More stories

  • in

    Weather and agricultural intensification determine the breeding performance of a small generalist predator

    1.
    Newton, I. Population Limitation in Birds (Academic Press, London, 1998).
    Google Scholar 
    2.
    Rockwood, L. L. Introduction to Population Ecology (Blackwell Publishing, Hoboken, 2015).
    Google Scholar 

    3.
    Bell, G. Selection the Mechanism of Evolution (Oxford University Press, Oxford, 2008).
    Google Scholar 

    4.
    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).
    Article  CAS  Google Scholar 

    5.
    Tilman, D. G. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).
    ADS  Article  CAS  Google Scholar 

    6.
    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).
    ADS  Article  CAS  Google Scholar 

    7.
    Carvalho, F. P. Agriculture, pesticides, food security and food safety. Environ. Sci. Policy 9, 685–692 (2006).
    Article  Google Scholar 

    8.
    Grande, J. M., Orozcovalor, P. M., Liébana, M. S. & Sarasola, J. H. Birds of prey in agricultural landscapes: The role of agriculture expansion and intensification. In Birds of Prey Ecology and Conservation in the XXI Century (eds Sarasola, J. H. et al.) 197–228 (Springer, Berlin, 2018).
    Google Scholar 

    9.
    Sergio, F., Newton, I. & Marchesi, L. Conservation: Top predators and biodiversity. Nature 436, 192 (2005).
    ADS  Article  CAS  Google Scholar 

    10.
    Butet, A. et al. Responses of common buzzard (Buteo buteo) and Eurasian kestrel (Falco tinnunculus) to land use changes in agricultural landscapes of Western France. Agric. Ecosyst. Environ. 138, 152–159 (2010).
    Article  Google Scholar 

    11.
    Amar, A. & Redpath, S. M. Habitat use by Hen Harriers Circus cyaneus on Orkney: Implications of land-use change for this declining population. Ibis. 147, 37–47 (2005).
    Article  Google Scholar 

    12.
    Vergara, P. et al. Low frequency of anti-acetylcholinesterase pesticide poisoning in lesser and Eurasian kestrels of Spanish grassland and farmland populations. Biol. Conserv. 141, 499–505 (2008).
    Article  Google Scholar 

    13.
    Arroyo, B. E., García, J. T. & Bretagnolle, V. Conservation of the Montagu’s harrier (Circus pygargus) in agricultural areas. Anim. Conserv. 5, 283–290 (2002).
    Article  Google Scholar 

    14.
    Goldstein, M. I. et al. Monocrotophos induced mass mortality of Swainson’s Hawks in Argentina, 1995–96. Crop Prot. 8(3), 201–214 (1999).
    CAS  Google Scholar 

    15.
    Costantini, D., Dell’Omo, G., La Fata, I. & Casagrande, S. Reproductive performance of Eurasian Kestrel Falco tinnunculus in an agricultural landscape with a mosaic of land uses. Ibis. 156, 768–776 (2014).
    Article  Google Scholar 

    16.
    Touihri, M., Séguy, M., Imbeau, L., Mazerolle, M. J. & Bird, D. M. Effects of agricultural lands on habitat selection and breeding success of American kestrels in a boreal context. Agric. Ecosyst. Environ. 272, 146–154 (2019).
    Article  Google Scholar 

    17.
    Cardador, L., Carrete, M. & Mañosa, S. Can intensive agricultural landscapes favour some raptor species? The Marsh harrier in north-eastern Spain. Anim. Conserv. 14, 382–390 (2011).
    Article  Google Scholar 

    18.
    Murgatroyd, M., Avery, G., Underhill, L. G. & Amar, A. Adaptability of a specialist predator: The effects of land use on diet diversification and breeding performance of Verreaux’s eagles. J. Avian Biol. 47, 834–845 (2016).
    Article  Google Scholar 

    19.
    Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, 1211–1219 (2007).
    Article  CAS  Google Scholar 

    20.
    Crick, H. Q. P. The impact of climate change on birds. Ibis. 146, 48–56 (2004).
    Article  Google Scholar 

    21.
    Catry, I., Franco, A. M. A. & Sutherland, W. J. Landscape and weather determinants of prey availability: Implications for the Lesser Kestrel Falco naumanni. Ibis. 154, 111–123 (2012).
    Article  Google Scholar 

    22.
    Garcia-Heras, M.-S., Arroyo, B. E., Mougeot, F., Amar, A. & Simmons, R. E. Does timing of breeding matter less where the grass is greener? Seasonal declines in breeding performance differ between regions in an endangered endemic raptor. Nat. Conserv. 15, 23–45 (2016).
    Article  Google Scholar 

    23.
    García, J. T. & Arroyo, B. E. Effect of abiotic factors on reproduction in the centre and periphery of breeding ranges: A comparative analysis in sympatric harriers. Ecography 24, 393–402 (2001).
    Article  Google Scholar 

    24.
    Senapathi, D., Nicoll, M. A. C., Teplitsky, C., Jones, C. G. & Norris, K. Climate change and the risks associated with delayed breeding in a tropical wild bird population. Proc. R. Soc. B Biol. Sci. 278, 3184–3190 (2011).
    Article  Google Scholar 

    25.
    Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).
    ADS  Article  CAS  Google Scholar 

    26.
    Dunn, P. Breeding dates and reproductive performance. Adv. Ecol. Res. 35, 69–87 (2004).
    Article  Google Scholar 

    27.
    Newton, I. Population Ecology of Raptors (T & A D Poyser, Berkhamsted, 1979).
    Google Scholar 

    28.
    Rodríguez, C. & Bustamante, J. The effect of weather on lesser kestrel breeding success: Can climate change explain historical population declines?. J. Anim. Ecol. 72, 793–810 (2003).
    Article  Google Scholar 

    29.
    Steenhof, K., Kochert, M. N. & Mcdonald, T. L. Interactive effects of prey and weather on Golden Eagle reproduction. J. Anim. Ecol. 66, 350 (1997).
    Article  Google Scholar 

    30.
    Keane, J. J., Morrison, M. L. & Fry, D. M. Prey and weather factors associated with temporal variation in Northern Goshawk reproduction in the Sierra Nevada. California. Stud. Avian Biol. 31, 85–99 (2006).
    Google Scholar 

    31.
    Redpath, S. M. et al. Temperature and hen harrier productivity: From local mechanisms to geographical patterns. Ecography 25, 533–540 (2002).
    Article  Google Scholar 

    32.
    Zak, M. R., Cabido, M., Cáceres, D. & Díaz, S. What drives accelerated land cover change in central Argentina? Synergistic consequences of climatic, socioeconomic, and technological factors. Environ. Manag. 42, 181–189 (2008).
    ADS  Article  Google Scholar 

    33.
    Graesser, J., Aide, T. M., Grau, H. R. & Ramankutty, N. Cropland/pastureland dynamics and the slowdown of deforestation in Latin America. Environ. Res. Lett. 10, 0–10 (2015).
    Article  Google Scholar 

    34.
    Filloy, J. & Bellocq, M. Respuesta de las aves rapaces al uso de la tierra: un enfoque regional. Hornero 22, 131–140 (2007).
    Google Scholar 

    35.
    Pedrana, J., Isacch, J. P. & Bó, M. S. Habitat relationships of diurnal raptors at local and landscape scales in southern temperate grasslands of Argentina. Emu 108, 301–310 (2008).
    Article  Google Scholar 

    36.
    Filloy, J. & Bellocq, M. I. Patterns of bird abundance along the agricultural gradient of the Pampean region. Agric. Ecosyst. Environ. 120, 291–298 (2007).
    Article  Google Scholar 

    37.
    Ferguson-Lees, J. & Christie, D. A. Raptors of The World (Houghton Miffli Harcourt, Boston, 2001).
    Google Scholar 

    38.
    McClure, C. J. W., Schulwitz, S. E., Van, R., Pauli, B. P. & Heath, J. A. Commentary: Research recommendations for understanding the decline of American Kestrels (Falco sparverius) across much of North America. J. Raptor Res. 51, 455–464 (2017).
    Article  Google Scholar 

    39.
    Smallwood, J. A. et al. Why are American Kestrel (Falco sparverius) populations declining in North America? Evidence from nest-box programs. J. Raptor Res. 43, 274–282 (2009).
    Article  Google Scholar 

    40.
    De la Peña, M. R. & Rumboll, M. Birds of Southern South America and Antarctica (Harper Collins Publishers, New York, 1998).
    Google Scholar 

    41.
    Carrete, M., Tella, J. L., Blanco, G. & Bertellotti, M. Effects of habitat degradation on the abundance, richness and diversity of raptors across Neotropical biomes. Biol. Conserv. 142, 2002–2011 (2009).
    Article  Google Scholar 

    42.
    Schrag, A. M., Zaccagnini, M. E., Calamari, N. & Canavelli, S. Climate and land-use influences on avifauna in central Argentina: Broad-scale patterns and implications of agricultural conversion for biodiversity. Agric. Ecosyst. Environ. 132, 135–142 (2009).
    Article  Google Scholar 

    43.
    Goijman, A. P., Conroy, M. J., Bernardos, J. N. & Zaccagnini, M. E. Multi-season regional analysis of multi-species occupancy: Implications for bird conservation in agricultural lands in east-central Argentina. PLoS ONE 10, e0130874 (2015).
    Article  CAS  PubMed Central  Google Scholar 

    44.
    Baldi, G. & Paruelo, J. M. Land use and land cover dynamics in South American temperate grasslands. Ecol. Soc. 13, 1–32 (2008).
    Article  Google Scholar 

    45.
    Liébana, M. S., Sarasola, J. H. & Bó, M. S. Parental care and behavior of breeding American Kestrels (Falco sparverius) in central Argentina. J. Raptor Res. 43, 338–344 (2009).
    Article  Google Scholar 

    46.
    De Lucca, E. R. & Saggesse, M. D. Nidificación del Halconcito Colorado (Falco sparverius) en la Patagonia. Hornero 13, 302–305 (1993).
    Google Scholar 

    47.
    Smallwood, J. A. & Bird, D. M. American Kestrel (Falco sparverius). In The Birds of North America 602 (2002).

    48.
    Liébana, M. S., Sarasola, J. H. & Santillán, M. Á. Nest-Box occupancy by neotropical raptors in a native forest of central Argentina. J. Raptor Res. 47, 208–213 (2013).
    Article  Google Scholar 

    49.
    Lopez, F. G. Oferta de cavidades para vertebrados en relación a parámetros de sustrato de bosques en distinto grado de estado sucesional en el caldenal pampeano (Universidad Nacional de La Pampa, Santa Rosa, 2014).
    Google Scholar 

    50.
    De Lucca, E. R. Nidificación del halconcito colorado (Falco sparverius) en nidos de cotorra (Myiopsitta monachus). Hornero 13, 238–240 (1992).
    Google Scholar 

    51.
    Orozco Valor, P. M. & Grande, J. M. Exceptionally large clutches in two raptors breeding in nest boxes. J. Raptor Res. 50, 232–236 (2016).
    Article  Google Scholar 

    52.
    Korpimäki, E. Breeding performance of Tengmalm’s Owl Aegolius funereus: Effects of supplementary feeding in a peak vole year. Ibis. 131, 51–56 (1989).
    Article  Google Scholar 

    53.
    Meijer, T., Daan, S. & Michal, H. Family planning in the kestrel (Falco Tinnunculus): The proximate control of covariation of laying date and clutch size. Behaviour 114, 117–136 (1990).
    Article  Google Scholar 

    54.
    Smallwood, J. A. Sexual segregation by habitat in American Kestrels wintering in Southcentral Florida: Vegetative structure and responses to differential prey availability. Condor 89, 842 (1987).
    Article  Google Scholar 

    55.
    Visser, M. E., Holleman, L. J. M. & Caro, S. P. Temperature has a causal effect on avian timing of reproduction. Proc. R. Soc. B Biol. Sci. 276, 2323–2331 (2009).
    Article  Google Scholar 

    56.
    Lorda, H. et al. Descripción de zonas y subzonas agroecológicas RIAP. Area de influencia de la EEA Anguil. (2008).

    57.
    Smith, S. H., Steenhof, K., McClure, C. J. W. & Heath, J. A. Earlier nesting by generalist predatory bird is associated with human responses to climate change. J. Anim. Ecol. 86, 98–107 (2017).
    Article  Google Scholar 

    58.
    Verhulst, S. & Nilsson, J. A. The timing of birds’ breeding seasons: A review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. B Biol. Sci. 363, 399–410 (2008).
    Article  Google Scholar 

    59.
    Robinson, R. A., Baillie, S. R. & Crick, H. Q. P. Weather-dependent survival: Implications of climate change for passerine population processes. Ibis. 149, 357–364 (2007).
    Article  Google Scholar 

    60.
    Fraschina, J., León, V. A. & Busch, M. Long-term variations in rodent abundance in a rural landscape of the Pampas, Argentina. Ecol. Res. 27, 191–202 (2012).
    Article  Google Scholar 

    61.
    Sumasgutner, P. et al. Landscape homogenization due to agricultural intensification disrupts the relationship between reproductive success and main prey abundance in an avian predator. Front. Zool. 16, 31 (2019).

    62.
    Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: Is habitat heterogeneity the key?. Trends Ecol. Evol. 18, 182–188 (2003).
    Article  Google Scholar 

    63.
    Amar, A., Redpath, S. & Thirgood, S. Evidence for food limitation in the declining hen harrier population on the Orkney Islands, Scotland. Biol. Conserv. 111, 377–384 (2003).
    Article  Google Scholar 

    64.
    Cardador, L., Planas, E., Varea, A. & Mañosa, S. Feeding behaviour and diet composition of Marsh Harriers Circus aeruginosus in agricultural landscapes. Bird Study 59, 228–235 (2012).
    Article  Google Scholar 

    65.
    Rodríguez, C., Tapia, L., Ribeiro, E. & Bustamante, J. Crop vegetation structure is more important than crop type in determining where Lesser Kestrels forage. Bird Conserv. Int. 24, 438–452 (2014).

    66.
    Ursúa, E., Serrano, D. & Tella, J. L. Does land irrigation actually reduce foraging habitat for breeding lesser kestrels? The role of crop types. Biol. Conserv. 122, 643–648 (2005).
    Article  Google Scholar 

    67.
    Traba, J. & Morales, M. B. The decline of farmland birds in Spain is strongly associated to the loss of fallowland. Sci. Rep. 9, 1–6 (2019).
    Article  CAS  Google Scholar 

    68.
    Aizen, M. A., Garibaldi, L. A. & Dondo, M. Expansión de la soja y diversidad de la agricultura argentina. Ecol. Austral 19, 45–54 (2009).
    Google Scholar 

    69.
    Datos agroindustriales. Datos Agroindustriales. https://datos.agroindustria.gob.ar/ (2017).

    70.
    Codesido, M., González-Fischer, C. & Bilenca, D. N. Distributional changes of landbird species in agroecosystems of Central Argentina. Condor 113, 266–273 (2011).
    Article  Google Scholar 

    71.
    Dawson, R. D. & Bortolotti, G. R. Experimental evidence for food limitation and sex-specific strategies of American kestrels (Falco sparverius) provisioning offspring. Behav. Ecol. Sociobiol. 52, 43–52 (2002).
    Article  Google Scholar 

    72.
    Murgatroyd, M., Underhill, L. G., Rodrigues, L. & Amar, A. The influence of agricultural transformation on the breeding performance of a top predator: Verreaux’s Eagles in contrasting land use areas. Condor 118, 238–252 (2016).
    Article  Google Scholar 

    73.
    Dawson, R. D. & Bortolotti, G. R. Reproductive success of American Kestrels: The role of prey abundance and weather. Condor 102, 814–822 (2000).
    Article  Google Scholar 

    74.
    Salaberria, C., Celis, P., López-Rull, I. & Gil, D. Effects of temperature and nest heat exposure on nestling growth, dehydration and survival in a Mediterranean hole-nesting passerine. Ibis. 156, 265–275 (2014).
    Article  Google Scholar 

    75.
    Catry, I., Franco, A. M. A. & Sutherland, W. J. Adapting conservation efforts to face climate change: Modifying nest-site provisioning for lesser kestrels. Biol. Conserv. 144, 1111–1119 (2011).
    Article  Google Scholar 

    76.
    Greño, J. L., Belda, E. J. & Barba, E. Influence of temperatures during the nestling period on post-fledging survival of great tit Parus major in a Mediterranean habitat. J. Avian Biol. 39(1), 41–49 (2008).
    Article  Google Scholar 

    77.
    Luck, G. W. Variability in provisioning rates to nestlings in the cooperatively breeding Rufous Treecreeper, Climacteris rufa. Emu 101, 221–224 (2001).
    Article  Google Scholar 

    78.
    Mantyka-Pringle, C. S. et al. Climate change modifies risk of global biodiversity loss due to land-cover change. Biol. Conserv. 187, 103–111 (2015).
    Article  Google Scholar 

    79.
    Goldstein, M. I. et al. Monocrotophos-induced mass mortality of Swainson’s hawks in Argentina, 1995–96. Ecotoxicology 8, 201–214 (1999).
    Article  CAS  Google Scholar 

    80.
    Agroindustria. Estimaciones agrícolas. Miniesterio de Agroindustria https://datosestimaciones.magyp.gob.ar/reportes.php?reporte=Estimaciones (2018).

    81.
    SA & DS. Primer inventario nacional de bosques nativos. Informe regional Monte. Secr. Ambient. y Desarro. Sustentable 54 (2007).

    82.
    Cabrera, Á. L. Regiones fitogeográficas Argentinas. (Enciclopedia Argentina de Agricultura y Jardinería. Segunda Edición. Tomo II fascículo I. Ed. Acme., 1976).

    83.
    Pérez, S. et al. Abrupt changes in rainfall in the Eastern area of La Pampa Province, Argentina. Theor. Appl. Climatol. 103, 159–165 (2011).
    ADS  Article  Google Scholar 

    84.
    Casagrande, G. A., Vergara, G. T. & Bellini, Y. Cartas agroclímáticas actuales de temperaturas, heladas y lluvia de la provincia de La Pampa (Argentina). Rev. Fac. Agron. – UNLPam 17, 15–22 (2006).
    Google Scholar 

    85.
    Johnsgard, P. A. Hawks, Eagles, & Falcons of North America: Biology and Natural History (Smithsonian Institution Press, Washington, 1990).
    Google Scholar 

    86.
    Miller, K. E. & Smallwood, J. A. Natal dispersal and philopatry of Southeastern American Kestrels in Florida. Wilson Bull. 109, 226–232 (1997).
    Google Scholar 

    87.
    Steenhof, K. & Heath, J. A. Local recruitment and natal dispersal distances of American kestrels. Condor 115, 584–592 (2013).
    Article  Google Scholar 

    88.
    Bird, D. M. & Palmer, R. S. American Kestrel. In Handbook of North American Birds (ed. Palmer, R. S.) 253–290 (Yale Univ. Press, New Haven, 1988).
    Google Scholar 

    89.
    Torrado Porto, R. Diversidad y complejidad de los modelos de toma de decisiones y organización productiva en el sector agropecuario del Noreste Pampeano. Aportes para la mejora de la extensión y el desarrollo rural (Universidad Nacional de La Plata, 2019). https://doi.org/10.1037/0033-2909.I26.1.78.

    90.
    ESRI. ArcGis Software. (2015).

    91.
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 1–20 (2017).
    Article  Google Scholar 

    92.
    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 1–18 (2020).
    Article  Google Scholar 

    93.
    Klucsarits, J. R. & Rusbuldt, J. A photographic timeline of Hawk Mountain Sanctuary’s American Kestrel Nestlings (Asst. Ctr., U.SZip Publishing, Columbus, 2007).
    Google Scholar 

    94.
    Steenhof, K. & Newton, I. Assessing Nesting Success and Productivity. Raptor Res. Manag. Tech. 181–192 (2007).

    95.
    R Core Team. R: A Language and Environment for Statistical Computing. (2019).

    96.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    97.
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Article  Google Scholar 

    98.
    Bates, D., Kliegl, R., Vasishth, S. & Baayen, H. Parsimonious mixed models. arXiv preprint, arXiv:1506.04967 (2015).

    99.
    Naimi, B., Hamm, N., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling. Ecography 37, 191–203 (2014).
    Article  Google Scholar 

    100.
    Hosmer, D. W., Lemeshow, S. & Sturdivant, R. X. Applied logistic regression (Wiley, New York, 2013).
    Google Scholar  More

  • in

    Effects of two measures of riparian plant biodiversity on litter decomposition and associated processes in stream microcosms

    1.
    Lawton, J. H., May, R. M. & Raup, D. M. Extinction Rates Vol. 11 (Oxford University Press, Oxford, 1995).
    Google Scholar 
    2.
    Loh, J. & Wackernagel, M. Living Planet Report 2004. Report No. 288085265X (WWF, Gland, 2004).
    Google Scholar 

    3.
    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived?. Nature 471, 51–57 (2011).
    ADS  CAS  Article  PubMed  Google Scholar 

    4.
    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).
    CAS  Article  Google Scholar 

    5.
    Amici, V. et al. Anthropogenic drivers of plant diversity: perspective on land use change in a dynamic cultural landscape. Biodivers. Conserv. 24, 3185–3199 (2015).
    Article  Google Scholar 

    6.
    Mack, R. N. et al. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).
    Article  Google Scholar 

    7.
    Leroy, C. J. & Marks, J. C. Litter quality, stream characteristics and litter diversity influence decomposition rates and macroinvertebrates. Freshw. Biol. 51, 605–617 (2006).
    Article  Google Scholar 

    8.
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108. https://doi.org/10.1038/nature11118 (2012).
    ADS  CAS  Article  PubMed  Google Scholar 

    9.
    Suurkuukka, H. et al. Woodland key habitats and stream biodiversity: Does small-scale terrestrial conservation enhance the protection of stream biota?. Biol. Conserv. 170, 10–19 (2014).
    Article  Google Scholar 

    10.
    Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).
    Article  Google Scholar 

    11.
    Wallace, J., Eggert, S., Meyer, J. & Webster, J. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277, 102–104. https://doi.org/10.1126/science.277.5322.102 (1997).
    CAS  Article  Google Scholar 

    12.
    Marks, J. C. Revisiting the fates of dead leaves that fall into streams. Annu. Rev. Ecol. Evol. Syst. https://doi.org/10.1146/annurev-ecolsys-110218-024755 (2019).
    Article  Google Scholar 

    13.
    Kominoski, J. S. et al. Forecasting functional implications of global changes in riparian plant communities. Front. Ecol. Environ. 11, 423–432. https://doi.org/10.1890/120056 (2013).
    Article  Google Scholar 

    14.
    Swan, C. M. & Palmer, M. A. Leaf diversity alters litter breakdown in a piedmont stream. J. N. Am. Benthol. Soc. 23, 15–28 (2004).
    Article  Google Scholar 

    15.
    López-Rojo, N. et al. Plant diversity loss affects stream ecosystem multifunctionality. Ecology 100, e02847 (2019).
    Article  PubMed  Google Scholar 

    16.
    Stout, B. M. III., Benfield, E. & Webster, J. Effects of a forest disturbance on shredder production in southern Appalachian headwater streams. Freshw. Biol. 29, 59–69 (1993).
    Article  Google Scholar 

    17.
    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72. https://doi.org/10.1038/35083573 (2001).
    ADS  CAS  Article  PubMed  Google Scholar 

    18.
    Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380. https://doi.org/10.1016/j.tree.2010.01.010 (2010).
    Article  PubMed  Google Scholar 

    19.
    Hillebrand, H. & Matthiessen, B. Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecol. Lett. 12, 1405–1419. https://doi.org/10.1111/j.1461-0248.2009.01388.x (2009).
    Article  PubMed  Google Scholar 

    20.
    Krause, S. et al. Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Front. Microbiol. 5, 251 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    21.
    Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).
    Article  PubMed  Google Scholar 

    22.
    Burns, J. H. & Strauss, S. Y. More closely related species are more ecologically similar in an experimental test. Proc. Natl. Acad. Sci. 108, 5302–5307 (2011).
    ADS  CAS  Article  PubMed  Google Scholar 

    23.
    Cavender-Bares, J., Kozak, K. H., Fine, P. V. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715 (2009).
    Article  PubMed  Google Scholar 

    24.
    Mouquet, N. et al. Ecophylogenetics: advances and perspectives. Biol. Rev. Camb. Philos. Soc. 87, 769–785 (2012).
    Article  PubMed  Google Scholar 

    25.
    López-Rojo, N. et al. Shifts in key leaf litter traits can predict effects of plant diversity loss on decomposition in streams. Ecosystems (2020) (in press).

    26.
    Cadotte, M. W., Cardinale, B. J. & Oakley, T. H. Evolutionary history and the effect of biodiversity on plant productivity. Proc. Natl. Acad. Sci. 105, 17012–17017 (2008).
    ADS  CAS  Article  PubMed  Google Scholar 

    27.
    Boyero, L. et al. Biotic and abiotic variables influencing plant litter breakdown in streams: a global study. Proc. R. Soc. B Biol. Sci. 283, 20152664. https://doi.org/10.1098/rspb.2015.2664 (2016).
    CAS  Article  Google Scholar 

    28.
    Fernandes, I., Duarte, S., Cássio, F. & Pascoal, C. Plant litter diversity affects invertebrate shredder activity and the quality of fine particulate organic matter in streams. Mar. Freshw. Res. 66, 449–458 (2015).
    CAS  Article  Google Scholar 

    29.
    Handa, I. T. et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509, 218–221. https://doi.org/10.1038/nature13247 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    30.
    López-Rojo, N. et al. Leaf traits drive plant diversity effects on litter decomposition and FPOM production in streams. PLoS ONE 13, e0198243 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    31.
    Tonin, A. M. et al. Stream nitrogen concentration, but not plant N-fixing capacity, modulates litter diversity effects on decomposition. Funct. Ecol. https://doi.org/10.1111/1365-2435.12837 (2017).
    Article  Google Scholar 

    32.
    Vos, V. C. A., van Ruijven, J., Berg, M. P., Peeters, E. T. H. M. & Berendse, F. Macro-detritivore identity drives leaf litter diversity effects. Oikos 120, 1092–1098. https://doi.org/10.1111/j.1600-0706.2010.18650.x (2011).
    Article  Google Scholar 

    33.
    Gessner, M. O. & Chauvet, E. Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Appl. Environ. Microbiol. 59, 502–507 (1993).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    34.
    Tonin, A. M. et al. Stream nitrogen concentration, but not plant N-fixing capacity, modulates litter diversity effects on decomposition. Funct. Ecol. 31, 1471–1481 (2017).
    Article  Google Scholar 

    35.
    Graça, M. A. S. et al. Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshw. Biol. 46, 947–957. https://doi.org/10.1046/j.1365-2427.2001.00729.x (2001).
    Article  Google Scholar 

    36.
    McArthur, J. V., Aho, J. M., Rader, R. B. & Mills, G. L. Interspecific leaf interactions during decomposition in aquatic and floodplain ecosystems. J. N. Am. Benthol. Soc. 13, 57–67 (1994).
    Article  Google Scholar 

    37.
    Gessner, M. O., Chauvet, E. & Dobson, M. A perspective on leaf litter breakdown in streams. Oikos 85, 377–384. https://doi.org/10.2307/1939639 (1999).
    Article  Google Scholar 

    38.
    Hättenschwiler, S. & Gasser, P. Soil animals alter plant litter diversity effects on decomposition. Proc. Natl. Acad. Sci. 102, 1519–1524 (2005).
    ADS  Article  PubMed  Google Scholar 

    39.
    Laitung, B. & Chauvet, E. Vegetation diversity increases species richness of leaf-decaying fungal communities in woodland streams. Arch. Hydrobiol. 164, 217–235 (2005).
    Article  Google Scholar 

    40.
    Rajashekhar, M. & Kaveriappa, K. Diversity of aquatic hyphomycetes in the aquatic ecosystems of the Western Ghats of India. Hydrobiologia 501, 167–177 (2003).
    Article  Google Scholar 

    41.
    Friberg, N. & Jacobsen, D. J. Variation in growth of the detritivore-shredder Sericostoma personatum (Trichoptera). Freshw. Biol. 42, 625–635 (1999).
    Article  Google Scholar 

    42.
    France, R. Leaves as “crackers”, biofilm as “peanut butter”: exploratory use of stable isotopes as evidence for microbial pathways in detrital food webs. Oceanol. Hydrobiol. Stud. https://doi.org/10.2478/s13545-011-0047-y (2011).
    Article  Google Scholar 

    43.
    Frainer, A. et al. Stoichiometric imbalances between detritus and detritivores are related to shifts in ecosystem functioning. Oikos 125, 861–871. https://doi.org/10.1111/oik.02687 (2016).
    CAS  Article  Google Scholar 

    44.
    Boyero, L. et al. Biotic and abiotic variables influencing plant litter breakdown in streams: a global study. Proc. R. Soc. B Biol. Sci. 283, 20152664 (2016).
    Article  Google Scholar 

    45.
    Friberg, N. & Jacobsen, D. Feeding plasticity of two detritivore-shredders. Freshw. Biol. 32, 133–142 (1994).
    Article  Google Scholar 

    46.
    Lecerf, A. & Richardson, J. S. Biodiversity-ecosystem function research: insights gained from streams. River Res. Appl. 26, 45–54. https://doi.org/10.1002/rra.1286 (2010).
    Article  Google Scholar 

    47.
    Lecerf, A., Risnoveanu, G., Popescu, C., Gessner, M. O. & Chauvet, E. Decomposition of diverse litter mixtures in streams. Ecology 88, 219–227 (2007).
    Article  PubMed  Google Scholar 

    48.
    Taylor, B. R., Mallaley, C. & Cairns, J. F. Limited evidence that mixing leaf litter accelerates decomposition or increases diversity of decomposers in streams of eastern Canada. Hydrobiologia 592, 405–422. https://doi.org/10.1007/s10750-007-0778-3 (2007).
    Article  Google Scholar 

    49.
    Vos, V. C., van Ruijven, J., Berg, M. P., Peeters, E. T. & Berendse, F. Leaf litter quality drives litter mixing effects through complementary resource use among detritivores. Oecologia 173, 269–280 (2013).
    ADS  Article  PubMed  Google Scholar 

    50.
    Boyero, L., Cardinale, B. J., Bastian, M. & Pearson, R. G. Biotic vs. abiotic control of decomposition: a comparison of the effects of simulated extinctions and changes in temperature. PLoS ONE 9, e87426. https://doi.org/10.1371/journal.pone.0087426 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    51.
    McKie, B. G., Schindler, M., Gessner, M. O. & Malmqvist, B. Placing biodiversity and ecosystem functioning in context: environmental perturbations and the effects of species richness in a stream field experiment. Oecologia 160, 757–770. https://doi.org/10.1007/s00442-009-1336-7 (2009).
    ADS  Article  PubMed  Google Scholar 

    52.
    Tonin, A. M. et al. Interactions between large and small detritivores influence how biodiversity impacts litter decomposition. J. Anim. Ecol. 87, 1465–1474. https://doi.org/10.1111/1365-2656.12876 (2018).
    Article  PubMed  Google Scholar 

    53.
    Boyero, L. & Pearson, R. G. Intraspecific interference in a tropical stream shredder guild. Mar. Freshw. Res. 57, 201–206 (2006).
    Article  Google Scholar 

    54.
    Reiss, J., Bailey, R. A., Perkins, D. M., Pluchinotta, A. & Woodward, G. Testing effects of consumer richness, evenness and body size on ecosystem functioning. J. Anim. Ecol. 80, 1145–1154. https://doi.org/10.1111/j.1365-2656.2011.01857.x (2011).
    Article  PubMed  Google Scholar 

    55.
    McKie, B. G. et al. Ecosystem functioning in stream assemblages from different regions: contrasting responses to variation in detritivore richness, evenness and density. J. Anim. Ecol. 77, 495–504. https://doi.org/10.1111/j.1365-2656.2008.01357.x (2008).
    CAS  Article  PubMed  Google Scholar 

    56.
    LeRoy, C. J. et al. Plant phylogenetic history explains in-stream decomposition at a global scale. J. Ecol. https://doi.org/10.1111/1365-2745.13262 (2019).
    Article  Google Scholar 

    57.
    Correa-Araneda, F., Basaguren, A., Abdala-Díaz, R. T., Tonin, A. M. & Boyero, L. Resource-allocation tradeoffs in caddisflies facing multiple stressors. Ecol. Evol/ 7, 5103–5110 (2017).
    Article  Google Scholar 

    58.
    López-Rojo, N. et al. Leaf traits drive plant diversity effects on litter decomposition and FPOM production in streams. PLoS ONE 13, e0198243 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    59.
    Rao, C. R. Diversity and dissimilarity coefficients – a unified approach. Theor. Popul. Biol. 21, 24–43 (1982).
    MathSciNet  Article  Google Scholar 

    60.
    Roscher, C. et al. Using plant functional traits to explain diversity-productivity relationships. PLoS ONE 7, e36760. https://doi.org/10.1371/journal.pone.0036760 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    61.
    APHA. in Standard Methods for the Examination of Water and Wastewater 20th edn (ed M. A. H. Franson) 148–149 (American Public Health Association, 1998).

    62.
    Newell, S., Arsuffi, T. & Fallon, R. Fundamental procedures for determining ergosterol content of decaying plant material by liquid chromatography. Appl. Environ. Microbiol. 54, 1876–1879 (1988).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    63.
    Suberkropp, K. & Weyers, H. Application of fungal and bacterial production methodologies to decomposing leaves in streams. Appl. Environ. Microbiol. 62, 1610–1615 (1996).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    64.
    Ieno, E. N. & Zuur, A. F. A Beginner’s Guide to Data Exploration and Visualisation with R (Highland Statistics Limited, Newburgh, 2015).
    Google Scholar 

    65.
    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experients. Nature 412, 72–76. https://doi.org/10.1111/j.1365-2427.2008.02092.x (2001).
    ADS  CAS  Article  PubMed  Google Scholar 

    66.
    Davison, A. C. & Hinkley, D. V. Bootstrap Methods and Their Application (Cambridge University Press, Cambridge, 1997).
    Google Scholar 

    67.
    boot: Bootstrap R (S-Plus) Functions. R Package Version 1.3–18 (Vienna: R Foundation for Statistical Computing, 2016).

    68.
    R: A language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). More

  • in

    The role of fire disturbance on habitat structure and bird communities in South Brazilian Highland Grasslands

    1.
    White, R., Murray, S. & Rohweder, M. Pilot Analysis of Global Ecosystems: Grassland Ecosystems (World Resources Institute, Washington, 2000).
    Google Scholar 
    2.
    Overbeck, G. E. et al. Brazil’s neglected biome: The south Brazilian Campos. Perspect. Plant Ecol. Evol. Syst. 9, 101–116 (2007).
    Article  Google Scholar 

    3.
    Wilson, J. B., Peet, R. K., Dengler, J. & Pärtel, M. Plant species richness: The world records. J. Veg. Sci. 23, 796–802 (2012).
    Article  Google Scholar 

    4.
    Dengler, J., Janišová, M. & Wellstein, C. Biodiversity of palaearctic grasslands: A synthesis. Agric. Ecosyst. Environ. 182, 1–14 (2014).
    Article  Google Scholar 

    5.
    Gibson, D. J. Grasses and Grassland Ecology (Oxford University Press, Oxford, 2009).
    Google Scholar 

    6.
    Būhning-Gaese, K. Determinants of avian species richness at different spatial scales. J. Biogeogr. 24, 49–60 (1997).
    Article  Google Scholar 

    7.
    Andrade, B. O. et al. Vascular plant species richness and distribution in the Río de la Plata grasslands. Bot. J. Linn. Soc. 188, 250–256 (2018).
    Google Scholar 

    8.
    Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: Is habitat heterogeneity the key?. Trends Ecol. Evol. 18, 182–188 (2003).
    Article  Google Scholar 

    9.
    Reynolds, C. & Symes, C. T. Grassland bird response to vegetation structural heterogeneity and clearing of invasive bramble. Afr. Zool. 48, 228–239 (2013).
    Article  Google Scholar 

    10.
    Hovick, T. J., Elmore, R. D., Fuhlendorf, S. D., Engle, D. M. & Hamilton, R. G. Spatial heterogeneity increases diversity and stability in grassland bird communities. Ecol. Appl. 25, 662–672 (2015).
    Article  PubMed  Google Scholar 

    11.
    Bond, W. J. & Van Wilgen, B. W. Fire and Plants (Springer, New York, 2012).
    Google Scholar 

    12.
    Laterra, P., Vignolio, O. R., Linares, M. P., Giaquinta, A. & Maceira, N. Cumulative effects of fire on a tussock pampa grassland. J. Veg. Sci. 14, 43–54 (2003).
    Article  Google Scholar 

    13.
    Pillar, V. D. P. & Quadros, F. Grassland-forest boundaries in Southern Brazil. In Conference on Recent Shifts in Vegetation Boundaries of Deciduous Forests, Especially Due to General Global Warming 301–316 (Birkhäuser Basel, 1999). https://doi.org/10.1007/978-3-0348-8722-9_17

    14.
    Overbeck, G. E., Müller, S. C., Pillar, V. D. & Pfadenhauer, J. Fine-scale post-fire dynamics in southern Brazilian subtropical grassland. J. Veg. Sci. 16, 655–664 (2005).
    Article  Google Scholar 

    15.
    Loydi, A., Funk, F. A. & García, A. Vegetation recovery after fire in mountain grasslands of Argentina. J. Mt. Sci. 17, 373–383 (2020).
    Article  Google Scholar 

    16.
    Altesor, A., Oesterheld, M., Leoni, E., Lezama, F. & Rodríguez, C. Effect of grazing on community structure and productivity of a Uruguayan grassland. Plant Ecol. 179, 83–91 (2005).
    Article  Google Scholar 

    17.
    López‐Mársico, L., Lezama, F. & Altesor, A. Heterogeneity decreases as time since fire increases in a South American grassland. Appl. Veg. Sci. avsc.12521 (2020). doi:https://doi.org/10.1111/avsc.12521

    18.
    Pickett, S. T. A., Kolasa, J., Armesto, J. J. & Collins, S. L. The Ecological Concept of Disturbance and Its Expression at Various Hierarchical Levels. Oikos 54, 129 (1989).
    Article  Google Scholar 

    19.
    Grime, J. P. Plant strategies and vegetation processes (Plant Strateg. Veg, Process, 1979).
    Google Scholar 

    20.
    Senft, R. L. et al. Large herbivore foraging and ecological hierarchies. Bioscience 37, 789–799 (1987).
    Article  Google Scholar 

    21.
    Coughenour, M. B. Spatial components of plant-herbivore interactions in pastoral, ranching, and native ungulate ecosystems. Rangel. Ecol. Manag./J. Range Manag. Arch. 44(6), 530–542 (1991)

    22.
    Bond, W. J. & Keeley, J. E. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387–394 (2005).
    Article  PubMed  Google Scholar 

    23.
    Bond, W. J. & Parr, C. L. Beyond the forest edge: Ecology, diversity and conservation of the grassy biomes. Biol. Conserv. 143, 2395–2404 (2010).
    Article  Google Scholar 

    24.
    Gibson, D. J. & Hulbert, L. C. Effects of fire, topography and year-to-year climatic variation on species composition in tallgrass prairie. Vegetatio 72, 175–185 (1987).
    Google Scholar 

    25.
    Vincent, C. A queima dos campos. Rev. Ind. Anim 3, 286–299 (1935).
    Google Scholar 

    26.
    Overbeck, G. E. & Pfadenhauer, J. Adaptive strategies in burned subtropical grassland in southern Brazil. Flora Morphol. Distrib. Funct. Ecol. Plants 202, 27–49 (2007).
    Article  Google Scholar 

    27.
    Quadros, F. L. F. & de Pillar, V. P. Dinâmica vegetacional em pastagem natural submetida a tratamentos de queima e pastejo. Ciência Rural. St. Maria 31, 863–868 (2001).
    Article  Google Scholar 

    28.
    Rodríguez, C., Leoni, E., Lezama, F. & Altesor, A. Temporal trends in species composition and plant traits in natural grasslands of Uruguay. J. Veg. Sci. 14, 433–440 (2003).
    Article  Google Scholar 

    29.
    Swengel, A. B. A literature review of insect responses to fire, compared to other conservation managements of open habitat. Biodivers. Conserv. 10, 1141–1169 (2001).
    Article  Google Scholar 

    30.
    Fuhlendorf, S. D. et al. Should heterogeneity be the basis for conservation? Grassland bird response to fire and grazing. Ecol. Appl. 16, 1706–1716 (2006).
    Article  PubMed  Google Scholar 

    31.
    Joern, A. & Laws, A. N. Ecological mechanisms underlying arthropod species diversity in grasslands. Annu. Rev. Entomol. 58, 19–36 (2013).
    CAS  Article  PubMed  Google Scholar 

    32.
    Podgaiski, L. R. et al. Spider trait assembly patterns and resilience under fire-induced vegetation change in south Brazilian grasslands. PLoS ONE 8, e60207 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Pausas, J. G. Generalized fire response strategies in plants and animals. Oikos 128, 147–153 (2019).
    Article  Google Scholar 

    34.
    Williams, P. R., Congdon, R. A., Grice, A. C. & Clarke, P. J. Germinable soil seed banks in a tropical savanna: Seasonal dynamics and effects of fire. Aust. Ecol. 30, 79–90 (2005).
    Article  Google Scholar 

    35.
    Ooi, M. K. J. Delayed emergence and post-fire recruitment success: Effects of seasonal germination, fire season and dormancy type. Aust. J. Bot. 58, 248–256 (2010).
    Article  Google Scholar 

    36.
    Canadell, J. & Zedler, P. H. Underground structures of woody plants in mediterranean ecosystems of Australia, California, and Chile. In 177–210 (Springer, New York, NY, 1995). https://doi.org/10.1007/978-1-4612-2490-7_8

    37.
    Fidelis, A., Appezzato-da-Glória, B., Pillar, V. D. & Pfadenhauer, J. Does disturbance affect bud bank size and belowground structures diversity in Brazilian subtropical grasslands?. Flora Morphol. Distrib. Funct. Ecol. Plants 209, 110–116 (2014).
    Article  Google Scholar 

    38.
    Fidelis, A. T. et al. Fire intensity and severity in Brazilian campos grasslands. Interciencia Rev. Cienc. y Tecnol. Am. 35, 739–745 (2010).
    Google Scholar 

    39.
    Oliveira, J. M. & Pillar, V. D. Vegetation dynamics on mosaics of Campos and Araucaria forest between 1974 and 1999 in Southern Brazil. Commun. Ecol. 5, 197–202 (2004).
    Article  Google Scholar 

    40.
    Lezama, F. et al. Variation of grazing-induced vegetation changes across a large-scale productivity gradient. J. Veg. Sci. 25, 8–21 (2014).
    Article  Google Scholar 

    41.
    Ferreira, P. M. A. et al. Long-term ecological research in southern Brazil grasslands: Effects of grazing exclusion and deferred grazing on plant and arthropod communities. PLoS ONE 15, e0227706 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    42.
    Van Auken, O. W. Shrub invasions of north american semiarid grasslands. Annu. Rev. Ecol. Syst. 31, 197–215 (2000).
    Article  Google Scholar 

    43.
    Guido, A., Salengue, E. & Dresseno, A. Effect of shrub encroachment on vegetation communities in Brazilian forest-grassland mosaics. Perspect. Ecol. Conserv. 15, 52–55 (2017).
    Google Scholar 

    44.
    Sühs, R. B., Giehl, E. L. H. & Peroni, N. Preventing traditional management can cause grassland loss within 30 years in southern Brazil. Sci. Rep. 10, 1–9 (2020).
    Article  CAS  Google Scholar 

    45.
    Moretti, M. & Legg, C. Combining plant and animal traits to assess community functional responses to disturbance. Ecography (Cop.) 32, 299–309 (2009).
    Article  Google Scholar 

    46.
    Gerisch, M., Agostinelli, V., Henle, K. & Dziock, F. More species, but all do the same: Contrasting effects of flood disturbance on ground beetle functional and species diversity. Oikos 121, 508–515 (2012).
    Article  Google Scholar 

    47.
    McIntyre, S., Lavorel, S. & Tremont, R. M. Plant life-history attributes: Their Relationship to disturbance response in herbaceous vegetation. J. Ecol. 83, 31 (1995).
    Article  Google Scholar 

    48.
    Casas, G., Darski, B., Ferreira, P. M. A., Kindel, A. & Müller, S. C. Habitat structure influences the diversity, richness and composition of bird assemblages in successional atlantic rain forests. Trop. Conserv. Sci. 9, 503–524 (2016).
    Article  Google Scholar 

    49.
    Mackey, R. L. & Currie, D. J. The diversity–disturbance relationship: Is it generally strong and peaked?. Ecology 82, 3479–3492 (2001).
    Google Scholar 

    50.
    Connell, J. H. Diversity in tropical rain forests and coral reefs. Science (80-. ) 199, 1302–1310 (1978).
    ADS  CAS  Article  Google Scholar 

    51.
    Hutchinson, G. E. The paradox of the plankton. Am. Nat. 95, 137–145 (1961).
    Article  Google Scholar 

    52.
    Grime, J. P. Competitive exclusion in herbaceous vegetation. Nature 242, 344–347 (1973).
    ADS  Article  Google Scholar 

    53.
    Fox, J. W. The intermediate disturbance hypothesis should be abandoned. Trends Ecol. Evol. 28, 86–92 (2013).
    Article  PubMed  Google Scholar 

    54.
    Milchunas, D. G., Sala, O. E. & Lauenroth, W. K. A Generalized model of the effects of grazing by large herbivores on grassland community structure. Am. Nat. 132, 87–106 (1988).
    Article  Google Scholar 

    55.
    Cingolani, A. M., Noy-Meir, I. & Díaz, S. Grazing effects on rangeland diversity: A synthesis of contemporary models. Ecol. Appl. 15, 757–773 (2005).
    Article  Google Scholar 

    56.
    Harrison, S., Inouye, B. D. & Safford, H. D. Ecological heterogeneity in the effects of grazing and fire on grassland diversity. Conserv. Biol. 17, 837–845 (2003).
    Article  Google Scholar 

    57.
    Spasojevic, M. J. et al. Fire and grazing in a mesic tallgrass prairie: Impacts on plant species and functional traits. Ecology 91, 1651–1659 (2010).
    Article  PubMed  Google Scholar 

    58.
    Noy-Meir, I. Interactive effects of fire and grazing on structure and diversity of Mediterranean grasslands. J. Veg. Sci. 6, 701–710 (1995).
    Article  Google Scholar 

    59.
    Peterson, D. W. & Reich, P. B. Fire frequency and tree canopy structure influence plant species diversity in a forest-grassland ecotone. Plant Ecol. 194, 5–16 (2008).
    Article  Google Scholar 

    60.
    Collins, S. L. Fire frequency and community heterogeneity in tallgrass prairie vegetation. Ecology 73, 2001–2006 (1992).
    Article  Google Scholar 

    61.
    Collins, S. L., Glenn, S. M. & Gibson, D. J. Experimental analysis of intermediate disturbance and initial floristic composition: Decoupling cause and effect. Ecology 76, 486–492 (1995).
    Article  Google Scholar 

    62.
    Belsky, A. J. Effects of grazing, competition, disturbance and fire on species composition and diversity in grassland communities. J. Veg. Sci. 3, 187–200 (1992).
    Article  Google Scholar 

    63.
    Malavasi, R., Battisti, C. & Carpaneto, G. M. Seasonal bird assemblages in a Mediterranean patchy wetland: Corroborating the intermediate disturbance hypothesis. Polish J. Ecol. 57, 171–179 (2009).
    Google Scholar 

    64.
    Millenbah, K. F., Winterstein, S. R., Campa, H. I. I. I., Furrow, L. T. & Minnis, R. B. Effects of Conservation Reserve Program field age on avian relative abundance, diversity, and productivity. Wilson Bull. 108, 760–770 (1996).
    Google Scholar 

    65.
    Shochat, E., Wolfe, D. H., Patten, M. A., Reinking, D. L. & Sherrod, S. K. Tallgrass prairie management and bird nest success along roadsides. Biol. Conserv. 121, 399–407 (2005).
    Article  Google Scholar 

    66.
    Sick, H. Ornitologia Brasileira (Nova Fronteira, Rio de Janeiro, 1997).
    Google Scholar 

    67.
    dos Reis, M. G., Fieker, C. Z. & Dias, M. M. The influence of fire on the assemblage structure of foraging birds in grasslands of the Serra da Canastra National Park, Brazil. An. Acad. Bras. Cienc. 88, 891–901 (2016).
    Article  PubMed  Google Scholar 

    68.
    Weier, A., Radford, I. J., Woolley, L.-A. & Lawes, M. J. Fire regime effects on annual grass seeds as food for threatened grass-finch. Fire Ecol. 14, 8 (2018).
    Article  Google Scholar 

    69.
    Fontana, C. S., Rovedder, C. E., Repenning, M. & Gonçalves, M. L. Estado atual do conhecimento e conservação da avifauna dos campos de cima da serra do sul do Brasil, Rio Grande do Sul e Santa Catarina. Rev. Bras. Ornitol. 16, 281–307 (2008).
    Google Scholar 

    70.
    Repenning, M. & Fontana, C. S. Breeding biology of the Tropeiro seedeater (Sporophila beltoni). Auk Ornithol. Adv. 133, 484–496 (2016).
    Google Scholar 

    71.
    Chiarani, E. & Fontana, C. S. Breeding biology of the Lesser grass-finch (Emberizoides ypiranganus) in southern Brazilian upland grasslands. Wilson J. Ornithol. 127, 441–456 (2015).
    Article  Google Scholar 

    72.
    Reinking, D. L. Fire regimes and avian responses in the central tallgrass prairie. Stud. Avian Biol. 30, 116–126 (2005).
    Google Scholar 

    73.
    Churchwell, R. T., Davis, C. A., Fuhlendorf, S. D. & Engle, D. M. Effects of patch-burn management on dickcissel nest success in a tallgrass prairie. J. Wildl. Manag. 72, 1596–1604 (2008).
    Google Scholar 

    74.
    Rohrbaugh, R. W., Reinking, D. L., Wolfe, D. H., Sherrod, S. K. & Jenkins, M. A. Effects of prescribed burning and grazing on nesting and reproductive success of three grassland passerine species in tallgrass prairie. Stud. Avian Biol. 19, 165–170 (1999).
    Google Scholar 

    75.
    Andrade, B. O., Bonilha, C. L., Ferreira, P. M. A., Boldrini, I. I. & Overbeck, G. E. Highland grasslands at the southern tip of the Atlantic forest biome: Management options and conservation challenges. Oecol. Aust. 20, 37–61 (2016).
    Article  Google Scholar 

    76.
    de Pillar, V. P. & Vélez, E. Extinção dos Campos Sulinos em unidades de conservação: um fenômeno natural ou um problema ético?. Nat. a Conserv. 8, 84–86 (2010).
    Article  Google Scholar 

    77.
    Overbeck, G. E. et al. Conservation in Brazil needs to include non-forest ecosystems. Divers. Distrib. 21, 1455–1460 (2015).
    Article  Google Scholar 

    78.
    Azpiroz, A. B. et al. Ecology and conservation of grassland birds in southeastern South America: a review. J. F.Ornithol. 83(3), 217–246 (2012).
    Article  Google Scholar 

    79.
    Andrade, B. O. et al. Classification of South Brazilian grasslands: Implications for conservation. Appl. Veg. Sci. 22, 168–184 (2019).
    Article  Google Scholar 

    80.
    Boldrini, I. I. & Eggers, L. Vegetação campestre do sul do Brasil: dinâmica de espécies à exclusão do gado. Acta Bot. Brasilica 10, 37–50 (1996).
    Article  Google Scholar 

    81.
    Bibby, C. J., Burgess, N. D. & Hill, D. A. Bird Census Techniques (Academic Press, Cambridge, 1992).
    Google Scholar 

    82.
    Lavorel, S., McIntyre, S., Landsberg, J. & Forbes, T. D. A. Plant functional classifications: From general groups to specific groups based on response to disturbance. Trends Ecol. Evol. 12, 474–478 (1997).
    CAS  Article  PubMed  Google Scholar 

    83.
    Lavorel, S., Rochette, C. & Lebreton, J.-D. Functional groups for response to disturbance in mediterranean old fields. Oikos 84, 480 (1999).
    Article  Google Scholar 

    84.
    Díaz, S., Acosta, A. & Cabido, M. Community structure in montane grasslands of central Argentina in relation to land use. J. Veg. Sci. 5, 483–488 (1994).
    Article  Google Scholar 

    85.
    Belton, H. Aves do Rio Grande do Sul: distribuição e biologia. Unisinos (1994).

    86.
    Fontana, C. S., Repenning, M., Rovedder, C. E. & Gonçalves, M. L. Biodiversidade dos campos de Cima da Serra. In (eds. Bond-Buckup, G., Buckup, L. & Dreier, C.) 118–135 (Libretos, 2010).

    87.
    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.) 36, 027–046 (2010).
    Article  Google Scholar 

    88.
    Hebbali, A. olsrr: Tools for Building OLS Regression Models. R package version 0.5.3. https://CRAN.R-project.org/package=olsrr (2020). 

    89.
    Akinwande, M. O., Dikko, H. G. & Samson, A. Variance inflation factor: As a condition for the inclusion of suppressor variable(s) in regression analysis. Open J. Stat. 05, 754–767 (2015).
    Article  Google Scholar 

    90.
    Del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E. Handbook of the Birds of the World Alive (Lynx Edicions, Barcelona, 2018).
    Google Scholar 

    91.
    Pillar, V. D., da Duarte, L. S., Sosinski, E. E. & Joner, F. Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. J. Veg. Sci. 20, 334–348 (2009).
    Article  Google Scholar 

    92.
    Magurran, A. E. Measuring Biological Diversity (Wiley, New York, 2013).
    Google Scholar 

    93.
    Podani, J. Extending Gower’s general coefficient of similarity to ordinal characters. Taxon 48, 331–340 (1999).
    Article  Google Scholar 

    94.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).

    95.
    Zuur, A., Ieno, E., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects Models and Extensions in Ecology with R (Springer, New York, 2009).
    Google Scholar 

    96.
    Pinheiro, J., Bates, D., DebRoy, & S., Sarkar, D. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-149. https://CRAN.Rproject.org/package=nlme (2020).

    97.
    Zelený, D. Which results of the standard test for community-weighted mean approach are too optimistic?. J. Veg. Sci. 29, 953–966 (2018).
    Article  Google Scholar 

    98.
    Zeleny, D. Bias in Community-Weighted Mean Analysis Relating Species Attributes to Sample Attributes: Justification and Remedy. bioRxiv (Cold Spring Harbor Laboratory, 2016). https://doi.org/10.1101/046946

    99.
    Ter Braak, C. J. F. New robust weighted averaging- and model-based methods for assessing trait–environment relationships. Methods Ecol. Evol. 10, 1962–1971 (2019).
    Article  Google Scholar 

    100.
    Hawkins, B. A. et al. Structural bias in aggregated species-level variables driven by repeated species co-occurrences: A pervasive problem in community and assemblage data. J. Biogeogr. 44, 1199–1211 (2017).
    Article  Google Scholar 

    101.
    Mangiafico, S. Functions to support extension education program evaluation. (2020).

    102.
    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, Amsterdam, 2012).
    Google Scholar 

    103.
    Ter Braak, C. J. F. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179 (1986).
    Article  Google Scholar 

    104.
    IUCN 2020. The IUCN Red List of Threatened Species. 2020-2 https://www.iucnredlist.org. Accessed 10th Oct 2020

    105.
    Christensen, N. L. et al. Interpreting the Yellowstone fires of 1988. Bioscience 39, 678–685 (1989).
    Article  Google Scholar 

    106.
    Ramos-Neto, M. B. & Pivello, V. R. Lightning fires in a Brazilian Savanna national park: Rethinking management strategies. Environ. Manag. 26, 675–684 (2000).
    ADS  CAS  Article  Google Scholar 

    107.
    Dias, R. A. et al. Livestock disturbance in Brazilian grasslands influences avian species diversity via turnover. Biodivers. Conserv. 26, 2473–2490 (2017).
    Article  Google Scholar 

    108.
    Mazzoni, L. & Perillo, A. Range extension of Anthus nattereri Sclater, 1878 (Aves: Motacillidae) in Minas Gerais, southeastern Brazil. Check List 7, 589 (2011).
    Article  Google Scholar 

    109.
    Lombardi, V. T. et al. Registros notáveis de aves para o sul do estado de Minas Gerais, Brasil. Cotinga 34, 32–45 (2012).
    Google Scholar 

    110.
    Petry, M. V. & Krüger, L. Frequent use of burned grasslands by the vulnerable Saffron-Cowled Blackbird Xanthopsar flavus: Implications for the conservation of the species. J. Ornithol. 151, 599–605 (2010).
    Article  Google Scholar 

    111.
    Fraga, R. M., Casañas, H. & Pugnali, G. Natural history and conservation of the endangered saffron-cowled blackbird Xanthopsar flavus in Argentina. Bird Conserv. Int. 8, 255–267 (1998).
    Article  Google Scholar 

    112.
    Silva, J. F., Raventos, J. & Caswell, H. Fire and fire exclusion effects on the growth and survival of two savanna grasses. Acta Ecol. 6, 783–800 (1990).
    Google Scholar 

    113.
    Rovedder, C. E. & Fontana, C. S. Nest, eggs, and nest placement of the Brazilian endemic Black-bellied seedeater (Sporophila melanogaster). Wilson J. Ornithol. 124, 173–176 (2012).
    Article  Google Scholar 

    114.
    Franz, I. & Fontana, C. S. Breeding biology of the Tawny-bellied seedeater (Sporophila hypoxantha) in southern Brazilian upland grasslands. Wilson J. Ornithol. 125, 280–292 (2013).
    Article  Google Scholar 

    115.
    Dias, R. A., Bastazini, V. A. G. & Gianuca, A. T. Bird-habitat associations in coastal rangelands of southern Brazil. Iheringia. Série Zool. 104, 200–208 (2014).
    Article  Google Scholar 

    116.
    Terborgh, J. W. Toward a trophic theory of species diversity. Proc. Natl. Acad. Sci. U. S. A. 112, 11415–11422 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    117.
    Hunter, M. D. & Price, P. W. Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73, 724–732 (1992).
    Google Scholar 

    118.
    QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2020). More

  • in

    Plant resistome profiling in evolutionary old bog vegetation provides new clues to understand emergence of multi-resistance

    1.
    World Health Organization. Antimicrobial resistance: global report on surveillance. 2014.
    2.
    Kåhrström CT. Entering a post-antibiotic era? Nat Rev Microbiol. 2013;11:146.
    PubMed  PubMed Central  Google Scholar 

    3.
    Martínez JL. Antibiotics and antibiotic resistance genes in natural environments. Science. 2008;321:365–7.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    4.
    Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ. The structure and diversity of human, animal and environmental resistomes. Microbiome. 2016;4:1–15.
    CAS  Article  Google Scholar 

    5.
    Chen Q-L, Cui H-L, Su J-Q, Penuelas J, Zhu Y-G. Antibiotic resistomes in plant microbiomes. Trends Plant Sci. 2019;24:530–41.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Cernava T, Erlacher A, Soh J, Sensen CW, Grube M, Berg G. Enterobacteriaceae dominate the core microbiome and contribute to the resistome of arugula (Eruca sativa Mill.). Microbiome. 2019;7:13.
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Blau K, Jacquiod S, Sørensen SJ, Su J-Q, Zhu Y-G, Smalla K, et al. Manure and doxycycline affect the bacterial community and its resistome in lettuce rhizosphere and bulk soil. Front Microbiol. 2019;10:725.
    PubMed  PubMed Central  Article  Google Scholar 

    8.
    Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, et al. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015;13:310–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Wright GD. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol. 2007;5:175–86.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Page SE, Baird AJ. Peatlands and global change: response and resilience. Annu Rev Environ Resour. 2016;41:35–57.
    Article  Google Scholar 

    11.
    Kostka JE, Weston DJ, Glass JB, Lilleskov EA, Shaw AJ, Turetsky MR. The Sphagnum microbiome: new insights from an ancient plant lineage. N Phytologist. 2016;211:57–64.
    CAS  Article  Google Scholar 

    12.
    Bragina A, Oberauner-Wappis L, Zachow C, Halwachs B, Thallinger GG, Müller H, et al. The Sphagnum microbiome supports bog ecosystem functioning under extreme conditions. Mol Ecol. 2014;23:4498–510.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Opelt K, Chobot V, Hadacek F, Schönmann S, Eberl L, Berg G. Investigations of the structure and function of bacterial communities associated with Sphagnum mosses. Environ Microbiol. 2007;9:2795–809.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Bragina A, Berg C, Cardinale M, Shcherbakov A, Chebotar V, Berg G. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle. ISME J. 2012;6:802–13.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Opelt K, Berg C, Schönmann S, Eberl L, Berg G. High specificity but contrasting biodiversity of Sphagnum-associated bacterial and plant communities in bog ecosystems independent of the geographical region. ISME J. 2007;1:502–16.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Bragina A, Berg C, Berg G. The core microbiome bonds the Alpine bog vegetation to a transkingdom metacommunity. Mol Ecol. 2015;24:4795–807.
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Opelt K, Berg C, Berg G. The bryophyte genus Sphagnum is a reservoir for powerful and extraordinary antagonists and potentially facultative human pathogens. FEMS Microbiol Ecol. 2007;61:38–53.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol. 2010;8:251–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Mondav R, Woodcroft BJ, Kim EH, Mccalley CK, Hodgkins SB, Crill PM, et al. Discovery of a novel methanogen prevalent in thawing permafrost. Nat Commun. 2014;5:1–7.
    Article  CAS  Google Scholar 

    21.
    Müller CA, Oberauner-Wappis L, Peyman A, Amos GCA, EMH Wellington, Berg G. Mining for NRPS and PKS genes revealed a high diversity in the Sphagnum bog metagenome. Appl Environ Microbiol. 2015;81:5064–72.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Bragina A, Maier S, Berg C, Müller H, Chobot V, Hadacek F, et al. Similar diversity of Alphaproteobacteria and nitrogenase gene amplicons on two related Sphagnum mosses. Front Microbiol. 2011;2:275.
    PubMed  PubMed Central  Google Scholar 

    23.
    Wardwell LH, Jude BA, Moody JP, Olcerst AI, Gyure RA, Nelson RE, et al. Co-selection of mercury and antibiotic resistance in sphagnum core samples dating back 2000 years. Geomicrobiol J. 2009;26:351–60.
    CAS  Article  Google Scholar 

    24.
    McInnes L, Healy J, Melville J. UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv:1802.03426. 2020.

    25.
    Becht E, McInnes L, Healy J, Dutertre CA, Kwok IWH, Ng LG, et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol. 2019;37:38–47.
    CAS  Article  Google Scholar 

    26.
    Breiman L. Random forests. Mach Learn. 2001;45:5–32.

    27.
    Altmann A, Toloşi L, Sander O, Lengauer T. Permutation importance: a corrected feature importance measure. Bioinformatics. 2010;26:1340–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Streit M, Lex A, Gratzl S, Partl C, Schmalstieg D, Pfister H, et al. Guided visual exploration of genomic stratifications in cancer. Nat Methods. 2014;11:884–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The comprehensive antibiotic resistance database. Antimicrobial agents Chemother. 2013;57:3348–57.
    CAS  Article  Google Scholar 

    30.
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Elbehery AHA, Aziz RK, Siam R. Antibiotic resistome: improving detection and quantification accuracy for comparative metagenomics. OMICS: A J Integr Biol. 2016;20:229–38.
    CAS  Article  Google Scholar 

    32.
    Boyd JA, Woodcroft BJ, Tyson GW. GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Res. 2018;46:e59.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Allaire J. RStudio: Integrated development environment for R. Boston, MA: RStudio Inc.; 2012. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6194118/#!po=0.819672.

    34.
    Core Team R. R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna. 2013.

    35.
    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS ONE. 2013;8:e61217.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package. Commun Ecol Package. 2007;10:631–7.
    Google Scholar 

    37.
    Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967;27:209–20.
    Google Scholar 

    38.
    Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Alneberg J, Bjarnason BS, De Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Sieber CM, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy T, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Arango-Argoty G, Garner E, Pruden A, Heath LS, Vikesland P, Zhang L. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome. 2018;6:1–15.
    Article  Google Scholar 

    47.
    Huerta-Cepas J, Serra F, Bork P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol. 2016;33:1635–8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.

    49.
    Mauri M, Elli T, Caviglia G, Uboldi G, Azzi M. RAWGraphs: a visualisation platform to create open outputs. In: Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter. New York, New York, USA: ACM Press; 2017. p. 28:1–28:5.

    50.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Vercammen K, Garcia-Armisen T, Goeders N, Van Melderen L, Bodilis J, Cornelis P. Identification of a metagenomic gene cluster containing a new class A beta-lactamase and toxin-antitoxin systems. MicrobiologyOpen. 2013;2:674–83.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Allen HK, Moe LA, Rodbumrer J, Gaarder A, Handelsman J.Functional metagenomics reveals diverse β-lactamases in a remote Alaskan soil. ISME J. 2009;3:243–51.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect. 2003;9:1–7.
    Google Scholar 

    54.
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    García-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S, Tarazona S, et al. Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics. 2012;28:2678–9.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    57.
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids. Res 2004;32:1792–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.
    CAS  PubMed  PubMed Central  Google Scholar 

    61.
    Nei M, Kumar S. Molecular Evolution and Phylogenetics. New York: Oxford University Press; 2000.

    62.
    Collignon PC, Conly JM, Andremont A, McEwen SA, Aidara-Kane A, Agerso Y, et al. World Health Organization ranking of antimicrobials according to their importance in human medicine: a critical step for developing risk management strategies to control antimicrobial resistance from food animal production. Clin Infect Dis. 2016;63:1087–93.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Philippon A, Slama P, Dény P, Labia R. A structure-based classification of class A β-lactamases, a broadly diverse family of enzymes. Clin Microbiol Rev. 2016;29:29–57.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Ambler RP. The structure of β-lactamases. Philos Trans R Soc B: Biol Sci. 1980;289:321–31.
    CAS  Google Scholar 

    65.
    D’Costa VM, McGrann KM, Hughes DW, Wright GD. Sampling the antibiotic resistome. Science. 2006;311:374–7.
    PubMed  Article  PubMed Central  Google Scholar 

    66.
    Forsberg KJ, Patel S, Wencewicz TA, Dantas G. Bacterial phylogeny structures soil resistome across habitats. Nature. 2014;509:612–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Van Goethem MW, Pierneef R, Bezuidt OKI, Van De Peer Y, Cowan DA, Makhalanyane TP. A reservoir of ´historical´antibiotic resistance genes in remote pristine Antarctic soils. Microbiome. 2018;6:40.
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    Mahnert A, Moissl-Eichinger C, Zojer M, Bogumil D, Mizrahi I, Rattei T, et al. Man-made microbial resistances in built environments. Nat Commun. 2019;10:968.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Carr VR, Witherden EA, Lee S, Shoaie S, Mullany P, Proctor GB, et al. Abundance and diversity of resistomes differ between healthy human oral cavities and gut. Nat Commun. 2020;11:693.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Bragina A, Cardinale M, Berg C, Berg G, Schmid M, Zentrum H. Vertical transmission explains the specific Burkholderia pattern in Sphagnum mosses at multi-geographic scale. Front Microbiol. 2013;4:394.
    PubMed  PubMed Central  Article  Google Scholar 

    71.
    Crofts TS, Gasparrini AJ, Dantas G. Next-generation approaches to understand and combat the antibiotic resistome. Nat Rev Microbiol. 2017;15:422.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Tyson GH, McDermott PF, Li C, Chen Y, Tadesse DA, Mukherjee S, et al. WGS accurately predicts antimicrobial resistance in Escherichia coli. J Antimicrobial Chemother. 2015;70:2763–9.
    CAS  Article  Google Scholar 

    73.
    Schmidt K, Mwaigwisya S, Crossman L, Doumith M, Munroe D, Pires C, et al. Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J Antimicrobial Chemother. 2016;72:104–14.
    Article  CAS  Google Scholar 

    74.
    Andersen H, Connolly N, Bangar H, Staat M, Mortensen J, Deburger B, et al. Use of shotgun metagenome sequencing to detect fecal colonization with multidrug-resistant bacteria in children. J Clin Microbiol. 2016;54:1804–13.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Martinez JL, Sánchez MB, Martínez-Solano L, Hernandez A, Garmendia L, Fajardo A, et al. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev. 2009;33:430–49.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    76.
    Pehrsson EC, Forsberg KJ, Gibson MK, Ahmadi S, Dantas G. Novel resistance functions uncovered using functional metagenomic investigations of resistance reservoirs. Front Microbiol. 2013;4:1–11.
    Article  Google Scholar 

    77.
    Leclercq R. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis. 2002;34:482–92.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    78.
    Belova SE, Pankratov TA, Dedysh SN. Bacteria of the genus Burkholderia as a typical component of the microbial community of Sphagnum peat bogs. Microbiology. 2006;75:90–96.
    CAS  Article  Google Scholar 

    79.
    Le Fléche-MatéosA, Kügler JH, Hansen SH, Syldatk C, Hausmann R, Lomprez F, et al. Rouxiella badensis sp. nov. and Rouxiella silvae sp. nov. isolated from peat bog soil and emendation description of the genus Rouxiella. Int J Syst Evolut Microbiol. 2017;67:1255–9.
    Article  CAS  Google Scholar 

    80.
    Coenye T, Falsen E, Hoste B, Ohle M, Goris J, Govan JRW, et al. Description of Pandoraea gen. nov. with Pandoraea apista sp. nov., Pandoraea pulmonicola sp. nov., Pandoraea pnomenusa sp. nov., Pandoraea sputorum sp. nov. and Pandoraea norimbergensis comb. nov 2000;50:887–99.
    CAS  Google Scholar 

    81.
    Green H, Jones AM. Emerging Gram-negative bacteria: pathogenic or innocent bystanders. Curr Opin Pulm Med. 2018;24:592–8.
    PubMed  Article  PubMed Central  Google Scholar 

    82.
    Schneider I, Queenan AM, Bauernfeind A. Novel carbapenem-hydrolyzing oxacillinase OXA-62 from Pandoraea pnomenusa. Antimicrobial Agents Chemother. 2006;50:1330–5.
    CAS  Article  Google Scholar 

    83.
    Mahlen SD. Serratia infections: from military experiments to current practice. Clin Microbiol Rev. 2011;24:755–91.
    PubMed  PubMed Central  Article  Google Scholar 

    84.
    Silby MW, Winstanley C, Godfrey SAC, Levy SB, Jackson RW. Pseudomonas genomes: Diverse and adaptable. FEMS Microbiol Rev. 2011;35:652–80.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    85.
    Mitter B, Pfaffenbichler N, Flavell R, Compant S, Antonielli L, Petric A, et al. A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front Microbiol. 2017;8:11.
    PubMed  PubMed Central  Google Scholar 

    86.
    Vandamme P, Opelt K, Knochel N, Berg C, Schonmann S, De Brandt E, et al. Burkholderia bryophila sp. nov. and Burkholderia megapolitana sp. nov., moss-associated species with antifungal and plant-growth-promoting properties. Int J Syst Evolut Microbiol. 2007;57:2228–35.
    CAS  Article  Google Scholar 

    87.
    Berg G, Eberl L, Hartmann A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol. 2005;7:1673–85.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    88.
    Lycus P, Lovise Bøthun K, Bergaust L, Peele Shapleigh J, Reier Bakken L, Frostegård Å. Phenotypic and genotypic richness of denitrifiers revealed by a novel isolation strategy. ISME J. 2017;11:2219–32.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    89.
    Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature. 2015;528:364–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    90.
    Papanicolaou GA, Medeiros AA, Jacoby GA. Novel plasmid-mediated β-lactamase (MIR-1) conferring resistance to oxyimino- and α-methoxy β-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrobial Agents Chemother. 1990;34:2200–9.
    CAS  Article  Google Scholar 

    91.
    Bauernfeind A, Stemplinger I, Jungwirth R, Ernst S, Casellas JM. Sequences of β-lactamase genes encoding CTX-M-1 (MEN-1) and CTX-M-2 and relationship of their amino acid sequences with those of other β-lactamases. Antimicrobial Agents Chemother. 1996;40:509–13.
    CAS  Article  Google Scholar 

    92.
    Dahmen S, Mansour W, Charfi K, Boujaafar N, Arlet G, Bouallègue O. Imipenem resistance in Klebsiella pneumoniae is associated to the combination of plasmid-mediated CMY-4 AmpC β-lactamase and loss of an outer membrane protein. Microb Drug Resistance. 2012;18:479–83.
    CAS  Article  Google Scholar 

    93.
    Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, et al. Bacterial phylogeny structures soil resistomes across habitats. Nature. 2014;509:612–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    94.
    Kurm V, van der Putten WH, de Boer W, Naus-Wiezer S, Hol WHG. Low abundant soil bacteria can be metabolically versatile and fast growing. Ecology. 2017;98:555–64.
    PubMed  Article  PubMed Central  Google Scholar 

    95.
    Vadstein O, Attramadal KJK, Bakke I, Olsen Y. K-Selection as microbial community management strategy: a method for improved viability of larvae in aquaculture. Front Microbiol. 2018;9:2730.
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Schrenk spruce leaf litter decomposition varies with snow depth in the Tianshan Mountains

    1.
    Correa Dias, A. T., Cornelissen, J. H. C. & Berg, M. P. Litter for life: Assessing the multifunctional legacy of plant traits. J. Ecol. 105(5), 1163–1168 (2017).
    Article  Google Scholar 
    2.
    Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol. Evol. 25(6), 372–380 (2010).
    Article  PubMed  Google Scholar 

    3.
    Grootemaat, S., Wright, I. J., van Bodegom, P. M., Cornelissen, J. H. C. & Cornwell, W. K. Burn or rot: Leaf traits explain why flammability and decomposability are decoupled across species. Funct. Ecol. 29(11), 1486–1497 (2015).
    Article  Google Scholar 

    4.
    Berg, B. Litter decomposition and organic matter turnover in northern forest soils. For. Ecol. Manag. 133(1–2), 13–22 (2000).
    Article  Google Scholar 

    5.
    Hobbie, S. E., Schimel, J. P., Trumbore, S. E. & Randerson, J. R. Controls over carbon storage and turnover in high-latitude soils. Glob. Change Biol. 61, 196–210 (2000).
    Article  Google Scholar 

    6.
    Vezzani, F. M. et al. The importance of plants to development and maintenance of soil structure, microbial communities and ecosystem functions. Soil Tillage Res. 175, 139–149 (2018).
    Article  Google Scholar 

    7.
    Schimel, J. P. & Bennett, J. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 85(3), 591–602 (2004).
    Article  Google Scholar 

    8.
    Siebers, M. et al. Disruption of microbial community composition and identification of plant growth promoting microorganisms after exposure of soil to rapeseed-derived glucosinolates. PLoS ONE 13, e02001607 (2018).
    Article  CAS  Google Scholar 

    9.
    Austin, A. T. & Zanne, A. E. Whether in life or in death: Fresh perspectives on how plants affect biogeochemical cycling. J. Ecol. 103(6), 1367–1371 (2015).
    CAS  Article  Google Scholar 

    10.
    Hattenschwiler, S., Tiunov, A.V. and Scheu, S. Biodiversity and litter decomposition interrestrial ecosystems. In Annual Review of Ecology Evolution and Systematics. Annual Reviews, Palo Alto, 191–218 (2005).

    11.
    Bradford, M. A., Berg, B., Maynard, D. S., Wieder, W. R. & Wood, S. A. Understanding the dominant controls on litter decomposition. J. Ecol. 104(1), 229–238 (2016).
    CAS  Article  Google Scholar 

    12.
    Strickland, M. S., Keiser, A. D. & Bradford, M. A. Climate history shapes contemporary leaf litter decomposition. Biogeochemistry 122(2–3), 165–174 (2015).
    Article  Google Scholar 

    13.
    Waring, B. G. A meta-analysis of climatic and chemical controls on leaf litter decay rates in tropical forests. Ecosystems 15(6), 999–1009 (2012).
    CAS  Article  Google Scholar 

    14.
    Vitousek, P. M., Turner, D. R., Parton, W. J. & Sanford, R. L. Litter decomposition on the Mauna-Loa environmental matrix, Hawaii—patterns, mechanisms, and models. Ecology 75(2), 418–429 (1994).
    Article  Google Scholar 

    15.
    Blok, D., Elberling, B. & Michelsen, A. Initial stages of tundra shrub litter decomposition may be accelerated by deeper winter snow but slowed down by spring warming. Ecosystems 19(1), 155–169 (2016).
    CAS  Article  Google Scholar 

    16.
    Carbognani, M., Petraglia, A. & Tomaselli, M. Warming effects and plant trait control on the early-decomposition in alpine snowbeds. Plant Soil 376(1–2), 277–290 (2014).
    CAS  Article  Google Scholar 

    17.
    Wu, Q. Q. Effects of snow depth manipulation on the releases of carbon, nitrogen and phosphorus from the foliar litter of two temperate tree species. Sci. Total Environ. 643, 1357–1365 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    18.
    Saccone, P. et al. The effects of snowpack properties and plant strategies on litter decomposition during winter in subalpine meadows. Plant Soil 363(1–2), 215–229 (2013).
    CAS  Article  Google Scholar 

    19.
    Makoto, K. et al. Winter climate change in plant–soil systems: Summary of recent findings and future perspectives. Ecol. Res. 29(4), 593–606 (2014).
    CAS  Article  Google Scholar 

    20.
    Bratt, A. R. et al. Contribution of leaf litter to nutrient export during winter months in an urban residential watershed. Environ. Sci. Technol. 51(6), 3138–3147 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    21.
    Wu, Q. Q. et al. Effect of seasonal snow cover on litter decomposition in alpine forest. Chin. J. Plant Ecol. 37(04), 296–305 (2013).
    Article  Google Scholar 

    22.
    Christenson, L. M., Mitchell, M. J., Groffman, P. M. & Lovett, G. M. Winter climate change implications for decomposition in northeastern forests: Comparisons of sugar maple litter with herbivore fecal inputs. Glob. Change Biol. 16(9), 2589–2601 (2010).
    Google Scholar 

    23.
    Wu, Q. Q. & Wang, C. K. Effects of changes in seasonal snow-cover on litter decomposition and soil nitrogen dynamics in forests. Chin. J. Appl. Ecol. 29(07), 2422–2432 (2018).
    Google Scholar 

    24.
    Groffman, P. M. et al. Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest. Biogeochemistry 56(2), 191–213 (2001).
    CAS  Article  Google Scholar 

    25.
    He, W. et al. Lignin degradation in foliar litter of two shrub species from the gap center to the closed canopy in an alpine fir forest. Ecosystems 19(1), 115–128 (2016).
    CAS  Article  Google Scholar 

    26.
    DeMarco, J., Mack, M. C. & Bret-Harte, M. S. Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition. Ecology 95(7), 1861–1875 (2014).
    Article  PubMed  Google Scholar 

    27.
    Edwards, A. C., Scalenghe, R. & Freppaz, M. Changes in the seasonal snow cover of alpine regions and its effect on soil processes: A review. Quatern. Int. 162, 172–181 (2007).
    Article  Google Scholar 

    28.
    Huo, Y. et al. Climate-growth relationships of Schrenk spruce (Picea schrenkiana) along an altitudinal gradient in the western Tianshan mountains, northwest China. Trees-Struct. Funct. 31(2), 429–439 (2017).
    MathSciNet  Article  Google Scholar 

    29.
    Chen, X., Gong, L. & Liu, Y. The ecological stoichiometry and interrelationship between litter and soil under seasonal snowfall in Tianshan Mountain. Ecosphere 9, e0252011 (2018).
    Google Scholar 

    30.
    Lu, H., Wei, W., Liu, M., Han, X. & Hong, W. Energy budget over seasonal snow surface at an open site and beneath forest canopy openness during the snowmelt period in western Tianshan Mountains, China. J. Mount. Sci. 12(2), 298–312 (2015).
    Article  Google Scholar 

    31.
    Anderson, J. M. & Ingram, J. S. I. (eds). Tropical soil biology and fertility: A handbook of methods, 2nd edn, 1–221 (Oxford, London, 1993).

    32.
    Olson, J. S. Energy-storage and balance of producers and decomposers in ecological-systems. Ecology 44(2), 322–330 (1963).
    Article  Google Scholar 

    33.
    Garcia-Palacios, P., Shaw, E. A., Wall, D. H. & Haettenschwiler, S. Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecol. Lett. 19(5), 554–563 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    34.
    Salinas, N. et al. The sensitivity of tropical leaf litter decomposition to temperature: Results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests. New Phytol. 189(4), 967–977 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Wang, J. et al. High night-time humidity and dissolved organic carbon content support rapid decomposition of standing litter in a semi-arid landscape. Funct. Ecol. 31(8), 1659–1668 (2017).
    Article  Google Scholar 

    36.
    Li, H. et al. Effects of forest gaps on litter lignin and cellulose dynamics vary seasonally in an alpine forest. Forests 7(2), 27 (2016).
    Article  Google Scholar 

    37.
    Mcclaugherty, C. & Berg, B. Cellulose, lignin and nitrogen concentrations as rate regulating factors in late stages of forest litter decomposition. Pedobiologia 30(2), 101–112 (1987).
    CAS  Google Scholar 

    38.
    Bosco, T., Beatriz Bertiller, M. & Lorena Carrera, A. Combined effects of litter features, UV radiation, and soil water on litter decomposition in denuded areas of the arid Patagonian Monte. PLANT AND SOIL 406(1–2), 71–82 (2016).
    CAS  Article  Google Scholar 

    39.
    Sheng, J. et al. Changes in the chemical composition of young Chinese fir wood exposed to different soil temperature and water content. Cellulose 27(7), 4067–4077 (2020).
    CAS  Article  Google Scholar 

    40.
    Puissant, J. et al. Seasonal influence of climate manipulation on microbial community structure and function in mountain soils. Soil Biol. Biochem. 80, 296–305 (2015).
    CAS  Article  Google Scholar 

    41.
    Osono, T. Leaf litter decomposition of 12 tree species in a subtropical forest in Japan. Ecol. Res. 32(3), 413–422 (2017).
    ADS  Article  Google Scholar 

    42.
    Wu, F., Yang, W., Zhang, J. & Deng, R. Litter decomposition in two subalpine forests during the freeze-thaw season. Acta Oecol. Int. J. Ecol. 36(1), 135–140 (2010).
    ADS  Article  Google Scholar 

    43.
    Bradley, D. C. & Ormerod, S. J. Long-term effects of catchment liming on invertebrates in upland streams. Freshw. Biol. 47(1), 161–171 (2002).
    CAS  Article  Google Scholar 

    44.
    Guesewell, S. & Gessner, M. O. N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Funct. Ecol. 23, 211–219 (2009).
    Article  Google Scholar 

    45.
    Aerts, R., Callaghan, T. V., Dorrepaal, E., van Logtestijn, R. S. P. & Cornelissen, J. H. C. Seasonal climate manipulations have only minor effects on litter decomposition rates and N dynamics but strong effects on litter P dynamics of sub-arctic bog species. Oecologia 170(3), 809–819 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    46.
    Bokhorst, S., Metcalfe, D. B. & Wardle, D. A. Reduction in snow depth negatively affects decomposers but impact on decomposition rates is substrate dependent. Soil Biol. Biochem. 62, 157–164 (2013).
    CAS  Article  Google Scholar 

    47.
    Wipf, S. & Rixen, C. A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Res 29(1), 95–109 (2010).
    Article  Google Scholar 

    48.
    Buckeridge, K. M. & Grogan, P. Deepened snow alters soil microbial nutrient limitations in arctic birch hummock tundra. Appl. Soil. Ecol. 39(2), 210–222 (2008).
    Article  Google Scholar 

    49.
    Shibata, H., Hasegawa, Y., Watanabe, T. & Fukuzawa, K. Impact of snowpack decrease on net nitrogen mineralization and nitrification in forest soil of northern Japan. Biogeochemistry 116(1–3), 69–82 (2013).
    CAS  Article  Google Scholar 

    50.
    Blair, J. M., Parmelee, R. W. & Beare, M. H. Decay-rates, nitrogen fluxes, and decomposer communities of single-species and mixed-species foliar litter. Ecology 71(5), 1976–1985 (1990).
    Article  Google Scholar 

    51.
    Yue, K. et al. Cellulose dynamics during foliar litter decomposition in an alpine forest meta-ecosystem. Forests 7(1768), 176 (2016).
    Article  Google Scholar 

    52.
    Boberg, J. B., Finlay, R. D., Stenlid, J., Ekblad, A. & Lindahl, B. D. Nitrogen and carbon reallocation in fungal mycelia during decomposition of boreal forest litter. PLoS ONE 9, e928973 (2014).
    Article  CAS  Google Scholar 

    53.
    He, Y., Cornelissen, J. H. C., Zhong, Z., Dong, M. & Jiang, C. How interacting fungal species and mineral nitrogen inputs affect transfer of nitrogen from litter via arbuscular mycorrhizal mycelium. Environ. Scie. Pollut. Res. 24(10), 9791–9801 (2017).
    CAS  Article  Google Scholar 

    54.
    Uchida, M. et al. Microbial activity and litter decomposition under snow cover in a cool-temperate broad-leaved deciduous forest. Agric. For. Meteorol. 134(1–4), 102–109 (2005).
    ADS  Article  Google Scholar  More

  • in

    Sensory pollutants alter bird phenology and fitness across a continent

    1.
    Buxton, R. T. et al. Noise pollution is pervasive in U.S. protected areas. Science 356, 531–533 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Kyba, C. C. M. et al. Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv. 3, e1701528 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Barber, J. R., Crooks, K. R. & Fristrup, K. M. The costs of chronic noise exposure for terrestrial organisms. Trends Ecol. Evol. 25, 180–189 (2010).
    PubMed  Article  Google Scholar 

    4.
    Swaddle, J. P. et al. A framework to assess evolutionary responses to anthropogenic light and sound. Trends Ecol. Evol. 30, 550–560 (2015).
    PubMed  Article  Google Scholar 

    5.
    Gaston, K. J., Davies, T. W., Nedelec, S. L. & Holt, L. A. Impacts of artificial light at night on biological timings. Annu. Rev. Ecol. Evol. Syst. 48, 49–68 (2017).
    Article  Google Scholar 

    6.
    Dominoni, D. M. et al. Why conservation biology can benefit from sensory ecology. Nat. Ecol. Evol. 4, 502–511 (2020).
    PubMed  Article  Google Scholar 

    7.
    Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–885 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    8.
    Francis, C. D. & Barber, J. R. A framework for understanding noise impacts on wildlife: an urgent conservation priority. Front. Ecol. Environ. 11, 305–313 (2013).
    Article  Google Scholar 

    9.
    Shannon, G. et al. A synthesis of two decades of research documenting the effects of noise on wildlife. Biol. Rev. Camb. Philos. Soc. 91, 982–1005 (2016).
    PubMed  Article  Google Scholar 

    10.
    van Langevelde, F., Ettema, J. A., Donners, M., WallisDeVries, M. F. & Groenendijk, D. Effect of spectral composition of artificial light on the attraction of moths. Biol. Conserv. 144, 2274–2281 (2011).
    Article  Google Scholar 

    11.
    Hale, J. D., Fairbrass, A. J., Matthews, T. J., Davies, G. & Sadler, J. P. The ecological impact of city lighting scenarios: exploring gap crossing thresholds for urban bats. Glob. Chang. Biol. 21, 2467–2478 (2015).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Halfwerk, W., Holleman, L. J. M., Lessells, C. M. & Slabbekoorn, H. Negative impact of traffic noise on avian reproductive success. J. Appl. Ecol. 48, 210–219 (2011).
    Article  Google Scholar 

    13.
    Kight, C. R., Saha, M. S. & Swaddle, J. P. Anthropogenic noise is associated with reductions in the productivity of breeding Eastern Bluebirds (Sialia sialis). Ecol. Appl. 22, 1989–1996 (2012).
    PubMed  Article  Google Scholar 

    14.
    Injaian, A. S., Poon, L. Y. & Patricelli, G. L. Effects of experimental anthropogenic noise on avian settlement patterns and reproductive success. Behav. Ecol. 29, 1181–1189 (2018).
    Article  Google Scholar 

    15.
    Kempenaers, B., Borgström, P., Loës, P., Schlicht, E. & Valcu, M. Artificial night lighting affects dawn song, extra-pair siring success, and lay date in songbirds. Curr. Biol. 20, 1735–1739 (2010).
    CAS  PubMed  Article  Google Scholar 

    16.
    Cooper, C. B., Hochachka, W. M., Butcher, G. & Dhondt, A. A. Seasonal and latitudinal trends in clutch size: thermal constraints during laying and incubation. Ecology 86, 2018–2031 (2005).
    Article  Google Scholar 

    17.
    Van Renterghem, T., Botteldooren, D. & Verheyen, K. Road traffic noise shielding by vegetation belts of limited depth. J. Sound Vibrat. 331, 2404–2425 (2012).
    ADS  Article  Google Scholar 

    18.
    Luginbuhl, C. B. et al. From the ground up II: sky glow and near-ground artificial light propagation in Flagstaff, Arizona. Publ. Astron. Soc. Pacif. 121, 204–212 (2009).
    ADS  Article  Google Scholar 

    19.
    Boncoraglio, G. & Saino, N. Habitat structure and the evolution of bird song: a meta-analysis of the evidence for the acoustic adaptation hypothesis. Funct. Ecol. 21, 134–142 (2007).
    Article  Google Scholar 

    20.
    Francis, C. D. Vocal traits and diet explain avian sensitivities to anthropogenic noise. Glob. Chang. Biol. 21, 1809–1820 (2015).
    ADS  PubMed  Article  Google Scholar 

    21.
    Huet des Aunay, G. et al. Negative impact of urban noise on sexual receptivity and clutch size in female domestic canaries. Ethology 123, 843–853 (2017).
    Article  Google Scholar 

    22.
    Proppe, D. S., Sturdy, C. B. & St Clair, C. C. Anthropogenic noise decreases urban songbird diversity and may contribute to homogenization. Glob. Chang. Biol. 19, 1075–1084 (2013).
    ADS  PubMed  Article  Google Scholar 

    23.
    Kleist, N. J., Guralnick, R. P., Cruz, A., Lowry, C. A. & Francis, C. D. Chronic anthropogenic noise disrupts glucocorticoid signaling and has multiple effects on fitness in an avian community. Proc. Natl Acad. Sci. USA 115, E648–E657 (2018).
    CAS  PubMed  Article  Google Scholar 

    24.
    Dominoni, D., Quetting, M. & Partecke, J. Artificial light at night advances avian reproductive physiology. Proc. Biol. Sci. B 280, 20123017 (2013).
    Google Scholar 

    25.
    Visser, M. E., Both, C. & Lambrechts, M. M. Global climate change leads to mistimed avian reproduction. Adv. Ecol. Res. 35, 89–110 (2004).
    Article  Google Scholar 

    26.
    Winkler, D. W., Dunn, P. O. & McCulloch, C. E. Predicting the effects of climate change on avian life-history traits. Proc. Natl Acad. Sci. USA 99, 13595–13599 (2002).
    ADS  CAS  PubMed  Article  Google Scholar 

    27.
    Dunn, P. O. & Winkler, D. W. Climate change has affected the breeding date of tree swallows throughout North America. Proc. Biol. Sci. 266, 2487–2490 (1999).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    28.
    Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    29.
    Burgess, M. D. et al. Tritrophic phenological match-mismatch in space and time. Nat. Ecol. Evol. 2, 970–975 (2018).
    PubMed  Article  Google Scholar 

    30.
    van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).
    Article  Google Scholar 

    31.
    Cornell Laboratory of Ornithology. The Birds of North America Online (Cornell Laboratory of Ornithology, 2015).

    32.
    Falchi, F. et al. The new world atlas of artificial night sky brightness. Sci. Adv. 2, e1600377 (2016).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Mennitt, D. J. & Fristrup, K. M. Influence factors and spatiotemporal patterns of environmental sound levels in the contiguous United States. Noise Control Eng. J. 64, 342–353 (2016).
    Article  Google Scholar 

    34.
    Dooling, R. J., Lohr, B. & Dent, M. L. in Comparative Hearing: Birds and Reptiles (eds. Dooling, R. J. et al.) 308–359 (Springer, 2000).

    35.
    Arnold, C. L. & Gibbons, C. J. Impervious surface coverage: the emergence of a key environmental indicator. J. Am. Plann. Assoc. 62, 243–258 (1996).
    Article  Google Scholar 

    36.
    McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).
    Article  Google Scholar 

    37.
    Xian, G. et al. Change of impervious surface area between 2001 and 2006 in the conterminous United States. Photogramm. Eng. Remote Sensing 77, 758–762 (2012).
    Google Scholar 

    38.
    United States Census Bureau. 2010 Census https://data.census.gov/cedsci/ (US Census Bureau, 2011).

    39.
    Hall, M. I. & Ross, C. F. Eye shape and activity pattern in birds. J. Zool. (Lond.) 271, 437–444 (2007).
    Article  Google Scholar 

    40.
    Kirk, E. C. Comparative morphology of the eye in primates. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 281, 1095–1103 (2004).
    PubMed  Article  Google Scholar 

    41.
    Martin, G. R. in Perception and Motor Control in Birds: An Ecological Approach (eds. Davies, M. & Green, P.) 5–34 (Springer, 1994).

    42.
    Blackwell, B. F., Fernández-Juricic, E., Seamans, T. W. & Dolan, T. Avian visual system configuration and behavioural response to object approach. Anim. Behav. 77, 673–684 (2009).
    Article  Google Scholar 

    43.
    Hall, M. I., Iwaniuk, A. N. & Gutiérrez-Ibáñez, C. Optic foramen morphology and activity pattern in birds. Anat. Rec. (Hoboken) 292, 1827–1845 (2009).
    Article  Google Scholar 

    44.
    Moore, B. A., Doppler, M., Young, J. E. & Fernández-Juricic, E. Interspecific differences in the visual system and scanning behavior of three forest passerines that form heterospecific flocks. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 199, 263–277 (2013).
    PubMed  Article  Google Scholar 

    45.
    Ritland, S. M. The Allometry of the Vertebrate Eye (Univ. of Chicago, 1983).

    46.
    Tyrrell, L. P. & Fernández-Juricic, E. The hawk-eyed songbird: retinal morphology, eye shape, and visual fields of an aerial insectivore. Am. Nat. 189, 709–717 (2017).
    PubMed  Article  Google Scholar 

    47.
    Goolsby, E. W., Bruggeman, J. & Ané, C. Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within-species variation. Methods Ecol. Evol. 8, 22–27 (2017).
    Article  Google Scholar 

    48.
    Uyeda, J. C., Pennell, M. W., Miller, E. T., Maia, R. & McClain, C. R. The evolution of energetic scaling across the vertebrate tree of life. Am. Nat. 190, 185–199 (2017).
    PubMed  Article  Google Scholar 

    49.
    Vitousek, M. N. et al. Macroevolutionary patterning in glucocorticoids suggests different selective pressures shape baseline and stress-induced levels. Am. Nat. 193, 866–880 (2019).
    PubMed  Article  Google Scholar 

    50.
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    51.
    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 1717–2032 (2014).
    Article  Google Scholar 

    52.
    Lislevand, T., Figuerola, J. & Székely, T. Avian body sizes in relation to fecundity, mating system, display behavior, and resource sharing. Ecology 88, 1605 (2007).
    Article  Google Scholar 

    53.
    Cornell Laboratory of Ornithology. All About Birds https://www.allaboutbirds.org (Cornell Laboratory of Ornithology, 2018).

    54.
    Rousset, F. & Ferdy, J.-B. Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography 37, 781–790 (2014).
    Article  Google Scholar 

    55.
    Smith, R. J. & Moore, F. R. Arrival timing and seasonal reproductive performance in a long-distance migratory landbird. Behav. Ecol. Sociobiol. 57, 231–239 (2005).
    Article  Google Scholar 

    56.
    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. nlme: linear and nonlinear mixed effects models (R package version 3.1-104, 2012).

    57.
    Revell, L. J. Phylogenetic signal and linear regression on species data. Methods Ecol. Evol. 1, 319–329 (2010).
    Article  Google Scholar 

    58.
    Ives, A. R., Midford, P. E. & Garland, T. Jr. Within-species variation and measurement error in phylogenetic comparative methods. Syst. Biol. 56, 252–270 (2007).
    PubMed  Article  Google Scholar 

    59.
    Garamszegi, L. Z. in Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology (ed. Garamszegi, L. Z.) 157–199 (Springer, 2014).

    60.
    Jones, K. E. & Purvis, A. An optimum body size for mammals? Comparative evidence from bats. Funct. Ecol. 11, 751–756 (1997).
    Article  Google Scholar 

    61.
    Hurlbert, S. H., Levine, R. A. & Utts, J. Coup de grâce for a tough old bull: “statistically significant” expires. Am. Stat. 73, 352–357 (2019).
    Article  Google Scholar 

    62.
    Amrhein, V., Greenland, S. & McShane, B. Scientists rise up against statistical significance. Nature 567, 305–307 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Halsey, L. G. The reign of the p-value is over: what alternative analyses could we employ to fill the power vacuum? Biol. Lett. 15, 20190174 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    64.
    Ware, H. E., McClure, C. J. W., Carlisle, J. D. & Barber, J. R. A phantom road experiment reveals traffic noise is an invisible source of habitat degradation. Proc. Natl Acad. Sci. USA 112, 12105–12109 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    65.
    R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2019).

    66.
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Article  Google Scholar 

    67.
    Lüdecke, D., Makowski, D. & Waggoner, P. Performance: Assessment of Regression Models Performance (2019).

    68.
    Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).
    Article  Google Scholar 

    69.
    Yu, G. & Ekstrøm, C. T. emojifont: emoji and font awesome in graphics (R package version 0.5.3, 2019). More

  • in

    Entrainment of circadian rhythms of locomotor activity by ambient temperature cycles in the dromedary camel

    1.
    Aschoff, J. Circadian activity pattern with two peaks. Ecology 47, 657–662 (1966).
    Article  Google Scholar 
    2.
    Daan, S. & Aschoff, J. Circadian rhythms of locomotor activity in captive birds and mammals: Their variations with season and latitude. Oecologia 18, 269–316 (1975).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    3.
    Katandukila, J. V., Bennett, N. C., Chimimba, C. T., Faulkes, C. G. & Oosthuizen, M. K. Locomotor activity patterns of captive East African root rats, Tachyoryctes splendens (Rodentia: Spalacidae), from Tanzania, East Africa. J. Mamm. 94, 1393–1400 (2013).
    Article  Google Scholar 

    4.
    Bennie, J. J., Duffy, J. P., Inger, R. & Gaston, K. J. Biogeography of time partitioning in mammals. Proc. Natl. Acad. Sci. U.S.A. 111, 13727–13732 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Cloudsley-Thompson, J. L. Rhythmic Activity in Animal Physiology and Behaviour (Academic Press, Cambridge, 1961).
    Google Scholar 

    6.
    Aschoff, J., Gercke, H., Pohl, P., Rieger, P. V. & Wever, S. P. U. R. Interdependent parameters of circadian activity rhythms in birds and man. In Biochronometry (ed. Menaker, M.) 3–29 (National Academy of Science, Washington, DC, 1971).
    Google Scholar 

    7.
    Risenhoover, K. L. Winter activity patterns of moose in interior Alaska. J. Wildl. Manage. 50, 727–734 (1986).
    Article  Google Scholar 

    8.
    Castillo-Ruiz, A., Paul, M. J. & Schwartz, W. J. In search of a temporal niche: Social interactions. Prog. Brain Res. 199, 267–280 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    9.
    Kronfeld-Schor, N., Visser, M. E., Salis, L. & van Gils, J. A. Chronobiology of interspecific interactions in a changing world. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. https://doi.org/10.1098/rstb.2016.0248 (2017).
    Article  Google Scholar 

    10.
    Farsi, H. et al. Validation of locomotion scoring as a new and inexpensive technique to record circadian locomotor activity in large mammals. Heliyon 4, e00980–e00980 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    El Allali, K. et al. Smartphone and a freely available application as a new tool to record locomotor activity rhythm in large mammals and humans. Chronobiol. Int. 36, 1047–1057 (2019).
    Article  PubMed  Google Scholar 

    12.
    Schmidt-Nielsen, K., Schmidt-Nielsen, B., Jarnum, S. A. & Houpt, T. R. Body temperature of the camel and its relation to water economy. Am. J. Physiol. 188, 103–112 (1957).
    CAS  Article  PubMed  Google Scholar 

    13.
    Bouâouda, H. et al. Daily regulation of body temperature rhythm in the camel (Camelus dromedarius) exposed to experimental desert conditions. Physiol. Rep. 2, e12151 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    14.
    El Allali, K. et al. Entrainment of the circadian clock by daily ambient temperature cycles in the camel (Camelus dromedarius). Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R1044–R1052 (2013).
    Article  CAS  PubMed  Google Scholar 

    15.
    Farsi, H. et al. Melatonin rhythm and other outputs of the master circadian clock in the desert goat (Capra hircus) are entrained by daily cycles of ambient temperature. J. Pineal Res. 68, e12634 (2020).
    CAS  Article  PubMed  Google Scholar 

    16.
    Ebling, F. J., Lincoln, G. A., Wollnik, F. & Anderson, N. Effects of constant darkness and constant light on circadian organization and reproductive responses in the ram. J. Biol. Rhythms 3, 365–384 (1988).
    CAS  Article  PubMed  Google Scholar 

    17.
    Johnson, R. F., Randall, S. & Randall, W. Freerunning and entrained circadian rhythms in activity, eating and drinking in the cat. J. Interdiscipl. Cycle Res. 14, 315–327 (1983).
    Article  Google Scholar 

    18.
    Jilge, B., Hörnicke, H. & Stähle, H. Circadian rhythms of rabbits during restrictive feeding. Am. J. Physiol. 253, R46–R54 (1987).
    CAS  PubMed  Google Scholar 

    19.
    Decoursey, G. & Decoursey, P. J. Adaptive aspects of activity rhythms in bats. Biol. Bull. 126, 14–27 (1964).
    Article  Google Scholar 

    20.
    Erkert, H. G., Nagel, B. & Stephani, I. Light and social effects on the free-running circadian activity rhythm in common marmosets (Callithrix jacchus; Primates): Social masking, pseudo-splitting, and relative coordination. Behav. Ecol. Sociobiol. 18, 443–452 (1986).
    Article  Google Scholar 

    21.
    O’Reilly, H., Armstrong, S. M. & Coleman, G. J. Restricted feeding and circadian activity rhythms of a predatory marsupial, Dasyuroides byrnei. Physiol. Behav. 38, 471–476 (1986).
    CAS  Article  PubMed  Google Scholar 

    22.
    Boulos, Z., Frim, D. M., Dewey, L. K. & Moore-Ede, M. C. Effects of restricted feeding schedules on circadian organization in squirrel monkeys. Physiol. Behav. 45, 507–515 (1989).
    CAS  Article  PubMed  Google Scholar 

    23.
    Mahoney, M., Bult, A. & Smale, L. Phase response curve and light-induced fos expression in the suprachiasmatic nucleus and adjacent hypothalamus of Arvicanthis niloticus. J. Biol. Rhythms 16, 149–162 (2001).
    CAS  Article  PubMed  Google Scholar 

    24.
    Alagaili, A. N., Bennett, N. C., Amor, N. M. & Hart, D. W. The locomotory activity patterns of the arid-dwelling desert hedgehog, Paraechinus aethiopicus, from Saudi Arabia. J. Arid Environ. 177, 104141 (2020).
    ADS  Article  Google Scholar 

    25.
    Verwey, M., Robinson, B. & Amir, S. Recording and analysis of circadian rhythms in running-wheel activity in rodents. J. Vis. Exp. https://doi.org/10.3791/50186 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    26.
    Refinetti, R. Early research on circadian rhythms. In Circadian Physiology 2nd edn (ed. Refinetti, R.) 1–667 (CRC Taylor and Frabcis Group, Boca Raton, 2006).
    Google Scholar 

    27.
    Goldman, B. D., Goldman, S. L., Riccio, A. P. & Terkel, J. Circadian patterns of locomotor activity and body temperature in blind mole-rats, Spalax ehrenbergi. J. Biol. Rhythms 12, 348–361 (1997).
    CAS  Article  PubMed  Google Scholar 

    28.
    Kopp, C. et al. Effects of a daylight cycle reversal on locomotor activity in several inbred strains of mice. Physiol. Behav. 63, 577–585 (1998).
    CAS  Article  PubMed  Google Scholar 

    29.
    Giannetto, C., Casella, S., Caola, G. & Piccione, G. Photic and non-photic entrainment on daily rhythm of locomotor activity in goats. Anim. Sci. J. 81, 122–128 (2010).
    Article  PubMed  Google Scholar 

    30.
    Piccione, G., Giannetto, C., Casella, S. & Caola, G. Daily locomotor activity in five domestic animals. Anim. Biol. 60, 15–24 (2010).
    Article  Google Scholar 

    31.
    Challet, E. Minireview: Entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148, 5648–5655 (2007).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Dibner, C., Schibler, U. & Albrecht, U. The mammalian circadian timing system: Organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517–549 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Tanaka, M., Ichitani, Y., Okamura, H., Tanaka, Y. & Ibata, Y. The direct retinal projection to VIP neuronal elements in the rat SCN. Brain Res. Bull. 31, 637–640 (1993).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    34.
    Jacomy, H., Burlet, A. & Bosler, O. Vasoactive intestinal peptide neurons as synaptic targets for vasopressin neurons in the suprachiasmatic nucleus. Double-label immunocytochemical demonstration in the rat. Neuroscience 88, 859–870 (1999).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Aton, S. J., Colwell, C. S., Harmar, A. J., Waschek, J. & Herzog, E. D. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat. Neurosci. 8, 476–483 (2005).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    36.
    Reppert, S. M. & Weaver, D. R. Comparing clockworks: Mouse versus fly. J. Biol. Rhythms 15, 357–364 (2000).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    37.
    Reppert, S. M. & Weaver, D. R. Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 63, 647–676 (2001).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    38.
    Shearman, L. P. et al. Interacting molecular loops in the mammalian circadian clock. Science 288, 1013–1019 (2000).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Okamura, H., Yamaguchi, S. & Yagita, K. Molecular machinery of the circadian clock in mammals. Cell Tissue Res. 309, 47–56 (2002).
    CAS  Article  Google Scholar 

    40.
    Takahashi, J. S., Hong, H. K., Ko, C. H. & McDearmon, E. L. The genetics of mammalian circadian order and disorder: Implications for physiology and disease. Nat. Rev. Genet. 9, 764–775 (2008).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    41.
    Mohawk, J. A., Green, C. B. & Takahashi, J. S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445–462 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    42.
    Rensing, L. & Ruoff, P. Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Chronobiol. Int. 19, 807–864 (2002).
    CAS  Article  PubMed  Google Scholar 

    43.
    Aschoff, J. & Tokura, H. Circadian activity rhythms in squirrel monkeys: Entrainment by temperature cycles 1. J. Biol. Rhythms 1, 91–99 (1986).
    CAS  Article  PubMed  Google Scholar 

    44.
    Pálková, M., Sigmund, L. & Erkert, H. G. Effect of ambient temperature on the circadian activity rhythm in common marmosets, Callithrix j jacchus (primates). Chronobiol. Int. 16, 149–161 (1999).
    Article  PubMed  Google Scholar 

    45.
    Rajaratnam, S. M. W. & Redman, J. R. Entrainment of activity rhythms to temperature cycles in diurnal palm squirrels. Physiol. Behav. 63, 271–277 (1998).
    CAS  Article  PubMed  Google Scholar 

    46.
    Refinetti, R. Entrainment of circadian rhythm by ambient temperature cycles in mice. J. Biol. Rhythms 25, 247–256 (2010).
    Article  Google Scholar 

    47.
    van Jaarsveld, B., Bennett, N. C., Hart, D. W. & Oosthuizen, M. K. Locomotor activity and body temperature rhythms in the Mahali mole-rat (C. h. mahali): The effect of light and ambient temperature variations. J. Therm. Biol. 79, 24–32 (2019).
    Article  Google Scholar 

    48.
    Schmidt-Nielsen, K. The physiology of the camel. Sci. Am. 201, 140–151 (1959).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    49.
    Wu, H. et al. Camelid genomes reveal evolution and adaptation to desert environments. Nat. Commun. 5, 5188 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Samara, E. M. Unraveling the relationship between the topographic distribution patterns of skin temperature and perspiration response in dromedary camels. J. Therm. Biol 84, 311–315 (2019).
    Article  PubMed  Google Scholar 

    51.
    Tibary, A. & El Allali, K. Dromedary camel: A model of heat resistant livestock animal. Theriogenology 154, 203–211 (2020).
    Article  PubMed  Google Scholar 

    52.
    Lindberg, R. G. & Hayden, P. Thermoperiodic entrainment of arousal from torpor in the little pocket mouse, Perognathus longimembris. Chronobiologia 1, 356–361 (1974).
    CAS  PubMed  Google Scholar 

    53.
    Erkert, H. G. & Rothmund, E. Differences in temperature sensitivity of the circadian systems of homoeothermic and heterothermic neotropical bats. Comp. Biochem. Physiol. 68A, 383–390 (1980).
    Google Scholar 

    54.
    Pohl, H. Temperature cycles as zeitgeber for the circadian clock of two burrowing rodents, the normothermic antelope ground squirrel and the heterothermic Syrian Hamster. Biol. Rhythm Res. 29, 311–325 (1998).
    Article  Google Scholar 

    55.
    Cain, J. W., Krausman, P. R., Rosenstock, S. S. & Turner, J. C. Mechanisms of thermoregulation and water balance in Desert Ungulates. Wildl. Soc. Bull. 1973–2006(34), 570–581 (2006).
    Article  Google Scholar 

    56.
    Mengistu, U., Dahlborn, K. & Olsson, K. Mechanisms of water economy in lactating Ethiopian Somali goats during repeated cycles of intermittent watering. Anim. Int. J. Anim. Biosci. 1, 1009–1017 (2007).
    CAS  Article  Google Scholar 

    57.
    Gauthier-Pilters, H. Aspects of dromedary ecology and ethology. In The Camelid (ed. Cockrill, W. R.) (Scandinavian Institute of African Studies, Uppsala, 1984).
    Google Scholar 

    58.
    Miller, G. D., Cochran, M. H. & Smith, E. L. Nighttime activity of desert bighorn sheep. Desert Bighorn Council Trans. 28, 23–25 (1984).
    Google Scholar 

    59.
    Hayes, C. L. & Krausman, P. R. Nocturnal activity of female desert mule deer. J. Wildl. Manage. 57, 897–904 (1993).
    Article  Google Scholar 

    60.
    Davimes, J. G. et al. Temporal niche switching in Arabian oryx (Oryx leucoryx): Seasonal plasticity of 24h activity patterns in a large desert mammal. Physiol. Behav. 177, 148–154 (2017).
    CAS  Article  PubMed  Google Scholar 

    61.
    Davimes, J. G. et al. Seasonal variations in sleep of free-ranging Arabian oryx (Oryx leucoryx) under natural hyperarid conditions. Sleep https://doi.org/10.1093/sleep/zsy038 (2018).
    Article  PubMed  Google Scholar 

    62.
    El Allali, K. et al. Seasonal variations in the nycthemeral rhythm of plasma melatonin in the camel (Camelus dromedarius). J. Pineal Res. 39, 121–128 (2005).
    Article  CAS  PubMed  Google Scholar 

    63.
    Mrosovsky, N. Circannual cycles in golden-mantled ground squirrels: Phase shift produced by low temperature. J. Comp. Physiol. 136, 349–353 (1980).
    Article  Google Scholar 

    64.
    Mrosovsky, N. Circannual cycles in golden-mantled ground squirrels: Experiments with food deprivation and effects of temperature on periodicity. J. Comp. Physiol. 136, 355–360 (1980).
    Article  Google Scholar 

    65.
    Mrosovsky, N. Thermal effects on the periodicity, phasing and peristance of circannual cycles. In Living in the Cold (eds Heller, H. C. et al.) 403–410 (Elsevier, New York, 1986).
    Google Scholar 

    66.
    Mrosovsky, N. Circannual cycles in golden-mantled ground squirrels: fall and spring cold pulses. J. Comp. Physiol. 167, 683–689 (1990).
    Article  Google Scholar 

    67.
    Canguilhem, B., Schieber, J. P. & Koch, A. Circannual weight rhythm of the European hamster (Cricetus cricetus). Respective influence of the photoperiod and external temperature during its course. Arch. Sci. Physiol. 27, 67–90 (1973).
    CAS  Google Scholar 

    68.
    Jallageas, M. & Assenmacher, I. External factors controlling annual testosterone and thyroxine cycles in the edible dormouse Glis glis. Comp. Biochem. Physiol. A Physiol. 77, 161–167 (1984).
    CAS  Article  Google Scholar 

    69.
    Touitou, Y., Smolensky, M. H. & Portaluppi, F. Ethics, standards, and procedures of animal and human chronobiology research. Chronobiol. Int. 23, 1083–1096 (2006).
    Article  PubMed  Google Scholar  More

  • in

    A comparative genomics multitool for scientific discovery and conservation

    1.
    Claussnitzer, M. et al. A brief history of human disease genetics. Nature 577, 179–189 (2020).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Hiller, M. et al. A “forward genomics” approach links genotype to phenotype using independent phenotypic losses among related species. Cell Rep. 2, 817–823 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    3.
    Wasser, S. K. et al. Genetic assignment of large seizures of elephant ivory reveals Africa’s major poaching hotspots. Science 349, 84–87 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    4.
    Wright, B. et al. Development of a SNP-based assay for measuring genetic diversity in the Tasmanian devil insurance population. BMC Genomics 16, 791 (2015).
    PubMed  PubMed Central  Google Scholar 

    5.
    Lappalainen, T., Scott, A. J., Brandt, M. & Hall, I. M. Genomic analysis in the age of human genome sequencing. Cell 177, 70–84 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    6.
    Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    7.
    Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476–482 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    9.
    IUCN. The IUCN Red List of Threatened Species. Version 2019-2 http://www.iucnredlist.org (2019).

    10.
    Ryder, O. A. & Onuma, M. Viable cell culture banking for biodiversity characterization and conservation. Annu. Rev. Anim. Biosci. 6, 83–98 (2018).
    PubMed  Google Scholar 

    11.
    Weisenfeld, N. I. et al. Comprehensive variation discovery in single human genomes. Nat. Genet. 46, 1350–1355 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Putnam, N. H. et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 26, 342–350 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    13.
    Kim, J. et al. Reconstruction and evolutionary history of eutherian chromosomes. Proc. Natl Acad. Sci. USA 114, E5379–E5388 (2017).
    CAS  PubMed  Google Scholar 

    14.
    Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Balasubramanian, S. et al. Using ALoFT to determine the impact of putative loss-of-function variants in protein-coding genes. Nat. Commun. 8, 382 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    16.
    Meadows, J. R. S. & Lindblad-Toh, K. Dissecting evolution and disease using comparative vertebrate genomics. Nat. Rev. Genet. 18, 624–636 (2017).
    CAS  PubMed  Google Scholar 

    17.
    Cooper, G. M. & Shendure, J. Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nat. Rev. Genet. 12, 628–640 (2011).
    CAS  PubMed  Google Scholar 

    18.
    Baiz, M. D., Tucker, P. K., Mueller, J. L. & Cortés-Ortiz, L. X-linked signature of reproductive isolation in humans is mirrored in a howler monkey hybrid zone. J. Hered. 111, 419–428 (2020).
    PubMed  PubMed Central  Google Scholar 

    19.
    Dobzhansky, T. & Dobzhansky, T. G. Genetics and the Origin of Species (Columbia Univ. Press, 1937).

    20.
    Herrera-Álvarez, S., Karlsson, E., Ryder, O. A., Lindblad-Toh, K. & Crawford, A. J. How to make a rodent giant: genomic basis and tradeoffs of gigantism in the capybara, the world’s largest rodent. Preprint at https://doi.org/10.1101/424606 (2018).

    21.
    Abegglen, L. M. et al. Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans. J. Am. Med. Assoc. 314, 1850–1860 (2015).
    CAS  Google Scholar 

    22.
    Casewell, N. R. et al. Solenodon genome reveals convergent evolution of venom in eulipotyphlan mammals. Proc. Natl Acad. Sci. USA 116, 25745–25755 (2019).
    CAS  PubMed  Google Scholar 

    23.
    Beichman, A. C. et al. Aquatic adaptation and depleted diversity: a deep dive into the genomes of the sea otter and giant otter. Mol. Biol. Evol. 36, 2631–2655 (2019).
    CAS  PubMed  Google Scholar 

    24.
    Damas, J. et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc. Natl Acad. Sci. USA 117, 22311–22322 (2020).
    CAS  PubMed  Google Scholar 

    25.
    Xue, Y. et al. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science 348, 242–245 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    26.
    Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M. & Wilson, J. F. Runs of homozygosity: windows into population history and trait architecture. Nat. Rev. Genet. 19, 220–234 (2018).
    CAS  PubMed  Google Scholar 

    27.
    Spielman, D., Brook, B. W. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. Proc. Natl Acad. Sci. USA 101, 15261–15264 (2004).
    ADS  CAS  PubMed  Google Scholar 

    28.
    Vinson, J. P. et al. Assembly of polymorphic genomes: algorithms and application to Ciona savignyi. Genome Res. 15, 1127–1135 (2005).
    PubMed  PubMed Central  Google Scholar 

    29.
    MacManes, M. D. & Lacey, E. A. The social brain: transcriptome assembly and characterization of the hippocampus from a social subterranean rodent, the colonial tuco-tuco (Ctenomys sociabilis). PLoS ONE 7, e45524 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    30.
    Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648 (2009).
    Google Scholar 

    31.
    Cardillo, M. Biological determinants of extinction risk: why are smaller species less vulnerable? Anim. Conserv. 6, 63–69 (2003).
    Google Scholar 

    32.
    Natesh, M. et al. Empowering conservation practice with efficient and economical genotyping from poor quality samples. Methods Ecol. Evol. 10, 853–859 (2019).
    PubMed  PubMed Central  Google Scholar 

    33.
    Lowry, D. B. et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol. Ecol. Resour. 17, 142–152 (2017).
    CAS  PubMed  Google Scholar 

    34.
    Shapiro, B. Pathways to de-extinction: how close can we get to resurrection of an extinct species? Funct. Ecol. 31, 996–1002 (2017).
    Google Scholar 

    35.
    Benazzo, A. et al. Survival and divergence in a small group: the extraordinary genomic history of the endangered Apennine brown bear stragglers. Proc. Natl Acad. Sci. USA 114, E9589–E9597 (2017).
    CAS  PubMed  Google Scholar 

    36.
    Saremi, N. F. et al. Puma genomes from North and South America provide insights into the genomic consequences of inbreeding. Nat. Commun. 10, 4769 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    37.
    Armstrong, J. et al. Progressive Cactus is a multiple-genome aligner for the thousand-genome era. Nature https://doi.org/10.1038/s41586-020-2871-y (2020).

    38.
    Haeussler, M. et al. The UCSC genome browser database: 2019 update. Nucleic Acids Res. 47, D853–D858 (2019).
    CAS  PubMed  Google Scholar 

    39.
    Rands, C. M., Meader, S., Ponting, C. P. & Lunter, G. 8.2% of the human genome is constrained: variation in rates of turnover across functional element classes in the human lineage. PLoS Genet. 10, e1004525 (2014).
    PubMed  PubMed Central  Google Scholar 

    40.
    ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
    ADS  Google Scholar 

    41.
    GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).
    PubMed Central  Google Scholar 

    42.
    Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017).
    PubMed  PubMed Central  Google Scholar 

    43.
    Lewin, H. A. et al. Earth BioGenome project: sequencing life for the future of life. Proc. Natl Acad. Sci. USA 115, 4325–4333 (2018).
    CAS  PubMed  Google Scholar 

    44.
    Koepfli, K.-P., Paten, B., the Genome 10K Community of Scientists & O’Brien, S. J. The Genome 10K project: a way forward. Annu. Rev. Anim. Biosci. 3, 57–111 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Teeling, E. C. et al. Bat biology, genomes, and the Bat1K project: to generate chromosome-level genomes for all living bat species. Annu. Rev. Anim. Biosci. 6, 23–46 (2018).
    PubMed  Google Scholar 

    46.
    Feng, S. et al. Dense sampling of bird diversity increases power of comparative genomics. Nature https://doi.org/10.1038/s41586-020-2873-9 (2020).

    47.
    Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).
    CAS  PubMed  Google Scholar 

    48.
    Wilson, D. E. & Reeder, D. M. (eds) Mammal Species of the World. A Taxonomic and Geographic Reference 3rd edn (Johns Hopkins Univ. Press, 2005).

    49.
    Vlieghe, D. et al. A new generation of JASPAR, the open-access repository for transcription factor binding site profiles. Nucleic Acids Res. 34, D95–D97 (2006).
    CAS  PubMed  Google Scholar 

    50.
    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
    PubMed  PubMed Central  Google Scholar 

    51.
    Farré, M. et al. A near-chromosome-scale genome assembly of the gemsbok (Oryx gazella): an iconic antelope of the Kalahari desert. Gigascience 8, giy162 (2019).
    PubMed Central  Google Scholar 

    52.
    McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    53.
    DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    54.
    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
    PubMed  PubMed Central  Google Scholar 

    55.
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Benaglia, T., Chauveau, D., Hunter, D. & Young, D. mixtools: an R package for analyzing finite mixture models. J. Stat. Softw. 32, 1–29 (2009).
    Google Scholar 

    57.
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (2019).

    58.
    Paten, B. et al. Cactus: algorithms for genome multiple sequence alignment. Genome Res. 21, 1512–1528 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    59.
    Ondov, B. D. et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 17, 132 (2016).
    PubMed  PubMed Central  Google Scholar 

    60.
    Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0. http://www.repeatmasker.org/ (2013–2015).

    61.
    Hubisz, M. J., Pollard, K. S. & Siepel, A. PHAST and RPHAST: phylogenetic analysis with space/time models. Brief. Bioinform. 12, 41–51 (2011).
    CAS  PubMed  Google Scholar 

    62.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    63.
    Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–D42 (2013).
    CAS  PubMed  Google Scholar 

    64.
    Nguyen, N. et al. Comparative assembly hubs: web-accessible browsers for comparative genomics. Bioinformatics 30, 3293–3301 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    65.
    Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    66.
    Pinheiro, E. C., Taddei, V. A., Migliorini, R. H. & Kettelhut, I. C. Effect of fasting on carbohydrate metabolism in frugivorous bats (Artibeus lituratus and Artibeus jamaicensis). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 143, 279–284 (2006).
    PubMed  Google Scholar 

    67.
    Gordon, L. M. et al. Amorphous intergranular phases control the properties of rodent tooth enamel. Science 347, 746–750 (2015).
    ADS  CAS  PubMed  Google Scholar 

    68.
    Hindle, A. G. & Martin, S. L. Intrinsic circannual regulation of brown adipose tissue form and function in tune with hibernation. Am. J. Physiol. Endocrinol. Metab. 306, E284–E299 (2014).
    CAS  PubMed  Google Scholar 

    69.
    Stanford, K. I. et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J. Clin. Invest. 123, 215–223 (2013).
    CAS  PubMed  Google Scholar 

    70.
    Chondronikola, M. et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 63, 4089–4099 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    71.
    Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).
    CAS  PubMed  PubMed Central  Google Scholar  More