Coral cover surveys corroborate predictions on reef adaptive potential to thermal stress
1.
Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
ADS CAS PubMed PubMed Central Google Scholar
2.
Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).
ADS CAS PubMed PubMed Central Google Scholar
3.
Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
ADS CAS PubMed PubMed Central Google Scholar
4.
Van Hooidonk, R., Maynard, J. A. & Planes, S. Temporary refugia for coral reefs in a warming world. Nat. Clim. Chang. 3, 508–511 (2013).
ADS Google Scholar
5.
Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Chang. 26, 152–158 (2014).
Google Scholar
6.
Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).
Google Scholar
7.
Hughes, T. P. et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Change 9, 40–43 (2019).
ADS Google Scholar
8.
Krueger, T. et al. Common reef-building coral in the northern red sea resistant to elevated temperature and acidification. R. Soc. Open Sci. 4, 170038 (2017).
ADS PubMed PubMed Central Google Scholar
9.
Penin, L., Vidal-Dupiol, J. & Adjeroud, M. Response of coral assemblages to thermal stress: are bleaching intensity and spatial patterns consistent between events?. Environ. Monit. Assess. 185, 5031–5042 (2013).
PubMed PubMed Central Google Scholar
10.
Thompson, D. M. & van Woesik, R. Corals escape bleaching in regions that recently and historically experienced frequent thermal stress. Proc. Biol. Sci. 276, 2893–2901 (2009).
CAS PubMed PubMed Central Google Scholar
11.
Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1–5 (2019).
CAS Google Scholar
12.
Thomas, L. et al. Mechanisms of thermal tolerance in reef-building corals across a fine-grained environmental mosaic: lessons from Ofu, American Samoa. Front. Mar. Sci. 4, 434 (2018).
Google Scholar
13.
Bay, R. A. & Palumbi, S. R. Multilocus adaptation associated with heat resistance in reef-building corals. Curr. Biol. 24, 2952–2956 (2014).
CAS PubMed PubMed Central Google Scholar
14.
Wilson, K. L., Tittensor, D. P., Worm, B. & Lotze, H. K. Incorporating climate change adaptation into marine protected area planning. Glob. Chang. Biol. 26, 3251–3267 (2020).
ADS PubMed PubMed Central Google Scholar
15.
Baums, I. B. et al. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecol. Appl. 29, (2019).
16.
Matz, M. V., Treml, E. & Haller, B. C. Predicting coral adaptation to global warming in the Indo-West-Pacific. BioRxiv https://doi.org/10.1101/722314 (2019).
Article Google Scholar
17
Selmoni, O., Rochat, E., Lecellier, G., Berteaux-Lecellier, V. & Joost, S. Seascape genomics as a new tool to empower coral reef conservation strategies: an example on north-western Pacific Acropora digitifera. Evol. Appl. https://doi.org/10.1101/588228 (2020).
Article PubMed PubMed Central Google Scholar
18
Riginos, C., Crandall, E. D., Liggins, L., Bongaerts, P. & Treml, E. A. Navigating the currents of seascape genomics: how spatial analyses can augment population genomic studies. Curr. Zool. https://doi.org/10.1093/cz/zow067 (2016).
Article PubMed PubMed Central Google Scholar
19.
Maina, J., Venus, V., McClanahan, T. R. & Ateweberhan, M. Modelling susceptibility of coral reefs to environmental stress using remote sensing data and GIS models. Ecol. Modell. 212, 180–199 (2008).
Google Scholar
20.
Liu, G., Strong, A. E. & Skirving, W. Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching. Eos Trans. Am. Geophys. Union 84, 137–141 (2003).
ADS Google Scholar
21
Rochat, E. & Joost, S. Spatial areas of genotype probability (SPAG): predicting the spatial distribution of adaptive genetic variants under future climatic conditions. BioRxiv. https://doi.org/10.1101/2019.12.20.884114 (2019).
Article Google Scholar
22
Boulanger, E., Dalongeville, A., Andrello, M., Mouillot, D. & Manel, S. Spatial graphs highlight how multi-generational dispersal shapes landscape genetic patterns. Ecography (Cop) https://doi.org/10.1111/ecog.05024 (2020).
Article Google Scholar
23
Selmoni, O. et al. Seascape genomics reveals candidate molecular targets of heat stress adaptation in three coral species. BioRxiv. https://doi.org/10.1101/2020.05.12.090050 (2020).
Article Google Scholar
24.
Job, S. New Caledonia network of coral reef observation (RORC) – Field campaign report 2017–2018. (French title: Réseau d’observation des récifs coralliens (RORC) de Nouvelle-Calédonie. Campagne 2017–2018. Rapport Pays. Rapport CORTEX. Pour le compte de : Conservatoire d’espaces naturels de Nouvelle-Calédonie – Province des îles Loyauté – Observatoire de l’environnement). (CORTEX, New Caledonia, 2018).
25.
Lefèvre, J., Marchesiello, P., Jourdain, N. C., Menkes, C. & Leroy, A. Weather regimes and orographic circulation around New Caledonia. Mar. Pollut. Bull. 61, 413–431 (2010).
PubMed Google Scholar
26.
Marchesiello, P., Lefèvre, J., Vega, A., Couvelard, X. & Menkes, C. Coastal upwelling, circulation and heat balance around New Caledonia’s barrier reef. Mar. Pollut. Bull. 61, 432–448 (2010).
CAS PubMed Google Scholar
27.
Berkelmans, R., Weeks, S. J. & Steinberga, C. R. Upwelling linked to warm summers and bleaching on the Great Barrier Reef. Limnol. Oceanogr. 55, 2634–2644 (2010).
ADS Google Scholar
28.
Cravatte, S. et al. Regional circulation around New Caledonia from two decades of observations. J. Mar. Syst. 148, 249–271 (2015).
Google Scholar
29.
Hénin, C., Guillerm, J. & Chabert, L. Circulation superficielle autour de la Nouvelle-Calédonie. Océanographie Trop. 19, 113–126 (1984).
Google Scholar
30.
Magris, R. A., Pressey, R. L., Weeks, R. & Ban, N. C. Integrating connectivity and climate change into marine conservation planning. Biol. Cons. 170, 207–221 (2014).
Google Scholar
31.
Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).
ADS CAS Google Scholar
32.
Welle, P. D., Small, M. J., Doney, S. C. & Azevedo, I. L. Estimating the effect of multiple environmental stressors on coral bleaching and mortality. PLoS ONE 12, e0175018 (2017).
Article CAS PubMed Central Google Scholar
33.
Kenkel, C. D., Almanza, A. T. & Matz, M. V. Fine-scale environmental specialization of reef-building corals might be limiting reef recovery in the Florida Keys. Ecology 96, 3197–3212 (2015).
Article Google Scholar
34.
Palumbi, S. R. Population genetics, demographic connectivity, and the design of marine reserves. Ecol. Appl. 13, 146–158 (2003).
Article Google Scholar
35.
Hock, K. et al. Connectivity and systemic resilience of the Great Barrier Reef. PLoS Biol. 15, (2017).
36.
Robinson, J. P. W., Wilson, S. K. & Graham, N. A. J. Abiotic and biotic controls on coral recovery 16 years after mass bleaching. Coral Reefs 38, 1255–1265 (2019).
ADS Article Google Scholar
37.
Kawecki, T. J. Adaptation to marginal habitats. Annu. Rev. Ecol. Evol. Syst. 39, 321–342 (2008).
Article Google Scholar
38.
Treml, E. A. et al. Reproductive output and duration of the pelagic larval stage determine seascape-wide connectivity of marine populations. Integr. Comp. Biol. 52, 525–537 (2012).
Article Google Scholar
39.
Storlazzi, C. D., van Ormondt, M., Chen, Y.-L. & Elias, E. P. L. Modeling fine-scale coral larval dispersal and interisland connectivity to help designate mutually-supporting coral reef marine protected areas: insights from Maui Nui, Hawaii. Front. Mar. Sci. 4, 381 (2017).
Article Google Scholar
40.
Colberg, F., Brassington, G. B., Sandery, P., Sakov, P. & Aijaz, S. High and medium resolution ocean models for the Great Barrier Reef. Ocean Model. 145, 101507 (2020).
Google Scholar
41.
Andréfouët, S., Cabioch, G., Flamand, B. & Pelletier, B. A reappraisal of the diversity of geomorphological and genetic processes of New Caledonian coral reefs: A synthesis from optical remote sensing, coring and acoustic multibeam observations. Coral Reefs 28, 691–707 (2009).
ADS Google Scholar
42.
Dalleau, M. et al. Use of habitats as surrogates of biodiversity for efficient coral reef conservation planning in Pacific Ocean islands. Conserv. Biol. 24, 541–552 (2010).
PubMed PubMed Central Google Scholar
43.
Loya, Y. et al. Coral bleaching: the winners and the losers. Ecol. Lett. 4, 122–131 (2001).
Google Scholar
44.
Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R. & Côté, I. M. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386 (2012).
PubMed PubMed Central Google Scholar
45.
Ayre, D. J. & Hughes, T. P. Genotypic diversity and gene flow in brooding and spawning corals along the great barrier reef, Australia. Evolution (NY) 54, 1590–1605 (2000).
CAS Google Scholar
46.
Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).
Google Scholar
47.
Selmoni, O., Vajana, E., Guillaume, A., Rochat, E. & Joost, S. Sampling strategy optimization to increase statistical power in landscape genomics: A simulation-based approach. Mol. Ecol. Resour. 20, (2020).
48.
EU Copernicus Marine Service. Global Ocean – In-Situ-Near-Real-Time Observations. (2017). Available at: https://marine.copernicus.eu. Accessed: 2nd February 2017
49.
Merchant, C. J. et al. Satellite-based time-series of sea-surface temperature since 1981 for climate applications. Sci. data 6, 223 (2019).
PubMed PubMed Central Google Scholar
50.
UNEP-WCMC, WorldFish-Center, WRI & TNC. Global distribution of warm-water coral reefs, compiled from multiple sources including the Millennium Coral Reef Mapping Project. Version 1.3. (2010). Available at: https://data.unep-wcmc.org/datasets/1. Accessed: 9th May 2017
51.
QGIS development team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. (2009).
52.
Hijmans, R. J. raster: Geographic Data Analysis and Modeling. (2016).
53.
R Core Team. R: A Language and Environment for Statistical Computing. (2016).
54.
Ryan, W. B. F. et al. Global multi-resolution topography synthesis. Geochemistry, Geophys. Geosystems 10, (2009).
55.
van Etten, J. gdistance: Distances and Routes on Geographical Grids. (2018). Available at: https://cran.r-project.org/package=gdistance.
56.
Kilian, A. et al. Diversity arrays technology: A generic genome profiling technology on open platforms. Methods Mol. Biol. 888, 67–89 (2012).
PubMed Google Scholar
57.
Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012).
CAS PubMed PubMed Central Google Scholar
58.
Frichot, E., Schoville, S. D., Bouchard, G. & François, O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol. Biol. Evol. 30, 1687–1699 (2013).
CAS PubMed PubMed Central Google Scholar
59.
Joost, S. et al. A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol. Ecol. 16, 3955–3969 (2007).
CAS PubMed PubMed Central Google Scholar
60.
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
Google Scholar
61.
Breheny, P. & Burchett, W. Visualization of regression models using visreg. R J. 9, 56–71 (2017).
Google Scholar
62.
Xuereb, A., Kimber, C. M., Curtis, J. M. R., Bernatchez, L. & Fortin, M. Putatively adaptive genetic variation in the giant California sea cucumber ( Parastichopus californicus ) as revealed by environmental association analysis of restriction-site associated DNA sequencing data. Mol. Ecol. 27, 5035–5048 (2018).
CAS PubMed Google Scholar
63.
Benestan, L. et al. Seascape genomics provides evidence for thermal adaptation and current-mediated population structure in American lobster (Homarus americanus). Mol. Ecol. 25, 5073–5092 (2016).
PubMed Google Scholar
64.
Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).
ADS PubMed Google Scholar
65.
Borcard, D. & Legendre, P. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Modell. 153, 51–68 (2002).
Google Scholar
66.
Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).
Google Scholar
67.
Ferrari, S. L. P. & Cribari-Neto, F. Beta regression for modelling rates and proportions. J. Appl. Stat. 31, 799–815 (2004).
MathSciNet MATH Google Scholar
68.
Verbeke, G., Molenberghs, G. & Rizopoulos, D. Random effects models for longitudinal data. In Longitudinal Research with Latent Variables 37–96 (Springer, Berlin, 2010). https://doi.org/10.1007/978-3-642-11760-2_2
69.
Garcia, T. P. & Marder, K. Statistical approaches to longitudinal data analysis in neurodegenerative diseases: Huntington’s disease as a model. Curr. Neurol. Neurosci. Rep. 17, 14 (2017).
PubMed PubMed Central Google Scholar
70.
Bozdogan, H. Model selection and Akaike’s Information Criterion (AIC): the general theory and its analytical extensions. Psychometrika 52, 345–370 (1987).
MathSciNet MATH Google Scholar More