Fire-scarred fossil tree from the Late Triassic shows a pre-fire drought signal
1.
Scott, A. The pre-Quaternary history of fire. Palaeogeogr. Palaeoclimatol. Palaeoecol. 164, 281–329 (2000).
Article Google Scholar
2.
Jones, T. P., Ash, S. & Figueiral, I. Late Triassic charcoal from Petrified Forest National Park, Arizona USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. https://doi.org/10.1016/S0031-0182(02)00549-7 (2002).
Article Google Scholar
3.
Uhl, D. & Montenari, M. Charcoal as evidence of palaeo-wildfires in the Late Triassic of SW Germany. Geol. J. 46, 34–41 (2011).
CAS Article Google Scholar
4.
Pointer, R. Fire & Global Change During Key Intervals of the Late Triassic & Early Jurassic with a Focus 325 on the Central Polish Basin (University of Exeter, Exeter, 2018).
Google Scholar
5.
Marynowski, L. & Simoneit, B. R. T. Widespread Upper Triassic to Lower Jurassic wildfire records from Poland: Evidence from charcoal and pyrolytic plycylic aromatic hydrocarbons. Palaios 24, 785–798 (2009).
ADS Article Google Scholar
6.
Petersen, H. I. & Lindström, S. Synchronous wildfire activity rise and mire deforestation at the triassic-jurassic boundary. PLoS ONE https://doi.org/10.1371/journal.pone.0047236 (2012).
Article PubMed PubMed Central Google Scholar
7.
Whiteside, J. H. et al. Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.1505252112 (2015).
Article PubMed PubMed Central Google Scholar
8.
Atchley, S. C. et al. A linkage among Pangean tectonism, cyclic alluviation, climate change, and biologic turnover in the Late Triassic: the record from the chinle formation Southwestern United States. J. Sediment. Res. https://doi.org/10.2110/jsr.2013.89 (2014).
Article Google Scholar
9.
Ramezani, J. et al. High-precision U-Pb zircon geochronology of the Late Triassic Chinle Formation, Petrified Forest National Park (Arizona, USA): Temporal constraints on the early evolution of dinosaurs. Bull. Geol. Soc. Am. https://doi.org/10.1130/B30433.1 (2011).
Article Google Scholar
10.
Baranyi, V., Reichgelt, T., Olsen, P. E., Parker, W. G. & Kürschner, W. M. Norian vegetation history and related environmental changes: New data from the Chinle Formation, Petrified Forest National Park (Arizona, SW USA). Bull. Geol. Soc. Am. https://doi.org/10.1130/B31673.1 (2018).
Article Google Scholar
11.
Belcher, C. M. et al. Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. Nat. Geosci. 3, 426–429 (2010).
ADS CAS Article Google Scholar
12.
Agee, James K. Fire regimes and approaches for determining fire history. In: Hardy, Colin C.; Arno, Stephen F., eds. The use of fire in forest restoration. Gen. Tech. Rep. INT-GTR-341. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, 12–13 (1996)
13.
Morgan, P., Hardy, C. C., Swetnam, T. W., Rollins, M. G. & Long, D. G. Mapping fire regimes across time and space: understanding coarse and fine-scale fire patterns. Int. J. Wildl. Fire 10, 329–342 (2001).
Article Google Scholar
14.
He, T., Belcher, C. M., Lamont, B. B. & Lim, S. L. A 350-million-year legacy of fire adaptation among conifers. J. Ecol. 104, 352–363 (2016).
Article Google Scholar
15.
Lamont, B. B. & He, T. Fire-Proneness as a prerequisite for the evolution of fire-adapted traits. Trends Plant Sci. 22, 278–288 (2017).
CAS PubMed Article Google Scholar
16.
Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J. & Bradstock, R. A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16, 406–411 (2011).
CAS PubMed Article Google Scholar
17.
Falk, D. A. et al. Multi-scale controls of historical forest-fire regimes: new insights from fire-scar networks. Front Ecol. Environ. https://doi.org/10.1890/100052 (2011).
Article Google Scholar
18.
Marlon, J. R. et al. Long-term perspective on wildfires in the western USA. Proc. Natl. Acad. Sci. USA 109(9), E535–E543. https://doi.org/10.1073/pnas.1112839109 (2012).
ADS Article PubMed Google Scholar
19.
Gutsell, S. L. & Johnson, E. A. How fire scars are formed: coupling a disturbance process to its ecological effects. Can. J. For. Res. 26, 166–174 (1996).
Article Google Scholar
20.
Ortloff, W., Goldammer, J. G., Schweingruber, F. H. & Swetnam, T. W. Jahrringanalytische Untersuchungen zur Feuergeschichte eines Bestandes von Pinus ponderosa DOUGL. ex LAWS. in den Santa Rita Mountains, Arizona, USA. Forstarchiv 66, 206–214 (1995).
Google Scholar
21.
Byers, B. A., Ash, S. R., Chaney, D. & DeSoto, L. First known fire scar on a fossil tree trunk provides evidence of Late Triassic wildfire. Palaeogeogr. Palaeoclimatol. Palaeoecol. 411, 180–187 (2014).
Article Google Scholar
22.
Arbellay, E., Stoffel, M., Sutherland, E. K., Smith, K. T. & Falk, D. A. Changes in tracheid and ray traits in fire scars of North American conifers and their ecophysiological implications. Ann. Bot. 114, 223–232 (2014).
PubMed PubMed Central Article Google Scholar
23.
Arbellay, E., Stoffel, M., Sutherland, E. K., Smith, K. T. & Falk, D. A. Resin duct size and density as ecophysiological traits in fire scars of Pseudotsuga menziesii and Larix occidentalis. Ann. Bot. 114, 973–980 (2014).
CAS PubMed PubMed Central Article Google Scholar
24.
Swetnam, T. W. et al. Multi-millennial fire history of the giant forest, Sequoia National Park, California, USA. Fire Ecol. 5, 120–150 (2009).
Article Google Scholar
25.
Brown, P. M. & Swetnam, T. W. A cross-dated fire history from coast redwood near Redwood National Park California. Can. J. For. Res. https://doi.org/10.1139/x94-004 (1994).
Article Google Scholar
26.
Lombardo, K. J., Swetnam, T. W., Baisan, C. H. & Borchert, M. I. Using bigcone Douglas-fir fire scars and tree rings to reconstruct interior chaparral fire history. Fire Ecol. 5, 35–56 (2009).
Article Google Scholar
27.
Lageard, J. G. A., Thomas, P. A. & Chambers, F. M. Using fire scars and growth release in subfossil Scots pine to reconstruct prehistoric fires. Palaeogeogr. Palaeoclimatol. Palaeoecol. 164, 87–99 (2000).
Article Google Scholar
28.
Mutch, L. S. & Swetnam, T. W. Effects of Fire Severity and Climate on Ring-Width Growth of Giant Sequoia After Fire. Symp. Fire Wilderness Park Manag. Past Lessons Futur. Oppor. March 30-April 1, 1993 Missoula, MT Gen Tech Rep INT-GTR-320 Ogden, UT; US Dep. Agric. For. Serv. Intermt. Res. Stn. (1995).
29.
Xu, J., Lu, J., Evans, R. & Downes, G. M. Relationship between ring width and tracheid characteristics in Picea crassifolia: implication in dendroclimatology. BioResources https://doi.org/10.15376/biores.9.2.2203-2213 (2014).
Article Google Scholar
30.
Kitzberger, T., Veblen, T. T. & Villalba, R. Climatic influences on fire regimes along a rain forest-to-xeric woodland gradient in northern Patagonia Argentina. J. Biogeogr. 24, 35–47 (1997).
Article Google Scholar
31.
González, M. E., Veblen, T. T. & Sibold, J. S. Fire history of Araucaria-Nothofagus forests in Villarrica National Park Chile. J. Biogeogr. 32, 1187–1202 (2005).
Article Google Scholar
32.
Littell, J. S., Peterson, D. L., Riley, K. L., Liu, Y. & Luce, C. H. A review of the relationships between drought and forest fire in the United States. Glob. Change Biol. 22, 2353–2369 (2016).
ADS Article Google Scholar
33.
Mundo, I. A., Kitzberger, T., Roig Juñent, F. A., Villalba, R. & Barrera, M. D. Fire history in the Araucaria araucana forests of Argentina: human and climate influences. Int. J. Wildl. Fire 22, 194–206 (2013).
Article Google Scholar
34.
Mundo, I. A., Juñent, F. A. R., Villalba, R., Kitzberger, T. & Barrera, M. D. Araucaria araucana tree-ring chronologies in Argentina: spatial growth variations and climate influences. Trees Struct. Funct. 26, 443–458 (2012).
Article Google Scholar
35.
Abe, H. & Nakai, T. Effect of the water status within a tree on tracheid morphogenesis in Cryptomeria japonica D Don. Trees 14, 124–129 (1999).
Google Scholar
36.
DeSoto, L., De la Cruz, M. & Fonti, P. Intra-annual patterns of tracheid size in the Mediterranean tree Juniperus thurifera as an indicator of seasonal water stress. Can. J. For. Res. 41, 1280–1294 (2011).
Article Google Scholar
37.
Martin-Benito, D., Beeckman, H. & Cañellas, I. Influence of drought on tree rings and tracheid features of Pinus nigra and Pinus sylvestris in a mesic Mediterranean forest. Eur. J. For. Res. 132, 33–45 (2013).
Article Google Scholar
38.
Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ. 34, 137–148 (2011).
PubMed Article Google Scholar
39.
Rosner, S. Wood density as a proxy for vulnerability to cavitation: Size matters. J. Plant Hydraul. 4, 001 (2017).
Article Google Scholar
40.
Ash, S. D. The Black Forest Bed, a distinctive rock unit in the Upper Triassic Chinle Formation, northeastern Arizona. Bull. Arizona-Nevada Acad. Sci. 24–25, 59–73 (1992).
Google Scholar
41.
Martz, J. W., Kirkland, J. I., Milner, A. R. C., Parker, W. G. & Santucci, V. L. Upper Triassic lithostratigraphy, depositional systems, and vertebrate paleontology across southern Utah. Geol. Intermt. West 4, 99–180 (2017).
Article Google Scholar
42.
Kent, Dennis V., Paul E. Olsen, Cornelia Rasmussen, Christopher Lepre, Roland Mundil, Randall B. Irmis, George E. Gehrels, Dominique Giesler, John W. Geissman, and William G. Parker. Empirical evidence for stability of the 405-kiloyear Jupiter–Venus eccentricity cycle over hundreds of millions of years. Proc. Natl. Acad. Sci. USA. (2018). https://www.pnas.org/content/115/24/6153
43.
Kent, D. V. et al. Magnetochronology of the Entire Chinle Formation (Norian Age) in a Scientific Drill Core from Petrified Forest National Park (Arizona, USA) and Implications for Regional and Global Correlations in the Late Triassic. Geochem. Geophys. Geosyst. 20, 4654–4664 (2019).
ADS Article Google Scholar
44.
Nordt, L., Atchley, S. & Dworkin, S. Collapse of the Late Triassic megamonsoon in western equatorial Pangea, present-day American Southwest. Bull. Geol. Soc. Am. 127, 1798–1815 (2015).
CAS Article Google Scholar
45.
Riggs, N. R., Lehman, T. M., Gehrels, G. E. & Dickinson, W. R. Detrital zircon link between headwaters and terminus of the Upper Triassic Chinle-Dockum Paleoriver System. Science 273, 97–100 (1996).
ADS CAS PubMed Article Google Scholar
46.
Dickinson, W. R. & Gehrels, G. E. U-Pb Ages of detrital zircons in relation to paleogeography: Triassic Paleodrainage Networks and sediment dispersal across Southwest Laurentia. J. Sediment. Res. 78, 745–764 (2008).
ADS Article Google Scholar
47.
Ash, S. R. & Creber, G. T. Palaeoclimatic interpretation of the wood structures of the trees in the Chinle Formation (Upper Triassic), Petrified Forest National Park, Arizona USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 96, 299–317 (1992).
Article Google Scholar
48.
Savidge, R. A. Wood anatomy of Late Triassic trees in Petrified Forest National Park, Arizona, USA, in relation to Araucarioxylon arizonicum Knowlton, 1889. Bull. Geosci. 82, 301–328 (2007).
Article Google Scholar
49.
Ash, S. R. & Creber, G. T. The late Triassic Araucarioxylon arizonicum trees of the Petrified Forest National Park, Arizona, USA. Palaeontology 43, 15–28 (2000).
Article Google Scholar
50.
West, A. G., Nel, J. A., Bond, W. J. & Midgley, J. J. Experimental evidence for heat plume-induced cavitation and xylem deformation as a mechanism of rapid post-fire tree mortality. New Phytol. https://doi.org/10.1111/nph.13979 (2016).
Article PubMed PubMed Central Google Scholar
51.
Luthardt, L., Rößler, R. & Schneider, J. W. Tree-ring analysis elucidating palaeo-environmental effects captured in an in situ fossil forest—The last 80 years within an early Permian ecosystem. Palaeogeogr. Palaeoclimatol. Palaeoecol. 487, 278–295 (2017).
Article Google Scholar
52.
Ash, S. R. & Savidge, R. A. The bark of the late triassic Araucarioxylon arizonicum tree from petrified forest National Park Arizona. IAWA J. 25, 349–368 (2004).
Article Google Scholar
53.
Gottesfeld, A. S. Paleoecology of the Lower Part of the Chinle Formation in the Petrified Forest. Museum North. Arizona Bull. 117, 59–73 (1972).
Google Scholar
54.
Creber, G. T. & Ash, S. R. The Late Triassic Schilderia adamanica and Woodworthia arizonica trees of the Petrified Forest National Park, Arizona, USA. Palaeontology https://doi.org/10.1111/j.0031-0239.2004.00345.x (2004).
Article Google Scholar
55.
Creber, G. T. & Collinson, M. E. Epicormic shoot traces in the secondary xylem of the Triassic and Permian fossil conifer species Woodworthia arizonica – Short communication. IAWA J. https://doi.org/10.1163/22941932-90000151 (2006).
Article Google Scholar
56.
Axsmith, B. J. & Ash, S. R. Two rare fossil cones from the Upper Triassic Chinle Formation in Petrified Forest National Park, Arizona, and New Mexico. Museum North. Arizona Bull. 62, 82–94 (2006).
Google Scholar
57.
He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W. & Lamont, B. B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194, 751–759 (2012).
PubMed Article Google Scholar
58.
Midgley, J. & Bond, W. Pushing back in time: The role of fire in plant evolution. New Phytol. 191, 5–7 (2011).
PubMed Article Google Scholar
59.
Crisp, M. D., Burrows, G. E., Cook, L. G., Thornhill, A. H. & Bowman, D. M. J. S. Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. Nat. Commun. https://doi.org/10.1038/ncomms1191 (2011).
Article PubMed Google Scholar More