New evidence on the earliest domesticated animals and possible small-scale husbandry in Atlantic NW Europe
1.
Haak, W. et al. Ancient DNA from European early neolithic farmers reveals their near eastern affinities. PLoS Biol 8(11), e1000536. https://doi.org/10.1371/journal.pbio.1000536 (2010).
CAS Article PubMed PubMed Central Google Scholar
2.
Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).
ADS CAS PubMed PubMed Central Article Google Scholar
3.
Brandt, G. et al. Ancient DNA reveals key stages in the formation of central European mitochondrial genetic diversity. Science 342, 257–261 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
4.
Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).
ADS CAS PubMed PubMed Central Article Google Scholar
5.
Zvelebil, M. Mesolithic prelude and Neolithic revolution. In Hunters in transition. Mesolithic societies of temperate Eurasia and their transition to farming (ed Zvelebil, M.) 5–16 (Cambridge University Press, Cambridge, 1986).
6.
Zvelebil, M. Agricultural frontiers, Neolithic origins, and the transition to farming in the Baltic basin. In Harvesting the Sea, Farming the Forest. The Emergence of Neolithic Societies in the Baltic Region (eds Zvelebil, M., Dennell, R. & Domanska, L.) 9–27 (Sheffield Archaeological Monographs 10, Sheffield, 1998).
7.
Raemaekers, D.C.M. The articulation of a “New Neolithic”. The meaning of the Swifterbant culture for the process of Neolithisation in the western part of the North European Plain (Archaeological Series Leiden University 3, Leiden, 1999).
8.
Louwe Kooijmans, L.P. The Hardinxveld sites in the Rhine/Meuse Delta, The Netherlands, 5500–4500 cal BC. In Mesolithic on the move. Papers presented at the Sixth International Conference on the Mesolithic in Europe, Stockholm 2000 (eds Larsson, L., Kindgren, H., Knutsson, K., Loeffler, D. & Åkerlund, A.) 608–624 (Owbow Books, Oxford, 2003).
9.
Louwe Kooijmans, L.P. The gradual transition to farming in the Lower Rhine Basin. In Going over. The Mesolithic–Neolithic transition in north-west Europe (eds Whittle, A. & Cummings, V.) 287–309 (Oxford University Press, Oxford, 2007).
10.
Out, W. A. Growing habits? Delayed introduction of crop cultivation at marginal wetland sites. Vegetat Hist Archaeobot 17, 131–138 (2008).
Article Google Scholar
11.
Çakırlar, C., Breider, R., Koolstra, F., Cohen, K. M. & Raemaekers, D. C. M. Dealing with domestic animals in the fifth millennium cal BC Dutch wetlands: new insights from old Swifterbant assemblages. In Farmers at the Frontier : A Pan European Perspective on Neolithisation (eds Gron, K. J. et al.) 263–287 (Oxbow Books, Oxford, 2020).
Google Scholar
12.
Rowley-Conwy, P. North of the frontier: early domestic animals in northern Europe. In The Origins and Spread of Domestic Animals in Southwest Asia and Europe (eds Colledge, S. et al.) 283–311 (Left Coast Press, Walnut Creek, 2013).
Google Scholar
13.
Hartz, S., Lübke, H. & Terberger, T. From fish and seal to sheep and cattle: new research into the process of neolithisation in northern Germany. In Going over. The Mesolithic–Neolithic transition in north-west Europe (eds Whittle, A. & Cummings, V.) 567–594 (Oxford University Press, Oxford, 2007).
14.
Kirleis, W., Klooβ, S., Kroll, H. & Müller, J. Crop growing and gathering in the northern German Neolithic : a review supplemented by new results. Vegetat. Hist. Archaeobot. 21, 221–242 (2012).
Article Google Scholar
15.
Price, T. D. The introduction of farming in northern Europe. In Europe’s first farmers (ed. Price, T. D.) 260–300 (Cambridge University Press, Cambridge, 2000).
Google Scholar
16.
Noe-Nygaard, N., Price, T. D. & Hede. S. U. Diet of Aurochs and Early Cattle in Southern Scandinavia: Evidence from 15N and 13C Stable Isotopes. J. Archaeol. Sci. 32, 855–871 (2005).
17.
Sørensen, L. & Karg, S. The expansion of agrarian societies towards the north – new evidence for agriculture during the Mesolithic/Neolithic transition in Southern Scandinavia. J. Archaeol. Sci. 51, 98–114 (2014).
Article Google Scholar
18.
Gron, K. J. & Sørensen, L. Cultural and economic negotiation: a new perspective on the Neolithic Transition of Southern Scandinavia. Antiquity 92, 958–974 (2018).
Article Google Scholar
19.
Rowley-Conwy, P. Westward Ho! The spread of agriculture from central Europe to the Atlantic. Curr. Anthropol. 52, 431–451 (2011).
Article Google Scholar
20.
Fischer, A. Food for Feasting? An evaluation of explanations of the neolithisation of Denmark and southern Sweden. In Food for Feasting. The Neolithisation of Denmark – 150 years of Debate (eds Fischer, A. & Kristiansen, K.) 341–393 (J. R. Collis Publications, Sheffield, 2002).
21.
Scheu, A. et al. Ancient DNA provides no evidence for independent domestication of cattle in mesolithic rosenhof Northern Germany. J. Archaeol. Sci. 35, 1257–1264 (2008).
Article Google Scholar
22.
Krause-Kyora, B. et al. Use of domesticated pigs by Mesolithic hunter-gatherers in northwestern Europe. Nat. Commun. 4, 2348 (2013).
ADS PubMed PubMed Central Article Google Scholar
23.
Rowley-Conwy, P. & Zeder, M. Mesolithic domestic pigs at Rosenhof – or wild boar? A critical re-appraisal of ancient DNA and geometric morphometrics. World Archaeol. 46(5), 813–824 (2014).
Article Google Scholar
24.
Meylemans, E. et al. The oldest cereals in the coversand area along the North Sea coast of NW Europe, between ca. 4800 and 3500 cal BC, at the wetland site of ‘Bazel-Sluis’ (Belgium). J. Anthropol. Archaeol. 49, 1–7 (2018).
Article Google Scholar
25.
Ervynck, A., Lentacker, A., Muylaert, L. & Van Neer, W. Dierenresten. In Archeologische opgraving van een midden-mesolithische tot midden-neolithische vindplaats te Bazel-sluis 5” (gemeente Kruibeke, provincie Oost-Vlaanderen (eds Meylemans, E. et al.) 57–84 (Brussel, Agentschap Onroerend Erfgoed, 2016).
Google Scholar
26.
Perdaen, Y. & Meylemans, E. Het lithisch materiaal In Archeologische opgraving van een midden-mesolithische tot midden-neolithische vindplaats te Bazel-sluis 5” (gemeente Kruibeke, provincie Oost-Vlaanderen (eds Meylemans, E. et al.) 86–145 (Agentschap Onroerend Erfgoed, Brussel, 2016).
27.
Crombé, Ph., Sergant, J., Perdaen, Y., Meylemans, E. & Deforce, K. Neolithic pottery finds at the wetland site of Bazel-Kruibeke (Flanders, Belgium): evidence of long-distance forager-farmer contact during the late 6th and 5th millennium cal BC in the Rhine-Meuse-Scheldt area. Archäol. Korresp. 45, 21–39 (2015).
Google Scholar
28.
Crombé, Ph., Verhegge, J., Deforce, K., Meylemans, E. & Robinson, E. Wetland landscape dynamics, Swifterbant land use systems, and the Mesolithic-Neolithic transition in the southern North Sea basin. Quat. Internat. 378, 119–133 (2015).
ADS Article Google Scholar
29.
Crombé, Ph. et al. Bioturbation and the formation of latent stratigraphies on prehistoric sites. Two case studies from the Belgian-Dutch coversand area. In Soils as records of past and present. From soil surveys to archaeological sites: research strategies for interpreting soil characteristics. Proceedings of the Geoarchaeological Meeting, Bruges, 6 & 7 November 2019 (eds Deák, J., Ampe, C. & Mikkelsen, J.) 99–112 (Raakvlak, Bruges, 2019).
30.
Deforce, K. et al. Middle-Holocene alluvial forests and associated fluvial environments: A multi-proxy reconstruction from the lower Scheldt N Belgium. The Holocene 24, 1150–1564 (2014).
Article Google Scholar
31.
Luikart, G. et al. Multiple maternal origins and weak phylogeographic structure in domestic goats. PNAS 98(10), 5927–5932 (2001).
ADS CAS PubMed Article Google Scholar
32.
Fernández, H. et al. Divergent mtDNA lineages of goats in an Early Neolithic site, far from the initial domestication areas. PNAS 103(42), 15375–15379 (2006).
ADS PubMed Article CAS Google Scholar
33.
Goude, G. & Fontugne, M. Carbon and nitrogen isotopic variability in bone collagen during the Neolithic period: Influence of environmental factors and diet. J. Archaeol. Sci. 70, 117–131 (2016).
CAS Article Google Scholar
34.
Rey, L., Goude, G. & Rottier, S. Comportements alimentaires au Néolithique : nouveaux résultats dans le Bassin parisien à partir de l’étude isotopique (δ13C, δ15N) de la nécropole de Gurgy « Les Noisats » (Yonne, Ve millénaire av. J.-C.). BMSAP 29, 54–69 (2017).
35.
Bickle, P. Stable isotopes and dynamic diets: The Mesolithic-Neolithic dietary transition in terrestrial central Europe. J. Archaeol. Sci.: Reports 22, 444–451 (2018).
36.
Bocherens, H., Polet, C. & Toussaint, M. Palaeodiet of mesolithic and neolithic populations of Meuse Basin (Belgium): evidence from stable isotopes. J. Archaeol. Sci. 34, 10–27 (2007).
Article Google Scholar
37.
Evans, J. A., Montgomery, J., Wildman, G. & Boulton, N. Spatial variations in biosphere 87Sr/86Sr in Britain. J. Geol. Soc. 167(1), 1–4 (2010).
ADS CAS Article Google Scholar
38.
Willmes, M. et al. Mapping of bioavailable strontium isotope ratios in France for archaeological provenance studies. Appl. Geochem 90, 75–86 (2018).
CAS Article Google Scholar
39.
Snoeck, C. et al. Towards a biologically available strontium isotope baseline for Ireland. Sc. Total Envir. 712, 136248 (2020).
CAS Article Google Scholar
40.
Dalle, S. et al. Preliminary results in the collecting of protohistoric cremation samples for the CRUMBEL project. Lunula 27, 9–14 (2019).
Google Scholar
41.
de Winter, N. J., Snoeck, C. & Claeys, Ph. Seasonal cyclicity in trace elements and isotopes of modern horse enamel. PLoS ONE 11(11), e0166678 (2016).
PubMed PubMed Central Article CAS Google Scholar
42.
Buchan, M., Müldner, G., Ervynck, A. & Britton, K. Season of birth and sheep husbandry in late Roman and Medieval coastal Flanders: A pilot study using tooth enamel δ 18O analysis. Environ. Archaeol. 21(3), 260–270 (2016).
Article Google Scholar
43.
Balasse, M., Boury, L., Ughetto-Monfrin, J. & Tresset, A. Stable isotope insights (δ18O, δ13C) into cattle and sheep husbandry at Bercy (Paris, France, 4th millennium BC): birth seasonality and winter leaf foddering. Environ. Archaeol. 17, 29–44 (2012).
Article Google Scholar
44.
Bonafini, M., Pellegrini, M., Ditchfield, P. & Pollard, A. M. Investigation of the ‘canopy effect’ in the isotope ecology of temperate woodlands. J. Archaeol. Sci. 40, 3926–3935 (2013).
Article Google Scholar
45.
Deforce, K. et al. Wood charcoal and seeds as indicators for animal husbandry in a wetland site during the late Mesolithic/early Neolithic transition period (Swifterbant culture, ca. 4600–4000 BC) in NW-Belgium. Vegetat. Hist. Archaeobot. 22, 51–60 (2013).
Article Google Scholar
46.
Deforce, K., Bastiaens, J. & Crombé, Ph. A reconstruction of middle Holocene alluvial hardwood forests (Lower Scheldt River, N-Belgium) and their exploitation during the Mesolithic-Neolithic transition period (Swifterbant Culture, c. 4500–4000 BC). Quaternaire 251, 9–21 (2014).
47.
Storme, A. et al. The significance of palaeoecological indicators in reconstructing estuarine environments: A multi-proxy study of increased Middle Holocene tidal influence in the lower Scheldt river N-Belgium. Quat. Sci. Rev. 230, 106–113 (2020).
Article Google Scholar
48.
Verhegge, J., Van Strydonck, M., Missiaen, T. & Crombé, Ph. chronology of wetland hydrological dynamics and the mesolithic-neolithic transition along the lower scheldt: a Bayesian approach. Radiocarbon 56(2), 883–898 (2014).
CAS Article Google Scholar
49.
Messiaen, L. Lithics in contact. The neolithization process in the lower-Scheldt basin (mid-6th to mid-4th millennium BC) from a lithic perspective (PhD thesis, Ghent University, 2020).
50.
Teetaert, D. Routes of technology: pottery production and mobility during the Mesolithic-Neolithic transition in the Scheldt river valley (Belgium) (PhD thesis, Ghent University, 2020).
51.
Arnold, D.E. Ceramic theory and cultural process ( Cambridge University Press, Cambridge, 1985).
52.
Gosselain, O. P. Materializing identities: an african perspective. J. Archaeol. Method and Theory 7(3), 187–217 (2000).
Article Google Scholar
53.
Brunel, S. et al. Ancient genomes from present-day France unveil 7,000 years of its demographic history. PNAS 117(23), 12791–12798. https://doi.org/10.1073/pnas.1918034117 (2020).
CAS Article PubMed Google Scholar
54.
Rivollat, M. et al. Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. Sci. Adv. 6, eaaz5344 (2020).
ADS CAS PubMed PubMed Central Article Google Scholar
55.
Manning, K. et al. The origins and spread of stock-keeping: The role of cultural and environmental influences on early Neolithic animal exploitation in Europe. Antiquity 87(338), 1046–1059 (2013).
Article Google Scholar
56.
Cubas, M. et al. Latitudinal gradient in dairy production with the introduction of farming in Atlantic Europe. Nat. Commun. 11, 2036. https://doi.org/10.1038/s41467-020-15907-4 (2020).
ADS CAS Article PubMed PubMed Central Google Scholar
57.
Lyman, R. L. Vertebrate taphonomy (Cambridge University Press, Cambridge, 1994).
Google Scholar
58.
Reitz, E. J. & Wing, E. S. Zooarchaeology (Cambridge University Press, Cambridge, 2008).
Google Scholar
59.
Groot, M. Handboek Zoöarcheologie (Archeologisch Centrum van de Vrije Universiteit (Hendrik Brunsting Stichting (ACVU-HBS), Amsterdam, 2010).
Google Scholar
60.
Boessneck, J., Müller, H.-H. & Teichert, M. Osteologische Unterscheidungsmerkmale zwischen Schaf (Ovis aries Linné) und Ziege (Capra hircus Linné). Kühn-Archiv 78(1–2), 1–129 (1964).
Google Scholar
61.
Degerbøl, M. Zoological Part. In The Urus (Bos primigenius Bojanus) and Neolithic domesticated cattle (Bos taurus domesticus Linné) in Denmark (eds Degerbøl, M. & Fredskil, B.) 5–177 (Det Kongelige Danske Videnskabernes Selskab, Biologiske Skrifter 17, 1970).
62.
Grigson, C. The uses and limitations of differences in absolute size in the distinction between the bones of aurochs (Bos primigenius) and domestic cattle (Bos taurus). In The domestication and exploitation of plants and animals (eds Ucko, P.J. & Dimbleby, G.W.) 277–293 (London, 1969).
63.
Hüster-Plogman, H., Schibler, J. & Steppan, K. The relationship between wild mammal exploitation, climatic fluctuations, and economic adaptations. A transdisciplinary study on Neolithic sites from the Lake Zurich region, southwest Germany and Bavaria. In Historia Animalium ex Ossibus, Festschrift für Angela von den Driesch (eds Becker, C., Manhart, H., Peters, J. & Schibler, J.) 189–200 (Rahden/Westf., 1999).
64.
Kysely, R. Aurochs and potential crossbreeding with domestic cattle in Central Europe in the Eneolithic period. A metric analysis of bones from the archaeological site of Kutná Hora-Denemark (Czech Republic). Anthropozoologica 43, 7–37 (2008).
65.
Manning, K. The cultural evolution of Neolithic Europe. EUROEVOL dataset 2: zooarchaeological data. J. Open Archaeol. Data 5 (2016). https://doi.org/10.5334/joad.41.
66.
Steppan, K. Climatic fluctuations and Neolithic economic adaptations in the 4th millennium BC: a case study from South-West Germany. In Papers from the EAA (European Association of Archaeologists) Third Annual Meeting at Ravenna 1997 (eds Pearce, M. & Tosi, M.) 38–45 (BAR International Series 717, Oxford, 1998).
67.
Steppan, K. The significance of aurochs in the food economy of the Jungneolithikum (Upper Neolithic) in South-west Germany. In Archäologie und Biologie des Auerochsen (ed Weniger, G-C.) 161–171 (Wissenschaftliche Schriften des Neanderthal Museums Bd. 1, 1999).
68.
Steppan, K. Ur oder Hausrind? Die Variabilität der Wildtieranteile in linearbandkeramischen Tierknochenkomplexen. In Rôle et statut de la chasse dans le Néolithique ancien danubien (5500 – 4900 av. J.-C.) (eds Arbogast, R.-M., Jeunesse, Ch. & Schibler, J.) 171–188 (Verlag Marie Leidorf, Rahden/Westfahlen, 2004).
69.
Weniger, G.-C. (Ed.) Archäologie und Biologie des Aurochsen (Wissenschaftliche Schriften des Neanderthal Museums 1, 1999).
70.
Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971).
ADS CAS PubMed Article Google Scholar
71.
Van Strydonck, M. & van der Borg, K. The construction of a preparation line for AMS-targets at the Royal Institute for Cultural Heritage Brussels. Bull. KIK 23, 228–234 (1990).
Google Scholar
72.
Nadeau, M.-J. et al. Sample throughput and data quality at the Leibniz-Labor AMS facility. Radiocarbon 40, 239–245 (1998).
CAS Article Google Scholar
73.
Boudin, M. et al. RICH – a new AMS facility at the Royal Institute for Cultural Heritage, Brussels Belgium. Nucl. Instr. and Meth. in Physics Res. B 361, 120–123 (2015).
ADS CAS Article Google Scholar
74.
Stuiver, M. & Polach, H. A. Discussion—reporting of 14C data. Radiocarbon 19(3), 355–363 (1977).
Article Google Scholar
75.
Reimer, P. J. et al. IntCal13 and MARINE13 radiocarbon age calibration curves 0–50000 years calBP. Radiocarbon 55(4), 1111–1150 (2013).
Article Google Scholar
76.
Budd, P., Montgomery, J., Barreiro, B. & Thomas, R. G. Differential diagenesis of strontium in archaeological human dental tissues. Appl. Geochem 15, 687–694 (2000).
CAS Article Google Scholar
77.
Burton, J. Bone chemistry and trace element analysis. In Biological Anthropology of the Human Skeleton (eds Katzenberg, M. A. & Saunders, S. R.) 443–460 (John Wiley & Sons, Hoboken, NewJersey, 2008).
Google Scholar
78.
Snoeck, C. & Pellegrini, M. Comparing bioapatite carbonate pre-treatments for isotopic measurements: Part 1 – Impact on structure and chemical composition. Chem. Geol. 417, 394–403 (2015).
ADS CAS Article Google Scholar
79.
de Winter, N.J., Snoeck, C., Schulting, R.J., Fernández-Crespo, T. & Claeys, Ph. Trace element distributions in Late Neolithic human molars from the Middle Ebro Valley (Spain): Palaeoenvironmental proxy or diagenesis? Palaeo3 532, 1092602019.
80.
Pellegrini, M. & Snoeck, C. Comparing bioapatite carbonate pre-treatments for isotopic measurements: Part 2 – Impact on carbon and oxygen isotope compositions. Chem. Geol. 420, 88–96 (2016).
ADS CAS Article Google Scholar
81.
Snoeck, C. et al. Calcined bone provides a reliable substrate for strontium isotope ratios as shown by an enrichment experiment. Rap. Comm. Mass Spec. 29, 107–114 (2015).
ADS CAS Article Google Scholar
82.
Weis, D. et al. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2006GC001283 (2006).
Article Google Scholar More