1.
Convey, P. & Block, W. Antarctic diptera: Ecology, physiology and distribution. Eur. J. Entomol. 93, 1–14 (1996).
Google Scholar
2.
Sugg, P., Edwards, J. S. & Baust, J. Phenology and life history of Belgica antarctica, an Antarctic midge (Diptera: Chironomidae). Ecol. Entomol. 8, 105–113 (1983).
Article Google Scholar
3.
Usher, M. B. & Edwards, M. A dipteran from south of the Antarctic circle: Belgica antarctica (Chironomidae) with a description of its larva. Biol. J. Lin. Soc. 23, 19–31 (1984).
Article Google Scholar
4.
Strong, J. Ecology of terrestrial arthropods at Palmer Station, Antarctic Peninsula. In Entomology of Antarctica (ed. Linsley-Gressitt, J.) 357–371 (American Geophysical Union, Washington DC, 1967).
Google Scholar
5.
Edwards, J. S. & Baust, J. Sex ratio and adult behaviour of the Antarctic midge Belgica antarctica (Diptera, Chironomklae). Ecol. Entomol. 6, 239–243 (1981).
Article Google Scholar
6.
Teets, N. M. et al. Rapid cold-hardening in larvae of the Antarctic midge Belgica antarctica: Cellular cold-sensing and a role for calcium. Am. J. Physiol.-Regulat. Integr. Compar. Physiol. 294, R1938–R1946 (2008).
CAS Article Google Scholar
7.
Benoit, J. B. et al. Mechanisms to reduce dehydration stress in larvae of the Antarctic midge, Belgica antarctica. J. Insect Physiol. 53, 656–667 (2007).
CAS Article PubMed Google Scholar
8.
Benoit, J. B., Lopez-Martinez, G., Elnitsky, M. A., Lee, R. E. & Denlinger, D. L. Dehydration-induced cross tolerance of Belgica antarctica larvae to cold and heat is facilitated by trehalose accumulation. Compar. Biochem. Physiol. A-Mol. Integr. Physiol. 152, 518–523 (2009).
Article CAS Google Scholar
9.
Lopez-Martinez, G. et al. Dehydration, rehydration, and overhydration alter patterns of gene expression in the Antarctic midge, Belgica antarctica. J. Compar. Physiol. B-Biochem. Syst. Environ. Physiol. 179, 481–491 (2009).
CAS Article Google Scholar
10.
Lopez-Martinez, G., Elnitsky, M. A., Benoit, J. B., Lee, R. E. Jr. & Denlinger, D. L. High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect Biochem. Mol. Biol. 38, 796–804 (2008).
CAS Article PubMed Google Scholar
11.
Harada, E., Lee, R. E., Denlinger, D. L. & Goto, S. G. Life history traits of adults and embryos of the Antarctic midge Belgica antarctica. Polar Biol. 37, 1213–1217 (2014).
Article Google Scholar
12.
Convey, P. How are the life history strategies of Antarctic terrestrial invertebrates influenced by extreme environmental conditions? J. Therm. Biol 22, 429–440 (1997).
Article Google Scholar
13.
Kennedy, A. D. Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arct. Alp. Res. 25, 308–315 (1993).
Article Google Scholar
14.
Hahn, S. & Reinhardt, K. Habitat preference and reproductive traits in the Antarctic midge Parochlus steinenii (Diptera: Chironomidae). Antarct. Sci. 18, 175–181 (2006).
ADS Article Google Scholar
15.
Wensler, R. J. & Rempel, J. The morphology of the male and female reproductive systems of the midge, Chironomus plumosus L.. Can. J. Zool. 40, 199–229 (1962).
Article Google Scholar
16.
Sibley, P. K., Ankley, G. T. & Benoit, D. A. Factors affecting reproduction and the importance of adult size on reproductive output of the midge Chironomus tentans. Environ. Toxicol. Chem. 20, 1296–1303 (2001).
CAS Article PubMed Google Scholar
17.
Vogt, C. et al. Effects of cadmium and tributyltin on development and reproduction of the non-biting midge Chironomus riparius (Diptera)—Baseline experiments for future multi-generation studies. J. Environ. Sci. Health A 42, 1–9 (2007).
CAS Article Google Scholar
18.
Clark, A. G. et al. Evolution of genes and genomes on the Drosophila phylogeny. Nature 450, 203–218 (2007).
ADS Article CAS PubMed Google Scholar
19.
Ravi-Ram, K. & Wolfner, M. F. Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. Integr. Compar. Biol. 47, 427–445 (2007).
CAS Article Google Scholar
20.
McGraw, L. A., Clark, A. G. & Wolfner, M. F. Post-mating gene expression profiles of female Drosophila melanogaster in response to time and to four male accessory gland proteins. Genetics 179, 1395–1408 (2008).
CAS Article PubMed PubMed Central Google Scholar
21.
Avila, F. W., Sirot, L. K., LaFlamme, B. A., Rubinstein, C. D. & Wolfner, M. F. Insect seminal fluid proteins: Identification and function. Annu. Rev. Entomol. 56, 21–40 (2011).
CAS Article PubMed PubMed Central Google Scholar
22.
Benoit, J. B., Attardo, G. M., Baumann, A. A., Michalkova, V. & Aksoy, S. Adenotrophic viviparity in tsetse flies: Potential for population control and as an insect model for lactation. Annu. Rev. Entomol. 60, 351–371 (2015).
CAS Article PubMed Google Scholar
23.
Lee, K. P. et al. Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proc. Natl. Acad. Sci. USA 105, 2498–2503 (2008).
ADS CAS Article PubMed Google Scholar
24.
Polak, M. et al. Nutritional geometry of paternal effects on embryo mortality. Proc. R. Soc. B 284, 20171492 (2017).
Article CAS PubMed Google Scholar
25.
Papa, F. et al. Rapid evolution of female-biased genes among four species of Anopheles malaria mosquitoes. Genome Res. 27, 1536–1548 (2017).
CAS Article PubMed PubMed Central Google Scholar
26.
Izquierdo, A. et al. Evolution of gene expression levels in the male reproductive organs of Anopheles mosquitoes. Life Sci. Allian. 2, e201800191 (2019).
Article Google Scholar
27.
Dottorini, T. et al. A genome-wide analysis in Anopheles gambiae mosquitoes reveals 46 male accessory gland genes, possible modulators of female behavior. Proc. Natl. Acad. Sci. U.S.A. 104, 16215–16220 (2007).
ADS CAS Article PubMed PubMed Central Google Scholar
28.
Villarreal, S. M. et al. Male contributions during mating increase female survival in the disease vector mosquito Aedes aegypti. J. Insect Physiol. 108, 1–9 (2018).
CAS Article PubMed PubMed Central Google Scholar
29.
Alfonso-Parra, C. et al. Mating-induced transcriptome changes in the reproductive tract of female Aedes aegypti. PLoS Negl. Trop. Dis. 10, e0004451 (2016).
Article CAS PubMed PubMed Central Google Scholar
30.
Meier, R., Kotrba, M. & Ferrar, P. Ovoviviparity and viviparity in the Diptera. Biol. Rev. Camb. Philos. Soc. 74, 199–258 (1999).
Article Google Scholar
31.
Lung, O. & Wolfner, M. F. Identification and characterization of the major Drosophila melanogaster mating plug protein. Insect Biochem. Mol. Biol. 31, 543–551 (2001).
CAS Article Google Scholar
32.
Giglioli, M. & Mason, G. The mating plug in anopheline mosquitoes. Proc. R. Entomol. Soc. Lond. 41, 123–129 (1966).
Google Scholar
33.
Mitchell, S. N. et al. Evolution of sexual traits influencing vectorial capacity in anopheline mosquitoes. Science 347, 985–988 (2015).
ADS CAS Article PubMed PubMed Central Google Scholar
34.
Scolari, F. et al. The spermatophore in Glossina morsitans morsitans: Insights into male contributions to reproduction. Sci. Rep. https://doi.org/10.1038/srep20334 (2016).
Article PubMed PubMed Central Google Scholar
35.
Kotrba, M. Sperm transfer by spermatophore in Diptera: New results from the Diopsidae. Zool. J. Linnean Soc. 117, 305–323 (1996).
Article Google Scholar
36.
Attardo, G. M. et al. Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biol. 20, 187 (2019).
CAS Article PubMed PubMed Central Google Scholar
37.
Rogers, D. W. et al. Molecular and cellular components of the mating machinery in Anopheles gambiae females. Proc. Natl. Acad. Sci. U.S.A. 105, 19390–19395 (2008).
ADS CAS Article PubMed PubMed Central Google Scholar
38.
Gabrieli, P. et al. Sexual transfer of the steroid hormone 20E induces the postmating switch in Anopheles gambiae. Proc. Natl. Acad. Sci. U.S.A. 111, 16353–16358 (2014).
ADS CAS Article PubMed PubMed Central Google Scholar
39.
Thailayil, J., Magnusson, K., Godfray, H. C. J., Crisanti, A. & Catteruccia, F. Spermless males elicit large-scale female responses to mating in the malaria mosquito Anopheles gambiae. Proc. Natl. Acad. Sci. U.S.A. 108, 13677–13681 (2011).
ADS CAS Article PubMed PubMed Central Google Scholar
40.
Shutt, B., Stables, L., Aboagye-Antwi, F., Moran, J. & Tripet, F. Male accessory gland proteins induce female monogamy in anopheline mosquitoes. Med. Vet. Entomol. 24, 91–94 (2010).
CAS Article PubMed Google Scholar
41.
Dixon, S. M., Coyne, J. A. & Noor, M. A. The evolution of conspecific sperm precedence in Drosophila. Mol. Ecol. 12, 1179–1184 (2003).
Article PubMed Google Scholar
42.
Price, C. S. Conspecific sperm precedence in Drosophila. Nature 388, 663 (1997).
ADS CAS Article PubMed Google Scholar
43.
Gwynne, D. T. Male mating effort, confidence of paternity, and insect sperm competition. In Sperm Competition and the Evolution of Animal Mating Systems (ed. Smith, R.) 117 (Elsevier, Hoboken, 2012).
Google Scholar
44.
Hopkins, B. R. et al. Divergent allocation of sperm and the seminal proteome along a competition gradient in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 116, 17925–17933 (2019).
CAS Article PubMed PubMed Central Google Scholar
45.
Hopkins, B. R., Sepil, I. & Wigby, S. Seminal fluid. Curr. Biol. 27, R404–R405 (2017).
CAS Article PubMed Google Scholar
46.
Degrugillier, M. E. In vitro release of house fly, Musca domestica L. (Diptera: Muscidae), acrosomal material after treatments with secretion of female accessory gland and micropyle cap substance. Int. J. Insect Morphol. Embryol. 14, 381–391 (1985).
Article Google Scholar
47.
Leopold, R. A. & Degrugillier, M. E. Sperm penetration of housefly eggs: Evidence for involvement of a female accessory secretion. Science 181, 555–557 (1973).
ADS CAS Article PubMed Google Scholar
48.
Lococo, D. & Huebner, E. The ultrastructure of the female accessory gland, the cement gland, in the insect Rhodnius prolixus. Tissue Cell 12, 557–580 (1980).
CAS Article PubMed Google Scholar
49.
Marchini, D., Bernini, L. F., Marri, L., Giordano, P. C. & Dallai, R. The female reproductive accessory glands of the medfly Ceratitis capitata: antibacterial activity of the secretion fluid. Insect Biochem. 21, 597–605 (1991).
CAS Article Google Scholar
50.
Rosetto, M. et al. A mammalian-like lipase gene is expressed in the female reproductive accessory glands of the sand fly Phlebotomus papatasi (Diptera, Psychodidae). Insect Mol. Biol. 12, 501–508 (2003).
CAS Article PubMed Google Scholar
51.
Poiani, A. Complexity of seminal fluid: A review. Behav. Ecol. Sociobiol. 60, 289–310 (2006).
Article Google Scholar
52.
Lung, O., Kuo, L. & Wolfner, M. F. Drosophila males transfer antibacterial proteins from their accessory gland and ejaculatory duct to their mates. J. Insect Physiol. 47, 617–622 (2001).
CAS Article PubMed Google Scholar
53.
Kaiwa, N. et al. Symbiont-supplemented maternal investment underpinning host’s ecological adaptation. Curr. Biol. 24, 2465–2470 (2014).
CAS Article PubMed Google Scholar
54.
Kaulenas, M. Insect Accessory Reproductive Structures: Function, Structure, and Development (Springer, Berlin, 2012).
Google Scholar
55.
Benoit, J., Kölliker, M. & Attardo, G. Putting invertebrate lactation in context. Science 363, 593–593 (2019).
ADS CAS Article Google Scholar
56.
Masci, V. L. et al. Reproductive biology in Anophelinae mosquitoes (Diptera, Culicidae): Fine structure of the female accessory gland. Arthropod. Struct. Dev. 44, 378–387 (2015).
Article Google Scholar
57.
Kelley, J. L. et al. Compact genome of the Antarctic midge is likely an adaptation to an extreme environment. Nat. Commun. 5, 4611 (2014).
ADS CAS Article PubMed PubMed Central Google Scholar
58.
Rosendale, A. J., Dunlevy, M. E., McCue, M. D. & Benoit, J. B. Progressive behavioural, physiological and transcriptomic shifts over the course of prolonged starvation in ticks. Mol. Ecol. 28, 49–65 (2019).
CAS Article PubMed Google Scholar
59.
Raudvere, U. et al. g: Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. https://doi.org/10.1093/nar/gkz369 (2019).
Article PubMed PubMed Central Google Scholar
60.
Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).
Article CAS Google Scholar
61.
Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).
ADS CAS Article PubMed PubMed Central Google Scholar
62.
Teets, N. M. et al. Gene expression changes governing extreme dehydration tolerance in an Antarctic insect. Proc. Natl. Acad. Sci U.S.A. 109, 20744–20749 (2012).
ADS CAS Article PubMed PubMed Central Google Scholar
63.
Telfer, W. H. & Kunkel, J. G. The function and evolution of insect storage hexamers. Annu. Rev. Entomol. 36, 205–228 (1991).
CAS Article PubMed Google Scholar
64.
Burmester, T. Evolution and function of the insect hexamerins. Eur. J. Entomol. 96, 213–226 (1999).
CAS Google Scholar
65.
Burmester, T., Massey, H. C. Jr., Zakharkin, S. O. & Benes, H. The evolution of hexamerins and the phylogeny of insects. J. Mol. Evol. 47, 93–108 (1998).
ADS CAS Article PubMed Google Scholar
66.
Swanson, W. J., Wong, A., Wolfner, M. F. & Aquadro, C. F. Evolutionary expressed sequence tag analysis of Drosophila female reproductive tracts identifies genes subjected to positive selection. Genetics 168, 1457–1465 (2004).
CAS Article PubMed PubMed Central Google Scholar
67.
Panfilio, K. A. et al. Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome. Genome Biol. 20, 64 (2019).
Article PubMed PubMed Central Google Scholar
68.
Olafson, P. U. et al. Functional genomics of the stable fly, Stomoxys calcitrans, reveals mechanisms underlying reproduction, host interactions, and novel targets for pest control. BioRxiv https://doi.org/10.1101/623009 (2019).
Article Google Scholar
69.
Parisi, M. et al. A survey of ovary-, testis-, and soma-biased gene expression in Drosophila melanogaster adults. Genome Biol. 5, R40 (2004).
Article PubMed PubMed Central Google Scholar
70.
Cao, X. & Jiang, H. An analysis of 67 RNA-seq datasets from various tissues at different stages of a model insect, Manduca sexta. BMC Genomics 18, 796 (2017).
Article CAS PubMed PubMed Central Google Scholar
71.
McKenna, D. D. et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface. Genome Biol. 17, 227 (2016).
Article CAS PubMed PubMed Central Google Scholar
72.
Pauchet, Y. et al. Pyrosequencing the Manduca sexta larval midgut transcriptome: Messages for digestion, detoxification and defence. Insect Mol. Biol. 19, 61–75 (2010).
CAS Article PubMed Google Scholar
73.
Venancio, T., Cristofoletti, P., Ferreira, C., Verjovski-Almeida, S. & Terra, W. The Aedes aegypti larval transcriptome: A comparative perspective with emphasis on trypsins and the domain structure of peritrophins. Insect Mol. Biol. 18, 33–44 (2009).
CAS Article PubMed Google Scholar
74.
Graveley, B. R. et al. The developmental transcriptome of Drosophila melanogaster. Nature 471, 473–479 (2011).
ADS CAS Article PubMed Google Scholar
75.
Shim, J., Gururaja-Rao, S. & Banerjee, U. Nutritional regulation of stem and progenitor cells in Drosophila. Development 140, 4647–4656 (2013).
CAS Article PubMed PubMed Central Google Scholar
76.
Terashima, J. & Bownes, M. A microarray analysis of genes involved in relating egg production to nutritional intake in Drosophila melanogaster. Cell Death Differ. 12, 429 (2005).
CAS Article PubMed Google Scholar
77.
Xie, T. & Spradling, A. C. Decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell 94, 251–260 (1998).
CAS Article PubMed Google Scholar
78.
Newfeld, S. J., Chartoff, E. H., Graff, J. M., Melton, D. A. & Gelbart, W. M. Mothers against dpp encodes a conserved cytoplasmic protein required in DPP/TGF-beta responsive cells. Development 122, 2099–2108 (1996).
CAS PubMed Google Scholar
79.
Soller, M., Bownes, M. & Kubli, E. Control of oocyte maturation in sexually mature Drosophila females. Dev. Biol. 208, 337–351 (1999).
CAS Article PubMed Google Scholar
80.
Qazi, M. C. B., Heifetz, Y. & Wolfner, M. F. The developments between gametogenesis and fertilization: Ovulation and female sperm storage in Drosophila melanogaster. Dev. Biol. 256, 195–211 (2003).
Article CAS Google Scholar
81.
Lefebvre, F. A. & Lécuyer, É. Flying the RNA nest: Drosophila reveals novel insights into the transcriptome dynamics of early development. J. Dev. Biol. 6, 5 (2018).
Article CAS PubMed Central Google Scholar
82.
Kim, T. & Kim, Y. Overview of innate immunity in Drosophila. J. Biochem. Mol. Biol. 38, 121 (2005).
CAS PubMed Google Scholar
83.
Gilmore, T. D. Introduction to NF-κB: Players, pathways, perspectives. Oncogene 25, 6680 (2006).
CAS Article PubMed Google Scholar
84.
Sosic, D. & Olson, E. N. A new twist on twist: Modulation of the NF-KappaB pathway. Cell Cycle 2, 75–77 (2003).
Article Google Scholar
85.
Swevers, L., Raikhel, A., Sappington, T., Shirk, P. & Iatrou, K. Vitellogenesis and post-vitellogenic maturation of the insect ovarian follicle. In Comprehensive Molecular Insect Science (eds Gilbert, L. I. et al.) (Elsevier, Amsterdam, 2005).
Google Scholar
86.
Güiza, J., Barria, I., Saez, J. C. & Vega, J. L. Innexins: Expression, regulation and functions. Front. Physiol. 9, 1414 (2018).
Article PubMed PubMed Central Google Scholar
87.
Bauer, R. et al. Intercellular communication: The Drosophila innexin multiprotein family of gap junction proteins. Chem. Biol. 12, 515–526 (2005).
CAS Article PubMed Google Scholar
88.
Richard, M. & Hoch, M. Drosophila eye size is determined by innexin 2-dependent decapentaplegic signalling. Dev. Biol. 408, 26–40 (2015).
CAS Article PubMed Google Scholar
89.
De Keuckelaere, E., Hulpiau, P., Saeys, Y., Berx, G. & Van Roy, F. Nanos genes and their role in development and beyond. Cell. Mol. Life Sci. 75, 1929–1946 (2018).
Article CAS PubMed Google Scholar
90.
Quinlan, M. E. Cytoplasmic streaming in the Drosophila oocyte. Annu. Rev. Cell Dev. Biol. 32, 173–195 (2016).
CAS Article PubMed Google Scholar
91.
Doyen, C. M. et al. A testis-specific chaperone and the chromatin remodeler ISWI mediate repackaging of the paternal genome. Cell Rep. 13, 1310–1318 (2015).
CAS Article PubMed Google Scholar
92.
Tirmarche, S., Kimura, S., Dubruille, R., Horard, B. & Loppin, B. Unlocking sperm chromatin at fertilization requires a dedicated egg thioredoxin in Drosophila. Nat. Commun. 7, 13539 (2016).
ADS CAS Article PubMed PubMed Central Google Scholar
93.
Loppin, B., Dubruille, R. & Horard, B. The intimate genetics of Drosophila fertilization. Open Biol. 5, 150076 (2015).
Article CAS PubMed PubMed Central Google Scholar
94.
Sato, M. & Sato, K. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334, 1141–1144 (2011).
ADS CAS Article PubMed Google Scholar
95.
DeLuca, S. Z. & O’Farrell, P. H. Barriers to male transmission of mitochondrial DNA in sperm development. Dev. Cell 22, 660–668 (2012).
CAS Article PubMed PubMed Central Google Scholar
96.
Bastock, R. & St Johnston, D. Drosophila oogenesis. Curr. Biol. 18, R1082–R1087 (2008).
CAS Article PubMed Google Scholar
97.
Kaulenas, M. Structure and function of the female accessory reproductive systems. In Insect Accessory Reproductive Structures (ed. Kaulenas, M.) 33–121 (Springer, Berlin, 1992).
Google Scholar
98.
Orr-Weaver, T. L. When bigger is better: The role of polyploidy in organogenesis. Trends Genet. 31, 307–315 (2015).
CAS Article PubMed PubMed Central Google Scholar
99.
Perry, J. C., Harrison, P. W. & Mank, J. E. The ontogeny and evolution of sex-biased gene expression in Drosophila melanogaster. Mol. Biol. Evol. 31, 1206–1219 (2014).
CAS Article PubMed PubMed Central Google Scholar
100.
Vanderperre, B. et al. MPC1-like is a placental mammal-specific mitochondrial pyruvate carrier subunit expressed in postmeiotic male germ cells. J. Biol. Chem. 291, 16448–16461 (2016).
CAS Article PubMed PubMed Central Google Scholar
101.
Rato, L. et al. Metabolic regulation is important for spermatogenesis. Nat. Rev. Urol. 9, 330 (2012).
CAS Article PubMed Google Scholar
102.
Ramalho-Santos, J. et al. Mitochondrial functionality in reproduction: From gonads and gametes to embryos and embryonic stem cells. Hum. Reprod. 15, 553–572 (2009).
CAS Google Scholar
103.
Silva, J. V. et al. Amyloid precursor protein interaction network in human testis: Sentitnel proteins for male reproduction. BMC Bioinform. 16, 12 (2015).
Article CAS Google Scholar
104.
De Gregorio, E., Spellman, P. T., Rubin, G. M. & Lemaitre, B. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc. Natl. Acad. Sci. U.S.A. 98, 12590–12595 (2001).
ADS Article PubMed PubMed Central Google Scholar
105.
Irving, P. et al. A genome-wide analysis of immune responses in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 98, 15119–15124 (2001).
ADS CAS Article PubMed PubMed Central Google Scholar
106.
Brucker, R. M., Funkhouser, L. J., Setia, S., Pauly, R. & Bordenstein, S. R. Insect Innate Immunity Database (IIID): An annotation tool for identifying immune genes in insect genomes. PLoS ONE 7, e45125 (2012).
ADS CAS Article PubMed PubMed Central Google Scholar
107.
Palmer, W. J. & Jiggins, F. M. Comparative genomics reveals the origins and diversity of arthropod immune systems. Mol. Biol. Evol. 32, 2111–2129 (2015).
CAS Article PubMed PubMed Central Google Scholar
108.
Stroumbakis, N. D., Li, Z. & Tolias, P. P. A homolog of human transcription factor NF-X1 encoded by the Drosophila shuttle craft gene is required in the embryonic central nervous system. Mol. Cell. Biol. 16, 192–201 (1996).
CAS Article PubMed PubMed Central Google Scholar
109.
Malik, A. et al. Development of resistance mechanism in mosquitoes: Cytochrome P450, the ultimate detoxifier. J. Appl. Emerg. Sci. 4, 100–117 (2016).
Google Scholar
110.
Rial, D. et al. Toxicity of seabird guano to sea urchin embryos and interaction with Cu and Pb. Chemosphere 145, 384–393 (2016).
ADS CAS Article PubMed Google Scholar
111.
Rinehart, J. P. et al. Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect. Proc. Natl. Acad. Sci. U.S.A. 103, 14223–14227 (2006).
ADS CAS Article PubMed PubMed Central Google Scholar
112.
Michaud, M. R. et al. Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing and desiccation in the Antarctic midge, Belgica antarctica. J. Insect Physiol. 54, 645–655 (2008).
Article CAS Google Scholar
113.
Teets, N. M., Kawarasaki, Y., Lee, R. E. Jr. & Denlinger, D. L. Expression of genes involved in energy mobilization and osmoprotectant synthesis during thermal and dehydration stress in the Antarctic midge, Belgica antarctica. J. Comp. Physiol. B. 183, 189–201 (2013).
CAS Article PubMed Google Scholar
114.
Lv, D. K. et al. Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 459, 39–47 (2010).
CAS Article PubMed Google Scholar
115.
Zhang, J., Marshall, K. E., Westwood, J. T., Clark, M. S. & Sinclair, B. J. Divergent transcriptomic responses to repeated and single cold exposures in Drosophila melanogaster. J. Exp. Biol. 214, 4021–4029 (2011).
Article PubMed Google Scholar
116.
Ronges, D., Walsh, J. P., Sinclair, B. J. & Stillman, J. H. Changes in extreme cold tolerance, membrane composition and cardiac transcriptome during the first day of thermal acclimation in the porcelain crab Petrolisthes cinctipes. J. Exp. Biol. 215, 1824–1836 (2012).
CAS Article PubMed Google Scholar
117.
Dunning, L. T. et al. Identification of cold-responsive genes in a New Zealand alpine stick insect using RNA-Seq. Compar. Biochem. Physiol. D Genomics Proteomics 8, 24–31 (2013).
CAS Article Google Scholar
118.
Lee, S.-M., Lee, S.-B., Park, C.-H. & Choi, J. Expression of heat shock protein and hemoglobin genes in Chironomus tentans (Diptera, chironomidae) larvae exposed to various environmental pollutants: A potential biomarker of freshwater monitoring. Chemosphere 65, 1074–1081 (2006).
ADS CAS Article PubMed Google Scholar
119.
Gusev, O. et al. Comparative genome sequencing reveals genomic signature of extreme desiccation tolerance in the anhydrobiotic midge. Nat. Commun. 5, 4784 (2014).
ADS CAS Article PubMed PubMed Central Google Scholar
120.
Kaiser, T. S. et al. The genomic basis of circadian and circalunar timing adaptations in a midge. Nature 540, 69 (2016).
ADS CAS Article PubMed PubMed Central Google Scholar
121.
Tran, D. T. & Ten Hagen, K. G. Mucin-type O-glycosylation during development. J. Biol. Chem. 288, 6921–6929 (2013).
CAS Article PubMed PubMed Central Google Scholar
122.
Tian, E. & Hagen, K. G. T. O-linked glycan expression during Drosophila development. Glycobiology 17, 820–827 (2007).
CAS Article PubMed Google Scholar
123.
Zhang, L., Zhang, Y. & Ten Hagen, K. G. A mucin-type O-glycosyltransferase modulates cell adhesion during Drosophila development. J. Biol. Chem. 283, 34076–34086 (2008).
CAS Article PubMed PubMed Central Google Scholar
124.
Tran, D. T. et al. Multiple members of the UDP-GalNAc: Polypeptide N-acetylgalactosaminyltransferase family are essential for viability in Drosophila. J. Biol. Chem. 287, 5243–5252 (2012).
CAS Article PubMed Google Scholar
125.
Sirot, L. K., Wong, A., Chapman, T. & Wolfner, M. F. Sexual conflict and seminal fluid proteins: A dynamic landscape of sexual interactions. Cold Spring Harbor Perspect. Biol. 7, a017533 (2015).
Article CAS Google Scholar
126.
Baldini, F., Gabrieli, P., Rogers, D. W. & Catteruccia, F. Function and composition of male accessory gland secretions in Anopheles gambiae: A comparison with other insect vectors of infectious diseases. Pathog. Glob. Health 106, 82–93 (2012).
Article PubMed PubMed Central Google Scholar
127.
Tian, C.-B. et al. Comparative transcriptome analysis of three Bactrocera dorsalis (Diptera: Tephritidae) organs to identify functional genes in the male accessory glands and ejaculatory duct. Florida Entomol. 100, 42–51 (2017).
Article Google Scholar
128.
Abraham, S. et al. The male ejaculate as inhibitor of female remating in two tephritid flies. J. Insect Physiol. 88, 40–47 (2016).
CAS Article PubMed Google Scholar
129.
Denis, B. et al. Male accessory gland proteins affect differentially female sexual receptivity and remating in closely related Drosophila species. J. Insect Physiol. 99, 67–77 (2017).
CAS Article PubMed Google Scholar
130.
Attardo, G. M. et al. Ladybird late homeodomain factor regulates lactation specific expression of milk proteins during pregnancy in the tsetse fly (Glossina morsitans). PLoS Negl. Trop. Dis. 8, e2645 (2014).
Article CAS PubMed PubMed Central Google Scholar
131.
Internation Glossina Genome Consortium. Genome sequence of the tsetse fly (Glossina morsitans): Vector of African trypanosomiasis. Science 344, 380–386 (2014).
Article CAS Google Scholar
132.
Larsen, W. J. Cell remodeling in the fat body of an insect. Tissue Cell 8, 73–92 (1976).
CAS Article PubMed Google Scholar
133.
Keeley, L. Endocrine regulation of fat body development and function. Annu. Rev. Entomol. 23, 329–352 (1978).
CAS Article Google Scholar
134.
Denlinger, D. L. & Ma, W.-C. Dynamics of the pregnancy cycle in the tsetse Glossina morsitans. J. Insect Physiol. 20, 1015–1026 (1974).
CAS Article PubMed Google Scholar
135.
Ma, W. C., Denlinger, D. L., Jarlfors, U. & Smith, D. S. Structural modulations in the tsetse fly milk gland during a pregnancy cycle. Tissue Cell 7, 319–330 (1975).
CAS Article PubMed Google Scholar
136.
Otti, O., McTighe, A. P. & Reinhardt, K. In vitro antimicrobial sperm protection by an ejaculate-like substance. Funct. Ecol. 27, 219–226 (2013).
Article Google Scholar
137.
Otti, O., Naylor, R. A., Siva-Jothy, M. T. & Reinhardt, K. Bacteriolytic activity in the ejaculate of an insect. Am. Nat. 174, 292–295 (2009).
Article PubMed Google Scholar
138.
Benoit, J. B., Lopez-Martinez, G., Elnitsky, M. A., Lee, R. E. & Denlinger, D. L. Moist habitats are essential for adults of the Antarctic midge, Belgica antarctica (Diptera: Chironomidae), to avoid dehydration. Eur. J. Entomol. 104, 9–14 (2007).
Article Google Scholar
139.
Aguila, J. R., Hoshizaki, D. K. & Gibbs, A. G. Contribution of larval nutrition to adult reproduction in Drosophila melanogaster. J. Exp. Biol. 216, 399–406 (2013).
Article PubMed Google Scholar
140.
Aguila, J. R., Suszko, J., Gibbs, A. G. & Hoshizaki, D. K. The role of larval fat cells in adult Drosophila melanogaster. J. Exp. Biol. 210, 956–963 (2007).
Article PubMed Google Scholar
141.
Rosa, E. & Saastamoinen, M. Sex-dependent effects of larval food stress on adult performance under semi-natural conditions: Only a matter of size? Oecologia 184, 633–642 (2017).
ADS Article PubMed PubMed Central Google Scholar
142.
Hagan, R. W. et al. Dehydration prompts increased activity and blood feeding by mosquitoes. Sci. Rep. 8, 6804 (2018).
ADS Article CAS PubMed PubMed Central Google Scholar
143.
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).
CAS Article PubMed PubMed Central Google Scholar
144.
Goecks, J., Nekrutenko, A. & Taylor, J. Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11, R86 (2010).
Article PubMed PubMed Central Google Scholar
145.
Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–W544 (2018).
CAS Article PubMed PubMed Central Google Scholar
146.
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
Article CAS PubMed PubMed Central Google Scholar
147.
da Huang, W. et al. Extracting biological meaning from large gene lists with DAVID. Curr. Protoc. Bioinform. https://doi.org/10.1002/0471250953.bi131 (2009).
Article Google Scholar
148.
Conesa, A. et al. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).
CAS Article PubMed Google Scholar
149.
Clark, N. & Maayan, A. Introduction to statistical methods for analyzing large data sets: Gene set enrichment analysis (GSEA). Sci. Signal. https://doi.org/10.1126/scisignal.2001966 (2011).
Article PubMed PubMed Central Google Scholar
150.
Kim, S. et al. Genome sequencing of the winged midge, Parochlus steinenii, from the Antarctic Peninsula. GigaScience 6, 009 (2017).
Google Scholar
151.
Benoit, J. B. et al. Unique features of a global human ectoparasite identified through sequencing of the bed bug genome. Nat. Commun. 7, 10165 (2016).
ADS CAS Article PubMed PubMed Central Google Scholar
152.
Eddy, S. R. A new generation of homology search tools based on probabilistic inference. In Genome Informatics 2009: Genome Informatics Series (eds Morishita, S. et al.) 205–211 (World Scientific, Yokohama, 2009).
Google Scholar
153.
Weirauch, M. T. & Hughes, T. A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution. In A Handbook of Transcription Factors (ed. Hughes, T. R.) 25–73 (Springer, Dordrecht, 2011).
Google Scholar
154.
Weirauch, M. T. et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158, 1431–1443 (2014).
CAS Article PubMed PubMed Central Google Scholar
155.
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
CAS Article PubMed PubMed Central Google Scholar
156.
Rosendale, A. J., Romick-Rosendale, L. E., Watanabe, M., Dunlevy, M. E. & Benoit, J. B. Mechanistic underpinnings of dehydration stress in ticks revealed through RNA-seq and metabolomics. J. Exp. Biol. 219, 1808–1819 (2016).
Article PubMed Google Scholar
157.
Benoit, J. B. et al. Rapid autophagic regression of the milk gland during involution is critical for maximizing tsetse viviparous reproductive output. PLoS Negl. Trop. Dis. 12, e0006204 (2018).
Article CAS PubMed PubMed Central Google Scholar
158.
Turnier, J. L. et al. Discovery of SERPINA3 as a candidate urinary biomarker of lupus nephritis activity. Rheumatology 58, 321–330 (2018).
Article CAS Google Scholar
159.
Heaven, M. R. et al. Systematic evaluation of data-independent acquisition for sensitive and reproducible proteomics—A prototype design for a single injection assay. J. Mass Spectrom. 51, 1–11 (2016).
ADS CAS Article PubMed PubMed Central Google Scholar
160.
Convey, P. Aspects of the biology of the midge, Eretmoptera murphyi Schaeffer (Diptera: Chironomidae), introduced to Signy Island, maritime Antarctic. Polar Biol. 12, 653–657 (1992).
Article Google Scholar
161.
Lefkovitch, L. The study of population growth in organisms grouped by stages. Biometrics 21, 1–18 (1965).
Article Google Scholar More