More stories

  • in

    Shifts in the developmental rate of spadefoot toad larvae cause decreased complexity of post-metamorphic pigmentation patterns

    1.
    Protas, M. E. & Patel, N. H. Evolution of coloration patterns. Annu. Rev. Cell. Dev. Biol. 24, 425–446 (2008).
    CAS  Article  Google Scholar 
    2.
    Robertson, J. M. & Greene, H. W. Bright colour patterns as social signals in nocturnal frogs. Biol. J. Linn. Soc. 121, 849–857 (2017).
    Article  Google Scholar 

    3.
    Hill, G. E. et al. (eds) Bird coloration: mechanisms and measurements Vol. 1 (Harvard University Press, Cambridge, 2006).
    Google Scholar 

    4.
    Hamilton, W. D. & Zuk, M. Heritable true fitness and bright birds—a role for parasites. Science 218, 384–387 (1982).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Lindström, K. & Lundström, J. Male greenfinches (Carduelis chloris) with brighter ornaments have higher virus infection clearance rate. Behav. Ecol. Sociobiol. 48, 44–51 (2000).
    Article  Google Scholar 

    6.
    Pérez-Rodríguez, L., Jovani, R. & Stevens, M. Shape matters: animal colour patterns as signals of individual quality. Proc. R. Soc. B. 284, 20162446–20162510 (2017).
    Article  Google Scholar 

    7.
    Stevens, M., Cuthill, I. C., Windsor, A. M. & Walker, H. J. Disruptive contrast in animal camouflage. Proc. R. Soc. B 273, 2433–2438 (2006).
    Article  Google Scholar 

    8.
    Stevens, M., Winney, I. S., Cantor, A. & Graham, J. Outline and surface disruption in animal camouflage. Proc. R. Soc. B 276, 781–786 (2009).
    Article  Google Scholar 

    9.
    Allen, W. L., Cuthill, I. C., Scott-Samuel, N. E. & Baddeley, R. Why the leopard got its spots: relating pattern development to ecology in felids. Proc. R. Soc. B 278, 1373–1380 (2010).
    Article  Google Scholar 

    10.
    Kelley, J. L., Fitzpatrick, J. L. & Merilaita, S. Spots and stripes: ecology and colour pattern evolution in butterflyfishes. Proc. R. Soc. B 280, 20122730–20122739 (2013).
    Article  PubMed  Google Scholar 

    11.
    Kondo, S. & Shirota, H. Theoretical analysis of mechanisms that generate the pigmentation pattern of animals. Semin. Cell Dev. Biol. 20, 82–89 (2009).
    Article  Google Scholar 

    12.
    Theis, A., Salzburger, W. & Egger, B. The function of anal fin egg-spots in the cichlid fish Astatotilapia burtoni. PLoS ONE 7, e29878 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    13.
    Palmer, M. E., Calvé, M. R. & Adamo, S. A. Response of female cuttlefish Sepia officinalis (Cephalopoda) to mirrors and conspecifics: evidence for signaling in female cuttlefish. Anim. Cogn. 9, 151–155 (2006).
    CAS  Article  Google Scholar 

    14.
    Gluckman, T. L. & Cardoso, G. C. The dual function of barred plumage in birds; camouflage and communication. J. Evol. Biol. 23, 2501–2506 (2010).
    CAS  Article  Google Scholar 

    15.
    Rowland, H. M. et al. Countershading enhances cryptic protection: an experiment with wild birds and artificial prey. Anim. Behav. 74, 1249–1258 (2007).
    Article  Google Scholar 

    16.
    Singh, A. P. & Nüsslein-Volhard, C. Zebrafish Stripes as a model for vertebrate review colour pattern formation. Curr. Biol. 25, R81–R92 (2015).
    CAS  Article  Google Scholar 

    17.
    Ruxton, G. D., Sherratt, T. N. & Speed, M. P. Avoiding Attack. Oxford, UK: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198528609.003.0012 (2004).

    18.
    Manriquez, K. C., Pardo, L. M., Wells, R. J. D. & Palma, A. T. Crypsis in Paraxanthus barbiger (Decapoda : Brachyura): Mechanisms against visual predators. J. Crustac. Biol. 28, 473–479 (2008).
    Article  Google Scholar 

    19.
    Nishikawa, H. et al. Molecular basis of wing coloration in a batesian mimic butterfly, Papilio polytes. Sci. Rep. 3, 3184 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    20.
    Stevens, M. & Ruxton, G. D. The key role of behaviour in animal camouflage. Biol. Rev. 94, 116–134 (2019).
    Article  Google Scholar 

    21.
    Wittkopp, P. J., Carroll, S. B. & Kopp, A. Evolution in black and white: genetic control of pigment patterns in Drosophila. Trends Genet. 19, 495–504 (2003).
    CAS  Article  PubMed  Google Scholar 

    22.
    Hiyama, A., Taira, W. & Otaki, J. M. Color-pattern evolution in response to environmental stress in butterflies. Front. Genet. 3, 15 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    23.
    Pérez-Rodríguez, L., Jovani, R. & Mougeot, F. Fractal geometry of a complex plumage trait reveals bird’s quality. Proc. R. Soc. B. 280, 20122783–20122786 (2013).
    Article  PubMed  Google Scholar 

    24.
    Jiguet, F. & Bretagnolle, V. Sexy males and choosy females on exploded leks: correlates of male attractiveness in the Little Bustard. Behav. Proc. 103, 246–255 (2014).
    Article  Google Scholar 

    25.
    Tibbetts, E. A. & Curtis, T. R. Rearing conditions influence quality signals but not individual identity signals in Polistes wasps. Behav. Ecol. 18, 602–607 (2007).
    Article  Google Scholar 

    26.
    Park, C. J., Kang, H. S. & Gye, M. C. Effects of nonylphenol on early embryonic development, pigmentation and 3,5,3’-triiodothyronine-induced metamorphosis in Bombina orientalis (Amphibia: Anura). Chemosphere 81, 1292–1300 (2010).
    ADS  CAS  Article  PubMed  Google Scholar 

    27.
    Rudh, A. & Qvarnström, A. Adaptive colouration in amphibians. Semin. Cell Dev. Biol. 24, 553–561 (2013).
    Article  PubMed  Google Scholar 

    28.
    Rabbani, M., Zacharczenko, B. & Green, D. M. Color pattern variation in a cryptic amphibian, Anaxyrus fowleri. J. Herpetol. 49, 649–654 (2015).
    Article  Google Scholar 

    29.
    Gomez-Mestre, I., Pyron, R. A. & Wiens, J. J. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66, 3687–3700 (2012).
    Article  PubMed  Google Scholar 

    30.
    Wells, K. D. The Ecology and Behavior of Amphibians (The University of Chicago Press, USA, 2007).
    Google Scholar 

    31.
    Haas, A. Phylogeny of frogs as inferred from primarily larval characters (Amphibia: Anura). Cladistics 19, 23–89 (2003).
    Google Scholar 

    32.
    Wollenberg Valero, K. C. et al. Transcriptomic and macroevolutionary evidence for phenotypic uncoupling between frog life history phases. Nat. Commun. 8, 1–9 (2017).
    Article  CAS  Google Scholar 

    33.
    Van Allen, B. G., Briggs, V. S., McCoy, M. W. & Vonesh, J. R. Carry-over effects of the larval environment on post-metamorphic performance in two hylid frogs. Oecologia 164, 891–898 (2010).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    34.
    Touchon, J. C., McCoy, M. W., Vonesh, J. R. & Warkentin, K. M. Effects of plastic hatching timing carry over through metamorphosis in red-eyed treefrogs. Ecology 94, 850–860 (2013).
    Article  Google Scholar 

    35.
    Gomez-Mestre, I. et al. The shape of things to come: linking developmental plasticity to post-metamorphic morphology in anurans. J. Evol. Biol. 23, 1364–1373 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    36.
    Thibaudeau, G. & Altig, R. Coloration of Anuran Tadpoles (Amphibia): development, dynamics, function, and hypotheses. ISRN Zoology 1–16 (2012).

    37.
    Parichy, D. M. & Turner, J. M. Zebrafish puma mutant decouples pigment pattern and somatic metamorphosis. Dev. Biol. 256, 242–257 (2003).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    38.
    Touchon, J. C., McCoy, M. W., Landberg, T., Vonesh, J. R. & Warkentin, K. M. Putting μ/g in a new light: plasticity in life history switch points reflects fine-scale adaptive responses. Ecology 96, 2192–2202 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    39.
    Gomez-Mestre, I., Kulkarni, S. & Buchholz, D. R. Mechanisms and consequences of developmental acceleration in tadpoles responding to pond drying. PLoS ONE 8, e84266 (2013).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Gomez-Mestre, I. & Buchholz, D. R. Developmental plasticity mirrors differences among taxa in spadefoot toads linking plasticity and diversity. PNAS 103, 50 (2006).
    Article  CAS  Google Scholar 

    41.
    Gervasi, S. S. & Foufopoulos, J. Costs of plasticity: responses to desiccation decrease post-metamorphic immune function in a pond-breeding amphibian. Funct. Ecol. 22, 100–108 (2008).
    Google Scholar 

    42.
    Schloerke, B. GGally: Extension to ‘ggplot2’. R package version 2.0.0. https://CRAN.R-project.org/package=GGally (2020).

    43.
    Covarrubias-Pazaran, G. Genome-assisted prediction of quantitative traits using the R package sommer. PLoS ONE 11, e0156744 (2016).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits Vol. 1, 535–557 (Sinauer, Sunderland, MA, 1998).
    Google Scholar 

    45.
    Burraco, P., Valdés, A. E., Johansson, F. & Gomez-Mestre, I. Physiological mechanisms of adaptive developmental plasticity in Rana temporaria island populations. BMC Evol. Biol. 17, 164 (2017).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Kulkarni, S. S., Denver, R. J., Gomez-Mestre, I. & Buchholz, D. R. Genetic accommodation via modified endocrine signalling explains phenotypic divergence among spadefoot toad species. Nat. Commun. 8, 993 (2017).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    47.
    Bagnara, J. T. & Fernandez, P. J. Hormonal influences on the development of amphibian pigmentation patterns. Zool. Sci. 10, 733–748 (1993).
    CAS  Google Scholar 

    48.
    Frieden, E. & Just, J. J. Hormonal responses in amphibian metamorphosis. Biochem. Actions Hormon. 1, 1–52 (2012).
    Google Scholar 

    49.
    Noriega, N. C. & Hayes, T. B. DDT congener effects on secondary sex coloration in the reed frog Hyperolius argus: a partial evaluation of the Hyperolius argus endocrine screen. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 126, 231–237 (2000).
    CAS  Article  Google Scholar 

    50.
    Hayes, T. B. et al. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc. Natl. Acad. Sci. 99, 5476–5480 (2002).
    ADS  CAS  Article  PubMed  Google Scholar 

    51.
    Bagnara, J. T. & Matsumoto, J. Comparative anatomy and physiology of pigment cells in nonmammalian tissues. In The Pigmentary System: Physiology and Pathophysiology (2nd edition), (Nordlund, J. J. et al. eds.), 11–59 (Oxford Univ. Press, UK, 2006).

    52.
    Schanz, T. S., Bensch, S., Grahn, M., Hasselquist, D. & Wittzell, H. Good genes, oxidative stress and condition-dependent sexual signals. Proc. R. Soc. B 266, 1–12 (1999).
    Article  Google Scholar 

    53.
    Cabrera-Guzmán, E., Díaz-Paniagua, C. & Gomez-Mestre, I. Differential effect of natural and pigment-supplemented diets on larval development and phenotype of anurans. J. Zool. https://doi.org/10.1111/jzo.12827 (2020).
    Article  Google Scholar 

    54.
    Isaksson, C., Örnborg, J., Stephensen, E. & Andersson, S. Plasma glutathione and carotenoid coloration as potential biomarkers of environmental stress in great tits. EcoHealth 2, 138–146 (2005).
    Article  Google Scholar 

    55.
    Summers, K. & Clough, M. E. The Evolution of coloration and toxicity in the poison frog family (Dendrobatidae). PNAS 98, 6227–6232 (2001).
    ADS  CAS  Article  Google Scholar 

    56.
    Vences, M. et al. Convergent evolution of aposematic coloration in Neotropical poison frogs: a molecular phylogenetic perspective. Org. Divers. Evol. 3, 215–226 (2003).
    Article  Google Scholar 

    57.
    Sköld, H. N., Aspengren, S. & Wallin, M. Rapid color change in fish and amphibians—function, regulation, and emerging applications. Pigment Cell Melanoma Res. 26, 29–38 (2012).
    Article  Google Scholar 

    58.
    Gallant, N. & Teather, K. Differences in size, pigmentation, and fluctuating asymmetry in stressed and nonstressed northern leopard frogs (Rana pipiens). Ecoscience 8, 430–436 (2001).
    Article  Google Scholar 

    59.
    Garcia, T. S. & Sih, A. Color change and color-dependent behavior is response to predation risk in the salamander sister species Ambystoma barbouri and Ambystoma texanum. Oecologia 137, 131–139 (2003).
    ADS  Article  Google Scholar 

    60.
    Polo-Cavia, N. & Gomez-Mestre, I. Pigmentation plasticity enhances crypsis in larval newts: associated metabolic cost and background choice behaviour. Sci. Rep. 7, 39739 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    61.
    Blaustein, A. R. & Belden, L. K. Amphibian defenses against ultraviolet-B radiation. Evol. Dev. 5, 89–97 (2003).
    CAS  Article  PubMed  Google Scholar 

    62.
    Summers, K., Symula, R., Clough, M. & Cronin, T. Visual mate choice in poison frogs. Proc. R. Soc. Lond. B. 266, 2141–2145 (1999).
    CAS  Article  Google Scholar 

    63.
    Wollenberg, K. C. & Measey, G. J. Why colour in subterranean vertebrates? Exploring the evolution of colour patterns in caecilian amphibians. J. Evol. Biol. 22, 1046–1056 (2009).
    CAS  Article  PubMed  Google Scholar 

    64.
    Stevens, M. & Merilaita, S. Animal Camouflage: Mechanisms and Function (eds. Stevens, M. & Merilaita, S.) (Cambridge Univ. Press, UK, 2011).

    65.
    Spicer, J. I. & Burggren, W. W. Development of physiological regulatory systems: altering the timing of crucial events. Zoology 106, 91–99 (2003).
    Article  PubMed  Google Scholar 

    66.
    Rundle, S. D. & Spicer, J. I. Heterokairy: a significant form of developmental plasticity?. Biol. Lett. 12, 20160509 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    67.
    Kulkarni, S. S., Gomez-Mestre, I., Moskalik, C. L., Storz, B. L. & Buchholz, D. R. Evolutionary reduction of developmental plasticity in desert spadefoot toads. J. Evol. Biol. 24, 2445–2455 (2011).
    CAS  Article  PubMed  Google Scholar 

    68.
    Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).
    Google Scholar 

    69.
    Tuceryan, M. & Jain, A. K. Chapter 2.1 Texture Analysis, The Handbook of Pattern Recognition and Computer Vision (2nd edition), (eds. Chen, C. H. et al.), 207–248 (World Scientific Publishing Co., Singapore, 1998).

    70.
    Di Cataldo, S. & Ficarra, E. Mining textural knowledge in biological images: applications, methods, and trends. Comput. Struct. Biotech. 15, 56–67 (2017).
    Article  CAS  Google Scholar 

    71.
    Haralick, R. M., Shanmugam, K., & Dinstein, I. Textural features for image classification. IEEE T. SYST. MAN. CY. B. SMC-3, 610–621 (1973).

    72.
    Haralick, R. M. Statistical and structural approaches to texture. Proc. IEEE 67, 786–804 (1979).
    Article  Google Scholar 

    73.
    Conners, R. W., Trivedi, M. M. & Harlow, C. A. Segmentation of a high-resolution urban scene using texture operators. Comput. Gr. Image Process. 25, 273–310 (1984).
    Article  Google Scholar 

    74.
    Albregtsen, F. Statistical texture measures computed from gray level cooccurrence matrices. Image processing laboratory, Department of Informatics, University of Oslo, Norway (2008).

    75.
    Cabrera, J. Texture analyzer. https://rsb.info.nih.gov/ij/plugins/texture.html (Accessed December, 2019) (2005).

    76.
    Sarkar, N. & Chaudhuri, B. B. An efficient differential box-counting approach to compute fractal dimension of image. IEEE T. SYST. MAN CY B. 24, 115–120 (1994).
    Article  Google Scholar 

    77.
    Karperien, A. FracLac for ImageJ, https://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm (accessed December, 2019) (1999–2013).

    78.
    Mandelbrot, B. B. The Fractal Geometry of Nature (W. H. Freeman and Company, USA, 1982).
    Google Scholar 

    79.
    Smith, T. G. Jr., Lange, G. D. & Marks, W. B. Fractal methods and results in cellular morphology—dimensions, lacunarity, and multifractals. J. Neurosci. Methods 69, 123–136 (1996).
    Article  PubMed  PubMed Central  Google Scholar 

    80.
    Lopes, R. & Betrouni, N. Fractal and multifractal analysis: a review. Med. Image Anal. 13, 634–649 (2009).
    CAS  Article  Google Scholar 

    81.
    Tolle, C. R., McJunkin, T. R., Rohrbaugh, D. T. & LaViolette, R. A. Lacunarity definition for ramified data sets based on optimal cover. Phys. D 179, 129–152 (2003).
    MathSciNet  MATH  Article  Google Scholar 

    82.
    Peterson, R. A. & Cavanaugh, J. E. Ordered quantile normalization: a semiparametric transformation built for the cross-validation era. J. Appl. Stat. 0, 1–16 (2019).

    83.
    Buerkner, P. C. brms: an R package for Bayesian multi-level models using Stan. J. Stat. Softw. 80, 1–28 (2016).
    Google Scholar  More

  • in

    Microalgae-blend tilapia feed eliminates fishmeal and fish oil, improves growth, and is cost viable

    The experimental design and fish use protocol were approved by the Institutional Animal Care and Use Committee (IACUC) of Dartmouth College. Also, we conducted all experiments in accordance with relevant guidelines and regulations. We euthanized the fish by single cranial pithing in the nutritional feeding experiment.
    Diet formulation for nutritional feeding experiment
    We incorporated N. oculata defatted biomass to replace different percentages of FM and whole cell Schizochytrium sp. to replace all FO in three tilapia experimental diets for a nutritional feeding trial. These three diet formulations were based on our previous digestibility data for N. oculata defatted biomass and whole cell Schizochytrium sp.17,30,33, and a prior study showing potential to replace all FO with whole cell Schizyochytrium sp.30. We compared these three experimental diets to a reference diet (served as control diet) containing FMFO at levels found in commercial tilapia feed. All diets were iso-nitrogenous (37% crude protein) and iso-energetic (12 kJ/g). Microalgae inclusion diets used N. oculata defatted biomass to replace 33% (33NS), 66% (66NS), and 100% (100NS) of the FM and whole cell Schizochytrium sp. to replace all FO in the test diets (33NS, 66NS, 100NS). Thus N. oculata comprised 3%, 5% and 8% of the diet by weight, respectively, and Schizochytrium sp. made up 3.2% of the diet by weight. We produced the diets in accordance with our previous work17,30,36. We obtained dried Schizochytrium sp. from ALGAMAC, Aquafauna Bio-marine, Inc., Hawthorne, CA, USA; and menhaden FO from Double Liquid Feed Service, Inc., Danville, IL, USA. Qualitas Health Inc., which markets EPA-rich oil extracted from N. oculata as a human supplement39 and seeks uses for tons of under-utilized defatted biomass from its large-scale production facilities, donated the N. oculata defatted biomass. Supplementary Table S8 reports proximate compositions and amino acid profiles of N. oculata defatted biomass and Schizochytrium sp.; total fatty acid profile by percentage of the defatted biomass and Schizochytrium sp ingredients reported in Supplementary Table S9; and macromineral and trace element composition of both ingredients reported in Supplementary Table S10. The formula, proximate analysis, and amino acid profiles of four dietary treatments reported in Table 1. The fatty acid profiles reported in Supplementary Table S11 and the macrominerals and trace elements of the four experimental diets reported in Supplementary Table S7.
    Table 1 Formulation (g/100 g diet) and essential amino acids (% in the weight of diet) of four experimental diets for juvenile tilapia.
    Full size table

    Experimental design and sampling to evaluate tilapia growth on N. oculata defatted biomass and Schizochytrium sp. Diets
    We conducted the feeding experiment using a completely randomized design of four diets × three replicates tanks in recirculating aquaculture systems (RAS). Four hundred eighty Nile tilapia (mean initial weight 34.5 ± 2.06 g) were put into randomized groups of 40, bulk weighed, and transferred to a tank. Tilapia had been acclimated to the FMFO containing reference diet for 7 days prior to distribution. The initial stocking density remained within levels recommended to avoid physiological stress on tilapia ( More

  • in

    Protecting nursery areas without fisheries management is not enough to conserve the most endangered parrotfish of the Atlantic Ocean

    1.
    Gaines, S. D., White, C., Carr, M. H. & Palumbi, S. R. Designing marine reserve networks for both conservation and fisheries management. PNAS 107(43), 18286–18293 (2010).
    ADS  CAS  Article  Google Scholar 
    2.
    Dahlgren, C. P. et al. Marine nurseries and effective juvenile habitats: concepts and applications. Mar. Ecol. Prog. Ser. 312, 291–295 (2006).
    ADS  Article  Google Scholar 

    3.
    Garla, R. C., Chapman, D. D., Wetherbee, B. M. & Shivji, M. Movement patterns of young Caribbean reef sharks, Carcharhinus perezi, at Fernando de Noronha Archipelago, Brazil: the potential of marine protected areas for conservation of a nursery ground. Mar. Biol. 149, 189–199 (2006).
    Article  Google Scholar 

    4.
    Almeida, A. C., Baeza, J. A., Fransozo, V., Castilho, A. L. & Fransozo, A. Reproductive biology and recruitment of Xiphopenaeus kroyeri in a marine protected area in the Western Atlantic: implications for resource management. Aquat. Biol. 17, 57–69 (2012).
    Article  Google Scholar 

    5.
    Crowder, L. B., Lyman, S. J., Figueira, W. F. & Priddy, J. Source-sink population dynamics and the problem of siting marine reserves. B. Mar. Sci. 66(3), 799–820 (2000).
    Google Scholar 

    6.
    Halpern, B. S., Lester, S. E. & Kellner, J. Spillover from marine reserves and the replenishment of fished stocks. Environ. Conserv. 36(4), 268–276 (2010).
    Article  Google Scholar 

    7.
    Roberts, C. M. Selecting marine reserve locations: optimality versus opportunism. B. Mar. Sci. 66(3), 581–592 (2000).
    Google Scholar 

    8.
    Alder, J. Have tropical marine protected areas worked? An initial analysis of their success. Coast. Manage. 24(2), 97–114 (1996).
    ADS  Article  Google Scholar 

    9.
    Cinner, J. E. Designing marine reserves to reflect local socioeconomic conditions: lessons from long-enduring customary management systems. Coral Reefs 26, 1035–1045 (2007).
    ADS  Article  Google Scholar 

    10.
    Marinesque, S., Kaplan, D. M. & Rodwell, L. D. Global implementation of marine protected areas: Is the developing world being left behind?. Mar. Policy. 36, 727–737 (2012).
    Article  Google Scholar 

    11.
    Giglio, V. J. et al. Large and remote marine protected areas in the South Atlantic Ocean are flawed and raise concerns: Comments on Soares and Lucas (2018). Mar. Policy. 96, 13–17 (2018).
    Article  Google Scholar 

    12.
    Francini-Filho, R. B. & Moura, R. L. Dynamics of fish assemblages on coral reefs subjected to different management regimes in the Abrolhos Bank, eastern Brazil. Aquat. Conserv. 18, 1166–1179 (2008).
    Article  Google Scholar 

    13.
    Bonaldo, R. M., Pires, M. M., Guimarães-Junior, P. R., Hoey, A. S. & Hay, M. E. Small marine protected areas in Fiji provide refuge for reef fish assemblages, feeding groups, and corals. PLoS ONE 12(1), e0170638 (2017).
    Article  CAS  Google Scholar 

    14.
    Estes, J. A. et al. Trophic downgrading of Planet Earth. Science 333(6040), 301–306 (2011).
    ADS  CAS  Article  Google Scholar 

    15.
    Bonaldo, R. M., Hoey, A. S. & Bellwood, D. R. The ecosystem roles of parrotfishes on tropical reefs. Oceanogr. Mar. Biol. 52, 81–132 (2014).
    Article  Google Scholar 

    16.
    Lellys, N. T., Moura, R. L., Bonaldo, R. M., Francini-Filho, R. B. & Gibran, F. Z. Parrotfish functional morphology and bioerosion on SW Atlantic reefs. Mar. Ecol. Prog. Ser. 629, 149–163 (2019).
    ADS  Article  Google Scholar 

    17.
    Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Fishing down marine food webs. Science 279(5352), 860–863 (1998).
    ADS  CAS  Article  Google Scholar 

    18.
    Edwards, C. B. et al. Global assessment of the status of coral reef herbivorous fishes: evidence for fishing effects. Proc. Roy. Soc. B Biol. Sci. 281(1774), 20131835 (2014).

    19.
    Bender, M. G. et al. Local ecological knowledge and scientific data reveal overexploitation by multigear artisanal fisheries in the Southwestern Atlantic. PLoS ONE 9(10), e110332 (2014).
    ADS  Article  CAS  Google Scholar 

    20.
    Roos, N. C., Pennino, M. G., Lopes, P. F. M. & Carvalho, A. R. Multiple management strategies to control selectivity on parrotfishes harvesting. Ocean. Coast. Manag. 134, 20–29 (2016).
    Article  Google Scholar 

    21.
    Freitas, M. O. et al. Age, growth, reproduction and management of Southwestern Atlantic’s largest and endangered herbivorous reef fish (Scarus trispinosus Valenciennes, 1840). PeerJ 7, e7459. https://doi.org/10.7717/peerj.7459 (2019).
    Article  Google Scholar 

    22.
    Roos, N. C., Taylor, B. M., Carvalho, A. R. & Longo, G. O. Demography of the largest and most endangered Brazilian parrotfish, Scarus trispinosus, reveals overfishing. Endanger. Species Res. 41, 319–327 (2020).
    Article  Google Scholar 

    23.
    Padovani-Ferreira, B. et al. Scarus trispinosus. https://www.iucnredlist.org/details/190748/0 (2012).

    24.
    Comeros-Raynal, M. T. et al. The likelihood of extinction of iconic and dominant herbivores and detritivores of coral reefs: the parrotfishes and surgeonfishes. PLoS ONE 7(7), e39825 (2012).
    ADS  CAS  Article  Google Scholar 

    25.
    Jackson, J. B. C., Donovan, M., Cramer, K. & Lam, V. Status and trends of Caribbean coral reefs 1970–2012. Global Coral Reef Monitoring Network, IUCN, Gland, Switzerland. 306p. (2014).

    26.
    Hutchings, J. A. & Reynolds, J. D. Marine fish population collapses: consequences for recovery and extinction risk. Bioscience 54(4), 297–309 (2004).
    Article  Google Scholar 

    27.
    Francini-Filho, R. B. et al. Dynamics of coral reef benthic assemblages of the Abrolhos Bank, Eastern Brazil: Inferences on natural and anthropogenic drivers. PLoS ONE 8(1), e54260 (2013).
    ADS  CAS  Article  Google Scholar 

    28.
    Moura, R. L. et al. Spatial patterns of benthic megahabitats and conservation planning in the Abrolhos Bank. Cont. Shelf Res. 70, 109–111 (2013).
    ADS  Article  Google Scholar 

    29.
    Minte-Vera, C. V., Moura, R. L. M. & Francini-Filho, R. B. Nested sampling: an improved visual-census technique for studying reef fish assemblages. Mar. Ecol. Prog. Ser. 367, 283–293 (2008).
    ADS  Article  Google Scholar 

    30.
    Wheeler, R. E. Permutation tests for linear models in R. The Comprehensive R Archive Network (CRAN) Available at https://cran.rproject.org/web/packages/lmPerm/vignettes/lmPerm.pdf (2016).

    31.
    R: A Language and Environment for Statistical Computing. R Core Team. R Foundation for Statistical Computing. Vienna, Austria. Available at https://www.R-project.org. (2020).

    32.
    Mangiafico, S. rcompanion: Functions to Support Extension Education Program Evaluation. R package version 2.3.25. Available at https://CRAN.R-project.org/package=rcompanion (2020).

    33.
    Phillips, N. yarrr: A Companion to the e-Book “YaRrr!: The Pirate’s Guide to R”. R package version 0.1.5. Available at https://CRAN.R-project.org/package=yarrr (2017).

    34.
    Pennino, M. G., Vilela, R. & Bellido, J. M. Effects of environmental data temporal resolution on the performance of species distribution models. J. Marine Syst. 189, 78–86 (2019).
    ADS  Article  Google Scholar 

    35.
    Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. B. 71(2), 319–392 (2009).
    MathSciNet  MATH  Article  Google Scholar 

    36.
    Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4. Available at https://ggplot2.tidyverse.org. (2016).

    37.
    Roos, N. C., Carvalho, A. R., Lopes, P. F. M. & Pennino, M. G. Modelling sensitive parrotfish (Labridae: Scarini) habitats along the Brazilian coast. Mar. Envir. Res. 110, 92–100 (2015).
    CAS  Article  Google Scholar 

    38.
    Potts, J. M. & Elith, J. Comparing species abundance models. Ecol. Model. 199, 153–163 (2006).
    Article  Google Scholar 

    39.
    Gómez-Rubio, V. Bayesian inference with INLA (Chapman & Hall/CRC Press, Boca Raton, FL, 2019).
    Google Scholar 

    40.
    Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.0–7. Available at https://CRAN.R-project.org/package=raster (2019).

    41.
    Bivand, R. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. R package version 1.0–1. Available at https://CRAN.R-project.org/package=maptools (2020).

    42.
    South, A. rworldmap: A New R package for Mapping Global Data. The R Journal 3(1): 35–43. Available at https://journal.r-project.org/archive/2011-1/RJournal_2011-1_South.pdf. (2011).

    43.
    Rolim, F. A. et al. Network of small no-take marine reserves reveals greater abundance and body size of fisheries target species. PLoS ONE 14(1), e0204970 (2019).
    CAS  Article  Google Scholar 

    44.
    Cox, C., Valdivia, A., McField, M., Castillo, K. & Bruno, J. F. Establishment of marine protected areas alone does not restore coral reef communities in Belize. Mar. Ecol. Prog. Ser. 563, 65–79 (2017).
    ADS  Article  Google Scholar 

    45.
    Gratwicke, B. & Speight, M. R. The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. J. Fish Biol. 66, 650–667 (2005).
    Article  Google Scholar 

    46.
    Hamilton, R. J. et al. Logging degrades nursery habitat for an iconic coral reef fish. Biol. Conser. 210, 273–280 (2017).
    Article  Google Scholar 

    47.
    Roos, N. C., Pennino, M. G., Carvalho, A. R. & Longo, G. O. Drivers of abundance and biomass of Brazilian parrotfishes. Mar. Ecol. Prog. Ser. 623, 117–130 (2019).
    ADS  Article  Google Scholar 

    48.
    Francini-Filho, R. B., Ferreira, C. M., Coni, E. O. C., Moura, R. L. & Kaufman, L. Foraging activity of roving herbivorous reef fish (Acanthuridae and Scaridae) in eastern Brazil: influence of resource availability and interference competition. J. Mar. 90, 481–492 (2010).
    Google Scholar 

    49.
    Francini-Filho, R. B., Moura, R. L., Ferreira, C. M. & Coni, E. O. C. Live coral predation by parrotfishes (Perciformes: Scaridae) in the Abrolhos Bank, eastern Brazil, with comments on the classification of species into functional groups. Neotrop. Ichthyol. 6(2), 191–200 (2008).
    Article  Google Scholar 

    50.
    Moura, R. L. & Fracini-Filho, R. B. Reef and shore fishes of the Abrolhos Bank, Brazil. In: Allen G, Dutra GF, Werner TB, Moura RL (Eds) A Biological Assessment of Abrolhos Bank, Bahia, Brazil. Washington: RAP Bull. Biol. Assess 40–55 (2006).

    51.
    Salz, R. J. Greenback Parrotfish (Scarus trispinosus) Status Review Report. Report to National Marine Fisheries Service, Office of Protected Resources. 56 pp (2015).

    52.
    Nunes, J. A. C. C., Medeiros, D. V., Reis-Filho, J. A., Sampaio, C. L. S. & Barros, F. Reef fishes captured by recreational spearfishing on reefs of Bahia State, northeast Brazil. Biota Neotrop. 12(1), 179–185 (2012).
    Article  Google Scholar 

    53.
    Giglio, V. J., Suhett, A. C., Zapelini, C. S., Ramiro, A. S. & Quimbayo, J. P. Assessing captures of recreational spearfishing in Abrolhos reefs, Brazil, through social media. Reg. Stud. Mar. Sci. 34, 100995 (2020).
    Article  Google Scholar 

    54.
    Hawkins, J. P. & Roberts, C. M. Effects of fishing on sex-changing Caribbean parrotfishes. Biol. Conser. 115, 213–226 (2003).
    Article  Google Scholar 

    55.
    Taylor, B. M., Houk, P., Russ, G. R. & Choat, J. H. Life histories predict vulnerability to overexploitation in parrotfishes. Coral Reefs 33(4), 869–878 (2014).
    ADS  Article  Google Scholar 

    56.
    Francini-Filho, R. B. & Moura, R. L. Evidence for spillover of reef fishes from a no-take marine reserve: an evaluation using the before-after control-impact (BACI) approach. Fish. Res. 93, 346–356 (2008).
    Article  Google Scholar 

    57.
    Kaplan, D. M., Botsford, L. W. & Jorgensen, S. Dispersal per recruit: an efficient method for assessing sustainability in marine reserve networks. Ecol. Appl. 16(6), 2248–2263 (2006).
    Article  Google Scholar 

    58.
    Paterson, C. J. et al. Fisheries refugia: A novel approach to integrating fisheries and habitat management in the context of small-scale fishing pressure. Ocean Coast. Manag. 85, 214–229 (2013).
    Article  Google Scholar 

    59.
    Pereira, P. H. C., Macedo, C. H., Nunes, J. A. C. C., Marangoni, L. F. D. B. & Bianchini, A. Effects of depth on reef fish communities: insights of a “deep refuge hypothesis” from Southwestern Atlantic reefs. PLoS ONE 13(9), e0203072 (2018).
    Article  CAS  Google Scholar 

    60.
    Cavalcanti, G. S. et al. Sinkhole-like structures as bioproductivity hotspots in the Abrolhos Bank. Cont. Shelf Res. 70, 126–134 (2013).
    ADS  Article  Google Scholar 

    61.
    Feitoza, M. F., Rosa, R. S. & Rocha, L. A. Ecology and zoogeography of deep reef fishes in Northeastern Brazil. B. Mar. Sci. 76(3), 725–742 (2005).
    Google Scholar 

    62.
    Rife, A. N., Erisman, B., Sanchez, A. & Aburto-Oropeza, O. When good intentions are not enough … Insights on networks of “paper park” marine protected areas. Conserv. Lett. 6, 200–212 (2013).
    Article  Google Scholar 

    63.
    Hamilton, R. J. et al. Hyperstability masks declines in bumphead parrotfish (Bolbometopon muricatum) populations. Coral Reefs 35(3), 751–763 (2016).

    64.
    Leão, Z. M. et al. (2016). Brazilian coral reefs in a period of global change: A synthesis. Braz. j. oceanogr. 64(SPE2), 97–116 (2016).

    65.
    Costa, T. J. et al. Expansion of an invasive coral species over Abrolhos Bank Southwestern Atlantic. Mar. Pollut. Bull. 85(1), 252–253 (2014).
    CAS  Article  Google Scholar 

    66.
    Lopes, P. F. M., Rosa, E. M., Salyvonchyk, S., Nora, V. & Begossi, A. Suggestions for fixing top-down coastal fisheries management through participatory approaches. Mar. Policy. 40, 100–110 (2013).
    Article  Google Scholar  More

  • in

    Diversity begets diversity in mammal species and human cultures

    1.
    Mace, R. & Pagel, M. A latitudinal gradient in the density of human languages in North America. Proc. R. Soc. Lond. B 261, 117–121 (1995).
    ADS  Article  Google Scholar 
    2.
    Nettle, D. Linguistic diversity of the Americas can be reconciled with a recent colonization. Proc. Natl. Acad. Sci. 96, 3325–3329 (1999).
    ADS  CAS  Article  Google Scholar 

    3.
    Collard, I. F. & Foley, R. A. Latitudinal patterns and environmental determinants of recent human cultural diversity: do humans follow biogeographical rules?. Evol. Ecol. Res. 4, 371–383 (2002).
    Google Scholar 

    4.
    Pagel, M. & Mace, R. The cultural wealth of nations. Nature 428, 275 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    5.
    Moore, J. L. et al. The distribution of cultural and biological diversity in Africa. Proc. R. Soc. Lond. B. Biol. Sci. 269, 1645–1653 (2002).
    Article  Google Scholar 

    6.
    Maffi, L. Linguistic, cultural, and biological diversity. Annu. Rev. Anthr. 34, 599–617 (2005).
    Article  Google Scholar 

    7.
    Harcourt, A. Human Biogeography (Univ of California Press, Berkeley, 2012).
    Google Scholar 

    8.
    Willig, M. R., Kaufman, D. M. & Stevens, R. D. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 34, 273–309 (2003).
    Article  Google Scholar 

    9.
    Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge University Press, Cambridge, 1995).
    Google Scholar 

    10.
    Pontarp, M. et al. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends Ecol. Evol. 34, 211–223 (2019).
    Article  PubMed  Google Scholar 

    11.
    Rohde, K. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514–527 (1992).
    Article  Google Scholar 

    12.
    Belmaker, J. & Jetz, W. Relative roles of ecological and energetic constraints, diversification rates and region history on global species richness gradients. Ecol. Lett. 18, 563–571 (2015).
    Article  PubMed  Google Scholar 

    13.
    Yasuhara, M., Hunt, G., Cronin, T. M. & Okahashi, H. Temporal latitudinal-gradient dynamics and tropical instability of deep-sea species diversity. Proc. Natl. Acad. Sci. 106, 21717–21720 (2009).
    ADS  CAS  Article  PubMed  Google Scholar 

    14.
    Kerkhoff, A. J., Moriarty, P. E. & Weiser, M. D. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proc. Natl. Acad. Sci. 111, 8125–8130 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    15.
    Stevens, G. C. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Nat. 133, 240–256 (1989).
    Article  Google Scholar 

    16.
    Beech, E., Rivers, M., Oldfield, S. & Smith, P. P. GlobalTreeSearch: the first complete global database of tree species and country distributions. J. Sustain. For. 36, 454–489 (2017).
    Article  Google Scholar 

    17.
    Roy, K., Jablonski, D. & Martien, K. K. Invariant size–frequency distributions along a latitudinal gradient in marine bivalves. Proc. Natl. Acad. Sci. 97, 13150–13155 (2000).
    ADS  CAS  Article  PubMed  Google Scholar 

    18.
    Economo, E. P., Narula, N., Friedman, N. R., Weiser, M. D. & Guénard, B. Macroecology and macroevolution of the latitudinal diversity gradient in ants. Nat. Commun. 9, 1778 (2018).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    19.
    Laenen, B. et al. Evolutionary origin of the latitudinal diversity gradient in liverworts. Mol. Phylogenet. Evol. 127, 606–612 (2018).
    Article  PubMed  Google Scholar 

    20.
    Guernier, V., Hochberg, M. E. & Guégan, J.-F. Ecology drives the worldwide distribution of human diseases. PLoS Biol. 2, e141 (2004).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Crame, J. A. Taxonomic diversity gradients through geological time. Divers. Distrib. 7, 175–189 (2001).
    Google Scholar 

    22.
    Mannion, P. D., Upchurch, P., Benson, R. B. & Goswami, A. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 29, 42–50 (2014).
    Article  PubMed  Google Scholar 

    23.
    Nettle, D. Explaining global patterns of language diversity. J. Anthropol. Archaeol. 17, 354–374 (1998).
    Article  Google Scholar 

    24.
    Nettle, D. Linguistic Diversity (Oxford University Press, Oxford, 1999).
    Google Scholar 

    25.
    Allen, A. P., Brown, J. H. & Gillooly, J. F. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297, 1545–1548 (2002).
    ADS  CAS  Article  PubMed  Google Scholar 

    26.
    Brown, J. H. Why are there so many species in the tropics?. J. Biogeogr. 41, 8–22 (2014).
    Article  PubMed  Google Scholar 

    27.
    Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).
    Article  Google Scholar 

    28.
    Jablonski, D. The tropics as a source of evolutionary novelty through geological time. Nature 364, 142 (1993).
    ADS  Article  Google Scholar 

    29.
    Savage, V. M. Improved approximations to scaling relationships for species, populations, and ecosystems across latitudinal and elevational gradients. J. Theor. Biol. 227, 525–534 (2004).
    MATH  Article  PubMed  Google Scholar 

    30.
    Nettle, D. Language diversity in West Africa: an ecological approach. J. Anthropol. Archaeol. 15, 403–438 (1996).
    Article  Google Scholar 

    31.
    Michaletz, S., Cheng, D., Kerkhoff, A. & Enquist, B. Convergence of terrestrial plant production across global climate gradients. Nature 512, 39–43 (2014).
    ADS  CAS  Article  Google Scholar 

    32.
    Lomolino, M. V., Riddle, B. R., Whittaker, R. J. & Brown, J. H. Biogeography (Sinauer, Sunderland, 2010).
    Google Scholar 

    33.
    Brown, J. H. et al. Macroecology meets macroeconomics: resource scarcity and global sustainability. Ecol. Eng. 65, 24–32 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    34.
    Brown, J. H. et al. Energetic limits to economic growth. Bioscience 61, 19–26 (2011).
    Article  Google Scholar 

    35.
    Nekola, J. C. et al. The Malthusian–Darwinian dynamic and the trajectory of civilization. Trends Ecol. Evol. 28, 127–130 (2013).
    Article  Google Scholar 

    36.
    Burger, O., DeLong, J. P. & Hamilton, M. J. Industrial energy use and the human life history. Sci. Rep. 1, 56 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    37.
    Burger, J. R., Weinberger, V. P. & Marquet, P. A. Extra-metabolic energy use and the rise in human hyper-density. Sci. Rep. 7, 43869 (2017).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    38.
    Hutchinson, G. E. Homage to Santa Rosalia or why are there so many kinds of animals?. Am. Nat. 93, 145–159 (1959).
    Article  Google Scholar 

    39.
    Brown, J. H. Two decades of homage to Santa Rosalia: toward a general theory of diversity. Am. Zool. 21, 877–888 (1981).
    ADS  Article  Google Scholar 

    40.
    Gavin, M. C. et al. Process-based modelling shows how climate and demography shape language diversity. Glob. Ecol. Biogeogr. 26, 584–591 (2017).
    Article  Google Scholar 

    41.
    Derungs, C., Köhl, M., Weibel, R. & Bickel, B. Environmental factors drive language density more in food-producing than in hunter–gatherer populations. Proc. R. Soc. B Biol. Sci. 285, 20172851 (2018).
    Article  Google Scholar 

    42.
    Gavin, M. C. et al. Toward a mechanistic understanding of linguistic diversity. Bioscience 63, 524–535 (2013).
    Article  Google Scholar 

    43.
    Túlio, P. C. M. et al. Drivers of geographical patterns of North American language diversity. Proc. R. Soc. B Biol. Sci. 286, 20190242 (2019).
    Article  Google Scholar 

    44.
    Tallavaara, M., Eronen, J. T. & Luoto, M. Productivity, biodiversity, and pathogens influence the global hunter-gatherer population density. Proc. Natl. Acad. Sci. 115, 1232–1237 (2018).
    CAS  Article  PubMed  Google Scholar 

    45.
    Currie, T. E. & Mace, R. Political complexity predicts the spread of ethnolinguistic groups. Proc. Natl. Acad. Sci. 106, 7339–7344 (2009).
    ADS  CAS  Article  PubMed  Google Scholar 

    46.
    Hamilton, M. J., Milne, B. T., Walker, R. S. & Brown, J. H. Nonlinear scaling of space use in human hunter–gatherers. Proc. Natl. Acad. Sci. 104, 4765–4769 (2007).
    ADS  CAS  Article  PubMed  Google Scholar 

    47.
    Hamilton, M. J., Lobo, J., Rupley, E., Youn, H. & West, G. B. The ecological and evolutionary energetics of hunter-gatherer residential mobility. Evol. Anthropol. Issues News Rev. 25, 124–132 (2016).
    Article  Google Scholar 

    48.
    Hamilton, M. J., Walker, R. S., Buchanan, B. & Sandeford, D. S. Scaling human sociopolitical complexity. PLoS ONE 15, e0234615 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    49.
    Enquist, B. J. et al. Scaling metabolism from organisms to ecosystems. Nature 423, 639–642 (2003).
    ADS  CAS  Article  PubMed  Google Scholar 

    50.
    Kleiber, M. The fire of life. An introduction to animal energetics. Fire Life Introd. Anim. Energ. (1961).

    51.
    Brummer, A. B., Savage, V. M. & Enquist, B. J. A general model for metabolic scaling in self-similar asymmetric networks. PLoS Comput. Biol. 13, e1005394 (2017).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Hulbert, A. J. A sceptics view: “Kleiber’s Law” or the “3/4 Rule” is neither a law nor a rule but rather an empirical approximation. Systems 2, 186–202 (2014).
    Article  Google Scholar 

    53.
    Ballesteros, F. J. et al. On the thermodynamic origin of metabolic scaling. Sci. Rep. 8, 1448 (2018).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    54.
    Kolokotrones, T., Savage, V., Deeds, E. J. & Fontana, W. Curvature in metabolic scaling. Nature 464, 753–756 (2010).
    ADS  CAS  Article  PubMed  Google Scholar 

    55.
    West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).
    CAS  Article  PubMed  Google Scholar 

    56.
    West, G. B., Brown, J. H. & Enquist, B. J. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284, 1677–1679 (1999).
    ADS  MathSciNet  CAS  MATH  Article  PubMed  Google Scholar 

    57.
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Article  Google Scholar 

    58.
    Savage, V. M. et al. The predominance of quarter-power scaling in biology. Funct. Ecol. 18, 257–282 (2004).
    Article  Google Scholar 

    59.
    Hunt, D. & Savage, V. M. Asymmetries arising from the space-filling nature of vascular networks. Phys. Rev. E 93, 062305 (2016).
    ADS  Article  CAS  PubMed  Google Scholar 

    60.
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).
    ADS  CAS  Article  PubMed  Google Scholar 

    61.
    Brown, J. H. & Sibly, R. M. The metabolic theory of ecology and its central equation. In Metabolic Ecology: A Scaling Approach (eds Sibly, R. M. et al.) 21–33 (Wiley and Sons, New York, 2012).
    Google Scholar 

    62.
    Anderson-Teixeira, K. J. & Vitousek, P. M. Ecosystems. In Metabolic Ecology: A Scaling Approach (eds Sibly, R. M. et al.) 99–111 (Wiley-Blackwell, New York, 2012).
    Google Scholar 

    63.
    Chapin, F. S. III., Matson, P. A. & Vitousek, P. Principles of Terrestrial Ecosystem Ecology (Springer, New York, 2011).
    Google Scholar 

    64.
    Falkowski, P. et al. The global carbon cycle: a test of our knowledge of earth as a system. Science 290, 291–296 (2000).
    ADS  CAS  Article  PubMed  Google Scholar 

    65.
    Williams, M. et al. Predicting gross primary productivity in terrestrial ecosystems. Ecol. Appl. 7, 882–894 (1997).
    Article  Google Scholar 

    66.
    Allen, A. P., Gillooly, J. F. & Brown, J. H. Linking the global carbon cycle to individual metabolism. Funct. Ecol. 19, 202–213 (2005).
    Article  Google Scholar 

    67.
    Anderson, K. J., Allen, A. P., Gillooly, J. F. & Brown, J. H. Temperature-dependence of biomass accumulation rates during secondary succession. Ecol. Lett. 9, 673–682 (2006).
    Article  PubMed  Google Scholar 

    68.
    Gillman, L. N., Keeling, D. J., Gardner, R. C. & Wright, S. D. Faster evolution of highly conserved DNA in tropical plants. J. Evol. Biol. 23, 1327–1330 (2010).
    CAS  Article  PubMed  Google Scholar 

    69.
    Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).
    Article  PubMed  Google Scholar 

    70.
    Martínez-Meyer, E., Townsend Peterson, A. & Hargrove, W. W. Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Glob. Ecol. Biogeogr. 13, 305–314 (2004).
    Article  Google Scholar 

    71.
    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32) (Princeton University Press, Princeton, 2001).
    Google Scholar 

    72.
    MacArthur, R. H. Geographical Ecology: Patterns in the Distribution of Species (Princeton University Press, Princeton, 1984).
    Google Scholar 

    73.
    Richerson, P. J. & Boyd, R. Not By Genes Alone (University of Chicago Press, Chicago, 2005).
    Google Scholar 

    74.
    Henrich, J. The Secret of Our Success: How Culture is Driving Human Evolution, Domesticating Our Species, and Making Us Smarter (Princeton University Press, Princeton, 2017).
    Google Scholar 

    75.
    Turchin, P. Ultrasociety: How 10,000 Years of War Made Humans the Greatest Cooperators on Earth. (Beresta Books, 2015).

    76.
    Van Valen, L. The red queen. Am. Nat. 111, 809–810 (1977).
    Article  Google Scholar 

    77.
    Perreault, C. The Pace of cultural evolution. PLoS ONE 7, e45150 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    78.
    Perreault, C. The Quality of the Archaeological Record (University of Chicago Press, Chicago, 2019).
    Google Scholar 

    79.
    Greenhill, S. J., Atkinson, Q. D., Meade, A. & Gray, R. D. The shape and tempo of language evolution. Proc. R. Soc. Lond. B Biol. Sci. 277, 2443–2450 (2010).
    CAS  Google Scholar 

    80.
    Moore, G. E. Cramming more components onto integrated circuits, Electronics, 38: 8 (1965). URL Ftpdownload Intel Comresearchsiliconmoorespaper Pdf 16, (2005).

    81.
    Youn, H., Strumsky, D., Bettencourt, L. M. & Lobo, J. Invention as a combinatorial process: evidence from US patents. J. R. Soc. Interface 12, 20150272 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    82.
    Magurran, A. E. Measuring Biological Diversity (Wiley, New York, 2004).
    Google Scholar 

    83.
    Cavalli-Sforza, L. L. & Feldman, M. W. Cultural Transmission and Evolution: A Quantitative Approach (Princeton University Press, Princeton, 1981).
    Google Scholar 

    84.
    Henrich, J. & McElreath, R. The evolution of cultural evolution. Evol. Anthropol. Issues News Rev. 12, 123–135 (2003).
    Article  Google Scholar 

    85.
    Prothero, D. R. Species longevity in North American fossil mammals. Integr. Zool. 9, 383–393 (2014).
    Article  PubMed  Google Scholar 

    86.
    Erwin, D. H. Macroevolution is more than repeated rounds of microevolution. Evol. Dev. 2, 78–84 (2000).
    CAS  Article  PubMed  Google Scholar 

    87.
    Walker, R. S., Wichmann, S., Mailund, T. & Atkisson, C. J. Cultural phylogenetics of the Tupi language family in lowland South America. PLoS ONE 7, e35025 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    88.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Article  Google Scholar 

    89.
    Cramer, W. et al. Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob. Change Biol. 5, 1–15 (1999).
    Article  Google Scholar 

    90.
    Wessel, P. & Smith, W. H. A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. Solid Earth 101, 8741–8743 (1996).
    Article  Google Scholar 

    91.
    Team, R. C. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2013. (2014). More

  • in

    Estimating possible bumblebee range shifts in response to climate and land cover changes

    1.
    IPBES Summary for policy makers of the assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production (eds Potts, S. G. et al.). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany (2016).
    2.
    Calderone, N. W. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS ONE 7, e37235. https://doi.org/10.1371/journal.pone.0037235 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    3.
    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013).
    ADS  CAS  Article  Google Scholar 

    4.
    Konuma, A. & Okubo, S. Valuating pollination services for agriculture in Japan. Jpn. J. Ecol. 65, 217–226 (2015) ((in Japanese)).
    CAS  Google Scholar 

    5.
    Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).
    ADS  CAS  Article  Google Scholar 

    6.
    Winfree, R., Aguilar, R., Vázquez, D. P., LeBuhn, G. & Aizen, M. A. A meta-analysis of bee’s responses to anthropogenic disturbance. Ecology 90, 2068–2076 (2009).
    Article  Google Scholar 

    7.
    Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).
    Article  Google Scholar 

    8.
    Ollerton, J., Erenler, H., Edwards, M. & Crockett, R. Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 346, 1360–1362 (2014).
    ADS  CAS  Article  Google Scholar 

    9.
    Ollerton, J. Pollinator diversity: distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376 (2017).
    Article  Google Scholar 

    10.
    Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018 (2019).
    ADS  Article  CAS  Google Scholar 

    11.
    Cameron, S. A. & Sadd, B. M. Global trends in bumble bee health. Annu. Rev. Entomol. 65, 209–232 (2020).
    CAS  Article  Google Scholar 

    12.
    Williams, P. H. & Osborne, J. L. Bumblebee vulnerability and conservation world-wide. Apidologie 40, 367–387 (2009).
    Article  Google Scholar 

    13.
    Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. USA 108, 662–667. https://doi.org/10.1073/pnas.1014743108 (2011).
    ADS  Article  PubMed  Google Scholar 

    14.
    IUCN Bumblebee Specialist Group Report 2014. https://www.xerces.org/wp-content/uploads/2015/03/2014-bbsg-annual-report.pdf (2015).

    15.
    Nieto, A. et al. European Red List of bees (Publication Office of the European Union, Luxembourg, 2014).
    Google Scholar 

    16.
    Jacobson, M. M., Tucker, E. M., Mathiasson, M. E. & Rehan, S. M. Decline of bumble bees in northeastern North America, with special focus on Bombus terricola. Biol. Cons. 217, 437–445 (2018).
    Article  Google Scholar 

    17.
    Goulson, D., Hanley, M. E., Darvill, B. & Ellis, J. S. Biotope associations and the decline of bumblebees (Bombus spp.). J. Insect Conserv. 10, 95–103 (2006).
    Article  Google Scholar 

    18.
    Kerr, J. T. et al. Climate change impacts on bumblebees converge across continents. Science 349, 177–180 (2015).
    ADS  CAS  Article  Google Scholar 

    19.
    Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).
    ADS  CAS  Article  Google Scholar 

    20.
    Biella, P. et al. Distribution patterns of the cold adapted bumblebee Bombus alpinus in the Alps and hints of an uphill shift (Insecta: Hymenoptera: Apidae). J. Insect Conserv. 21, 357–366 (2017).
    Article  Google Scholar 

    21.
    Mommaerts, V. et al. Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behavior. Ecotoxicology 19, 207–215 (2010).
    CAS  Article  Google Scholar 

    22.
    Stanley, D. A., Russell, A. L., Morrison, S. J., Rogers, C. & Raine, N. E. Investigating the impacts of field-realistic exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth. J. Appl. Ecol. 53, 1440–1449 (2016).
    CAS  Article  Google Scholar 

    23.
    Inoue, M. N., Yokoyama, J. & Washitani, I. Displacement of Japanese native bumblebees by the recently introduced Bombus terrestris (L.) (Hymenoptera: Apidae). J. Insect Conserv. 12, 135–146 (2008).
    Article  Google Scholar 

    24.
    Cameron, S. A., Lim, H. C., Lozier, J. D., Duennes, M. A. & Thorp, R. Test of the invasive pathogen hypothesis of bumble bee decline in North America. PNAS 113, 4386–4391 (2016).
    ADS  CAS  Article  Google Scholar 

    25.
    Suzuki-Ohno, Y., Yokoyama, J., Nakashizuka, T. & Kawata, M. Utilization of photographs taken by citizens for estimating bumblebee distributions. Sci. Rep. 7, 11215. https://doi.org/10.1038/s41598-017-10581-x (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Silvertown, J. et al. Crowdsourcing the identification of organisms: A case-study of iSpot. Zookeys 480, 125–146 (2015).
    Article  Google Scholar 

    27.
    Falk, S. et al. Evaluating the ability of citizen scientists to identify bumblebee (Bombus) species. PLoS ONE 14, e0218614. https://doi.org/10.1371/journal.pone.0218614 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    28.
    Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).
    Article  Google Scholar 

    29.
    Knowles, L. L., Carstens, B. C. & Keat, M. L. Coupling genetic and ecological-niche models to examine how past population distributions contribute to divergence. Curr. Biol. 17, 940–946 (2007).
    CAS  Article  Google Scholar 

    30.
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Article  Google Scholar 

    31.
    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).
    Article  Google Scholar 

    32.
    Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).
    Article  Google Scholar 

    33.
    Kinota, K., Takamizawa, K. & Ito, M. The Bumblebees of Japan (Hokkaido University Press, Sapporo, 2013) ((in Japanese)).
    Google Scholar 

    34.
    Woodard, S. H. Bumble bee ecophysiology: integrating the changing environment and the organism. Curr. Opin. Insect Sci. 22, 101–108 (2017).
    Article  Google Scholar 

    35.
    Ogilvie, J. E. et al. Interannual bumble bee abundance is driven by indirect climate effects on floral resource phenology. Ecol. Lett. 20, 1507–1515 (2017).
    Article  Google Scholar 

    36.
    Taki, H., Kevan, P. G. & Ascher, J. S. Landscape effects of forest loss in a pollination system. Landscape Ecol. 22, 1575–1587 (2007).
    Article  Google Scholar 

    37.
    Ricketts, T. H. et al. Landscape effects on crop pollination services: are there general patterns? Ecol. Lett. 11, 499–515 (2008).
    Article  Google Scholar 

    38.
    Klein, A.-M. et al. Wild pollination services to California almond rely on semi-natural habitat. J. Appl. Ecol. 49, 723–732 (2012).
    Google Scholar 

    39.
    Annual Report on Forest and Forestry in Japan (FY2018). Ministry of Agriculture, Forestry, and Fisheries. https://www.maff.go.jp/e/data/publish/attach/pdf/index-176.pdf (2018).

    40.
    Maleque, M. A., Ishii, H. T., Maeto, K. & Taniguchi, S. Line thinning forests the abundance and diversity of understory Hymenoptera (Insecta) in Japanese cedar (Cryptomeria japonica D. Don) plantations. J. For. Res. 12, 14–23 (2007).
    Article  Google Scholar 

    41.
    Carvell, C. et al. Bumblebee family lineage survival is enhanced in high-quality landscapes. Nature 543, 547–549. https://doi.org/10.1038/nature21709 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    42.
    Katayama, E. Bumblebees (Hokkaido University Press, Sapporo, 2007) ((in Japanese)).
    Google Scholar 

    43.
    Richardson, L. L., McFarland, K. P., Zahendra, S. & Hardy, S. Bumble bee (Bombus) distribution and diversity in Vermont, USA: a century of change. J. Insect Conserv. 23, 45–62 (2019).
    Article  Google Scholar 

    44.
    Vos, C. C. et al. Adapting landscapes to climate change: examples of climate-proof ecosystem networks and priority adaptation zones. J. Appl. Ecol. 45, 1722–1731 (2008).
    Article  Google Scholar 

    45.
    Japan Biodiversity Outlook 2 Nature Conservation Bureau, Ministry of the Environment. https://www.env.go.jp/nature/biodic/jbo2/pamph04.pdf (2016).

    46.
    Ushimaru, A. et al. The effects of human management on spatial distribution of two bumble bee species in a traditional agro-forestry Satoyama landscape. J. Apic. Res. 47, 296–303 (2008).
    Article  Google Scholar 

    47.
    Iwata, M. A wild bee survey in Setaura (Kumamoto Pref.), Kyushu, Japan (Hymenoptera, Apoidea). Jpn. J. Entomol. 65, 635–662 (1997) ((in Japanese)).
    Google Scholar 

    48.
    Ministry of the Environment. https://www.biodic.go.jp/biodiversity/activity/policy/map/map22/ (2016). (in Japanese).

    49.
    Uchida, K., Takahashi, S., Shinohara, T. & Ushimaru, A. Threatened herbivorous insects maintained by long-term traditional management practices in semi-natural grasslands. Agric. Ecosyst. Environ. 221, 156–162 (2016).
    Article  Google Scholar 

    50.
    Uchida, K., Hiraiwa, M. K. & Ushimaru, A. Plant and herbivorous insect diversity loss are greater than null model expectations due to land-use changes in agro-ecosystems. Biol. Cons. 201, 270–276 (2016).
    Article  Google Scholar 

    51.
    Radeloff, V. C. et al. Economic-based projections of future land use in the conterminous United States under alternative policy scenarios. Ecol. Appl. 22, 1036–1049 (2012).
    CAS  Article  Google Scholar 

    52.
    Rasmont, P. et al. Climatic risk and distribution atlas of European bumblebees. Biorisk 10, 246 pp. (Pensoft, Sofia, 2015).
    Google Scholar 

    53.
    Araújo, M. B. & Pearson, R. G. Equilibrium of species’ distributions with climate. Ecography 28, 693–695 (2005).
    Article  Google Scholar 

    54.
    Sirois-Delisle, C. & Kerr, J. T. Climate change-driven range losses among bumblebee species are poised to accelerate. Sci. Rep. 8, 14464 (2018).
    ADS  Article  CAS  Google Scholar 

    55.
    Pyke, G. H., Thomson, J. D., Inouye, D. W. & Miller, T. J. Effects of climate change on phenologies and distributions of bumble bees and the plants they visit. Ecosphere 7, e01267 (2016).
    Article  Google Scholar 

    56.
    Seino, H. An estimation of distribution of meteorological elements using GIS and AMeDAS data. J. Agric. Meteorol. 48, 379–383 (1993) ((in Japanese)).
    Article  Google Scholar 

    57.
    Young, N., Carter, L. & Evangelista, P. A MaxEnt Model v3.3.3e Tutorial (ArcGIS v10). https://ibis.colostate.edu/WebContent/WS/ColoradoView/TutorialsDownloads/A_Maxent_Model_v7.pdf (2011).

    58.
    Syfert, M. M., Smith, M. J. & Coomes, D. A. The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS ONE 8, e55158. https://doi.org/10.1371/journal.pone.0055158 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    59.
    Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643 (2014).
    Article  Google Scholar 

    60.
    Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151 (2008).
    Article  Google Scholar  More

  • in

    Low Omega-3 intake is associated with high rates of depression and preterm birth on the country level

    1.
    Jarde, A. et al. Neonatal outcomes in women with untreated antenatal depression compared with women without depression: a systematic review and meta-analysis. JAMA Psychiatry 73, 826–837 (2016).
    Article  PubMed  Google Scholar 
    2.
    Venkatesh, K. K., Ferguson, K. K., Smith, N. A., Cantonwine, D. E. & McElrath, T. F. Association of antenatal depression with clinical subtypes of preterm birth. Am. J. Perinatol. 36, 567–573 (2019).
    Article  PubMed  Google Scholar 

    3.
    Grigoriadis, S. et al. The impact of maternal depression during pregnancy on perinatal outcomes: a systematic review and meta-analysis. J. Clin. Psychiatry 74, e321–e341 (2013).
    Article  PubMed  Google Scholar 

    4.
    Fekadu Dadi, A., Miller, E. R. & Mwanri, L. Antenatal depression and its association with adverse birth outcomes in low and middle-income countries: a systematic review and meta-analysis. PLoS ONE 15, e0227323 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Huang, H., Coleman, S., Bridge, J. A., Yonkers, K. & Katon, W. A meta-analysis of the relationship between antidepressant use in pregnancy and the risk of preterm birth and low birth weight. Gen. Hosp. Psychiatry 36, 13–18 (2014).
    Article  PubMed  Google Scholar 

    6.
    Huybrechts, K. F., Sanghani, R. S., Avorn, J. & Urato, A. C. Preterm birth and antidepressant medication use during pregnancy: a systematic review and meta-analysis. PLoS ONE 9, e92778 (2014).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    7.
    Ross, L. E. et al. Selected pregnancy and delivery outcomes after exposure to antidepressant medication: a systematic review and meta-analysis. JAMA Psychiatry 70, 436–443 (2013).
    Article  PubMed  Google Scholar 

    8.
    Fitton, C. A. et al. In utero exposure to antidepressant medication and neonatal and child outcomes: a systematic review. Acta Psychiatr. Scand. 141, 21–33 (2019).
    Article  PubMed  Google Scholar 

    9.
    Adhikari, K., Patten, S. B., Lee, S. & Metcalfe, A. Risk of adverse perinatal outcomes among women with pharmacologically treated and untreated depression during pregnancy: a retrospective cohort study. Paediatr. Perinat. Epidemiol. 33, 323–331 (2019).
    Article  PubMed  Google Scholar 

    10.
    Corti, S. et al. Neonatal outcomes in maternal depression in relation to intrauterine drug exposure. Front. Pediatr. 7, 309 (2019).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    Gelaye, B., Rondon, M. B., Araya, R. & Williams, M. A. Epidemiology of maternal depression, risk factors, and child outcomes in low-income and middle-income countries. Lancet Psychiatry 3, 973–982 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    12.
    Blencowe, H. et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 379, 2162–2172 (2012).
    Article  PubMed  Google Scholar 

    13.
    Goldenberg, R. L., Culhane, J. F., Iams, J. D. & Romero, R. Epidemiology and causes of preterm birth. Lancet 371, 75–84 (2008).
    Article  PubMed  PubMed Central  Google Scholar 

    14.
    Nemoda, Z. & Szyf, M. Epigenetic alterations and prenatal maternal depression. Birth Defects Res. 109, 888–897 (2017).
    CAS  Article  PubMed  Google Scholar 

    15.
    Rakers, F. et al. Transfer of maternal psychosocial stress to the fetus. Neurosci. Biobehav. Rev. https://doi.org/10.1016/j.neubiorev.2017.02.019 (2017).
    Article  PubMed  Google Scholar 

    16.
    Kinsella, M. T. & Monk, C. Impact of maternal stress, depression and anxiety on fetal neurobehavioral development. Clin. Obstet. Gynecol. 52, 425–440 (2009).
    Article  PubMed  PubMed Central  Google Scholar 

    17.
    Institute of Medicine (US) Committee on Understanding Premature Birth and Assuring Healthy. 10, Mortality and acute complications in preterm infants. In Preterm Birth: Causes, Consequences, and Prevention (eds Behrman, R. E. & Butler, A. S.) (National Academies Press, Washington, 2007).
    Google Scholar 

    18.
    Moster, D., Lie, R. T. & Markestad, T. Long-term medical and social consequences of preterm birth. N. Engl. J. Med. 359, 262–273 (2008).
    CAS  Article  PubMed  Google Scholar 

    19.
    Firth, J. et al. The efficacy and safety of nutrient supplements in the treatment of mental disorders: a meta-review of meta-analyses of randomized controlled trials. World Psychiatry 18, 308–324 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    20.
    Hallahan, B. et al. Efficacy of omega-3 highly unsaturated fatty acids in the treatment of depression. Br. J. Psychiatry 209, 192–201 (2016).
    Article  PubMed  Google Scholar 

    21.
    van der Burg, K. P. et al. EPA and DHA as markers of nutraceutical treatment response in major depressive disorder. Eur. J. Nutr. 59, 2439–2447 (2020).
    Article  CAS  PubMed  Google Scholar 

    22.
    Ciesielski, T. H., Bartlett, J. & Williams, S. M. Omega-3 polyunsaturated fatty acid intake norms and preterm birth rate: a cross-sectional analysis of 184 countries. BMJ Open 9, e027249 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    23.
    Bozzatello, P., Rocca, P., Mantelli, E. & Bellino, S. Polyunsaturated fatty acids: what is their role in treatment of psychiatric disorders?. Int. J. Mol. Sci. 20, 5257 (2019).
    CAS  Article  PubMed Central  Google Scholar 

    24.
    Appleton, K. M., Sallis, H. M., Perry, R., Ness, A. R. & Churchill, R. Omega-3 fatty acids for depression in adults. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD004692.pub4 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    25.
    Middleton, P. et al. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD003402.pub3 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    26.
    Makrides, M. et al. A randomized trial of prenatal n-3 fatty acid supplementation and preterm delivery. N. Engl. J. Med. 381, 1035–1045 (2019).
    CAS  Article  PubMed  Google Scholar 

    27.
    Olsen, S. F. et al. Examining the effect of fish oil supplementation in chinese pregnant women on gestation duration and risk of preterm delivery. J. Nutr. 149, 1942–1951 (2019).
    Article  PubMed  Google Scholar 

    28.
    Makrides, M. et al. Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: a randomized controlled trial. JAMA 304, 1675–1683 (2010).
    CAS  Article  PubMed  Google Scholar 

    29.
    Olsen, S. F. et al. Randomised controlled trial of effect of fish-oil supplementation on pregnancy duration. Lancet 339, 1003–1007 (1992).
    CAS  Article  PubMed  Google Scholar 

    30.
    Olsen, S. F. et al. Randomised clinical trials of fish oil supplementation in high risk pregnancies. Fish Oil Trials In Pregnancy (FOTIP) Team. BJOG 107, 382–395 (2000).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Peet, M., Murphy, B., Shay, J. & Horrobin, D. Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biol. Psychiatry 43, 315–319 (1998).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    McNamara, R. K. et al. Selective deficits in erythrocyte docosahexaenoic acid composition in adult patients with bipolar disorder and major depressive disorder. J. Affect. Disord. 126, 303–311 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Riemer, S., Maes, M., Christophe, A. & Rief, W. Lowered omega-3 PUFAs are related to major depression, but not to somatization syndrome. J. Affect. Disord. 123, 173–180 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    34.
    Assies, J. et al. Plasma and erythrocyte fatty acid patterns in patients with recurrent depression: a matched case-control study. PLoS ONE 5, e10635 (2010).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    35.
    Maes, M. et al. Lowered omega3 polyunsaturated fatty acids in serum phospholipids and cholesteryl esters of depressed patients. Psychiatry Res. 85, 275–291 (1999).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    36.
    Lin, P. Y., Chang, C. H., Chong, M. F., Chen, H. & Su, K. P. Polyunsaturated fatty acids in perinatal depression: a systematic review and meta-analysis. Biol. Psychiatry 82, 560–569 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    37.
    Olsen, S. F. et al. Plasma concentrations of long chain N-3 fatty acids in early and mid-pregnancy and risk of early preterm birth. EBioMedicine 35, 325–333 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    38.
    Olsen, S. F. et al. Corrigendum to ‘Plasma concentrations of long chain N-3 fatty acids in early and mid-pregnancy and risk of early preterm birth’. EBioMedicine 51, 102619 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Grosso, G. et al. Dietary n-3 PUFA, fish consumption and depression: a systematic review and meta-analysis of observational studies. J. Affect. Disord. 205, 269–281 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Golding, J., Steer, C., Emmett, P., Davis, J. M. & Hibbeln, J. R. High levels of depressive symptoms in pregnancy with low omega-3 fatty acid intake from fish. Epidemiology 20, 598–603 (2009).
    Article  PubMed  Google Scholar 

    41.
    Olsen, S. F. et al. Intake of marine fat, rich in (n-3)-polyunsaturated fatty acids, may increase birthweight by prolonging gestation. Lancet 2, 367–369 (1986).
    ADS  CAS  Article  PubMed  Google Scholar 

    42.
    Ciesielski, T. H. n-3 and preterm birth: what can we learn from the heterogeneity?. Public Health Nutr. 23, 2453–2454 (2020).
    Article  PubMed  Google Scholar 

    43.
    Grosso, G. et al. Omega-3 fatty acids and depression: scientific evidence and biological mechanisms. Oxid. Med. Cell Longev. 2014, 313570 (2014).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Larrieu, T. & Laye, S. Food for mood: relevance of nutritional omega-3 fatty acids for depression and anxiety. Front. Physiol. 9, 1047 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    45.
    Burhani, M. D. & Rasenick, M. M. Fish oil and depression: the skinny on fats. J. Integr. Neurosci. 16, S115-s124 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    46.
    Facchinetti, F., Fazzio, M. & Venturini, P. Polyunsaturated fatty acids and risk of preterm delivery. Eur. Rev. Med. Pharmacol. Sci. 9, 41–48 (2005).
    CAS  PubMed  PubMed Central  Google Scholar 

    47.
    Chen, C. Y., Chen, C. Y., Liu, C. C. & Chen, C. P. Omega-3 polyunsaturated fatty acids reduce preterm labor by inhibiting trophoblast cathepsin S and inflammasome activation. Clin. Sci. 132, 2221–2239 (2018).
    CAS  Google Scholar 

    48.
    Elliott, E., Hanson, C. K., Anderson-Berry, A. L. & Nordgren, T. M. The role of specialized pro-resolving mediators in maternal-fetal health. Prostaglandins Leukot Essent Fat. Acids 126, 98–104 (2017).
    CAS  Article  Google Scholar 

    49.
    Liu, L. et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 379, 2151–2161 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    50.
    Grosse, S. D., Waitzman, N. J., Yang, N., Abe, K. & Barfield, W. D. Employer-sponsored plan expenditures for infants born preterm. Pediatrics 140, e20171078 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    51.
    McLaurin, K. K. et al. Characteristics and health care utilization of otherwise healthy commercially and Medicaid-insured preterm and full-term infants in the US. Pediatr. Health Med. Ther. 10, 21–31 (2019).
    Article  Google Scholar 

    52.
    Ferrari, A. J. et al. Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS Med 10, e1001547 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    53.
    Konig, H., Konig, H. H. & Konnopka, A. The excess costs of depression: a systematic review and meta-analysis. Epidemiol. Psychiatr. Sci. 29, 1–16 (2020).
    Article  Google Scholar 

    54.
    Institute of Medicine (US) Roundtable on Environmental Health Sciences. 1, Preterm birth and its consequences. In The Role of Environmental Hazards in Premature Birth: Workshop Summary (eds Donald, R. & Mattison, S. W.) (National Academies Press, Washington, 2003).
    Google Scholar 

    55.
    Frey, H. A. & Klebanoff, M. A. The epidemiology, etiology, and costs of preterm birth. Semin. Fetal Neonatal Med. 21, 68–73 (2016).
    Article  PubMed  Google Scholar 

    56.
    Micha, R. et al. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys. BMJ 348, g2272 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    57.
    Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys. BMJ 350, h1702. https://doi.org/10.1136/bmj.h1702 (2015).

    58.
    Ferrari, A. J. et al. The epidemiological modelling of major depressive disorder: application for the Global Burden of Disease Study 2010. PLoS ONE 8, e69637 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    59.
    Vos, T. et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2163–2196 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    60.
    World-Health-Organization. The ICD-10 Classification of mental and behavioural disorders. Clinical descriptions and diagnostic guidelines (World Health Organization, Geneva, 1992).
    Google Scholar 

    61.
    Lim, S. S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    62.
    Micha, R. et al. Estimating the global and regional burden of suboptimal nutrition on chronic disease: methods and inputs to the analysis. Eur. J. Clin. Nutr. 66, 119–129 (2012).
    CAS  Article  PubMed  Google Scholar 

    63.
    Burdge, G. C. & Wootton, S. A. Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br. J. Nutr. 88, 411–420 (2002).
    CAS  Article  PubMed  Google Scholar 

    64.
    Burdge, G. C., Jones, A. E. & Wootton, S. A. Eicosapentaenoic and docosapentaenoic acids are the principal products of alpha-linolenic acid metabolism in young men*. Br. J. Nutr. 88, 355–363 (2002).
    CAS  Article  PubMed  Google Scholar 

    65.
    Calder, P. C. Docosahexaenoic acid. Ann. Nutr. Metab. 69(Suppl 1), 7–21 (2016).
    PubMed  Google Scholar 

    66.
    Innis, S. M. Omega-3 fatty acid biochemistry: perspectives from human nutrition. Mil. Med. 179, 82–87 (2014).
    Article  PubMed  Google Scholar 

    67.
    Schmitz, G. & Ecker, J. The opposing effects of n-3 and n-6 fatty acids. Prog. Lipid Res. 47, 147–155 (2008).
    CAS  Article  PubMed  Google Scholar 

    68.
    Ameur, A. et al. Genetic adaptation of fatty-acid metabolism: a human-specific haplotype increasing the biosynthesis of long-chain omega-3 and omega-6 fatty acids. Am. J. Hum. Genet. 90, 809–820 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    69.
    Zhang, J. Y., Kothapalli, K. S. & Brenna, J. T. Desaturase and elongase-limiting endogenous long-chain polyunsaturated fatty acid biosynthesis. Curr. Opin. Clin. Nutr. Metab. Care 19, 103–110 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    70.
    Wood, S. N. Package ’mgcv’ (Accessed 1 November 2020); https://cran.r-project.org/web/packages/mgcv/mgcv.pdf.

    71.
    Craven, P. & Wahba, G. Smoothing noisy data with spline functions – estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 31, 377–403 (1979).
    MathSciNet  MATH  Article  Google Scholar 

    72.
    Ciesielski, T. H., Marsit, C. J. & Williams, S. M. Maternal psychiatric disease and epigenetic evidence suggest a common biology for poor fetal growth. BMC Pregnancy Childbirth 15, 192 (2015).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    73.
    Szegda, K., Markenson, G., Bertone-Johnson, E. R. & Chasan-Taber, L. Depression during pregnancy: a risk factor for adverse neonatal outcomes? A critical review of the literature. J. Matern. Fetal Neonatal Med. 27, 960–967 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    74.
    Bai, S. et al. Efficacy and safety of anti-inflammatory agents for the treatment of major depressive disorder: a systematic review and meta-analysis of randomised controlled trials. J. Neurol. Neurosurg. Psychiatry 91, 21–32 (2020).
    Article  PubMed  Google Scholar 

    75.
    Liao, Y. et al. Efficacy of omega-3 PUFAs in depression: a meta-analysis. Transl. Psychiatry 9, 190 (2019).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    76.
    Ciesielski, T. H. et al. Diverse convergent evidence in the genetic analysis of complex disease: coordinating omic, informatic, and experimental evidence to better identify and validate risk factors. BioData Min. 7, 10 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    77.
    Gananca, L. et al. Lipid correlates of antidepressant response to omega-3 polyunsaturated fatty acid supplementation: a pilot study. Prostaglandins Leukot Essent Fat. Acids 119, 38–44 (2017).
    CAS  Article  Google Scholar 

    78.
    Meyer, B. J. et al. Improvement of major depression is associated with increased erythrocyte DHA. Lipids 48, 863–868 (2013).
    CAS  Article  PubMed  Google Scholar 

    79.
    Hoge, A. et al. Impact of erythrocyte long-chain omega-3 polyunsaturated fatty acid levels in early pregnancy on birth outcomes: findings from a Belgian cohort study. J. Perinatol. 40, 488–496 (2020).
    CAS  Article  PubMed  Google Scholar 

    80.
    Jackson, K. H. & Harris, W. S. A prenatal DHA test to help identify women at increased risk for early preterm birth: a proposal. Nutrients 10, 1933 (2018).
    Article  CAS  PubMed Central  Google Scholar 

    81.
    Rothman, K. J. Causes. Am. J. Epidemiol. 104, 587–592 (1976).
    CAS  Article  PubMed  Google Scholar 

    82.
    Howards, P. P. An overview of confounding. Part 2: how to identify it and special situations. Acta Obstet. Gynecol. Scand. 97, 400–406 (2018).
    Article  PubMed  Google Scholar 

    83.
    Suttorp, M. M., Siegerink, B., Jager, K. J., Zoccali, C. & Dekker, F. W. Graphical presentation of confounding in directed acyclic graphs. Nephrol. Dial. Transpl. 30, 1418–1423 (2015).
    Article  Google Scholar 

    84.
    Bloomfield, F. H. How is maternal nutrition related to preterm birth?. Annu. Rev. Nutr. 31, 235–261 (2011).
    CAS  Article  PubMed  Google Scholar 

    85.
    Zhou, S. S., Tao, Y. H., Huang, K., Zhu, B. B. & Tao, F. B. Vitamin D and risk of preterm birth: up-to-date meta-analysis of randomized controlled trials and observational studies. J. Obstet. Gynaecol. Res. 43, 247–256 (2017).
    CAS  Article  PubMed  Google Scholar 

    86.
    Ferguson, K. K., O’Neill, M. S. & Meeker, J. D. Environmental contaminant exposures and preterm birth: a comprehensive review. J. Toxicol. Environ. Health B Crit. Rev. 16, 69–113 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    87.
    van den Bosch, M. & Meyer-Lindenberg, A. Environmental exposures and depression: biological mechanisms and epidemiological evidence. Annu. Rev. Public Health 40, 239–259 (2019).
    Article  PubMed  Google Scholar 

    88.
    Rautio, N., Filatova, S., Lehtiniemi, H. & Miettunen, J. Living environment and its relationship to depressive mood: a systematic review. Int. J. Soc. Psychiatry 64, 92–103 (2018).
    Article  PubMed  Google Scholar 

    89.
    Bender, A., Hagan, K. E. & Kingston, N. The association of folate and depression: a meta-analysis. J. Psychiatr. Res. 95, 9–18 (2017).
    Article  PubMed  Google Scholar 

    90.
    Zhang, Q. et al. Effect of folic acid supplementation on preterm delivery and small for gestational age births: a systematic review and meta-analysis. Reprod. Toxicol. 67, 35–41 (2017).
    CAS  Article  PubMed  Google Scholar 

    91.
    Jamilian, H. et al. The effects of vitamin D supplementation on mental health, and biomarkers of inflammation and oxidative stress in patients with psychiatric disorders: a systematic review and meta-analysis of randomized controlled trials. Prog. Neuropsychopharmacol. Biol. Psychiatry 94, 109651 (2019).
    CAS  Article  PubMed  Google Scholar 

    92.
    Schisterman, E. F., Cole, S. R. & Platt, R. W. Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiol. Camb. Mass 20, 488–495 (2009).
    Article  Google Scholar 

    93.
    Howards, P. P., Schisterman, E. F. & Heagerty, P. J. Potential confounding by exposure history and prior outcomes: an example from perinatal epidemiology. Epidemiology 18, 544–551 (2007).
    Article  PubMed  Google Scholar 

    94.
    Wilson, N. A., Mantzioris, E., Middleton, P. T. & Muhlhausler, B. S. Gestational age and maternal status of DHA and other polyunsaturated fatty acids in pregnancy: A systematic review. Prostaglandins Leukot. Essent. Fatty Acids 144, 16–31 (2019).
    CAS  Article  PubMed  Google Scholar 

    95.
    Wilson, N. A., Mantzioris, E., Middleton, P. F. & Muhlhausler, B. S. Influence of sociodemographic, lifestyle and genetic characteristics on maternal DHA and other polyunsaturated fatty acid status in pregnancy: a systematic review. Prostaglandins Leukot. Essent. Fatty Acids 152, 102037 (2020).
    CAS  Article  PubMed  Google Scholar 

    96.
    Wilson, N. A., Mantzioris, E., Middleton, P. F. & Muhlhausler, B. S. Influence of clinical characteristics on maternal DHA and other polyunsaturated fatty acid status in pregnancy: a systematic review. Prostaglandins Leukot. Essent. Fatty Acids 154, 102063 (2020).
    CAS  Article  PubMed  Google Scholar 

    97.
    Sparkes, C., Sinclair, A. J., Gibson, R. A., Else, P. L. & Meyer, B. J. High variability in erythrocyte, plasma and whole blood EPA and DHA levels in response to supplementation. Nutrients 12, 1017 (2020).
    CAS  Article  PubMed Central  Google Scholar 

    98.
    Zemdegs, J. et al. Anxiolytic- and antidepressant-like effects of fish oil-enriched diet in brain-derived neurotrophic factor deficient mice. Front. Neurosci. 12, 974 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    99.
    Yamashita, A. et al. Increased tissue levels of omega-3 polyunsaturated fatty acids prevents pathological preterm birth. Sci. Rep. 3, 3113 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    100.
    Pearce, N. The ecological fallacy strikes back. J. Epidemiol. Commun. Health 54, 326–327 (2000).
    MathSciNet  CAS  Article  Google Scholar 

    101.
    Morgenstern, H. Ecologic studies in epidemiology: concepts, principles, and methods. Annu. Rev. Public Health 16, 61–81 (1995).
    CAS  Article  PubMed  Google Scholar 

    102.
    Ciesielski, T. H., Aldrich, M. C., Marsit, C. J., Hiatt, R. A. & Williams, S. M. Transdisciplinary approaches enhance the production of translational knowledge. Transl. Res. 182, 123–134 (2017).
    Article  PubMed  Google Scholar  More

  • in

    The thermal response of soil microbial methanogenesis decreases in magnitude with changing temperature

    1.
    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).
    2.
    Kirschke, S. et al. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823 (2013).
    ADS  CAS  Article  Google Scholar 

    3.
    Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K. & Zhuang, Q. L. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob. Change Biol. 19, 1325–1346 (2013).
    ADS  Article  Google Scholar 

    4.
    Harriss, R. C., Gorham, E., Sebacher, D. I., Bartlett, K. B. & Flebbe, P. A. Methane flux from northern peatlands. Nature 315, 652–654 (1985).
    ADS  CAS  Article  Google Scholar 

    5.
    Yvon-Durocher, G. et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507, 488–491 (2014).
    ADS  CAS  Article  Google Scholar 

    6.
    Segers, R. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41, 23–51 (1998).
    CAS  Article  Google Scholar 

    7.
    Inglett, K. S., Inglett, P. W., Reddy, K. R. & Osborne, T. Z. Temperature sensitivity of greenhouse gas production in wetland soils of different vegetation. Biogeochemistry 108, 77–90 (2012).
    CAS  Article  Google Scholar 

    8.
    Dean, J. F. et al. Methane feedbacks to the global climate system in a warmer world. Rev. Geophys. 56, 207–250 (2018).
    ADS  Article  Google Scholar 

    9.
    Xu, X. et al. Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems. Biogeosciences 13, 3735–3755 (2016).
    ADS  CAS  Article  Google Scholar 

    10.
    McCalley, C. K. et al. Methane dynamics regulated by microbial community response to permafrost thaw. Nature 514, 478–481 (2014).
    ADS  CAS  Article  Google Scholar 

    11.
    Wuebbles, D. J. & Hayhoe, K. Atmospheric methane and global change. Earth-Sci. Rev. 57, 177–210 (2002).
    ADS  CAS  Article  Google Scholar 

    12.
    Smith, T. P. et al. Community-level respiration of prokaryotic microbes may rise with global warming. Nat. Commun. 10, 5124–5124 (2019).
    ADS  Article  CAS  Google Scholar 

    13.
    Melillo, J. M. et al. Soil warming and carbon-cycle feedbacks to the climate system. Science 298, 2173–2176 (2002).
    ADS  CAS  Article  Google Scholar 

    14.
    Carey, J. C. et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl Acad. Sci. USA 113, 13797–13802 (2016).
    ADS  CAS  Article  Google Scholar 

    15.
    Crowther, T. W. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).
    ADS  CAS  Article  Google Scholar 

    16.
    Bradford, M. A. et al. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nat. Ecol. Evol. 3, 223–231 (2019).
    Article  Google Scholar 

    17.
    Dacal, M., Bradford, M. A., Plaza, C., Maestre, F. T. & Garcia-Palacios, P. Soil microbial respiration adapts to ambient temperature in global drylands. Nat. Ecol. Evol. 3, 232–238 (2019).
    Article  Google Scholar 

    18.
    Bradford, M. A. et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11, 1316–1327 (2008).
    Article  Google Scholar 

    19.
    Bradford, M. Thermal adaptation of decomposer communities in warming soils. Front. Microbiol. 4, 00333 (2013).
    Article  Google Scholar 

    20.
    Karhu, K. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–84 (2014).
    ADS  CAS  Article  Google Scholar 

    21.
    Wei, H. et al. Thermal acclimation of organic matter decomposition in an artificial forest soil is related to shifts in microbial community structure. Soil Biol. Biochem. 71, 1–12 (2014).
    CAS  Article  Google Scholar 

    22.
    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).
    ADS  CAS  Article  Google Scholar 

    23.
    Hochachka, P. W. & Somero, G. N. Biochemical Adaptation Mechanism and Process in Physiological Evolution (Oxford Univ. Press, New York, 2002).

    24.
    Angilletta Jr, M. J. & Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis. (Oxford Univ. Press, New York, 2009).

    25.
    Ren, J. et al. Shifts in soil bacterial and archaeal communities during freeze-thaw cycles in a seasonal frozen marsh, Northeast China. Sci. Total Environ. 625, 782–791 (2018).
    ADS  CAS  Article  Google Scholar 

    26.
    Cui, M. et al. Warmer temperature accelerates methane emissions from the Zoige wetland on the Tibetan Plateau without changing methanogenic community composition. Sci. Rep. 5, 11616 (2015).
    ADS  CAS  Article  Google Scholar 

    27.
    Hartley, I. P., Hopkins, D. W., Garnett, M. H., Sommerkorn, M. & Wookey, P. A. Soil microbial respiration in arctic soil does not acclimate to temperature. Ecol. Lett. 11, 1092–1100 (2008).
    Article  Google Scholar 

    28.
    Crowther, T. W. & Bradford, M. A. Thermal acclimation in widespread heterotrophic soil microbes. Ecol. Lett. 16, 469–477 (2013).
    Article  Google Scholar 

    29.
    Bradford, M. A., Watts, B. W. & Davies, C. A. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Glob. Change Biol. 16, 1576–1588 (2010).
    ADS  Article  Google Scholar 

    30.
    Luo, Y. Q., Wan, S. Q., Hui, D. F. & Wallace, L. L. Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413, 622–625 (2001).
    ADS  CAS  Article  Google Scholar 

    31.
    Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F. & Erasmi, S. Greenhouse gas emissions from soils—a review. Geochemistry 76, 327–352 (2016).
    CAS  Article  Google Scholar 

    32.
    Wagner, R., Zona, D., Oechel, W. & Lipson, D. Microbial community structure and soil pH correspond to methane production in Arctic Alaska soils. Environ. Microbiol. 19, 3398–3410 (2017).
    CAS  Article  Google Scholar 

    33.
    Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change 6, 751–758 (2016).
    ADS  Article  CAS  Google Scholar 

    34.
    Atkin, O. K. & Tjoelker, M. G. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8, 343–351 (2003).
    CAS  Article  Google Scholar 

    35.
    Lou, J., Yang, L., Wang, H. Z., Wu, L. S. & Xu, J. M. Assessing soil bacterial community and dynamics by integrated high-throughput absolute abundance quantification. Peerj 6, e4514 (2018).
    Article  CAS  Google Scholar 

    36.
    Zhang, Z. J. et al. Soil bacterial quantification approaches coupling with relative abundances reflecting the changes of taxa. Sci. Rep. 7, 4837 (2017).
    ADS  Article  CAS  Google Scholar 

    37.
    Tilman, D. Biodiversity: population versus ecosystem stability. Ecology 77, 350–363 (1996).
    Article  Google Scholar 

    38.
    Tilman, D., Reich, P. B. & Knops, J. M. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).
    ADS  CAS  Article  Google Scholar 

    39.
    Treseder, K. K. et al. Integrating microbial ecology into ecosystem models: challenges and priorities. Biogeochemistry 109, 7–18 (2012).
    CAS  Article  Google Scholar 

    40.
    Singh, B. Soil Carbon Storage: Modulators, Mechanisms and Modeling. (Academic Press, 2018).

    41.
    Auffret, M. D. et al. The role of microbial community composition in controlling soil respiration responses to temperature. Plos ONE 11, e0165448 (2016).
    Article  CAS  Google Scholar 

    42.
    Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl Acad. Sci. USA 105, 11512–11519 (2008).
    ADS  CAS  Article  Google Scholar 

    43.
    Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3, 417 (2012).
    Article  Google Scholar 

    44.
    Chen, H., Zou, J., Cui, J., Nie, M. & Fang, C. Wetland drying increases the temperature sensitivity of soil respiration. Soil Biol. Biochem. 120, 24–27 (2018).
    CAS  Article  Google Scholar 

    45.
    Blodau, C. Carbon cycling in peatlands – a review of processes and controls. Environ. Revi 10, 111–134 (2002).
    CAS  Article  Google Scholar 

    46.
    Sander, R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 15, 4399–4981 (2015).
    ADS  CAS  Article  Google Scholar 

    47.
    Conrad, R. Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal. Org. Geochem. 36, 739–752 (2005).
    CAS  Article  Google Scholar 

    48.
    Brigham, B. A., Montero, A. D., O’Mullan, G. D. & Bird, J. A. Acetate additions stimulate CO2 and CH4 production from urban wetland soils. Soil Sci. Soc. Am. J. 82, 1147–1159 (2018).
    ADS  CAS  Article  Google Scholar 

    49.
    Wang, Z., Delaune, R., Patrick, W. & Masscheleyn, P. Soil redox and pH effects on methane production in a flooded rice soil. Soil Sci. Soc. Am. J. 57, 382–385 (1993).
    ADS  CAS  Article  Google Scholar 

    50.
    Hazel, J. R. & Prosser, C. L. Molecular mechanisms of temperature compensation in poikilotherms. Physiol. Rev. 54, 620–677 (1974).
    CAS  Article  Google Scholar 

    51.
    Walker, T. W. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Chan 8, 885–889 (2018).
    ADS  CAS  Article  Google Scholar 

    52.
    Morris, R. et al. Methyl coenzyme M reductase (mcrA) gene abundance correlates with activity measurements of methanogenic H2/CO2-enriched anaerobic biomass. Microb. Biotechnol. 7, 77–84 (2014).
    CAS  Article  Google Scholar 

    53.
    Steinberg, L. M. & Regan, J. M. mcrA-targeted real-time quantitative PCR method to examine methanogen communities. Appl. Environ. Micro. 75, 4435–4442 (2009).
    CAS  Article  Google Scholar 

    54.
    Zeleke, J. et al. Methyl coenzyme M reductase A (mcrA) gene-based investigation of methanogens in the mudflat sediments of Yangtze River Estuary, China. Microb. Ecol. 66, 257–267 (2013).
    CAS  Article  Google Scholar 

    55.
    Nocker, A. & Camper, A. K. Novel approaches toward preferential detection of viable cells using nucleic acid amplification techniques. FEMS Microbiol. Lett. 291, 137–142 (2009).
    CAS  Article  Google Scholar 

    56.
    Salazar-Villegas, A., Blagodatskaya, E. & Dukes, J. S. Changes in the size of the active microbial pool explain short-term soil respiratory responses to temperature and moisture. Front. Microbiol. 7, 524 (2016).
    Article  Google Scholar 

    57.
    Strickland, M. S. & Rousk, J. Considering fungal: bacterial dominance in soils–methods, controls, and ecosystem implications. Soil Biol. Biochem 42, 1385–1395 (2010).
    CAS  Article  Google Scholar 

    58.
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. J. P. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
    Article  Google Scholar 

    59.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
    CAS  Article  Google Scholar 

    60.
    Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. J. T. Ij UniFrac: an effective distance metric for microbial community comparison. ISME J. 5, 169–172 (2011).
    Article  Google Scholar 

    61.
    Reich, P. B. et al. Boreal and temperate trees show strong acclimation of respiration to warming. Nature 531, 633–636 (2016).
    ADS  CAS  Article  Google Scholar 

    62.
    Loveys, B. R. et al. Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow-growing plant species. Glob. Change Biol. 9, 895–910 (2003).
    ADS  Article  Google Scholar 

    63.
    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).
    ADS  CAS  Article  Google Scholar 

    64.
    Fierer, N., Colman, B. P., Schimel, J. P. & Jackson, R. B. Predicting the temperature dependence of microbial respiration in soil: a continental-scale analysis. Glob. Biogeochem. Cy 20, GB3026 (2006).
    ADS  Article  CAS  Google Scholar 

    65.
    Fang, C. & Moncrieff, J. B. The dependence of soil CO2 efflux on temperature. Soil Biol. Biochem. 33, 155–165 (2001).
    CAS  Article  Google Scholar  More

  • in

    Weather and agricultural intensification determine the breeding performance of a small generalist predator

    1.
    Newton, I. Population Limitation in Birds (Academic Press, London, 1998).
    Google Scholar 
    2.
    Rockwood, L. L. Introduction to Population Ecology (Blackwell Publishing, Hoboken, 2015).
    Google Scholar 

    3.
    Bell, G. Selection the Mechanism of Evolution (Oxford University Press, Oxford, 2008).
    Google Scholar 

    4.
    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).
    Article  CAS  Google Scholar 

    5.
    Tilman, D. G. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).
    ADS  Article  CAS  Google Scholar 

    6.
    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).
    ADS  Article  CAS  Google Scholar 

    7.
    Carvalho, F. P. Agriculture, pesticides, food security and food safety. Environ. Sci. Policy 9, 685–692 (2006).
    Article  Google Scholar 

    8.
    Grande, J. M., Orozcovalor, P. M., Liébana, M. S. & Sarasola, J. H. Birds of prey in agricultural landscapes: The role of agriculture expansion and intensification. In Birds of Prey Ecology and Conservation in the XXI Century (eds Sarasola, J. H. et al.) 197–228 (Springer, Berlin, 2018).
    Google Scholar 

    9.
    Sergio, F., Newton, I. & Marchesi, L. Conservation: Top predators and biodiversity. Nature 436, 192 (2005).
    ADS  Article  CAS  Google Scholar 

    10.
    Butet, A. et al. Responses of common buzzard (Buteo buteo) and Eurasian kestrel (Falco tinnunculus) to land use changes in agricultural landscapes of Western France. Agric. Ecosyst. Environ. 138, 152–159 (2010).
    Article  Google Scholar 

    11.
    Amar, A. & Redpath, S. M. Habitat use by Hen Harriers Circus cyaneus on Orkney: Implications of land-use change for this declining population. Ibis. 147, 37–47 (2005).
    Article  Google Scholar 

    12.
    Vergara, P. et al. Low frequency of anti-acetylcholinesterase pesticide poisoning in lesser and Eurasian kestrels of Spanish grassland and farmland populations. Biol. Conserv. 141, 499–505 (2008).
    Article  Google Scholar 

    13.
    Arroyo, B. E., García, J. T. & Bretagnolle, V. Conservation of the Montagu’s harrier (Circus pygargus) in agricultural areas. Anim. Conserv. 5, 283–290 (2002).
    Article  Google Scholar 

    14.
    Goldstein, M. I. et al. Monocrotophos induced mass mortality of Swainson’s Hawks in Argentina, 1995–96. Crop Prot. 8(3), 201–214 (1999).
    CAS  Google Scholar 

    15.
    Costantini, D., Dell’Omo, G., La Fata, I. & Casagrande, S. Reproductive performance of Eurasian Kestrel Falco tinnunculus in an agricultural landscape with a mosaic of land uses. Ibis. 156, 768–776 (2014).
    Article  Google Scholar 

    16.
    Touihri, M., Séguy, M., Imbeau, L., Mazerolle, M. J. & Bird, D. M. Effects of agricultural lands on habitat selection and breeding success of American kestrels in a boreal context. Agric. Ecosyst. Environ. 272, 146–154 (2019).
    Article  Google Scholar 

    17.
    Cardador, L., Carrete, M. & Mañosa, S. Can intensive agricultural landscapes favour some raptor species? The Marsh harrier in north-eastern Spain. Anim. Conserv. 14, 382–390 (2011).
    Article  Google Scholar 

    18.
    Murgatroyd, M., Avery, G., Underhill, L. G. & Amar, A. Adaptability of a specialist predator: The effects of land use on diet diversification and breeding performance of Verreaux’s eagles. J. Avian Biol. 47, 834–845 (2016).
    Article  Google Scholar 

    19.
    Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, 1211–1219 (2007).
    Article  CAS  Google Scholar 

    20.
    Crick, H. Q. P. The impact of climate change on birds. Ibis. 146, 48–56 (2004).
    Article  Google Scholar 

    21.
    Catry, I., Franco, A. M. A. & Sutherland, W. J. Landscape and weather determinants of prey availability: Implications for the Lesser Kestrel Falco naumanni. Ibis. 154, 111–123 (2012).
    Article  Google Scholar 

    22.
    Garcia-Heras, M.-S., Arroyo, B. E., Mougeot, F., Amar, A. & Simmons, R. E. Does timing of breeding matter less where the grass is greener? Seasonal declines in breeding performance differ between regions in an endangered endemic raptor. Nat. Conserv. 15, 23–45 (2016).
    Article  Google Scholar 

    23.
    García, J. T. & Arroyo, B. E. Effect of abiotic factors on reproduction in the centre and periphery of breeding ranges: A comparative analysis in sympatric harriers. Ecography 24, 393–402 (2001).
    Article  Google Scholar 

    24.
    Senapathi, D., Nicoll, M. A. C., Teplitsky, C., Jones, C. G. & Norris, K. Climate change and the risks associated with delayed breeding in a tropical wild bird population. Proc. R. Soc. B Biol. Sci. 278, 3184–3190 (2011).
    Article  Google Scholar 

    25.
    Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).
    ADS  Article  CAS  Google Scholar 

    26.
    Dunn, P. Breeding dates and reproductive performance. Adv. Ecol. Res. 35, 69–87 (2004).
    Article  Google Scholar 

    27.
    Newton, I. Population Ecology of Raptors (T & A D Poyser, Berkhamsted, 1979).
    Google Scholar 

    28.
    Rodríguez, C. & Bustamante, J. The effect of weather on lesser kestrel breeding success: Can climate change explain historical population declines?. J. Anim. Ecol. 72, 793–810 (2003).
    Article  Google Scholar 

    29.
    Steenhof, K., Kochert, M. N. & Mcdonald, T. L. Interactive effects of prey and weather on Golden Eagle reproduction. J. Anim. Ecol. 66, 350 (1997).
    Article  Google Scholar 

    30.
    Keane, J. J., Morrison, M. L. & Fry, D. M. Prey and weather factors associated with temporal variation in Northern Goshawk reproduction in the Sierra Nevada. California. Stud. Avian Biol. 31, 85–99 (2006).
    Google Scholar 

    31.
    Redpath, S. M. et al. Temperature and hen harrier productivity: From local mechanisms to geographical patterns. Ecography 25, 533–540 (2002).
    Article  Google Scholar 

    32.
    Zak, M. R., Cabido, M., Cáceres, D. & Díaz, S. What drives accelerated land cover change in central Argentina? Synergistic consequences of climatic, socioeconomic, and technological factors. Environ. Manag. 42, 181–189 (2008).
    ADS  Article  Google Scholar 

    33.
    Graesser, J., Aide, T. M., Grau, H. R. & Ramankutty, N. Cropland/pastureland dynamics and the slowdown of deforestation in Latin America. Environ. Res. Lett. 10, 0–10 (2015).
    Article  Google Scholar 

    34.
    Filloy, J. & Bellocq, M. Respuesta de las aves rapaces al uso de la tierra: un enfoque regional. Hornero 22, 131–140 (2007).
    Google Scholar 

    35.
    Pedrana, J., Isacch, J. P. & Bó, M. S. Habitat relationships of diurnal raptors at local and landscape scales in southern temperate grasslands of Argentina. Emu 108, 301–310 (2008).
    Article  Google Scholar 

    36.
    Filloy, J. & Bellocq, M. I. Patterns of bird abundance along the agricultural gradient of the Pampean region. Agric. Ecosyst. Environ. 120, 291–298 (2007).
    Article  Google Scholar 

    37.
    Ferguson-Lees, J. & Christie, D. A. Raptors of The World (Houghton Miffli Harcourt, Boston, 2001).
    Google Scholar 

    38.
    McClure, C. J. W., Schulwitz, S. E., Van, R., Pauli, B. P. & Heath, J. A. Commentary: Research recommendations for understanding the decline of American Kestrels (Falco sparverius) across much of North America. J. Raptor Res. 51, 455–464 (2017).
    Article  Google Scholar 

    39.
    Smallwood, J. A. et al. Why are American Kestrel (Falco sparverius) populations declining in North America? Evidence from nest-box programs. J. Raptor Res. 43, 274–282 (2009).
    Article  Google Scholar 

    40.
    De la Peña, M. R. & Rumboll, M. Birds of Southern South America and Antarctica (Harper Collins Publishers, New York, 1998).
    Google Scholar 

    41.
    Carrete, M., Tella, J. L., Blanco, G. & Bertellotti, M. Effects of habitat degradation on the abundance, richness and diversity of raptors across Neotropical biomes. Biol. Conserv. 142, 2002–2011 (2009).
    Article  Google Scholar 

    42.
    Schrag, A. M., Zaccagnini, M. E., Calamari, N. & Canavelli, S. Climate and land-use influences on avifauna in central Argentina: Broad-scale patterns and implications of agricultural conversion for biodiversity. Agric. Ecosyst. Environ. 132, 135–142 (2009).
    Article  Google Scholar 

    43.
    Goijman, A. P., Conroy, M. J., Bernardos, J. N. & Zaccagnini, M. E. Multi-season regional analysis of multi-species occupancy: Implications for bird conservation in agricultural lands in east-central Argentina. PLoS ONE 10, e0130874 (2015).
    Article  CAS  PubMed Central  Google Scholar 

    44.
    Baldi, G. & Paruelo, J. M. Land use and land cover dynamics in South American temperate grasslands. Ecol. Soc. 13, 1–32 (2008).
    Article  Google Scholar 

    45.
    Liébana, M. S., Sarasola, J. H. & Bó, M. S. Parental care and behavior of breeding American Kestrels (Falco sparverius) in central Argentina. J. Raptor Res. 43, 338–344 (2009).
    Article  Google Scholar 

    46.
    De Lucca, E. R. & Saggesse, M. D. Nidificación del Halconcito Colorado (Falco sparverius) en la Patagonia. Hornero 13, 302–305 (1993).
    Google Scholar 

    47.
    Smallwood, J. A. & Bird, D. M. American Kestrel (Falco sparverius). In The Birds of North America 602 (2002).

    48.
    Liébana, M. S., Sarasola, J. H. & Santillán, M. Á. Nest-Box occupancy by neotropical raptors in a native forest of central Argentina. J. Raptor Res. 47, 208–213 (2013).
    Article  Google Scholar 

    49.
    Lopez, F. G. Oferta de cavidades para vertebrados en relación a parámetros de sustrato de bosques en distinto grado de estado sucesional en el caldenal pampeano (Universidad Nacional de La Pampa, Santa Rosa, 2014).
    Google Scholar 

    50.
    De Lucca, E. R. Nidificación del halconcito colorado (Falco sparverius) en nidos de cotorra (Myiopsitta monachus). Hornero 13, 238–240 (1992).
    Google Scholar 

    51.
    Orozco Valor, P. M. & Grande, J. M. Exceptionally large clutches in two raptors breeding in nest boxes. J. Raptor Res. 50, 232–236 (2016).
    Article  Google Scholar 

    52.
    Korpimäki, E. Breeding performance of Tengmalm’s Owl Aegolius funereus: Effects of supplementary feeding in a peak vole year. Ibis. 131, 51–56 (1989).
    Article  Google Scholar 

    53.
    Meijer, T., Daan, S. & Michal, H. Family planning in the kestrel (Falco Tinnunculus): The proximate control of covariation of laying date and clutch size. Behaviour 114, 117–136 (1990).
    Article  Google Scholar 

    54.
    Smallwood, J. A. Sexual segregation by habitat in American Kestrels wintering in Southcentral Florida: Vegetative structure and responses to differential prey availability. Condor 89, 842 (1987).
    Article  Google Scholar 

    55.
    Visser, M. E., Holleman, L. J. M. & Caro, S. P. Temperature has a causal effect on avian timing of reproduction. Proc. R. Soc. B Biol. Sci. 276, 2323–2331 (2009).
    Article  Google Scholar 

    56.
    Lorda, H. et al. Descripción de zonas y subzonas agroecológicas RIAP. Area de influencia de la EEA Anguil. (2008).

    57.
    Smith, S. H., Steenhof, K., McClure, C. J. W. & Heath, J. A. Earlier nesting by generalist predatory bird is associated with human responses to climate change. J. Anim. Ecol. 86, 98–107 (2017).
    Article  Google Scholar 

    58.
    Verhulst, S. & Nilsson, J. A. The timing of birds’ breeding seasons: A review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. B Biol. Sci. 363, 399–410 (2008).
    Article  Google Scholar 

    59.
    Robinson, R. A., Baillie, S. R. & Crick, H. Q. P. Weather-dependent survival: Implications of climate change for passerine population processes. Ibis. 149, 357–364 (2007).
    Article  Google Scholar 

    60.
    Fraschina, J., León, V. A. & Busch, M. Long-term variations in rodent abundance in a rural landscape of the Pampas, Argentina. Ecol. Res. 27, 191–202 (2012).
    Article  Google Scholar 

    61.
    Sumasgutner, P. et al. Landscape homogenization due to agricultural intensification disrupts the relationship between reproductive success and main prey abundance in an avian predator. Front. Zool. 16, 31 (2019).

    62.
    Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: Is habitat heterogeneity the key?. Trends Ecol. Evol. 18, 182–188 (2003).
    Article  Google Scholar 

    63.
    Amar, A., Redpath, S. & Thirgood, S. Evidence for food limitation in the declining hen harrier population on the Orkney Islands, Scotland. Biol. Conserv. 111, 377–384 (2003).
    Article  Google Scholar 

    64.
    Cardador, L., Planas, E., Varea, A. & Mañosa, S. Feeding behaviour and diet composition of Marsh Harriers Circus aeruginosus in agricultural landscapes. Bird Study 59, 228–235 (2012).
    Article  Google Scholar 

    65.
    Rodríguez, C., Tapia, L., Ribeiro, E. & Bustamante, J. Crop vegetation structure is more important than crop type in determining where Lesser Kestrels forage. Bird Conserv. Int. 24, 438–452 (2014).

    66.
    Ursúa, E., Serrano, D. & Tella, J. L. Does land irrigation actually reduce foraging habitat for breeding lesser kestrels? The role of crop types. Biol. Conserv. 122, 643–648 (2005).
    Article  Google Scholar 

    67.
    Traba, J. & Morales, M. B. The decline of farmland birds in Spain is strongly associated to the loss of fallowland. Sci. Rep. 9, 1–6 (2019).
    Article  CAS  Google Scholar 

    68.
    Aizen, M. A., Garibaldi, L. A. & Dondo, M. Expansión de la soja y diversidad de la agricultura argentina. Ecol. Austral 19, 45–54 (2009).
    Google Scholar 

    69.
    Datos agroindustriales. Datos Agroindustriales. https://datos.agroindustria.gob.ar/ (2017).

    70.
    Codesido, M., González-Fischer, C. & Bilenca, D. N. Distributional changes of landbird species in agroecosystems of Central Argentina. Condor 113, 266–273 (2011).
    Article  Google Scholar 

    71.
    Dawson, R. D. & Bortolotti, G. R. Experimental evidence for food limitation and sex-specific strategies of American kestrels (Falco sparverius) provisioning offspring. Behav. Ecol. Sociobiol. 52, 43–52 (2002).
    Article  Google Scholar 

    72.
    Murgatroyd, M., Underhill, L. G., Rodrigues, L. & Amar, A. The influence of agricultural transformation on the breeding performance of a top predator: Verreaux’s Eagles in contrasting land use areas. Condor 118, 238–252 (2016).
    Article  Google Scholar 

    73.
    Dawson, R. D. & Bortolotti, G. R. Reproductive success of American Kestrels: The role of prey abundance and weather. Condor 102, 814–822 (2000).
    Article  Google Scholar 

    74.
    Salaberria, C., Celis, P., López-Rull, I. & Gil, D. Effects of temperature and nest heat exposure on nestling growth, dehydration and survival in a Mediterranean hole-nesting passerine. Ibis. 156, 265–275 (2014).
    Article  Google Scholar 

    75.
    Catry, I., Franco, A. M. A. & Sutherland, W. J. Adapting conservation efforts to face climate change: Modifying nest-site provisioning for lesser kestrels. Biol. Conserv. 144, 1111–1119 (2011).
    Article  Google Scholar 

    76.
    Greño, J. L., Belda, E. J. & Barba, E. Influence of temperatures during the nestling period on post-fledging survival of great tit Parus major in a Mediterranean habitat. J. Avian Biol. 39(1), 41–49 (2008).
    Article  Google Scholar 

    77.
    Luck, G. W. Variability in provisioning rates to nestlings in the cooperatively breeding Rufous Treecreeper, Climacteris rufa. Emu 101, 221–224 (2001).
    Article  Google Scholar 

    78.
    Mantyka-Pringle, C. S. et al. Climate change modifies risk of global biodiversity loss due to land-cover change. Biol. Conserv. 187, 103–111 (2015).
    Article  Google Scholar 

    79.
    Goldstein, M. I. et al. Monocrotophos-induced mass mortality of Swainson’s hawks in Argentina, 1995–96. Ecotoxicology 8, 201–214 (1999).
    Article  CAS  Google Scholar 

    80.
    Agroindustria. Estimaciones agrícolas. Miniesterio de Agroindustria https://datosestimaciones.magyp.gob.ar/reportes.php?reporte=Estimaciones (2018).

    81.
    SA & DS. Primer inventario nacional de bosques nativos. Informe regional Monte. Secr. Ambient. y Desarro. Sustentable 54 (2007).

    82.
    Cabrera, Á. L. Regiones fitogeográficas Argentinas. (Enciclopedia Argentina de Agricultura y Jardinería. Segunda Edición. Tomo II fascículo I. Ed. Acme., 1976).

    83.
    Pérez, S. et al. Abrupt changes in rainfall in the Eastern area of La Pampa Province, Argentina. Theor. Appl. Climatol. 103, 159–165 (2011).
    ADS  Article  Google Scholar 

    84.
    Casagrande, G. A., Vergara, G. T. & Bellini, Y. Cartas agroclímáticas actuales de temperaturas, heladas y lluvia de la provincia de La Pampa (Argentina). Rev. Fac. Agron. – UNLPam 17, 15–22 (2006).
    Google Scholar 

    85.
    Johnsgard, P. A. Hawks, Eagles, & Falcons of North America: Biology and Natural History (Smithsonian Institution Press, Washington, 1990).
    Google Scholar 

    86.
    Miller, K. E. & Smallwood, J. A. Natal dispersal and philopatry of Southeastern American Kestrels in Florida. Wilson Bull. 109, 226–232 (1997).
    Google Scholar 

    87.
    Steenhof, K. & Heath, J. A. Local recruitment and natal dispersal distances of American kestrels. Condor 115, 584–592 (2013).
    Article  Google Scholar 

    88.
    Bird, D. M. & Palmer, R. S. American Kestrel. In Handbook of North American Birds (ed. Palmer, R. S.) 253–290 (Yale Univ. Press, New Haven, 1988).
    Google Scholar 

    89.
    Torrado Porto, R. Diversidad y complejidad de los modelos de toma de decisiones y organización productiva en el sector agropecuario del Noreste Pampeano. Aportes para la mejora de la extensión y el desarrollo rural (Universidad Nacional de La Plata, 2019). https://doi.org/10.1037/0033-2909.I26.1.78.

    90.
    ESRI. ArcGis Software. (2015).

    91.
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 1–20 (2017).
    Article  Google Scholar 

    92.
    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 1–18 (2020).
    Article  Google Scholar 

    93.
    Klucsarits, J. R. & Rusbuldt, J. A photographic timeline of Hawk Mountain Sanctuary’s American Kestrel Nestlings (Asst. Ctr., U.SZip Publishing, Columbus, 2007).
    Google Scholar 

    94.
    Steenhof, K. & Newton, I. Assessing Nesting Success and Productivity. Raptor Res. Manag. Tech. 181–192 (2007).

    95.
    R Core Team. R: A Language and Environment for Statistical Computing. (2019).

    96.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    97.
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Article  Google Scholar 

    98.
    Bates, D., Kliegl, R., Vasishth, S. & Baayen, H. Parsimonious mixed models. arXiv preprint, arXiv:1506.04967 (2015).

    99.
    Naimi, B., Hamm, N., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling. Ecography 37, 191–203 (2014).
    Article  Google Scholar 

    100.
    Hosmer, D. W., Lemeshow, S. & Sturdivant, R. X. Applied logistic regression (Wiley, New York, 2013).
    Google Scholar  More