How to identify win–win interventions that benefit human health and conservation
1.
A Guide to SDG Interactions: from Science to Implementation (International Council for Science, 2017); https://go.nature.com/3o5nOD3
2.
IPBES Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).
3.
Schneider, F. et al. How can science support the 2030 Agenda for Sustainable Development? Four tasks to tackle the normative dimension of sustainability. Sustain. Sci. 14, 1593–1604 (2019).
Article Google Scholar
4.
Barbier, E. B. & Burgess, J. C. Sustainable development goal indicators: analyzing trade-offs and complementarities. World Dev. 122, 295–305 (2019).
Article Google Scholar
5.
Pradhan, P., Costa, L., Rybski, D., Lucht, W. & Kropp, J. P. A systematic study of Sustainable Development Goal (SDG) interactions. Earth’s Future 5, 1169–1179 (2017).
Article Google Scholar
6.
Howe, C., Suich, H., Vira, B. & Mace, G. M. Creating win-wins from trade-offs? Ecosystem services for human well-being: a meta-analysis of ecosystem service trade-offs and synergies in the real world. Glob. Environ. Change 28, 263–275 (2014).
Article Google Scholar
7.
Whitmee, S. et al. Safeguarding human health in the Anthropocene epoch: report of The Rockefeller Foundation–Lancet Commission on planetary health. Lancet 386, 1973–2028 (2015).
Article Google Scholar
8.
Naidoo, R. & Fisher, B. Reset Sustainable Development Goals for a pandemic world. Nature 583, 198–201 (2020).
CAS Article Google Scholar
9.
Nilsson, M. et al. Mapping interactions between the sustainable development goals: lessons learned and ways forward. Sustain. Sci. 13, 1489–1503 (2018).
Article Google Scholar
10.
Cohen-Shacham, E., Walters, G., Janzen, C. & Maginnis, S. (eds) Nature-based Solutions to Address Global Societal Challenges (IUCN, 2016).
11.
Allen, C., Metternicht, G. & Wiedmann, T. Prioritising SDG targets: assessing baselines, gaps and interlinkages. Sustain. Sci. 14, 421–438 (2019).
Article Google Scholar
12.
Mayrhofer, J. P. & Gupta, J. The science and politics of co-benefits in climate policy. Environ. Sci. Policy 57, 22–30 (2016).
Article Google Scholar
13.
Le Blanc, D. Towards Integration at Last? The Sustainable Development Goals as a Network of Targets (United Nations, Department of Economic and Social Affairs, 2015).
14.
Sokolow, S. H. et al. Nearly 400 million people are at higher risk of schistosomiasis because dams block the migration of snail-eating river prawns. Phil. Trans. R. Soc. B 372, 20160127 (2017).
Article Google Scholar
15.
Steinmann, P., Keiser, J., Bos, R., Tanner, M. & Utzinger, J. Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect. Dis. 6, 411–425 (2006).
Article Google Scholar
16.
Sokolow, S. H. et al. Global assessment of schistosomiasis control over the past century shows targeting the snail intermediate host works best. PLoS Negl. Trop. Dis. 10, e0004794 (2016).
Article Google Scholar
17.
Martin, D. A. et al. Land-use history determines ecosystem services and conservation value in tropical agroforestry. Conserv. Lett. 13, e12740 (2020).
Article Google Scholar
18.
Medlock, J. M. et al. A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector Borne Zoonotic Dis. 12, 435–447 (2012).
Article Google Scholar
19.
van Riper, C., van Riper, S. G., Goff, M. L. & Laird, M. The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol. Monogr. 56, 327–344 (1986).
Article Google Scholar
20.
Franklin, B. Protection of Towns from Fire. The Pennsylvania Gazette (4 February 1735).
21.
Bauch, S. C., Birkenbach, A. M., Pattanayak, S. K. & Sills, E. O. Public health impacts of ecosystem change in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 112, 7414–7419 (2015).
CAS Article Google Scholar
22.
Herrera, D. et al. Upstream watershed condition predicts rural children’s health across 35 developing countries. Nat. Commun. 8, 811 (2017).
Article Google Scholar
23.
McShane, T. O. et al. Hard choices: making trade-offs between biodiversity conservation and human well-being. Biol. Conserv. 144, 966–972 (2011).
Article Google Scholar
24.
Lengeler, C. Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD000363.pub2 (2004).
25.
Price, J., Richardson, M. & Lengeler, C. Insecticide-treated nets for preventing malaria. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD000363.pub3 (2018).
26.
Short, R., Gurung, R., Rowcliffe, M., Hill, N. & Milner-Gulland, E. J. The use of mosquito nets in fisheries: a global perspective. PLoS ONE 13, e0191519 (2018).
Article Google Scholar
27.
Markandya, A. et al. Counting the cost of vulture decline—an appraisal of the human health and other benefits of vultures in India. Ecol. Econ. 67, 194–204 (2008).
Article Google Scholar
28.
Buechley, E. R. & Şekercioğlu, Ç. H. The avian scavenger crisis: looming extinctions, trophic cascades, and loss of critical ecosystem functions. Biol. Conserv. 198, 220–228 (2016).
Article Google Scholar
29.
Gangoso, L. et al. Reinventing mutualism between humans and wild fauna: insights from vultures as ecosystem services providers. Conserv. Lett. 6, 172–179 (2013).
Article Google Scholar
30.
Hampson, K. et al. Estimating the global burden of endemic canine rabies. PLoS Negl. Trop. Dis. 9, e0003709 (2015).
Article Google Scholar
31.
Ogada, D. L., Torchin, M. E., Kinnaird, M. F. & Ezenwa, V. O. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).
CAS Article Google Scholar
32.
Breuer, E., Lee, L., De Silva, M. & Lund, C. Using theory of change to design and evaluate public health interventions: a systematic review. Implement. Sci. 11, 63 (2016).
Article Google Scholar
33.
Constructing Theories of Change for Ecosystem-Based Adaptation Projects: A Guidance Document (Conservation International, 2013).
34.
de Wit, L. A. et al. Estimating burdens of neglected tropical zoonotic diseases on islands with introduced mammals. Am. J. Trop. Med. Hyg. 96, 749–757 (2017).
Google Scholar
35.
Morand, S. et al. Global parasite and Rattus rodent invasions: the consequences for rodent-borne diseases. Integr. Zool. 10, 409–423 (2015).
Article Google Scholar
36.
Duron, Q., Shiels, A. B. & Vidal, E. Control of invasive rats on islands and priorities for future action. Conserv. Biol. 31, 761–771 (2017).
Article Google Scholar
37.
Vanderwerf, E. A. Importance of nest predation by alien rodents and avian poxvirus in conservation of Oahu elepaio. J. Wildl. Manag. 73, 737–746 (2009).
Article Google Scholar
38.
Pender, R. J., Shiels, A. B., Bialic-Murphy, L. & Mosher, S. M. Large-scale rodent control reduces pre- and post-dispersal seed predation of the endangered Hawaiian lobeliad, Cyanea superba subsp. superba (Campanulaceae). Biol. Invasions 15, 213–223 (2013).
Article Google Scholar
39.
Hoare, J. M. & Hare, K. M. The impact of brodifacoum on non-target wildlife: gaps in knowledge. N. Z. J. Ecol. 30, 157–167 (2006).
Google Scholar
40.
DataBank (The World Bank, 2020); https://databank.worldbank.org/home.aspx
41.
Progress on Drinking Water and Sanitation: 2012 Update (World Health Organization and UNICEF, 2012); https://go.nature.com/2HOJFOR More