Ecology
Subterms
More stories
188 Shares179 Views
in EcologyReply to: Ecological variables for deep-ocean monitoring must include microbiota and meiofauna for effective conservation
Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
Roberto Danovaro, Emanuela Fanelli, Laura Carugati & Antonio Dell’AnnoStazione Zoologica Anton Dohrn, Naples, Italy
Roberto Danovaro, Emanuela Fanelli & Jacopo AguzziInstituto de Ciencias del Mar (ICM-CSIC), Barcelona, Spain
Jacopo AguzziNational Oceanography Centre, Southampton, UK
David Billett & Henry A. RuhlDepartment of Sciences and Engineering of Materials, Environment and Urban Planning (SIMAU), Polytechnic University of Marche, Ancona, Italy
Cinzia CorinaldesiIUCN Global Marine and Polar Programme, Cambridge, MA, USA
Kristina GjerdeSchool of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
Alan J. JamiesonThe Biodiversity Research Group, The School of Biological Sciences, Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, Queensland, Australia
Salit KarkLouisiana Universities Marine Consortium, Chauvin, LA, USA
Craig McClainCenter for Marine Biodiversity and Conservation and Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
Lisa A. LevinDepartment of Geography, The Hebrew University of Jerusalem, Jerusalem, Israel
Noam LevinRemote Sensing Research Centre, School of Earth and Environmental Sciences, University of Queensland, Brisbane, Queensland, Australia
Noam LevinNorwegian Institute for Water Research, Oslo, Norway
Eva Ramirez-LlodraMonterey Bay Aquarium Research Institute, Moss Landing, CA, USA
Henry A. RuhlDepartment of Oceanography, University of Hawaii at Mano’a, Honolulu, HI, USA
Craig R. SmithDepartments of Ocean Sciences and Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
Paul V. R. SnelgroveJacobs University, Bremen, Germany
Laurenz ThomsenDivision of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Durham, NC, USA
Cindy L. Van DoverSchool of Biological Sciences and Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, China
Moriaki YasuharaState Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
Moriaki YasuharaR.D., E.F., J.A., D.B., L.C., C.C., A.D., K.G., A.J.J., S.K., C.M., L.A.L., N.L., E.R.-L., H.A.R., C.R.S., P.V.R.S., L.T., C.L.V.D. and M.Y. equally contributed to the work, critically revised the final version and gave approval for publication. More
138 Shares169 Views
in EcologyCretaceous amniote integuments recorded through a taphonomic process unique to resins
163 Shares109 Views
in EcologyEcological variables for deep-ocean monitoring must include microbiota and meiofauna for effective conservation
1.
Danovaro, R. et al. Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nat. Ecol. Evol. 4, 181–192 (2020).
Article Google Scholar
2.
Appeltans, W. et al. The magnitude of global marine species diversity. Curr. Biol. 22, 2189–2202 (2012).
CAS Article Google Scholar3.
Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc. Natl Acad. Sci. USA 103, 12115–12120 (2006).
CAS Article Google Scholar4.
Zeppilli, D. et al. Characteristics of meiofauna in extreme marine ecosystems: a review. Mar. Biodivers. 48, 35–71 (2018).
Article Google Scholar5.
Corinaldesi, C. New perspectives in benthic deep-sea microbial ecology. Front. Mar. Sci. 2, https://doi.org/10.3389/fmars.2015.00017 (2015).6.
Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc. Natl Acad. Sci. USA 116, 11824–11832 (2019).
CAS Google Scholar7.
López-García, P., Rodríguez-Valera, F., Pedrós-Alió, C. & Moreira, D. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603–607 (2001).
Article Google Scholar8.
Schoenle, A., Nitsche, F., Werner, J. & Arndt, H. Deep-sea ciliates: recorded diversity and experimental studies on pressure tolerance. Deep Sea Res. Pt I 128, 55–66 (2017).
CAS Article Google Scholar9.
Turley, C. Bacteria in the cold deep-sea benthic boundary layer and sediment—water interface of the NE Atlantic. FEMS Microbiol. Ecol. 33, 89–99 (2000).
CAS Google Scholar10.
Wei, C.-L. et al. Global patterns and predictions of seafloor biomass using random forests. PLoS ONE 5, e15323 (2010).
CAS Article Google Scholar11.
Giere, O. Meiobenthology: The Microscopic Motile Fauna of Aquatic Sediments 2nd edn (Springer, 2009).12.
Fenchel, T. Ecology of Protozoa: The Biology of Free-Living Phagotropic Protists (Springer, 2013).13.
Glud, R. N. Oxygen dynamics of marine sediments. Mar. Biol. Res. 4, 243–289 (2008).
Article Google Scholar14.
Nascimento, F. J. A., Naslund, J. & Elmgren, R. Meiofauna enhances organic matter mineralization in soft sediment ecosystems. Limnol. Oceanogr. 57, 338–346 (2012).
CAS Article Google Scholar15.
Bonaglia, S., Nascimento, F. J. A., Bartoli, M., Klawonn, I. & Brüchert, V. Meiofauna increases bacterial denitrification in marine sediments. Nat. Commun. 5, 5133 (2014).
CAS Article Google Scholar16.
Sutherland, W. J., Pullin, A. S., Dolman, P. M. & Knight, T. M. The need for evidence-based conservation. Trends Ecol. Evol. 19, 305–308 (2004).
Article Google Scholar17.
Balsamo, M., Semprucci, F., Frontalini, F. & Coccioni, R. in Marine Ecosystems (ed. Cruzado, A.) 77–104 (InTech, 2012).18.
Schratzberger, M. & Ingels, J. Meiofauna matters: the roles of meiofauna in benthic ecosystems. J. Exp. Mar. Biol. Ecol. 502, 12–25 (2018).
Article Google Scholar19.
Zeppilli, D. et al. Is the meiofauna a good indicator for climate change and anthropogenic impacts? Mar. Biodivers. 45, 505–535 (2015).
Article Google Scholar20.
Carugati, L., Corinaldesi, C., Dell’Anno, A. & Danovaro, R. Metagenetic tools for the census of marine meiofaunal biodiversity: an overview. Mar. Genom. 24, 11–20 (2015).
Article Google Scholar21.
Danovaro, R. et al. Implementing and innovating marine monitoring approaches for assessing marine environmental status. Front. Mar. Sci. 3, https://doi.org/10.3389/fmars.2016.00213 (2016).22.
Dell’Anno, A., Carugati, L., Corinaldesi, C., Riccioni, G. & Danovaro, R. Unveiling the biodiversity of deep-sea nematodes through metabarcoding: are we ready to bypass the classical taxonomy? PLoS ONE 10, e0144928 (2015).
Article Google Scholar23.
Kitahashi, T., Watanabe, H. K., Tsuchiya, M., Yamamoto, H. & Yamamoto, H. A new method for acquiring images of meiobenthic images using the FlowCAM. MethodsX 5, 1330–1335 (2018).
Article Google Scholar24.
Pawlowski, J., Esling, P., Lejzerowicz, F., Cedhagen, T. & Wilding, T. A. Environmental monitoring through protist next-generation sequencing metabarcoding: assessing the impact of fish farming on benthic foraminifera communities. Mol. Ecol. Resour. 14, 1129–1140 (2014).
CAS Article Google Scholar25.
Bik, H. M. et al. Sequencing our way towards understanding global eukaryotic biodiversity. Trends Ecol. Evol. 27, 233–243 (2012).
Article Google Scholar26.
Fenchel, T. The ecology of marine microbenthos IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna commuities with special reference to the ciliated protozoa. Ophelia 6, 1–182 (1969).
Article Google Scholar27.
Worden, A. Z. et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).
Article Google Scholar28.
Gooday, A. J., Schoenle, A., Dolan, J. R. & Arndt, H. Protist diversity and function in the dark ocean—challenging the paradigms of deep-sea ecology with special emphasis on foraminiferans and naked protists. Eur. J. Protistol. 75, 125721 (2020).
Article Google Scholar29.
Schoenle, A. et al. Methodological studies on estimates of abundance and diversity of heterotrophic flagellates from the deep-sea floor. J. Mar. Sci. Eng. 4, 22 (2016).
Article Google Scholar30.
Lecroq, B. et al. Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments. Proc. Natl Acad. Sci. USA 108, 13177–13182 (2011).
CAS Article Google Scholar More175 Shares139 Views
in EcologyThe interspecific growth–mortality trade-off is not a general framework for tropical forest community structure
1.
Loehle, C. Tree life history strategies: the role of defenses. Can. J. For. Res. 18, 209–222 (1988).
Article Google Scholar
2.
Kitajima, K. Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98, 419–428 (1994).
PubMed Article Google Scholar3.
Kobe, R. K., Pacala, S. W., Silander, J. A. & Canham, C. D. Juvenile tree survivorship as a component of shade tolerance. Ecol. Appl. 5, 517–532 (1995).
Article Google Scholar4.
Rees, M., Condit, R., Crawley, M., Pacala, S. & Tilman, D. Long-term studies of vegetation dynamics. Science 293, 650–655 (2001).
CAS PubMed Article Google Scholar5.
Russo, S. E., Brown, P., Tan, S. & Davies, S. J. Interspecific demographic trade-offs and soil-related habitat associations of tree species along resource gradients. J. Ecol. 96, 192–203 (2008).
Article Google Scholar6.
Wright, S. J. et al. Functional traits and the growth–mortality trade-off in tropical trees. Ecology 91, 3664–3674 (2010).
PubMed Article Google Scholar7.
Hubbell, S. P. & Foster, R. B. Short-term dynamics of a neotropical forest: why ecological research matters to tropical conservation and management. Oikos 63, 48–61 (1992).
Article Google Scholar8.
Stephenson, N. L. et al. Causes and implications of the correlation between forest productivity and tree mortality rates. Ecol. Monogr. 81, 527–555 (2011).
Article Google Scholar9.
Adler, P. B., HilleRisLambers, J. & Levine, J. M. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).
PubMed Article Google Scholar10.
Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).11.
Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
Article Google Scholar12.
Poorter, L. et al. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89, 1908–1920 (2008).
CAS PubMed Article Google Scholar13.
Paine, C. E. T. et al. Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. J. Ecol. 103, 978–989 (2015).
Article Google Scholar14.
Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Change Biol. 23, 1675–1690 (2017).
Article Google Scholar15.
Wyckoff, P. H. & Clark, J. S. The relationship between growth and mortality for seven co-occurring tree species in the southern Appalachian Mountains. J. Ecol. 90, 604–615 (2002).
Article Google Scholar16.
Kobe, R. K. Intraspecific variation in sapling mortality and growth predicts geographic variation in forest composition. Ecol. Monogr. 66, 181–201 (1996).
Article Google Scholar17.
Kobe, R. K. Light gradient partitioning among tropical tree species through differential seedling mortality and growth. Ecology 80, 187–207 (1999).
Article Google Scholar18.
Chapin, F. S., Autumn, K. & Pugnaire, F. Evolution of suites of traits in response to environmental stress. Am. Nat. 142, S78–S92 (1993).
Article Google Scholar19.
Grime, J. P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary biology. Am. Nat. 111, 1169–1194 (1977).
Article Google Scholar20.
Westoby, M., Warton, D. & Reich, P. B. The time value of leaf area. Am. Nat. 155, 649–656 (2000).
PubMed Article Google Scholar21.
Zera, A. J. & Harshman, L. G. The physiology of life history trade-offs in animals. Annu. Rev. Ecol. Syst. 32, 95–126 (2003).
Article Google Scholar22.
Russo, S. E., Davies, S. J., King, D. A. & Tan, S. Soil-related performance variation and distributions of tree species in a Bornean rain forest. J. Ecol. 93, 879–889 (2005).
CAS Article Google Scholar23.
Obeso, J. R. The costs of reproduction in plants. N. Phytol. 155, 321–348 (2002).
Article Google Scholar24.
Roxburgh, S. H., Shea, K. & Wilson, J. B. The intermediate disturbance hypothesis: patch dynamics and mechanisms of species coexistence. Ecology 85, 359–371 (2004).
Article Google Scholar25.
Lambers, H. & Poorter, H. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv. Ecol. Res. 34, 187–261 (1992).
Article Google Scholar26.
Metcalf, C. J. E. Invisible trade-offs: Van Noordwijk and de Jong and life-history evolution. Am. Nat. 187, iii–v (2016).
PubMed Article Google Scholar27.
Van Noordwijk, A. J. & Jong, G. D. Acquisition and allocation of resources: their influence on variation in life history tactics. Am. Nat. 128, 137–142 (1986).
Article Google Scholar28.
Condit, R. et al. Importance of demographic niches to tree diversity. Science 313, 98–101 (2006).
CAS PubMed Article Google Scholar29.
Ricklefs, R. E. Community diversity: relative roles of local and regional processes. Science 235, 167–171 (1987).
CAS PubMed Article Google Scholar30.
Bormann, F. H. & Likens, G. E. Pattern and Process in a Forested Ecosystem (Springer, 1979).31.
Salguero-Gómez, R. et al. Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc. Natl Acad. Sci. USA 113, 230–235 (2016).
PubMed Article CAS Google Scholar32.
Rüger, N. et al. Beyond the fast–slow continuum: demographic dimensions structuring a tropical tree community. Ecol. Lett. 21, 1075–1084 (2018).
PubMed Article Google Scholar33.
McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
PubMed Article Google Scholar34.
McMahon, S. M., Metcalf, C. J. E. & Woodall, C. W. High-dimensional coexistence of temperate tree species: functional traits, demographic rates, life-history stages, and their physical context. PLoS ONE 6, e16253 (2011).
CAS PubMed PubMed Central Article Google Scholar35.
Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).
Article Google Scholar36.
Marks, C. O. & Lechowicz, M. J. Alternative designs and the evolution of functional diversity. Am. Nat. 167, 55–66 (2006).
PubMed Article Google Scholar37.
Visser, M. D. et al. Functional traits as predictors of vital rates across the life cycle of tropical trees. Funct. Ecol. 30, 168–180 (2016).
Article Google Scholar38.
Detto, M. & Xu, X. Optimal leaf life strategies determine Vc,max dynamic during ontogeny. New Phytol. https://doi.org/10.1111/nph.16712 (2020).39.
Poorter, L. & Bongers, F. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87, 1733–1743 (2006).
PubMed Article Google Scholar40.
Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).
Article Google Scholar41.
R Core Team R: A Language and Environment for Statistical Computing version 3.6.1 (R Foundation for Statistical Computing, 2017).42.
Warton, D. I., Wright, I. J., Falster, D. S. & Westoby, M. Bivariate line-fitting methods for allometry. Biol. Rev. 81, 259–291 (2006).
PubMed Article Google Scholar43.
Warton, D. I., Duursma, R. A., Falster, D. S. & Taskinen, S. smatr 3— an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 3, 257–259 (2012).
Article Google Scholar44.
Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian Data Analysis 2nd edn (Chapman and Hall/CRC, 2004).45.
Kenfack, D., Chuyong, G., Condit, R., Russo, S. & Thomas, D. Demographic variation and habitat specialization of tree species in a diverse tropical forest of Cameroon. For. Ecosyst. 1, 22 (2014).
Article Google Scholar46.
Condit, R. et al. Tropical forest dynamics across a rainfall gradient and the impact of an El Niño dry season. J. Trop. Ecol. 20, 51–72 (2004).
Article Google Scholar47.
Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.3.3.0 (2020).48.
Robinson, D. broom: An R Package for Converting Statistical Analysis Objects Into Tidy Data Frames. R package version 2 (2014); https://arxiv.org/abs/1412.356549.
Nagelkerke, N. J. D. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).
Article Google Scholar50.
Long, J. S. Regression Models for Categorical and Limited Dependent Variables (Sage, 1997).51.
Paul-Victor, C., Züst, T., Rees, M., Kliebenstein, D. J. & Turnbull, L. A. A new method for measuring relative growth rate can uncover the costs of defensive compounds in Arabidopsis thaliana. New Phytol. 187, 1102–1111 (2010).
PubMed Article CAS Google Scholar52.
Coomes, D. A. & Allen, R. B. Effects of size, competition and altitude on tree growth. Ecol. Lett. 95, 1084–1097 (2007).
Google Scholar53.
Björklund, M. Are ‘comparative methods’ always necessary? Oikos 80, 607–612 (1997).
Article Google Scholar54.
Losos, J. B. Uncertainty in the reconstruction of ancestral character states and limitations on the use of phylogenetic comparative methods. Anim. Behav. 58, 1319–1324 (1999).
CAS PubMed Article Google Scholar55.
Losos, J. B. Seeing the forest for the trees: the limitations of phylogenies in comparative biology. Am. Nat. 177, 709–727 (2011).
PubMed Article Google Scholar56.
Stearns, S. C. The Evolution of Life Histories (Oxford Univ. Press, 1992).57.
Rose, K. E., Atkinson, R. L., Turnbull, L. A. & Rees, M. The costs and benefits of fast living. Ecol. Lett. 12, 1379–1384 (2009).
PubMed Article Google Scholar58.
Makana, J.-R. et al. Demography and biomass change in monodominant and mixed old-growth forest of the Congo. J. Trop. Ecol. 27, 447–461 (2011).
Article Google Scholar More