Negative to positive shifts in diversity effects on soil nitrogen over time
1.
Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: how can it occur. Biogeochemistry 13, 87–115 (1991).
Article Google Scholar
2.
Yuan, Z. Y. & Chen, H. Y. H. A global analysis of fine root production as affected by soil nitrogen and phosphorus. Proc. R. Soc. Lond. B 279, 3796–3802 (2012).
CAS Google Scholar
3.
LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).
Article Google Scholar
4.
Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).
CAS Article Google Scholar
5.
Marschner, H. Marschner’s Mineral Nutrition of Higher Plants 3rd edn (Academic Press, 2012).
6.
Niklaus, P. A., Wardle, D. A. & Tate, K. R. Effects of plant species diversity and composition on nitrogen cycling and the trace gas balance of soils. Plant Soil 282, 83–98 (2006).
CAS Article Google Scholar
7.
Li, Z. et al. Microbes drive global soil nitrogen mineralization and availability. Glob. Change Biol. 25, 1078–1088 (2019).
Article Google Scholar
8.
Oelmann, Y. et al. Plant diversity effects on aboveground and belowground N pools in temperate grassland ecosystems: development in the first 5 years after establishment. Glob. Biogeochem. Cycles https://doi.org/10.1029/2010GB003869 (2011).
9.
Cong, W. F. et al. Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes. J. Ecol. 102, 1163–1170 (2014).
CAS Article Google Scholar
10.
Mueller, K. E., Hobbie, S. E., Tilman, D. & Reich, P. B. Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N cycling in a long-term experiment. Glob. Change Biol. 19, 1249–1261 (2013).
Article Google Scholar
11.
von Felten, S. et al. Belowground nitrogen partitioning in experimental grassland plant communities of varying species richness. Ecology 90, 1389–1399 (2009).
Article Google Scholar
12.
Le Roux, X. et al. Soil environmental conditions and microbial build-up mediate the effect of plant diversity on soil nitrifying and denitrifying enzyme activities in temperate grasslands. PLoS ONE https://doi.org/10.1371/journal.pone.0061069 (2013).
13.
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
CAS Article Google Scholar
14.
Fornara, D. A. & Tilman, D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J. Ecol. 96, 314–322 (2008).
CAS Article Google Scholar
15.
Alberti, G. et al. Tree functional diversity influences belowground ecosystem functioning. Appl. Soil Ecol. 120, 160–168 (2017).
Article Google Scholar
16.
McKane, R. B. et al. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415, 68–71 (2002).
CAS Article Google Scholar
17.
Meyer, S. T. et al. Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity. Ecosphere https://doi.org/10.1002/ecs2.1619 (2016).
18.
Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).
CAS Article Google Scholar
19.
Bessler, H. et al. Nitrogen uptake by grassland communities: contribution of N2 fixation, facilitation, complementarity, and species dominance. Plant Soil 358, 301–322 (2012).
CAS Article Google Scholar
20.
Chen, X. & Chen, H. Y. H. Plant diversity loss reduces soil respiration across terrestrial ecosystems. Glob. Change Biol. 25, 1482–1492 (2019).
Article Google Scholar
21.
Zak, D. R., Holmes, W. E., White, D. C., Peacock, A. D. & Tilman, D. Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84, 2042–2050 (2003).
Article Google Scholar
22.
Hooper, D. U. & Vitousek, P. M. Effects of plant composition and diversity on nutrient cycling. Ecol. Monogr. 68, 121–149 (1998).
Article Google Scholar
23.
Chen, X. et al. Effects of plant diversity on soil carbon in diverse ecosystems: a global meta-analysis. Biol. Rev. 95, 167–183 (2020).
Article Google Scholar
24.
Chen, C., Chen, H. Y. H., Chen, X. & Huang, Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat. Commun. 10, 1332 (2019).
Article CAS Google Scholar
25.
Ma, Z. L. & Chen, H. Y. H. Positive species mixture effects on fine root turnover and mortality in natural boreal forests. Soil Biol. Biochem. 121, 130–137 (2018).
CAS Article Google Scholar
26.
Eisenhauer, N. et al. Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91, 485–496 (2010).
CAS Article Google Scholar
27.
Lange, M. et al. How plant diversity impacts the coupled water, nutrient and carbon cycles. Adv. Ecol. Res. 61, 185–219 (2019).
Article Google Scholar
28.
Forrester, D. I. & Bauhus, J. A review of processes behind diversity–productivity relationships in forests. Curr. For. Rep. 2, 45–61 (2016).
Article CAS Google Scholar
29.
Hisano, M., Chen, H. Y. H., Searle, E. B. & Reich, P. B. Species-rich boreal forests grew more and suffered less mortality than species-poor forests under the environmental change of the past half-century. Ecol. Lett. 22, 999–1008 (2019).
Article Google Scholar
30.
Mueller, K. E., Tilman, D., Fornara, D. A. & Hobbie, S. E. Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology 94, 787–793 (2013).
Article Google Scholar
31.
Oram, N. J. et al. Below-ground complementarity effects in a grassland biodiversity experiment are related to deep-rooting species. J. Ecol. 106, 265–277 (2018).
CAS Article Google Scholar
32.
Zhang, Y., Chen, H. Y. H. & Reich, P. B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742–749 (2012).
Article Google Scholar
33.
Ma, Z. L. & Chen, H. Y. H. Effects of species diversity on fine root productivity in diverse ecosystems: a global meta-analysis. Glob. Ecol. Biogeogr. 25, 1387–1396 (2016).
Article Google Scholar
34.
Leimer, S. et al. Mechanisms behind plant diversity effects on inorganic and organic N leaching from temperate grassland. Biogeochemistry 131, 339–353 (2016).
CAS Article Google Scholar
35.
van Ruijven, J. & Berendse, F. Diversity–productivity relationships: initial effects, long-term patterns, and underlying mechanisms. Proc. Natl Acad. Sci. USA 102, 695–700 (2005).
Article CAS Google Scholar
36.
Manzoni, S., Jackson, R. B., Trofymow, J. A. & Porporato, A. The global stoichiometry of litter nitrogen mineralization. Science 321, 684–686 (2008).
CAS Article Google Scholar
37.
Howarth, R. W. & Marino, R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol. Oceanogr. 51, 364–376 (2006).
CAS Article Google Scholar
38.
Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
CAS Article Google Scholar
39.
Post, W. M., Pastor, J., Zinke, P. J. & Stangenberger, A. G. Global patterns of soil-nitrogen storage. Nature 317, 613–616 (1985).
Article Google Scholar
40.
Fowler, D., Pyle, J. A., Raven, J. A. & Sutton, M. A. The global nitrogen cycle in the twenty-first century: introduction. Phil. Trans. R. Soc. Lond. B https://doi.org/10.1098/rstb.2013.0165 (2013).
41.
Ratcliffe, S. et al. Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecol. Lett. 20, 1414–1426 (2017).
Article Google Scholar
42.
Santonja, M. et al. Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest. J. Ecol. 105, 801–815 (2017).
Article Google Scholar
43.
Groffman, P. M. et al. Earthworms increase soil microbial biomass carrying capacity and nitrogen retention in northern hardwood forests. Soil Biol. Biochem. 87, 51–58 (2015).
CAS Article Google Scholar
44.
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & The, P. G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).
Article Google Scholar
45.
Plot Digitizer v.2.0 (Faculty in the Department of Physics at the University of South Alabama, 2020); https://go.nature.com/2Gj5qW0
46.
Trabucco, A. & Zomer, R. J. Global Aridity Index (Global-Aridity) and Global Potential Evapo-transpiration (Global-PET) Geospatial Database (CGIAR, 2009); http://www.cgiar-csi.org
47.
UNEP World Atlas of Desertification (Edward Arnold Publication, 1997).
48.
Chen, H. Y. H. & Brassard, B. W. Intrinsic and extrinsic controls of fine root life span. Crit. Rev. Plant Sci. 32, 151–161 (2013).
Article Google Scholar
49.
Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
Article Google Scholar
50.
Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).
CAS Article Google Scholar
51.
Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).
CAS Article Google Scholar
52.
Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: linear mixed-effects models using Eigen and S4. R package v.1.1-23 (2020); https://cran.r-project.org/web/packages/lme4/index.html
53.
Cohen, J., Cohen, P., West, S. G. & Alken, L. S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences (Routledge, 2013).
54.
Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
Article Google Scholar
55.
Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).
Article Google Scholar
56.
Whittingham, M. J., Stephens, P. A., Bradbury, R. B. & Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour? J. Anim. Ecol. 75, 1182–1189 (2006).
Article Google Scholar
57.
Bartoń, K. MuMIn: multi-model inference. R package v.1.42.1 (2018); https://cran.r-project.org/web/packages/MuMIn/index.html
58.
Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).
59.
Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).
60.
Koricheva, J., Gurevitch, J. & Mengersen, K. Handbook of Meta-analysis in Ecology and Evolution (Princeton Univ. Press, 2013).
61.
Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).
Article Google Scholar
62.
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
CAS Article Google Scholar
63.
Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package v.0.3.3.0 (2020); https://cran.r-project.org/web/packages/DHARMa/index.html
64.
Smith, J. L. & Doran, J. W. in Methods for Assessing Soil Quality (eds Doran, J. W. & Jones, A. J.) 169–185 (Soil Science Society of America, 1997).
65.
Adams, D. C., Gurevitch, J. & Rosenberg, M. S. Resampling tests for meta-analysis of ecological data. Ecology 78, 1277–1283 (1997).
Article Google Scholar
66.
R Core Team R: A Language and Environment for Statistical Computing v.4.0.0 (R Foundation for Statistical Computing, 2020). More