More stories

  • in

    Fire-scarred fossil tree from the Late Triassic shows a pre-fire drought signal

    1.
    Scott, A. The pre-Quaternary history of fire. Palaeogeogr. Palaeoclimatol. Palaeoecol. 164, 281–329 (2000).
    Article  Google Scholar 
    2.
    Jones, T. P., Ash, S. & Figueiral, I. Late Triassic charcoal from Petrified Forest National Park, Arizona USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. https://doi.org/10.1016/S0031-0182(02)00549-7 (2002).
    Article  Google Scholar 

    3.
    Uhl, D. & Montenari, M. Charcoal as evidence of palaeo-wildfires in the Late Triassic of SW Germany. Geol. J. 46, 34–41 (2011).
    CAS  Article  Google Scholar 

    4.
    Pointer, R. Fire & Global Change During Key Intervals of the Late Triassic & Early Jurassic with a Focus 325 on the Central Polish Basin (University of Exeter, Exeter, 2018).
    Google Scholar 

    5.
    Marynowski, L. & Simoneit, B. R. T. Widespread Upper Triassic to Lower Jurassic wildfire records from Poland: Evidence from charcoal and pyrolytic plycylic aromatic hydrocarbons. Palaios 24, 785–798 (2009).
    ADS  Article  Google Scholar 

    6.
    Petersen, H. I. & Lindström, S. Synchronous wildfire activity rise and mire deforestation at the triassic-jurassic boundary. PLoS ONE https://doi.org/10.1371/journal.pone.0047236 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    7.
    Whiteside, J. H. et al. Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.1505252112 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    8.
    Atchley, S. C. et al. A linkage among Pangean tectonism, cyclic alluviation, climate change, and biologic turnover in the Late Triassic: the record from the chinle formation Southwestern United States. J. Sediment. Res. https://doi.org/10.2110/jsr.2013.89 (2014).
    Article  Google Scholar 

    9.
    Ramezani, J. et al. High-precision U-Pb zircon geochronology of the Late Triassic Chinle Formation, Petrified Forest National Park (Arizona, USA): Temporal constraints on the early evolution of dinosaurs. Bull. Geol. Soc. Am. https://doi.org/10.1130/B30433.1 (2011).
    Article  Google Scholar 

    10.
    Baranyi, V., Reichgelt, T., Olsen, P. E., Parker, W. G. & Kürschner, W. M. Norian vegetation history and related environmental changes: New data from the Chinle Formation, Petrified Forest National Park (Arizona, SW USA). Bull. Geol. Soc. Am. https://doi.org/10.1130/B31673.1 (2018).
    Article  Google Scholar 

    11.
    Belcher, C. M. et al. Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. Nat. Geosci. 3, 426–429 (2010).
    ADS  CAS  Article  Google Scholar 

    12.
    Agee, James K. Fire regimes and approaches for determining fire history. In: Hardy, Colin C.; Arno, Stephen F., eds. The use of fire in forest restoration. Gen. Tech. Rep. INT-GTR-341. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, 12–13 (1996)

    13.
    Morgan, P., Hardy, C. C., Swetnam, T. W., Rollins, M. G. & Long, D. G. Mapping fire regimes across time and space: understanding coarse and fine-scale fire patterns. Int. J. Wildl. Fire 10, 329–342 (2001).
    Article  Google Scholar 

    14.
    He, T., Belcher, C. M., Lamont, B. B. & Lim, S. L. A 350-million-year legacy of fire adaptation among conifers. J. Ecol. 104, 352–363 (2016).
    Article  Google Scholar 

    15.
    Lamont, B. B. & He, T. Fire-Proneness as a prerequisite for the evolution of fire-adapted traits. Trends Plant Sci. 22, 278–288 (2017).
    CAS  PubMed  Article  Google Scholar 

    16.
    Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J. & Bradstock, R. A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16, 406–411 (2011).
    CAS  PubMed  Article  Google Scholar 

    17.
    Falk, D. A. et al. Multi-scale controls of historical forest-fire regimes: new insights from fire-scar networks. Front Ecol. Environ. https://doi.org/10.1890/100052 (2011).
    Article  Google Scholar 

    18.
    Marlon, J. R. et al. Long-term perspective on wildfires in the western USA. Proc. Natl. Acad. Sci. USA 109(9), E535–E543. https://doi.org/10.1073/pnas.1112839109 (2012).
    ADS  Article  PubMed  Google Scholar 

    19.
    Gutsell, S. L. & Johnson, E. A. How fire scars are formed: coupling a disturbance process to its ecological effects. Can. J. For. Res. 26, 166–174 (1996).
    Article  Google Scholar 

    20.
    Ortloff, W., Goldammer, J. G., Schweingruber, F. H. & Swetnam, T. W. Jahrringanalytische Untersuchungen zur Feuergeschichte eines Bestandes von Pinus ponderosa DOUGL. ex LAWS. in den Santa Rita Mountains, Arizona, USA. Forstarchiv 66, 206–214 (1995).
    Google Scholar 

    21.
    Byers, B. A., Ash, S. R., Chaney, D. & DeSoto, L. First known fire scar on a fossil tree trunk provides evidence of Late Triassic wildfire. Palaeogeogr. Palaeoclimatol. Palaeoecol. 411, 180–187 (2014).
    Article  Google Scholar 

    22.
    Arbellay, E., Stoffel, M., Sutherland, E. K., Smith, K. T. & Falk, D. A. Changes in tracheid and ray traits in fire scars of North American conifers and their ecophysiological implications. Ann. Bot. 114, 223–232 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Arbellay, E., Stoffel, M., Sutherland, E. K., Smith, K. T. & Falk, D. A. Resin duct size and density as ecophysiological traits in fire scars of Pseudotsuga menziesii and Larix occidentalis. Ann. Bot. 114, 973–980 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Swetnam, T. W. et al. Multi-millennial fire history of the giant forest, Sequoia National Park, California, USA. Fire Ecol. 5, 120–150 (2009).
    Article  Google Scholar 

    25.
    Brown, P. M. & Swetnam, T. W. A cross-dated fire history from coast redwood near Redwood National Park California. Can. J. For. Res. https://doi.org/10.1139/x94-004 (1994).
    Article  Google Scholar 

    26.
    Lombardo, K. J., Swetnam, T. W., Baisan, C. H. & Borchert, M. I. Using bigcone Douglas-fir fire scars and tree rings to reconstruct interior chaparral fire history. Fire Ecol. 5, 35–56 (2009).
    Article  Google Scholar 

    27.
    Lageard, J. G. A., Thomas, P. A. & Chambers, F. M. Using fire scars and growth release in subfossil Scots pine to reconstruct prehistoric fires. Palaeogeogr. Palaeoclimatol. Palaeoecol. 164, 87–99 (2000).
    Article  Google Scholar 

    28.
    Mutch, L. S. & Swetnam, T. W. Effects of Fire Severity and Climate on Ring-Width Growth of Giant Sequoia After Fire. Symp. Fire Wilderness Park Manag. Past Lessons Futur. Oppor. March 30-April 1, 1993 Missoula, MT Gen Tech Rep INT-GTR-320 Ogden, UT; US Dep. Agric. For. Serv. Intermt. Res. Stn. (1995).

    29.
    Xu, J., Lu, J., Evans, R. & Downes, G. M. Relationship between ring width and tracheid characteristics in Picea crassifolia: implication in dendroclimatology. BioResources https://doi.org/10.15376/biores.9.2.2203-2213 (2014).
    Article  Google Scholar 

    30.
    Kitzberger, T., Veblen, T. T. & Villalba, R. Climatic influences on fire regimes along a rain forest-to-xeric woodland gradient in northern Patagonia Argentina. J. Biogeogr. 24, 35–47 (1997).
    Article  Google Scholar 

    31.
    González, M. E., Veblen, T. T. & Sibold, J. S. Fire history of Araucaria-Nothofagus forests in Villarrica National Park Chile. J. Biogeogr. 32, 1187–1202 (2005).
    Article  Google Scholar 

    32.
    Littell, J. S., Peterson, D. L., Riley, K. L., Liu, Y. & Luce, C. H. A review of the relationships between drought and forest fire in the United States. Glob. Change Biol. 22, 2353–2369 (2016).
    ADS  Article  Google Scholar 

    33.
    Mundo, I. A., Kitzberger, T., Roig Juñent, F. A., Villalba, R. & Barrera, M. D. Fire history in the Araucaria araucana forests of Argentina: human and climate influences. Int. J. Wildl. Fire 22, 194–206 (2013).
    Article  Google Scholar 

    34.
    Mundo, I. A., Juñent, F. A. R., Villalba, R., Kitzberger, T. & Barrera, M. D. Araucaria araucana tree-ring chronologies in Argentina: spatial growth variations and climate influences. Trees Struct. Funct. 26, 443–458 (2012).
    Article  Google Scholar 

    35.
    Abe, H. & Nakai, T. Effect of the water status within a tree on tracheid morphogenesis in Cryptomeria japonica D Don. Trees 14, 124–129 (1999).
    Google Scholar 

    36.
    DeSoto, L., De la Cruz, M. & Fonti, P. Intra-annual patterns of tracheid size in the Mediterranean tree Juniperus thurifera as an indicator of seasonal water stress. Can. J. For. Res. 41, 1280–1294 (2011).
    Article  Google Scholar 

    37.
    Martin-Benito, D., Beeckman, H. & Cañellas, I. Influence of drought on tree rings and tracheid features of Pinus nigra and Pinus sylvestris in a mesic Mediterranean forest. Eur. J. For. Res. 132, 33–45 (2013).
    Article  Google Scholar 

    38.
    Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ. 34, 137–148 (2011).
    PubMed  Article  Google Scholar 

    39.
    Rosner, S. Wood density as a proxy for vulnerability to cavitation: Size matters. J. Plant Hydraul. 4, 001 (2017).
    Article  Google Scholar 

    40.
    Ash, S. D. The Black Forest Bed, a distinctive rock unit in the Upper Triassic Chinle Formation, northeastern Arizona. Bull. Arizona-Nevada Acad. Sci. 24–25, 59–73 (1992).
    Google Scholar 

    41.
    Martz, J. W., Kirkland, J. I., Milner, A. R. C., Parker, W. G. & Santucci, V. L. Upper Triassic lithostratigraphy, depositional systems, and vertebrate paleontology across southern Utah. Geol. Intermt. West 4, 99–180 (2017).
    Article  Google Scholar 

    42.
    Kent, Dennis V., Paul E. Olsen, Cornelia Rasmussen, Christopher Lepre, Roland Mundil, Randall B. Irmis, George E. Gehrels, Dominique Giesler, John W. Geissman, and William G. Parker. Empirical evidence for stability of the 405-kiloyear Jupiter–Venus eccentricity cycle over hundreds of millions of years. Proc. Natl. Acad. Sci. USA. (2018). https://www.pnas.org/content/115/24/6153

    43.
    Kent, D. V. et al. Magnetochronology of the Entire Chinle Formation (Norian Age) in a Scientific Drill Core from Petrified Forest National Park (Arizona, USA) and Implications for Regional and Global Correlations in the Late Triassic. Geochem. Geophys. Geosyst. 20, 4654–4664 (2019).
    ADS  Article  Google Scholar 

    44.
    Nordt, L., Atchley, S. & Dworkin, S. Collapse of the Late Triassic megamonsoon in western equatorial Pangea, present-day American Southwest. Bull. Geol. Soc. Am. 127, 1798–1815 (2015).
    CAS  Article  Google Scholar 

    45.
    Riggs, N. R., Lehman, T. M., Gehrels, G. E. & Dickinson, W. R. Detrital zircon link between headwaters and terminus of the Upper Triassic Chinle-Dockum Paleoriver System. Science 273, 97–100 (1996).
    ADS  CAS  PubMed  Article  Google Scholar 

    46.
    Dickinson, W. R. & Gehrels, G. E. U-Pb Ages of detrital zircons in relation to paleogeography: Triassic Paleodrainage Networks and sediment dispersal across Southwest Laurentia. J. Sediment. Res. 78, 745–764 (2008).
    ADS  Article  Google Scholar 

    47.
    Ash, S. R. & Creber, G. T. Palaeoclimatic interpretation of the wood structures of the trees in the Chinle Formation (Upper Triassic), Petrified Forest National Park, Arizona USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 96, 299–317 (1992).
    Article  Google Scholar 

    48.
    Savidge, R. A. Wood anatomy of Late Triassic trees in Petrified Forest National Park, Arizona, USA, in relation to Araucarioxylon arizonicum Knowlton, 1889. Bull. Geosci. 82, 301–328 (2007).
    Article  Google Scholar 

    49.
    Ash, S. R. & Creber, G. T. The late Triassic Araucarioxylon arizonicum trees of the Petrified Forest National Park, Arizona, USA. Palaeontology 43, 15–28 (2000).
    Article  Google Scholar 

    50.
    West, A. G., Nel, J. A., Bond, W. J. & Midgley, J. J. Experimental evidence for heat plume-induced cavitation and xylem deformation as a mechanism of rapid post-fire tree mortality. New Phytol. https://doi.org/10.1111/nph.13979 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    51.
    Luthardt, L., Rößler, R. & Schneider, J. W. Tree-ring analysis elucidating palaeo-environmental effects captured in an in situ fossil forest—The last 80 years within an early Permian ecosystem. Palaeogeogr. Palaeoclimatol. Palaeoecol. 487, 278–295 (2017).
    Article  Google Scholar 

    52.
    Ash, S. R. & Savidge, R. A. The bark of the late triassic Araucarioxylon arizonicum tree from petrified forest National Park Arizona. IAWA J. 25, 349–368 (2004).
    Article  Google Scholar 

    53.
    Gottesfeld, A. S. Paleoecology of the Lower Part of the Chinle Formation in the Petrified Forest. Museum North. Arizona Bull. 117, 59–73 (1972).
    Google Scholar 

    54.
    Creber, G. T. & Ash, S. R. The Late Triassic Schilderia adamanica and Woodworthia arizonica trees of the Petrified Forest National Park, Arizona, USA. Palaeontology https://doi.org/10.1111/j.0031-0239.2004.00345.x (2004).
    Article  Google Scholar 

    55.
    Creber, G. T. & Collinson, M. E. Epicormic shoot traces in the secondary xylem of the Triassic and Permian fossil conifer species Woodworthia arizonica – Short communication. IAWA J. https://doi.org/10.1163/22941932-90000151 (2006).
    Article  Google Scholar 

    56.
    Axsmith, B. J. & Ash, S. R. Two rare fossil cones from the Upper Triassic Chinle Formation in Petrified Forest National Park, Arizona, and New Mexico. Museum North. Arizona Bull. 62, 82–94 (2006).
    Google Scholar 

    57.
    He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W. & Lamont, B. B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194, 751–759 (2012).
    PubMed  Article  Google Scholar 

    58.
    Midgley, J. & Bond, W. Pushing back in time: The role of fire in plant evolution. New Phytol. 191, 5–7 (2011).
    PubMed  Article  Google Scholar 

    59.
    Crisp, M. D., Burrows, G. E., Cook, L. G., Thornhill, A. H. & Bowman, D. M. J. S. Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. Nat. Commun. https://doi.org/10.1038/ncomms1191 (2011).
    Article  PubMed  Google Scholar  More

  • in

    Neonicotinoid Clothianidin reduces honey bee immune response and contributes to Varroa mite proliferation

    Impact of Clothianidin on melanization and clotting
    Insects: honey bees used in this study were from Apis mellifera ligustica colonies, maintained in the experimental apiary of the University of Napoli “Federico II”, Department of Agricultural Sciences. Larvae and newly emerged bees used in all the experiments were obtained from brood frames taken from the experimental hives and kept in an incubator at 34 °C, 80% relative humidity for 12 h.
    Implantation experiment: 3rd instar larvae were first fed with 0.05, 0.01 ppm and no Clothianidin, while adults were treated with 20.0, 10.0, 5.0, 2.0 ng/bee and no Clothianidin, as already published4 (5 individuals for each treatment for both larvae and adults). In order to evaluate the encapsulation and melanization index12 a piece of transparent, nylon fluorocarbon coated fishing line (Ø = 0.08 mm; Asso Fishing Line), sterilized under UV light for 24 h, was inserted into the hemocelic cavity on 4th body segment of 5th instar larvae and into the haemocoelic cavity of adults through the membrane between the 3rd and 4th abdominal tergite. After 24 h, the implants were removed and subjected to image analysis, using GIMP version 2.8 (GNU Image Manipulation Program; www.gimp.org). In adult bees the clotting index was also analyzed by evaluating, after 24 h, the healing of a wound generated by piercing the honeybee integument inter-membrane between the 3rd and 4th abdominal tergite, using a sterile entomological needle. The rest of body was immediately stored at –80 °C for the subsequent molecular analysis. The experiment was repeated 3 times.
    Immune genes expression and DWV quantification: in order to assess the relative expression of Amel102 and Dorsal 1A as affected by Clothianidin treatment, two groups of 4th instar larvae (n = 100 per group) received 0.01 ppm of a Clothianidin-treated diet or a clean diet, respectively, as detailed below. After 24 and 72 h from feeding, 15 larvae for each experimental group were sampled and stored at –80 °C for subsequent analysis.
    RNA extraction, DWV quantification and relative gene expression data analysis were performed according to already published protocols12. Briefly, total RNA was isolated from individual honey bees using TRIzol reagent (Thermo Fisher Scientific, Waltham, MA, USA), according to the manufacturer’s instructions. The quantity and the quality of total RNA were assessed using Varioskan Flash spectrophotometer (Thermo Fisher Scientific).
    Differential relative expression of Amel102 and Dorsal 1A was measured by one-step qRT-PCR, using the Power SYBR Green RNA-to-Ct 1-Step Kit (Applied Biosystems, Carlsbad, CA, USA), according to the manufacturer’s instructions. Each reaction was prepared in 20 μL and contained 10 μL qRT-PCR mix 2X, 100 nM of forward and reverse primers, 0.16 μL of 125X RT enzyme mix, DEPC treated water and 50 ng of total RNA. All samples were analyzed in duplicate on a Step One Real Time PCR System (Applied Biosystems). Two reference genes, β-actin and rps5, were used as endogenous control for RNA loading. Relative gene expression data were analyzed using the ∆∆Ct method.
    The quantification of DWV genome copies was performed using the Power SYBR Green RNA-to-Ct 1-Step Kit (Applied Biosystems) as described above. Titers of DWV were determined by relating the Ct values of unknown samples to an established standard curve. The standard curve was established by plotting the logarithm of seven 10-fold dilutions of a starting solution containing 21.9 ng of plasmid DNA pCR II-TOPO (TOPO-TA cloning) with a DWV insert (from 21.9 ng to 21.9 fg), against the corresponding Ct value as the average of three repetitions. The PCR efficiency (E = 107.5%) was calculated based on the slope and coefficient of correlation (R2) of the standard curve, according to the following formula: E = 10(−1/slope) − 1 (slope = −3.155, y-intercept = 41.84, R2 = 0.999). All primers used are shown in Supplementary Table 1.
    Impact of Clothianidin on the reproduction of Varroa destructor
    The artificial diet used for feeding 4th instar larvae (L4) contained D-glucose (9%), D-fructose (9%), yeast extract (2%) and royal jelly (50%)37. Fresh royal jelly was bought from a local supplier. Chemical analysis of royal jelly carried out by the supplier revealed no acaricides, pesticides or antibiotic contaminants. Before use, royal jelly was treated with γ-rays (25 kGy) to eliminate any possible microbial contamination.
    A group of larvae received 0.01 ppm of Clothianidin-treated diet, while another group of larvae (control) received a clean diet. To prepare 100 g of Clothianidin-treated diet, 5 mg of Clothianidin were dissolved into 500 μL of acetone (solution A); then, 100 μL of solution A were diluted in 9900 μL of acetone (solution B); finally, 10 μL of solution B were dissolved in 990 μL of deionised water, which was used for the preparation of the diet.
    After preparing the diet, 3–4 combs containing larvae of different ages were selected from the experimental apiary of the University of Udine, Italy. Fourth instar larvae (L4) were manually collected and transferred into sterile Petri dishes (Ø = 9 cm) containing 15 g of clean or Clothianidin-treated diet. Each Petri dish hosted 15–20 L4, for a total of 80–100 L4 per treatment per replication. Larvae were maintained in Petri dishes for 24 h under controlled conditions (35 °C, 90% R.H., dark).
    Mites were collected from brood cells capped in the preceding 15 h. To this aim, in the afternoon of the day preceding the experiment, when the artificial feeding of larvae was carried out, the capped brood cells of several combs were marked. The following morning, the combs were transferred to the lab and the unmarked cells, that had been capped overnight, were manually unsealed. The combs were then placed in an incubator at 35 °C and 75% R.H., where larvae and mites spontaneously emerged.
    In the meantime, the larvae fed with Clothianidin (or not) that had reached the 5th instar (L5) were cleaned from the larval food and transferred into gelatin capsules (Agar Scientific ltd., Ø = 6.5 mm) with 1 mite38. Infested bees were maintained in a climatic chamber under controlled conditions (35 °C, 75% R.H.) for 12 days until eclosion. From 58 to 77 L5 per experimental group per replicate were infested, for a total of 204 and 210 individuals per experimental group.
    Daily, dead larvae were removed and counted. Upon eclosion, mite mortality and reproduction (i.e. fertility and fecundity) were measured by inspecting, in total, 111 and 120 mite infested honey bees fed or not with Clothianidin during the larval stage, respectively. Once separated from the infesting mite, 28 and 27 newly emerged adult bees in total, fed or not with Clothianidin during the larval stage, respectively, were stored at –80 °C for subsequent analysis aiming at assessing DWV load. The experiment was replicated 3 times.
    Modeling of Varroa population as affected by Clothianidin
    In order to test whether the effect of Clothianidin on Varroa reproduction could account for the higher mite infestation observed in colonies exposed to Clothianidin, under field conditions, we compared the data resulting from a simplified discrete time model of Varroa population with those obtained from the literature13.
    At each time point, our simplified discrete time model calculates Varroa population as follows:

    Varroa mites =Varroa mites + Varroa born − Varroa dead

    Varroa born = (Varroa mites*proportion of mites in brood cells*proportion of mites producing viable offspring)/length of reproducing phase

    Varroa dead = (Varroa mites*proportion of mites in brood cells*mortality of mites in brood cells + Varroa mites*(1 − proportion of mites in brood cells)*mortality of phoretic mites)/length of reproducing phase

    Parameters were derived from published studies20,39, as detailed in the Supplementary Data File. The proportion of treated mites producing viable offspring was calculated according to the results of our experiment (i.e., proportion of treated mites producing viable offspring = proportion of control mites producing viable offspring +23%). Since, the model allowed to estimate the size of Varroa population in treated and control colonies, whereas field studies reported the number of mites on bottom boards13, these latter data were converted into colony infestation according to a standard coefficient derived from literature40.
    The model above was used to follow the number of mites in two experimental groups (treated and control) for the duration of the field experiment that was used as a reference. More details can be found in the Supplementary Data file.
    Statistical analysis
    The statistical tests that were used to assess significance and the relevant data are reported along the corresponding results in the Supplementary Data file. Briefly, data about melanization, encapsulation, clotting, DWV infection level, and gene expression were analyzed by means of non-parametric methods (i.e., Mann–Whitney U tests in case of two samples and Kruskal–Wallis for more), the proportion of reproducing mites in different experimental groups was tested using the Mantel–Haenszel test, clotting in adult bees exposed to different doses of Clothianidin was tested with Spearman’s correlation. If necessary, probabilities were adjusted using the Bonferroni correction. Tests were performed with Excel (version 14.3.5).
    Reporting summary
    Further information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Correction: A new strategy for membrane-based direct air capture

    Affiliations

    International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
    Shigenori Fujikawa, Roman Selyanchyn & Toyoki Kunitake

    NanoMembrane Technologies, Inc., 4-1, Kyudai-Shimachi, Nishi-Ku, Fukuoka, 819-0388, Japan
    Shigenori Fujikawa & Toyoki Kunitake

    Department of Chemistry and Biochemistry, Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishiku, Fukuoka, 819-0395, Japan
    Shigenori Fujikawa

    Authors
    Shigenori Fujikawa

    Roman Selyanchyn

    Toyoki Kunitake

    Corresponding author
    Correspondence to Shigenori Fujikawa. More

  • in

    Morphological differentiation across the invasive range in Senecio madagascariensis populations

    1.
    Aïnouche, M. L. et al. Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae). Biol. Invasions 11, 1159–1173 (2009).
    Article  Google Scholar 
    2.
    Hulme, P. E. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).
    Article  Google Scholar 

    3.
    Baker, H. G. Characteristics and modes of origin of weeds. In The Genetics of Colonizing Species (eds Baker, H. G. & Stebbins, G. L.) 147–168 (Academic Press, New York, 1965).
    Google Scholar 

    4.
    Beest, M. et al. The more the better? The role of polyploidy in facilitating plant invasions. Ann. Bot. 109, 19–45 (2011).
    Article  Google Scholar 

    5.
    Pastorino, M. J., Ghirardi, S., Grosfeld, J., Gallo, L. A. & Puntieri, J. G. Genetic variation in architectural seedling traits of Patagonian cypress natural populations from the extremes of a precipitation range. Ann. For. Sci. 67, 508–508 (2010).
    Article  Google Scholar 

    6.
    Schäfer, M. A. et al. Geographic clines in wing morphology relate to colonization history in New World but not Old World populations of yellow dung flies. Evolution 72, 1629–1644 (2018).
    Article  Google Scholar 

    7.
    Mal, T. K. & Lovett Doust, J. Phenotypic plasticity in vegetative and reproductive traits in an invasive weed, Lythrum salicaria (Lythraceae), in response to soil moisture. Am. J. Bot. 92, 819–825 (2005).
    Article  Google Scholar 

    8.
    Yücedağ, C. & Gailing, O. Morphological and genetic variation within and among four Quercus petraea and Q. robur natural populations. Turk. J. Bot. 37, 619–629 (2013).
    Google Scholar 

    9.
    Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).
    Article  Google Scholar 

    10.
    Endler, J. A. Natural Selection in the Wild (Princeton University Press, Princeton, 1986).
    Google Scholar 

    11.
    Slatkin, M. Gene flow and the geographic structure of natural populations. Science 236, 787–792 (1987).
    ADS  CAS  Article  Google Scholar 

    12.
    Lenormand, T. Gene flow and the limits to natural selection. Trends Ecol. Evol. 17, 183–189 (2002).
    Article  Google Scholar 

    13.
    Coulleri, J. P. Gene flow and local adaptation: antagonistic forces shape populations of Ilex dumosa (Aquifoliaceae). Bol. Soc. Argent. Bot. 45, 333–342 (2010).
    Google Scholar 

    14.
    Wright, S. Modes of selection. Am. Nat. 90, 5–24 (1956).
    Article  Google Scholar 

    15.
    Sindel, B. M. & Michael, P. W. Seedling emergence and longevity of Senecio madagascariensis Poir. (fireweed) in coastal south-eastern Australia. Plant Prot. Q. 11, 14–19 (1996).
    Google Scholar 

    16.
    Tsutsumi, M. Current and potential distribution of Senecio madagascariensis Poir. (fireweed), an invasive alien plant in Japan. Grassl. Sci. 57, 150–157 (2011).
    Article  Google Scholar 

    17.
    Cabrera, A. L. Compuestas Bonaerenses. Rev. Mus. La Plata 4, 313–315 (1941).
    Google Scholar 

    18.
    Matzenbacher, N. I. & Schneider, A. A. Nota sobre a presença de uma espécie adventícia de Senecio (Asteraceae) no Rio Grande do Sul Brasil. Rev. Brasil. Bioci. 3896, 111–115 (2008).
    Google Scholar 

    19.
    Le Roux, J. J., Wieczorek, A. M., Tran, C. T. & Vorsino, A. E. Disentangling the dynamics of invasive fireweed (Senecio madagascariensis Poir. species complex) in the Hawaiian Islands. Biol. Invasions 12, 2251–2264 (2010).
    Article  Google Scholar 

    20.
    Dematteis, B., Ferrucci, M. S. & Coulleri, J. P. The evolution of dispersal traits based on diaspore features in South American populations of Senecio madagascariensis (Asteraceae). Aust. J. Bot. 67, 358–366 (2019).
    Article  Google Scholar 

    21.
    Ellstrand, N. C. & Schierenbeck, K. A. Hybridization as a stimulus for the evolution of invasiveness in plants?. Proc. Natl. Acad. Sci. 97, 7043–7050 (2000).
    ADS  CAS  Article  Google Scholar 

    22.
    Lee, C. E. Evolutionary genetics of invasive species. Trends Ecol. Evol. 17, 386–391 (2002).
    Article  Google Scholar 

    23.
    Parker, J. D. et al. Do invasive species perform better in their new ranges?. Ecology 94, 985–994 (2013).
    Article  Google Scholar 

    24.
    Rejmánek, M. & Richardson, D. M. What attributes make some plant species more invasive?. Ecology 77, 1655–1661 (1996).
    Article  Google Scholar 

    25.
    Parkhust, D. F. & Loucks, O. L. Optimal life size in relation to environment. J. Ecol. 60, 505–537 (1972).
    Article  Google Scholar 

    26.
    Monty, A. & Mahy, G. Clinal differentiation during invasion: Senecio inaequidens (Asteraceae) along altitudinal gradients in Europe. Oecologia 159, 305–315 (2009).
    ADS  Article  Google Scholar 

    27.
    Kramer, P. J. & Kozlowski, T. T. Physiology of Trees (OUP, Oxford, 1960).
    Google Scholar 

    28.
    Lavergne, S. & Molofsky, J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc. Natl. Acad. Sci. 104, 3883–3888 (2007).
    ADS  CAS  Article  Google Scholar 

    29.
    Walker, L. R., Lodge, S. J., Guzmán-Grajales, S. M. & Fetcher, N. Species specific seedling responses to hurricane disturbance in a Puerto Rican rain forest. Biotropica 35, 472–485 (2003).
    Article  Google Scholar 

    30.
    Durka, W., Bossdorf, O., Prati, D. & Auge, H. Molecular evidence for multiple introductions of garlic mustard (Alliaria petiolata, Brassicaceae) to North America. Mol. Ecol. 14, 1697–1706 (2005).
    Article  Google Scholar 

    31.
    Mäder, G., Castro, L., Bonnato, S. L. & Freitas, L. B. Multiple introductions and gene flow in subtropical South American populations of the fireweed, Senecio madagascariensis (Asteraceae). Genet. Mol. Biol. 39, 135–144 (2016).
    Article  Google Scholar 

    32.
    Di Rienzo, J. A. et al. InfoStat version. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. https://www.infostat.com.ar. (2016).

    33.
    Team, R. RStudio: Integrated Development for R. Boston: RStudio, Inc. https://www.Rstudio.com (2015). More

  • in

    Water warming increases aggression in a tropical fish

    1.
    Sih, A., Ferrari, M. C. O. & Harris, D. J. Evolution and behavioural responses to human-induced rapid environmental change. Evol. Appl. 4, 367–387. https://doi.org/10.1111/j.1752-4571.2010.00166.x (2011).
    Article  PubMed  PubMed Central  Google Scholar 
    2.
    Sih, A. Effects of early stress on behavioral syndromes: an integrated adaptive perspective. Neurosci. Biobehav. Rev. 35, 1452–1465. https://doi.org/10.1016/j.neubiorev.2011.03.015 (2011).
    Article  PubMed  Google Scholar 

    3.
    Franks, S. J., Weber, J. J. & Aitken, S. N. Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol. Appl. 7, 123–139. https://doi.org/10.1111/eva.12112 (2014).
    Article  PubMed  Google Scholar 

    4.
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100 (2006).
    Article  Google Scholar 

    5.
    Mulholland, P. J. et al. Effects of climate change on freshwater ecosystems of the south-eastern United States and the Gulf Coast of Mexico. Hydrol. Process. 11, 949–970. https://doi.org/10.1002/(SICI)1099-1085(19970630)11:83.0.CO;2-G (1997).

    6.
    Justić, D., Rabalais, N. N. & Turner, R. E. Coupling between climate variability and coastal eutrophication: evidence and outlook for the northern Gulf of Mexico. J. Sea Res. 54, 25–35. https://doi.org/10.1016/j.seares.2005.02.008 (2005).
    ADS  Article  Google Scholar 

    7.
    Sokolova, I. M. & Lannig, G. Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: implications of global climate change. Clim. Res. 37, 181–201. https://doi.org/10.3354/cr00764 (2008).
    Article  Google Scholar 

    8.
    Bradshaw, W. E. & Holzapfel, C. M. Evolutionary response to rapid climate change. Am. Assoc. Adv. Sci. 312, 1477–1478 (2006).
    CAS  Google Scholar 

    9.
    Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17. https://doi.org/10.1093/icb/icj003 (2006).

    10.
    Huang, S. L., Hao, Y., Mei, Z., Turvey, S. T. & Wang, D. Common pattern of population decline for freshwater cetacean species in deteriorating habitats. Freshw. Biol. 57, 1266–1276. https://doi.org/10.1111/j.1365-2427.2012.02772.x (2012).
    Article  Google Scholar 

    11.
    Matteson, S. W., Mossman, M. J. & Shealer, D. A. Population decline of black terns in Wisconsin: a 30-year perspective. Waterbirds 35, 185–193. https://doi.org/10.1675/063.035.0201 (2012).
    Article  Google Scholar 

    12.
    Blaustein, A. R. & Bancroft, B. A. Amphibian population declines: evolutionary considerations. Bioscience 57, 437–444. https://doi.org/10.1641/B570517 (2007).
    Article  Google Scholar 

    13.
    Taylor, B. M., Houk, P., Russ, G. R. & Choat, J. H. Life histories predict vulnerability to overexploitation in parrotfishes. Coral Reefs 33, 869–878. https://doi.org/10.1111/j.1752-4571.2010.00166.x0 (2014).
    ADS  Article  Google Scholar 

    14.
    Trzcinski, M. K., Mohn, R. & Bowen, W. K. Continued decline of an Atlantic cod population: how important is gray seal predation?. Ecol. Appl. 16, 2276–2292. https://doi.org/10.1111/j.1752-4571.2010.00166.x1 (2006).
    Article  PubMed  Google Scholar 

    15.
    Kovach, R. P. et al. Climate, invasive species and land use drive population dynamics of a cold-water specialist. J. Appl. Ecol. 54, 638–647. https://doi.org/10.1111/j.1752-4571.2010.00166.x2 (2017).
    Article  Google Scholar 

    16.
    Greenlees, M. J., Phillips, B. L. & Shine, R. An invasive species imposes selection on life-history traits of a native frog. Biol. J. Linn. Soc. 100, 329–336. https://doi.org/10.1111/j.1752-4571.2010.00166.x3 (2010).
    Article  Google Scholar 

    17.
    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. 105, 6668–6672. https://doi.org/10.1111/j.1752-4571.2010.00166.x4 (2008) (arXiv:1408.1149.).
    ADS  Article  PubMed  Google Scholar 

    18.
    Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Phil. Trans. R. Soc. B Biol. Sci. 367, 1665–1679. https://doi.org/10.1111/j.1752-4571.2010.00166.x5 (2012).
    Article  Google Scholar 

    19.
    Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920. https://doi.org/10.1242/jeb.037473 (2010).

    20.
    Hoffman, A. A., Hallas, R. J., Dean, J. A. & Schiffer, M. Low potential for climatic stress adaptation in a rainforest Drosophila species. Science 301, 100–102 (2003).
    ADS  Article  Google Scholar 

    21.
    Martinez, E., Porreca, A. P., Colombo, R. E. & Menze, M. A. Tradeoffs of warm adaptation in aquatic ectotherms: live fast, die young?. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 191, 209–215. https://doi.org/10.1111/j.1752-4571.2010.00166.x6 (2016).
    CAS  Article  Google Scholar 

    22.
    Payne, N. L. et al. Temperature dependence of fish performance in the wild: links with species biogeography and physiological thermal tolerance. Funct. Ecol. 30, 903–912. https://doi.org/10.1111/j.1752-4571.2010.00166.x7 (2016).
    Article  Google Scholar 

    23.
    Walsh, S. J., Haney, D. C. & Timmerman, C. M. Variation in thermal tolerance and routine metabolism among spring- and stream-dwelling freshwater sculpins (Teleostei: Cottidae) of the southeastern United States. Ecol. Freshw. Fish 6, 84–94. https://doi.org/10.1111/j.1752-4571.2010.00166.x8 (1997).
    Article  Google Scholar 

    24.
    Strange, K. T., Vokoun, J. C. & Noltie, D. B. Thermal tolerance and growth differences in orangethroat darter (Etheostoma spectabile) from thermally contrasting adjoining streams. Am. Midl. Nat. 148, 120–128. https://doi.org/10.1111/j.1752-4571.2010.00166.x9 (2002).
    Article  Google Scholar 

    25.
    Lemoine, N. P. & Burkepile, D. E. Temperature-induced mismatches between consumption and metabolism reduce consumer fitness. Ecology 93, 2483–2489 (2012).
    Article  Google Scholar 

    26.
    Rall, B. Ö. C., Vucic-Pestic, O., Ehnes, R. B., EmmersoN, M. & Brose, U. Temperature, predator–prey interaction strength and population stability. Glob. Change Biol. 16, 2145–2157. https://doi.org/10.1016/j.neubiorev.2011.03.0150 (2010).
    ADS  Article  Google Scholar 

    27.
    Brodnik, R. M. Impacts of Water Warming on the Physiology and Life-History of a Tropical Freshwater Fish. Master’s thesis, The Ohio State University (2015).

    28.
    O’Reilly, C. M., Alin, S. R., Plisnier, P.-D., Cohen, A. S. & McKee, B. A. Climate change decreases aquatic ecosystem productivity of Lake Tanganika. Afr. Nat. 424, 766–768 (2003).

    29.
    Stenuite, S. et al. Phytoplankton production and growth rate in Lake Tanganyika: evidence of a decline in primary productivity in recent decades. Freshw. Biol. 52, 2226–2239. https://doi.org/10.1016/j.neubiorev.2011.03.0151 (2007).
    CAS  Article  Google Scholar 

    30.
    Verburg, P. & Hecky, R. E. The physics of the warming of Lake Tanganyika by climate change. Limnol. Oceanogr. 54, 2418–2430. https://doi.org/10.1016/j.neubiorev.2011.03.0152 (2009).
    ADS  Article  Google Scholar 

    31.
    Moritz, C. & Agudo, R. The future of species under climate change: resilience or decline?. Science 341, 504–508. https://doi.org/10.1016/j.neubiorev.2011.03.0153 (2013).
    ADS  CAS  Article  PubMed  Google Scholar 

    32.
    Fournier-Level, A. et al. A map of local adaptation in Arabidopsis thaliana. Science 334, 86–89. https://doi.org/10.1016/j.neubiorev.2011.03.0154 (2011).
    ADS  CAS  Article  PubMed  Google Scholar 

    33.
    Biro, P. A., Beckmann, C. & Stamps, J. A. Small within-day increases in temperature affects boldness and alters personality in coral reef fish. Proc. R. Soc. Biol. 277, 71–77 (2010).
    Article  Google Scholar 

    34.
    Kochhann, D., Campos, D. F. & Val, A. L. Experimentally increased temperature and hypoxia affect stability of social hierarchy and metabolism of the Amazonian cichlid Apistogramma agassizii. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 190, 54–60. https://doi.org/10.1016/j.neubiorev.2011.03.0155 (2015).
    CAS  Article  Google Scholar 

    35.
    Ratnasabapathi, D., Burns, J. & Souchek, R. Effects of temperature and prior residence on territorial aggression in the convict cichlid Cichlasoma nigrofasciatum. Aggress. Behav. 18, 365–372. https://doi.org/10.1002/1098-2337(1992)18:53.0.CO;2-E (1992).

    36.
    Careau, V. & Garland, T. Jr. Performance, personality, and energetics: correlation, causation, and mechanism. Physiol. Biochem. Zool. 85, 543–571 (2012).
    Article  Google Scholar 

    37.
    Biro, P. A. & Stamps, J. A. Do consistent individual differences in metabolic rate promote consistent individual differences in behavior?. Trends Ecol. Evol. 25, 653–659. https://doi.org/10.1016/j.neubiorev.2011.03.0156 (2010).
    Article  PubMed  Google Scholar 

    38.
    Magurran, A. E. & Seghers, B. H. Variation in schooling and aggression amongst guppy (Poecilia reticulata) populations in Trinidad. Behaviour 118, 214–234 (1991).
    Article  Google Scholar 

    39.
    Kieffer, J. D., Kubacki, M. R., Phelan, F. J., Philipp, D. P. & Tufts, B. L. The effect of catch-and-release angling on the parental care behavior of male smallmouth bass. Trans. Am. Fish. Soc. 124, 70–76. https://doi.org/10.1577/1548-8659(1995)124 More

  • in

    The landscape of childhood vaccine exemptions in the United States

    We collected data from all US states where school vaccine exemption information was freely available from the Department of Health website in any format. We were able to locate that data in 24 states (see Table 1 for a list of states included). Within these states, the number of years available varied relatively widely, between 19 years in California and a single year in 6 states. The most represented year in our dataset was 2017 (corresponding to school year 2017–2018). Because the dataset was compiled in June-July 2019, we note that it is likely that additional data for more recent years may be available, or that data may have become available in additional states not included in our dataset.
    Table 1 Exemption data reporting varies widely across states.
    Full size table

    The data format varied widely between states, and exemptions were reported either as a number of exemptions or as a percentage of the enrolled students. We have elected to use number of students rather than percentages, and have transformed data as needed. For most states included in our dataset, the data are provided at the county level. In several states (Arizona, Colorado, Illinois, Maine, Michigan, South Dakota, Tennessee, Vermont, Oregon, and Washington), the data was provided at the school level, which we aggregated to the county.
    Additional data processing was necessary in some cases. In Virginia, data was provided by school name, but county or city information was not included. We used a list of public and private schools to match school names with their respective county using fuzzy matching (with the ‘fuzzywuzzy’ Python package) with an 80% matching requirement. Our algorithm was unable to find a suitable match for between 3.8% and 6.8% of schools (depending on year), and these schools were not included in the final counts at the county level. Similarly, in Idaho, data at the school level included city information but county was not provided. We first matched city and county names, before aggregating the exemption data at the county level. Finally in New York state, exemptions were provided as percentages at the school level but enrollment information was not included. We obtained enrollment for public and private schools separately from the New York State Education Department, and used the school unique code to calculate exemption number from enrollment and exemption percentages. We then aggregated these numbers at the county level.
    States reported data for exemptions based on varying definitions, so we selected data records based on data availability to make the data comparable across states. We aimed to achieve parsimonious definitions of total medical exemptions (Fig. 1a), total non-medical exemptions (Fig. 1b), and total exemptions (Fig. 1c), which includes both types of exemptions. We define medical exemptions as reported total medical exemptions. In Florida, permanent medical exemptions were reported separately from temporary medical exemptions, so permanent medical exemptions was chosen to represent total medical exemptions. To define total non-medical exemptions, we considered the state law regarding non-medical exemptions and the data availability. If the state reported total aggregated non-medical exemptions, that was selected as total non-medical exemptions. If the state reported only religious exemptions and only allows religious exemptions, that was selected as total non-medical exemptions. If the state reported only religious exemptions, but also allows philosophical exemptions, that was considered missing data. If the state allows philosophical exemptions and only reports philosophical exemptions, that was selected as total non-medical exemptions, as the state may not differentiate religious from philosophical. If the state allows philosophical exemptions and reports both religious and philosophical exemptions separately, these values were summed for total non-medical exemptions. To define total exemptions, if the state reported a total exemptions value, this value was used. If the state did not report a total exemptions value, but reported values for total medical exemptions and total non-medical exemptions, as defined above, these were summed for total exemptions. If the state was missing either medical or non-medical exemptions, but reported the total number of students with completed vaccinations, the total exemptions was the difference between the number of students enrolled and the number of students completed. This classification process is visualized in Fig. 1.
    Fig. 1

    Exemptions were classified by type to standardize reporting. Exemptions were classified as medical exemptions (a), non-medical exemptions (b), and total exemptions (c) to standardize reporting across states with different values reported.

    Full size image

    We also considered disease-specific exemptions reports. If a state reported the number of exemptions for a vaccine specific to a given infection, that value was used. If the state did not report exemptions, but did provide the total number complete for that disease, the difference between the enrolled students and the completed students was used. For pertussis-specific vaccination, we used DTaP exemptions where available, and TDaP exemptions where DTaP was not available. For measles-specific vaccination, if separate reports were available for measles, mumps, and rubella, the value for measles was used. If measles was not available, then the mumps or rubella exemptions were used, if available.
    The data in the figures is only data reported for kindergartens in states where kindergarten-specific data was available, or K-12 data in states where kindergarten-specific data was not reported. States reported age groups heterogeneously, and data by other age groups is available in the data file. We note that Oregon reports kindergarten-specific data in 2014–2015, then K-12 data in 2016–2018. More

  • in

    New evidence on the earliest domesticated animals and possible small-scale husbandry in Atlantic NW Europe

    1.
    Haak, W. et al. Ancient DNA from European early neolithic farmers reveals their near eastern affinities. PLoS Biol 8(11), e1000536. https://doi.org/10.1371/journal.pbio.1000536 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 
    2.
    Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Brandt, G. et al. Ancient DNA reveals key stages in the formation of central European mitochondrial genetic diversity. Science 342, 257–261 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    5.
    Zvelebil, M. Mesolithic prelude and Neolithic revolution. In Hunters in transition. Mesolithic societies of temperate Eurasia and their transition to farming (ed Zvelebil, M.) 5–16 (Cambridge University Press, Cambridge, 1986).

    6.
    Zvelebil, M. Agricultural frontiers, Neolithic origins, and the transition to farming in the Baltic basin. In Harvesting the Sea, Farming the Forest. The Emergence of Neolithic Societies in the Baltic Region (eds Zvelebil, M., Dennell, R. & Domanska, L.) 9–27 (Sheffield Archaeological Monographs 10, Sheffield, 1998).

    7.
    Raemaekers, D.C.M. The articulation of a “New Neolithic”. The meaning of the Swifterbant culture for the process of Neolithisation in the western part of the North European Plain (Archaeological Series Leiden University 3, Leiden, 1999).

    8.
    Louwe Kooijmans, L.P. The Hardinxveld sites in the Rhine/Meuse Delta, The Netherlands, 5500–4500 cal BC. In Mesolithic on the move. Papers presented at the Sixth International Conference on the Mesolithic in Europe, Stockholm 2000 (eds Larsson, L., Kindgren, H., Knutsson, K., Loeffler, D. & Åkerlund, A.) 608–624 (Owbow Books, Oxford, 2003).

    9.
    Louwe Kooijmans, L.P. The gradual transition to farming in the Lower Rhine Basin. In Going over. The Mesolithic–Neolithic transition in north-west Europe (eds Whittle, A. & Cummings, V.) 287–309 (Oxford University Press, Oxford, 2007).

    10.
    Out, W. A. Growing habits? Delayed introduction of crop cultivation at marginal wetland sites. Vegetat Hist Archaeobot 17, 131–138 (2008).
    Article  Google Scholar 

    11.
    Çakırlar, C., Breider, R., Koolstra, F., Cohen, K. M. & Raemaekers, D. C. M. Dealing with domestic animals in the fifth millennium cal BC Dutch wetlands: new insights from old Swifterbant assemblages. In Farmers at the Frontier : A Pan European Perspective on Neolithisation (eds Gron, K. J. et al.) 263–287 (Oxbow Books, Oxford, 2020).
    Google Scholar 

    12.
    Rowley-Conwy, P. North of the frontier: early domestic animals in northern Europe. In The Origins and Spread of Domestic Animals in Southwest Asia and Europe (eds Colledge, S. et al.) 283–311 (Left Coast Press, Walnut Creek, 2013).
    Google Scholar 

    13.
    Hartz, S., Lübke, H. & Terberger, T. From fish and seal to sheep and cattle: new research into the process of neolithisation in northern Germany. In Going over. The Mesolithic–Neolithic transition in north-west Europe (eds Whittle, A. & Cummings, V.) 567–594 (Oxford University Press, Oxford, 2007).

    14.
    Kirleis, W., Klooβ, S., Kroll, H. & Müller, J. Crop growing and gathering in the northern German Neolithic : a review supplemented by new results. Vegetat. Hist. Archaeobot. 21, 221–242 (2012).
    Article  Google Scholar 

    15.
    Price, T. D. The introduction of farming in northern Europe. In Europe’s first farmers (ed. Price, T. D.) 260–300 (Cambridge University Press, Cambridge, 2000).
    Google Scholar 

    16.
    Noe-Nygaard, N., Price, T. D. & Hede. S. U. Diet of Aurochs and Early Cattle in Southern Scandinavia: Evidence from 15N and 13C Stable Isotopes. J. Archaeol. Sci. 32, 855–871 (2005).

    17.
    Sørensen, L. & Karg, S. The expansion of agrarian societies towards the north – new evidence for agriculture during the Mesolithic/Neolithic transition in Southern Scandinavia. J. Archaeol. Sci. 51, 98–114 (2014).
    Article  Google Scholar 

    18.
    Gron, K. J. & Sørensen, L. Cultural and economic negotiation: a new perspective on the Neolithic Transition of Southern Scandinavia. Antiquity 92, 958–974 (2018).
    Article  Google Scholar 

    19.
    Rowley-Conwy, P. Westward Ho! The spread of agriculture from central Europe to the Atlantic. Curr. Anthropol. 52, 431–451 (2011).
    Article  Google Scholar 

    20.
    Fischer, A. Food for Feasting? An evaluation of explanations of the neolithisation of Denmark and southern Sweden. In Food for Feasting. The Neolithisation of Denmark – 150 years of Debate (eds Fischer, A. & Kristiansen, K.) 341–393 (J. R. Collis Publications, Sheffield, 2002).

    21.
    Scheu, A. et al. Ancient DNA provides no evidence for independent domestication of cattle in mesolithic rosenhof Northern Germany. J. Archaeol. Sci. 35, 1257–1264 (2008).
    Article  Google Scholar 

    22.
    Krause-Kyora, B. et al. Use of domesticated pigs by Mesolithic hunter-gatherers in northwestern Europe. Nat. Commun. 4, 2348 (2013).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Rowley-Conwy, P. & Zeder, M. Mesolithic domestic pigs at Rosenhof – or wild boar? A critical re-appraisal of ancient DNA and geometric morphometrics. World Archaeol. 46(5), 813–824 (2014).
    Article  Google Scholar 

    24.
    Meylemans, E. et al. The oldest cereals in the coversand area along the North Sea coast of NW Europe, between ca. 4800 and 3500 cal BC, at the wetland site of ‘Bazel-Sluis’ (Belgium). J. Anthropol. Archaeol. 49, 1–7 (2018).
    Article  Google Scholar 

    25.
    Ervynck, A., Lentacker, A., Muylaert, L. & Van Neer, W. Dierenresten. In Archeologische opgraving van een midden-mesolithische tot midden-neolithische vindplaats te Bazel-sluis 5” (gemeente Kruibeke, provincie Oost-Vlaanderen (eds Meylemans, E. et al.) 57–84 (Brussel, Agentschap Onroerend Erfgoed, 2016).
    Google Scholar 

    26.
    Perdaen, Y. & Meylemans, E. Het lithisch materiaal In Archeologische opgraving van een midden-mesolithische tot midden-neolithische vindplaats te Bazel-sluis 5” (gemeente Kruibeke, provincie Oost-Vlaanderen (eds Meylemans, E. et al.) 86–145 (Agentschap Onroerend Erfgoed, Brussel, 2016).

    27.
    Crombé, Ph., Sergant, J., Perdaen, Y., Meylemans, E. & Deforce, K. Neolithic pottery finds at the wetland site of Bazel-Kruibeke (Flanders, Belgium): evidence of long-distance forager-farmer contact during the late 6th and 5th millennium cal BC in the Rhine-Meuse-Scheldt area. Archäol. Korresp. 45, 21–39 (2015).
    Google Scholar 

    28.
    Crombé, Ph., Verhegge, J., Deforce, K., Meylemans, E. & Robinson, E. Wetland landscape dynamics, Swifterbant land use systems, and the Mesolithic-Neolithic transition in the southern North Sea basin. Quat. Internat. 378, 119–133 (2015).
    ADS  Article  Google Scholar 

    29.
    Crombé, Ph. et al. Bioturbation and the formation of latent stratigraphies on prehistoric sites. Two case studies from the Belgian-Dutch coversand area. In Soils as records of past and present. From soil surveys to archaeological sites: research strategies for interpreting soil characteristics. Proceedings of the Geoarchaeological Meeting, Bruges, 6 & 7 November 2019 (eds Deák, J., Ampe, C. & Mikkelsen, J.) 99–112 (Raakvlak, Bruges, 2019).

    30.
    Deforce, K. et al. Middle-Holocene alluvial forests and associated fluvial environments: A multi-proxy reconstruction from the lower Scheldt N Belgium. The Holocene 24, 1150–1564 (2014).
    Article  Google Scholar 

    31.
    Luikart, G. et al. Multiple maternal origins and weak phylogeographic structure in domestic goats. PNAS 98(10), 5927–5932 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    32.
    Fernández, H. et al. Divergent mtDNA lineages of goats in an Early Neolithic site, far from the initial domestication areas. PNAS 103(42), 15375–15379 (2006).
    ADS  PubMed  Article  CAS  Google Scholar 

    33.
    Goude, G. & Fontugne, M. Carbon and nitrogen isotopic variability in bone collagen during the Neolithic period: Influence of environmental factors and diet. J. Archaeol. Sci. 70, 117–131 (2016).
    CAS  Article  Google Scholar 

    34.
    Rey, L., Goude, G. & Rottier, S. Comportements alimentaires au Néolithique : nouveaux résultats dans le Bassin parisien à partir de l’étude isotopique (δ13C, δ15N) de la nécropole de Gurgy « Les Noisats » (Yonne, Ve millénaire av. J.-C.). BMSAP 29, 54–69 (2017).

    35.
    Bickle, P. Stable isotopes and dynamic diets: The Mesolithic-Neolithic dietary transition in terrestrial central Europe. J. Archaeol. Sci.: Reports 22, 444–451 (2018).

    36.
    Bocherens, H., Polet, C. & Toussaint, M. Palaeodiet of mesolithic and neolithic populations of Meuse Basin (Belgium): evidence from stable isotopes. J. Archaeol. Sci. 34, 10–27 (2007).
    Article  Google Scholar 

    37.
    Evans, J. A., Montgomery, J., Wildman, G. & Boulton, N. Spatial variations in biosphere 87Sr/86Sr in Britain. J. Geol. Soc. 167(1), 1–4 (2010).
    ADS  CAS  Article  Google Scholar 

    38.
    Willmes, M. et al. Mapping of bioavailable strontium isotope ratios in France for archaeological provenance studies. Appl. Geochem 90, 75–86 (2018).
    CAS  Article  Google Scholar 

    39.
    Snoeck, C. et al. Towards a biologically available strontium isotope baseline for Ireland. Sc. Total Envir. 712, 136248 (2020).
    CAS  Article  Google Scholar 

    40.
    Dalle, S. et al. Preliminary results in the collecting of protohistoric cremation samples for the CRUMBEL project. Lunula 27, 9–14 (2019).
    Google Scholar 

    41.
    de Winter, N. J., Snoeck, C. & Claeys, Ph. Seasonal cyclicity in trace elements and isotopes of modern horse enamel. PLoS ONE 11(11), e0166678 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Buchan, M., Müldner, G., Ervynck, A. & Britton, K. Season of birth and sheep husbandry in late Roman and Medieval coastal Flanders: A pilot study using tooth enamel δ 18O analysis. Environ. Archaeol. 21(3), 260–270 (2016).
    Article  Google Scholar 

    43.
    Balasse, M., Boury, L., Ughetto-Monfrin, J. & Tresset, A. Stable isotope insights (δ18O, δ13C) into cattle and sheep husbandry at Bercy (Paris, France, 4th millennium BC): birth seasonality and winter leaf foddering. Environ. Archaeol. 17, 29–44 (2012).
    Article  Google Scholar 

    44.
    Bonafini, M., Pellegrini, M., Ditchfield, P. & Pollard, A. M. Investigation of the ‘canopy effect’ in the isotope ecology of temperate woodlands. J. Archaeol. Sci. 40, 3926–3935 (2013).
    Article  Google Scholar 

    45.
    Deforce, K. et al. Wood charcoal and seeds as indicators for animal husbandry in a wetland site during the late Mesolithic/early Neolithic transition period (Swifterbant culture, ca. 4600–4000 BC) in NW-Belgium. Vegetat. Hist. Archaeobot. 22, 51–60 (2013).
    Article  Google Scholar 

    46.
    Deforce, K., Bastiaens, J. & Crombé, Ph. A reconstruction of middle Holocene alluvial hardwood forests (Lower Scheldt River, N-Belgium) and their exploitation during the Mesolithic-Neolithic transition period (Swifterbant Culture, c. 4500–4000 BC). Quaternaire 251, 9–21 (2014).

    47.
    Storme, A. et al. The significance of palaeoecological indicators in reconstructing estuarine environments: A multi-proxy study of increased Middle Holocene tidal influence in the lower Scheldt river N-Belgium. Quat. Sci. Rev. 230, 106–113 (2020).
    Article  Google Scholar 

    48.
    Verhegge, J., Van Strydonck, M., Missiaen, T. & Crombé, Ph. chronology of wetland hydrological dynamics and the mesolithic-neolithic transition along the lower scheldt: a Bayesian approach. Radiocarbon 56(2), 883–898 (2014).
    CAS  Article  Google Scholar 

    49.
    Messiaen, L. Lithics in contact. The neolithization process in the lower-Scheldt basin (mid-6th to mid-4th millennium BC) from a lithic perspective (PhD thesis, Ghent University, 2020).

    50.
    Teetaert, D. Routes of technology: pottery production and mobility during the Mesolithic-Neolithic transition in the Scheldt river valley (Belgium) (PhD thesis, Ghent University, 2020).

    51.
    Arnold, D.E. Ceramic theory and cultural process ( Cambridge University Press, Cambridge, 1985).

    52.
    Gosselain, O. P. Materializing identities: an african perspective. J. Archaeol. Method and Theory 7(3), 187–217 (2000).
    Article  Google Scholar 

    53.
    Brunel, S. et al. Ancient genomes from present-day France unveil 7,000 years of its demographic history. PNAS 117(23), 12791–12798. https://doi.org/10.1073/pnas.1918034117 (2020).
    CAS  Article  PubMed  Google Scholar 

    54.
    Rivollat, M. et al. Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. Sci. Adv. 6, eaaz5344 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Manning, K. et al. The origins and spread of stock-keeping: The role of cultural and environmental influences on early Neolithic animal exploitation in Europe. Antiquity 87(338), 1046–1059 (2013).
    Article  Google Scholar 

    56.
    Cubas, M. et al. Latitudinal gradient in dairy production with the introduction of farming in Atlantic Europe. Nat. Commun. 11, 2036. https://doi.org/10.1038/s41467-020-15907-4 (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Lyman, R. L. Vertebrate taphonomy (Cambridge University Press, Cambridge, 1994).
    Google Scholar 

    58.
    Reitz, E. J. & Wing, E. S. Zooarchaeology (Cambridge University Press, Cambridge, 2008).
    Google Scholar 

    59.
    Groot, M. Handboek Zoöarcheologie (Archeologisch Centrum van de Vrije Universiteit (Hendrik Brunsting Stichting (ACVU-HBS), Amsterdam, 2010).
    Google Scholar 

    60.
    Boessneck, J., Müller, H.-H. & Teichert, M. Osteologische Unterscheidungsmerkmale zwischen Schaf (Ovis aries Linné) und Ziege (Capra hircus Linné). Kühn-Archiv 78(1–2), 1–129 (1964).
    Google Scholar 

    61.
    Degerbøl, M. Zoological Part. In The Urus (Bos primigenius Bojanus) and Neolithic domesticated cattle (Bos taurus domesticus Linné) in Denmark (eds Degerbøl, M. & Fredskil, B.) 5–177 (Det Kongelige Danske Videnskabernes Selskab, Biologiske Skrifter 17, 1970).

    62.
    Grigson, C. The uses and limitations of differences in absolute size in the distinction between the bones of aurochs (Bos primigenius) and domestic cattle (Bos taurus). In The domestication and exploitation of plants and animals (eds Ucko, P.J. & Dimbleby, G.W.) 277–293 (London, 1969).

    63.
    Hüster-Plogman, H., Schibler, J. & Steppan, K. The relationship between wild mammal exploitation, climatic fluctuations, and economic adaptations. A transdisciplinary study on Neolithic sites from the Lake Zurich region, southwest Germany and Bavaria. In Historia Animalium ex Ossibus, Festschrift für Angela von den Driesch (eds Becker, C., Manhart, H., Peters, J. & Schibler, J.) 189–200 (Rahden/Westf., 1999).

    64.
    Kysely, R. Aurochs and potential crossbreeding with domestic cattle in Central Europe in the Eneolithic period. A metric analysis of bones from the archaeological site of Kutná Hora-Denemark (Czech Republic). Anthropozoologica 43, 7–37 (2008).

    65.
    Manning, K. The cultural evolution of Neolithic Europe. EUROEVOL dataset 2: zooarchaeological data. J. Open Archaeol. Data 5 (2016). https://doi.org/10.5334/joad.41.

    66.
    Steppan, K. Climatic fluctuations and Neolithic economic adaptations in the 4th millennium BC: a case study from South-West Germany. In Papers from the EAA (European Association of Archaeologists) Third Annual Meeting at Ravenna 1997 (eds Pearce, M. & Tosi, M.) 38–45 (BAR International Series 717, Oxford, 1998).

    67.
    Steppan, K. The significance of aurochs in the food economy of the Jungneolithikum (Upper Neolithic) in South-west Germany. In Archäologie und Biologie des Auerochsen (ed Weniger, G-C.) 161–171 (Wissenschaftliche Schriften des Neanderthal Museums Bd. 1, 1999).

    68.
    Steppan, K. Ur oder Hausrind? Die Variabilität der Wildtieranteile in linearbandkeramischen Tierknochenkomplexen. In Rôle et statut de la chasse dans le Néolithique ancien danubien (5500 – 4900 av. J.-C.) (eds Arbogast, R.-M., Jeunesse, Ch. & Schibler, J.) 171–188 (Verlag Marie Leidorf, Rahden/Westfahlen, 2004).

    69.
    Weniger, G.-C. (Ed.) Archäologie und Biologie des Aurochsen (Wissenschaftliche Schriften des Neanderthal Museums 1, 1999).

    70.
    Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971).
    ADS  CAS  PubMed  Article  Google Scholar 

    71.
    Van Strydonck, M. & van der Borg, K. The construction of a preparation line for AMS-targets at the Royal Institute for Cultural Heritage Brussels. Bull. KIK 23, 228–234 (1990).
    Google Scholar 

    72.
    Nadeau, M.-J. et al. Sample throughput and data quality at the Leibniz-Labor AMS facility. Radiocarbon 40, 239–245 (1998).
    CAS  Article  Google Scholar 

    73.
    Boudin, M. et al. RICH – a new AMS facility at the Royal Institute for Cultural Heritage, Brussels Belgium. Nucl. Instr. and Meth. in Physics Res. B 361, 120–123 (2015).
    ADS  CAS  Article  Google Scholar 

    74.
    Stuiver, M. & Polach, H. A. Discussion—reporting of 14C data. Radiocarbon 19(3), 355–363 (1977).
    Article  Google Scholar 

    75.
    Reimer, P. J. et al. IntCal13 and MARINE13 radiocarbon age calibration curves 0–50000 years calBP. Radiocarbon 55(4), 1111–1150 (2013).
    Article  Google Scholar 

    76.
    Budd, P., Montgomery, J., Barreiro, B. & Thomas, R. G. Differential diagenesis of strontium in archaeological human dental tissues. Appl. Geochem 15, 687–694 (2000).
    CAS  Article  Google Scholar 

    77.
    Burton, J. Bone chemistry and trace element analysis. In Biological Anthropology of the Human Skeleton (eds Katzenberg, M. A. & Saunders, S. R.) 443–460 (John Wiley & Sons, Hoboken, NewJersey, 2008).
    Google Scholar 

    78.
    Snoeck, C. & Pellegrini, M. Comparing bioapatite carbonate pre-treatments for isotopic measurements: Part 1 – Impact on structure and chemical composition. Chem. Geol. 417, 394–403 (2015).
    ADS  CAS  Article  Google Scholar 

    79.
    de Winter, N.J., Snoeck, C., Schulting, R.J., Fernández-Crespo, T. & Claeys, Ph. Trace element distributions in Late Neolithic human molars from the Middle Ebro Valley (Spain): Palaeoenvironmental proxy or diagenesis? Palaeo3 532, 1092602019.

    80.
    Pellegrini, M. & Snoeck, C. Comparing bioapatite carbonate pre-treatments for isotopic measurements: Part 2 – Impact on carbon and oxygen isotope compositions. Chem. Geol. 420, 88–96 (2016).
    ADS  CAS  Article  Google Scholar 

    81.
    Snoeck, C. et al. Calcined bone provides a reliable substrate for strontium isotope ratios as shown by an enrichment experiment. Rap. Comm. Mass Spec. 29, 107–114 (2015).
    ADS  CAS  Article  Google Scholar 

    82.
    Weis, D. et al. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2006GC001283 (2006).
    Article  Google Scholar  More

  • in

    Arctic riparian shrub expansion indicates a shift from streams gaining water to those that lose flow

    1.
    Sturm, M., Racine, C. & Tape, K. Climate change: Increasing shrub abundance in the Arctic. Nature 411, 546 (2001).
    CAS  Article  Google Scholar 
    2.
    Tape, K. D., Sturm, M. & Racine, C. The evidence for shrub expansion in Northern Alaska and the Pan‐Arctic. Global Change Biol. 12, 686–702 (2006).
    Article  Google Scholar 

    3.
    Forbes, B. C., Fauria, M. M. & Zetterberg, P. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Global Change Biol. 16, 1542–1554 (2010).
    Article  Google Scholar 

    4.
    Frost, G. V. & Epstein, H. E. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biol. 20, 1264–1277 (2014).
    Article  Google Scholar 

    5.
    McManus, kM. et al. Satellite‐based evidence for shrub and graminoid tundra expansion in northern Q uebec from 1986 to 2010. Global Change Biol. 18, 2313–2323 (2012).
    Article  Google Scholar 

    6.
    Naito, A. T. & Cairns, D. M. Relationships between Arctic shrub dynamics and topographically derived hydrologic characteristics. Environ. Res. Lett. 6, 045506 (2011).
    Article  Google Scholar 

    7.
    Ropars, P. & Boudreau, S. Shrub expansion at the forest–tundra ecotone: Spatial heterogeneity linked to local topography. Environ. Res. Lett. 7, 015501 (2012).

    8.
    Tape, K. D., Hallinger, M., Welker, J. M. & Ruess, R. W. Landscape heterogeneity of shrub expansion in Arctic Alaska. Ecosystems 15, 711–724 (2012).
    CAS  Article  Google Scholar 

    9.
    Tape, K. D., Verbyla, D. & Welker, J. M. Twentieth century erosion in Arctic Alaska foothills: The influence of shrubs, runoff, and permafrost. J. Geophys. Res.: Biogeosci. 116, https://doi.org/10.1029/2011JG001795 (2011).

    10.
    Jorgenson, J. C., Raynolds, M. K., Reynolds, J. H. & Benson, A.-M. Twenty-five year record of changes in plant cover on tundra of northeastern Alaska. Arctic, Antarctic, Alpine Res. 47, 785–806, https://doi.org/10.1657/AAAR0014-097 (2015).
    Article  Google Scholar 

    11.
    Edlund, S. A. Reconnaissance vegetation studies on western Victoria Island, Canadian Arctic archipelago. in Current Research, Part B, Geological Survey of Canada, Paper 83-1B, 75–81 (Geological Survey of Canada, Ottawa, 1983).

    12.
    Edlund, S. A. & Egginton, P. A. Morphology and description of an outlier population of tree-sized willows on western Victoria Island, District of Franklin. in Current Research, Part A, Geological Survey of Canada, Paper 84-1A, 279–285 (Geological Survey of Canada, Ottawa, 1984).

    13.
    Maycock, P. F. & Matthews, B. An Arctic” forest” in the tundra of northern Ungava, Quebec. Arctic 19, 114–144, www.jstor.org/stable/40507312 (1966).
    Article  Google Scholar 

    14.
    Zalatan, R. & Gajewski, K. Dendrochronological potential of Salix alaxensis from the Kuujjua River area, western Canadian Arctic. Tree-Ring Res. 62, 75–82 (2006).
    Article  Google Scholar 

    15.
    Polunin, N. The birch ‘forests’ of Greenland. Nature 140, 939–940 (1937).
    Article  Google Scholar 

    16.
    Polunin, N. Conduction through roots in frozen soil. Nature 132, 313–314 (1933).
    Article  Google Scholar 

    17.
    Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 264 (2019).
    Article  CAS  Google Scholar 

    18.
    Jorgenson, M. T., Shur, Y. L. & Pullman, E. R. Abrupt increase in permafrost degradation in Arctic Alaska. Geophy. Res. Lett. 33, https://doi.org/10.1029/2005GL024960 (2006).

    19.
    Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9, 312 (2016).
    CAS  Article  Google Scholar 

    20.
    Stephani, E., Drage, J., Miller, D., Jones, B. M. & Kanevskiy, M. Taliks, cryopegs, and permafrost dynamics related to channel migration, Colville River Delta, Alaska. Permaf. Periglac. Processes 31, 239–254, https://doi.org/10.1002/ppp.2046 (2020).
    Article  Google Scholar 

    21.
    Smith, L. C., Pavelsky, T. M., MacDonald, G. M., Shiklomanov, A. I. & Lammers, R. B. Rising minimum daily flows in northern Eurasian rivers: A growing influence of groundwater in the high‐latitude hydrologic cycle. J. Geophys. Res.: Biogeosci. 112, https://doi.org/10.1029/2006JG000327 (2007).

    22.
    St. Jacques, J. M. & Sauchyn, D. J. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophys. Res. Lett. 36, https://doi.org/10.1029/2008GL035822 (2009).

    23.
    Harms, T. K., Abbott, B. W. & Jones, J. B. Thermo-erosion gullies increase nitrogen available for hydrologic export. Biogeochemistry 117, 299–311, https://doi.org/10.1007/s10533-013-9862-0 (2014).
    CAS  Article  Google Scholar 

    24.
    McClelland, J. W., Stieglitz, M., Pan, F., Holmes, R. M. & Peterson, B. J. Recent changes in nitrate and dissolved organic carbon export from the upper Kuparuk River, North Slope, Alaska. J. Geophys. Res.: Biogeosci. 112, https://doi.org/10.1029/2006JG000371 (2007).

    25.
    Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453 (2012).
    Article  Google Scholar 

    26.
    Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887 (2015).
    Article  Google Scholar 

    27.
    Ackerman, D. E. et al. Uniform shrub growth response to June temperature across the North Slope of Alaska. Environ. Res. Lett. 13, 044013, https://doi.org/10.1088/1748-9326/aab326 (2018).
    Article  Google Scholar 

    28.
    Lantz, T. C., Gergel, S. E. & Henry, G. H. Response of green alder (Alnus viridis subsp. fruticosa) patch dynamics and plant community composition to fire and regional temperature in north‐western Canada. J. Biogeogr. 37, 1597–1610 (2010).
    Google Scholar 

    29.
    Raynolds, M. K., Walker, D. A., Verbyla, D. & Munger, C. A. Patterns of change within a tundra landscape: 22-year Landsat NDVI trends in an area of the northern foothills of the Brooks Range, Alaska. Arct., Antarct., Alp. Res. 45, 249–260 (2013).
    Article  Google Scholar 

    30.
    Frost, G. V., Epstein, H. E., Walker, D. A., Matyshak, G. & Ermokhina, K. Patterned-ground facilitates shrub expansion in Low Arctic tundra. Environ. Res. Lett. 8, 015035 (2013).
    Article  Google Scholar 

    31.
    Jones, B. M. et al. Identification of unrecognized tundra fire events on the north slope of Alaska. J. Geophys. Res.: Biogeosci. 118, 1334–1344 (2013).
    Article  Google Scholar 

    32.
    Lantz, T. C., Kokelj, S. V., Gergel, S. E. & Henry, G. H. Relative impacts of disturbance and temperature: persistent changes in microenvironment and vegetation in retrogressive thaw slumps. Global Change Biol. 15, 1664–1675 (2009).
    Article  Google Scholar 

    33.
    Tape, K. D., Christie, K., Carroll, G. & O’Donnell, J. A. Novel wildlife in the Arctic: the influence of changing riparian ecosystems and shrub habitat expansion on snowshoe hares. Global Change Biol. 22, 208–219 (2016).
    Article  Google Scholar 

    34.
    Jorgenson, M. T. & Osterkamp, T. E. Response of boreal ecosystems to varying modes of permafrost degradation. Canadian J. For. Res. 35, 2100–2111 (2005).
    Article  Google Scholar 

    35.
    Schuur, E. A., Crummer, K. G., Vogel, J. G. & Mack, M. C. Plant species composition and productivity following permafrost thaw and thermokarst in Alaskan tundra. Ecosystems 10, 280–292 (2007).
    Article  Google Scholar 

    36.
    Swanson, D. K. Environmental limits of tall shrubs in Alaska’s Arctic National Parks. PLoS ONE 10, e0138387 (2015).
    Article  CAS  Google Scholar 

    37.
    Sturm, M., Douglas, T., Racine, C. & Liston, G. E. Changing snow and shrub conditions affect albedo with global implications. J.Geophys. Res.: Biogeosci. 110, https://doi.org/10.1029/2005JG000013 (2005).

    38.
    Buckeridge, K. M., Zufelt, E., Chu, H. & Grogan, P. Soil nitrogen cycling rates in low arctic shrub tundra are enhanced by litter feedbacks. Plant and Soil 330, 407–421 (2010).
    CAS  Article  Google Scholar 

    39.
    Lawrence, D. M. & Swenson, S. C. Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming. Environ. Res. Lett. 6, 045504 (2011).
    Article  Google Scholar 

    40.
    Weintraub, M. N. & Schimel, J. P. Nitrogen cycling and the spread of shrubs control changes in the carbon balance of Arctic tundra ecosystems. Bioscience 55, 408–415 (2005).
    Article  Google Scholar 

    41.
    Chapin, F. S. et al. Role of land-surface changes in Arctic summer warming. Science 310, 657–660 (2005).
    CAS  Article  Google Scholar 

    42.
    Beringer, J., Chapin, F. S. III, Thompson, C. C. & McGuire, A. D. Surface energy exchanges along a tundra-forest transition and feedbacks to climate. Agricu. For. Meteorol. 131, 143–161 (2005).
    Article  Google Scholar 

    43.
    Myers‐Smith, I. H. & Hik, D. S. Shrub canopies influence soil temperatures but not nutrient dynamics: an experimental test of tundra snow–shrub interactions. Ecol. Evol. 3, 3683–3700 (2013).
    Article  Google Scholar 

    44.
    Frost, G. V., Epstein, H. E., Walker, D. A., Matyshak, G. & Ermokhina, K. Seasonal and long-term changes to active-layer temperatures after tall shrubland expansion and succession in Arctic tundra. Ecosystems 21, 507–520 (2018).
    CAS  Article  Google Scholar 

    45.
    Liston, G. E., Mcfadden, J. P., Sturm, M. & Pielke, R. A. Modelled changes in arctic tundra snow, energy and moisture fluxes due to increased shrubs. Global Change Biol. 8, 17–32 (2002).
    Article  Google Scholar 

    46.
    Jafarov, E. E. et al. Modeling the role of preferential snow accumulation in through talik development and hillslope groundwater flow in a transitional permafrost landscape. Environ. Res. Lett. 13, 105006 (2018).
    Article  CAS  Google Scholar 

    47.
    Deslippe, J. R., Hartmann, M., Simard, S. W. & Mohn, W. W. Long-term warming alters the composition of Arctic soil microbial communities. FEMS Microbiol. Ecol. 82, 303–315 (2012).
    CAS  Article  Google Scholar 

    48.
    Geml, J., Semenova, T. A., Morgado, L. N. & Welker, J. M. Changes in composition and abundance of functional groups of arctic fungi in response to long-term summer warming. Biol. Lett. 12, 20160503 (2016).
    Article  CAS  Google Scholar 

    49.
    Koyama, A., Wallenstein, M. D., Simpson, R. T. & Moore, J. C. Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils. Front. Microbiol. 5, 516 (2014).
    Article  Google Scholar 

    50.
    Mackelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011).
    CAS  Article  Google Scholar 

    51.
    Xue, K. et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nat. Clim. Change 6, 595 (2016).
    CAS  Article  Google Scholar 

    52.
    Yang, Z. et al. Microbial community and functional gene changes in Arctic tundra soils in a microcosm warming experiment. Front. Microbiol. 8, 1741 (2017).
    Article  Google Scholar 

    53.
    Yuan, M. M. et al. Microbial functional diversity covaries with permafrost thaw-induced environmental heterogeneity in tundra soil. Global Change Biol. 24, 297–307 (2017).
    Article  Google Scholar 

    54.
    Bever, J. D., Platt, T. G. & Morton, E. R. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Ann. Rev. Microbiol. 66, 265–283 (2012).
    CAS  Article  Google Scholar 

    55.
    Van Der Heijden, M. G., Bardgett, R. D. & Van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).
    Article  Google Scholar 

    56.
    Shi, Y. et al. Vegetation-associated impacts on arctic tundra bacterial and microeukaryotic communities. Appl. Environ. Microbiol. 81, 492–501 (2015).
    Article  CAS  Google Scholar 

    57.
    Wallenstein, M. D., McMahon, S. & Schimel, J. Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiol. Ecol. 59, 428–435 (2007).
    CAS  Article  Google Scholar 

    58.
    Chu, H., Neufeld, J. D., Walker, V. K. & Grogan, P. The influence of vegetation type on the dominant soil bacteria, archaea, and fungi in a low Arctic tundra landscape. Soil Sci. Soc. Am. J. 75, 1756–1765 (2011).
    CAS  Article  Google Scholar 

    59.
    Lipson, D. A. et al. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils. Environ. Microbiol. Rep. 7, 649–657 (2015).
    CAS  Article  Google Scholar 

    60.
    Schickhoff, U., Walker, M. D. & Walker, D. A. Riparian willow communities on the Arctic Slope of Alaska and their environmental relationships: a classification and ordination analysis. Phytocoenologia 32, 145–204 (2002).
    Article  Google Scholar 

    61.
    Chu, H. et al. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ. Microbiol. 12, 2998–3006 (2010).
    CAS  Article  Google Scholar 

    62.
    Walker, D. A. et al. Vegetation of zonal patterned-ground ecosystems along the North America Arctic bioclimate gradient. Appl. Vegetation Sci. 14, 440–463 (2011).
    Article  Google Scholar 

    63.
    Fujimura, K. E. & Egger, K. N. Host plant and environment influence community assembly of High Arctic root-associated fungal communities. Fungal Ecol. 5, 409–418 (2012).
    Article  Google Scholar 

    64.
    Timling, I., Walker, D. A., Nusbaum, C., Lennon, N. J. & Taylor, D. L. Rich and cold: diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic. Mol. Ecol. 23, 3258–3272 (2014).
    CAS  Article  Google Scholar 

    65.
    Schütte, U. M. E. et al. Effect of permafrost thaw on plant and soil fungal community in a boreal forest: Does fungal community change mediate plant productivity response? J. Ecol. 107, 1737–1752 (2019).
    Article  CAS  Google Scholar 

    66.
    Natali, S. M., Schuur, E. A. G. & Rubin, R. L. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. J. Ecol. 100, 488–498 (2011).

    67.
    Johnston, E. R. et al. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths. Proc. Natl Acad. Sci. USA 116, 15096–15105, https://doi.org/10.1073/pnas.1901307116 (2019).
    CAS  Article  Google Scholar 

    68.
    Drake, T. W. et al. Increasing alkalinity export from large Russian arctic rivers. Environ. Sci. Technol. 52, 8302–8308 (2018).
    CAS  Article  Google Scholar 

    69.
    Peterson, B. J. et al. Increasing river discharge to the Arctic. Ocean. Sci. 298, 2171–2173 (2002).
    CAS  Google Scholar 

    70.
    Hamilton, T. D. Surficial Geology of the Dalton Highway (Itkillik-Sagavanirktok rivers) Area, Southern Arctic foothills, Alaska. (State of Alaska, Department of Natural Resources, Division of Geological & Geophysical Surveys, Fairbanks, AK, 2003).

    71.
    Hamilton, T. D. Glacial Geology of the Toolik Lake and Upper Kuparuk River Regions. Report No. 0568-8604, 30 (Institute of Arctic Biology, University of Alaska, Fairbank, AK, 2003).

    72.
    Osterkamp, T. & Payne, M. Estimates of permafrost thickness from well logs in northern Alaska. Cold Regions Sci. Technol. 5, 13–27 (1981).
    Article  Google Scholar 

    73.
    Kane, D. L. et al. Hydrology and Meteorology of the Central Alaskan Arctic: Data Collection and Analysis. Final Report 169 (Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK, 2014).

    74.
    Pavelsky, T. M. & Zarnetske, J. P. Rapid decline in river icings detected in Arctic Alaska: implications for a changing hydrologic cycle and river ecosystems. Geophys. Res. Lett. 44, 3228–3235 (2017).
    Article  Google Scholar 

    75.
    Walker, D. A. et al. The circumpolar Arctic vegetation map. J. Vegetation Sci. 16, 267–282 (2005).
    Article  Google Scholar 

    76.
    Minsley, BurkeJ. et al. Airborne electromagnetic imaging of discontinuous permafrost. Geophys. Res. Lett. 39, 2 (2012).
    Article  Google Scholar 

    77.
    Minsley, BurkeJ. et al. Sensitivity of airborne geophysical data to sublacustrine and near-surface permafrost thaw. Cryosphere 9, 2 (2015).
    Article  Google Scholar 

    78.
    Kreig, R. A. & Reger, R. D. Air-Photo Analysis and Summary of Landform Soil Properties Along the Route of the Trans-Alaska Pipeline System. Vol. 149 (Division of Geological & Geophysical Surveys, 1982).

    79.
    Williams, J. R. Engineering-geologic Maps of Northern Alaska, Wainwright Quadrangle. Vol. 28 (US Geological Survey, Menlo Park, CA, 1983).

    80.
    Rawlinson, S. E. Surficial Geology and Morphology of the Alaskan Central Arctic Coastal Plain. Vol. 172 (Alaska Division of Geology and Geophysical Survey, Fairbanks, AK, 1990).

    81.
    Frost, G. V. Vegetation, soils, and environmental data in Arctic Riparian Shrublands, North Slope Alaska, 2016. Arctic Data Center, https://doi.org/10.18739/A2G15TB43 (2017).

    82.
    Timling, I. Riparian Shrub expansion: soil analysis data, microbial communities and microarray gene data from the North Slope of Alaska, 2016. Arctic Data Center, https://doi.org/10.18739/A2GB1XH26 (2017).

    83.
    Liljedahl, A. K. Synoptic stream discharge August 2016, Dalton Highway, Alaska. Arctic Data Center, https://doi.org/10.18739/A2WD3Q190 (2017).

    84.
    Daanen, R. P. Elevation and permafrost active layer observations near two creeks in the foothills of the Brooks Range, Alaska, May 2017. Arctic Data Center, https://doi.org/10.18739/A2H708100 (2017).

    85.
    Daanen, R. P. Ground resistivity near two creeks in the foothills of the Brooks Range, Alaska, May 2017. Arctic Data Center, https://doi.org/10.18739/A2CF9J66P (2017).

    86.
    Brown, J., Ferrians, O. J. J., Heginbottom, J. & Melnikov, E. Circum-Arctic Map of Permafrost and Ground-Ice Conditions Version 2 [Permafrost] (National Snow and Ice Data Center), http://nsidc.org/data/GGD318 (2002). More