More stories

  • in

    Energy depletion and opportunistic microbial colonisation in white syndrome lesions from corals across the Indo-Pacific

    1.
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).
    ADS  CAS  PubMed  Google Scholar 
    2.
    Spalding, M. D. & Brown, B. E. Warm-water coral reefs and climate change. Science 350, 769–771 (2015).
    ADS  CAS  PubMed  Google Scholar 

    3.
    Randall, C. J. & van Woesik, R. Contemporary white-band disease in Caribbean corals driven by climate change. Nat. Clim. Change 5, 375–379 (2015).
    ADS  Google Scholar 

    4.
    Randall, C. J. & van Woesik, R. Some coral diseases track climate oscillations in the Caribbean. Sci. Rep. 7, 5719 (2017).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Maynard, J. et al. Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nat. Clim. Change 5, 688–694 (2015).
    ADS  Google Scholar 

    6.
    Harvell, D. et al. Coral disease, environmental drivers, and the balance between coral and microbial associates. Oceanography 20, 172–195 (2007).
    Google Scholar 

    7.
    Ruiz-Moreno, D. et al. Global coral disease prevalence associated with sea temperature anomalies and local factors. Diseases Aquatic Org. 100, 249–261 (2012).
    Google Scholar 

    8.
    Willis, B. L., Page, C. A. & Dinsdale, E. A (2004) Coral disease on the great barrier reef. in Coral Health and Disease (eds. Rosenberg, E. & Loya, Y.) 69–104 (Springer, Berlin, Heidelberg, 2004). https://doi.org/10.1007/978-3-662-06414-6_3.

    9.
    Haapkylä, J., Seymour, A. S., Trebilco, J. & Smith, D. Coral disease prevalence and coral health in the Wakatobi Marine Park, south-east Sulawesi, Indonesia. J. Marine Biol. Assoc. UK 87, 403–414 (2007).
    Google Scholar 

    10.
    Rosenberg, E. & Loya, Y. Coral Health and Disease. (Springer-Verlag, Berlin, 2004).

    11.
    Aeby, G. S. Baseline levels of coral disease in the Northwestern Hawaiian Islands. Atoll Res. Bull. 543, 471–488 (2006).
    Google Scholar 

    12.
    Roff, G., Hoegh-Guldberg, O. & Fine, M. Intra-colonial response to Acroporid ‘white syndrome’ lesions in tabular Acropora spp. (Scleractinia). Coral Reefs 25, 255–264 (2006).

    13.
    Ainsworth, T. D., Kramasky-Winter, E., Loya, Y., Hoegh-Guldberg, O. & Fine, M. Coral disease diagnostics: what’s between a plague and a band?. Appl. Environ. Microbiol. 73, 981–992 (2007).
    CAS  PubMed  Google Scholar 

    14.
    Bourne, D. G., Ainsworth, T. D., Pollock, F. J. & Willis, B. L. Towards a better understanding of white syndromes and their causes on Indo-Pacific coral reefs. Coral Reefs 34, 233–242 (2015).
    ADS  Google Scholar 

    15.
    Williams, G. J., Aeby, G. S., Cowie, R. O. M. & Davy, S. K. Predictive modeling of coral disease distribution within a reef system. PLoS ONE 5, e9264 (2010).
    ADS  PubMed  PubMed Central  Google Scholar 

    16.
    Bruno, J. F. et al. Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol. 5, e124 (2007).
    PubMed  PubMed Central  Google Scholar 

    17.
    Selig, E. R. et al. Analyzing the Relationship Between Ocean Temperature Anomalies and Coral Disease Outbreaks at Broad Spatial Scales. in Coral Reefs and Climate Change: Science and Management (eds. Phinney, J., Hoegh-Guldberg, O., Kleypas, J., Skirving, W. & Strong, A.) (American Geophysical Union, 2006).

    18.
    Brodnicke, O. B. et al. Unravelling the links between heat stress, bleaching and disease: fate of tabular corals following a combined disease and bleaching event. Coral Reefs 38, 591–603 (2019).
    ADS  Google Scholar 

    19.
    Sussman, M., Willis, B. L., Victor, S. & Bourne, D. G. Coral pathogens identified for White Syndrome (WS) epizootics in the Indo-Pacific. PLoS ONE 3, e2393 (2008).
    ADS  PubMed  PubMed Central  Google Scholar 

    20.
    Sweet, M. & Bythell, J. Ciliate and bacterial communities associated with White Syndrome and Brown Band Disease in reef-building corals. Environ. Microbiol. 14, 2184–2199 (2012).
    PubMed  PubMed Central  Google Scholar 

    21.
    Sweet, M. & Bythell, J. White Syndrome in Acropora muricata: Nonspecific bacterial infection and ciliate histophagy. Mol. Ecol. 24, 1150–1159 (2015).
    PubMed  PubMed Central  Google Scholar 

    22.
    Pollock, F. J. et al. Abundance and morphology of virus-like particles associated with the coral Acropora hyacinthus differ between healthy and white syndrome-infected states. Mar. Ecol. Prog. Ser. 510, 39–43 (2014).
    ADS  Google Scholar 

    23.
    Work, T. M. & Aeby, G. S. Pathology of tissue loss (white syndrome) in Acropora sp. corals from the Central Pacific. J. Invertebrate Pathol. 107, 127–131 (2011).

    24.
    Ainsworth, T. D., Kvennefors, E. C., Blackall, L. L., Fine, M. & Hoegh-Guldberg, O. Disease and cell death in white syndrome of Acroporid corals on the Great Barrier Reef. Mar. Biol. 151, 19–29 (2007).
    Google Scholar 

    25.
    Petes, L. E., Harvell, C. D., Peters, E., Webb, M. & Mullen, K. Pathogens compromise reproduction and induce melanization in Caribbean sea fans. Mar. Ecol. Prog. Ser. 264, 167–171 (2003).
    ADS  Google Scholar 

    26.
    Brown, B. & Bythell, J. Perspectives on mucus secretion in reef corals. Mar. Ecol. Prog. Ser. 296, 291–309 (2005).
    ADS  CAS  Google Scholar 

    27.
    Toledo-Hernández, C. & Ruiz-Diaz, C. P. The immune responses of the coral. Invertebrate Surv. J. 11, 319–328 (2014).
    Google Scholar 

    28.
    Mydlarz, L. D., Fuess, L. E., Mann, W. T., Pinzón, J. H. & Gochfeld, D. J. The Cnidaria, Past, Present and Future (Springer, Berlin, 2016).
    Google Scholar 

    29.
    Miller, D. J. et al. The innate immune repertoire in cnidaria–ancestral complexity and stochastic gene loss. Genome Biol. 8, R59 (2007).
    PubMed  PubMed Central  Google Scholar 

    30.
    Vidal-Dupiol, J. et al. Physiological responses of the scleractinian coral Pocillopora damicornis to bacterial stress from Vibrio coralliilyticus. J. Exp. Biol. 214, 1533–1545 (2011).
    CAS  PubMed  Google Scholar 

    31.
    Wright, R. M., Aglyamova, G. V., Meyer, E. & Matz, M. V. Gene expression associated with white syndromes in a reef building coral, Acropora hyacinthus. BMC Genom. 16, 371 (2015).
    Google Scholar 

    32.
    Mydlarz, L. D. & Harvell, C. D. Peroxidase activity and inducibility in the sea fan coral exposed to a fungal pathogen. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 146, 54–62 (2007).
    PubMed  Google Scholar 

    33.
    Mydlarz, L. D., Jones, L. E. & Harvell, C. D. Innate immunity, environmental drivers, and disease ecology of marine and freshwater invertebrates. Annu. Rev. Ecol. Evol. Syst. 37, 251–288 (2006).
    Google Scholar 

    34.
    Anderson, D. & Gilchrist, S. Development of a novel method for coral RNA isolation and the expression of a programmed cell death gene in White Plague-diseased Diploria strigosa (Dana, 1846). in Proceedings of the 11th International Coral Reef Symposium (2008).

    35.
    Anderson, D. A., Walz, M. E., Weil, E., Tonellato, P. & Smith, M. C. RNA-Seq of the Caribbean reef-building coral Orbicella faveolata (Scleractinia-Merulinidae) under bleaching and disease stress expands models of coral innate immunity. PeerJ 4, e1616 (2016).
    PubMed  PubMed Central  Google Scholar 

    36.
    Loya, Y. Skeletal regeneration in a Red Sea scleractinian coral population. Nature 261, 490–491 (1976).
    ADS  CAS  PubMed  Google Scholar 

    37.
    Wahle, C. M. Regeneration of injuries among Jamaican gorgonians: the roles of colony physiology and environment. Biol. Bull. 165, 778–790 (1983).
    PubMed  Google Scholar 

    38.
    Ward, S. The effect of damage on the growth, reproduction and storage of lipids in the scleractinian coral Pocillopora damicornis (Linnaeus). J. Exp. Mar. Biol. Ecol. 187, 193–206 (1995).
    CAS  Google Scholar 

    39.
    Reshef, L., Koren, O., Loya, Y., Zilber-Rosenberg, I. & Rosenberg, E. The coral probiotic hypothesis. Environ. Microbiol. 8, 2068–2073 (2006).
    CAS  PubMed  Google Scholar 

    40.
    Sheridan, C. et al. Sedimentation rapidly induces an immune response and depletes energy stores in a hard coral. Coral Reefs 33, 1067–1076 (2014).
    ADS  Google Scholar 

    41.
    Palmer, C. V. Immunity and the coral crisis. Commun. Biol. 1, 91 (2018).
    PubMed  PubMed Central  Google Scholar 

    42.
    Anthony, K. R. N., Hoogenboom, M. O., Maynard, J. A., Grottoli, A. G. & Middlebrook, R (2011) Energetics approach to predicting mortality risk from environmental stress: a case study of coral bleaching. J. Ecol. (2011). https://doi.org/10.1111/j.1365-2435.2008.01531.x@10.1111/(ISSN)1365-2745.VI_OA_2011.

    43.
    Lesser, M. P. Using energetic budgets to assess the effects of environmental stress on corals: are we measuring the right things?. Coral Reefs 32, 25–33 (2013).
    ADS  Google Scholar 

    44.
    Parrish, C. C. Lipids in marine ecosystems. ISRN Oceanography 604045 (2013) https://doi.org/10.5402/2013/604045.

    45.
    Bergé, J.-P. & Barnathan, G. Fatty acids from lipids of marine organisms: molecular biodiversity, rolesas biomarkers, biologically active compounds, and economical aspects. in Marine Biotechnology I (eds. Ulber, R. & Le Gal, Y.) 49–125 (Springer, Berlin, Heidelberg, 2005). https://doi.org/10.1007/b135782.

    46.
    Farre, B., Cuif, J.-P. & Dauphin, Y. Occurrence and diversity of lipids in modern coral skeletons. Zoology 113, 250–257 (2010).
    PubMed  Google Scholar 

    47.
    Azeez, O. I., Meintjes, R. & Chamunorwa, J. P. Fat body, fat pad and adipose tissues in invertebrates and vertebrates: the nexus. Lipids Health Disease 13, 71 (2014).
    Google Scholar 

    48.
    Baumann, J., Grottoli, A. G., Hughes, A. D. & Matsui, Y. Photoautotrophic and heterotrophic carbon in bleached and non-bleached coral lipid acquisition and storage. J. Exp. Mar. Biol. Ecol. 461, 469–478 (2014).
    CAS  Google Scholar 

    49.
    Towle, E. K., Enochs, I. C. & Langdon, C. Threatened Caribbean coral is able to mitigate the adverse effects of ocean acidification on calcification by increasing feeding rate. PLoS ONE 10, e0123394 (2015).
    PubMed  PubMed Central  Google Scholar 

    50.
    Meesters, E. H. & Bak, R. P. M. Effects of coral bleaching on tissue regeneration potential and colony survival. Mar. Ecol. Prog. Ser. 96, 189–198 (1993).
    ADS  Google Scholar 

    51.
    Mascarelli, P. E. & Bunkley-William, L. An experimental field evaluation of healing in damaged, unbleached and artificially bleached star coral, Montastraea annularis. Bull. Mar. Sci. 65, 577–586 (1999).
    Google Scholar 

    52.
    Oren, U., Rinkevich, B. & Loya, Y. Oriented intra-colonial transport of 14C labeled materials during coral regeneration. Mar. Ecol. Prog. Ser. 161, 117–122 (1997).
    ADS  Google Scholar 

    53.
    Oren, U., Brickner, I. & Loya, Y. Prudent sessile feeding by the corallivore snail, Coralliophila violacea on coral energy sinks. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 2043–2050 (1998).
    Google Scholar 

    54.
    Roff, G., Hoegh-Guldberg, O. & Fine, M. Intra-colonial response to Acroporid “white syndrome” lesions in tabular Acropora spp. (Scleractinia). Coral Reefs 25, 255 (2006).

    55.
    Kramarsky-Winter, E. What Can Regeneration Processes Tell Us About Coral Disease? in Coral Health and Disease (eds. Rosenberg, E. & Loya, Y.) 217–230 (Springer, Berlin, Heidelberg, 2004). https://doi.org/10.1007/978-3-662-06414-6_10.

    56.
    Mullen, K. M., Peters, E. C. & Harvell, C. D. Coral Resistance to Disease. in Coral Health and Disease (eds. Rosenberg, E. & Loya, Y.) 377–399 (Springer, Berlin, Heidelberg, 2004). https://doi.org/10.1007/978-3-662-06414-6_22.

    57.
    Andersen, S. B., Vestergaard, M. L., Ainsworth, T. D., Hoegh-Guldberg, O. & Kühl, M. Acute tissue death (white syndrome) affects the microenvironment of tabular Acropora corals. Aquatic Biol. 10, 99–104 (2010).
    Google Scholar 

    58.
    Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol. 70, 317–340 (2016).
    CAS  PubMed  Google Scholar 

    59.
    Bourne, D. G. et al. Microbial disease and the coral holobiont. Trends Microbiol. 17, 554–562 (2009).
    CAS  PubMed  Google Scholar 

    60.
    Ritchie, K. B. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar. Ecol. Prog. Ser. 322, 1–14 (2006).
    ADS  CAS  Google Scholar 

    61.
    Shnit-Orland, M. & Kushmaro, A. Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol. Ecol. 67, 371–380 (2009).
    CAS  PubMed  Google Scholar 

    62.
    Rosenberg, E., Koren, O., Reshef, L., Efrony, R. & Zilber-Rosenberg, I. The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 5, 355–362 (2007).
    CAS  PubMed  Google Scholar 

    63.
    Sweet, M. J. & Bulling, M. T. On the importance of the microbiome and pathobiome in coral health and disease. Front. Mar. Sci. 4, 9 (2017).
    Google Scholar 

    64.
    Egan, S. & Gardiner, M. Microbial dysbiosis: rethinking disease in marine ecosystems. Front. Microbiol. 7, 991 (2016).
    PubMed  PubMed Central  Google Scholar 

    65.
    Sweet, M. et al. Compositional homogeneity in the pathobiome of a new, slow-spreading coral disease. Microbiome 7, 139 (2019).
    PubMed  PubMed Central  Google Scholar 

    66.
    Kvennefors, E. C. E. et al. Analysis of evolutionarily conserved innate immune components in coral links immunity and symbiosis. Dev. Comp. Immunol. 34, 1219–1229 (2010).
    CAS  PubMed  Google Scholar 

    67.
    Connelly, M. T., McRae, C. J., Liu, P.-J. & Traylor-Knowles, N. Lipopolysaccharide treatment stimulates Pocillopora coral genotype-specific immune responses but does not alter coral-associated bacteria communities. Dev. Comp. Immunol. 109, 103717 (2020).
    CAS  PubMed  Google Scholar 

    68.
    Pollock, F. J., Wada, N., Torda, G., Willis, B. L. & Bourne, D. G. White syndrome-affected corals have a distinct microbiome at disease lesion fronts. Appl. Environ. Microbiol. 83, e02799-e2816 (2017).
    PubMed  Google Scholar 

    69.
    Wada, N. et al. In situ visualization of bacterial populations in coral tissues: pitfalls and solutions. PeerJ 4, e2424 (2016).
    PubMed  PubMed Central  Google Scholar 

    70.
    Daims, H., Brühl, A., Amann, R., Schleifer, K. H. & Wagner, M. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 434–444 (1999).
    CAS  PubMed  Google Scholar 

    71.
    Wallner, G., Amann, R. & Beisker, W. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14, 136–143 (1993).
    CAS  PubMed  Google Scholar 

    72.
    Zack, G. W., Rogers, W. E. & Latt, S. A. Automatic measurement of sister chromatid exchange frequency. J. Histochem. Cytochem. 25, 741–753 (1977).
    CAS  PubMed  Google Scholar 

    73.
    Conlan, J. A., Jones, P. L., Turchini, G. M., Hall, M. R. & Francis, D. S. Changes in the nutritional composition of captive early-mid stage Panulirus ornatus phyllosoma over ecdysis and larval development. Aquaculture 434, 159–170 (2014).
    CAS  Google Scholar 

    74.
    Parrish, C. C., Bodennec, G. & Gentien, P. Determination of glycoglycerolipids by Chromarod thin-layer chromatography with Iatroscan flame ionization detection. J. Chromatogr. A 741, 91–97 (1996).
    CAS  Google Scholar 

    75.
    Christie, W. W. & Han, X. Lipid Analysis: Isolation, separation, identification and lipidomic analysis (Woodhead Publishing Limited, Cambridge, 2010).
    Google Scholar 

    76.
    Ackman, R. G. The gas chromatograph in practical analyses of common and uncommon fatty acids for the 21st century. Anal. Chim. Acta 465, 175–192 (2002).
    CAS  Google Scholar 

    77.
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2016).

    78.
    RStudio: Integrated development environment for R 0.99.903. (2015).

    79.
    de Mendiburu, F. Statistical Procedures for Agricultural Research. (2019).

    80.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, New York, 2016).
    Google Scholar 

    81.
    Handl, S., Dowd, S. E., Garcia-Mazcorro, J. F., Steiner, J. M. & Suchodolski, J. S. Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS Microbiol. Ecol. 76, 301–310 (2011).
    CAS  PubMed  Google Scholar 

    82.
    Suchodolski, J. S. et al. The effect of the macrolide antibiotic tylosin on microbial diversity in the canine small intestine as demonstrated by massive parallel 16S rRNA gene sequencing. BMC Microbiol. 9, 210 (2009).
    PubMed  PubMed Central  Google Scholar 

    83.
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    84.
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    85.
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl. Acids Res. 41, D590–D596 (2013).
    CAS  PubMed  Google Scholar 

    86.
    Anderson, M., Gorley, R. N. & Clarke, R. K. Permanova+ for Primer: Guide to Software and Statistical Methods. (Primer-E Limited, 2008).

    87.
    Clarke, K. R. & Gorley, R. N. PRIMER v6: User Manual/Tutorial (Plymouth Routines in Multivariate Ecological Research) (Primer-E Ltd, Plymouth, 2006).
    Google Scholar 

    88.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
    Google Scholar 

    89.
    Morton, J. T. et al. Balance Trees Reveal Microbial Niche Differentiation. mSystems 2, e00162-16 (2017).

    90.
    Dixon, P. & Palmer, M. W. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).
    Google Scholar 

    91.
    Kolde, R. Pretty Heatmaps. (2018).

    92.
    Martinez Arbizu, P. pairwiseAdonis: Pairwise multilevel comparison using adonis. (2019).

    93.
    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. emmeans: Estimated Marginal Means, aka Least-Square Means. (2019).

    94.
    Graves, S., Piepho, H.-P. & Selzer, L. multcompView: Visualizations of Paired Comparisons. (2015).

    95.
    Wada, N. et al. Characterization of coral-associated microbial aggregates (CAMAs) within tissues of the coral Acropora hyacinthus. Sci. Rep. 9, 14662 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    96.
    Sunagawa, S. et al. Bacterial diversity and White Plague disease-associated community changes in the Caribbean coral Montastraea faveolata. ISME J. 3, 512–521 (2010).
    Google Scholar 

    97.
    Cárdenas, A., Rodriguez-R, L. M., Pizarro, V., Cadavid, L. F. & Arévalo-Ferro, C. Shifts in bacterial communities of two caribbean reef-building coral species affected by white plague disease. ISME J. 6, 502–512 (2012).
    PubMed  Google Scholar 

    98.
    Mydlarz, L. D., Holthouse, S. F., Peters, E. C. & Harvell, C. D. Cellular responses in sea fan corals: granular amoebocytes react to pathogen and climate stressors. PLoS ONE 3, e1811 (2008).
    ADS  PubMed  PubMed Central  Google Scholar 

    99.
    Palmer, C. V. & Traylor-Knowles, N. Towards an integrated network of coral immune mechanisms. Proc. R. Soc. B: Biol. Sci. 279, 4106–4114 (2012).
    CAS  Google Scholar 

    100.
    Fang, L., Chen, Y. J. & Chen, C. Why does the white tip of stony coral grow so fast without zooxanthellae?. Mar. Biol. 103, 359–363 (1989).
    Google Scholar 

    101.
    Conlan, J. A., Humphrey, C. A., Severati, A. & Francis, D. S. Intra-colonial diversity in the scleractinian coral, Acropora millepora: identifying the nutritional gradients underlying physiological integration and compartmentalised functioning. PeerJ 6, e4239 (2018).
    PubMed  PubMed Central  Google Scholar 

    102.
    Dodds, L. A., Black, K. D., Orr, H. & Roberts, J. M. Lipid biomarkers reveal geographical differences in food supply to the cold-water coral Lophelia pertusa (Scleractinia). Mar. Ecol. Prog. Ser. 397, 113–124 (2009).
    ADS  CAS  Google Scholar 

    103.
    Harriott, V. J. Coral lipids and environmental stress. Environ. Monit. Assess. 25, 131–139 (1993).
    CAS  PubMed  Google Scholar 

    104.
    Grottoli, A. G. & Rodrigues, L. J. Bleached Porites compressa and Montipora capitata corals catabolize δ13C-enriched lipids. Coral Reefs 30, 687 (2011).
    ADS  Google Scholar 

    105.
    Rodrigues, L. J., Grottoli, A. G. & Pease, T. K. Lipid class composition of bleached and recoveringPorites compressaDana 1846 andMontipora capitataDana, 1846 corals from Hawaii. J. Exp. Mar. Biol. Ecol. 358, 136–143 (2008).
    CAS  Google Scholar 

    106.
    Figueiredo, J. et al. Ontogenetic change in the lipid and fatty acid composition of scleractinian coral larvae. Coral Reefs 31, 613–619 (2012).
    ADS  Google Scholar 

    107.
    Pollock, F. J. et al. Reduced diversity and stability of coral-associated bacterial communities and suppressed immune function precedes disease onset in corals. R. Soc. Open Sci. 6, 190355 (2019).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    108.
    Stanley, D. W. Eicosanoids in Invertebrate Signal Transduction Systems (Princeton University Press, Princeton, 2014).
    Google Scholar 

    109.
    Dennis, E. A. & Norris, P. C. Eicosanoid storm in infection and inflammation. Nat. Rev. Immunol. 15, 511–523 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    110.
    Kaur, G., Cameron-Smith, D., Garg, M. & Sinclair, A. J. Docosapentaenoic acid (22:5n–3): a review of its biological effects. Prog. Lipid Res. 50, 28–34 (2011).
    CAS  PubMed  Google Scholar 

    111.
    Ushijima, B. et al. Mutation of the toxR or mshA genes from Vibrio coralliilyticus strain OCN014 reduces infection of the coral Acropora cytherea. Environ. Microbiol. 18, 4055–4067 (2016).
    CAS  PubMed  Google Scholar 

    112.
    Zaneveld, J. R., McMinds, R. & Vega Thurber, R. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 17121 (2017).
    CAS  PubMed  Google Scholar 

    113.
    Flanagan, J. L. et al. Loss of bacterial diversity during antibiotic treatment of intubated patients colonized with Pseudomonas aeruginosa. J. Clin. Microbiol. 45, 1954–1962 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    114.
    Roder, C. et al. Bacterial profiling of White Plague disease in a comparative coral species framework. ISME J.l 8, 31–39 (2014).
    CAS  Google Scholar 

    115.
    Sekar, R., Mills, D. K., Remily, E. R., Voss, J. D. & Richardson, L. L. Microbial communities in the surface mucopolysaccharide layer and the black band microbial mat of black band-diseased Siderastrea siderea. Appl. Environ. Microbiol. 72, 5963–5973 (2006).
    CAS  PubMed  PubMed Central  Google Scholar 

    116.
    Meyer, J. L., Paul, V. J. & Teplitski, M. Community shifts in the surface microbiomes of the coral Porites astreoides with Unusual Lesions. PLoS ONE 9, e100316 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    117.
    Apprill, A., Hughen, K. & Mincer, T. Major similarities in the bacterial communities associated with lesioned and healthy Fungiidae corals. Environ. Microbiol. 15, 2063–2072 (2013).
    CAS  PubMed  Google Scholar 

    118.
    Mouchka, M. E., Hewson, I. & Harvell, C. D. Coral-associated bacterial assemblages: current knowledge and the potential for climate-driven impacts. Integr. Comp. Biol. 50, 662–674 (2010).
    PubMed  Google Scholar 

    119.
    Hernandez-Agreda, A., Leggat, W., Bongaerts, P. & Ainsworth, T. D. The Microbial Signature Provides Insight into the Mechanistic Basis of Coral Success across Reef Habitats. mBio 7, e00560–16 (2016).

    120.
    Reis, A. M. M. et al. Bacterial diversity associated with the Brazilian endemic reef coral Mussismilia braziliensis. J. Appl. Microbiol. 106, 1378–1387 (2009).
    CAS  PubMed  Google Scholar 

    121.
    Morrow, K. M., Moss, A. G., Chadwick, N. E. & Liles, M. R. Bacterial associates of two Caribbean coral species reveal species-specific distribution and geographic variability. Appl. Environ. Microbiol. 78, 6438–6449 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    122.
    Ziegler, M. et al. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Mar. Pollut. Bull. 105, 629–640 (2016).
    CAS  PubMed  Google Scholar 

    123.
    Meron, D. et al. The impact of reduced pH on the microbial community of the coral Acropora eurystoma. ISME J. 5, 51–60 (2011).
    PubMed  Google Scholar 

    124.
    Meron, D. et al. Changes in coral microbial communities in response to a natural pH gradient. ISME J. 6, 1775–1785 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    125.
    Frias-Lopez, J., Zerkle, A. L., Bonheyo, G. T. & Fouke, B. W. Partitioning of bacterial communities between seawater and healthy, black band diseased, and dead coral surfaces. Appl. Environ. Microbiol. 68, 2214–2228 (2002).
    CAS  PubMed  PubMed Central  Google Scholar 

    126.
    Webster, N. S., Xavier, J. R., Freckelton, M., Motti, C. A. & Cobb, R. Shifts in microbial and chemical patterns within the marine sponge Aplysina aerophoba during a disease outbreak. Environ. Microbiol. 10, 3366–3376 (2008).
    CAS  PubMed  Google Scholar 

    127.
    Pantos, O. & Bythell, J. C. Bacterial community structure associated with white band disease in the Elkhorn coral Acropora palmata determined using culture-independent 16S rRNA techniques. Diseases Aquat. Org. 69, 79–88 (2006).
    CAS  Google Scholar 

    128.
    de Castro, A. P. et al. Bacterial community associated with healthy and diseased reef coral Mussismilia hispida from Eastern Brazil. Microb. Ecol. 59, 658–667 (2010).
    PubMed  Google Scholar 

    129.
    Garcia, G. D. et al. Metagenomic analysis of healthy and white plague-affected Mussismilia braziliensis corals. Microb. Ecol. 65, 1076–1086 (2013).
    PubMed  Google Scholar 

    130.
    Cottrell, M. T. & Kirchman, D. L. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl. Environ. Microbiol. 66, 1692–1697 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    131.
    Peixoto, R. S., Rosado, P. M., Leite, D. C. de A., Rosado, A. S. & Bourne, D. G. Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience. Front. Microbiol. 8, 341 (2017).

    132.
    Raina, J.-B., Tapiolas, D., Willis, B. L. & Bourne, D. G. Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl. Environ. Microbiol. 75, 3492–3501 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    133.
    Todd, J. D. et al. Molecular dissection of bacterial acrylate catabolism–unexpected links with dimethylsulfoniopropionate catabolism and dimethyl sulfide production. Environ. Microbiol. 12, 327–343 (2010).
    CAS  PubMed  Google Scholar 

    134.
    Pisapia, C., Anderson, K. & Pratchett, M. S. Intraspecific Variation in Physiological Condition of Reef-Building Corals Associated with Differential Levels of Chronic Disturbance. PLoS One 9, (2014).

    135.
    Towle, E. K. Heterotrophy and lipids as indicators of resilience to climate change stress in scleractinian corals. (University of Miami, 2015). More

  • in

    Impairment of microbial and meiofaunal ecosystem functions linked to algal forest loss

    1.
    Halpern, B. J. et al. A global map of human impact on marine ecosystems. Science 319, 948–952. https://doi.org/10.1126/science.1149345 (2008).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168. https://doi.org/10.1126/science.1187512 (2010).
    ADS  CAS  Article  Google Scholar 

    3.
    Bullock, J. M., Aronson, J., Newton, A. C., Pywell, R. F. & Rey-Benayas, J. M. Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol. Evol. 26(10), 541–549. https://doi.org/10.1016/j.tree.2011.06.011 (2011).
    Article  PubMed  Google Scholar 

    4.
    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419 (2003).
    Article  Google Scholar 

    5.
    Stockwell, C. A., Hendry, A. P. & Kinnison, M. T. Contemporary evolution meets conservation biology. Trends Ecol. Evol. 18, 94–101. https://doi.org/10.1016/S0169-5347(02)00044-7 (2003).
    Article  Google Scholar 

    6.
    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386. https://doi.org/10.2307/3545850 (1994).
    Article  Google Scholar 

    7.
    Dubois, S., Retiere, C. & Olivier, F. Biodiversity associated with Sabellaria alveolata (Polychaeta: Sabellariidae) reefs: effects of human disturbances. J. Mar. Biol. Assoc. UK 82, 817–826. https://doi.org/10.1017/s0025315402006185 (2002).
    Article  Google Scholar 

    8.
    Gutierrez, J. L., Jones, C. G., Strayer, D. L. & Iribarne, O. O. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101(1), 79–90. https://doi.org/10.1034/j.1600-0706.2003.12322.x (2003).
    Article  Google Scholar 

    9.
    Bulleri, F. et al. The role of wave-exposure and human impacts in regulating the distribution of alternative habitats on NW Mediterranean rocky reefs. Estuar. Coast. Shelf Sci. 201, 114–122. https://doi.org/10.1016/j.ecss.2016.02.013 (2018).
    ADS  Article  Google Scholar 

    10.
    Ling, S. D. Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state. Oecologia 153, 883–894. https://doi.org/10.1007/s00442-008-1043-9 (2008).
    ADS  Article  Google Scholar 

    11.
    Maggi, E., Bertocci, I., Vaselli, S. & Benedetti-Cecchi, L. Effects of changes in number, identity and abundance of habitat-forming species on assemblages of rocky seashores. Mar. Ecol. Prog. Ser. 381, 39–49. https://doi.org/10.3354/meps07949 (2009).
    ADS  Article  Google Scholar 

    12.
    Lemieux, J. & Cusson, M. Effects of habitat-forming species richness, evenness, identity, and abundance on benthic intertidal community establishment and productivity. PLoS ONE 9(10), e109261. https://doi.org/10.1371/journal.pone.0109261 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    13.
    De La Fuente, G. et al. The effect of Cystoseira canopy on the value of midlittoral habitats in NW Mediterranean, an emergy assessment. Ecol. Model. 404, 1–11. https://doi.org/10.1016/j.ecolmodel.2019.04.005 (2019).
    Article  Google Scholar 

    14.
    Steneck, R. S. et al. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459. https://doi.org/10.1017/S0376892902000322 (2002).
    Article  Google Scholar 

    15.
    Mineur, F. et al. European seaweeds under pressure: consequences for communities and ecosystem functioning. J. Sea Res. 98, 91–108. https://doi.org/10.1016/j.seares.2014.11.004 (2015).
    ADS  Article  Google Scholar 

    16.
    Barredo, J. I., Caudullo, G. & Dosio, A. Mediterranean habitat loss under future climate conditions: assessing impacts on the Natura 2000 protected area network. Appl. Geogr. 75, 83–92. https://doi.org/10.1016/j.apgeog.2016.08.003 (2016).
    Article  Google Scholar 

    17.
    Thibaut, T., Pinedo, S., Torras, X. & Ballesteros, E. Long-term decline of the populations of Fucales (Cystoseira spp. and Sargassum spp.) in the Albères coast (France, North-western Mediterranean). Mar. Pollut. Bull. 50, 1472–1489. https://doi.org/10.1016/j.marpolbul.2005.06.014 (2005).
    CAS  Article  PubMed  Google Scholar 

    18.
    Blanfuné, A., Boudouresque, C. F., Verlaque, M. & Thibaut, T. The fate of Cystoseira crinita, a forest-forming Fucale (Phaeophyceae, Stramenopiles), in France (North Western Mediterranean Sea). Estuar. Coast. Shelf Sci. 181, 196–208. https://doi.org/10.1016/j.ecss.2016.08.049 (2016).
    ADS  Article  Google Scholar 

    19.
    Thibaut, T. et al. Unexpected abundance and long-term relative stability of the brown alga Cystoseira amentacea, hitherto regarded as a threatened species, in the north-western Mediterranean Sea. Mar. Pollut. Bull. 89, 305–323. https://doi.org/10.1016/j.marpolbul.2014.09.043 (2014).
    CAS  Article  PubMed  Google Scholar 

    20.
    Thibaut, T. et al. Unexpected temporal stability of Cystoseira and Sargassum forests in Port-Cros, one of the oldest Mediterranean marine National Parks. Cryptogamie Algologie 37(1), 61–90. https://doi.org/10.7872/crya/v37.iss1.2016.61 (2016).
    Article  Google Scholar 

    21.
    Iveša, L., Djakovac, T. & Devescovi, M. Long-term fluctuations in Cystoseira populations along the west Istrian Coast (Croatia) related to eutrophication patterns in the northern Adriatic Sea. Mar. Pollut. Bull. 106, 162–173. https://doi.org/10.1016/j.marpolbul.2016.03.010 (2016).
    CAS  Article  PubMed  Google Scholar 

    22.
    Blanfuné, A., Boudouresque, C. F., Verlaque, M. & Thibaut, T. The ups and downs of a canopy-forming seaweed over a span of more than one century. Sci. Rep. 9, 5250. https://doi.org/10.1038/s41598-019-41676-2 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    Tamburello, L., Ravaglioli, C., Mori, G., Nuccio, C. & Bulleri, F. Enhanced nutrient loading and herbivory do not depress the resilience of subtidal canopy forests in Mediterranean oligotrophic waters. Mar. Environ. Res. 149, 7–17. https://doi.org/10.1016/j.marenvres.2019.05.015 (2019).
    CAS  Article  PubMed  Google Scholar 

    24.
    EEC. 1992. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal L 206, 22/07/1992 p. 0007-0050.

    25.
    EC. 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal L 327, 22/12/2000 p. 0001-0073.

    26.
    Orfanidis, S., Panayotidis, P. & Stamatis, N. An insight to the ecological evaluation index (EEI). Ecol. Indic. 3(1), 27–33. https://doi.org/10.1016/S1470-160X(03)00008-6 (2003).
    Article  Google Scholar 

    27.
    Ballesteros, E. et al. A new methodology based on littoral community cartography dominated by macroalgae for the implementation of the European Water Framework Directive. Mar. Pollut. Bull. 55(1), 172–180. https://doi.org/10.1016/j.marpolbul.2006.08.038 (2007).
    CAS  Article  PubMed  Google Scholar 

    28.
    Blanfuné, A. et al. The CARLIT method for the assessment of the ecological quality of European Mediterranean waters: relevance, robustness and possible improvements. Ecol. Indic. 72, 249–259. https://doi.org/10.1016/j.ecolind.2016.07.049 (2017).
    Article  Google Scholar 

    29.
    Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742. https://doi.org/10.1038/ngeo2790 (2016).
    ADS  CAS  Article  Google Scholar 

    30.
    Björk, M., Short, F., Mcleod, E. & Beer, S. Managing seagrasses for resilience to climate change (IUCN, Gland, 2008). ISBN: 978-2-8317-1089-1.

    31.
    Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3(11), 961–968. https://doi.org/10.1038/NCLIMATE1970 (2013).
    ADS  CAS  Article  Google Scholar 

    32.
    Gattuso, J. P. et al. Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci. 5, 1–18. https://doi.org/10.3389/fmars.2018.00337 (2018).
    Article  Google Scholar 

    33.
    Verdura, J., Sales, M., Ballesteros, E., Cefalì, M. E. & Cebrian, E. Restoration of a canopy-forming alga based on recruitment enhancement: methods and long-term success assessment. Front. Plant Sci. 9, 1832. https://doi.org/10.3389/fpls.2018.01832 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    34.
    Piazzi, L. & Ceccherelli, G. Effect of sea urchin human harvest in promoting canopy forming algae restoration. Estuar. Coast. Shelf Sci. 219, 273–277. https://doi.org/10.1016/j.ecss.2019.02.028 (2019).
    ADS  Article  Google Scholar 

    35.
    Tamburello, L. et al. Are we ready for scaling up restoration actions? An insight from Mediterranean macroalgal canopies. PLoS ONE 14(10), e0224477. https://doi.org/10.1371/journal.pone.0224477 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    36.
    Bianchelli, S., Buschi, E., Danovaro, R. & Pusceddu, A. Biodiversity loss and turnover in alternative states in the Mediterranean Sea: a case study on meiofauna. Sci. Rep. 6, 34544. https://doi.org/10.1038/srep34544 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    37.
    Ceccherelli, G. et al. Seagrass collapse due to synergistic stressors is not anticipated by phenological changes. Oecologia 186(4), 1137–1152. https://doi.org/10.1007/s00442-018-4075-9 (2018).
    ADS  Article  PubMed  Google Scholar 

    38.
    Ravaglioli, C. et al. Macro-grazer herbivory regulates seagrass response to pulse and press nutrient loading. Mar. Environ. Res. 136, 54–61. https://doi.org/10.1016/j.marenvres.2018.02.019 (2018).
    CAS  Article  PubMed  Google Scholar 

    39.
    Thiriet, P. D. et al. Abundance and diversity of crypto-and necto-benthic coastal fish are higher in marine forests than in structurally less complex macroalgal assemblages. PLoS ONE 11(10), e0164121. https://doi.org/10.1371/journal.pone.0164121 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Melis, R., Ceccherelli, G., Piazzi, L. & Rustici, M. Macroalgal forests and sea urchin barrens: structural complexity loss, fisheries exploitation and catastrophic regime shifts. Ecol. Complex 37, 32–37. https://doi.org/10.1016/j.ecocom.2018.12.005 (2019).
    Article  Google Scholar 

    41.
    Grime, J. P. Biodiversity and ecosystem function: the debate deepens. Science 277, 1260–1261. https://doi.org/10.1126/science.277.5330.1260 (1997).
    CAS  Article  Google Scholar 

    42.
    Srivastava, D. S. & Vellend, M. Biodiversity-ecosystem function research: is it relevant to conservation?. Annu. Rev. Ecol. Evol. Syst. 36, 267–294. https://doi.org/10.1146/annurev.ecolsys.36.102003.152636 (2005).
    Article  Google Scholar 

    43.
    Montefalcone, M. et al. The exergy of a phase shift: ecosystem functioning loss in seagrass meadows of the Mediterranean Sea. Estuar. Coast. Shelf Sci. 156, 186–194. https://doi.org/10.1016/j.ecss.2014.12.001 (2015).
    ADS  Article  Google Scholar 

    44.
    Naeem, S. & Wright, J. P. Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecol. Lett. 6, 567–579. https://doi.org/10.1046/j.1461-0248.2003.00471.x (2003).
    Article  Google Scholar 

    45.
    Balvanera, P. et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156. https://doi.org/10.1111/j.1461-0248.2006.00963.x (2006).
    Article  PubMed  Google Scholar 

    46.
    Mensens, C., De Laender, F., Janssen, C. R., Sabbe, K. & De Troch, M. Stressor induced biodiversity gradients: revisiting biodiversity-ecosystem functioning relationships. Oikos 124(6), 677–684. https://doi.org/10.1111/oik.01904 (2014).
    Article  Google Scholar 

    47.
    Danovaro, R. et al. Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Curr. Biol. 18, 1–8. https://doi.org/10.1016/j.cub.2007.11.056 (2008).
    CAS  Article  PubMed  Google Scholar 

    48.
    Pusceddu, A., Gambi, C., Corinaldesi, C., Scopa, M. & Danovaro, R. Relationships between meiofaunal biodiversity and prokaryotic heterotrophic production in different tropical habitats and oceanic regions. PLoS ONE 9(3), e91056. https://doi.org/10.1371/journal.pone.0091056 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    49.
    Danovaro, R., Gambi, C. & Mirto, S. Meiofaunal production and energy transfer efficiency in a seagrass Posidonia oceanica bed in the western Mediterranean. Mar. Ecol. Prog. Ser. 234, 95–104. https://doi.org/10.3354/meps234095 (2002).
    ADS  Article  Google Scholar 

    50.
    Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808. https://doi.org/10.1126/science.1064088 (2001).
    ADS  CAS  Article  PubMed  Google Scholar 

    51.
    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75(1), 3–35. https://doi.org/10.1890/04-0922 (2005).
    Article  Google Scholar 

    52.
    Danovaro, R. Methods for the Study of Deep-Sea Sediments, Their Functioning and Biodiversity 1–428 (CRC Press, Boca Raton, 2009).
    Google Scholar 

    53.
    Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl. Acad. Sci. U.S.A. 106(52), 22341–22345. https://doi.org/10.1073/pnas.0907529106 (2009).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    54.
    Pinna, S. et al. Macroalgal forest vs sea urchin barren: patterns of macro-zoobenthic diversity in a large-scale Mediterranean study. Mar. Environ. Res. 159, 104955. https://doi.org/10.1016/j.marenvres.2020.104955 (2020).
    CAS  Article  PubMed  Google Scholar 

    55.
    Naeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H. & Woodfin, R. M. Declining biodiversity can alter the performance of ecosystems. Nature 368, 734–736. https://doi.org/10.1038/368734a0 (1994).
    ADS  Article  Google Scholar 

    56.
    Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845. https://doi.org/10.1126/science.1060391 (2001).
    ADS  CAS  Article  PubMed  Google Scholar 

    57.
    Worm, B. et al. Impact of biodiversity loss on ocean ecosystem services. Science 314, 787–790. https://doi.org/10.1126/science.1132294 (2006).
    ADS  CAS  Article  PubMed  Google Scholar 

    58.
    Cardinale, B. J. et al. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443, 989–992. https://doi.org/10.1038/nature05202 (2006).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    59.
    Loreau, M. Biodiversity and Ecosystem Functioning: the mystery of the deep sea. Curr. Biol. 18, 126–128. https://doi.org/10.1016/j.cub.2007.11.060 (2008).
    CAS  Article  Google Scholar 

    60.
    Mora, C. et al. Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes. PLoS Biol. 9(4), e1000606. https://doi.org/10.1371/journal.pbio.1000606 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    61.
    Coll, M. et al. The Biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS ONE 5(8), e11842. https://doi.org/10.1371/journal.pone.0011842 (2010).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    62.
    Watzin, M. C. The effects of meiofauna on settling macrofauna: meiofauna may structure macrofaunal communities. Oecologia 59, 163–166. https://doi.org/10.1007/BF00378833 (1983).
    ADS  Article  PubMed  Google Scholar 

    63.
    Montagna, P. A. In situ measurement of meiobenthic grazing rates on sediment bacteria and edaphic diatoms. Mar. Ecol. Prog. Ser. 18, 119–130 (1984).
    ADS  Article  Google Scholar 

    64.
    De Morais, L. T. & Bodiou, J. Y. Predation on meiofauna by juvenile fish in a western Mediterranean flatfish nursery ground. Mar. Biol. 82, 209–215. https://doi.org/10.1007/BF00394104 (1984).
    Article  Google Scholar 

    65.
    Heip, C., Vincx, M. & Vranken, G. The ecology of marine nematodes. Oceanogr. Mar. Biol. Annu. Rev. 23, 399–489 (1985).
    Google Scholar 

    66.
    Danovaro, R. et al. The potential impact of meiofauna on the recruitment of macrobenthos in a subtidal coastal benthic community of the Ligurian Sea: a field result. In Biology and Ecology of Shallow Coastal Waters (eds Eleftheriou, A. et al.) 115–122 (Olsen and Olsen, Fredensborg, 1995).
    Google Scholar 

    67.
    Maggi, E., Puccinelli, E. & Benedetti-Cecchi, L. Ecological feedback mechanisms and variable disturbance regimes: the uncertain future of Mediterranean macroalgal forests. Mar. Environ. Res. 140, 342–357. https://doi.org/10.1016/j.marenvres.2018.07.002 (2018).
    CAS  Article  PubMed  Google Scholar 

    68.
    Rindi, L., Dal Bello, M., Dai, L., Gore, J. & Benedetti-Cecchi, L. Direct observation of increasing recovery length before collapse of a marine benthic ecosystem. Nat. Ecol. Evol. 1(6), 0153. https://doi.org/10.1038/s41559-017-0153 (2017).
    Article  Google Scholar 

    69.
    Carugati, L. et al. Impact of mangrove forests degradation on biodiversity and ecosystem functioning. Sci. Rep. 8, 13298. https://doi.org/10.1038/s41598-018-31683-0 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    70.
    Ling, S. D., Kriegisch, N., Woolley, B. & Reeves, S. E. Density-dependent feedbacks, hysteresis, and demography of overgrazing sea urchins. Ecology 100(2), 02577. https://doi.org/10.1002/ecy.2577 (2019).
    Article  Google Scholar 

    71.
    Ramírez, F., Coll, M., Navarro, J., Bustamante, J. & Green, A. J. Spatial congruence between multiple stressors in the Mediterranean Sea may reduce its resilience to climate impacts. Sci. Rep. 8, 14871. https://doi.org/10.1038/s41598-018-33237-w (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    72.
    De Groot, R. S. et al. Benefits of investing in ecosystem restoration. Conserv. Biol. 27(6), 1286–1293. https://doi.org/10.1111/cobi.12158 (2013).
    Article  Google Scholar 

    73.
    Susini, M. L., Mangialajo, L., Thibaut, T. & Meinesz, A. Development of a transplantation technique of Cystoseiraamentacea var. stricta and Cystoseiracompressa. Hydrobiologia 580, 241–244. https://doi.org/10.1007/s10750-006-0449-9 (2007).
    Article  Google Scholar 

    74.
    Danovaro, R. & Fraschetti, S. Meiofaunal vertical zonation on hard-bottoms: comparison with soft-bottom meiofauna. Mar. Ecol. Prog. Ser. 230, 159–169. https://doi.org/10.3354/meps230159 (2002).
    ADS  Article  Google Scholar 

    75.
    Hoppe, H. G. Use of fluorogenic model substrates for extracellular enzyme activity (EEA) of bacteria. In Handbook of Methods in Aquatic Microbial Ecology (eds Kemp, P. F. et al.) 423–431 (Lewis, Boca Raton, 1993).
    Google Scholar 

    76.
    Pusceddu, A., Dell’Anno, A., Fabiano, M. & Danovaro, R. Quantity and bioavailability of sediment organic matter as signatures of benthic trophic status. Mar. Ecol. Prog. Ser. 375, 41–52. https://doi.org/10.3354/meps07735 (2009).
    ADS  CAS  Article  Google Scholar 

    77.
    Corinaldesi, C. et al. High diversity of benthic bacterial and archaeal assemblages in deep-Mediterranean canyons and adjacent slopes. Prog. Oceanogr. 171, 154–161. https://doi.org/10.1016/j.pocean.2018.12.014 (2019).
    ADS  Article  Google Scholar 

    78.
    Anderson, M. J. Permutation tests for univariate or multivariate analysis of variance and regression. Can. J. Fish. Aquat. Sci. 58, 626–639. https://doi.org/10.1139/f01-004 (2001).
    Article  Google Scholar 

    79.
    Clarke, K. R. & Gorley, R. N. PRIMER V6: User Manual/Tutorial (PRIMER-E, Plymouth, 2006).
    Google Scholar 

    80.
    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response rations in experimental ecology. Ecology 80, 1150–1156. https://doi.org/10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 (1999).
    Article  Google Scholar 

    81.
    Claudet, J. & Fraschetti, S. Human-driven impacts on marine habitats: a regional meta-analysis in the Mediterranean Sea. Biol. Conserv. 143, 2195–2206. https://doi.org/10.1016/j.biocon.2010.06.004 (2010).
    Article  Google Scholar 

    82.
    Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84, 511–525. https://doi.org/10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2 (2003).
    Article  Google Scholar  More

  • in

    The northernmost haulout site of South American sea lions and fur seals in the western South Atlantic

    1.
    Pinedo, M.C. Ocorrência de pinípedes na costa brasileira. Garcia de Orta Serie de Zoologia 15, 37–48 (1990).
    2.
    Rosas, F. C. W., Pinedo, M. C., Marmotel, M. & Haimovici, M. Seasonal movements of the South American sea lion (Otaria flavescens Shaw, 1800) of the Rio Grande do Sul coast Brazil. Mammalia 58, 51–59 (1994).
    Article  Google Scholar 

    3.
    Simões-Lopes, P. C., Drehmer, C. J. & Ott, P. H. Nota sobre os Otariidae e Phocidae (Mammalia: Carnivora) da costa norte do Rio Grande do Sul e Santa Catarina Brasil. Biociências 3, 173–181 (1995).
    Google Scholar 

    4.
    Oliveira, L.R. Carnívoros marinhos in Mamíferos do Rio Grande do Sul (eds. Weber, M.M., Roman, C. & Cáceres, N.C.) 405-227 (Editora UFSM, 2013).

    5.
    Oliveira, L.R., Danilewicz, D., Martins, M.B., Ott, P.H., Moreno, I.B., Caon, G. New records of the Antarctic fur seal, Arctocephalus gazella (Peters, 1875) to the Brazilian coast. Com. Museu de Ciência e Tecnologia da PUCRS 14, 201–207 (2001).

    6.
    Oliveira, L. R., Machado, R., Alievi, M. M. & Würdig, N. L. Crabeater seal (Lobodon carcinophaga) on the coast of Rio Grande do Sul State, Brazil. LAJAM 5, 145–148 (2006).
    Article  Google Scholar 

    7.
    Frainer, G., Heissler, V. L. & Moreno, I. B. A wandering Weddell seal (Leptonychotes weddellii) at Trindade Island, Brazil: the extreme sighting of a circumpolar species. Polar Biol. 41, 579–582 (2017).
    Article  Google Scholar 

    8.
    Milmann, L., Machado, R., Oliveira, L.R., Ott, P.H. Far away from home: presence of fur seal (Arcocephalus sp.) in the equatorial Atlantic Ocean. Polar Biol. 42, 817–822 (2019).

    9.
    Rocha-Campos, C.C., Câmara, I.G. Plano de ação nacional para conservação dos mamíferos aquáticos: grandes cetáceos e pinípedes. Instituto Chico Mendes de Conservação da Biodiversidade. 156 (ICMBio, 2011). https://www.icmbio.gov.br/cma/images/stories/pans_grandes_cetaceos_e_pinipedes/Pequenos_cet%C3%A1ceos_PAN.pdf.

    10.
    Pavanato, H., Silva, K. G., Estima, S. C., Monteiro, D. S. & Kinas, P. G. Occupancy dynamics of South American sea lions in Brazilian Haul-outs. Braz. J. Biol. 73, 855–862 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Campagna, C. The breeding cycle of the southern sea lion, Otaria byronia. Mar. Mammal Sci. 1, 210–218 (1985).
    Article  Google Scholar 

    12.
    Vaz-Ferreira, R. Arctocephalus australis (Zimmermann): South American fur seal. Mammals Seas FAO Fish. Ser. 4, 497–508 (1982).
    Google Scholar 

    13.
    Francu-Treco, V., Costa, P., Scharam, Y., Tassino, B. & Inchausti, P. Sex on the rocks: reproductive tactics and breeding success of South American fur seal males. Behav. Ecol. 25, 1513–1523 (2014).
    Article  Google Scholar 

    14.
    Campagna, C. et al. Movements and location at sea of South American sea lions (Otaria flavescens). J. Zool. 257, 205–220 (2001).
    Article  Google Scholar 

    15.
    Bastida, R. & Rodríguez, D. Hallazgo de un apostadero estacional de lobos marinos de dos pelos, Arctocephalus australis (Zimmermann, 1783), en bajos fondos frente a la costa de Mar del Plata (Provincia de Buenos Aires, Argentina). Anales 4ª Reunión de Trabajo de Especialistas en Mamíferos Acuáticos de América del Sur 1–22 (1994).

    16.
    Sanfelice, D., Vasques, V. C. & Crespo, E. A. Ocupação sazonal por duas espécies de Otariidae (Mammalia, Carnivora) da Reserva Ecológica Ilha dos Lobos, Rio Grande do Sul Brasil. Iheringia, Sér. Zool. 87, 101–110 (1999).
    Google Scholar 

    17.
    Giardino, G. V. et al. Travel for sex: Long-range breeding dispersal and winter haulout fidelity in Southern sea lion males. Mammal. Biol. 81, 89–95 (2014).
    Article  Google Scholar 

    18.
    Oliveira, L. R. et al. Morphological and genetic evidence for two evolutionarily significant units (ESUS) in the South American fur seal Arctocephalus australis. Conserv. Genet. 9, 1451–1466 (2008).
    Article  Google Scholar 

    19.
    Oliveira, L. R. et al. Ancient female philopatry, asymmetric male gene flow, and synchronous population expansion support the influence of climatic oscillations on the evolution of South American sea lion (Otaria flavescens). PLoS ONE 12, e0179442 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    20.
    Cárdenas-Alayza, S., Crespo, E.A., Oliveira, L., R. Otaria byronia. The IUCN Red List of Threatened Species 2016: e.T41665A61948292. https://doi.org/https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T41665A61948292.en (2016).

    21.
    Páez, E. Situación de la administración del recurso lobos y leones marinos en Uruguay in Bases para la conservación y el manejo de la costa Uruguaya (eds. Menafra, R., Rodríguez-Gallego, L., Scarabino, F., Conde, D. 577–583 (Sociedad Uruguaya para la Conservación de la Naturaleza, Montevideo 2006).

    22.
    Franco-Trecu, V. Tácticas comportamentales de forrajeo y apareamiento y dinámica poblacional de dos especies de otáridos simpátricas con tendencias poblacionales contrastantes. PhD Thesis. Universidad de la República (UdelaR) Montevideo, Uruguay (2015). https://hdl.handle.net/20.500.12008/6895.

    23.
    Crespo, E. A., Oliva, D., Dans, S. & Sepúlveda, M. Estado de situación del lobo marino común en su área de distribución (Editorial Universidad de Valparaíso, Valparaíso, Chile, 2012).
    Google Scholar 

    24.
    Baylis, A. M. M. et al. Disentangling the cause of a catastrophic population decline in a large marine mammal. Ecology 96, 2834–2847 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    25.
    Cárdenas-Alayza, S., Oliveira, L.R., Crespo, E.A. Arctocephalus australis. The IUCN Red List of Threatened Species 2016: e.T2055A45223529. https:// doi.org/https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T2055A45223529.en. (2016).

    26.
    Baylis, A. M. M. et al. Re-evaluating the population size of South American fur seals and conservation implications. Aquat. Conserv. Mar. Freshw. Ecosyst. https://doi.org/10.1002/aqc.3194 (2019).
    Article  Google Scholar 

    27.
    Harwood, J. & Prime, J. H. Some Factors affecting the size of British grey seal populations. J. Appl. Ecol. 15, 401–411 (1978).
    Article  Google Scholar 

    28.
    Páez, E. Utilización de Boostrap y analisis de poder en estimaciones de abundancia de cachorros de Arctocephalus australis [Using Bootstrap and power analysis in abundance estimates of Arctocephalus australis pups] in Sinopsis de la Biologıa y Ecologıa de las Poblaciones de Lobos Finos y Leones Marinos de Uruguay [Synopsis of the biology and ecology of populations of fur seals and sea lions of Uruguay] (eds. Rey, M., Amestoy, F.) 55–70 (Proyecto URU/92/003, INAPE, Montevideo, Uruguay, 2000).

    29.
    Franco-Trecu, V. et al. Abundance and population trends of the South American Fur Seal (Arctocephalus australis) in Uruguay. Aquat. Mammals 45, 48–55 (2019).
    Article  Google Scholar 

    30.
    Crespo, E.A. & Oliveira, L.R. South American fur seal (Arctocephalus australis, Zimmerman 1783) in Ecology and Conservation of Pinnipeds in Latin America (eds. Heckel, G., Schramm, Y.) (Springer Nature, in press).

    31.
    Sanfelice, D., Vasques, V. C., Romanowski, H. P. & Cappozzo, H. L. Activity budget in South American Sea Lions (Otaria flavescens) in the most northern South-Atlantic haul-out site. Bol. Soc. Bras. Mastozool. 73, 87–91 (2015).
    Google Scholar 

    32.
    McIntosh, R. R. et al. Understanding meta-population trends of the Australian fur seal, with insights for adaptive monitoring. PLoS ONE 13, e0200253 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Eberhardt, L. L., Chapman, D. G. & Gilbert, J. R. A review of marine mammal census methods. Wildl. Monogr. 63, 5–46 (1979).
    Google Scholar 

    34.
    Forney, K.A. Surveys in Encyclopedia of Marine Mammals (eds. Perrin, W.F., Wursig, B., Thewissen, J.G.M.) 129–1131 (Academic Press, 2009).

    35.
    Grandi, M. F., Dans, S. L. & Crespo, E. A. Social composition and spatial distribution of colonies in an expanding population of south American sea lions. J. Mammal. 89, 1218–1228 (2008).
    Article  Google Scholar 

    36.
    Lowry, M.S., W.L. Perryman, M.S. Lynn, R.L. Westlake, F.J. Counts of northern elephant seals, Mirounga angustirostris, from large-format aerial photographs taken at rookeries in southern California during the breeding season. Fish. Bull. Natl Ocean. Atmos. Admin. 94, 176–185 (1996).

    37.
    Adame, K., Pardo, M. A., Salvadeo, C., Beier, E. & Elorriaga-Verplancken, F. R. Detectability and categorization of California sea lions using an unmanned aerial vehicle. Mar. Mammal Sci. 33, 913–925 (2017).
    Article  Google Scholar 

    38.
    Hiby, A. R., Thompson, D. & Ward, A. J. Census of grey seals by aerial photography. Photogram. Rec. 12, 589–594 (1988).
    Article  Google Scholar 

    39.
    Heide-Jorgensen, M. P. Aerial digital photographic surveys of narwhals, Monodon monoceros, in northwest Greenland. Mar. Mammal Sci. 20, 246–261 (2004).
    Article  Google Scholar 

    40.
    Silva, K.G. Os pinípedes no Brasil: ocorrências, estimativas populacionais e conservação. PhD thesis. Fundação Universidade Federal de Rio Grande, Rio Grande (2004).

    41.
    Silva, K.G., Araújo, T.G., Crivellaro, C.V.L., Menezes, R.B. Os Mamíferos Marinhos do Litoral do Rio Grande do Sul (NEMA, 2014).

    42.
    Small, R. J., Pendleton, G. W. & Pitcher, K. W. Trends in abundance of Alaska harbor seals, 1983–2001. Mar. Mammal Sci. 19, 344–362 (2003).
    Article  Google Scholar 

    43.
    Sepúlveda, M. et al. Distribution and abundance of the South American sea lion Otaria flavescens (Carnivora: Otariidae) along the central coast off Chile. Rev. Chil. Hist. Nat.  84, 97–106 (2011).
    Article  Google Scholar 

    44.
    Li, J. & Heap, A. D. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecol. Inf. 6, 228–241 (2011).
    Article  Google Scholar 

    45.
    Vaz-Ferreira, R. Otaria flavescens (Shaw): South American sea lion. Mammals in the Seas. FAO Fisheries series 4, 477–495 (1982).

    46.
    Castilho, P. V. & Simões-Lopes, P. C. Sea mammals in archaeological sites on the southern coast of Brazil. Rev. Mus. Arqueol. Etnol. 18, 101–113 (2008).
    Article  Google Scholar 

    47.
    Engel, M. T., Marchini, S., Pont, A. C., Machado, R. & Oliveira, L. R. Perceptions and attitudes of stakeholders towards the Wildlife Refuge of Ilha dos Lobos, a marine protected area in Brazil. Mar. Policy 45, 45–51 (2014).
    Article  Google Scholar 

    48.
    Warneke, R. M. Dispersal and mortality of juvenile fur seals, Arctocephalus pusillus doriferus, in Bass Strait, Southeastern Australia. Rapports et Proces Verbaux des Reunions du Conseil International pour l’Exploration de la Mer 169, 296–302 (1975).
    Google Scholar 

    49.
    Riedman, M. The Pinnipeds. 439 (University of California Press, 1990).

    50.
    Brasil. Decreto no. 88.463, de 4 de julho de 1983. Cria a Reserva Ecológica Ilha dos Lobos, e dá outras providencias. Diário Oficial da República Federativa do Brasil 129, 12009 (1983).

    51.
    Brasil. Decreto de 4 de julho de 2005. Presidência da República-Casa Civil- Subchefia para Assuntos Jurídicos. 04 de julho de 2005. https://www.planalto.gov.br/ccivil_03/_Ato2004-2006/2005/Dnn/Dnn10578.htm (2005).

    52.
    Groch, K. R., Palazzo, J. T., Flores, P. A. C., Adler, F. R. & Fabian, M. E. Recent rapid increases in the right whale (Eubalaena australis) population off southern Brazil. Latin Am. J. Aquat. Mammals 4, 41–47 (2005).
    Google Scholar 

    53.
    Danilewicz, D., Moreno, I. B., Tavares, M. & Sucunza, F. Southern right whales (Eubalaena australis) off Torres, Brazil: group characteristics, movements, and insights into the role of the Brazilian-Uruguayan wintering ground. Mammalia 81, 225–234 (2016).
    Google Scholar 

    54.
    Bartheld, J.L., Pavés, H., Contreras, F. Cuantificación poblacional de lobos marinos en el litoral de la I a IV Regiones. Final report proyecto FIP 2006-50 (2008).

    55.
    King, J.E. Seals of the World (British Museum of Natural History, 1983).

    56.
    Crespo. E.A. Dinámica poblacional del lobo marino de un pelo Otaria flavescens (Shaw, 1800), en el norte del Litoral Patagónico. PhD Thesis Ciencias Biológicas Facultad de Ciencias Exactas y Naturales. Universidad Nacional de Buenos Aires, Argentina (1988). https://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_2107_Crespo.pdf.

    57.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    58.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, https://www.R-project.org/ (2019).

    59.
    ESRI. ArcGIS Desktop: Release 10.5 Redlands (Environmental Systems Research Institute, 2018).

    60.
    Bastida, R. & Rodríguez, D. Mamíferos marinos de Patagonia y Antártida (Editorial Vazquez Mazzini, 2003).

    61.
    Silverman, B.W. Density Estimation for Statistics and Data Analysis (Chapman and Hall, 1986).

    62.
    Diggle, P. J. A kernel method for smoothing point process data. Appl. Stat. Amsterdam 34, 138–147 (1985).
    MATH  Article  Google Scholar 

    63.
    Druck, S., Carvalho, M.S., Câmara, G., Monteiro, A.V.M. Análise Espacial de Dados Geográficos. (EMBRAPA, 2004).

    64.
    Lewis, M. Elefante marino del sur: biología de la especie, descripción general de la agrupación de la Península Valdés y protocolos de trabajo. Informes Técnicos del Plan de Manejo Integrado de la Zona Costera Patagónica. Puerto Madryn. Argentina 16, 1–29 (1996).
    Google Scholar 

    65.
    Szteren, D. Otaria flavescens and Arctocephaus australis abundance in poorly known sites: a spatial expansion of colonies?. Braz. J. Oceanogr. 63, 337–346 (2015).
    Article  Google Scholar 

    66.
    Seeliger, U., Odebrecht, C., Castelo, J.P. Os ecossistemas costeiro e marinho do extremo sul do Brasil. (Ecoscientia, 1998).

    67.
    Oliveira, L.R., Ott, P.H., Malabarba, L.R. Ecologia alimentar dos pinípedes do sul do Brasil e uma avaliação de suas interações com atividades pesqueiras in Ecologia de mamíferos (eds. Reis, N.R., Peracchi, A.L., Santos, G.A.S.D.) 93–109 (Technical Books Editora, Londrina, 2008).

    68.
    Machado, R. et al. Trophic overlap between marine mammals and fisheries in subtropical waters in the western South Atlantic. Mar. Ecol. Prog. Ser. 639, 215–232 (2020).
    ADS  Article  Google Scholar 

    69.
    Machado, R. et al. Changes in the feeding ecology of South American sea lions on the southern Brazilian coast over the last two decades of excessive fishing exploration. Hydrobiologia 819, 17–37 (2008).
    Article  Google Scholar 

    70.
    Machado, R., Oliveira, L. R. & Montealegre-Quijano, S. Incidental catch of South American sea lion in a pair trawl off southern Brazil. Neotropic. Biol. Conserv. 10, 43–47 (2015).
    Google Scholar 

    71.
    Pont, A. C. et al. The human dimension of the conflict between fishermen and South American sea lions in southern Brazil. Hydrobiologia 767, 1–16 (2016).
    Article  CAS  Google Scholar 

    72.
    Moreno, I. B., Danilewicz, D., Tavares, M., Ott, P. H. & Machado, R. Descrição da pesca costeira de média escala no litoral norte do Rio Grande do Sul: comunidades pesqueiras de Imbé/Tramandaí e Passo de Torres/Torres. Boletim do Instituto de Pesca (Online) 35, 129–140 (2009).
    Google Scholar 

    73.
    Oliveira, L. R. Caracterização dos padrões de ocorrência dos pinípedes (Carnivora: Pinnipedia) ocorrentes no litoral do Rio Grande do Sul, Brasil, entre 1993 e 1999. Master Dissertation. Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brasil (1999).

    74.
    Oliveira, A. et al. Occurrence of pinnipeds in Santa Catarina between 2000 and 2010. Latin Am. J. Aquat. Mammals 9, 145–149 (2011).
    Article  Google Scholar 

    75.
    Prado, J.H.F., Mattos, P.H., Silva, K.G., Secchi, E.R. Long-Term Seasonal and Interannual Patterns of Marine Mammal Strandings in Subtropical Western South Atlantic. PLoS ONE 11, e.0146339 (2016).

    76.
    Baldassin, P., Armorim, D.B., Werneck, M.R. Pathologies of Pinnipeds in Brazil in Pinnipeds Bio-Ecology, Threats and Conservation (eds. Avalva, J.) 269–285 (Ed. Taylor & Francis Group) (2017).

    77.
    Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).
    Article  Google Scholar 

    78.
    Dantas, G. et al. Evidence for northward extension of the winter range of Magellanic penguins along the Brazilian coast. Mar. Ornithol. 41, 195–197 (2013).
    Google Scholar 

    79.
    Marques, F. P., Cardoso, L. G., Haimovici, M. & Bugoni, L. Trophic ecology of Magellanic Penguins (Spheniscus magellanicus) during the non-breeding period. Estuar. Coast Shelf. Sci. 210, 109–122 (2018).
    ADS  CAS  Article  Google Scholar 

    80.
    Garcia-Borboroglu, P. et al. Magellanic penguin mortality in 2008 along the SW Atlantic Coast. Mar. Pollut. Bull. 60, 1652–1657 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    81.
    de Paula, A.A., Ott, P.H., Tavares, M. et al. Host–parasite relationship in Magellanic Penguins (Spheniscus magellanicus) during their long northward journey to the Brazilian coast. Polar Biol. 43, 1261–1272 (2020).
    Article  Google Scholar 

    82.
    Rosas, F. C. W., Haimovici, M. & Pinedo, M. C. Age and growth of the South American sea lion, Otaria flavescens (Shaw, 1800), in southern Brazil. J. Mammal. 74, 141–147 (1993).
    Article  Google Scholar 

    83.
    Machado, R. et al. Mortalidade de Otaria flavescens devido a interações com a atividade pesqueira no sul do Brasil in 15a Reunión de Trabajo de Expertos en Mamíferos Acuáticos de América del Sur y 9º Congreso de la Sociedad Latino Americana de Especialistas en Mamíferos Acuáticos (SOLAMAC), Puerto Madryn (2012).

    84.
    Drehmer, C.J. Variação geográfica em Otaria byronia (de Blainville, 1820) (Pinnipedia, Otariidae) com base na morfometria sincraniana. PhD thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre (2005). https://hdl.handle.net/10183/8135.

    85.
    Muelbert, M. M. C. & Oliveira, L. R. First records of stranded pregnant female South American fur seals, Arctocephalus australis, in the southern Brazilian cost. LAJAM 5, 67–68 (2006).
    Article  Google Scholar 

    86.
    Castello, H. P. & Pinedo, M. C. Os visitantes ocasionais de nosso litoral. Natureza em Revista 3, 40–46 (1977).
    Google Scholar 

    87.
    Lodi, L. & Siciliano, S. A southern elephant seal in Brazil. Mar. Mammal Sci. 5, 513 (1989).
    Google Scholar 

    88.
    Moura, J., Di Dario, B., Lima, L. & Siciliano, S. Southern elephant seals (Mirounga leonina) along the Brazilian coast: review and additional records. Mar. Biodivers. Rec. 3, 1–5 (2010).
    Article  Google Scholar 

    89.
    Lewis, M., Campagna, C., Marin, M. R. & Fernandez, T. Southern elephant seals north of the Antarctic Polar Front. Antarct. Sci. 18, 213–221 (2006).
    ADS  Article  Google Scholar 

    90.
    Kirkwood, R. & Goldsworthy, S. Fur seals and sea lions. (CSIRO Publishing, 2013). More

  • in

    Consistent population declines but idiosyncratic range shifts in Alpine orchids under global change

    1.
    Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Chang. 2, 111–115 (2012).
    ADS  Article  Google Scholar 
    2.
    Dainese, M. et al. Human disturbance and upward expansion of plants in a warming climate. Nat. Clim. Chang. 7, 577–580 (2017).
    ADS  Article  Google Scholar 

    3.
    Kelly, A. E. & Goulden, M. L. Rapid shifts in plant distribution with recent climate change. Proc. Natl Acad. Sci. USA 105, 11823–11826 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Lamprecht, A., Semenchuk, P. R., Steinbauer, K., Winkler, M. & Pauli, H. Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps. N. Phytol. 220, 447–459 (2018).
    Article  Google Scholar 

    5.
    Bertrand, R. et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517–520 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Dullinger, S. et al. Post-glacial migration lag restricts range filling of plants in the European Alps. Glob. Ecol. Biogeogr. 21, 829–840 (2012).
    Article  Google Scholar 

    7.
    Rumpf, S. B. et al. Extinction debts and colonization credits of non-forest plants in the European Alps. Nat. Commun. 10, 4293 (2019).

    8.
    Cannone, N. & Pignatti, S. Ecological responses of plant species and communities to climate warming: upward shift or range filling processes? Clim. Change 123, 201–214 (2014).
    ADS  Article  Google Scholar 

    9.
    Pauli, H., Gottfried, M., Reiter, K., Klettner, C. & Grabherr, G. Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA* master site Schrankogel, Tyrol, Austria. Glob. Chang. Biol. 13, 147–156 (2007).
    ADS  Article  Google Scholar 

    10.
    Pounds, J. A., Fogden, M. P. L., Savage, J. M. & Gorman, G. C. Tests of null models for amphibian declines on a tropical mountain. Conserv. Biol. 11, 1307–1322 (1997).
    Article  Google Scholar 

    11.
    Beaugrand, G., Brander, K. M., Alistair Lindley, J., Souissi, S. & Reid, P. C. Plankton effect on cod recruitment in the North Sea. Nature 426, 661–664 (2003).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Lehikoinen, A. et al. Declining population trends of European mountain birds. Glob. Chang. Biol. 25, 577–588 (2019).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Rumpf, S. B. et al. Range dynamics of mountain plants decrease with elevation. Proc. Natl Acad. Sci. USA 115, 1848–1853 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Lenoir, J. & Svenning, J. C. In Encyclopedia of Biodiversity 599–611 (Academic, 2013).

    15.
    Nogués-Bravo, D., Araújo, M. B., Romdal, T. & Rahbek, C. Scale effects and human impact on the elevational species richness gradients. Nature 453, 216–219 (2008).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    16.
    Carboni, M. et al. Simulating plant invasion dynamics in mountain ecosystems under global change scenarios. Glob. Chang. Biol. 24, e289–e302 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Tattoni, C., Ianni, E., Geneletti, D., Zatelli, P. & Ciolli, M. Landscape changes, traditional ecological knowledge and future scenarios in the Alps: a holistic ecological approach. Sci. Total Environ. 579, 27–36 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Mair, L. et al. Abundance changes and habitat availability drive species’ responses to climate change. Nat. Clim. Chang. 4, 127–131 (2014).
    ADS  Article  Google Scholar 

    19.
    Opdam, P. & Wascher, D. Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biol. Conserv. 117, 285–297 (2004).
    Article  Google Scholar 

    20.
    Troia, M. J., Kaz, A. L., Niemeyer, J. C. & Giam, X. Species traits and reduced habitat suitability limit efficacy of climate change refugia in streams. Nat. Ecol. Evol. 3, 1321–1330 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    21.
    Elsen, P. R., Monahan, W. B. & Merenlender, A. M. Topography and human pressure in mountain ranges alter expected species responses to climate change. Nat. Commun. 11, 1974 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Freeman, B. G., Lee-Yaw, J. A., Sunday, J. M. & Hargreaves, A. L. Expanding, shifting and shrinking: The impact of global warming on species’ elevational distributions. Glob. Ecol. Biogeogr. 27, 1268–1276 (2018).
    Article  Google Scholar 

    23.
    Lenoir, J. & Svenning, J. C. Climate-related range shifts – a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).
    Article  Google Scholar 

    24.
    Guo, F., Lenoir, J. & Bonebrake, T. C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315 (2018).

    25.
    Platts, P. J. et al. Habitat availability explains variation in climate-driven range shifts across multiple taxonomic groups. Sci. Rep. 9, 15039 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Dullinger, I. et al. A socio-ecological model for predicting impacts of land-use and climate change on regional plant diversity in the Austrian Alps. Glob. Chang. Biol. 26, 2336–2352 (2020).
    ADS  PubMed Central  Article  Google Scholar 

    27.
    Kull, T. & Hutchings, M. J. A comparative analysis of decline in the distribution ranges of orchid species in Estonia and the United Kingdom. Biol. Conserv. 129, 31–39 (2006).
    Article  Google Scholar 

    28.
    Wraith, J. & Pickering, C. A continental scale analysis of threats to orchids. Biol. Conserv. 234, 7–17 (2019).
    Article  Google Scholar 

    29.
    Wraith, J., Norman, P. & Pickering, C. Orchid conservation and research: an analysis of gaps and priorities for globally red listed species. Ambio 49, 1601–1611 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    30.
    Phillips, R. D., Reiter, N. & Peakall, R. Orchid conservation: from theory to practice. Ann. Bot. 126, 345–362 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    van der Meer, S., Jacquemyn, H., Carey, P. D. & Jongejans, E. Recent range expansion of a terrestrial orchid corresponds with climate-driven variation in its population dynamics. Oecologia 181, 435–448 (2016).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Vogt-Schilb, H. et al. Responses of orchids to habitat change in Corsica over 27 years. Ann. Bot. 118, 115–123 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Vogt-Schilb, H., Munoz, F., Richard, F. & Schatz, B. Recent declines and range changes of orchids in Western Europe (France, Belgium and Luxembourg). Biol. Conserv. 190, 133–141 (2015).
    Article  Google Scholar 

    34.
    Perazza, G., & & Lorenz, R. Le Orchidee dell’Italia Nordorientale. Atlante Corologico e Guida al Riconoscimento (Osiride, 2013).

    35.
    Sletvold, N., Dahlgren, J. P., Øien, D.-I., Moen, A. & Ehrlén, J. Climate warming alters effects of management on population viability of threatened species: results from a 30-year experimental study on a rare orchid. Glob. Chang. Biol. 19, 2729–2738 (2013).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Auffret, A. G., Kimberley, A., Plue, J. & Waldén, E. Super-regional land-use change and effects on the grassland specialist flora. Nat. Commun. 9, 3464 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    37.
    Vilà‐Cabrera, A., Premoli, A. C. & Jump, A. S. Refining predictions of population decline at species’ rear edges. Glob. Chang. Biol. 25, 1549–1560 (2019).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Matthies, D., Bräuer, I., Maibom, W. & Tscharntke, T. Population size and the risk of local extinction: empirical evidence from rare plants. Oikos 105, 481–488 (2004).
    Article  Google Scholar 

    39.
    Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Wilcox, R. R. Introduction to Robust Estimation and Hypothesis Testing 4th edn (Academic, 2016).

    41.
    Lenoir, J., Gegout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    De Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. USA 110, 18561–18565 (2013).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    43.
    De Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    44.
    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Bertrand, R. et al. Ecological constraints increase the climatic debt in forests. Nat. Commun. 7, 12643 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Lenoir, J. et al. Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography 33, 295–303 (2010).
    Google Scholar 

    47.
    Colwell, R. K. & Lees, D. C. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Rumpf, S. B., Hülber, K., Zimmermann, N. E. & Dullinger, S. Elevational rear edges shifted at least as much as leading edges over the last century. Glob. Ecol. Biogeogr. 28, 533–543 (2019).
    Article  Google Scholar 

    49.
    Gibson-Reinemer, D. K. & Rahel, F. J. Inconsistent range shifts within species highlight idiosyncratic responses to climate warming. PLoS ONE 10, e0132103 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Vittoz, P., Randin, C., Dutoit, A., Bonnet, F. & Hegg, O. Low impact of climate change on subalpine grasslands in the Swiss Northern Alps. Glob. Chang. Biol. 15, 209–220 (2009).
    ADS  Article  Google Scholar 

    51.
    Vogt-Schilb, H., Geniez, P., Pradel, R., Richard, F. & Schatz, B. Inter-annual variability in flowering of orchids: lessons learned from 8 years of monitoring in a Mediterranean region of France. Eur. J. Environ. Sci. 3, 129–137 (2013).
    Google Scholar 

    52.
    Cotto, O. et al. A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming. Nat. Commun. 8, 15399 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Tye, M., Dahlgren, J. P., Øien, D.-I., Moen, A. & Sletvold, N. Demographic responses to climate variation depend on spatial- and life history-differentiation at multiple scales. Biol. Conserv. 228, 62–69 (2018).
    Article  Google Scholar 

    54.
    Aeschimann, D., Lauber, K., Moser, D. M. & Theurillat, J. P. Flora Alpina: Atlas des 4500 Plantes Vasculaires des Alpes (Aeschimann/Lauber, Belin, 2004).

    55.
    Di Piazza, A., & Eccel, E. Analisi di Serie di Temperatura e Precipitazione in Trentino nel Periodo 1958–2010 (Provincia Autonoma di Trento, 2012).

    56.
    Provincia Autonoma di Trento. Urbanistica – Banche Dati – Repertorio Cartografico (Provincia Autonoma di Trento, 2009).

    57.
    Monteiro, A. T., Fava, F., Hiltbrunner, E., Della Marianna, G. & Bocchi, S. Assessment of land cover changes and spatial drivers behind loss of permanent meadows in the lowlands of Italian Alps. Landsc. Urban Plan. 100, 287–294 (2011).
    Article  Google Scholar 

    58.
    Eccel, E., Zollo, A. L., Mercogliano, P. & Zorer, R. Simulations of quantitative shift in bio-climatic indices in the viticultural areas of Trentino (Italian Alps) by an open source R package. Comput. Electron. Agric. 127, 92–100 (2016).
    Article  Google Scholar 

    59.
    Verheyen, K. et al. Combining biodiversity resurveys across regions to advance global change research. Bioscience 67, 73–83 (2017).
    Article  Google Scholar 

    60.
    Landolt, E. et al. Flora Indicativa: Okologische Zeigerwerte und Biologische Kennzeichen zur Flora der Schweiz und der Alpen (Haupt, 2010).

    61.
    Akinwande, M. O., Dikko, H. G. & Samson, A. Variance inflation factor: as a condition for the inclusion of suppressor variable(s) in regression analysis. Open J. Stat. 05, 754–767 (2015).
    Article  Google Scholar 

    62.
    Kéry, M., Gardner, B. & Monnerat, C. Predicting species distributions from checklist data using site-occupancy models. J. Biogeogr. 37, 1851–1862 (2010).

    63.
    Harrison, X. A. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2, e616 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    64.
    Hothorn, T., Bretz, F., Westfall, P. & Heiberger, R. M. multcomp: simultaneous inference for general linear hypotheses. R package version 0.992-4. http://132.180.15.2/math/statlib/R/CRAN/doc/packages/multcomp.pdf (2007).

    65.
    Mair, P. & Wilcox, R. Robust statistical methods in R using the WRS2 package. Behav. Res. Methods 52, 464–488 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    66.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    67.
    Aikio, S., Duncan, R. P. & Hulme, P. E. Herbarium records identify the role of long-distance spread in the spatial distribution of alien plants in New Zealand. J. Biogeogr. 37, 1740–1751 (2010).
    Article  Google Scholar 

    68.
    Ripley, B., Venables, B., Bates, D., Hornik, K. & Firth, D. Package ‘MASS’. http://www.stats.ox.ac.uk/pub/MASS4/ (2010).

    69.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    70.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017). More

  • in

    Ecological drivers of genetic connectivity for African malaria vectors Anopheles gambiae and An. arabiensis

    1.
    World Health Organization. World malaria report 2019 (WHO, Geneva, 2019).
    Google Scholar 
    2.
    Wirtz, R. A. & Burkot, T. R. Detection of malarial parasites in mosquitoes. In Advances in Disease Vector Research (eds Maudlin, I. & Sinha, R. C.) (Sprinter, New York, 1991).
    Google Scholar 

    3.
    Trape, J. F. & Rogier, C. Combating malaria morbidity and mortality by reducing transmission. Parasitol. Today 12, 236–240 (1996).
    CAS  PubMed  Article  Google Scholar 

    4.
    Mala, A. O. et al. Plasmodium falciparum transmission and aridity: a Kenyan experience from the dry lands of Baringo and its implications for Anopheles arabiensis control. Malar. J. 10, 121 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    5.
    Macdonald, G. The Epidemiology and Control of Malaria (Oxford Univ. Press, London, 1957).
    Google Scholar 

    6.
    Gillies, M. & de Meillon, B. The Anophelini of Africa South of the Sahara (Ethiopian Zoogeographical Region) (South African Institute of Medical Research, Johannesburg, 1968).
    Google Scholar 

    7.
    Service, M. W. Mosquito (Diptera: Culicidae) dispersal—the long and short of it. J. Med. Entomol. 34, 579–588 (1997).
    Article  Google Scholar 

    8.
    Hemming-Schroeder, E., Lo, E., Salazar, C., Puente, S. & Yan, G. Landscape genetics: a toolbox for studying vector-borne diseases. Front. Ecol. Evol. 6, 21 (2018).
    ADS  Article  Google Scholar 

    9.
    Ramsdale, C. D. & Fontaine, R. E. Ecological Investigations of Anopheles gambiae and Anopheles funestus (World Health Organization, Geneva, 1970).
    Google Scholar 

    10.
    Charlwood, J. D., Vij, R. & Billingsley, P. F. Dry season refugia of malaria-transmitting mosquitoes in a dry savannah zone of east Africa. Am. J. Trop. Med. Hyg. 62, 726–732 (2000).
    CAS  PubMed  Article  Google Scholar 

    11.
    Aniedu, I. Dynamics of malaria transmission near two permanent breeding sites in Baringo district, Kenya. Indian J. Med. Res. 105, 206–211 (1997).
    CAS  PubMed  Google Scholar 

    12.
    Kamau, L. et al. Analysis of genetic variability in Anopheles arabiensis and Anopheles gambiae using microsatellite loci. Insect Mol. Biol. 8, 287–297 (1999).
    CAS  PubMed  Article  Google Scholar 

    13.
    Lehmann, T. et al. Genetic differentiation of Anopheles gambiae populations from East and West Africa: comparison of microsatellite and allozyme loci. Heredity 77, 192–200 (1996).
    CAS  PubMed  Article  Google Scholar 

    14.
    Kamau, L., Lehmann, T., Hawley, W. A., Orago, A. S. & Collins, F. H. Microgeographic genetic differentiation of Anopheles gambiae mosquitoes from Asembo Bay, western Kenya: a comparison with Kilifi in coastal Kenya. Am. J. Trop. Med. Hyg. 58, 64–66 (1998).
    CAS  PubMed  Article  Google Scholar 

    15.
    Storfer, A. et al. Putting the ‘landscape’ in landscape genetics. Heredity 98, 128–142 (2007).
    CAS  PubMed  Article  Google Scholar 

    16.
    Biek, R. & Real, L. A. The landscape genetics of infectious disease emergence and spread. Mol. Ecol. 19, 3515–3531 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    17.
    Storfer, A., Murphy, M. A., Spear, S. F., Holderegger, R. & Waits, L. P. Landscape genetics: Where are we now?. Mol. Ecol. 19, 3496–3514 (2010).
    PubMed  Article  Google Scholar 

    18.
    Medley, K. A., Jenkins, D. G. & Hoffman, E. A. Human-aided and natural dispersal drive gene flow across the range of an invasive mosquito. Mol. Ecol. 24, 284–295 (2015).
    PubMed  Article  Google Scholar 

    19.
    Blanchong, J. A. et al. Landscape genetics and the spatial distribution of chronic wasting disease. Biol. Lett. 4, 130–133 (2008).
    PubMed  Article  Google Scholar 

    20.
    Cullingham, C. I., Kyle, C. J., Pond, B. A., Rees, E. E. & White, B. N. Differential permeability of rivers to raccoon gene flow corresponds to rabies incidence in Ontario, Canada. Mol. Ecol. 18, 43–53 (2009).
    PubMed  Google Scholar 

    21.
    Côté, H., Garant, D., Robert, K., Mainguy, J. & Pelletier, F. Genetic structure and rabies spread potential in raccoons: the role of landscape barriers and sex-biased dispersal. Evol. Appl. 5, 393–404 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Guivier, E. et al. Landscape genetics highlights the role of bank vole metapopulation dynamics in the epidemiology of Puumala hantavirus. Mol. Ecol. 20, 3569–3583 (2011).
    CAS  PubMed  Google Scholar 

    23.
    Carrel, M., Wan, X. F., Nguyen, T. & Emch, M. Genetic variation of highly pathogenic H5N1 avian influenza viruses in Vietnam shows both species-specific and spatiotemporal associations. Avian Dis. 55, 659–666 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Lo, E. et al. Transmission dynamics of co-endemic Plasmodium vivax and P. falciparum in Ethiopia and prevalence of antimalarial resistant genotypes. PLoS Negl. Trop. Dis. 11, e0005806 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Lo, E. et al. Frequent spread of Plasmodium vivax malaria maintains high genetic diversity at the Myanmar–China Border, without distance and landscape barriers. J. Infect. Dis. 216, 1254–1263 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Lehmann, T. et al. Microgeographic structure of Anopheles gambiae in western Kenya based on mtDNA and microsatellite loci. Mol. Ecol. 6, 243–253 (1997).
    CAS  PubMed  Article  Google Scholar 

    27.
    Bayoh, M. N. et al. Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. Malar. J. 9, 62 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    28.
    Kitau, J. et al. Species shifts in the Anopheles gambiae complex: do LLINs successfully control Anopheles arabiensis?. PLoS ONE 7, e31481 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Mwangangi, J. M. et al. The role of Anopheles arabiensis and Anopheles coustani in indoor and outdoor malaria transmission in Taveta District, Kenya. Parasit. Vectors 6, 114 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Ototo, E. N. et al. Surveillance of malaria vector population density and biting behaviour in western Kenya. Malar. J. 14, 244 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    31.
    Sougoufara, S., Harry, M., Doucouré, S., Sembène, P. M. & Sokhna, C. Shift in species composition in the Anopheles gambiae complex after implementation of long-lasting insecticidal nets in Dielmo, Senegal. Med. Vet. Entomol. 30, 365–368 (2016).
    CAS  PubMed  Article  Google Scholar 

    32.
    Hemming-Schroeder, E. et al. Emerging pyrethroid resistance among Anopheles arabiensis in Kenya. Am. J. Trop. Med. Hyg. 98, 704–709 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Githeko, A. K. et al. Some observations on the biting behavior of Anopheles gambiae ss, Anopheles arabiensis, and Anopheles funestus and their implications for malaria control. Exp. Parasitol. 82, 306–315 (1996).
    CAS  PubMed  Article  Google Scholar 

    34.
    Massebo, F., Balkew, M., Gebre-Michael, T. & Lindtjørn, B. Blood meal origins and insecticide susceptibility of Anopheles arabiensis from Chano in South-West Ethiopia. Parasit. Vectors 6, 44 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Tirados, I., Costantini, C., Gibson, G. & Torr, S. J. Blood-feeding behaviour of the malarial mosquito Anopheles arabiensis: implications for vector control. Med. Vet. Entomol. 20, 425–437 (2006).
    CAS  PubMed  Article  Google Scholar 

    36.
    Sinka, M. E. et al. The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis. Parasit. Vectors 3, 117 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Charlwood, J. D. et al. The rise and fall of Anopheles arabiensis (Diptera: Culicidae) in a Tanzanian village. Bull. Entomol. Res. 85, 37–44 (1995).
    Article  Google Scholar 

    38.
    Drake, J. M. & Beier, J. C. Ecological niche and potential distribution of Anopheles arabiensis in Africa in 2050. Malar. J. 13, 213 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Donnelly, M. J., Cuamba, N., Charlwood, J. D., Collins, F. H. & Townson, H. Population structure in the malaria vector, Anopheles arabiensis Patton, in East Africa. Heredity 83, 408–417 (1999).
    PubMed  Article  Google Scholar 

    40.
    Donnelly, M. J. & Townson, H. Evidence for extensive genetic differentiation among populations of the malaria vector Anopheles arabiensis in Eastern Africa. Insect Mol. Biol. 9, 357–367 (2000).
    CAS  PubMed  Article  Google Scholar 

    41.
    Donnelly, M. J., Licht, M. C. & Lehmann, T. Evidence for recent population expansion in the evolutionary history of the malaria vectors Anopheles arabiensis and Anopheles gambiae. Mol. Biol. Evol. 18, 1353–1364 (2001).
    CAS  PubMed  Article  Google Scholar 

    42.
    Minakawa, N. et al. Spatial distribution of anopheline larval habitats in Western Kenyan highlands: effects of land cover types and topography. Am. J. Trop Med. Hyg. 73, 157–165 (2005).
    PubMed  Article  Google Scholar 

    43.
    Muturi, E. J. et al. Population genetic structure of Anopheles arabiensis (Diptera: Culicidae) in a rice growing area of central Kenya. J. Med. Entomol. 47, 144–151 (2014).
    Article  Google Scholar 

    44.
    Gray, E. M. & Bradley, T. J. Physiology of desiccation resistance in Anopheles gambiae and Anopheles arabiensis. Am. J. Trop Med. Hyg. 73, 553–559 (2005).
    PubMed  Article  Google Scholar 

    45.
    Yamana, T. K. & Eltahir, E. A. Incorporating the effects of humidity in a mechanistic model of Anopheles gambiae mosquito population dynamics in the Sahel region of Africa. Parasit. Vectors 6, 235 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    46.
    Nkumama, I. N., O’Meara, W. P. & Osier, F. H. Changes in malaria epidemiology in Africa and new challenges for elimination. Trends Parasitol. 33, 128–140 (2017).
    PubMed  Article  Google Scholar 

    47.
    Chen, H. et al. Monooxygenase levels and knockdown resistance (kdr) allele frequencies in Anopheles gambiae and Anopheles arabiensis in Kenya. J. Med. Entomol. 45, 242–250 (2014).
    Article  Google Scholar 

    48.
    Severson, D. W. RFLP analysis of insect genomes. In The Molecular Biology of Insect Disease Vectors (eds Crampton, J. M. et al.) (Springer, Dordrecht, 1997).
    Google Scholar 

    49.
    Scott, J. A., Brogdon, W. G. & Collins, F. H. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am. J. Trop. Med. Hyg. 49, 520–529 (1993).
    CAS  PubMed  Article  Google Scholar 

    50.
    Zheng, L., Benedict, M. Q., Cornel, A. J., Collins, F. H. & Kafatos, F. C. An integrated genetic map of the African human malaria vector mosquito, Anopheles gambiae. Genetics 143, 941–952 (1996).
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Oetting, W. S. et al. Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers. Genomics 30, 450–458 (1995).
    CAS  PubMed  Article  Google Scholar 

    52.
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
    PubMed  Article  Google Scholar 

    53.
    Raymond, M. & Rousset, F. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).
    Article  Google Scholar 

    54.
    Rousset, F. Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).
    PubMed  Article  Google Scholar 

    55.
    Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).
    Article  Google Scholar 

    56.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    57.
    Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour 15, 1179–1191 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Bates, D. et al. Package ‘lme4’. Convergence 12, 2 (2015).
    Google Scholar 

    59.
    Beerli, P. & Felsenstein, J. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc. Natl. Acad. Sci. 98, 4563–4568 (2001).
    ADS  CAS  PubMed  MATH  Article  Google Scholar 

    60.
    Cushman, S., Storfer, A. & Waits, L. Landscape Genetics: Concepts, Methods, Applications (Wiley, West Sussex, 2015).
    Google Scholar 

    61.
    Roy, J. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. J. R. Meteor. Soc. 25, 1965–1978 (2005).
    Google Scholar 

    62.
    Channan, S., Collins, K. & Emanuel, W. R. Global Mosaics of the Standard MODIS Land Cover Type Data (University of Maryland and the Pacific Northwest National Laboratory, College Park, 2014).
    Google Scholar 

    63.
    Friedl, M. A. et al. MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).
    ADS  Article  Google Scholar 

    64.
    Tatem, A. J. WorldPop, open data for spatial demography. Sci. Data 4, 1–4 (2017).
    Article  Google Scholar 

    65.
    McRae, B. H., Dickson, B. G., Keitt, T. H. & Shah, V. B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89, 2712–2724 (2008).
    PubMed  Article  Google Scholar 

    66.
    Adamack, A. T. & Gruber, B. PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol. Evol. 5, 384–387 (2014).
    Article  Google Scholar 

    67.
    Peterman, W. E. ResistanceGA: An R package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol. Evol. 9, 1638–1647 (2018).
    Article  Google Scholar 

    68.
    Peterman, W. E. et al. A comparison of popular approaches to optimize landscape resistance surfaces. Landsc. Ecol. 34, 2197–2208 (2019).
    Article  Google Scholar 

    69.
    Oyler-McCance, S. J., Fedy, B. C. & Landguth, E. L. Sample design effects in landscape genetics. Conserv. Genet. 14, 275–285 (2013).
    Article  Google Scholar  More

  • in

    Strip width ratio expansion with lowered N fertilizer rate enhances N complementary use between intercropped pea and maize

    1.
    Branca, G., Lipper, L., McCarthy, N. & Jolejole, M. C. Food security, climate change, and sustainable land management. A review. Agrono. Sustain. Dev. 33, 635–650 (2013).
    Article  Google Scholar 
    2.
    Chen, X. et al. Producing more grain with lower environmental costs. Nature 514, 486–489 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    4.
    Huang, Y. & Tang, Y. An estimate of greenhouse gas (N2O and CO2) mitigation potential under various scenarios of nitrogen use efficiency in Chinese croplands. GCB Bioenergy 16, 2958–2970 (2010).
    Google Scholar 

    5.
    Gan, Y. T. et al. Improving farming practices reduces the carbon footprint of spring wheat production. Nat. Commun. 5, 5012. https://doi.org/10.1038/ncomms6012 (2014).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    6.
    Cameron, K. C., Di, H. J. & Moir, J. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 162, 145–173 (2013).
    CAS  Article  Google Scholar 

    7.
    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    Lithourgidis, A. S., Dordas, C. A., Damalas, C. A. & Vlachostergios, D. N. Annual intercrops: An alternative pathway for sustainable agriculture. Aust. J. Crop Sci. 5, 396–410 (2011).
    Google Scholar 

    9.
    Tsubo, M., Walker, S. & Mukhala, E. Comparisons of radiation use efficiency of mono-/inter-cropping systems with different row orientations. Field Crop Res. 71, 17–29 (2001).
    Article  Google Scholar 

    10.
    Li, L. et al. Root distribution and interactions between intercropped species. Oecologia 147, 280–290 (2006).
    ADS  PubMed  Article  Google Scholar 

    11.
    Li, L. et al. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crop Res. 71, 123–137 (2001).
    Article  Google Scholar 

    12.
    Brooker, R. W., Karley, A. J., Newton, A. C., Pakeman, R. J. & Schöb, C. Facilitation and sustainable agriculture: A mechanistic approach to reconciling crop production and conservation. Funct. Ecol. 30, 98–107 (2016).
    Article  Google Scholar 

    13.
    Zhang, F. & Li, L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant Soil 248, 305–312 (2003).
    CAS  Article  Google Scholar 

    14.
    Li, Q. Z. et al. Overyielding and interspecific interactions mediated by nitrogen fertilization in strip intercropping of maize with faba bean, wheat and barley. Plant Soil 339, 147–161 (2010).
    Article  CAS  Google Scholar 

    15.
    Klimek-Kopyra, A., Zaja¸c, T. & Re¸bilas, K. A mathematical model for the evaluation of cooperation and competition effects in intercrops. Eur. J. Agron. 51, 9–17 (2013).
    Article  Google Scholar 

    16.
    Li, L., Yang, S. C., Li, X. L., Zhang, F. S. & Christie, P. Interspecific complementary and competitive interactions between intercropped maize and faba bean. Plant Soil 212, 105–114 (1999).
    CAS  Article  Google Scholar 

    17.
    Bedoussac, L. & Justes, E. A comparison of commonly used indices for evaluating species interactions and intercrop efficiency: Application to durum wheat–winter pea intercrops. Field Crop Res. 124, 25–36 (2011).
    Article  Google Scholar 

    18.
    Hu, F. et al. Boosting system productivity through the improved coordination of interspecific competition in maize/pea strip intercropping. Field Crop Res. 198, 50–60 (2016).
    Article  Google Scholar 

    19.
    Andersen, M., Hauggaard-Nielsen, H., Weiner, J. & Jensen, E. Competitive dynamics in two- and three-component intercrops. J. Appl. Ecol. 44, 545–551 (2007).
    Article  Google Scholar 

    20.
    Li, L. et al. Wheat/maize or wheat/soybean strip intercropping: II. Recovery or compensation of maize and soybean after wheat harvesting. Field Crop Res. 71, 173–181 (2001).
    Article  Google Scholar 

    21.
    Chai, Q., Qin, A., Gan, Y. & Yu, A. Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas. Agrono. Sustain. Dev. 34, 535–543 (2013).
    Article  CAS  Google Scholar 

    22.
    Hu, F. et al. Improving N management through intercropping alleviates the inhibitory effect of mineral N on nodulation in pea. Plant Soil 412, 235–251 (2017).
    CAS  Article  Google Scholar 

    23.
    FAO/UNESCO. Soil Map of the World: Revised Legend/prepared by the Foodand Agriculture Organization of the United Nations. UNESCO (1988).

    24.
    Gan, Y. T. et al. Ridge-furrow mulching systems-an innovative technique for boosting crop productivity in semiarid rain-fed environments. Adv. Agron. 118, 429–476 (2013).
    Article  Google Scholar 

    25.
    Yin, W. et al. Straw retention combined with plastic mulching improves compensation of intercropped maize in arid environment. Field Crop Res. 204, 42–51 (2017).
    Article  Google Scholar 

    26.
    Willey, R. W. & Rao, M. R. A. Competitive ratio for quantifying competition between intercrops. Exp. Agric. 16, 117–125 (1980).
    Article  Google Scholar 

    27.
    Fageria, N. K. & Baligar, V. C. Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 88, 97–185 (2005).
    CAS  Article  Google Scholar 

    28.
    Malézieux, E. et al. Mixing plant species in cropping systems: Concepts, tools and models. A review. Agrono. Sustain. Dev. 29, 43–62 (2009).
    Article  Google Scholar 

    29.
    Gómez-Rodrı́guez, O., Zavaleta-Mejı́a, E., González-Hernández, V. A., Livera-Muñoz, M. & Cárdenas-Soriano, E. Allelopathy and microclimatic modification of intercropping with marigold on tomato early blight disease development. Field Crop Res. 83, 27–34 (2003).
    Article  Google Scholar 

    30.
    Corre-Hellou, G., Fustec, J. & Crozat, Y. Interspecific competition for soil N and its interaction with N2 fixation, leaf expansion and crop growth in pea–barley intercrops. Plant Soil 282, 195–208 (2006).
    CAS  Article  Google Scholar 

    31.
    Hauggaard-Nielsen, H., Ambus, P. & Jensen, E. S. The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley. Nutr. Cycl. Agroecosys. 65, 289–300 (2003).
    CAS  Article  Google Scholar 

    32.
    Andersen, M., Hauggaard-Nielsen, H., Ambus, P. & Jensen, E. Biomass production, symbiotic nitrogen fixation and inorganic N use in dual and tri-component annual intercrops. Plant Soil 266, 273–287 (2004).
    CAS  Article  Google Scholar 

    33.
    Hou, Z., Li, P., Li, B., Gong, J. & Wang, Y. Effects of fertigation scheme on N uptake and N use efficiency in cotton. Plant Soil 290, 115–126 (2007).
    CAS  Article  Google Scholar 

    34.
    Ghosh, P. K., Mohanty, M., Bandyopadhyay, K. K., Painuli, D. K. & Misra, A. K. Growth, competition, yields advantage and economics in soybean/pigeonpea intercropping system in semi-arid tropics of India. II. Effect of nutrient management. Field Crop Res 96, 90–97 (2006).
    Article  Google Scholar 

    35.
    Li, S. X., Wang, Z. H., Hu, T. T., Gao, Y. J. & Stewart, B. A. Nitrogen in dryland soils of China and its management. Adv. Agron. 101, 123–181 (2009).
    Article  Google Scholar 

    36.
    Hardarson, G., Zapata, F. & Danso, S. K. A. Effect of plant genotype and nitrogen fertilizer on symbiotic nitrogen fixation by soybean cultivars. Plant Soil 82, 397–405 (1984).
    CAS  Article  Google Scholar 

    37.
    Li, C. et al. The dynamic process of interspecific interactions of competitive nitrogen capture between intercropped wheat (Triticum aestivum L.) and Faba Bean (Vicia faba L.). PLoS ONE 9, e115804. https://doi.org/10.1371/journal.pone.0119659 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    38.
    Hauggaard-Nielsen, H. & Jensen, E. S. Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability. Field Crop Res. 72, 185–196 (2001).
    Article  Google Scholar 

    39.
    Herridge, D. F., Peoples, M. B. & Boddey, R. M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311, 1–18 (2008).
    CAS  Article  Google Scholar 

    40.
    Boucher, D. H. & Espinosa, M. J. Cropping system and growth and nodulation responses of beans to nitrogen in Tabasco, Mexico. Trop. Agric. 59, 279–282 (1982).
    Google Scholar 

    41.
    Jensen, E. S. Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant Soil 182, 25–38 (1996).
    CAS  Article  Google Scholar 

    42.
    Gooding, M. J. et al. Intercropping with pulses to concentrate nitrogen and sulphur in wheat. J. Agric. Sci. 145, 469–479 (2007).
    CAS  Article  Google Scholar 

    43.
    Rusinamhodzi, L., Murwira, H. K. & Nyamangara, J. Cotton–cowpea intercropping and its N2 fixation capacity improves yield of a subsequent maize crop under Zimbabwean rain-fed conditions. Plant Soil 287, 327–336 (2006).
    CAS  Article  Google Scholar 

    44.
    Xiao, Y., Li, L. & Zhang, F. Effect of root contact on interspecific competition and N transfer between wheat and fababean using direct and indirect 15N techniques. Plant Soil 262, 45–54 (2004).
    CAS  Article  Google Scholar 

    45.
    Jamont, M., Piva, G. & Fustec, J. Sharing N resources in the early growth of rapeseed intercropped with faba bean: Does N transfer matter?. Plant Soil 371, 641–653 (2013).
    CAS  Article  Google Scholar  More

  • in

    Multi-year incubation experiments boost confidence in model projections of long-term soil carbon dynamics

    1.
    Todd-Brown, K. E. O. et al. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10, 1717–1736 (2013).
    ADS  Article  Google Scholar 
    2.
    Todd-Brown, K. E. O. et al. Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences 11, 2341–2356 (2014).
    ADS  CAS  Article  Google Scholar 

    3.
    Wieder, W. R., Bonan, G. B. & Allison, S. D. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Change 3, 909–912 (2013).
    ADS  CAS  Article  Google Scholar 

    4.
    Wieder, W. R. et al. Explicitly representing soil microbial processes in Earth system models. Glob. Biogeochem. Cycles 29, 1782–1800 (2015).
    ADS  CAS  Article  Google Scholar 

    5.
    Li, J., Wang, G., Allison, S., Mayes, M. & Luo, Y. Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity. Biogeochemistry 119, 67–84 (2014).
    Article  Google Scholar 

    6.
    Luo, Y. Q. et al. Toward more realistic projections of soil carbon dynamics by Earth system models. Glob. Biogeochem. Cycles 30, 40–56 (2016).
    ADS  CAS  Article  Google Scholar 

    7.
    German, D. P., Marcelo, K. R. B., Stone, M. M. & Allison, S. D. The Michaelis-Menten kinetics of soil extracellular enzymes in response to temperature: a cross-latitudinal study. Glob. Change Biol. 18, 1468–1479 (2012).
    ADS  Article  Google Scholar 

    8.
    Wang, G. S., Post, W. M. & Mayes, M. A. Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses. Ecol. Appl. 23, 255–272 (2013).
    PubMed  Article  Google Scholar 

    9.
    Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E. & Pacala, S. W. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2. Nat. Clim. Change 4, 1099–1102 (2014).
    ADS  CAS  Article  Google Scholar 

    10.
    Wang, G. S. et al. Microbial dormancy improves development and experimental validation of ecosystem model. ISME J. 9, 226–237 (2015).
    CAS  PubMed  Article  Google Scholar 

    11.
    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).
    ADS  CAS  Article  Google Scholar 

    12.
    Georgiou K., Abramoff R. Z., Harte J., Riley W. J. & Torn M. S. Microbial community-level regulation explains soil carbon responses to long-term litter manipulations. Nat. Commun. 8, 1223 (2017).

    13.
    Geyer, K. M., Dijkstra, P., Sinsabaugh, R. & Frey, S. D. Clarifying the interpretation of carbon use efficiency in soil through methods comparison. Soil Biol. Biochem. 128, 79–88 (2019).
    CAS  Article  Google Scholar 

    14.
    Chenu C., Rumpel C. & Lehmann J. in Soil Microbiology, Ecology and Biochemistry 4th edn (ed Paul E. A.) Ch. 13 (Academic Press, 2015).

    15.
    Jagadamma, S., Mayes, M. A., Steinweg, J. M. & Schaeffer, S. M. Substrate quality alters the microbial mineralization of added substrate and soil organic carbon. Biogeosciences 11, 4665–4678 (2014).
    ADS  Article  CAS  Google Scholar 

    16.
    Stewart, C. E., Paustian, K., Conant, R. T., Plante, A. F. & Six, J. Soil carbon saturation: Implications for measurable carbon pool dynamics in long-term incubations. Soil Biol. Biochem. 41, 357–366 (2009).
    CAS  Article  Google Scholar 

    17.
    Karhu, K. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–8 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    18.
    Hagerty, S. B. et al. Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat. Clim. Change 4, 903–906 (2014).
    ADS  CAS  Article  Google Scholar 

    19.
    Li, J. et al. Reduced carbon use efficiency and increased microbial turnover with soil warming. Glob. Change Biol. 25, 900–910 (2019).
    ADS  Article  Google Scholar 

    20.
    Geyer, K. M., Kyker-Snowman, E., Grandy, A. S. & Frey, S. D. Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry 127, 173–188 (2016).
    CAS  Article  Google Scholar 

    21.
    Sinsabaugh, R. L., Moorhead, D. L., Xu, X. & Litvak, M. E. Plant, microbial and ecosystem carbon use efficiencies interact to stabilize microbial growth as a fraction of gross primary production. New Phytol. 214, 1518–1526 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Ye, J. S., Bradford, M. A., Dacal, M., Maestre, F. T. & Garca-Palacios, P. Increasing microbial carbon use efficiency with warming predicts soil heterotrophic respiration globally. Glob. Change Biol. 25, 3354–3364 (2019).
    ADS  Article  Google Scholar 

    23.
    Xu, X. et al. Global pattern and controls of soil microbial metabolic quotient. Ecol. Monogr. 87, 429–441 (2017).
    Article  Google Scholar 

    24.
    Ye, J.-S., Bradford, M. A., Maestre, F. T., Li, F.-M. & García-Palacios, P. Compensatory thermal adaptation of soil microbial respiration rates in global croplands. Glob. Biogeochem. Cycles 34, e2019GB006507 (2020).
    ADS  CAS  Google Scholar 

    25.
    Six, J., Conant, R. T., Paul, E. A. & Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 241, 155–176 (2002).
    CAS  Article  Google Scholar 

    26.
    Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Manzoni, S. et al. Optimal metabolic regulation along resource stoichiometry gradients. Ecol. Lett. 20, 1182–1191 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    28.
    Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19, 988–995 (2013).
    ADS  Article  Google Scholar 

    29.
    Abramoff, R. Z., Torn, M. S., Georgiou, K., Tang, J. & Riley, W. J. Soil organic matter temperature sensitivity cannot be directly inferred from spatial gradients. Glob. Biogeochem. Cycles 33, 761–776 (2019).
    ADS  CAS  Article  Google Scholar 

    30.
    Colores, G. M., Schmidt, S. K. & Fisk, M. C. Estimating the biomass of microbial functional groups using rates of growth-related soil respiration. Soil Biol. Biochem. 28, 1569–1577 (1996).
    CAS  Article  Google Scholar 

    31.
    Van de Werf, H. & Verstraete, W. Estimation of active soil microbial biomass by mathematical analysis of respiration curves: calibration of the test procedure. Soil Biol. Biochem. 19, 261–265 (1987).
    Article  Google Scholar 

    32.
    Sinsabaugh, R. L., Manzoni, S., Moorhead, D. L. & Richter, A. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol. Lett. 16, 930–939 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    33.
    Schnecker, J., Bowles, T., Hobbie, E. A., Smith, R. G. & Grandy, A. S. Substrate quality and concentration control decomposition and microbial strategies in a model soil system. Biogeochemistry 144, 47–59 (2019).
    CAS  Article  Google Scholar 

    34.
    Kluber, A. et al. Soil Respiration and Microbial Biomass from Soil Incubations with 13C Labeled Additions. (Oak Ridge National Laboratory, TES SFA, US Department of Energy, Oak Ridge, Tennessee, USA, 2020).

    35.
    Wang, G. S. et al. Soil moisture drives microbial controls on carbon decomposition in two subtropical forests. Soil Biol. Biochem. 130, 185–194 (2019).
    CAS  Article  Google Scholar 

    36.
    Wang, K. F. et al. Modeling global soil carbon and soil microbial carbon by integrating microbial processes into the ecosystem process model TRIPLEX-GHG. J. Adv. Model Earth Syst. 9, 2368–2384 (2017).
    ADS  Article  Google Scholar 

    37.
    He, Y. J. et al. Incorporating microbial dormancy dynamics into soil decomposition models to improve quantification of soil carbon dynamics of northern temperate forests. J. Geophys. Res. Biogeosci. 120, 2596–2611 (2015).
    CAS  Article  Google Scholar 

    38.
    Beare, M. H., Neely, C. L., Coleman, D. C. & Hargrove, W. L. Characterization of a substrate-induced respiration method for measuring fungal, bacterial and total microbial biomass on plant residues. Agric. Ecosyst. Environ. 34, 65–73 (1991).
    Article  Google Scholar 

    39.
    Stenström, J., Svensson, K. & Johansson, M. Reversible transition between active and dormant microbial states in soil. FEMS Microbiol. Ecol. 36, 93–104 (2001).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Kaprelyants, A. S., Gottschal, J. C. & Kell, D. B. Dormancy in non-sporulating bacteria. FEMS Microbiol. Rev. 10, 271–285 (1993).
    CAS  PubMed  Article  Google Scholar 

    41.
    Frey, S. D., Drijber, R., Smith, H. & Melillo, J. Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol. Biochem. 40, 2904–2907 (2008).
    CAS  Article  Google Scholar 

    42.
    Canham, C. D. W., Cole, J. & Lauenroth, W. K. Models In Ecosystem Science (Princeton University Press, 2003).

    43.
    Vereecken, H. et al. Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone J. 15, 1–57 (2016).

    44.
    Fuhrer, T., Fischer, E. & Sauer, U. Experimental identification and quantification of glucose metabolism in seven bacterial species. J. Bacteriol. 187, 1581–1590 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Fontaine, S. et al. Mechanisms of the priming effect in a savannah soil amended with cellulose. Soil Sci. Soc. Am. J. 68, 125–131 (2004).
    ADS  CAS  Article  Google Scholar 

    46.
    Sinsabaugh, R. L. et al. Stoichiometry of microbial carbon use efficiency in soils. Ecol. Monogr. 86, 172–189 (2016).
    Article  Google Scholar 

    47.
    Wang, G. S., Mayes, M. A., Gu, L. H. & Schadt, C. W. Representation of dormant and active microbial dynamics for ecosystem modeling. PLoS ONE 9, e89252 (2014).

    48.
    Melillo, J. M. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    49.
    Hartley, I. P., Heinemeyer, A. & Ineson, P. Effects of three years of soil warming and shading on the rate of soil respiration: substrate availability and not thermal acclimation mediates observed response. Glob. Change Biol. 13, 1761–1770 (2007).
    ADS  Article  Google Scholar 

    50.
    Knorr, W., Prentice, I. C., House, J. I. & Holland, E. A. Long-term sensitivity of soil carbon turnover to warming. Nature 433, 298 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Melillo, J. M. et al. Soil warming and carbon-cycle feedbacks to the climate system. Science 298, 2173–2176 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Luo, Y. Q. et al. Ecological forecasting and data assimilation in a data-rich era. Ecol. Appl. 21, 1429–1442 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    Melillo, J. M., Steudler, P. A., Mohan, J. E. Prospect Hill soil warming experiment at Harvard Forest since 1991. Harvard Forest Data Archive HF005-05 Harvard Forest, Petersham, MA http://harvardforestfasharvardedu 8080 (1999).

    54.
    Zhou, J. Z. et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat. Clim. Change 2, 106–110 (2012).
    ADS  CAS  Article  Google Scholar 

    55.
    Ye, J.-S., Bradford, M. A., Maestre, F. T., Li, F.-M. & García-Palacios, P. Compensatory thermal adaptation of soil microbial respiration rates in global croplands. Glob. Biogeochem. Cycles 34, e2019GB006507 (2020).

    56.
    Wang, G. S. & Chen, S. L. A review on parameterization and uncertainty in modeling greenhouse gas emissions from soil. Geoderma 170, 206–216 (2012).
    ADS  CAS  Article  Google Scholar 

    57.
    R Development Core Team. R: A language and environment for statistical computing (R Foundation for Statitical Computing, Vienna, Austria, 2019).

    58.
    Batstone, D. J., Pind, P. F. & Angelidaki, I. Kinetics of thermophilic, anaerobic oxidation of straight and branched chain butyrate and valerate. Biotechnol. Bioeng. 84, 195–204 (2003).
    CAS  PubMed  Article  Google Scholar 

    59.
    Wang, G. S., Barber, M. E., Chen, S. L. & Wu, J. Q. SWAT modeling with uncertainty and cluster analyses of tillage impacts on hydrological processes. Stoch. Environ. Res. Risk Assess. 28, 225–238 (2014).
    Article  Google Scholar 

    60.
    Sulman, B. N. et al. Multiple models and experiments underscore large uncertainty in soil carbon dynamics. Biogeochemistry 141, 109–123 (2018).
    CAS  Article  Google Scholar 

    61.
    Abramoff, R. et al. The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century. Biogeochemistry 137, 51–71 (2018).
    Article  Google Scholar 

    62.
    Crowther, T. W. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    van Gestel, N. et al. Predicting soil carbon loss with warming reply. Nature 554, E7–E8 (2018).
    Article  CAS  Google Scholar 

    64.
    Jian, S. Y. et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis. Soil Biol. Biochem. 101, 32–43 (2016).
    CAS  Article  Google Scholar  More

  • in

    Author Correction: Relatives of rubella virus in diverse mammals

    These authors contributed equally: Andrew J. Bennett, Adrian C. Paskey, Arnt Ebinger

    Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
    Andrew J. Bennett & Tony L. Goldberg

    Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
    Adrian C. Paskey & Kimberly A. Bishop-Lilly

    Leidos, Reston, VA, USA
    Adrian C. Paskey

    Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, Frederick, MD, USA
    Adrian C. Paskey & Kimberly A. Bishop-Lilly

    Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
    Arnt Ebinger, Florian Pfaff, Dirk Höper & Martin Beer

    State Office for Agriculture, Food Safety and Fisheries, Rostock, Germany
    Grit Priemer

    Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
    Angele Breithaupt

    Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
    Elisa Heuser & Rainer G. Ulrich

    German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Insel Riems, Greifswald-Insel Riems, Germany
    Elisa Heuser & Rainer G. Ulrich

    Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
    Jens H. Kuhn

    Global Health Institute, University of Wisconsin-Madison, Madison, WI, USA
    Tony L. Goldberg More