The effect of substrate wettability and modulus on gecko and gecko-inspired synthetic adhesion in variable temperature and humidity
1.
Autumn, K. et al. Evidence for van der Waals adhesion in gecko setae. Proc. Natl. Acad. Sci. US 99, 12252–12256 (2002).
ADS CAS Article Google Scholar
2.
Autumn, K., Niewiarowski, P. H. & Puthoff, J. B. Gecko adhesion as a model system for integrative biology, interdisciplinary science, and bioinspired engineering. Annu. Rev. Ecol. Evol. Syst. 45, 445–470 (2014).
Article Google Scholar
3.
Sitti, M. & Fearing, R. S. Synthetic gecko foot-hair micro/nano-structures as dry adhesives. J. Adhes. Sci. Technol. 17, 1055–1073 (2003).
CAS Article Google Scholar
4.
Kim, S. & Sitti, M. Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives. Appl. Phys. Lett. 89, 261911 (2006).
ADS Article CAS Google Scholar
5.
Murphy, M. P., Aksak, B. & Sitti, M. Gecko-inspired directional and controllable adhesion. Small 5, 170–175 (2009).
CAS Article PubMed Google Scholar
6.
Murphy, M. P., Kim, S. & Sitti, M. Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives. ACS Appl. Mater. Interfaces 1, 849–855 (2009).
CAS Article PubMed Google Scholar
7.
Glass, P., Chung, H., Washburn, N. R. & Sitti, M. Enhanced wet adhesion of elastomeric micro-fiber arrays with mushroom tip geometry and a photopolymerized p(DMA-co-MEA) tip coating. Langmuir 26, 17357–17362 (2010).
CAS Article PubMed Google Scholar
8.
Mengüç, Y., Röhrig, M., Abusomwan, U., Hölscher, H. & Sitti, M. Staying sticky: Contact self-cleaning of gecko-inspired adhesives. J. R. Soc. Interface 11, 20131205 (2014).
Article PubMed PubMed Central Google Scholar
9.
Song, S. & Sitti, M. Soft grippers using micro-fibrillar adhesives for transfer printing. Adv. Mater. 26, 4901–4906 (2014).
CAS Article PubMed Google Scholar
10.
Niewiarowski, P. H., Stark, A. Y. & Dhinojwala, A. Sticking to the story: Outstanding challenges in gecko-inspired adhesives. J. Exp. Biol. 219, 912–919 (2016).
Article PubMed Google Scholar
11.
Drotlef, D.-M., Amjadi, M., Yunusa, M. & Sitti, M. Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors. Adv. Mater. 29, 1701353 (2017).
Article CAS Google Scholar
12.
Song, S., Drotlef, D.-M., Majidi, C. & Sitti, M. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces. Proc. Natl. Acad. Sci. 114, E4344–E4353 (2017).
CAS Article PubMed Google Scholar
13.
Russell, A. P., Stark, A. Y. & Higham, T. E. The integrative biology of gecko adhesion: Historical review, current understanding, and grand challenges. Integr. Comp. Biol. 59, 101–116 (2019).
CAS Article PubMed Google Scholar
14.
Stark, A. Y. & Mitchell, C. T. Stick or slip: Adhesive performance of geckos and gecko-inspired synthetics in wet environments. Integr. Comp. Biol. 59, 214–226 (2019).
CAS Article PubMed Google Scholar
15.
Liimatainen, V., Drotlef, D.-M., Son, D. & Sitti, M. Liquid-superrepellent bioinspired fibrillar adhesives. Adv. Mater. 32, 2000497 (2020).
CAS Article Google Scholar
16.
Huber, G. et al. Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc. Natl. Acad. Sci. US 102, 16293–16296 (2005).
ADS CAS Article Google Scholar
17.
Sun, W., Neuzil, P., Kustandi, T. S., Oh, S. & Samper, V. D. The nature of the gecko lizard adhesive force. Biophys. J. 89, L14–L17 (2005).
CAS Article PubMed PubMed Central Google Scholar
18.
Kim, T. W. & Bhushan, B. The adhesion model considering capillarity for gecko attachment system. J. R. Soc. Interface 5, 319–327 (2008).
Article PubMed Google Scholar
19.
Puthoff, J. B., Prowse, M. S., Wilkinson, M. & Autumn, K. Changes in materials properties explain the effects of humidity on gecko adhesion. J. Exp. Biol. 213, 3699–3704 (2010).
Article PubMed Google Scholar
20.
Prowse, M. S., Wilkinson, M., Puthoff, J. B., Mayer, G. & Autumn, K. Effects of humidity on the mechanical properties of gecko setae. Acta Biomater. 7, 733–738 (2011).
Article PubMed Google Scholar
21.
Bauer, A. M. & Good, D. A. Phylogenetic systematics of the day geckos, genus, Rhoptropus (Reptilia: Gekkonidae), of south-western Africa. J. Zool. 238, 635–663 (1996).
Article Google Scholar
22.
Pianka, E. R. & Vitt, L. J. Lizards: Windows to the Evolution of Diversity (University of California Press, Berkeley, 2003).
Google Scholar
23.
Lamb, T. & Bauer, A. M. Footprints in the sand: Independent reduction of subdigital lamellae in the Namib–Kalahari burrowing geckos. Proc. R. Soc. B Biol. Sci. 273, 855–864 (2006).
Article Google Scholar
24.
Gamble, T., Greenbaum, E., Jackman, T. R., Russell, A. P. & Bauer, A. M. Repeated origin and loss of adhesive toepads in geckos. PLoS ONE 7, e39429 (2012).
ADS CAS Article PubMed PubMed Central Google Scholar
25.
Collins, C. E., Russell, A. P. & Higham, T. E. Subdigital adhesive pad morphology varies in relation to structural habitat use in the Namib Day Gecko. Funct. Ecol. 29, 66–77 (2015).
Article Google Scholar
26.
Autumn, K. & Hansen, W. Ultrahydrophobicity indicates a non-adhesive default state in gecko setae. J. Comp. Physiol. A 192, 1205 (2006).
Article Google Scholar
27.
Badge, I., Stark, A. Y., Paoloni, E. L., Niewiarowski, P. H. & Dhinojwala, A. The role of surface chemistry in adhesion and wetting of gecko toe pads. Sci. Rep. 4, 6643 (2014).
ADS CAS Article PubMed PubMed Central Google Scholar
28.
Maderson, P. F. A. Keratinized epidermal derivatives as an aid to climbing in gekkonid lizards. Nature 203, 780–781 (1964).
ADS Article Google Scholar
29.
Ruibal, R. & Ernst, V. The structure of the digital setae of lizards. J. Morphol. 117, 271–293 (1965).
CAS Article PubMed Google Scholar
30.
Williams, E. E. & Peterson, J. A. Convergent and alternative designs in the digital adhesive pads of scincid lizards. Science 215, 1509–1511 (1982).
ADS CAS Article PubMed Google Scholar
31.
Autumn, K. et al. Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000).
ADS CAS Article PubMed Google Scholar
32.
Autumn, K. & Peattie, A. M. Mechanisms of adhesion in geckos. Integr. Comp. Biol. 42, 1081–1090 (2002).
Article PubMed Google Scholar
33.
Israelachvili, J. N. & Tabor, D. The measurement of van der Waals dispersion forces in the range 1.5 to 130 nm. Proc. R. Soc. Lond. Math. Phys. Sci. 331, 19–38 (1972).
ADS CAS Google Scholar
34.
Niewiarowski, P. H., Lopez, S., Ge, L., Hagan, E. & Dhinojwala, A. Sticky gecko feet: The role of temperature and humidity. PLoS ONE 3, e2192 (2008).
ADS Article CAS PubMed PubMed Central Google Scholar
35.
Hsu, P. Y. et al. Direct evidence of phospholipids in gecko footprints and spatula–substrate contact interface detected using surface-sensitive spectroscopy. J. R. Soc. Interface 9, 657–664 (2012).
CAS Article PubMed Google Scholar
36.
Jain, D., Stark, A. Y., Niewiarowski, P. H., Miyoshi, T. & Dhinojwala, A. NMR spectroscopy reveals the presence and association of lipids and keratin in adhesive gecko setae. Sci. Rep. 5, 9594 (2015).
ADS CAS Article PubMed PubMed Central Google Scholar
37.
Alibardi, L. Immunolocalization of keratin-associated beta-proteins (beta-keratins) in the regenerating lizard epidermis indicates a new process for the differentiation of the epidermis in lepidosaurians. J. Morphol. 273, 1272–1279 (2012).
CAS Article PubMed Google Scholar
38.
Alibardi, L. Immunolocalization of keratin-associated beta-proteins (beta-keratins) in pad lamellae of geckos suggest that glycine–cysteine-rich proteins contribute to their flexibility and adhesiveness. J. Exp. Zool. Part Ecol. Genet. Physiol. 319, 166–178 (2013).
CAS Article Google Scholar
39.
Peng, Z., Yang, Y. & Chen, S. Coupled effects of the temperature and the relative humidity on gecko adhesion. J. Phys. Appl. Phys. 50, 315402 (2017).
ADS Article CAS Google Scholar
40.
Huey, R. B. & Kingsolver, J. G. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4, 131–135 (1989).
CAS Article PubMed Google Scholar
41.
Huey, R. B., Niewiarowski, P. H., Kaufmann, J. & Herron, J. C. Thermal biology of nocturnal ectotherms: Is sprint performance of geckos maximal at low body temperatures?. Physiol. Zool. 62, 488–504 (1989).
Article Google Scholar
42.
Bergmann, P. & Irschick, D. J. Effects of temperature on maximum acceleration, deceleration and power output during vertical running in geckos. J. Exp. Biol. 209, 1404–1412 (2006).
Article PubMed Google Scholar
43.
Losos, J. B. Thermal sensitivity of sprinting and clinging performance in the tokay gecko (Gekko gecko). Asiat. Herpetol. Res. 3, 54–59 (1990).
ADS Google Scholar
44.
Bergmann, P. J. & Irschick, D. J. Effects of temperature on maximum clinging ability in a diurnal gecko: Evidence for a passive clinging mechanism?. J. Exp. Zool. A Comp. Exp. Biol. 303A, 785–791 (2005).
Article Google Scholar
45.
Pesika, N. S. et al. Gecko adhesion pad: A smart surface?. J. Phys. Condens. Matter 21, 464132 (2009).
Article CAS PubMed Google Scholar
46.
Grewal, S. H., Piao, S., Cho, I.-J., Jhang, K.-Y. & Yoon, E.-S. Nanotribological and wetting performance of hierarchical patterns. Soft Matter 12, 859–866 (2016).
ADS CAS Article PubMed Google Scholar
47.
Stark, A. Y., Klittich, M. R., Sitti, M., Niewiarowski, P. H. & Dhinojwala, A. The effect of temperature and humidity on adhesion of a gecko-inspired adhesive: Implications for the natural system. Sci. Rep. 6, 30936 (2016).
ADS Article CAS PubMed PubMed Central Google Scholar
48.
Cadirov, N., Booth, J. A., Turner, K. L. & Israelachvili, J. N. Influence of humidity on grip and release adhesion mechanisms for gecko-inspired microfibrillar surfaces. ACS Appl. Mater. Interfaces 9, 14497–14505 (2017).
CAS Article PubMed Google Scholar
49.
Ceseracciu, L., Heredia-Guerrero, J. A., Dante, S., Athanassiou, A. & Bayer, I. S. Robust and biodegradable elastomers based on corn starch and polydimethylsiloxane (PDMS). ACS Appl. Mater. Interfaces 7, 3742–3753 (2015).
CAS Article PubMed Google Scholar
50.
Stark, A. Y. et al. Surface wettability plays a significant role in gecko adhesion underwater. Proc. Natl. Acad. Sci. US. https://doi.org/10.1073/pnas.1219317110 (2013).
Article Google Scholar
51.
Drotlef, D.-M., Dayan, C. B. & Sitti, M. Bio-inspired composite microfibers for strong and reversible adhesion on smooth surfaces. Integr. Comp. Biol. 59, 227–235 (2019).
CAS Article PubMed PubMed Central Google Scholar
52.
Tan, D. et al. Humidity-modulated core–shell nanopillars for enhancement of gecko-inspired adhesion. ACS Appl. Nano Mater. 3, 3596–3603 (2020).
CAS Article Google Scholar
53.
Geikowsky, E., Gorumlu, S. & Aksak, B. The effect of flexible joint-like elements on the adhesive performance of nature-inspired bent mushroom-like fibers. Beilstein J. Nanotechnol. 9, 2893–2905 (2018).
CAS Article PubMed PubMed Central Google Scholar
54.
Wang, Z. Slanted functional gradient micropillars for optimal bioinspired dry adhesion. ACS Nano 12, 1273–1284 (2018).
CAS Article PubMed Google Scholar
55.
Moser, R. et al. From playroom to lab: Tough stretchable electronics analyzed with a tabletop tensile tester made from toy-bricks. Adv. Sci. 3, 1500396 (2016).
Article CAS Google Scholar
56.
BS EN ISO 527-2 Plastics-Determination of tensile properties. Br. Stand. BSI (1996).
57.
Kurian, A., Prasad, S. & Dhinojwala, A. Unusual surface aging of poly(dimethylsiloxane) elastomers. Macromolecules 43, 2438–2443 (2010).
ADS CAS Article Google Scholar
58.
Pinheiro, J., Bates, D., Debroy, S. & Sarkar, D. nlme: Linear and Nonlinear Mixed Effects Models. R Core Team, R package version 3.1-137 (2018).
59.
Lenth, R. emmeans: Estimated Marginal Means, Aka Least-Squares Means. R Core Team, R package version 1.3.4 (2019).
60.
Core Team. R: A Language and Environment for Statistical Computing (Core Team, Vienna, 2019).
Google Scholar More