Shifts in the developmental rate of spadefoot toad larvae cause decreased complexity of post-metamorphic pigmentation patterns
1.
Protas, M. E. & Patel, N. H. Evolution of coloration patterns. Annu. Rev. Cell. Dev. Biol. 24, 425–446 (2008).
CAS Article Google Scholar
2.
Robertson, J. M. & Greene, H. W. Bright colour patterns as social signals in nocturnal frogs. Biol. J. Linn. Soc. 121, 849–857 (2017).
Article Google Scholar
3.
Hill, G. E. et al. (eds) Bird coloration: mechanisms and measurements Vol. 1 (Harvard University Press, Cambridge, 2006).
Google Scholar
4.
Hamilton, W. D. & Zuk, M. Heritable true fitness and bright birds—a role for parasites. Science 218, 384–387 (1982).
ADS CAS Article PubMed PubMed Central Google Scholar
5.
Lindström, K. & Lundström, J. Male greenfinches (Carduelis chloris) with brighter ornaments have higher virus infection clearance rate. Behav. Ecol. Sociobiol. 48, 44–51 (2000).
Article Google Scholar
6.
Pérez-Rodríguez, L., Jovani, R. & Stevens, M. Shape matters: animal colour patterns as signals of individual quality. Proc. R. Soc. B. 284, 20162446–20162510 (2017).
Article Google Scholar
7.
Stevens, M., Cuthill, I. C., Windsor, A. M. & Walker, H. J. Disruptive contrast in animal camouflage. Proc. R. Soc. B 273, 2433–2438 (2006).
Article Google Scholar
8.
Stevens, M., Winney, I. S., Cantor, A. & Graham, J. Outline and surface disruption in animal camouflage. Proc. R. Soc. B 276, 781–786 (2009).
Article Google Scholar
9.
Allen, W. L., Cuthill, I. C., Scott-Samuel, N. E. & Baddeley, R. Why the leopard got its spots: relating pattern development to ecology in felids. Proc. R. Soc. B 278, 1373–1380 (2010).
Article Google Scholar
10.
Kelley, J. L., Fitzpatrick, J. L. & Merilaita, S. Spots and stripes: ecology and colour pattern evolution in butterflyfishes. Proc. R. Soc. B 280, 20122730–20122739 (2013).
Article PubMed Google Scholar
11.
Kondo, S. & Shirota, H. Theoretical analysis of mechanisms that generate the pigmentation pattern of animals. Semin. Cell Dev. Biol. 20, 82–89 (2009).
Article Google Scholar
12.
Theis, A., Salzburger, W. & Egger, B. The function of anal fin egg-spots in the cichlid fish Astatotilapia burtoni. PLoS ONE 7, e29878 (2012).
ADS CAS Article PubMed PubMed Central Google Scholar
13.
Palmer, M. E., Calvé, M. R. & Adamo, S. A. Response of female cuttlefish Sepia officinalis (Cephalopoda) to mirrors and conspecifics: evidence for signaling in female cuttlefish. Anim. Cogn. 9, 151–155 (2006).
CAS Article Google Scholar
14.
Gluckman, T. L. & Cardoso, G. C. The dual function of barred plumage in birds; camouflage and communication. J. Evol. Biol. 23, 2501–2506 (2010).
CAS Article Google Scholar
15.
Rowland, H. M. et al. Countershading enhances cryptic protection: an experiment with wild birds and artificial prey. Anim. Behav. 74, 1249–1258 (2007).
Article Google Scholar
16.
Singh, A. P. & Nüsslein-Volhard, C. Zebrafish Stripes as a model for vertebrate review colour pattern formation. Curr. Biol. 25, R81–R92 (2015).
CAS Article Google Scholar
17.
Ruxton, G. D., Sherratt, T. N. & Speed, M. P. Avoiding Attack. Oxford, UK: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198528609.003.0012 (2004).
18.
Manriquez, K. C., Pardo, L. M., Wells, R. J. D. & Palma, A. T. Crypsis in Paraxanthus barbiger (Decapoda : Brachyura): Mechanisms against visual predators. J. Crustac. Biol. 28, 473–479 (2008).
Article Google Scholar
19.
Nishikawa, H. et al. Molecular basis of wing coloration in a batesian mimic butterfly, Papilio polytes. Sci. Rep. 3, 3184 (2013).
Article PubMed PubMed Central Google Scholar
20.
Stevens, M. & Ruxton, G. D. The key role of behaviour in animal camouflage. Biol. Rev. 94, 116–134 (2019).
Article Google Scholar
21.
Wittkopp, P. J., Carroll, S. B. & Kopp, A. Evolution in black and white: genetic control of pigment patterns in Drosophila. Trends Genet. 19, 495–504 (2003).
CAS Article PubMed Google Scholar
22.
Hiyama, A., Taira, W. & Otaki, J. M. Color-pattern evolution in response to environmental stress in butterflies. Front. Genet. 3, 15 (2012).
Article PubMed PubMed Central Google Scholar
23.
Pérez-Rodríguez, L., Jovani, R. & Mougeot, F. Fractal geometry of a complex plumage trait reveals bird’s quality. Proc. R. Soc. B. 280, 20122783–20122786 (2013).
Article PubMed Google Scholar
24.
Jiguet, F. & Bretagnolle, V. Sexy males and choosy females on exploded leks: correlates of male attractiveness in the Little Bustard. Behav. Proc. 103, 246–255 (2014).
Article Google Scholar
25.
Tibbetts, E. A. & Curtis, T. R. Rearing conditions influence quality signals but not individual identity signals in Polistes wasps. Behav. Ecol. 18, 602–607 (2007).
Article Google Scholar
26.
Park, C. J., Kang, H. S. & Gye, M. C. Effects of nonylphenol on early embryonic development, pigmentation and 3,5,3’-triiodothyronine-induced metamorphosis in Bombina orientalis (Amphibia: Anura). Chemosphere 81, 1292–1300 (2010).
ADS CAS Article PubMed Google Scholar
27.
Rudh, A. & Qvarnström, A. Adaptive colouration in amphibians. Semin. Cell Dev. Biol. 24, 553–561 (2013).
Article PubMed Google Scholar
28.
Rabbani, M., Zacharczenko, B. & Green, D. M. Color pattern variation in a cryptic amphibian, Anaxyrus fowleri. J. Herpetol. 49, 649–654 (2015).
Article Google Scholar
29.
Gomez-Mestre, I., Pyron, R. A. & Wiens, J. J. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66, 3687–3700 (2012).
Article PubMed Google Scholar
30.
Wells, K. D. The Ecology and Behavior of Amphibians (The University of Chicago Press, USA, 2007).
Google Scholar
31.
Haas, A. Phylogeny of frogs as inferred from primarily larval characters (Amphibia: Anura). Cladistics 19, 23–89 (2003).
Google Scholar
32.
Wollenberg Valero, K. C. et al. Transcriptomic and macroevolutionary evidence for phenotypic uncoupling between frog life history phases. Nat. Commun. 8, 1–9 (2017).
Article CAS Google Scholar
33.
Van Allen, B. G., Briggs, V. S., McCoy, M. W. & Vonesh, J. R. Carry-over effects of the larval environment on post-metamorphic performance in two hylid frogs. Oecologia 164, 891–898 (2010).
ADS Article PubMed PubMed Central Google Scholar
34.
Touchon, J. C., McCoy, M. W., Vonesh, J. R. & Warkentin, K. M. Effects of plastic hatching timing carry over through metamorphosis in red-eyed treefrogs. Ecology 94, 850–860 (2013).
Article Google Scholar
35.
Gomez-Mestre, I. et al. The shape of things to come: linking developmental plasticity to post-metamorphic morphology in anurans. J. Evol. Biol. 23, 1364–1373 (2010).
CAS Article PubMed PubMed Central Google Scholar
36.
Thibaudeau, G. & Altig, R. Coloration of Anuran Tadpoles (Amphibia): development, dynamics, function, and hypotheses. ISRN Zoology 1–16 (2012).
37.
Parichy, D. M. & Turner, J. M. Zebrafish puma mutant decouples pigment pattern and somatic metamorphosis. Dev. Biol. 256, 242–257 (2003).
CAS Article PubMed PubMed Central Google Scholar
38.
Touchon, J. C., McCoy, M. W., Landberg, T., Vonesh, J. R. & Warkentin, K. M. Putting μ/g in a new light: plasticity in life history switch points reflects fine-scale adaptive responses. Ecology 96, 2192–2202 (2015).
Article PubMed PubMed Central Google Scholar
39.
Gomez-Mestre, I., Kulkarni, S. & Buchholz, D. R. Mechanisms and consequences of developmental acceleration in tadpoles responding to pond drying. PLoS ONE 8, e84266 (2013).
ADS Article CAS PubMed PubMed Central Google Scholar
40.
Gomez-Mestre, I. & Buchholz, D. R. Developmental plasticity mirrors differences among taxa in spadefoot toads linking plasticity and diversity. PNAS 103, 50 (2006).
Article CAS Google Scholar
41.
Gervasi, S. S. & Foufopoulos, J. Costs of plasticity: responses to desiccation decrease post-metamorphic immune function in a pond-breeding amphibian. Funct. Ecol. 22, 100–108 (2008).
Google Scholar
42.
Schloerke, B. GGally: Extension to ‘ggplot2’. R package version 2.0.0. https://CRAN.R-project.org/package=GGally (2020).
43.
Covarrubias-Pazaran, G. Genome-assisted prediction of quantitative traits using the R package sommer. PLoS ONE 11, e0156744 (2016).
Article CAS PubMed PubMed Central Google Scholar
44.
Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits Vol. 1, 535–557 (Sinauer, Sunderland, MA, 1998).
Google Scholar
45.
Burraco, P., Valdés, A. E., Johansson, F. & Gomez-Mestre, I. Physiological mechanisms of adaptive developmental plasticity in Rana temporaria island populations. BMC Evol. Biol. 17, 164 (2017).
Article CAS PubMed PubMed Central Google Scholar
46.
Kulkarni, S. S., Denver, R. J., Gomez-Mestre, I. & Buchholz, D. R. Genetic accommodation via modified endocrine signalling explains phenotypic divergence among spadefoot toad species. Nat. Commun. 8, 993 (2017).
ADS Article CAS PubMed PubMed Central Google Scholar
47.
Bagnara, J. T. & Fernandez, P. J. Hormonal influences on the development of amphibian pigmentation patterns. Zool. Sci. 10, 733–748 (1993).
CAS Google Scholar
48.
Frieden, E. & Just, J. J. Hormonal responses in amphibian metamorphosis. Biochem. Actions Hormon. 1, 1–52 (2012).
Google Scholar
49.
Noriega, N. C. & Hayes, T. B. DDT congener effects on secondary sex coloration in the reed frog Hyperolius argus: a partial evaluation of the Hyperolius argus endocrine screen. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 126, 231–237 (2000).
CAS Article Google Scholar
50.
Hayes, T. B. et al. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc. Natl. Acad. Sci. 99, 5476–5480 (2002).
ADS CAS Article PubMed Google Scholar
51.
Bagnara, J. T. & Matsumoto, J. Comparative anatomy and physiology of pigment cells in nonmammalian tissues. In The Pigmentary System: Physiology and Pathophysiology (2nd edition), (Nordlund, J. J. et al. eds.), 11–59 (Oxford Univ. Press, UK, 2006).
52.
Schanz, T. S., Bensch, S., Grahn, M., Hasselquist, D. & Wittzell, H. Good genes, oxidative stress and condition-dependent sexual signals. Proc. R. Soc. B 266, 1–12 (1999).
Article Google Scholar
53.
Cabrera-Guzmán, E., Díaz-Paniagua, C. & Gomez-Mestre, I. Differential effect of natural and pigment-supplemented diets on larval development and phenotype of anurans. J. Zool. https://doi.org/10.1111/jzo.12827 (2020).
Article Google Scholar
54.
Isaksson, C., Örnborg, J., Stephensen, E. & Andersson, S. Plasma glutathione and carotenoid coloration as potential biomarkers of environmental stress in great tits. EcoHealth 2, 138–146 (2005).
Article Google Scholar
55.
Summers, K. & Clough, M. E. The Evolution of coloration and toxicity in the poison frog family (Dendrobatidae). PNAS 98, 6227–6232 (2001).
ADS CAS Article Google Scholar
56.
Vences, M. et al. Convergent evolution of aposematic coloration in Neotropical poison frogs: a molecular phylogenetic perspective. Org. Divers. Evol. 3, 215–226 (2003).
Article Google Scholar
57.
Sköld, H. N., Aspengren, S. & Wallin, M. Rapid color change in fish and amphibians—function, regulation, and emerging applications. Pigment Cell Melanoma Res. 26, 29–38 (2012).
Article Google Scholar
58.
Gallant, N. & Teather, K. Differences in size, pigmentation, and fluctuating asymmetry in stressed and nonstressed northern leopard frogs (Rana pipiens). Ecoscience 8, 430–436 (2001).
Article Google Scholar
59.
Garcia, T. S. & Sih, A. Color change and color-dependent behavior is response to predation risk in the salamander sister species Ambystoma barbouri and Ambystoma texanum. Oecologia 137, 131–139 (2003).
ADS Article Google Scholar
60.
Polo-Cavia, N. & Gomez-Mestre, I. Pigmentation plasticity enhances crypsis in larval newts: associated metabolic cost and background choice behaviour. Sci. Rep. 7, 39739 (2017).
ADS CAS Article PubMed PubMed Central Google Scholar
61.
Blaustein, A. R. & Belden, L. K. Amphibian defenses against ultraviolet-B radiation. Evol. Dev. 5, 89–97 (2003).
CAS Article PubMed Google Scholar
62.
Summers, K., Symula, R., Clough, M. & Cronin, T. Visual mate choice in poison frogs. Proc. R. Soc. Lond. B. 266, 2141–2145 (1999).
CAS Article Google Scholar
63.
Wollenberg, K. C. & Measey, G. J. Why colour in subterranean vertebrates? Exploring the evolution of colour patterns in caecilian amphibians. J. Evol. Biol. 22, 1046–1056 (2009).
CAS Article PubMed Google Scholar
64.
Stevens, M. & Merilaita, S. Animal Camouflage: Mechanisms and Function (eds. Stevens, M. & Merilaita, S.) (Cambridge Univ. Press, UK, 2011).
65.
Spicer, J. I. & Burggren, W. W. Development of physiological regulatory systems: altering the timing of crucial events. Zoology 106, 91–99 (2003).
Article PubMed Google Scholar
66.
Rundle, S. D. & Spicer, J. I. Heterokairy: a significant form of developmental plasticity?. Biol. Lett. 12, 20160509 (2016).
Article PubMed PubMed Central Google Scholar
67.
Kulkarni, S. S., Gomez-Mestre, I., Moskalik, C. L., Storz, B. L. & Buchholz, D. R. Evolutionary reduction of developmental plasticity in desert spadefoot toads. J. Evol. Biol. 24, 2445–2455 (2011).
CAS Article PubMed Google Scholar
68.
Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).
Google Scholar
69.
Tuceryan, M. & Jain, A. K. Chapter 2.1 Texture Analysis, The Handbook of Pattern Recognition and Computer Vision (2nd edition), (eds. Chen, C. H. et al.), 207–248 (World Scientific Publishing Co., Singapore, 1998).
70.
Di Cataldo, S. & Ficarra, E. Mining textural knowledge in biological images: applications, methods, and trends. Comput. Struct. Biotech. 15, 56–67 (2017).
Article CAS Google Scholar
71.
Haralick, R. M., Shanmugam, K., & Dinstein, I. Textural features for image classification. IEEE T. SYST. MAN. CY. B. SMC-3, 610–621 (1973).
72.
Haralick, R. M. Statistical and structural approaches to texture. Proc. IEEE 67, 786–804 (1979).
Article Google Scholar
73.
Conners, R. W., Trivedi, M. M. & Harlow, C. A. Segmentation of a high-resolution urban scene using texture operators. Comput. Gr. Image Process. 25, 273–310 (1984).
Article Google Scholar
74.
Albregtsen, F. Statistical texture measures computed from gray level cooccurrence matrices. Image processing laboratory, Department of Informatics, University of Oslo, Norway (2008).
75.
Cabrera, J. Texture analyzer. https://rsb.info.nih.gov/ij/plugins/texture.html (Accessed December, 2019) (2005).
76.
Sarkar, N. & Chaudhuri, B. B. An efficient differential box-counting approach to compute fractal dimension of image. IEEE T. SYST. MAN CY B. 24, 115–120 (1994).
Article Google Scholar
77.
Karperien, A. FracLac for ImageJ, https://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm (accessed December, 2019) (1999–2013).
78.
Mandelbrot, B. B. The Fractal Geometry of Nature (W. H. Freeman and Company, USA, 1982).
Google Scholar
79.
Smith, T. G. Jr., Lange, G. D. & Marks, W. B. Fractal methods and results in cellular morphology—dimensions, lacunarity, and multifractals. J. Neurosci. Methods 69, 123–136 (1996).
Article PubMed PubMed Central Google Scholar
80.
Lopes, R. & Betrouni, N. Fractal and multifractal analysis: a review. Med. Image Anal. 13, 634–649 (2009).
CAS Article Google Scholar
81.
Tolle, C. R., McJunkin, T. R., Rohrbaugh, D. T. & LaViolette, R. A. Lacunarity definition for ramified data sets based on optimal cover. Phys. D 179, 129–152 (2003).
MathSciNet MATH Article Google Scholar
82.
Peterson, R. A. & Cavanaugh, J. E. Ordered quantile normalization: a semiparametric transformation built for the cross-validation era. J. Appl. Stat. 0, 1–16 (2019).
83.
Buerkner, P. C. brms: an R package for Bayesian multi-level models using Stan. J. Stat. Softw. 80, 1–28 (2016).
Google Scholar More