More stories

  • in

    Plant part and a steep environmental gradient predict plant microbial composition in a tropical watershed

    1.
    Zahn G, Amend AS. Foliar fungi alter reproductive timing and allocation in Arabidopsis under normal and water-stressed conditions. Fungal Ecol. 2019;41:101–6.
    Article  Google Scholar 
    2.
    Arnold AE, Engelbrecht BMJ. Fungal endophytes nearly double minimum leaf conductance in seedlings of a neotropical tree species. J Trop Ecol. 2007;23:369–72.
    Article  Google Scholar 

    3.
    Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, et al. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol. 2009;75:748–57.
    CAS  PubMed  Article  Google Scholar 

    4.
    Berg G, Köberl M, Rybakova D, Müller H, Grosch R, Smalla K. Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol Ecol. 2017;93:fix050. https://doi.org/10.1093/femsec/fix050.

    5.
    Choudoir MJ, Barberan A, Menninger HL, Dunn RR, Fierer N. Variation in range size and dispersal capabilities of microbial taxa. Ecology. 2017;99:322–34.
    Article  Google Scholar 

    6.
    Klironomos JN. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature. 2002;417:67–70.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Dini-Andreote F, Raaijmakers JM. Embracing community ecology in plant microbiome research. Trends Plant Sci. 2018;23:467–9.
    CAS  PubMed  Article  Google Scholar 

    8.
    Beilsmith K, Thoen MPM, Brachi B, Gloss AD, Khan MH, Bergelson J. Genome-wide association studies on the phyllosphere microbiome: embracing complexity in host-microbe interactions. Plant J Cell Mol Biol. 2019;97:164–81.
    CAS  Article  Google Scholar 

    9.
    Peay KG, Kennedy PG, Talbot JM. Dimensions of biodiversity in the Earth mycobiome. Nat Rev Microbiol. 2016;14:434–47.
    CAS  PubMed  Article  Google Scholar 

    10.
    Wang J, Soininen J, He J, Shen J. Phylogenetic clustering increases with elevation for microbes. Environ Microbiol Rep. 2012;4:217–26.
    PubMed  Article  Google Scholar 

    11.
    Zimmerman NB, Vitousek PM. Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. Proc Natl Acad Sci USA. 2012;109:13022–7.
    CAS  PubMed  Article  Google Scholar 

    12.
    Yang Y, Gao Y, Wang S, Xu D, Yu H, Wu L, et al. The microbial gene diversity along an elevation gradient of the Tibetan grassland. ISME J. 2014;8:430–40.
    CAS  PubMed  Article  Google Scholar 

    13.
    Shen C, Ni Y, Liang W, Wang J, Chu H. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra. Front Microbiol. 2015;6:582.

    14.
    Yao F, Yang S, Wang Z, Wang X, Ye J, Wang X, et al. Microbial taxa distribution is associated with ecological trophic cascades along an elevation gradient. Front Microbiol. 2017;8:2071.

    15.
    Na X, Xu TT, Li M, Ma F, Kardol P. Bacterial diversity in the rhizosphere of two phylogenetically closely related plant species across environmental gradients. J Soils Sediment. 2017;17:122–32.
    CAS  Article  Google Scholar 

    16.
    Jangid K, Williams MA, Franzluebbers AJ, Schmidt TM, Coleman DC, Whitman WB. Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biol Biochem. 2011;43:2184–93.
    CAS  Article  Google Scholar 

    17.
    Talbot JM, Bruns TD, Taylor JW, Smith DP, Branco S, Glassman SI, et al. Endemism and functional convergence across the North American soil mycobiome. Proc Natl Acad Sci USA. 2014;111:6341–6.
    CAS  PubMed  Article  Google Scholar 

    18.
    Oono R, Rasmussen A, Lefèvre E. Distance decay relationships in foliar fungal endophytes are driven by rare taxa: distance decay in fungal endophytes. Environ Microbiol. 2017;19:2794–805.
    CAS  PubMed  Article  Google Scholar 

    19.
    Amend AS, Cobian GM, Laruson AJ, Remple K, Tucker SJ, Poff KE, et al. Phytobiomes are compositionally nested from the ground up. PeerJ. 2019;7:e6609.
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci USA. 2018;115:E1157–65.
    CAS  PubMed  Article  Google Scholar 

    21.
    Bálint M, Tiffin P, Hallström B, O’Hara RB, Olson MS, Fankhauser JD, et al. Host genotype shapes the foliar fungal microbiome of balsam poplar (Populus balsamifera). PLoS ONE. 2013;8:e53987.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Bálint M, Bartha L, O’Hara RB, Olson MS, Otte J, Pfenninger M, et al. Relocation, high-latitude warming and host genetic identity shape the foliar fungal microbiome of poplars. Mol Ecol. 2015;24:235–48.
    PubMed  Article  CAS  Google Scholar 

    23.
    Coleman‐Derr D, Desgarennes D, Fonseca‐Garcia C, Gross S, Clingenpeel S, Woyke T, et al. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. N. Phytol. 2016;209:798–811.
    Article  CAS  Google Scholar 

    24.
    Lindow SE, Brandl MT. Microbiology of the phyllosphere. Appl Environ Microbiol. 2003;69:1875–83.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol. 2010;12:2885–93.
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Leff JW, Del Tredici P, Friedman WE, Fierer N. Spatial structuring of bacterial communities within individual Ginkgo biloba trees. Environ Microbiol. 2015;17:2352–61.
    PubMed  Article  Google Scholar 

    27.
    Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    de Souza RSC, Okura VK, Armanhi JSL, Jorrín B, Lozano N, da Silva MJ, et al. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep. 2016;6:28774.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    29.
    Wearn JA, Sutton BC, Morley NJ, Gange AC. Species and organ specificity of fungal endophytes in herbaceous grassland plants. J Ecol. 2012;100:1085–92.
    Article  Google Scholar 

    30.
    Beckers B, Op De Beeck M, Weyens N, Boerjan W, Vangronsveld J. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome. 2017;5:25.
    PubMed  PubMed Central  Article  Google Scholar 

    31.
    Desgarennes D, Garrido E, Torres-Gomez MJ, Peña-Cabriales JJ, Partida-Martinez LP. Diazotrophic potential among bacterial communities associated with wild and cultivated Agave species. FEMS Microbiol Ecol. 2014;90:844–57.
    CAS  PubMed  Article  Google Scholar 

    32.
    Fonseca-García C, Coleman-Derr D, Garrido E, Visel A, Tringe SG, Partida-Martínez LP. The cacti microbiome: interplay between habitat-filtering and host-specificity. Front Microbiol. 2016;7:150.
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Lindström ES, Langenheder S. Local and regional factors influencing bacterial community assembly. Environ Microbiol Rep. 2012;2012:1–9.
    Article  Google Scholar 

    34.
    Kembel SW, O’Connor TK, Arnold HK, Hubbell SP, Wright SJ, Green JL. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc Natl Acad Sci USA. 2014;111:13715–20.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Frank AC, Saldierna Guzmán JP, Shay JE. Transmission of bacterial endophytes. Microorganisms. 2017;5:70.
    PubMed Central  Article  CAS  Google Scholar 

    36.
    Wu Z, Raven PH, Hong D. Hibiscus tiliaceus. eFloras. St. Louis, MO: Missouri Botanical Garden & Cambridge, MA: Harvard University Herbaria; 2019. p. 287–8.

    37.
    Motooka P, Castro L, Nelson D, Nagai G, Ching L. Weeds of Hawaiʻi’s pastures and natural areas: an identification and management guide. Honolulu: University of Hawaiʻi Press; 2014.
    Google Scholar 

    38.
    Quesada T, Hughes J, Smith K, Shin K, James P, Smith J. A low-cost spore trap allows collection and real-time PCR quantification of airborne Fusarium circinatum spores. Forests. 2018;9:586.
    Article  Google Scholar 

    39.
    Smith DP, Peay KG. Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS ONE. 2014;9:e90234.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems. 2016;1:e00009–15.
    PubMed  Article  Google Scholar 

    41.
    Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol. 2010;10:189.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Rivers AR, Weber KC, Gardner TG, Liu S, Armstrong SD. ITSxpress: software to rapidly trim internally transcribed spacer sequences with quality scores for marker gene analysis. F1000Research. 2018;7:1418.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Hannon GJ. FASTX-Toolkit: FASTQ/A short-reads pre-processing tools. 2010. http://hannonlab.cshl.edu/fastx_toolkit/.

    44.
    Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Gdanetz K, Benucci GMN, Vande Pol N, Bonito G. CONSTAX: a tool for improved taxonomic resolution of environmental fungal ITS sequences. BMC Bioinforma. 2017;18:538.
    Article  Google Scholar 

    48.
    Frøslev TG, Kjøller R, Bruun HH, Ejrnæs R, Brunbjerg AK, Pietroni C, et al. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat Commun. 2017;8:1188.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:226.
    PubMed  PubMed Central  Article  Google Scholar 

    51.
    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Giambelluca TW, Shuai X, Barnes ML, Alliss RJ, Longman RJ, Miura T, et al. Evapotranspiration of Hawai’i. 2014. Final report submitted to the U.S. Army Corps of Engineers—Honolulu District, and the Commission on Water Resource Management, State of Hawai’i.

    53.
    Hijmans RJ. raster: geographic data analysis and modeling. R package v 2.9-5. 2019. https://CRAN.R-project.org/package=raster.

    54.
    Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
    Google Scholar 

    55.
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package v 2.5-5. 2019. https://CRAN.R-project.org/package=vegan.

    56.
    Guillot G, Rousset F. Dismantling the Mantel tests. Methods Ecol Evol. 2013;4:336–44.
    Article  Google Scholar 

    57.
    Dormann CF, Gruber B, Fruend J. Introducing the bipartite package: analysing ecological networks. R N. 2008;8:8–11.
    Google Scholar 

    58.
    Dormann CF, Fründ J, Blüthgen N, Gruber B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol J. 2009;2:7–24.

    59.
    Atmar W, Patterson BD. The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia. 1993;96:373–82.
    PubMed  Article  Google Scholar 

    60.
    Almeida‐Neto M, Guimarães P, Guimarães PR, Loyola RD, Ulrich W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos. 2008;117:1227–39.
    Article  Google Scholar 

    61.
    Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, et al. The soil microbiome influences grapevine-associated microbiota. mBio. 2015;6:e02527–14. https://mbio.asm.org/content/6/2/e02527-14.

    62.
    Zinger L, Amaral-Zettler LA, Fuhrman JA, Horner-Devine MC, Huse SM, Welch DBM, et al. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE. 2011;6:e24570.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Matthew W, Fraser DBG, Pauline F, Grierson BL, Kendrick GaryA. Metagenomic evidence of microbial community responsiveness to phosphorus and salinity gradients in seagrass sediments. Front Microbiol. 2018;9:1703.
    Article  Google Scholar 

    64.
    Peay KG, Schubert MG, Nguyen NH, Bruns TD. Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Mol Ecol. 2012;21:4122–36.
    PubMed  Article  Google Scholar 

    65.
    Massoni J, Bortfeld-Miller M, Jardillier L, Salazar G, Sunagawa S, Vorholt JA. Consistent host and organ occupancy of phyllosphere bacteria in a community of wild herbaceous plant species. ISME J. 2020;14:245–58.
    CAS  PubMed  Article  Google Scholar 

    66.
    Treseder KK, Maltz MR, Hawkins BA, Fierer N, Stajich JE, McGuire KL. Evolutionary histories of soil fungi are reflected in their large-scale biogeography. Ecol Lett. 2014;17:1086–93.
    PubMed  Article  Google Scholar 

    67.
    Nguyen HDT, Chabot D, Hirooka Y, Roberson RW, Seifert KA. Basidioascus undulatus: genome, origins, and sexuality. IMA Fungus. 2015;6:215–31.
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    Becraft ED, Woyke T, Jarett J, Ivanova N, Godoy-Vitorino F, Poulton N, et al. Rokubacteria: genomic giants among the uncultured bacterial phyla. Front Microbiol. 2017;8:2264.

    69.
    Meiser A, Bálint M, Schmitt I. Meta-analysis of deep-sequenced fungal communities indicates limited taxon sharing between studies and the presence of biogeographic patterns. N Phytol. 2014;201:623–35.
    CAS  Article  Google Scholar 

    70.
    Crowther TW, Maynard DS, Crowther TR, Peccia J, Smith JR, Bradford MA. Untangling the fungal niche: the trait-based approach. Front Microbiol. 2014;5:579.
    PubMed  PubMed Central  Article  Google Scholar 

    71.
    Shakya M, Gottel N, Castro H, Yang ZK, Gunter L, Labbé J, et al. A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature Populus deltoides trees. PLoS ONE. 2013;8:e76382.
    CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    The invasive butterbur contaminates stream and seepage water in groundwater wells with toxic pyrrolizidine alkaloids

    1.
    Andersen, H. C. Den grimme ælling. In Nye Eventyr. Første Bind. Første Samling (C.A. Reitzels Forlag, 1843).
    2.
    Brøndegaard, V. J. Folk og flora: dansk etnobotanik (Rosenkilde og Bagger, 1987).

    3.
    Giles, M. et al. Butterbur. J. Herb. Pharmacother. 5, 119–143 (2009).
    Google Scholar 

    4.
    Aydin, A. A., Zerbes, V., Parlar, H. & Letzel, T. The medical plant butterbur (Petasites): analytical and physiological (re)view. J. Pharm. Biomed. Anal. 75, 220–229 (2013).
    CAS  Article  PubMed  Google Scholar 

    5.
    Giversen, I., Brimer, L., & Kristiansen, B. Danmarks Vilde Lægeplanter (Gyldendal A/S, 2014).

    6.
    Asen, A. Plants of possible monastic origin, growing in the past or present, at medieval monastery grounds in Norway. In Plants and Culture: Seeds of the Cultural Heritage of Europe (ed. Morel, J.P.) 227–238 (Edipuglia, 2009).

    7.
    Solberg, S. O. More than just weeds. NordGen’s work with Cultural Relict Plants and Bernt Løjtnant’s inventories from Denmark (Nordic Genetic Resource Center, 2014).

    8.
    Thomet, O. A., Wiesmann, U. N., Blaser, K. & Simon, H. U. Differential inhibition of inflammatory effector functions by petasin, isopetasin and neopetasin in human eosinophils. Clin. Exp. Allergy 31, 1310–1320 (2001).
    CAS  Article  PubMed  Google Scholar 

    9.
    Sutherland, A. & Sweet, B. V. Butterbur: an alternative therapy for migraine prevention. Am. J. Health Syst. Pharm. 67, 705–711 (2010).
    CAS  Article  PubMed  Google Scholar 

    10.
    Benemei, S., De Logu, F., Li, Puma, S., Marone, I.M., Coppi, E., Ugolini, F., Liedtke, W., Pollastro, F., Appendino, G., Geppetti, P., Materazzi, S., Nassini, R. The anti-migraine component of butterbur extracts, isopetasin, desensitizes peptidergic nociceptors by acting on TRPA1 cation channel. Br J Pharmacol. 174, 2897–2911 (2017).

    11.
    Anderson, N. & Borlak, J. Hepatobiliary events in migraine therapy with herbs: the case of petadolex, a petasites hybridus extract. J. Clin. Med. 8, 652 (2019).
    CAS  Article  PubMed Central  Google Scholar 

    12.
    Kozlov, V., Lavrenova, G., Savlevich, E. & Bazarkina, K. Evidence-based phytotherapy in allergicrhinitis rhinitis. Clin. Phytosci. 4, 1–8 (2018).
    Article  CAS  Google Scholar 

    13.
    Avula, B., Wang, Y. H., Wang, M., Smillie, T. J. & Khan, I. A. Simultaneous determination of sesquiterpenes and pyrrolizidine alkaloids from the rhizomes of Petasites hybridus (L.) GM et Sch and dietary supplements using UPLC-UV and HPLC-TOF-MS methods. J. Pharm. Biomed. Anal. 70, 53–63 (2012).
    CAS  Article  PubMed  Google Scholar 

    14.
    Kalin, P. The common butterbur (Petasites hybridus)—portrait of a medicinal herb. Forsch Komplementarmed Klass Naturheilkd 10, 41–44 (2003).
    PubMed  PubMed Central  Google Scholar 

    15.
    Roberts, M. F. & Wink, M. Alkaloids: Biochemistry, Ecology, and Medicinal Applications (Springer, Berlin, 1998).
    Google Scholar 

    16.
    Aniszewski, T. Alkaloids: Chemistry, Biology, Ecology, and Applications 2nd edn. (Elsevier, Hoboken, 2015).
    Google Scholar 

    17.
    International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; Some Traditional Herbal Medicines, Somemycotoxins, Naphthalene and Styrene (IARC Press, Lyon, 2002).
    Google Scholar 

    18.
    Xia, Q., He, X., Ma, L., Chen, S. & Fu, P. P. Pyrrolizidine alkaloid secondary pyrrolic metabolites construct multiple activation pathways leading to DNA adduct formation and potential liver tumor initiation. Chem. Res. Toxicol. 31, 619–628 (2018).
    CAS  Article  PubMed  Google Scholar 

    19.
    Yang, L. & Stockigt, J. Trends for diverse production strategies of plant medicinal alkaloids. Nat. Prod. Rep. 27, 1469–1479 (2010).
    CAS  Article  PubMed  Google Scholar 

    20.
    Wang, T. et al. Pyrrolizidine alkaloids in honey: quantification with and without standards. Food Control 98, 227–237 (2019).
    CAS  Article  Google Scholar 

    21.
    Scholtz, S., MacMorris, L., Krogmann, F. & Auffarth, G. U. Poisons, drugs and medicine: on the use of atropine and scopolamine in medicine and ophthalmology: an historical review of their applications. J. Eye Stud. Treat. 1, 51–58 (2019).
    Google Scholar 

    22.
    Matolcsy, G., Nadasy, M. & Andriska, V. Pesticide Chemistry 32nd edn. (Elsevier, Hoboken, 1989).
    Google Scholar 

    23.
    Dembitsky, V. M., Gloriozova, T. A. & Poroikov, V. V. Naturally occurring plant isoquinoline N-oxide alkaloids: their pharmacological and SAR activities. Phytomedicine 22, 183–202 (2015).
    CAS  Article  PubMed  Google Scholar 

    24.
    Europen Food Safety Authority. Risks for human health related to the presence of pyrrolizidine alkaloids in honey, tea, herbal infusions and food supplements. EFSA Journal. https://www.efsa.europa.eu/en/efsajournal/pub/4908 (2017).

    25.
    European Medicines Agency, Committee on Herbal Medicinal Products. Public Statement on Contamination of Herbal Medicinal Products/Traditional Herbal Medicinal Products with Pyrrolizidine Alkaloids—Transitional Recommendations for Risk Management and Quality Control. https://www.ema.europa.eu/en/documents/public-statement/public-statement-contamination-herbal-medicinal-products/traditional-herbal-medicinal-products-pyrrolizidine-alkaloids_en.pdf (2016).

    26.
    López-Pacheco, I. Y. et al. Anthropogenic contaminants of high concern: existence in water resources and their adverse effects. Sci. Total Environ. 690, 1068–1088 (2019).
    ADS  Article  CAS  PubMed  Google Scholar 

    27.
    Angeles, L. F. & Aga, D. S. Catching the elusive persistent and mobile organic compounds: novel sample preparation and advanced analytical techniques. Trends Environ. Anal. Chem. 25, e00078 (2020).
    CAS  Article  Google Scholar 

    28.
    Reemtsma, T. et al. Mind the gap: persistent and mobile organic compounds—water contaminants that slip through. Environ. Sci. Technol. 50, 10308–10315 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    29.
    Furlong, E. T. et al. Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States: pharmaceuticals. Sci. Total Environ. 579, 1629–1642 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    30.
    Boxall, A. B. A. The environmental side effects of medication. EMBO Rep. 5, 1110–1116 (2004).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Gao, J. et al. Stability of alcohol and tobacco consumption biomarkers in a real rising main sewer. Water Res. 138, 19–26 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Lian, L., Yan, S., Yao, B., Chan, S. & Song, W. Photochemical transformation of nicotine in wastewater effluent. Environ. Sci. Technol. 51, 11718–11730 (2017).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    33.
    Stuart, M., Lapworth, D., Crane, E. & Hart, A. Review of risk from potential emerging contaminants in UK groundwater. Sci. Total Environ. 416, 1–21 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Turner, R. D. R., Warne, M. S., Dawes, L. A., Thompson, K. & Will, G. D. Greywater irrigation as a source of organic micro-pollutants to shallow groundwater and nearby surface water. Sci. Total Environ. 669, 570–578 (2019).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    35.
    Robertson, J. & Stevens, K. Pyrrolizidine alkaloids. Nat. Prod. Rep. 31, 1721–1788 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Rosemann, G. M., Botha, C. J. & Eloff, J. N. Distinguishing between toxic and non-toxic pyrrolizidine alkaloids and quantification by liquid chromatography–mass spectrometry. Phytochem. Lett. 8, 126–131 (2014).
    CAS  Google Scholar 

    37.
    European Medicines Agency, Committee on Herbal Medicinal Products. Public Statement on the Use of Herbal Medicinal Products Containing Toxic, Unsaturated Pyrrolizidine Alkaloids (PAs). https://www.ema.europa.eu/en/use-herbal-medicinal-products-containing-toxic-unsaturated-pyrrolizidine-alkaloids-pas (2014).

    38.
    Prakash, A. S., Pereira, T. N., Reilly, P. E. & Seawright, A. A. Pyrrolizidine alkaloids in human diet. Mutat. Res. 433, 53–67 (1999).
    Google Scholar 

    39.
    Bolechova, M., Caslavsky, J., Pospichalova, M. & Kosubova, P. UPLC-MS/MS method for determination of selected pyrrolizidine alkaloids in feed. Food Chem. 170, 265–270 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    40.
    van Egmond, H. P. Natural toxins: risks, regulations and the analytical situation in Europe. Anal. Bioanal. Chem. 378, 1152–1160 (2004).
    Article  CAS  PubMed  Google Scholar 

    41.
    Hoogenboom, L. A. P. et al. Carry-over of pyrrolizidine alkaloids from feed to milk in dairy cows. Food Addit. Contam. A 28, 359–372 (2011).
    CAS  Article  Google Scholar 

    42.
    Mattocks, A.R. Chemistry and toxicology of pyrrolizidine alkaloids. Academic Pr. (1986).

    43.
    Molyneux, R. J., Gardner, D. L., Colegate, S. M. & Edgar, J. A. Pyrrolizidine alkaloid toxicity in livestock: a paradigm for human poisoning?. Food Addit. Contam. A 28, 293–307 (2011).
    CAS  Article  Google Scholar 

    44.
    Ebmeyer, J. et al. Human CYP3A4-mediated toxification of the pyrrolizidine alkaloid lasiocarpine. Food Chem. Toxicol. 130, 79–88 (2019).
    CAS  Article  PubMed  Google Scholar 

    45.
    He, X. et al. Primary and secondary pyrrolic metabolites of pyrrolizidine alkaloids form DNA adducts in human A549 cells. Toxicol. In Vitro 54, 286–294 (2019).
    CAS  Article  PubMed  Google Scholar 

    46.
    Chen, T., Mei, N. & Fu, P. P. Genotoxicity of pyrrolizidine alkaloids. J. Appl. Toxicol. 30, 183–196 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    47.
    Huxtable, R. J. Activation and pulmonary toxicity of pyrrolizidine alkaloids. Pharmacol. Therapeut. 47, 371–389 (1990).
    CAS  Article  Google Scholar 

    48.
    McLean, E. K. The toxic actions of pyrrolizidine senecio-D alkaloids. Pharmacol. Ther. 47, 371–389 (1990).
    Google Scholar 

    49.
    Mori, H. et al. Some toxic properties of a carcinogenic pyrrolizidine alkaloid, petasitenine. J. Toxicol. Sci. 9, 143–149 (1984).
    CAS  Article  PubMed  Google Scholar 

    50.
    European Food Safety Authority. Scientific opinion on pyrrolizidine alkaloids in food and feed. EFSA J. 9, 2406 (2011).
    Article  CAS  Google Scholar 

    51.
    Wang, Y. P., Yan, J., Fu, P. P. & Chou, M. W. Human liver microsomal reduction of pyrrolizidine alkaloid N-oxides to form the corresponding carcinogenic parent alkaloid. Toxicol. Lett. 155, 411–420 (2005).
    CAS  Article  PubMed  Google Scholar 

    52.
    Yang, M. et al. Intestinal and hepatic biotransformation of pyrrolizidine alkaloid N-oxides to toxic pyrrolizidine alkaloids. Arch. Toxicol. 93, 2197–2209 (2019).
    CAS  Article  PubMed  Google Scholar 

    53.
    Chou, M. W. et al. Riddelliine N-oxide is a phytochemical and mammalian metabolite with genotoxic activity that is comparable to the parent pyrrolizidine alkaloid riddelliine. Toxicol. Lett. 145, 239–247 (2003).
    CAS  Article  PubMed  Google Scholar 

    54.
    Xia, Q., Chou, M. W., Kadlubar, F. F., Chan, P. C. & Fu, P. P. Human liver microsomal metabolism and DNA adduct formation of the tumorigenic pyrrolizidine alkaloid, riddelliine. Chem. Res. Toxicol. 16, 66–73 (2003).
    CAS  Article  PubMed  Google Scholar 

    55.
    Moreira, R., Pereira, D. M., Valentao, P. & Andrade, P. Pyrrolizidine alkaloids: chemistry, pharmacology, toxicology and food safety. Int. J. Mol. Sci. 19, 1668 (2018).
    Article  CAS  PubMed Central  Google Scholar 

    56.
    Edgar, J. A., Colegate, S. M., Boppre, M. & Molyneux, R. J. Pyrrolizidine alkaloids in food: a spectrum of potential health consequences. Food Addit. Contam. A 28, 308–324 (2011).
    CAS  Article  Google Scholar 

    57.
    International Programme on Chemical Safety (WHO). Pyrrolizidine Alkaloids. Environmental Health Criteria 80 (1988).

    58.
    European Medicines Agency. Committee on Herbal Medicinal Products (HMPC), EMA/HMPC/893108/2011 Rev. 1. Public statement on the use of herbal medicinal products containing toxic, unsaturated pyrrolizidine alkaloids (PAs) including recommendations regarding contamination of herbal medicinal products with pyrrolizidine alkaloids (2020).

    59.
    Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment (United Kingdom). COT Statement on Pyrrolizidine Alkaloids in Food (2008).

    60.
    Chen, L. H. et al. Simultaneous determination and risk assessment of pyrrolizidine alkaloids in Artemisia capillaris Thunb by UPLC-MS/MS together with chemometrics. Molecules 24, 1077 (2019).
    CAS  Article  PubMed Central  Google Scholar 

    61.
    The German Federal Institute for Risk Assessment (BfR) (in German: Bundesinstitut für Risikobewertung). Analytik und Toxizität von Pyrrolizidinalkaloiden sowie eine Einschätzung des gesundheitlichen Risikos durch deren Vorkommen in Honig (2013).

    62.
    The German Federal Institute for Risk Assessment (in German: Bundesinstitut für Risikobewertung). Updated risk assessment on levels of 1,2-unsaturated pyrrolizidine alkaloids (2020).

    63.
    The German Federal Institute for Risk Assessment (in German: Bundesinstitut für Risikobewertung). Frequently asked questions on pyrrolizidine alkaloids in foods (2020).

    64.
    Kopp, T., Abdel-Tawab, M. & Mizaikoff, B. Extracting and analyzing pyrrolizidine alkaloids in medicinal plants: a review. Toxins. 12, 320 (2020).
    CAS  Article  PubMed Central  Google Scholar 

    65.
    Smith, L. W. & Culvenor, C. C. Plant sources of hepatotoxic pyrrolizidine alkaloids. J. Nat. Prod. 44, 129–152 (1981).
    CAS  Article  PubMed  Google Scholar 

    66.
    Edgar, J. A., Roeder, E. & Molyneux, R. J. Honey from plants containing pyrrolizidine alkaloids: a potential threat to health. J. Agric. Food Chem. 50, 2719–2730 (2002).
    CAS  Article  PubMed  Google Scholar 

    67.
    Kempf, M., Reinhard, A. & Beuerle, T. Pyrrolizidine alkaloids (PAs) in honey and pollen-legal regulation of PA levels in food and animal feed required. Mol. Nutr. Food Res. 54, 158–168 (2010).
    CAS  Article  PubMed  Google Scholar 

    68.
    Dubecke, A., Beckh, G. & Lullmann, C. Pyrrolizidine alkaloids in honey and bee pollen. Food Addit. Contam. A 28, 348–358 (2011).
    CAS  Article  Google Scholar 

    69.
    Gottschalk, C. et al. Spread of Jacobaea vulgaris and occurrence of pyrrolizidine alkaloids in regionally produced honeys from Northern Germany: inter- and intra-site variations and risk assessment for special consumer groups. Toxins 12, 1–19 (2020).
    Article  CAS  Google Scholar 

    70.
    Hama, J. R. & Strobel, B. W. Pyrrolizidine alkaloids quantified in soil and water using UPLC-MS/MS. RSC Adv. 9, 30350–30357 (2019).
    CAS  Article  Google Scholar 

    71.
    Selmar, D. et al. Horizontal natural product transfer: intriguing insights into a newly discovered phenomenon. J. Agric. Food Chem. 67, 8740–8745 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    72.
    Gunthardt, B. F. et al. “Is there anybody else out there?”—First insights from a suspect screening for phytotoxins in surface water. Chimia 74, 129–135 (2020).
    PubMed  PubMed Central  Google Scholar 

    73.
    Schonsee, C. D. & Bucheli, T. D. Experimental Determination of octanol−water partition coefficients of selected natural toxins. J. Chem. Eng. 65, 1946–1953 (2020).
    CAS  Google Scholar 

    74.
    Ellegaard-Jensen, L., Horemans, B., Raes, B., Aamand, J. & Hansen, L. H. Groundwater contamination with 2,6-dichlorobenzamide (BAM) and perspectives for its microbial removal. Appl. Microbiol. Biotechnol. 101, 5235–5245 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    75.
    Stuart, M., Lapwortha, D., Cranea, E. & Hart, A. Review of risk from potential emerging contaminants in UK groundwater. Sci. Total Environ. 416, 1–21 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    76.
    Lapworth, D. J., Baran, N., Stuart, M. E. & Ward, R. S. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ. Pollut. 163, 287–303 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    77.
    Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration.

    78.
    Bucheli, T. D. Phytotoxins: environmental micropollutants of concern?. Environ. Sci. Technol. 48, 13027–13033 (2014).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    79.
    Wink, M. & Hartmann, T. Sites of enzymatic synthesis of quinolizidine alkaloids and their accumulation in Lupinus polyphyllus. Zeitschrift für Pflanzenphysiologie 102, 337–344 (1981).
    CAS  Google Scholar 

    80.
    Hama, J. R. & Strobel, B. W. Natural alkaloids from narrow-leaf and yellow lupins transfer to soil and soil solution in agricultural fields. Environ. Sci. Eur. 32, 126 (2020).
    CAS  Article  Google Scholar 

    81.
    Anonymous. Solanine poisoning. Br. Med. J. 2, 1458–1459. https://doi.org/10.1136/bmj.2.6203.1458-a (1979).
    Article  Google Scholar 

    82.
    Aichinger, G., Pantazi, F. & Marko, D. Combinatory estrogenic effects of bisphenol A in mixtures with alternariol and zearalenone in human endometrial cells. Toxicol. Lett. 319, 242–249 (2020).
    CAS  Article  PubMed  Google Scholar 

    83.
    Gunthardt, B. F., Hollender, J., Hungerbuhler, K., Scheringer, M. & Bucheli, T. D. Comprehensive toxic plants–phytotoxins database and its application in assessing aquatic micropollution potential. J. Agric. Food Chem. 66, 7577–7588 (2018).
    CAS  Article  PubMed  Google Scholar 

    84.
    Global Biodiversity Information Facility. https://www.gbif.org/species/9490132. Accessed 6th February 2020.

    85.
    Hama, J.R. & Strobel, B.W. Occurrence of pyrrolizidine alkaloids in ragwort plants, soils and surface waters at the field scale in Grassland. Sci. Total Environ (Article reference:STOTEN_142822) (Accepted). Available online 16 October 2020, 142822 (2020). More

  • in

    Multiple interacting environmental drivers reduce the impact of solar UVR on primary productivity in Mediterranean lakes

    1.
    Karl, D. M. Solar energy capture and transformation in the sea. Elementa Sci. Anthrop. 2, 000021 (2013).
    Article  Google Scholar 
    2.
    Kirk, J. T. O. The vertical attenuation of irradiance as a function of the optical properties of the water. Limnol. Oceanogr. 48, 9–17 (2003).
    ADS  Article  Google Scholar 

    3.
    Mladenov, N. et al. Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes. Nat. Commun. 2, 405 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    4.
    Brahney, J., Mahowald, N., Ward, D. S., Ballantyne, A. P. & Neff, J. C. Is atmospheric phosphorus pollution altering global alpine Lake stoichiometry?. Glob. Biogeochem. Cycles 29, GB5137 (2015).
    Article  CAS  Google Scholar 

    5.
    Goudie, A. Human Impact on the Natural Environment: Past, Present and Future 8th edn. (Wiley, New York, 2019).
    Google Scholar 

    6.
    Stockwell, J. D. et al. Storm impacts on phytoplankton community dynamics in lakes. Glob. Change Biol. 26, 2756–2784 (2020).
    ADS  Article  Google Scholar 

    7.
    Beardall, J., Sobrino, C. & Stojkovic, S. Interactions between the impacts of ultraviolet radiation, elevated CO2, and nutrient limitation on marine primary producers. Photochem. Photobiol. Sci. 8, 1257–1265 (2009).
    CAS  Article  PubMed  Google Scholar 

    8.
    Gao, K., Zhang, Y. & Häder, D.-P. Individual and interactive effects of ocean acidification, global warming, and UV radiation on phytoplankton. J. Appl. Phycol. 30, 743–759 (2018).
    CAS  Article  Google Scholar 

    9.
    Brennan, G. & Collins, S. Growth responses of a green alga to multiple environmental drivers. Nat. Clim. Change 5, 892–897 (2015).
    ADS  Article  Google Scholar 

    10.
    Jackson, M. C., Loewen, C. J. G., Vinebrooke, R. D. & Chimimba, C. T. Net effects of multiple stressors in freshwater ecosystems: A meta-analysis. Glob. Change Biol. 22, 180–189 (2016).
    ADS  Article  Google Scholar 

    11.
    Van de Waal, D. B. & Litchman, E. Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190706 (2020).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Winston, B., Scott, J. T. & Pollock, E. The synergistic effect of elevated CO2 and phosphorus on reservoir eutrophication. Lake Reservoir Manag. 32, 373–385 (2016).
    CAS  Article  Google Scholar 

    13.
    Villar-Argaiz, M. et al. Growth impacts of Saharan dust, mineral nutrients, and CO2 on a planktonic herbivore in southern Mediterranean lakes. Sci. Total Environ. 639, 118–128 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    14.
    Carrillo, P., Delgado-Molina, J. A., Medina-Sánchez, J. M., Bullejos, F. J. & Villar-Argaiz, M. Phosphorus inputs unmask negative effects of ultraviolet radiation on algae in a high mountain lake. Glob. Change Biol. 14, 423–439 (2008).
    ADS  Article  Google Scholar 

    15.
    Edwards, K. F., Thomas, M. K., Klausmeier, C. A. & Litchman, E. Phytoplankton growth and the interaction of light and temperature: A synthesis at the species and community level. Limnol. Oceanogr. 61, 1232–1244 (2016).
    ADS  Article  Google Scholar 

    16.
    Belarde, T. A. & Railsback, S. F. New predictions from old theory: Emergent effects of multiple stressors in a model of piscivorous fish. Ecol. Model. 326, 54–62 (2016).
    Article  Google Scholar 

    17.
    Carrillo, P. et al. Vulnerability of mixotrophic algae to nutrient pulses and UVR in an oligotrophic Southern and Northern Hemisphere lake. Sci. Rep. 7, 6333 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    18.
    Helbling, E. W. et al. Interactive effects of vertical mixing, nutrients and ultraviolet radiation: In situ photosynthetic responses of phytoplankton from high mountain lakes in Southern Europe. Biogeosciences 10, 1037–1050 (2013).
    ADS  Article  Google Scholar 

    19.
    Verpoorter, C. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).
    ADS  Article  Google Scholar 

    20.
    Downing, J. Emerging global role of small lakes and ponds: Little things mean a lot. Limnetica 29, 9–24 (2010).
    Google Scholar 

    21.
    Mendonça, R. et al. Organic carbon burial in global lakes and reservoirs. Nat. Commun. 8, 1694 (2018).
    ADS  Article  CAS  Google Scholar 

    22.
    Hilt, S., Brothers, S., Jeppesen, E., Veraart, A. J. & Kosten, S. Translating regime shifts in shallow lakes into changes in ecosystem functions and services. Bioscience 67, 928–936 (2017).
    Article  Google Scholar 

    23.
    Helbling, E. W., Banaszak, A. T. & Villafañe, V. E. Global change feed-back inhibits cyanobacterial photosynthesis. Sci. Rep. 5, 14514 (2015).
    ADS  Article  CAS  Google Scholar 

    24.
    Villafañe, V. E. et al. Dual role of DOM in a scenario of global change on photosynthesis and structure of coastal phytoplankton from the South Atlantic Ocean. Sci. Total Environ. 634, 1352–1361 (2018).
    ADS  Article  CAS  PubMed  Google Scholar 

    25.
    Williamson, C. E. et al. The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems. Photochem. Photobiol. Sci. 18, 717–746 (2019).
    CAS  Article  PubMed  Google Scholar 

    26.
    Sanders, R. W. et al. Shifts in microbial food web structure and productivity after additions of naturally occurring dissolved organic matter: Results from large-scale lacustrine mesocosms. Limnol. Oceanogr. 60, 2130–2144 (2015).
    ADS  CAS  Article  Google Scholar 

    27.
    Williamson, C. E. et al. Solar ultraviolet radiation in a changing climate. Nat. Clim. Change 4, 434–441 (2014).
    ADS  Article  Google Scholar 

    28.
    Ayoub, L. M., Hallock, P., Coble, P. G. & Bell, S. S. MAA-like absorbing substances in Florida Keys phytoplankton vary with distance from shore and CDOM: Implications for coral reefs. J. Exp. Mar. Biol. Ecol. 420–421, 91–98 (2012).
    Article  CAS  Google Scholar 

    29.
    Häder, D. P., Villafañe, V. E. & Helbling, E. W. Productivity of aquatic primary producers under global climate change. Photochem. Photobiol. Sci. 13, 1370–1392 (2014).
    Article  CAS  PubMed  Google Scholar 

    30.
    IPCC. Climate Change. The Physical Science Basis 1–1535 (Cambridge University Press, New York, 2013).
    Google Scholar 

    31.
    Llewellyn, C. A. & Airs, R. L. Distribution and abundance of MAAs in 33 species of microalgae across 13 classes. Mar. Drugs 8, 1273–1291 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Buma, A. G. J. et al. Wavelength-dependent xanthophyll cycle activity in marine microalgae exposed to natural ultraviolet radiation. Eur. J. Phycol. 44, 515–524 (2009).
    CAS  Article  Google Scholar 

    33.
    Graham, P. J., Nguyen, B., Burdyny, T. & Sinton, D. A penalty on photosynthetic growth in fluctuating light. Sci. Rep. 7, 12513. https://doi.org/10.1038/s41598-017-12923-1 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    34.
    Vialet-Chabrand, S. R. M., Matthews, J. S. A., Simjin, A., Raines, C. A. & Lawson, T. Importance of fluctuations in light on plant photosynthetic acclimation. Plant Physiol. 173, 2163–2179 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Behrenfeld, M. J., Halsey, K. H. & Milligan, A. J. Evolved physiological responses of phytoplankton to their integrated growth environment. Philos. Trans. R. Soc. Lond B Biol. Sci. 363, 2687–2703 (2008).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    36.
    Bamstedt, U. Productivity related to ambient photon flux for phytoplankton communities under different turbid conditions. Hydrobiologia 837, 109–115 (2019).
    Article  Google Scholar 

    37.
    Vinebrooke, R. D. et al. Impacts of multiple stressors on biodiversity and ecosystem functioning: The role of species co-tolerance. Oikos 104, 451–457 (2004).
    Article  Google Scholar 

    38.
    Lin, H. et al. Phytoplankton: The fate of photons absorbed by phytoplankton in the global ocean. Science 351, 264–267 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    39.
    Falkowski, P. G., Lin, H. & Gorbunov, M. Y. What limits photosynthetic energy conversion efficiency in nature? Lessons from the oceans. Phylos. Trans. R. Soc. B Biol. Sci. 372, 20160376 (2017).
    Article  CAS  Google Scholar 

    40.
    Sinistro, R. et al. Responses of phytoplankton and related microbial communities to changes in the limnological conditions of shallow lakes: A short-term cross-transplant experiment. Hydrobiologia 752, 139–153 (2015).
    CAS  Article  Google Scholar 

    41.
    González-Olalla, J. M., Medina-Sánchez, J. M., Lozano, I. L., Villar-Argaiz, M. & Carrillo, P. Climate-driven shifts in algal-bacterial interaction of highmountain lakes in two years spanning a decade. Sci. Rep. 8, 10278 (2018).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    42.
    Rojo, C. et al. Are the small-sized plankton communities of oligotrophic ecosystems resilient to UVR and P pulses?. Freshw. Sci. 36, 760–773 (2017).
    Article  Google Scholar 

    43.
    Medina-Sánchez, J. M., Delgado-Molina, J. A., Bratbak, G., Bullejos, F. J. & Carrillo, P. Maximum in the middle: Nonlinear response of microbial plankton to ultraviolet radiation and phosphorus. PLoS ONE 8, e60223 (2013).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Cabrerizo, M. J., Medina-Sánchez, J. M., Dorado-García, I., Villar-Argaiz, M. & Carrillo, P. Rising nutrient-pulse frequency and high UVR strengthen microbial interactions. Sci. Rep. 7, 43615 (2017).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    45.
    Carrillo, P. et al. Synergistic effects of UVR and simulated stratification on commensalistic algal-bacterial relationship in two optically contrasting oligotrophic Mediterranean lakes. Biogeosciences 12, 697–712 (2015).
    ADS  Article  Google Scholar 

    46.
    Durán, C., Medina-Sánchez, J. M., Herrera, G. & Carrillo, P. Changes in the phytoplankton-bacteria coupling triggered by joint action of UVR, nutrients, and warming in Mediterranean high-mountain lakes. Limnol. Oceanogr. 61, 413–429 (2016).
    ADS  Article  CAS  Google Scholar 

    47.
    Durán-Romero, C., Medina-Sánchez, J. M. & Carrillo, P. Uncoupled phytoplankton-bacterioplankton relationship by multiple drivers interacting at different temporal scales in a high-mountain Mediterranean lake. Sci. Rep. 10, 350 (2020).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    48.
    APHA. Standard Methods for the Examination of Water and Wastewater (American Public Health Association, Washington, 2017).
    Google Scholar 

    49.
    Villafañe, V. E., Gao, K., Li, P. & Helbling, E. W. Vertical mixing within the epilimnion modulates UVR-induced photoinhibition in tropical freshwater phytoplankton from southern China. Freshw. Biol. 52, 1260–1270 (2007).
    Article  CAS  Google Scholar 

    50.
    Morales-Baquero, R., Pulido-Villena, E. & Reche, I. Atmospheric inputs of phosphorus and nitrogen to the southwest Mediterranean region: Biogeochemical responses of high mountain lakes. Limnol. Oceanogr. 51, 830–837 (2006).
    ADS  CAS  Article  Google Scholar 

    51.
    Benner, R. & Strom, M. A critical evaluation of the analytical blank associated with DOC measurements by high-temperature catalytic oxidation. Mar. Chem. 41, 153–160 (1993).
    CAS  Article  Google Scholar 

    52.
    Utermöhl, H. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Internationale Vereinigung fur Theoretische und Angewandte Limnologie 9, 1–38 (1958).
    Google Scholar 

    53.
    Steemann Nielsen, E. The use of radio-active carbon (C14) for measuring organic production in the sea. ICES J. Mar. Sci. 18, 117–140 (1952).
    Article  Google Scholar 

    54.
    Harvey, B. P., Gwynn-Jones, D. & Moore, P. J. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol. Evol. 3, 1016–1030 (2013).
    Article  PubMed  PubMed Central  Google Scholar  More

  • in

    The relative contribution of individual quality and changing climate as drivers of lifetime reproductive success in a short-lived avian species

    1.
    White, T. C. R. The role of food, weather and climate in limiting the abundance of animals. Biol. Rev. 83, 227–248. https://doi.org/10.1111/j.1469-185X.2008.00041.x (2008).
    CAS  Article  Google Scholar 
    2.
    Moreno, J. & Møller, A. P. Extreme climatic events in relation to global change and their impact on life histories. Curr. Zool. 57, 375–389. https://doi.org/10.1093/czoolo/57.3.375 (2011).
    Article  Google Scholar 

    3.
    Briedis, M., Hahn, S. & Adamík, P. Cold spell en route delays spring arrival and decreases apparent survival in a long-distance migratory songbird. BMC Ecol. 17, 11. https://doi.org/10.1186/s12898-017-0121-4 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    4.
    Welbergen, J. A., Klose, S. M., Markus, N. & Eby, P. Climate change and the effects of temperature extremes on Australian flying-foxes. Proc. R. Soc. B Biol. Sci. 275, 419–425. https://doi.org/10.1098/rspb.2007.1385 (2008).
    Article  Google Scholar 

    5.
    Griebel, I. & Dawson, R. D. Predictors of nestling survival during harsh weather events in an aerial insectivore, the tree swallow (Tachycineta bicolor). Can. J. Zool. 97, 81–90. https://doi.org/10.1139/cjz-2018-0070 (2019).
    Article  Google Scholar 

    6.
    Intergovernmental Pannel on Climate Change (IPCC). Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. (eds. Masson-Delmotte, V. et al.) (World Meteorological Organization, 2018).

    7.
    Intergovernmental Pannel on Climate Change (IPCC). Climate change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. (eds. Parry, M. L., O. F. Canziani, J. P. Palutikof, P. J. van der Linden and Hanson, C.E.) 976 (Cambridge University Press, Cambridge, 2007).

    8.
    Bailey, L. D. & van de Pol, M. Tackling extremes: challenges for ecological and evolutionary research on extreme climatic events. J. Anim. Ecol. 85, 85–96. https://doi.org/10.1111/1365-2656.12451 (2016).
    Article  Google Scholar 

    9.
    Clutton-Brock, T. H. Reproductive Success: Studies of Individual Variation in Contrasting Breeding Systems (The University of Chicago Press, Chicago, 1988).
    Google Scholar 

    10.
    Newton, I. Lifetime Reproductive Success in Birds (Academic Press, Cambridge, 1989).
    Google Scholar 

    11.
    Weegman, M. D., Arnold, T. W., Dawson, R. D., Winkler, D. W. & Clark, R. G. Integrated population models reveal local weather conditions are the key drivers of population dynamics in an aerial insectivore. Oecologia 185, 119–130. https://doi.org/10.1007/s00442-017-3890-8 (2017).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    12.
    Cam, E., Link, W. A., Cooch, E. G., Monnat, J.-Y. & Danchin, E. Individual covariation in life-history traits: seeing the trees despite the forest. Am. Nat. 159, 96–105. https://doi.org/10.1086/324126 (2002).
    Article  PubMed  PubMed Central  Google Scholar 

    13.
    Chambert, T., Rotella, J. J., Higgs, M. D. & Garrott, R. A. Individual heterogeneity in reproductive rates and cost of reproduction in a long-lived vertebrate. Ecol. Evol. 3, 2047–2060. https://doi.org/10.1002/ece3.615 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    14.
    Cam, E. et al. Looking for a needle in a haystack: inference about individual fitness components in a heterogeneous population. Oikos 122, 739–753. https://doi.org/10.1111/j.1600-0706.2012.20532.x (2013).
    Article  Google Scholar 

    15.
    Jenouvrier, S., Péron, C. & Weimerskirch, H. Extreme climate events and individual heterogeneity shape life-history traits and population dynamics. Ecol. Monogr. 85, 605–624 (2015).
    Article  Google Scholar 

    16.
    Jensen, H. et al. Lifetime reproductive success in relation to morphology in the house sparrow Passer domesticus. J. Anim. Ecol. 73, 599–611. https://doi.org/10.1111/j.0021-8790.2004.00837.x (2004).
    Article  Google Scholar 

    17.
    Saino, N. et al. Longevity and lifetime reproductive success of barn swallow offspring are predicted by their hatching date and phenotypic quality. J. Anim. Ecol. 81, 1004–1012. https://doi.org/10.1111/j.1365-2656.2012.01989.x (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    18.
    Winkler, D. W. et al. Full lifetime perspectives on the costs and benefits of lay date variation in tree swallows. Ecology 101, e03109. https://doi.org/10.1002/ecy.3109 (2020).

    19.
    Krüger, O. Age at first breeding and fitness in goshawk Accipiter gentilis. J. Anim. Ecol. 74, 266–273. https://doi.org/10.1111/j.1365-2656.2005.00920.x (2005).
    Article  Google Scholar 

    20.
    Blums, P. & Clark, R. G. Correlates of lifetime reproductive success in three species of European ducks. Oecologia 140, 61–67. https://doi.org/10.1007/s00442-004-1573-8 (2004).
    ADS  Article  PubMed  Google Scholar 

    21.
    Le Boeuf, B., Condit, R. & Reiter, J. Lifetime reproductive success of northern elephant seals (Mirounga angustirostris). Can. J. Zool. 97, 1203–1217. https://doi.org/10.1139/cjz-2019-0104 (2019).
    Article  Google Scholar 

    22.
    Tuljapurkar, S., Steiner, U. K. & Orzack, S. H. Dynamic heterogeneity in life histories. Ecol. Lett. 12, 93–106. https://doi.org/10.1111/j.1461-0248.2008.01262.x (2009).
    Article  PubMed  Google Scholar 

    23.
    Snyder, R. E. & Ellner, S. P. Pluck or luck: does trait variation or chance drive variation in lifetime reproductive success?. Am. Nat. 191, E90–E107. https://doi.org/10.1086/696125 (2018).
    Article  PubMed  Google Scholar 

    24.
    Cam, E., Aubry, L. M. & Authier, M. The conundrum of heterogeneities in life history studies. Trends Ecol. Evol. 31, 872–886. https://doi.org/10.1016/j.tree.2016.08.002 (2016).
    Article  PubMed  Google Scholar 

    25.
    Jenouvrier, S. et al. When the going gets tough, the tough get going: effect of extreme climate on an Antarctic seabird’s life history. bioRxiv https://doi.org/10.1101/791855 (2019).
    Article  Google Scholar 

    26.
    Shipley, B. Confirmatory path analysis in a generalized multilevel context. Ecology 90, 363–368. https://doi.org/10.1890/08-1034.1 (2009).
    Article  PubMed  Google Scholar 

    27.
    Grant, P. R. & Grant, B. R. Non-random fitness variation in two populations of Darwin’s finches. Proc. R. Soc. B. Biol. Sci. 267, 131–138. https://doi.org/10.1098/rspb.2000.0977 (2000).
    CAS  Article  Google Scholar 

    28.
    Johnson, W. C., Boettcher, S. E., Poiani, K. A. & Guntenspergen, G. Influence of weather extremes on the water levels of glaciated prairie wetlands. Wetlands 24, 385–398. https://doi.org/10.1672/0277-5212(2004)024[0385:IOWEOT]2.0.CO;2 (2004).
    Article  Google Scholar 

    29.
    Dawson, R. D. Timing of breeding and environmental factors as determinants of reproductive performance of tree swallows. Can. J. Zool. 86, 843–850. https://doi.org/10.1139/Z08-065 (2008).
    Article  Google Scholar 

    30.
    Winkler, D. W. et al. Tree swallow (Tachycineta bicolor). In The Birds of North America Online (ed. Poole, A.) (Cornell Lab of Ornithology, Cornell, 2011).
    Google Scholar 

    31.
    Winkler, D. W., Luo, M. K. & Rakhimberdiev, E. Temperature effects on food supply and chick mortality in tree swallows (Tachycineta bicolor). Oecologia 173, 129–138. https://doi.org/10.1007/s00442-013-2605-z (2013).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Fast, M. Climate Variability, Timing of Nesting and Breeding Success of Tree Swallows (Tachycineta bicolor) (University of Saskatchewan, Saskatchewan, 2007).
    Google Scholar 

    33.
    Harriman, V. B. Seasonal Variation in Quality and Survival of Nestlings Tree Swallows (Tachycineta bicolor): Tests of Alternative Hypotheses (University of Saskatchewan, Saskatchewan, 2014).
    Google Scholar 

    34.
    Martínez-Padilla, J., Vergara, P. & Fargallo, J. A. Increased lifetime reproductive success of first-hatched siblings in common kestrels Falco tinnunculus. Ibis 159, 803–811. https://doi.org/10.1111/ibi.12494 (2017).
    Article  Google Scholar 

    35.
    Weatherhead, P. J. & Dufour, K. W. Fledging success as an index of recruitment in red-winged blackbirds. Auk 117, 627–633. https://doi.org/10.1093/auk/117.3.627 (2000).
    Article  Google Scholar 

    36.
    Williams, G. C. Natural selection, the costs of reproduction, and a refinement of Lack’s principle. Am. Nat. 100, 687–690 (1966).
    Article  Google Scholar 

    37.
    Murphy, M. T. Lifetime reproductive success of female eastern kingbirds (Tyrannus tyrannus): influence of lifespan, nest predation, and body size. Auk 124, 1010–1022. https://doi.org/10.1093/auk/124.3.1010 (2007).
    Article  Google Scholar 

    38.
    Tarwater, C. E. & Arcese, P. Young females pay higher costs of reproduction in a short-lived bird. Behav. Ecol. Sociobiol. 71, 84. https://doi.org/10.1007/s00265-017-2309-1 (2017).
    Article  Google Scholar 

    39.
    Vedder, O. & Bouwhuis, S. Heterogeneity in individual quality in birds: overall patterns and insights from a study on common terns. Oikos 127, 719–727. https://doi.org/10.1111/oik.04273 (2018).
    Article  Google Scholar 

    40.
    Murphy, M. T., Armbrecth, B., Vlamis, E. & Pierce, A. Is reproduction by tree swallows cost free?. Auk 117, 902–912. https://doi.org/10.1093/auk/117.4.902 (2000).
    Article  Google Scholar 

    41.
    Wheelwright, N. T., Leary, J. & Fitzgerald, C. The costs of reproduction in tree swallows (Tachycineta bicolor). Can. J. Zool. 69, 2540–2547. https://doi.org/10.1139/z91-358 (1991).
    Article  Google Scholar 

    42.
    Shutler, D., Clark, R. G., Fehr, C. & Diamond, A. W. Time and recruitment costs as currencies in manipulation studies on the costs of reproduction. Ecology 87, 2938–2946. https://doi.org/10.1890/0012-9658(2006)87[2938:TARCAC]2.0.CO;2 (2006).
    Article  Google Scholar 

    43.
    Verhulst, S. & Nilsson, J. Å. The timing of birds’ breeding seasons: a review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. B. 363, 399–410. https://doi.org/10.1098/rstb.2007.2146 (2008).
    Article  Google Scholar 

    44.
    Grüebler, M. U. & Naef-Daenzer, B. Fitness consequences of timing of breeding in birds: date effects in the course of a reproductive episode. J. Avian Biol. 41, 282–291. https://doi.org/10.1111/j.1600-048X.2009.04865.x (2010).
    Article  Google Scholar 

    45.
    Plard, F. et al. The influence of birth date via body mass on individual fitness in a long-lived mammal. Ecology 96, 1516–1528. https://doi.org/10.1890/14-0106.1 (2015).
    Article  Google Scholar 

    46.
    Raja-aho, S., Eeva, T., Suorsa, P., Valkama, J. & Lehikoinen, E. Juvenile barn swallows Hirundo rustica L. from late broods start autumn migration younger, fuel less effectively and show lower return rates than juveniles from early broods. Ibis 159, 892–901. https://doi.org/10.1111/ibi.12492 (2018).
    Article  Google Scholar 

    47.
    Svensson, E. Natural selection on avian breeding time: causality, fecundity-dependent, and fecundity-independent selection. Evolution 51, 1276–1283. https://doi.org/10.1111/j.1558-5646.1997.tb03974.x (1997).
    Article  Google Scholar 

    48.
    Rioux Paquette, S., Pelletier, F., Garant, D. & Bélisle, M. Severe recent decrease of adult body mass in a declining insectivorous bird population. Proc. R. Soc. B. Biol. Sci. 281, 20140649. https://doi.org/10.1098/rspb.2014.0649 (2014).
    Article  Google Scholar 

    49.
    Winkler, D. W. & Allen, P. E. The seasonal decline in tree swallow clutch size: physiological constraint or strategic adjustment?. Ecology 77, 922–932 (1996).
    Article  Google Scholar 

    50.
    Harriman, V. B., Dawson, R. D., Bortolotti, L. E. & Clark, R. G. Seasonal patterns in reproductive success of temperate-breeding birds: experimental tests of the date and quality hypotheses. Ecol. Evol. 7, 2122–2132. https://doi.org/10.1002/ece3.2815 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    51.
    Verhulst, S., van Balen, J. H. & Tinbergen, J. M. Seasonal decline in reproductive success of the great tit: variation in time or quality?. Ecology 76, 2392–2403 (1995).
    Article  Google Scholar 

    52.
    Blums, P., Clark, R. G. & Mednis, A. Patterns of reproductive effort and success in birds: path analyses of long-term data from European ducks. J. Anim. Ecol. 71, 280–295. https://doi.org/10.1046/j.1365-2656.2002.00598.x (2002).
    Article  Google Scholar 

    53.
    Pärt, T., Knape, J., Low, M., Öberg, M. & Arlt, D. Disentangling the effects of date, individual, and territory quality on the seasonal decline in fitness. Ecology 98, 2102–2110. https://doi.org/10.1002/ecy.1891 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    54.
    Brinkhof, M. W. G. & Cavé, A. J. Food supply and seasonal variation in breeding success: an experiment in the European coot. Proc. R. Soc. B Biol. Sci. 264, 291–296. https://doi.org/10.1098/rspb.1997.0041 (1997).
    ADS  Article  Google Scholar 

    55.
    Rossmanith, E., Höntsch, K., Blaum, N. & Jeltsch, F. Reproductive success and nestling diet in the lesser spotted woodpecker (Picoides minor): the early bird gets the caterpillar. J. Ornithol. 148, 323–332. https://doi.org/10.1007/s10336-007-0134-4 (2007).
    Article  Google Scholar 

    56.
    Kim, S. Y., Velando, A., Torres, R. & Drummond, H. Effects of recruiting age on senescence, lifespan and lifetime reproductive success in a long-lived seabird. Oecologia 166, 615–626. https://doi.org/10.1007/s00442-011-1914-3 (2011).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Mourocq, E. et al. Life span and reproductive cost explain interspecific variation in the optimal onset of reproduction. Evolution 70, 296–313. https://doi.org/10.1111/evo.12853 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    58.
    Hoset, K. S., Villers, A., Wistbacka, R. & Selonen, V. Pulsed food resources, but not forest cover, determine lifetime reproductive success in a forest-dwelling rodent. J. Anim. Ecol. 86, 1235–1245. https://doi.org/10.1111/1365-2656.12715 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    59.
    Teplitsky, C., Mills, J. A., Yarrall, J. W. & Merilä, J. Heritability of fitness components in a wild bird population. Evolution 63, 716–726. https://doi.org/10.1111/j.1558-5646.2008.00581.x (2009).
    Article  PubMed  PubMed Central  Google Scholar 

    60.
    McCleery, R. H. et al. Components of variance underlying fitness in a natural population of the great tit Parus major. Am. Nat. 164, E62–E72. https://doi.org/10.1086/422660 (2004).
    CAS  Article  PubMed  Google Scholar 

    61.
    Salles, O. C. et al. Strong habitat and weak genetic effects shape the lifetime reproductive success in a wild clownfish population. Ecol. Lett. 23, 265–273. https://doi.org/10.1111/ele.13428 (2020).
    Article  PubMed  Google Scholar 

    62.
    McCleery, R. H. & Perrins, C. M. Lifetime reproductive success of the great tit, Parus major in Reproductive success 136–153 (The University of Chicago Press, Chicago, 1988).

    63.
    Twining, C. W., Shipley, J. R. & Winkler, D. W. Aquatic insects rich in omega-3 fatty acids drive breeding success in a widespread bird. Ecol. Lett. 21, 1812–1820. https://doi.org/10.1111/ele.13156 (2018).
    Article  PubMed  Google Scholar 

    64.
    Clark, R. G. et al. Geographic variation and environmental correlates of apparent survival rates in adult tree swallows Tachycineta bicolor. J. Avian Biol. 49, 012514. https://doi.org/10.1111/jav.01659 (2018).
    Article  Google Scholar 

    65.
    Cox, A. R., Robertson, R. J., Rendell, W. B. & Bonier, F. Population decline in tree swallows (Tachycineta bicolor) linked to climate change and inclement weather on the breeding ground. Oecologia 192, 713–722. https://doi.org/10.1007/s00442-020-04618-8 (2020).
    ADS  Article  PubMed  Google Scholar 

    66.
    Cox, A. R., Robertson, R. J., Fedy, B. C., Rendell, W. B. & Bonier, F. Demographic drivers of local population decline in tree swallows (Tachycineta bicolor) in Ontario, Canada. Condor 120, 842–851. https://doi.org/10.1650/CONDOR-18-42.1 (2018).
    Article  Google Scholar 

    67.
    Shutler, D. et al. Spatiotemporal patterns in nest box occupancy by tree swallows across North America. Avian Conserv. Ecol. https://doi.org/10.5751/ACE-00517-070103 (2012).
    Article  Google Scholar 

    68.
    Winkler, D. W. et al. Breeding dispersal and philopatry in the tree swallow. Condor 106, 768–776. https://doi.org/10.1093/condor/106.4.768 (2004).
    Article  Google Scholar 

    69.
    Lambrechts, M. M. et al. Will estimates of lifetime recruitment of breeding offspring on small-scale study plots help us to quantify processes underlying adaptation?. Oikos 86, 147–151. https://doi.org/10.2307/3546579 (1999).
    Article  Google Scholar 

    70.
    Mantyka-Pringle, C. et al. Antagonistic, synergistic and direct effects of land use and climate on Prairie wetland ecosystems: ghosts of the past or present?. Divers. Distrib. 25, 1924–1940. https://doi.org/10.1111/ddi.12990 (2019).
    Article  Google Scholar 

    71.
    Johnson, W. C. et al. Prairie wetland complexes as landscape functional units in a changing climate. Bioscience 60, 128–140. https://doi.org/10.1525/bio.2010.60.2.7 (2010).
    Article  Google Scholar 

    72.
    Zhao, Q., Silverman, E., Fleming, K. & Boomer, G. S. Forecasting waterfowl population dynamics under climate change—does the spatial variation of density dependence and environmental effects matter?. Biol. Conserv. 194, 80–88. https://doi.org/10.1016/j.biocon.2015.12.006 (2016).
    Article  Google Scholar 

    73.
    British Columbia Ministry of Environment. Indicators of climate change for British Columbia update. (Province of British Columbia, 2016).

    74.
    Cox, A. R., Robertson, R. J., Lendvai, Á. Z., Everitt, K. & Bonier, F. Rainy springs linked to poor nestling growth in a declining avian aerial insectivore (Tachycineta bicolor). Proc. R. Soc. B Biol. Sci. 286, 20190018. https://doi.org/10.1098/rspb.2019.0018 (2019).
    Article  Google Scholar 

    75.
    O’Brien, E. L. & Dawson, R. D. Context-dependent genetic benefits of extra-pair mate choice in a socially monogamous passerine. Behav. Ecol. Sociobiol. 61, 775–782. https://doi.org/10.1007/s00265-006-0308-8 (2007).
    Article  Google Scholar 

    76.
    Whittingham, L. A. & Dunn, P. O. Female responses to intraspecific brood parasitism in the tree swallow. Condor 103, 166–170. https://doi.org/10.1093/condor/103.1.166 (2001).
    Article  Google Scholar 

    77.
    Shutler, D. & Clark, R. G. Causes and consequences of tree swallow (Tachycineta bicolor) dispersal in Saskatchewan. Auk 120, 619–631. https://doi.org/10.1093/auk/120.3.619 (2003).
    Article  Google Scholar 

    78.
    Leffelaar, D. & Robertson, R. J. Nest usurpation and female competition for breeding opportunities by tree swallows. Wilson Bull. 97, 221–224 (1985).
    Google Scholar 

    79.
    Stutchbury, B. J. & Robertson, R. J. Floating populations of female tree swallows. Auk 102, 651–654 (1985).
    Article  Google Scholar 

    80.
    Clark, R. G. & Shutler, D. Avian habitat selection: pattern from process in nest-site use by ducks?. Ecology 80, 272–287. https://doi.org/10.1890/0012-9658(1999)080[0272:AHSPFP]2.0.CO;2 (1999).
    Article  Google Scholar 

    81.
    O’Brien, E. L. & Dawson, R. D. Perceived risk of ectoparasitism reduces primary reproductive investment in tree swallows Tachycineta bicolor. J. Avian Biol. 36, 269–275. https://doi.org/10.1111/j.0908-8857.2005.03562.x (2005).
    Article  Google Scholar 

    82.
    Dawson, R. D., Lawrie, C. C. & O’Brien, E. L. The importance of microclimate variation in determining size, growth and survival of avian offspring: experimental evidence from a cavity nesting passerine. Oecologia 144, 499–507. https://doi.org/10.1007/s00442-005-0075-7 (2005).
    ADS  Article  Google Scholar 

    83.
    Bitton, P.-P. & Dawson, R. D. Age-related differences in plumage characteristics of male tree swallows Tachycineta bicolor: hue and brightness signal different aspects of individual quality. J. Avian Biol. 39, 446–452. https://doi.org/10.1111/j.0908-8857.2008.04283.x (2008).
    Article  Google Scholar 

    84.
    Hussell, D. J. T. Age and plumage color in female tree swallows. J. F. Ornithol. 54, 312–318 (1983).
    Google Scholar 

    85.
    Gómez, J. et al. Effects of geolocators on reproductive performance and annual return rates of a migratory songbird. J. Ornithol. 155, 37–44. https://doi.org/10.1007/s10336-013-0984-x (2014).
    Article  Google Scholar 

    86.
    Gustafsson, L. & Pärt, T. Acceleration of senescence in the collared flycatcher Ficedula albicollis by reproductive costs. Nature 347, 279–281. https://doi.org/10.1038/347279a0 (1990).
    ADS  Article  Google Scholar 

    87.
    Nooker, J. K., Dunn, P. O. & Whittingham, L. A. Effects of food abundance, weather, and female condition on reproduction in tree swallows (Tachycineta bicolor). Auk 122, 1225–1238. https://doi.org/10.1093/auk/122.4.1225 (2005).
    Article  Google Scholar 

    88.
    Ardia, D. R., Wasson, M. F. & Winkler, D. W. Individual quality and food availability determine yolk and egg mass and egg composition in tree swallows Tachycineta bicolor. J. Avian Biol. 37, 252–259. https://doi.org/10.1111/l.2006.0908.8857.03624.x (2006).
    Article  Google Scholar 

    89.
    Clark, R. G., Pöysä, H., Runko, P. & Paasivaara, A. Spring phenology and timing of breeding in short-distance migrant birds: phenotypic responses and offspring recruitment patterns in common goldeneyes. J. Avian Biol. 45, 457–465. https://doi.org/10.1111/jav.00290 (2014).
    Article  Google Scholar 

    90.
    Robertson, R. J. & Rendell, W. B. A long-term study of reproductive performance in tree swallows: the influence of age and senescence on output. J. Anim. Ecol. 70, 1014–1031. https://doi.org/10.1046/j.0021-8790.2001.00555.x (2001).
    Article  Google Scholar 

    91.
    Ardia, D. R. Individual quality mediates trade-offs between reproductive effort and immune function in tree swallows. J. Anim. Ecol. 74, 517–524. https://doi.org/10.1111/j.1365-2656.2005.00950.c (2005).
    Article  Google Scholar 

    92.
    Dunn, P. O., Winkler, D. W., Whittingham, L. A., Hannon, S. J. & Robertson, R. J. A test of the mismatch hypothesis: how is timing of reproduction related to food abundance in an aerial insectivore?. Ecology 92, 450–461. https://doi.org/10.1890/10-0478.1 (2011).
    Article  PubMed  Google Scholar 

    93.
    Lefcheck, J. S. PiecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579. https://doi.org/10.1111/2041-210X.12512 (2016).
    Article  Google Scholar 

    94.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2019).

    95.
    SAS Institute Incorporated. SAS (Data Analysis Software System), Version 9.4 (SAS Institute Incorporated, 2016). More