;27:319–61.
    CAS  Article  Google Scholar 

    84.
    Wakeham SG, Canuel EA. Degradation and preservation of organic matter in marine sediments. In: The handbook of environmental chemistry; Springer Berlin Heidelberg Berlin, Heidelberg 2006. p. 295–321.

    85.
    Bienhold C, Boetius A, Ramette A. The energy–diversity relationship of complex bacterial communities in Arctic deep-sea sediments. ISME J. 2011;6:724–32.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    86.
    Finke N, Vandieken V, Jørgensen BB. Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS Microbiol Ecol. 2007;59:10–22.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    87.
    Glombitza C, Egger M, Røy H, Jørgensen BB. Controls on volatile fatty acid concentrations in marine sediments (Baltic Sea). Geochim Cosmochim Acta. 2019;258:226–41.
    CAS  Article  Google Scholar 

    88.
    Kubo K, Lloyd KG, F Biddle J, Amann R, Teske A, Knittel K. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments. ISME J. 2012;6:1949–65.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    89.
    Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.
    CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Elevated CO2 and nitrate levels increase wheat root-associated bacterial abundance and impact rhizosphere microbial community composition and function

    Greenhouse experiments and sampling
    Wheat (Triticum turgidum cv. Negev) was cultivated in sandy loam soil (19% clay, 6% silt, 75% sand) classified as Calcic Haploxerept. The soil was obtained from intensive agriculture field located in Eshkol region, Israel (31.248,949, 34.379,872). Potatoes, wheat and peanuts were previously grown in this field. Initial soil parameters were: pH 8.78 ± 0.04, electrical conductivity 99 ± 1 (µS/m), NO3-N 0.22 ± 0.02 (mg/kg), NH4 0.30 ± 0.01 (mg/kg), P-PO4 0.09 ± 0.01(mg/kg), total soluble organic carbon 4.0 ± 0.04 (mg/kg) and total soluble nitrogen 0.70 ± 0.02 (mg/kg).
    The plants were grown for 6 weeks (from December 2016 to February 2017) as described previously [25]. Briefly, 750 g of soil was distributed in a 700-mL plastic pot, with four seeds per pot. Those pots were able to sustain up to four wheat plants for six weeks under the experimental conditions. The wheat was grown in a greenhouse with two closed-system chambers at day/night temperatures of 25 °C/18 °C ± 1 °C, and with an automatically adjusted CO2-supply system (Emproco Ltd., Ashkelon, Israel). The photoperiod was 9 h and the daily light integral was 12.5 MJ/day. Wheat plants were grown in a sequence of three independent experimental cycles of 6 weeks each (five pots per treatment per cycle), with a 1-week shift between cycles. Plants were grown under either ambient (400 ppm) or elevated (850 ppm) atmospheric CO2 levels. Nutrient solution was prepared with 90% nitrogen supplied as nitrate and 10% supplied as ammonium using KNO3 and NH4NO3 to provide final concentrations of 30, 70 and 100 ppm nitrate [26]. Other macronutrients were supplied in each treatment at the following rate: P-15 ppm, K-150 ppm, Mg-24 ppm, Ca-120 ppm and S-40 ppm provide by NH4NO3, KNO3, CaCl2, KCl, MgCl2 and KH2PO4 salts. 40 ppm S and Ca were present in the tap water. Micronutrients were supplied at a rate of 1.3 ppm Fe, 0.7 ppm Mn, 0.3 ppm Zn, 0.05 ppm Cu, and 0.0375 ppm Mo using Korotin (Haifa Chemicals, Israel), a commercial micronutrient mix. Each pot was irrigated with 50 mL of the nutrient solution four times a week. The total amount of nitrogen in the 30 ppm nitrate treatment was 36 mg/pot (equivalent of ca. 73 kg N/ha), 70 ppm nitrate treatment was 84 mg/pot (equivalent of ca. 170 kg N/ha) and in the 100 ppm treatment, 120 mg/pot (equivalent of ca. 250 kg N/ha).
    Soil and plant analyses
    At the end of the 6th week of growth, 15 pots (5 pots per cycle) from each treatment were sampled for soil, shoots and roots, and the following parameters were measured: soil nitrate and ammonia content, soil EC and soil pH, shoot and root dry biomass, nitrogen concentration and content in shoot and roots. Soil properties and relevant methods were as described previously [25]. Briefly, soil EC and pH were determined in a solution of 1:5 air dry sieved soil:distilled water (w/v). Nitrate and ammonium concentrations were determined using an autoanalyzer (Lachat Instruments, Milwaukee, WI or Gallery Plus, Thermo Fisher Scientific, Waltham, MA, USA). Sampled shoots and roots were dried at 60 °C for 48 h, ground and weighed to obtain dry biomass. Total nitrogen concentration was determined using an autoanalyzer (Lachat Instruments or Gallery Plus) following digestion with sulfuric acid and peroxide [27].
    Root DNA extraction for sequencing and qPCR
    At the end of the 6th week of wheat growth, pots were randomly selected for DNA extraction. To obtain the root-surface-associated microbiome, wheat roots were collected in triplicate from each of the three cycles and were vortexed three time with 85% saline solution, until no visible soil particles were attached to the roots. Total DNA was extracted from 0.4 g of complete root system, using the Exgene Soil DNA mini isolation kit (GeneAll, Seoul, Korea) according to the manufacturer’s instructions.
    Generation of qPCR plasmid standards
    Plasmids containing the 16S rRNA gene were generated as described previously [28, 29]. Each PCR amplification product was ligated into pGEM-T Easy Vector (Promega, Madison, WI, USA) and plasmids were transformed into BioSuper Escherichia coli DH5α competent cells (Bio-Lab, Jerusalem, Israel). Circular plasmid DNAs were used as the standards to create calibration curves at 10-fold dilutions for gene quantification by real-time qPCR.
    Assessment of gene copy numbers by qPCR
    Copy numbers of the total bacterial community (16S rRNA gene) and translation elongation factor 1 (TEF, a plant housekeeping gene) were assessed using selected primers (Table S1) in roots of 6-week-old wheat plants with the StepOnePlus Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). Triplicates from whole genomic DNA were diluted to 6 ng/µL and 1 µL was used in a 20-µL final reaction volume together with 50 µM forward and reverse primers and 10 µL 1X FAST MasterMix (Thermo Fisher Scientific). Three biological and three technical replicates were analyzed for each root DNA sample. Reaction efficiency was monitored in each run by means of an internal standard curve (constructed plasmids) using duplicates of 10-fold dilutions of standards ranging from 108–102 copies per reaction. Efficiency was 89–98% for all target genes and runs, and R2 values were greater than 0.99. Copy numbers of the target genes were calculated based on the relative calibration curve of the plasmid copy numbers. All data analyses were conducted using StepOne software v2.3 (Applied Biosystems).
    Shotgun sequencing
    Root DNA was extracted from each of the biological triplicates, in each of the three cycles. For sequencing, the DNA of the triplicates was combined, resulting in three biological replicates per treatment (one from each batch) and 18 samples altogether. Shotgun metagenome libraries were prepared using the Celero DNA-Seq library preparation kit (NuGen, Takara Bio, USA) with enzymatic shearing, according to the manufacturer’s instructions. All libraries were then pooled in equal volumes and size selection (350–400 bp fragments) was performed using a Blue PippinPrep instrument (Sage Scientific). The libraries were then sequenced using an Illumina MiniSeq instrument employing a mid-output kit. Based on the number of reads per sample, the samples were repooled with varying volumes, and size selection was performed again using the same size range. The final size-selected pool was sequenced on an Illumina NovaSeq instrument with an S4 flow cell, employing 2 × 150 base reads. Library preparation and pooling were performed at the University of Illinois at Chicago Sequencing Core (UICSQC), and sequencing was performed by Novogene Corporation (Chula Vista, CA, USA).
    In total, we obtained 310 Gb of information, with 30–44 million sequences per root sample. These sequence data were submitted to the Sequence Read Archive (SRA) of the NCBI databases under accession numbers SUB6631533 and SUB8385777, BioProject: PRJNA592741.
    All reads were subjected to quality control using FastQC v0.11.3 [30] and barcode trimming using Trimmomatics v0.32 [31]. Reads were mapped to the whole wheat metagenome using Bowtie2 v2.3.5.1 [32], and mapped reads were filtered out from each sample. Then, short Illumina reads from triplicates of each nitrate treatment (30, 70 and 100 ppm) were assembled using SPADES v3.13.0 [33] into longer contigs, to create three wheat root microbiome catalogs for each treatment separately. The 30 ppm nitrate catalog had 677,271 contigs with N50 of 964 bp, 70 ppm nitrate catalog had 644,394 contigs with N50 of 971 bp, and the 100 ppm catalog had 677,271 contigs with N50 of 964 bp. Those three catalogs were combined and Prodigal v2.6.2 [34] was used for protein-coding gene prediction. To create a non-redundant set of genes, we used CD-HIT-EST software v4.8.1 [35] with a similarity threshold of 95%. Those genes were used as the root gene catalog, which included 35 million partial genes. This gene catalog was searched against the non-redundant NCBI protein database using DIAMOND sensitive algorithm v0.9.24.125 [36] to assign taxonomic and functional annotations. Results were then uploaded to MEGAN Ultimate edition software v6.15.2 [37]. The LCA (lowest common ancestor) algorithm was applied (parameters used with minimum bit-score of 70, minimum support of 5% and 30% top threshold) to compute the assignment of genes to specific taxa. For functional annotation, the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [38] was used. Following annotation, to generate taxonomic and functional count tables, each library was mapped to the gene catalog with Trinity mapping software v2.8.4 [39], with Bowtie2-modified parameters (–no-unal –gbar 99999999 -k 250 –dpad 0 –mp 1,1 –np 1 –score-min L,0,−0.9 -L 20 -i S,1,0.50).
    Data analyses
    Significance of interactions between CO2 and nitrate levels on soil and plant parameters was calculated using two-way ANOVA the least-squares method, in JMP 14 Pro software (SAS Institute Inc., Cary, NC, USA). Differences between soil and plant parameters as influenced by interactions between CO2 and nitrate levels was calculated using Student’s t test in JMP 14 Pro software and statistical significance was set at P  More

  • in

    Widespread endogenization of giant viruses shapes genomes of green algae

    1.
    Feschotte, C. & Gilbert, C. Endogenous viruses: insights into viral evolution and impact on host biology. Nat. Rev. Genet. 13, 283–296 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Holmes, E. C. The evolution of endogenous viral elements. Cell Host Microbe 10, 368–377 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Fischer, M. G. Giant viruses come of age. Curr. Opin. Microbiol. 31, 50–57 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Wilhelm, S. W. et al. A student’s guide to giant viruses infecting small eukaryotes: from Acanthamoeba to zooxanthellae. Viruses 9, 46 (2017).
    PubMed Central  Article  CAS  Google Scholar 

    5.
    Abergel, C., Legendre, M. & Claverie, J.-M. The rapidly expanding universe of giant viruses: Mimivirus, Pandoravirus, Pithovirus and Mollivirus. FEMS Microbiol. Rev. 39, 779–796 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Weynberg, K. D., Allen, M. J. & Wilson, W. H. Marine prasinoviruses and their tiny plankton hosts: a review. Viruses 9, 43 (2017).
    PubMed Central  Article  CAS  Google Scholar 

    7.
    Bhattacharya, D. & Medlin, A. L. Algal phylogeny and the origin of land plants. Plant Physiol. 116, 9–15 (1998).
    CAS  PubMed Central  Article  Google Scholar 

    8.
    Jeanniard, A. et al. Towards defining the chloroviruses: a genomic journey through a genus of large DNA viruses. BMC Genomics 14, 158 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Moniruzzaman, M., Martinez-Gutierrez, C. A., Weinheimer, A. R. & Aylward, F. O. Dynamic genome evolution and complex virocell metabolism of globally-distributed giant viruses. Nat. Commun. 11, 1710 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Filée, J. Genomic comparison of closely related giant viruses supports an accordion-like model of evolution. Front. Microbiol. 6, 593 (2015).
    PubMed  PubMed Central  Google Scholar 

    11.
    Van Etten, J. L. et al. Chloroviruses have a sweet tooth. Viruses 9, 88 (2017).
    PubMed Central  Article  CAS  Google Scholar 

    12.
    Schvarcz, C. R. & Steward, G. F. A giant virus infecting green algae encodes key fermentation genes. Virology 518, 423–433 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Sun, C., Feschotte, C., Wu, Z. & Mueller, R. L. DNA transposons have colonized the genome of the giant virus Pandoravirus salinus. BMC Biol. 13, 38 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    14.
    Marcet-Houben, M. & Gabaldón, T. Acquisition of prokaryotic genes by fungal genomes. Trends Genet. 26, 5–8 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Rossoni, A. W. et al. The genomes of polyextremophilic cyanidiales contain 1% horizontally transferred genes with diverse adaptive functions. eLife 8, e45017 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Filée, J. Multiple occurrences of giant virus core genes acquired by eukaryotic genomes: the visible part of the iceberg? Virology 466–467, 53–59 (2014).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    17.
    Maumus, F. & Blanc, G. Study of gene trafficking between Acanthamoeba and giant viruses suggests an undiscovered family of amoeba-infecting viruses. Genome Biol. Evol. 8, 3351–3363 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Gallot-Lavallée, L. & Blanc, G. A glimpse of nucleo-cytoplasmic large DNA virus biodiversity through the eukaryotic genomics window. Viruses 9, 17 (2017).
    PubMed Central  Article  Google Scholar 

    19.
    Maumus, F., Epert, A., Nogué, F. & Blanc, G. Plant genomes enclose footprints of past infections by giant virus relatives. Nat. Commun. 5, 4268 (2014).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Guglielmini, J., Woo, A. C., Krupovic, M., Forterre, P. & Gaia, M. Diversification of giant and large eukaryotic dsDNA viruses predated the origin of modern eukaryotes. Proc. Natl Acad. Sci. USA 116, 19585–19592 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Forterre, P. & Gaïa, M. Giant viruses and the origin of modern eukaryotes. Curr. Opin. Microbiol. 31, 44–49 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    22.
    Piacente, F., Gaglianone, M., Laugieri, M. E. & Tonetti, M. G. The autonomous glycosylation of large DNA viruses. Int. J. Mol. Sci. 16, 29315–29328 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Schulz, F. et al. Giant virus diversity and host interactions through global metagenomics. Nature 578, 432–436 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Abrahão, J. et al. Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. Nat. Commun. 9, 749 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Wilson, W. H. et al. Complete genome sequence and lytic phase transcription profile of a Coccolithovirus. Science 309, 1090–1092 (2005).
    ADS  Article  CAS  Google Scholar 

    26.
    Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016). 
    Article  CAS  Google Scholar 

    27.
    Koonin, E. V. & Krupovic, M. The depths of virus exaptation. Curr. Opin. Virol. 31, 1–8 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Groisman, E. A. & Ochman, H. Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87, 791–794 (1996).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Martin, W. F. Too much eukaryote LGT. BioEssays 39, 1700115 (2017).
    Article  Google Scholar 

    31.
    Keeling, P. J. & Palmer, J. D. Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 9, 605–618 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Cock, J. M. et al. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465, 617–621 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Delaroque, N., Maier, I., Knippers, R. & Müller, D. G. Persistent virus integration into the genome of its algal host, Ectocarpus siliculosus (Phaeophyceae). J. Gen. Virol. 80, 1367–1370 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Delaroque, N. & Boland, W. The genome of the brown alga Ectocarpus siliculosus contains a series of viral DNA pieces, suggesting an ancient association with large dsDNA viruses. BMC Evol. Biol. 8, 110 (2008).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    35.
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).
    ADS  MathSciNet  CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Yutin, N., Wolf, Y. I., Raoult, D. & Koonin, E. V. Eukaryotic large nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and reconstruction of viral genome evolution. Virol. J. 6, 223 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    39.
    Filée, J., Siguier, P. & Chandler, M. I am what I eat and I eat what I am: acquisition of bacterial genes by giant viruses. Trends Genet. 23, 10–15 (2007).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    40.
    Filée, J., Pouget, N. & Chandler, M. Phylogenetic evidence for extensive lateral acquisition of cellular genes by nucleocytoplasmic large DNA viruses. BMC Evol. Biol. 8, 320 (2008).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    41.
    Hoff, K. J. & Stanke, M. Predicting genes in single genomes with AUGUSTUS. Curr. Protoc. Bioinformatics 65, e57 (2019).
    PubMed  PubMed Central  Google Scholar 

    42.
    Stanke, M. & Morgenstern, B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 33, W465–W467 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    45.
    Kiełbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487–493 (2011).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    46.
    Federhen, S. The NCBI Taxonomy database. Nucleic Acids Res. 40, D136–D143 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Pagès, H., Aboyoun, P., Gentleman, R. & DebRoy, S. Biostrings: efficient manipulation of biological strings. R package version 2.56.0  https://bioconductor.org/packages/Biostrings (2020).

    49.
    Bao, Z. & Eddy, S. R. Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res. 12, 1269–1276 (2002).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Delcher, A. L., Phillippy, A., Carlton, J. & Salzberg, S. L. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 30, 2478–2483 (2002).
    PubMed  PubMed Central  Article  Google Scholar 

    51.
    Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Haft, D. H. et al. TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res. 29, 41–43 (2001).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Moniruzzaman, M. et al. Virus–host relationships of marine single-celled eukaryotes resolved from metatranscriptomics. Nat. Commun. 8, 16054 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).
    PubMed  PubMed Central  Google Scholar 

    57.
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    58.
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Lechner, M. et al. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics 12, 124 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    60.
    Csardi G, N. T. The igraph software package for complex network research. InterJournal Complex Systems 1695, 1–9 (2006).

    61.
    Burns, J. A., Paasch, A., Narechania, A. & Kim, E. Comparative genomics of a bacterivorous green algae reveals evolutionary causalities and consequences of phago-mixotrophic mode of nutrition. Genome Biol. Ecol. 7, 3047–3061 (2015).
    CAS  Article  Google Scholar 

    62.
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Martinez-Gutierrez, C. A. & Aylward, F. O. Strong purifying selection is associated with genome streamlining in epipelagic Marinimicrobia. Genome Biol. Evol. 11, 2887–2894 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–D293 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Fire-scarred fossil tree from the Late Triassic shows a pre-fire drought signal

    1.
    Scott, A. The pre-Quaternary history of fire. Palaeogeogr. Palaeoclimatol. Palaeoecol. 164, 281–329 (2000).
    Article  Google Scholar 
    2.
    Jones, T. P., Ash, S. & Figueiral, I. Late Triassic charcoal from Petrified Forest National Park, Arizona USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. https://doi.org/10.1016/S0031-0182(02)00549-7 (2002).
    Article  Google Scholar 

    3.
    Uhl, D. & Montenari, M. Charcoal as evidence of palaeo-wildfires in the Late Triassic of SW Germany. Geol. J. 46, 34–41 (2011).
    CAS  Article  Google Scholar 

    4.
    Pointer, R. Fire & Global Change During Key Intervals of the Late Triassic & Early Jurassic with a Focus 325 on the Central Polish Basin (University of Exeter, Exeter, 2018).
    Google Scholar 

    5.
    Marynowski, L. & Simoneit, B. R. T. Widespread Upper Triassic to Lower Jurassic wildfire records from Poland: Evidence from charcoal and pyrolytic plycylic aromatic hydrocarbons. Palaios 24, 785–798 (2009).
    ADS  Article  Google Scholar 

    6.
    Petersen, H. I. & Lindström, S. Synchronous wildfire activity rise and mire deforestation at the triassic-jurassic boundary. PLoS ONE https://doi.org/10.1371/journal.pone.0047236 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    7.
    Whiteside, J. H. et al. Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.1505252112 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    8.
    Atchley, S. C. et al. A linkage among Pangean tectonism, cyclic alluviation, climate change, and biologic turnover in the Late Triassic: the record from the chinle formation Southwestern United States. J. Sediment. Res. https://doi.org/10.2110/jsr.2013.89 (2014).
    Article  Google Scholar 

    9.
    Ramezani, J. et al. High-precision U-Pb zircon geochronology of the Late Triassic Chinle Formation, Petrified Forest National Park (Arizona, USA): Temporal constraints on the early evolution of dinosaurs. Bull. Geol. Soc. Am. https://doi.org/10.1130/B30433.1 (2011).
    Article  Google Scholar 

    10.
    Baranyi, V., Reichgelt, T., Olsen, P. E., Parker, W. G. & Kürschner, W. M. Norian vegetation history and related environmental changes: New data from the Chinle Formation, Petrified Forest National Park (Arizona, SW USA). Bull. Geol. Soc. Am. https://doi.org/10.1130/B31673.1 (2018).
    Article  Google Scholar 

    11.
    Belcher, C. M. et al. Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. Nat. Geosci. 3, 426–429 (2010).
    ADS  CAS  Article  Google Scholar 

    12.
    Agee, James K. Fire regimes and approaches for determining fire history. In: Hardy, Colin C.; Arno, Stephen F., eds. The use of fire in forest restoration. Gen. Tech. Rep. INT-GTR-341. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, 12–13 (1996)

    13.
    Morgan, P., Hardy, C. C., Swetnam, T. W., Rollins, M. G. & Long, D. G. Mapping fire regimes across time and space: understanding coarse and fine-scale fire patterns. Int. J. Wildl. Fire 10, 329–342 (2001).
    Article  Google Scholar 

    14.
    He, T., Belcher, C. M., Lamont, B. B. & Lim, S. L. A 350-million-year legacy of fire adaptation among conifers. J. Ecol. 104, 352–363 (2016).
    Article  Google Scholar 

    15.
    Lamont, B. B. & He, T. Fire-Proneness as a prerequisite for the evolution of fire-adapted traits. Trends Plant Sci. 22, 278–288 (2017).
    CAS  PubMed  Article  Google Scholar 

    16.
    Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J. & Bradstock, R. A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16, 406–411 (2011).
    CAS  PubMed  Article  Google Scholar 

    17.
    Falk, D. A. et al. Multi-scale controls of historical forest-fire regimes: new insights from fire-scar networks. Front Ecol. Environ. https://doi.org/10.1890/100052 (2011).
    Article  Google Scholar 

    18.
    Marlon, J. R. et al. Long-term perspective on wildfires in the western USA. Proc. Natl. Acad. Sci. USA 109(9), E535–E543. https://doi.org/10.1073/pnas.1112839109 (2012).
    ADS  Article  PubMed  Google Scholar 

    19.
    Gutsell, S. L. & Johnson, E. A. How fire scars are formed: coupling a disturbance process to its ecological effects. Can. J. For. Res. 26, 166–174 (1996).
    Article  Google Scholar 

    20.
    Ortloff, W., Goldammer, J. G., Schweingruber, F. H. & Swetnam, T. W. Jahrringanalytische Untersuchungen zur Feuergeschichte eines Bestandes von Pinus ponderosa DOUGL. ex LAWS. in den Santa Rita Mountains, Arizona, USA. Forstarchiv 66, 206–214 (1995).
    Google Scholar 

    21.
    Byers, B. A., Ash, S. R., Chaney, D. & DeSoto, L. First known fire scar on a fossil tree trunk provides evidence of Late Triassic wildfire. Palaeogeogr. Palaeoclimatol. Palaeoecol. 411, 180–187 (2014).
    Article  Google Scholar 

    22.
    Arbellay, E., Stoffel, M., Sutherland, E. K., Smith, K. T. & Falk, D. A. Changes in tracheid and ray traits in fire scars of North American conifers and their ecophysiological implications. Ann. Bot. 114, 223–232 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Arbellay, E., Stoffel, M., Sutherland, E. K., Smith, K. T. & Falk, D. A. Resin duct size and density as ecophysiological traits in fire scars of Pseudotsuga menziesii and Larix occidentalis. Ann. Bot. 114, 973–980 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Swetnam, T. W. et al. Multi-millennial fire history of the giant forest, Sequoia National Park, California, USA. Fire Ecol. 5, 120–150 (2009).
    Article  Google Scholar 

    25.
    Brown, P. M. & Swetnam, T. W. A cross-dated fire history from coast redwood near Redwood National Park California. Can. J. For. Res. https://doi.org/10.1139/x94-004 (1994).
    Article  Google Scholar 

    26.
    Lombardo, K. J., Swetnam, T. W., Baisan, C. H. & Borchert, M. I. Using bigcone Douglas-fir fire scars and tree rings to reconstruct interior chaparral fire history. Fire Ecol. 5, 35–56 (2009).
    Article  Google Scholar 

    27.
    Lageard, J. G. A., Thomas, P. A. & Chambers, F. M. Using fire scars and growth release in subfossil Scots pine to reconstruct prehistoric fires. Palaeogeogr. Palaeoclimatol. Palaeoecol. 164, 87–99 (2000).
    Article  Google Scholar 

    28.
    Mutch, L. S. & Swetnam, T. W. Effects of Fire Severity and Climate on Ring-Width Growth of Giant Sequoia After Fire. Symp. Fire Wilderness Park Manag. Past Lessons Futur. Oppor. March 30-April 1, 1993 Missoula, MT Gen Tech Rep INT-GTR-320 Ogden, UT; US Dep. Agric. For. Serv. Intermt. Res. Stn. (1995).

    29.
    Xu, J., Lu, J., Evans, R. & Downes, G. M. Relationship between ring width and tracheid characteristics in Picea crassifolia: implication in dendroclimatology. BioResources https://doi.org/10.15376/biores.9.2.2203-2213 (2014).
    Article  Google Scholar 

    30.
    Kitzberger, T., Veblen, T. T. & Villalba, R. Climatic influences on fire regimes along a rain forest-to-xeric woodland gradient in northern Patagonia Argentina. J. Biogeogr. 24, 35–47 (1997).
    Article  Google Scholar 

    31.
    González, M. E., Veblen, T. T. & Sibold, J. S. Fire history of Araucaria-Nothofagus forests in Villarrica National Park Chile. J. Biogeogr. 32, 1187–1202 (2005).
    Article  Google Scholar 

    32.
    Littell, J. S., Peterson, D. L., Riley, K. L., Liu, Y. & Luce, C. H. A review of the relationships between drought and forest fire in the United States. Glob. Change Biol. 22, 2353–2369 (2016).
    ADS  Article  Google Scholar 

    33.
    Mundo, I. A., Kitzberger, T., Roig Juñent, F. A., Villalba, R. & Barrera, M. D. Fire history in the Araucaria araucana forests of Argentina: human and climate influences. Int. J. Wildl. Fire 22, 194–206 (2013).
    Article  Google Scholar 

    34.
    Mundo, I. A., Juñent, F. A. R., Villalba, R., Kitzberger, T. & Barrera, M. D. Araucaria araucana tree-ring chronologies in Argentina: spatial growth variations and climate influences. Trees Struct. Funct. 26, 443–458 (2012).
    Article  Google Scholar 

    35.
    Abe, H. & Nakai, T. Effect of the water status within a tree on tracheid morphogenesis in Cryptomeria japonica D Don. Trees 14, 124–129 (1999).
    Google Scholar 

    36.
    DeSoto, L., De la Cruz, M. & Fonti, P. Intra-annual patterns of tracheid size in the Mediterranean tree Juniperus thurifera as an indicator of seasonal water stress. Can. J. For. Res. 41, 1280–1294 (2011).
    Article  Google Scholar 

    37.
    Martin-Benito, D., Beeckman, H. & Cañellas, I. Influence of drought on tree rings and tracheid features of Pinus nigra and Pinus sylvestris in a mesic Mediterranean forest. Eur. J. For. Res. 132, 33–45 (2013).
    Article  Google Scholar 

    38.
    Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ. 34, 137–148 (2011).
    PubMed  Article  Google Scholar 

    39.
    Rosner, S. Wood density as a proxy for vulnerability to cavitation: Size matters. J. Plant Hydraul. 4, 001 (2017).
    Article  Google Scholar 

    40.
    Ash, S. D. The Black Forest Bed, a distinctive rock unit in the Upper Triassic Chinle Formation, northeastern Arizona. Bull. Arizona-Nevada Acad. Sci. 24–25, 59–73 (1992).
    Google Scholar 

    41.
    Martz, J. W., Kirkland, J. I., Milner, A. R. C., Parker, W. G. & Santucci, V. L. Upper Triassic lithostratigraphy, depositional systems, and vertebrate paleontology across southern Utah. Geol. Intermt. West 4, 99–180 (2017).
    Article  Google Scholar 

    42.
    Kent, Dennis V., Paul E. Olsen, Cornelia Rasmussen, Christopher Lepre, Roland Mundil, Randall B. Irmis, George E. Gehrels, Dominique Giesler, John W. Geissman, and William G. Parker. Empirical evidence for stability of the 405-kiloyear Jupiter–Venus eccentricity cycle over hundreds of millions of years. Proc. Natl. Acad. Sci. USA. (2018). https://www.pnas.org/content/115/24/6153

    43.
    Kent, D. V. et al. Magnetochronology of the Entire Chinle Formation (Norian Age) in a Scientific Drill Core from Petrified Forest National Park (Arizona, USA) and Implications for Regional and Global Correlations in the Late Triassic. Geochem. Geophys. Geosyst. 20, 4654–4664 (2019).
    ADS  Article  Google Scholar 

    44.
    Nordt, L., Atchley, S. & Dworkin, S. Collapse of the Late Triassic megamonsoon in western equatorial Pangea, present-day American Southwest. Bull. Geol. Soc. Am. 127, 1798–1815 (2015).
    CAS  Article  Google Scholar 

    45.
    Riggs, N. R., Lehman, T. M., Gehrels, G. E. & Dickinson, W. R. Detrital zircon link between headwaters and terminus of the Upper Triassic Chinle-Dockum Paleoriver System. Science 273, 97–100 (1996).
    ADS  CAS  PubMed  Article  Google Scholar 

    46.
    Dickinson, W. R. & Gehrels, G. E. U-Pb Ages of detrital zircons in relation to paleogeography: Triassic Paleodrainage Networks and sediment dispersal across Southwest Laurentia. J. Sediment. Res. 78, 745–764 (2008).
    ADS  Article  Google Scholar 

    47.
    Ash, S. R. & Creber, G. T. Palaeoclimatic interpretation of the wood structures of the trees in the Chinle Formation (Upper Triassic), Petrified Forest National Park, Arizona USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 96, 299–317 (1992).
    Article  Google Scholar 

    48.
    Savidge, R. A. Wood anatomy of Late Triassic trees in Petrified Forest National Park, Arizona, USA, in relation to Araucarioxylon arizonicum Knowlton, 1889. Bull. Geosci. 82, 301–328 (2007).
    Article  Google Scholar 

    49.
    Ash, S. R. & Creber, G. T. The late Triassic Araucarioxylon arizonicum trees of the Petrified Forest National Park, Arizona, USA. Palaeontology 43, 15–28 (2000).
    Article  Google Scholar 

    50.
    West, A. G., Nel, J. A., Bond, W. J. & Midgley, J. J. Experimental evidence for heat plume-induced cavitation and xylem deformation as a mechanism of rapid post-fire tree mortality. New Phytol. https://doi.org/10.1111/nph.13979 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    51.
    Luthardt, L., Rößler, R. & Schneider, J. W. Tree-ring analysis elucidating palaeo-environmental effects captured in an in situ fossil forest—The last 80 years within an early Permian ecosystem. Palaeogeogr. Palaeoclimatol. Palaeoecol. 487, 278–295 (2017).
    Article  Google Scholar 

    52.
    Ash, S. R. & Savidge, R. A. The bark of the late triassic Araucarioxylon arizonicum tree from petrified forest National Park Arizona. IAWA J. 25, 349–368 (2004).
    Article  Google Scholar 

    53.
    Gottesfeld, A. S. Paleoecology of the Lower Part of the Chinle Formation in the Petrified Forest. Museum North. Arizona Bull. 117, 59–73 (1972).
    Google Scholar 

    54.
    Creber, G. T. & Ash, S. R. The Late Triassic Schilderia adamanica and Woodworthia arizonica trees of the Petrified Forest National Park, Arizona, USA. Palaeontology https://doi.org/10.1111/j.0031-0239.2004.00345.x (2004).
    Article  Google Scholar 

    55.
    Creber, G. T. & Collinson, M. E. Epicormic shoot traces in the secondary xylem of the Triassic and Permian fossil conifer species Woodworthia arizonica – Short communication. IAWA J. https://doi.org/10.1163/22941932-90000151 (2006).
    Article  Google Scholar 

    56.
    Axsmith, B. J. & Ash, S. R. Two rare fossil cones from the Upper Triassic Chinle Formation in Petrified Forest National Park, Arizona, and New Mexico. Museum North. Arizona Bull. 62, 82–94 (2006).
    Google Scholar 

    57.
    He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W. & Lamont, B. B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194, 751–759 (2012).
    PubMed  Article  Google Scholar 

    58.
    Midgley, J. & Bond, W. Pushing back in time: The role of fire in plant evolution. New Phytol. 191, 5–7 (2011).
    PubMed  Article  Google Scholar 

    59.
    Crisp, M. D., Burrows, G. E., Cook, L. G., Thornhill, A. H. & Bowman, D. M. J. S. Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. Nat. Commun. https://doi.org/10.1038/ncomms1191 (2011).
    Article  PubMed  Google Scholar  More