More stories

  • in

    Few keystone plant genera support the majority of Lepidoptera species

    Data collection
    This study uses a compiled data set that includes 12,072 native Lepidoptera species, 2079 native plant genera, and 24,037 different host plant-native Lepidoptera interactions from across the contiguous United States. From these data we extracted the plant information of 83 counties and a Lepidoptera list for the corresponding 25 states. The full dataset will be publicly available in a forthcoming data manuscript.
    Lepidoptera range and host plant data
    The Lepidoptera species data were compiled from historic citable sources (Supplementary Data 6) of range and host plant records. We originally compiled a similar list for the Mid-Atlantic region29. This dataset was updated to include more states and counties to include on the National Wildlife Federation website48. Non-plant host records (e.g., detriphagous, algae, fungi, lichen, and insect predators) are included, as well as Lepidoptera without known host plant associations, but not considered in this analysis. Plant ranges are to the county, Lepidoptera ranges are to state, and host plant-Lepidoptera records are relationships between a plant genus and Lepidoptera species. Plant genus was included as the unit of interaction because data on Lepidoptera- host plant associations are most accurate and available at the genus level. Although more specific data are occasionally available (e.g., Lepidoptera records to plant species), we limited our analysis to the genus scale in order to make equitable inferences across the geographic and ecological scope of this analysis.
    Plant distribution data
    The current list uses the Biota of North America Program49 (BONAP) as its major source for plant nomenclature. We used the BONAP database as our source for plant distributions because it specifies North American plant ranges that currently occur beyond their historic native range due to anthropogenic and natural expansion (e.g. Osage orange, Maclura pomifera).
    Using the BONAP, a county-level survey was made for each state used in this study. Every county within those states was surveyed and BONAP records include records from adjacent counties. We classified plants into three categories; native, non-native, and adventive. A plant species is classified as adventive if it is native to North America but not in that specified region. Each plant genus was reviewed individually in each state. Genus records that fell entirely in one category resulted in all county records being designated that category. Any plant genus that had species that fell in two or more categories was examined county by county, with adjacent records being noted but not included. The state records for each plant genus are labeled in various combinations of the three categories. County-level data designate a genus either containing native records, or only non-native. For our study, we focused only on native plants, excluding non-native and adventive records (except for parameterizing probabilities of host-plant switching, see below for details).
    Eighty-three counties in 25 states (Alabama, Arizona, Arkansas, California, Colorado, Delaware, Florida, Georgia, Idaho, Illinois, Kansas, Maine, Massachusetts, Michigan, Minnesota, Montana, New York, North Dakota, Ohio, Oregon, Pennsylvania, South Carolina, Tennessee, Texas, and Utah) were examined. At least three counties in each state (except Delaware) were used. Two counties from each state were selected from dissimilar ecoregions within each state. Ecoregions were determined using the Commission for Environmental Cooperation’s Ecological Regions of North America map50. For county selection we used the level 2 designation of terrestrial ecoregions (50 separate categories); however, for subsequent analyses, we used the level 1 designation (15 categories). As much as possible, counties that bordered other counties within an ecoregion were used to alleviate the issue of BONAP including records from adjoining states. At least one more county was added to meet the parameters of the latitude study and to fill out ecoregions. Up to five counties were used in some states. While the majority of counties were chosen without criteria beyond ecoregion status, Chase County KS was chosen based on its presence in the ‘South-central Semi-Arid Prairies’ ecoregion, as well as high natural grassland cover relative to other agriculturally dominated Kansas counties.
    County data
    A series of counties were selected along three primary latitude bands (Latitudes 46, 40, and 34). The latitude and longitude of each county were determined by the county seat using Google Earth. In most cases the county seat was centrally located within the state. A few county seats are not centrally located, most notably Monroe County in Florida where the county seat is Key West. We determined the land area (in km2, excluding inland, coastal, Great Lakes, and territorial sea water) for each county using information from the US Census (https://www.census.gov/quickfacts/fact/note/US/LND110210). Counties varied from 415 to 26,368 km2 with an average of 4519 ± 5598 SD.
    Lepidoptera-host plant data
    The host plant records for each Lepidoptera species include all known literature records. Not all host plant-Lepidoptera associations occur in every county, state or even the USA due to differences in plant distributions. Thus, we filtered the Lepidoptera list from each state to exclude any Lepidoptera species whose host plant did not occur in the selected county. The final dataset per county includes (1) all plant genera known to occur in the county, (2) all Lepidoptera known to use at least one plant genus that occurs in the county and (3) all host plants used by Lepidoptera that could potentially occur in the county.
    Statistical methods
    All analyses were conducted using program R, Version 3.5.151.
    Distribution analysis
    We first determined what distribution best fit our data in order to derive parameters that could be compared among counties. We used the package ‘goft’52 to conduct goodness of fit tests for the Exponential, Gamma, and Pareto distributions on each county separately. Functions in the ‘goft’ package use parametric bootstrap tests for the null hypothesis that a distribution fits a tested distribution. We tested each county (n = 83) and each distribution type (n = 3) separately. Using the distribution that best fit our datasets, we then used the function ‘fitdistr’ from the ‘MASS’ package53 to use maximum likelihood fitting to obtain parameters (e.g., shape α and scale θ) for the Plant-Lepidoptera distributions for each county separately.
    We then tested for differences in the distribution of caterpillar richness among plants by county-level diversity and location metrics. For each county, we compared the α and θ of the distribution with county plant richness, Lepidoptera richness, ecoregion, latitude, and county land area. To test whether α or θ varied by ecoregion we used an analysis of variance (ANOVA) with Tukey’s post hoc multiple comparisons of means. To test whether α or θ changed with increasing plant richness, Lepidoptera richness, or land area, we used linear regression. Based on scatter plots of the data, no nonlinear relationships were necessary.
    Network analysis
    To determine conservation targets, we identified keystone plant species24,25 using methods from Harvey et al.26. To perform this analysis, we used binary networks of host-plant caterpillar interactions. Ecological networks are ideal to determine cascading extinction rates of specialists following host plant loss54. For this analysis and our following simulation, we chose one representative county dataset from each state from our 83 available counties (25 counties total). Our method to identify target keystone species at a national scale consists of three steps.
    Species richness
    On a per-county basis, we first identified how many Lepidoptera species are recorded in the literature as using each plant genus for growth and reproduction.
    Extinction sensitivity
    We also determined the ‘extinction sensitivity’ of each plant; in other words, how many Lepidoptera species are at risk of extirpation with the loss of a host plant? In our context, the sensitivity means “specialization”, caterpillars that use only one genus of the plant are considered especially sensitive to the removal of that plant. We modified the “nb.extinct” function from Harvey et al.26 so that we could calculate the number of extinct herbivores following the removal of a plant. This function was repeated for each county to acquire a number of species that were specialists to each host plant.
    Network stability
    Then we used a network-based approach to assess the effect of each plant genus on network stability. We used a binary matrix where each record of a caterpillar on a host plant indicates the existence of an interaction. The results given from a binary interaction network are correlated with those from a network weighted by abundance55. Here, the community stability index represents the minimum interactions required for the system to be stable where smaller values are the most stable, i.e., the more resilient a network is to disturbance, and large values are the most unstable. We calculated the stability index as the real part of the dominant eigenvalue of a Jacobian matrix following methods from Sauve et al.27 (see Appendix 1 in ref. 27 for definition and details). To acquire baseline stability, we conducted 175 iterations and took the median value. We determined that 175 was the minimum number of iterations needed to acquire a stability value ± 0.001 resolution using simulations on test datasets. For this analysis we only considered woody plants in our analysis because (1) woody plants tend to host the most diverse caterpillar communities29 and (2) computation time to include all plant genera was prohibitive.
    To quantify the effect of each plant on total network stability, we reran the analysis, iteratively removing each plant genus and then recalculating the stability26. Then we subtracted the new stability values from baseline stability to find the median change when each plant was removed where negative values indicate reductions in network stability and positive values indicate increases. We then multiplied the stability value by −1 so that increases in this metric indicated an increase in a plant’s importance to stability to make this value comparable in direction to network structure and extinction sensitivity (i.e., increases in Lepidoptera diversity and # of specialist species).
    Standardizing results across counties
    For each analysis (step 1–3) we scaled our final values from 0–1 using this equation for each plant in each county separately:

    $$frac{{{mathrm{x}} + left| {{mathrm{minimum}}}; {{mathrm{x}}} right|}}{{{mathrm{maximum}}; {mathrm{x}} + left| {{mathrm{minimum}}}; {{mathrm{x}}} right|}}.$$
    (1)

    We then took the mean of our three values to obtain a final ‘score’ for each plant genus per county. Finally, we identified which plant genera had the highest values over all the counties by plotting the means for each plant genera (n = 288) and assessing outliers (values that were 1.5× the interquartile range).
    Field-based host plant-caterpillar interaction data
    Field sampling
    To compare the results from the network analysis on literature-based data collection with results from field-based data collection, we used caterpillar interactions recorded from native host plants from Richard et al.56 (hereafter: Mid-Atlantic dataset). Caterpillar surveys were conducted in 2011 within 8 hedgerows in New Castle County, DE and Cecil County, MD. This dataset contains plants surveyed in both native- ( >95% native plant biomass, n = 4) and nonnative-dominated ( >75% nonnative plant biomass, n = 4) hedgerows. Sites were all located within Mid-atlantic decidous piedmont forest, and were separated by at least 100 m.
    In June–July, an observer walked a 100 m transect on days in which foliage was not wet to collect caterpillars in each site. Observers sampled all caterpillars using the total search approach57 to methodically inspect leaves, twigs, and branches of all woody plants within a 2-m3 area along the transect. Each search was conducted for 5 m every 2 m along the 100 m transect. In total, each hedgerow treatment was searched for a total of 1000 min in both June and July. All caterpillars were identified to species or morphospecies using Wagner57, Wagner et al.58, and various web sources. Caterpillars that could not be identified in the field were measured and then brought to the lab to be reared to adulthood for later identification using the literature and the University of Delaware Insect Reference collection.
    Data management and analysis
    Because our network analysis was based on native woody plant genera, we excluded all non-native plant genera in the Mid-Atlantic dataset. We calculated the number of times each plant was searched and excluded all plant species that were searched 1 chosen host plant) and total interaction richness supported (i.e. all interactions between a plant and a caterpillar consumer).
    Host-plant switching
    We also included the potential for host plant switching by including a probability of using plants not recorded in the host plant literature. We calculated the probability of random host plant switching as:

    $${P}_{{mathrm{ic}}}left( {{mathrm{host plant shift}}} right) = frac{{{E}_{{mathrm{ic}}}}}{{{N}_{mathrm{c}} – {H}_{{mathrm{ic}}}}} * {N},$$
    (2)

    where Pic is the probability of host plant shifting by Lepidoptera species i in county c, Eic is the proportion of non-native plants used by Lepidoptera species i in county c, Nc is the number of native host plants in county c, Hic is the number of total native host plants used by Lepidoptera species i in county c, and N is the total number of plants included in the simulation (from 1 to 50). This equation gives the probability that Lepidoptera species i in county c shifted to at least one of N plants used in the simulation. Using this probability, we used the sample function in R to predict whether any of the possible Lepidoptera species were included or not in each iteration and added each unique species to those included from known hosts.
    Simulation output
    For each county, we iterated these scenarios over 100 iterations with random draws of plant genera and keystone genera. We chose 100 iterations for each county to accurately estimate means while maintaining computational efficiency. To standardize across counties, we calculated the percent of Lepidoptera supported out of all potential phytophagous Lepidoptera (for woody plants and herbaceous plants separately) and percent interactions in each iteration. For each county and iteration, we plotted the median value. Simulations were run for woody and herbaceous plants separately.
    Reporting summary
    Further information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Multi-level analysis of reproduction in an Antarctic midge identifies female and male accessory gland products that are altered by larval stress and impact progeny viability

    1.
    Convey, P. & Block, W. Antarctic diptera: Ecology, physiology and distribution. Eur. J. Entomol. 93, 1–14 (1996).
    Google Scholar 
    2.
    Sugg, P., Edwards, J. S. & Baust, J. Phenology and life history of Belgica antarctica, an Antarctic midge (Diptera: Chironomidae). Ecol. Entomol. 8, 105–113 (1983).
    Article  Google Scholar 

    3.
    Usher, M. B. & Edwards, M. A dipteran from south of the Antarctic circle: Belgica antarctica (Chironomidae) with a description of its larva. Biol. J. Lin. Soc. 23, 19–31 (1984).
    Article  Google Scholar 

    4.
    Strong, J. Ecology of terrestrial arthropods at Palmer Station, Antarctic Peninsula. In Entomology of Antarctica (ed. Linsley-Gressitt, J.) 357–371 (American Geophysical Union, Washington DC, 1967).
    Google Scholar 

    5.
    Edwards, J. S. & Baust, J. Sex ratio and adult behaviour of the Antarctic midge Belgica antarctica (Diptera, Chironomklae). Ecol. Entomol. 6, 239–243 (1981).
    Article  Google Scholar 

    6.
    Teets, N. M. et al. Rapid cold-hardening in larvae of the Antarctic midge Belgica antarctica: Cellular cold-sensing and a role for calcium. Am. J. Physiol.-Regulat. Integr. Compar. Physiol. 294, R1938–R1946 (2008).
    CAS  Article  Google Scholar 

    7.
    Benoit, J. B. et al. Mechanisms to reduce dehydration stress in larvae of the Antarctic midge, Belgica antarctica. J. Insect Physiol. 53, 656–667 (2007).
    CAS  Article  PubMed  Google Scholar 

    8.
    Benoit, J. B., Lopez-Martinez, G., Elnitsky, M. A., Lee, R. E. & Denlinger, D. L. Dehydration-induced cross tolerance of Belgica antarctica larvae to cold and heat is facilitated by trehalose accumulation. Compar. Biochem. Physiol. A-Mol. Integr. Physiol. 152, 518–523 (2009).
    Article  CAS  Google Scholar 

    9.
    Lopez-Martinez, G. et al. Dehydration, rehydration, and overhydration alter patterns of gene expression in the Antarctic midge, Belgica antarctica. J. Compar. Physiol. B-Biochem. Syst. Environ. Physiol. 179, 481–491 (2009).
    CAS  Article  Google Scholar 

    10.
    Lopez-Martinez, G., Elnitsky, M. A., Benoit, J. B., Lee, R. E. Jr. & Denlinger, D. L. High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect Biochem. Mol. Biol. 38, 796–804 (2008).
    CAS  Article  PubMed  Google Scholar 

    11.
    Harada, E., Lee, R. E., Denlinger, D. L. & Goto, S. G. Life history traits of adults and embryos of the Antarctic midge Belgica antarctica. Polar Biol. 37, 1213–1217 (2014).
    Article  Google Scholar 

    12.
    Convey, P. How are the life history strategies of Antarctic terrestrial invertebrates influenced by extreme environmental conditions? J. Therm. Biol 22, 429–440 (1997).
    Article  Google Scholar 

    13.
    Kennedy, A. D. Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arct. Alp. Res. 25, 308–315 (1993).
    Article  Google Scholar 

    14.
    Hahn, S. & Reinhardt, K. Habitat preference and reproductive traits in the Antarctic midge Parochlus steinenii (Diptera: Chironomidae). Antarct. Sci. 18, 175–181 (2006).
    ADS  Article  Google Scholar 

    15.
    Wensler, R. J. & Rempel, J. The morphology of the male and female reproductive systems of the midge, Chironomus plumosus L.. Can. J. Zool. 40, 199–229 (1962).
    Article  Google Scholar 

    16.
    Sibley, P. K., Ankley, G. T. & Benoit, D. A. Factors affecting reproduction and the importance of adult size on reproductive output of the midge Chironomus tentans. Environ. Toxicol. Chem. 20, 1296–1303 (2001).
    CAS  Article  PubMed  Google Scholar 

    17.
    Vogt, C. et al. Effects of cadmium and tributyltin on development and reproduction of the non-biting midge Chironomus riparius (Diptera)—Baseline experiments for future multi-generation studies. J. Environ. Sci. Health A 42, 1–9 (2007).
    CAS  Article  Google Scholar 

    18.
    Clark, A. G. et al. Evolution of genes and genomes on the Drosophila phylogeny. Nature 450, 203–218 (2007).
    ADS  Article  CAS  PubMed  Google Scholar 

    19.
    Ravi-Ram, K. & Wolfner, M. F. Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. Integr. Compar. Biol. 47, 427–445 (2007).
    CAS  Article  Google Scholar 

    20.
    McGraw, L. A., Clark, A. G. & Wolfner, M. F. Post-mating gene expression profiles of female Drosophila melanogaster in response to time and to four male accessory gland proteins. Genetics 179, 1395–1408 (2008).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    21.
    Avila, F. W., Sirot, L. K., LaFlamme, B. A., Rubinstein, C. D. & Wolfner, M. F. Insect seminal fluid proteins: Identification and function. Annu. Rev. Entomol. 56, 21–40 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    22.
    Benoit, J. B., Attardo, G. M., Baumann, A. A., Michalkova, V. & Aksoy, S. Adenotrophic viviparity in tsetse flies: Potential for population control and as an insect model for lactation. Annu. Rev. Entomol. 60, 351–371 (2015).
    CAS  Article  PubMed  Google Scholar 

    23.
    Lee, K. P. et al. Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proc. Natl. Acad. Sci. USA 105, 2498–2503 (2008).
    ADS  CAS  Article  PubMed  Google Scholar 

    24.
    Polak, M. et al. Nutritional geometry of paternal effects on embryo mortality. Proc. R. Soc. B 284, 20171492 (2017).
    Article  CAS  PubMed  Google Scholar 

    25.
    Papa, F. et al. Rapid evolution of female-biased genes among four species of Anopheles malaria mosquitoes. Genome Res. 27, 1536–1548 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Izquierdo, A. et al. Evolution of gene expression levels in the male reproductive organs of Anopheles mosquitoes. Life Sci. Allian. 2, e201800191 (2019).
    Article  Google Scholar 

    27.
    Dottorini, T. et al. A genome-wide analysis in Anopheles gambiae mosquitoes reveals 46 male accessory gland genes, possible modulators of female behavior. Proc. Natl. Acad. Sci. U.S.A. 104, 16215–16220 (2007).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    28.
    Villarreal, S. M. et al. Male contributions during mating increase female survival in the disease vector mosquito Aedes aegypti. J. Insect Physiol. 108, 1–9 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    29.
    Alfonso-Parra, C. et al. Mating-induced transcriptome changes in the reproductive tract of female Aedes aegypti. PLoS Negl. Trop. Dis. 10, e0004451 (2016).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    30.
    Meier, R., Kotrba, M. & Ferrar, P. Ovoviviparity and viviparity in the Diptera. Biol. Rev. Camb. Philos. Soc. 74, 199–258 (1999).
    Article  Google Scholar 

    31.
    Lung, O. & Wolfner, M. F. Identification and characterization of the major Drosophila melanogaster mating plug protein. Insect Biochem. Mol. Biol. 31, 543–551 (2001).
    CAS  Article  Google Scholar 

    32.
    Giglioli, M. & Mason, G. The mating plug in anopheline mosquitoes. Proc. R. Entomol. Soc. Lond. 41, 123–129 (1966).
    Google Scholar 

    33.
    Mitchell, S. N. et al. Evolution of sexual traits influencing vectorial capacity in anopheline mosquitoes. Science 347, 985–988 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    34.
    Scolari, F. et al. The spermatophore in Glossina morsitans morsitans: Insights into male contributions to reproduction. Sci. Rep. https://doi.org/10.1038/srep20334 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    35.
    Kotrba, M. Sperm transfer by spermatophore in Diptera: New results from the Diopsidae. Zool. J. Linnean Soc. 117, 305–323 (1996).
    Article  Google Scholar 

    36.
    Attardo, G. M. et al. Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biol. 20, 187 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    37.
    Rogers, D. W. et al. Molecular and cellular components of the mating machinery in Anopheles gambiae females. Proc. Natl. Acad. Sci. U.S.A. 105, 19390–19395 (2008).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    38.
    Gabrieli, P. et al. Sexual transfer of the steroid hormone 20E induces the postmating switch in Anopheles gambiae. Proc. Natl. Acad. Sci. U.S.A. 111, 16353–16358 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Thailayil, J., Magnusson, K., Godfray, H. C. J., Crisanti, A. & Catteruccia, F. Spermless males elicit large-scale female responses to mating in the malaria mosquito Anopheles gambiae. Proc. Natl. Acad. Sci. U.S.A. 108, 13677–13681 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Shutt, B., Stables, L., Aboagye-Antwi, F., Moran, J. & Tripet, F. Male accessory gland proteins induce female monogamy in anopheline mosquitoes. Med. Vet. Entomol. 24, 91–94 (2010).
    CAS  Article  PubMed  Google Scholar 

    41.
    Dixon, S. M., Coyne, J. A. & Noor, M. A. The evolution of conspecific sperm precedence in Drosophila. Mol. Ecol. 12, 1179–1184 (2003).
    Article  PubMed  Google Scholar 

    42.
    Price, C. S. Conspecific sperm precedence in Drosophila. Nature 388, 663 (1997).
    ADS  CAS  Article  PubMed  Google Scholar 

    43.
    Gwynne, D. T. Male mating effort, confidence of paternity, and insect sperm competition. In Sperm Competition and the Evolution of Animal Mating Systems (ed. Smith, R.) 117 (Elsevier, Hoboken, 2012).
    Google Scholar 

    44.
    Hopkins, B. R. et al. Divergent allocation of sperm and the seminal proteome along a competition gradient in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 116, 17925–17933 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    45.
    Hopkins, B. R., Sepil, I. & Wigby, S. Seminal fluid. Curr. Biol. 27, R404–R405 (2017).
    CAS  Article  PubMed  Google Scholar 

    46.
    Degrugillier, M. E. In vitro release of house fly, Musca domestica L. (Diptera: Muscidae), acrosomal material after treatments with secretion of female accessory gland and micropyle cap substance. Int. J. Insect Morphol. Embryol. 14, 381–391 (1985).
    Article  Google Scholar 

    47.
    Leopold, R. A. & Degrugillier, M. E. Sperm penetration of housefly eggs: Evidence for involvement of a female accessory secretion. Science 181, 555–557 (1973).
    ADS  CAS  Article  PubMed  Google Scholar 

    48.
    Lococo, D. & Huebner, E. The ultrastructure of the female accessory gland, the cement gland, in the insect Rhodnius prolixus. Tissue Cell 12, 557–580 (1980).
    CAS  Article  PubMed  Google Scholar 

    49.
    Marchini, D., Bernini, L. F., Marri, L., Giordano, P. C. & Dallai, R. The female reproductive accessory glands of the medfly Ceratitis capitata: antibacterial activity of the secretion fluid. Insect Biochem. 21, 597–605 (1991).
    CAS  Article  Google Scholar 

    50.
    Rosetto, M. et al. A mammalian-like lipase gene is expressed in the female reproductive accessory glands of the sand fly Phlebotomus papatasi (Diptera, Psychodidae). Insect Mol. Biol. 12, 501–508 (2003).
    CAS  Article  PubMed  Google Scholar 

    51.
    Poiani, A. Complexity of seminal fluid: A review. Behav. Ecol. Sociobiol. 60, 289–310 (2006).
    Article  Google Scholar 

    52.
    Lung, O., Kuo, L. & Wolfner, M. F. Drosophila males transfer antibacterial proteins from their accessory gland and ejaculatory duct to their mates. J. Insect Physiol. 47, 617–622 (2001).
    CAS  Article  PubMed  Google Scholar 

    53.
    Kaiwa, N. et al. Symbiont-supplemented maternal investment underpinning host’s ecological adaptation. Curr. Biol. 24, 2465–2470 (2014).
    CAS  Article  PubMed  Google Scholar 

    54.
    Kaulenas, M. Insect Accessory Reproductive Structures: Function, Structure, and Development (Springer, Berlin, 2012).
    Google Scholar 

    55.
    Benoit, J., Kölliker, M. & Attardo, G. Putting invertebrate lactation in context. Science  363, 593–593 (2019).
    ADS  CAS  Article  Google Scholar 

    56.
    Masci, V. L. et al. Reproductive biology in Anophelinae mosquitoes (Diptera, Culicidae): Fine structure of the female accessory gland. Arthropod. Struct. Dev. 44, 378–387 (2015).
    Article  Google Scholar 

    57.
    Kelley, J. L. et al. Compact genome of the Antarctic midge is likely an adaptation to an extreme environment. Nat. Commun. 5, 4611 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    58.
    Rosendale, A. J., Dunlevy, M. E., McCue, M. D. & Benoit, J. B. Progressive behavioural, physiological and transcriptomic shifts over the course of prolonged starvation in ticks. Mol. Ecol. 28, 49–65 (2019).
    CAS  Article  PubMed  Google Scholar 

    59.
    Raudvere, U. et al. g: Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. https://doi.org/10.1093/nar/gkz369 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    60.
    Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).
    Article  CAS  Google Scholar 

    61.
    Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    62.
    Teets, N. M. et al. Gene expression changes governing extreme dehydration tolerance in an Antarctic insect. Proc. Natl. Acad. Sci U.S.A. 109, 20744–20749 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    63.
    Telfer, W. H. & Kunkel, J. G. The function and evolution of insect storage hexamers. Annu. Rev. Entomol. 36, 205–228 (1991).
    CAS  Article  PubMed  Google Scholar 

    64.
    Burmester, T. Evolution and function of the insect hexamerins. Eur. J. Entomol. 96, 213–226 (1999).
    CAS  Google Scholar 

    65.
    Burmester, T., Massey, H. C. Jr., Zakharkin, S. O. & Benes, H. The evolution of hexamerins and the phylogeny of insects. J. Mol. Evol. 47, 93–108 (1998).
    ADS  CAS  Article  PubMed  Google Scholar 

    66.
    Swanson, W. J., Wong, A., Wolfner, M. F. & Aquadro, C. F. Evolutionary expressed sequence tag analysis of Drosophila female reproductive tracts identifies genes subjected to positive selection. Genetics 168, 1457–1465 (2004).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    67.
    Panfilio, K. A. et al. Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome. Genome Biol. 20, 64 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    68.
    Olafson, P. U. et al. Functional genomics of the stable fly, Stomoxys calcitrans, reveals mechanisms underlying reproduction, host interactions, and novel targets for pest control. BioRxiv https://doi.org/10.1101/623009 (2019).
    Article  Google Scholar 

    69.
    Parisi, M. et al. A survey of ovary-, testis-, and soma-biased gene expression in Drosophila melanogaster adults. Genome Biol. 5, R40 (2004).
    Article  PubMed  PubMed Central  Google Scholar 

    70.
    Cao, X. & Jiang, H. An analysis of 67 RNA-seq datasets from various tissues at different stages of a model insect, Manduca sexta. BMC Genomics 18, 796 (2017).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    71.
    McKenna, D. D. et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface. Genome Biol. 17, 227 (2016).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    72.
    Pauchet, Y. et al. Pyrosequencing the Manduca sexta larval midgut transcriptome: Messages for digestion, detoxification and defence. Insect Mol. Biol. 19, 61–75 (2010).
    CAS  Article  PubMed  Google Scholar 

    73.
    Venancio, T., Cristofoletti, P., Ferreira, C., Verjovski-Almeida, S. & Terra, W. The Aedes aegypti larval transcriptome: A comparative perspective with emphasis on trypsins and the domain structure of peritrophins. Insect Mol. Biol. 18, 33–44 (2009).
    CAS  Article  PubMed  Google Scholar 

    74.
    Graveley, B. R. et al. The developmental transcriptome of Drosophila melanogaster. Nature 471, 473–479 (2011).
    ADS  CAS  Article  PubMed  Google Scholar 

    75.
    Shim, J., Gururaja-Rao, S. & Banerjee, U. Nutritional regulation of stem and progenitor cells in Drosophila. Development 140, 4647–4656 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    76.
    Terashima, J. & Bownes, M. A microarray analysis of genes involved in relating egg production to nutritional intake in Drosophila melanogaster. Cell Death Differ. 12, 429 (2005).
    CAS  Article  PubMed  Google Scholar 

    77.
    Xie, T. & Spradling, A. C. Decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell 94, 251–260 (1998).
    CAS  Article  PubMed  Google Scholar 

    78.
    Newfeld, S. J., Chartoff, E. H., Graff, J. M., Melton, D. A. & Gelbart, W. M. Mothers against dpp encodes a conserved cytoplasmic protein required in DPP/TGF-beta responsive cells. Development 122, 2099–2108 (1996).
    CAS  PubMed  Google Scholar 

    79.
    Soller, M., Bownes, M. & Kubli, E. Control of oocyte maturation in sexually mature Drosophila females. Dev. Biol. 208, 337–351 (1999).
    CAS  Article  PubMed  Google Scholar 

    80.
    Qazi, M. C. B., Heifetz, Y. & Wolfner, M. F. The developments between gametogenesis and fertilization: Ovulation and female sperm storage in Drosophila melanogaster. Dev. Biol. 256, 195–211 (2003).
    Article  CAS  Google Scholar 

    81.
    Lefebvre, F. A. & Lécuyer, É. Flying the RNA nest: Drosophila reveals novel insights into the transcriptome dynamics of early development. J. Dev. Biol. 6, 5 (2018).
    Article  CAS  PubMed Central  Google Scholar 

    82.
    Kim, T. & Kim, Y. Overview of innate immunity in Drosophila. J. Biochem. Mol. Biol. 38, 121 (2005).
    CAS  PubMed  Google Scholar 

    83.
    Gilmore, T. D. Introduction to NF-κB: Players, pathways, perspectives. Oncogene 25, 6680 (2006).
    CAS  Article  PubMed  Google Scholar 

    84.
    Sosic, D. & Olson, E. N. A new twist on twist: Modulation of the NF-KappaB pathway. Cell Cycle 2, 75–77 (2003).
    Article  Google Scholar 

    85.
    Swevers, L., Raikhel, A., Sappington, T., Shirk, P. & Iatrou, K. Vitellogenesis and post-vitellogenic maturation of the insect ovarian follicle. In Comprehensive Molecular Insect Science (eds Gilbert, L. I. et al.) (Elsevier, Amsterdam, 2005).
    Google Scholar 

    86.
    Güiza, J., Barria, I., Saez, J. C. & Vega, J. L. Innexins: Expression, regulation and functions. Front. Physiol. 9, 1414 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    87.
    Bauer, R. et al. Intercellular communication: The Drosophila innexin multiprotein family of gap junction proteins. Chem. Biol. 12, 515–526 (2005).
    CAS  Article  PubMed  Google Scholar 

    88.
    Richard, M. & Hoch, M. Drosophila eye size is determined by innexin 2-dependent decapentaplegic signalling. Dev. Biol. 408, 26–40 (2015).
    CAS  Article  PubMed  Google Scholar 

    89.
    De Keuckelaere, E., Hulpiau, P., Saeys, Y., Berx, G. & Van Roy, F. Nanos genes and their role in development and beyond. Cell. Mol. Life Sci. 75, 1929–1946 (2018).
    Article  CAS  PubMed  Google Scholar 

    90.
    Quinlan, M. E. Cytoplasmic streaming in the Drosophila oocyte. Annu. Rev. Cell Dev. Biol. 32, 173–195 (2016).
    CAS  Article  PubMed  Google Scholar 

    91.
    Doyen, C. M. et al. A testis-specific chaperone and the chromatin remodeler ISWI mediate repackaging of the paternal genome. Cell Rep. 13, 1310–1318 (2015).
    CAS  Article  PubMed  Google Scholar 

    92.
    Tirmarche, S., Kimura, S., Dubruille, R., Horard, B. & Loppin, B. Unlocking sperm chromatin at fertilization requires a dedicated egg thioredoxin in Drosophila. Nat. Commun. 7, 13539 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    93.
    Loppin, B., Dubruille, R. & Horard, B. The intimate genetics of Drosophila fertilization. Open Biol. 5, 150076 (2015).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    94.
    Sato, M. & Sato, K. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334, 1141–1144 (2011).
    ADS  CAS  Article  PubMed  Google Scholar 

    95.
    DeLuca, S. Z. & O’Farrell, P. H. Barriers to male transmission of mitochondrial DNA in sperm development. Dev. Cell 22, 660–668 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    96.
    Bastock, R. & St Johnston, D. Drosophila oogenesis. Curr. Biol. 18, R1082–R1087 (2008).
    CAS  Article  PubMed  Google Scholar 

    97.
    Kaulenas, M. Structure and function of the female accessory reproductive systems. In Insect Accessory Reproductive Structures (ed. Kaulenas, M.) 33–121 (Springer, Berlin, 1992).
    Google Scholar 

    98.
    Orr-Weaver, T. L. When bigger is better: The role of polyploidy in organogenesis. Trends Genet. 31, 307–315 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    99.
    Perry, J. C., Harrison, P. W. & Mank, J. E. The ontogeny and evolution of sex-biased gene expression in Drosophila melanogaster. Mol. Biol. Evol. 31, 1206–1219 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    100.
    Vanderperre, B. et al. MPC1-like is a placental mammal-specific mitochondrial pyruvate carrier subunit expressed in postmeiotic male germ cells. J. Biol. Chem. 291, 16448–16461 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    101.
    Rato, L. et al. Metabolic regulation is important for spermatogenesis. Nat. Rev. Urol. 9, 330 (2012).
    CAS  Article  PubMed  Google Scholar 

    102.
    Ramalho-Santos, J. et al. Mitochondrial functionality in reproduction: From gonads and gametes to embryos and embryonic stem cells. Hum. Reprod. 15, 553–572 (2009).
    CAS  Google Scholar 

    103.
    Silva, J. V. et al. Amyloid precursor protein interaction network in human testis: Sentitnel proteins for male reproduction. BMC Bioinform. 16, 12 (2015).
    Article  CAS  Google Scholar 

    104.
    De Gregorio, E., Spellman, P. T., Rubin, G. M. & Lemaitre, B. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc. Natl. Acad. Sci. U.S.A. 98, 12590–12595 (2001).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    105.
    Irving, P. et al. A genome-wide analysis of immune responses in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 98, 15119–15124 (2001).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    106.
    Brucker, R. M., Funkhouser, L. J., Setia, S., Pauly, R. & Bordenstein, S. R. Insect Innate Immunity Database (IIID): An annotation tool for identifying immune genes in insect genomes. PLoS ONE 7, e45125 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    107.
    Palmer, W. J. & Jiggins, F. M. Comparative genomics reveals the origins and diversity of arthropod immune systems. Mol. Biol. Evol. 32, 2111–2129 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    108.
    Stroumbakis, N. D., Li, Z. & Tolias, P. P. A homolog of human transcription factor NF-X1 encoded by the Drosophila shuttle craft gene is required in the embryonic central nervous system. Mol. Cell. Biol. 16, 192–201 (1996).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    109.
    Malik, A. et al. Development of resistance mechanism in mosquitoes: Cytochrome P450, the ultimate detoxifier. J. Appl. Emerg. Sci. 4, 100–117 (2016).
    Google Scholar 

    110.
    Rial, D. et al. Toxicity of seabird guano to sea urchin embryos and interaction with Cu and Pb. Chemosphere 145, 384–393 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    111.
    Rinehart, J. P. et al. Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect. Proc. Natl. Acad. Sci. U.S.A. 103, 14223–14227 (2006).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    112.
    Michaud, M. R. et al. Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing and desiccation in the Antarctic midge, Belgica antarctica. J. Insect Physiol. 54, 645–655 (2008).
    Article  CAS  Google Scholar 

    113.
    Teets, N. M., Kawarasaki, Y., Lee, R. E. Jr. & Denlinger, D. L. Expression of genes involved in energy mobilization and osmoprotectant synthesis during thermal and dehydration stress in the Antarctic midge, Belgica antarctica. J. Comp. Physiol. B. 183, 189–201 (2013).
    CAS  Article  PubMed  Google Scholar 

    114.
    Lv, D. K. et al. Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 459, 39–47 (2010).
    CAS  Article  PubMed  Google Scholar 

    115.
    Zhang, J., Marshall, K. E., Westwood, J. T., Clark, M. S. & Sinclair, B. J. Divergent transcriptomic responses to repeated and single cold exposures in Drosophila melanogaster. J. Exp. Biol. 214, 4021–4029 (2011).
    Article  PubMed  Google Scholar 

    116.
    Ronges, D., Walsh, J. P., Sinclair, B. J. & Stillman, J. H. Changes in extreme cold tolerance, membrane composition and cardiac transcriptome during the first day of thermal acclimation in the porcelain crab Petrolisthes cinctipes. J. Exp. Biol. 215, 1824–1836 (2012).
    CAS  Article  PubMed  Google Scholar 

    117.
    Dunning, L. T. et al. Identification of cold-responsive genes in a New Zealand alpine stick insect using RNA-Seq. Compar. Biochem. Physiol. D Genomics Proteomics 8, 24–31 (2013).
    CAS  Article  Google Scholar 

    118.
    Lee, S.-M., Lee, S.-B., Park, C.-H. & Choi, J. Expression of heat shock protein and hemoglobin genes in Chironomus tentans (Diptera, chironomidae) larvae exposed to various environmental pollutants: A potential biomarker of freshwater monitoring. Chemosphere 65, 1074–1081 (2006).
    ADS  CAS  Article  PubMed  Google Scholar 

    119.
    Gusev, O. et al. Comparative genome sequencing reveals genomic signature of extreme desiccation tolerance in the anhydrobiotic midge. Nat. Commun. 5, 4784 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    120.
    Kaiser, T. S. et al. The genomic basis of circadian and circalunar timing adaptations in a midge. Nature 540, 69 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    121.
    Tran, D. T. & Ten Hagen, K. G. Mucin-type O-glycosylation during development. J. Biol. Chem. 288, 6921–6929 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    122.
    Tian, E. & Hagen, K. G. T. O-linked glycan expression during Drosophila development. Glycobiology 17, 820–827 (2007).
    CAS  Article  PubMed  Google Scholar 

    123.
    Zhang, L., Zhang, Y. & Ten Hagen, K. G. A mucin-type O-glycosyltransferase modulates cell adhesion during Drosophila development. J. Biol. Chem. 283, 34076–34086 (2008).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    124.
    Tran, D. T. et al. Multiple members of the UDP-GalNAc: Polypeptide N-acetylgalactosaminyltransferase family are essential for viability in Drosophila. J. Biol. Chem. 287, 5243–5252 (2012).
    CAS  Article  PubMed  Google Scholar 

    125.
    Sirot, L. K., Wong, A., Chapman, T. & Wolfner, M. F. Sexual conflict and seminal fluid proteins: A dynamic landscape of sexual interactions. Cold Spring Harbor Perspect. Biol. 7, a017533 (2015).
    Article  CAS  Google Scholar 

    126.
    Baldini, F., Gabrieli, P., Rogers, D. W. & Catteruccia, F. Function and composition of male accessory gland secretions in Anopheles gambiae: A comparison with other insect vectors of infectious diseases. Pathog. Glob. Health 106, 82–93 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    127.
    Tian, C.-B. et al. Comparative transcriptome analysis of three Bactrocera dorsalis (Diptera: Tephritidae) organs to identify functional genes in the male accessory glands and ejaculatory duct. Florida Entomol. 100, 42–51 (2017).
    Article  Google Scholar 

    128.
    Abraham, S. et al. The male ejaculate as inhibitor of female remating in two tephritid flies. J. Insect Physiol. 88, 40–47 (2016).
    CAS  Article  PubMed  Google Scholar 

    129.
    Denis, B. et al. Male accessory gland proteins affect differentially female sexual receptivity and remating in closely related Drosophila species. J. Insect Physiol. 99, 67–77 (2017).
    CAS  Article  PubMed  Google Scholar 

    130.
    Attardo, G. M. et al. Ladybird late homeodomain factor regulates lactation specific expression of milk proteins during pregnancy in the tsetse fly (Glossina morsitans). PLoS Negl. Trop. Dis. 8, e2645 (2014).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    131.
    Internation Glossina Genome Consortium. Genome sequence of the tsetse fly (Glossina morsitans): Vector of African trypanosomiasis. Science 344, 380–386 (2014).
    Article  CAS  Google Scholar 

    132.
    Larsen, W. J. Cell remodeling in the fat body of an insect. Tissue Cell 8, 73–92 (1976).
    CAS  Article  PubMed  Google Scholar 

    133.
    Keeley, L. Endocrine regulation of fat body development and function. Annu. Rev. Entomol. 23, 329–352 (1978).
    CAS  Article  Google Scholar 

    134.
    Denlinger, D. L. & Ma, W.-C. Dynamics of the pregnancy cycle in the tsetse Glossina morsitans. J. Insect Physiol. 20, 1015–1026 (1974).
    CAS  Article  PubMed  Google Scholar 

    135.
    Ma, W. C., Denlinger, D. L., Jarlfors, U. & Smith, D. S. Structural modulations in the tsetse fly milk gland during a pregnancy cycle. Tissue Cell 7, 319–330 (1975).
    CAS  Article  PubMed  Google Scholar 

    136.
    Otti, O., McTighe, A. P. & Reinhardt, K. In vitro antimicrobial sperm protection by an ejaculate-like substance. Funct. Ecol. 27, 219–226 (2013).
    Article  Google Scholar 

    137.
    Otti, O., Naylor, R. A., Siva-Jothy, M. T. & Reinhardt, K. Bacteriolytic activity in the ejaculate of an insect. Am. Nat. 174, 292–295 (2009).
    Article  PubMed  Google Scholar 

    138.
    Benoit, J. B., Lopez-Martinez, G., Elnitsky, M. A., Lee, R. E. & Denlinger, D. L. Moist habitats are essential for adults of the Antarctic midge, Belgica antarctica (Diptera: Chironomidae), to avoid dehydration. Eur. J. Entomol. 104, 9–14 (2007).
    Article  Google Scholar 

    139.
    Aguila, J. R., Hoshizaki, D. K. & Gibbs, A. G. Contribution of larval nutrition to adult reproduction in Drosophila melanogaster. J. Exp. Biol. 216, 399–406 (2013).
    Article  PubMed  Google Scholar 

    140.
    Aguila, J. R., Suszko, J., Gibbs, A. G. & Hoshizaki, D. K. The role of larval fat cells in adult Drosophila melanogaster. J. Exp. Biol. 210, 956–963 (2007).
    Article  PubMed  Google Scholar 

    141.
    Rosa, E. & Saastamoinen, M. Sex-dependent effects of larval food stress on adult performance under semi-natural conditions: Only a matter of size? Oecologia 184, 633–642 (2017).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    142.
    Hagan, R. W. et al. Dehydration prompts increased activity and blood feeding by mosquitoes. Sci. Rep. 8, 6804 (2018).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    143.
    Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    144.
    Goecks, J., Nekrutenko, A. & Taylor, J. Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11, R86 (2010).
    Article  PubMed  PubMed Central  Google Scholar 

    145.
    Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–W544 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    146.
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    147.
    da Huang, W. et al. Extracting biological meaning from large gene lists with DAVID. Curr. Protoc. Bioinform. https://doi.org/10.1002/0471250953.bi131 (2009).
    Article  Google Scholar 

    148.
    Conesa, A. et al. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).
    CAS  Article  PubMed  Google Scholar 

    149.
    Clark, N. & Maayan, A. Introduction to statistical methods for analyzing large data sets: Gene set enrichment analysis (GSEA). Sci. Signal. https://doi.org/10.1126/scisignal.2001966 (2011).
    Article  PubMed  PubMed Central  Google Scholar 

    150.
    Kim, S. et al. Genome sequencing of the winged midge, Parochlus steinenii, from the Antarctic Peninsula. GigaScience 6, 009 (2017).
    Google Scholar 

    151.
    Benoit, J. B. et al. Unique features of a global human ectoparasite identified through sequencing of the bed bug genome. Nat. Commun. 7, 10165 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    152.
    Eddy, S. R. A new generation of homology search tools based on probabilistic inference. In Genome Informatics 2009: Genome Informatics Series (eds Morishita, S. et al.) 205–211 (World Scientific, Yokohama, 2009).
    Google Scholar 

    153.
    Weirauch, M. T. & Hughes, T. A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution. In A Handbook of Transcription Factors (ed. Hughes, T. R.) 25–73 (Springer, Dordrecht, 2011).
    Google Scholar 

    154.
    Weirauch, M. T. et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158, 1431–1443 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    155.
    Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    156.
    Rosendale, A. J., Romick-Rosendale, L. E., Watanabe, M., Dunlevy, M. E. & Benoit, J. B. Mechanistic underpinnings of dehydration stress in ticks revealed through RNA-seq and metabolomics. J. Exp. Biol. 219, 1808–1819 (2016).
    Article  PubMed  Google Scholar 

    157.
    Benoit, J. B. et al. Rapid autophagic regression of the milk gland during involution is critical for maximizing tsetse viviparous reproductive output. PLoS Negl. Trop. Dis. 12, e0006204 (2018).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    158.
    Turnier, J. L. et al. Discovery of SERPINA3 as a candidate urinary biomarker of lupus nephritis activity. Rheumatology 58, 321–330 (2018).
    Article  CAS  Google Scholar 

    159.
    Heaven, M. R. et al. Systematic evaluation of data-independent acquisition for sensitive and reproducible proteomics—A prototype design for a single injection assay. J. Mass Spectrom. 51, 1–11 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    160.
    Convey, P. Aspects of the biology of the midge, Eretmoptera murphyi Schaeffer (Diptera: Chironomidae), introduced to Signy Island, maritime Antarctic. Polar Biol. 12, 653–657 (1992).
    Article  Google Scholar 

    161.
    Lefkovitch, L. The study of population growth in organisms grouped by stages. Biometrics 21, 1–18 (1965).
    Article  Google Scholar  More

  • in

    Molecular data suggest multiple origins and diversification times of freshwater gammarids on the Aegean archipelago

    1.
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853 (2000).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 
    2.
    Whittaker, R. J. & Fernández-Palacios, J. M. Island Biogeography: Ecology, Evolution, and Conservation (Oxford University Press, Oxford, 2007).
    Google Scholar 

    3.
    Poulakakis, N. et al. A review of phylogeographic analyses of animal taxa from the Aegean and surrounding regions. J. Zool. Syst. Evol. Res. 53, 18–32 (2015).
    Article  Google Scholar 

    4.
    4Woodward, J. The Physical Geography of the Mediterranean. Vol. 8 (Oxford University Press on Demand, 2009).

    5.
    De Figueroa, J. M. T., López-Rodríguez, M. J., Fenoglio, S., Sánchez-Castillo, P. & Fochetti, R. Freshwater biodiversity in the rivers of the Mediterranean Basin. Hydrobiologia 719, 137–186 (2013).
    Article  Google Scholar 

    6.
    Triantis, K. A. & Mylonas, M. Greek islands biology. In Encyclopedia of Islands (eds Gillespie, R. & Glague, D. A.) 388–392 (University of California Press, Berkeley, CA, 2009).
    Google Scholar 

    7.
    Meulenkamp, J. The Neogene in the southern Aegean area. Opera Bot. 30, 5–12 (1971).
    Google Scholar 

    8.
    van der Geer, A., Dermitzakis, M. & de Vos, J. Crete before the Cretans: The reign of dwarfs. Pharos 13, 121–132 (2006).
    Google Scholar 

    9.
    9Dermitzakis, M. & Papanikolaou, D. In Annales geologiques des pays helleniques. 245–289.

    10.
    Perissoratis, C. & Conispoliatis, N. The impacts of sea-level changes during latest Pleistocene and Holocene times on the morphology of the Ionian and Aegean seas (SE Alpine Europe). Mar. Geol. 196, 145–156 (2003).
    ADS  Article  Google Scholar 

    11.
    MacNeil, C., Dick, J. T. & Elwood, R. W. The trophic ecology of freshwater Gammarus spp. (Crustacea: Amphipoda): Problems and perspectives concerning the functional feeding group concept. Biol. Rev. 72, 349–364 (1997).
    Article  Google Scholar 

    12.
    Kelly, D. W., Dick, J. T. & Montgomery, W. I. The functional role of Gammarus (Crustacea, Amphipoda): Shredders, predators, or both?. Hydrobiologia 485, 199–203 (2002).
    Article  Google Scholar 

    13.
    Bilton, D. T., Freeland, J. R. & Okamura, B. Dispersal in freshwater invertebrates. Annu. Rev. Ecol. Syst. 32, 159–181 (2001).
    Article  Google Scholar 

    14.
    Hupało, K., Mamos, T., Wrzesińska, W. & Grabowski, M. First endemic freshwater Gammarus from Crete and its evolutionary history—An integrative taxonomy approach. PeerJ 6, e4457 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    15.
    Karaman, G. S. & Pinkster, S. Freshwater Gammarus species from Europe, North Africa and Adjacent Regions of Asia (Crustacea-Amphipoda).: Part I. Gammarus pulex-Group and Related Species. Bijdragen tot de Dierkunde 47, 1–97 (1977).
    Article  Google Scholar 

    16.
    Karaman, G. S. & Pinkster, S. Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda): Part II. Gammarus roeseli-group and related species. Bijdragen tot de Dierkunde 47, 165–196 (1977).
    Article  Google Scholar 

    17.
    Karaman, G. S. & Pinkster, S. Freshwater Gammarus Species from Europe, North Africa and Adjacent Regions of Asia (Crustacea-Amphipoda).: Part III. Gammarus balcanicus-Group and Related Species. Bijdragen tot de Dierkunde 57, 207–260 (1987).
    Article  Google Scholar 

    18.
    Pinkster, S. A revision of the genus Echinogammarus Stebbing, 1899 with some notes on related genera (Crustacea, Amphipoda). Memorie del Museo Civico di Storia Naturale (IIa serie) Sezione Scienze della Vita (A. Biologia) 10, 1–183 (1993).
    Google Scholar 

    19.
    Copilaş-Ciocianu, D. & Petrusek, A. The southwestern Carpathians as an ancient centre of diversity of freshwater gammarid amphipods: Insights from the Gammarus fossarum species complex. Mol. Ecol. 24, 3980–3992 (2015).
    Article  PubMed  Google Scholar 

    20.
    Copilaş-Ciocianu, D. & Petrusek, A. Phylogeography of a freshwater crustacean species complex reflects a long-gone archipelago. J. Biogeogr. 44, 421–432 (2017).
    Article  Google Scholar 

    21.
    Grabowski, M., Mamos, T., Bącela-Spychalska, K., Rewicz, T. & Wattier, R. A. Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread Balkan freshwater amphipod. PeerJ 5, e3016 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    22.
    Grabowski, M., Wysocka, A. & Mamos, T. Molecular species delimitation methods provide new insight into taxonomy of the endemic gammarid species flock from the ancient Lake Ohrid. Zool. J. Linn. Soc. 181, 272–285 (2017).
    Google Scholar 

    23.
    Hou, Z., Sket, B. & Li, S. Phylogenetic analyses of Gammaridae crustacean reveal different diversification patterns among sister lineages in the Tethyan region. Cladistics 30, 352–365 (2014).
    Article  Google Scholar 

    24.
    Katouzian, A.-R. et al. Drastic underestimation of amphipod biodiversity in the endangered Irano-Anatolian and Caucasus biodiversity hotspots. Sci. Rep. 6, 22507 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    25.
    Mamos, T., Wattier, R., Burzyński, A. & Grabowski, M. The legacy of a vanished sea: A high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Mol. Ecol. 25, 795–810 (2016).
    Article  PubMed  Google Scholar 

    26.
    Mamos, T., Wattier, R., Majda, A., Sket, B. & Grabowski, M. Morphological vs molecular delineation of taxa across montane regions in Europe: The case study of Gammarus balcanicus Schäferna, (Crustacea: Amphipoda). J. Zool. Syst. Evol. Res. 52, 237–248 (2014).
    Article  Google Scholar 

    27.
    Hou, Z., Sket, B., Fišer, C. & Li, S. Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proc. Natl. Acad. Sci. 108, 14533–14538 (2011).
    ADS  CAS  Article  PubMed  Google Scholar 

    28.
    Özbek, M. & Özkan, N. Gökçeada içsularının Amphipoda (Crustacea: Malacostraca) faunası Amphipoda (Crustacea: Malacostraca) fauna of the inland-waters of Gökçeada Island. Ege J. Fish. Aquat. Sci. 34, 63–67 (2017).
    Google Scholar 

    29.
    Hillis, D. M., Moritz, C., Mable, B. K. & Olmstead, R. G. Molecular systematics Vol. 23 (Sinauer Associates, Sunderland, 1996).
    Google Scholar 

    30.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    CAS  Article  PubMed  Google Scholar 

    31.
    Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    32.
    Ratnasingham, S. & Hebert, P. D. BOLD: The Barcode of Life Data System (https://www.barcodinglife.org). Molecular ecology notes 7, 355–364 (2007).

    33.
    Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, automatic barcode gap discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).
    CAS  Article  PubMed  Google Scholar 

    34.
    Monaghan, M. T. et al. Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Syst. Biol. 58, 298–311 (2009).
    CAS  Article  PubMed  Google Scholar 

    35.
    Pons, J. et al. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 55, 595–609 (2006).
    Article  PubMed  Google Scholar 

    36.
    Kapli, P. et al. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33, 1630–1638 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    37.
    Fourment, M. & Gibbs, M. J. PATRISTIC: A program for calculating patristic distances and graphically comparing the components of genetic change. BMC Evol. Biol. 6, 1 (2006).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Lefébure, T., Douady, C., Gouy, M. & Gibert, J. Relationship between morphological taxonomy and molecular divergence within Crustacea: Proposal of a molecular threshold to help species delimitation. Mol. Phylogenet. Evol. 40, 435–447 (2006).
    Article  CAS  Google Scholar 

    39.
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
    CAS  Article  Google Scholar 

    40.
    Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 42 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    41.
    Xia, X. DAMBE7: New and improved tools for data analysis in molecular biology and evolution. Mol. Biol. Evol. 35, 1550–1552 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    42.
    Xia, X., Xie, Z., Salemi, M., Chen, L. & Wang, Y. An index of substitution saturation and its application. Mol. Phylogenet. Evol. 26, 1–7 (2003).
    CAS  Article  PubMed  Google Scholar 

    43.
    Lanfear, R., Calcott, B., Ho, S. Y. & Guindon, S. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).
    CAS  Article  PubMed  Google Scholar 

    44.
    Bouckaert, R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e10003537 (2014).

    45.
    Baele, G., Li, W. L. S., Drummond, A. J., Suchard, M. A. & Lemey, P. Accurate model selection of relaxed molecular clocks in Bayesian phylogenetics. Mol. Biol. Evol. 30, 239–243 (2012).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Drummond, A. J., Ho, S. Y., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).

    47.
    Wysocka, A. et al. A tale of time and depth: Intralacustrine radiation in endemic Gammarus species flock from the ancient Lake Ohrid. Zool. J. Linn. Soc. 167, 345–359 (2013).
    Article  Google Scholar 

    48.
    Wysocka, A. et al. Origin of the Lake Ohrid gammarid species flock: Ancient local phylogenetic lineage diversification. J. Biogeogr. 41, 1758–1768 (2014).
    Article  Google Scholar 

    49.
    Cristescu, M. E., Hebert, P. D. & Onciu, T. M. Phylogeography of Ponto-Caspian crustaceans: A benthic–planktonic comparison. Mol. Ecol. 12, 985–996 (2003).
    CAS  Article  PubMed  Google Scholar 

    50.
    Nahavandi, N., Ketmaier, V., Plath, M. & Tiedemann, R. Diversification of Ponto-Caspian aquatic fauna: Morphology and molecules retrieve congruent evolutionary relationships in Pontogammarus maeoticus (Amphipoda: Pontogammaridae). Mol. Phylogenet. Evol. 69, 1063–1076 (2013).
    Article  PubMed  Google Scholar 

    51.
    Macdonald Iii, K. S., Yampolsky, L. & Duffy, J. E. Molecular and morphological evolution of the amphipod radiation of Lake Baikal. Mol. Phylogenet. Evol. 35, 323–343 (2005).
    Article  CAS  Google Scholar 

    52.
    Mats, V., Shcherbakov, D. Y. & Efimova, I. Late Cretaceous-Cenozoic history of the Lake Baikal depression and formation of its unique biodiversity. Stratigr. Geol. Correl. 19, 404 (2011).
    ADS  Article  Google Scholar 

    53.
    Sherbakov, D. Y. On the phylogeny of Lake Baikal amphipods in the light of mitochondrial and nuclear DNA sequence data. Crustaceana 72, 911–919 (1999).
    Article  Google Scholar 

    54.
    Copilaş-Ciocianu, D., Sidorov, D. & Gontcharov, A. Adrift across tectonic plates: Molecular phylogenetics supports the ancient Laurasian origin of old limnic crangonyctid amphipods. Organ. Divers. Evol. 19, 191–207 (2019).
    Article  Google Scholar 

    55.
    Sigovini, M., Keppel, E. & Tagliapietra, D. Open Nomenclature in the biodiversity era. Methods Ecol. Evol. 7(10), 1217–1225 (2016).
    Article  Google Scholar 

    56.
    Ketmaier, V., Argano, R. & Caccone, A. Phylogeography and molecular rates of subterranean aquatic stenasellid isopods with a peri-Tyrrhenian distribution. Mol. Ecol. 12, 547–555 (2003).
    CAS  Article  PubMed  Google Scholar 

    57.
    Knowlton, N. & Weigt, L. A. New dates and new rates for divergence across the Isthmus of Panama. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 2257–2263 (1998).
    Article  Google Scholar 

    58.
    Papadopoulou, A., Anastasiou, I. & Vogler, A. P. Revisiting the insect mitochondrial molecular clock: The mid-Aegean trench calibration. Mol. Biol. Evol. 27, 1659–1672 (2010).
    CAS  Article  PubMed  Google Scholar 

    59.
    Hamilton, C. A., Hendrixson, B. E., Brewer, M. S. & Bond, J. E. An evaluation of sampling effects on multiple DNA barcoding methods leads to an integrative approach for delimiting species: A case study of the North American tarantula genus Aphonopelma (Araneae, Mygalomorphae, Theraphosidae). Mol. Phylogenet. Evol. 71, 79–93 (2014).
    CAS  Article  PubMed  Google Scholar 

    60.
    Fontaneto, D., Flot, J.-F. & Tang, C. Q. Guidelines for DNA taxonomy, with a focus on the meiofauna. Mar. Biodivers.s 45, 433–451 (2015).
    Article  Google Scholar 

    61.
    Yu, G., Rao, D., Matsui, M. & Yang, J. Coalescent-based delimitation outperforms distance-based methods for delineating less divergent species: The case of Kurixalus odontotarsus species group. Sci. Rep. 7, 1–13 (2017).
    Article  CAS  Google Scholar 

    62.
    De Queiroz, K. Species concepts and species delimitation. Syst. Biol. 56, 879–886 (2007).
    Article  PubMed  Google Scholar 

    63.
    Lagrue, C. et al. Confrontation of cryptic diversity and mate discrimination within G ammarus pulex and G ammarus fossarum species complexes. Freshw. Biol. 59, 2555–2570 (2014).
    Article  Google Scholar 

    64.
    Costa, F., Henzler, C., Lunt, D., Whiteley, N. & Rock, J. Probing marine Gammarus (Amphipoda) taxonomy with DNA barcodes. Syst. Biodivers. 7, 365–379 (2009).
    Article  Google Scholar 

    65.
    Karaman, G. New data on some gammaridean amphipods (Amphipoda, Gammaridea) from Palearctic. Glasnik Sect. Natl. Sci. Monten Acad. Sci. Arts 15, 20–37 (2003).
    Google Scholar 

    66.
    Steininger, F. F. & Rögl, F. Paleogeography and palinspastic reconstruction of the Neogene of the Mediterranean and Paratethys. Geol. Soc. Lond. Spec. Publ. 17, 659–668 (1984).
    ADS  Article  Google Scholar 

    67.
    Lefébure, T. et al. Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments. Mol. Ecol. 15, 1797–1806 (2006).
    Article  CAS  PubMed  Google Scholar 

    68.
    Sworobowicz, L. et al. Revisiting the phylogeography of Asellus aquaticus in Europe: Insights into cryptic diversity and spatiotemporal diversification. Freshw. Biol. 60, 1824–1840 (2015).
    Article  Google Scholar 

    69.
    Shih, H. T., Yeo, D. C. & Ng, P. K. The collision of the Indian plate with Asia: Molecular evidence for its impact on the phylogeny of freshwater crabs (Brachyura: Potamidae). J. Biogeogr. 36, 703–719 (2009).
    Article  Google Scholar 

    70.
    Jesse, R., Grudinski, M., Klaus, S., Streit, B. & Pfenninger, M. Evolution of freshwater crab diversity in the Aegean region (Crustacea: Brachyura: Potamidae). Mol. Phylogenet. Evol. 59, 23–33 (2011).
    Article  PubMed  Google Scholar 

    71.
    Szarowska, M., Osikowski, A., Hofman, S. & Falniowski, A. Do diversity patterns of the spring-inhabiting snail Bythinella (Gastropoda, Bythinellidae) on the Aegean Islands reflect geological history?. Hydrobiologia 765, 225–243 (2016).
    Article  Google Scholar 

    72.
    Trontelj, P., Machino, Y. & Sket, B. Phylogenetic and phylogeographic relationships in the crayfish genus Austropotamobius inferred from mitochondrial COI gene sequences. Mol. Phylogenet. Evol. 34, 212–226 (2005).
    CAS  Article  PubMed  Google Scholar 

    73.
    Szarowska, M., Hofman, S., Osikowski, A. & Falniowski, A. Divergence preceding island formation among Aegean insular populations of the freshwater snail genus Pseudorientalia (Caenogastropoda: Truncatelloidea). Zoolog. Sci. 31, 680–686 (2014).
    Article  PubMed  Google Scholar 

    74.
    Previšić, A., Walton, C., Kučinić, M., Mitrikeski, P. T. & Kerovec, M. Pleistocene divergence of Dinaric Drusus endemics (Trichoptera, Limnephilidae) in multiple microrefugia within the Balkan Peninsula. Mol. Ecol. 18, 634–647 (2009).
    Article  CAS  PubMed  Google Scholar 

    75.
    Gonçalves, H. et al. Multilocus phylogeography of the common midwife toad, Alytes obstetricans (Anura, Alytidae): Contrasting patterns of lineage diversification and genetic structure in the Iberian refugium. Mol. Phylogenet. Evol. 93, 363–379 (2015).
    Article  PubMed  Google Scholar 

    76.
    Rachalewski, M., Banha, F., Grabowski, M. & Anastácio, P. M. Ectozoochory as a possible vector enhancing the spread of an alien amphipod Crangonyx pseudogracilis. Hydrobiologia 717, 109–117 (2013).
    Article  Google Scholar 

    77.
    Szarowska, M., Hofman, S., Osikowski, A. & Falniowski, A. Daphniola Radoman, 1973 (Caenogastropoda: Truncatelloidea) at east Aegean islands. Folia Malacologica 22 (2014).

    78.
    Hupało, K. et al. Persistence of phylogeographic footprints helps to understand cryptic diversity detected in two marine amphipods widespread in the Mediterranean basin. Mol. Phylogenet. Evol. 132, 53–66 (2019).
    Article  CAS  PubMed  Google Scholar 

    79.
    Weiss, M., Macher, J. N., Seefeldt, M. A. & Leese, F. Molecular evidence for further overlooked species within the Gammarus fossarum complex (Crustacea: Amphipoda). Hydrobiologia 721, 165–184 (2014).
    CAS  Article  Google Scholar 

    80.
    Hopkins, L. IUCN and the Mediterranean Islands: Opportunities for biodiversity conservation and sustainable use (Gland, Switzerland, International Union for Conservation of Nature, 2002).
    Google Scholar 

    81.
    QGIS Development Team. QGIS Geographic Information System. Open source geospatial foundation project. (2016).

    82.
    Popov, S. V. et al. Lithological-paleogeographic maps of paratethys: 10 maps late eocene to pliocene. Cour. Forsch Senckenberg 250, 1–46 (2004).
    Google Scholar  More

  • in

    The importance of common and the irrelevance of rare species for partition the variation of community matrix: implications for sampling and conservation

    1.
    Hutchinson, G. E. Homage to santa rosalia or why are there so many kinds of animals?. Am. Nat. 93, 145–159 (1959).
    Article  Google Scholar 
    2.
    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton University Press, Princeton, 2001).
    Google Scholar 

    3.
    Leibold, M. A. et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).
    Article  Google Scholar 

    4.
    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, Amsterdam, 2012).
    Google Scholar 

    5.
    Cottenie, K. Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett. 8, 1175–1182 (2005).
    Article  PubMed  Google Scholar 

    6.
    Dray, S., Legendre, P. & Peres-Neto, P. R. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196, 483–493 (2006).
    Article  Google Scholar 

    7.
    Leibold, M. A. & Chase, J. M. Metacommunity Ecology (Princeton University Press, Princeton, 2018).
    Google Scholar 

    8.
    Grinnell, J. Field tests of theories concerning distributional control. Am. Nat. 51, 115–128 (1917).
    Article  Google Scholar 

    9.
    Elton, C. Competition and the structure of ecological communities. J. Anim. Ecol. 15, 54–68 (1946).
    Article  Google Scholar 

    10.
    Griffith, D. A. & Peres-Neto, P. R. Spatial modeling in ecology: The flexibility of eigenfunction spatial analyses. Ecology 87, 2603–2613 (2006).
    Article  PubMed  Google Scholar 

    11.
    Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).
    Article  PubMed  Google Scholar 

    12.
    Oksanen, J. et al. Vegan: community ecology package. R package version 2.4–5. https://cran.r-project.org/web/packages/vegan/index.html (2017).

    13.
    Montag, L. F. A. et al. Contrasting associations between habitat conditions and stream aquatic biodiversity in a forest reserve and its surrounding area in the Eastern Amazon. Hydrobiologia 826, 263–277 (2019).
    CAS  Article  Google Scholar 

    14.
    Juen, L. & De Marco, P. Odonate biodiversity in terra-firme forest streamlets in Central Amazonia: On the relative effects of neutral and niche drivers at small geographical extents. Insect Conserv. Divers. 4, 265–274 (2011).
    Article  Google Scholar 

    15.
    Brasil, L. S. et al. Spatial, biogeographic and environmental predictors of diversity in Amazonian Zygoptera. Insect Conserv. Divers. 11, 174–184 (2018).
    Article  Google Scholar 

    16.
    Dambros, C. S., Morais, J. W., Azevedo, R. A. & Gotelli, N. J. Isolation by distance, not rivers, control the distribution of termite species in the Amazonian rain forest. Ecography 40, 1242–1250 (2017).
    Article  Google Scholar 

    17.
    Hepp, L. U., Landeiro, V. L. & Melo, A. S. Experimental assessment of the effects of environmental factors and longitudinal position on alpha and beta diversities of aquatic insects in a neotropical stream. Int. Rev. Hydrobiol. 97, 157–167 (2012).
    Article  Google Scholar 

    18.
    Siqueira, T. et al. Common and rare species respond to similar niche processes in macroinvertebratemetacommunities. Ecography 35, 183–192 (2012).
    Article  Google Scholar 

    19.
    Alahuhta, J. & Heino, J. Spatial extent, regional specificity and metacommunity structuring in lake macrophytes. J. Biogeogr. 40, 1572–1582 (2013).
    Article  Google Scholar 

    20.
    Heino, J. & Alahuhta, J. Elements of regional beetle faunas: Faunal variation and compositional breakpoints along climate, land cover and geographical gradients. J. Anim. Ecol. 84, 427–441 (2015).
    Article  PubMed  Google Scholar 

    21.
    Algarte, V. M., Rodrigues, L., Landeiro, V. L., Siqueira, T. & Bini, L. M. Variance partitioning of deconstructed periphyton communities: Does the use of biological traits matter?. Hydrobiologia 722, 279–290 (2014).
    Article  Google Scholar 

    22.
    Brasil, L. S., Juen, L., Giehl, N. F. S. & Cabette, H. S. R. Effect of environmental and temporal factors on patterns of rarity of ephemeroptera in stream of the braziliancerrado. Neotrop. Entomol. 46, 29–35 (2017).
    CAS  Article  PubMed  Google Scholar 

    23.
    Gaston, K. J. Valuing common species. Science 327, 154–155 (2010).
    ADS  CAS  Article  PubMed  Google Scholar 

    24.
    Gaston, K. J. The importance of being rare. Ecology 487, 46–47 (2012).
    CAS  Google Scholar 

    25.
    Lários, M. C. et al. Evidence of cross-taxon congruence in Neotropical wetlands: Importance of environmental and spatial factors. Glob. Ecol. Conserv. 12, 108–118 (2017).
    Article  Google Scholar 

    26.
    Juen, L. et al. Effects of oil palm plantations on the habitat structure and biota of streams in eastern Amazon. River Res. Appl. 32, 2081–2094 (2016).
    Article  Google Scholar 

    27.
    Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24 (1999).
    Article  Google Scholar 

    28.
    Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, New York, 2018).
    Google Scholar 

    29.
    Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    30.
    Bini, L. M., Diniz-Filho, J. A. F., Rangel, T. F., Bastos, R. P. & Pinto, M. P. Challenging Wallacean and Linnean shortfalls: Knowledge gradients and conservation planning in a biodiversity hotspot. Divers. Distrib. 12, 475–482 (2006).
    Article  Google Scholar 

    31.
    Whittaker, R. J. et al. Conservation biogeography: Assessment and prospect. Divers. Distrib. 11, 3–23 (2005).
    Article  Google Scholar 

    32.
    Crouzeilles, R., Feltran-Barbieri, R., Ferreira, M. S. & Strassburg, B. B. Hard times for the Brazilian environment. Nature ecology & evolution. 1, 1213–1213 (2017).
    Article  Google Scholar 

    33.
    Vieira, T. B. et al. A multiple hypothesis approach to explain species richness patterns in neotropical stream-dweller fish communities. PLoS ONE 13, 1–17 (2018).
    Google Scholar 

    34.
    Brasil, L. S. et al. Net primary productivity and seasonality of temperature and precipitation are predictors of the species richness of the Damselflies in the Amazon. Basic Appl. Ecol. 35, 45–53 (2019).
    Article  Google Scholar 

    35.
    Kéry, M. & Schmid, H. Monitoring programs need to take into account imperfect species detectability. Basic Appl. Ecol. 5, 65–73 (2004).
    Article  Google Scholar 

    36.
    Leitão, R. P. et al. Rare species contribute disproportionately to the functional structure of species assemblages. Proc. R. Soc. B Biol. Sci. 2838, 20160084 (2016).
    Article  Google Scholar 

    37.
    Pereira, D. F. G., Oliveira-Junior, J. M. B. & Juen, L. Environmental changes promote larger species of Odonata (Insecta) in Amazonian streams. Ecol. Ind. 98, 179–192 (2019).
    Article  Google Scholar 

    38.
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403(6772), 853 (2000).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Rodrigues, M. E. et al. Nonlinear responses in damselfly community along a gradient of habitat loss in a savanna landscape. Biol. Conserv. 194, 113–120 (2016).
    Article  Google Scholar 

    40.
    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. 4, 439–473 (2007).
    ADS  Article  Google Scholar 

    41.
    Brasil, L. S. et al. Does the damming of streams in the southern Amazon basin affect dragonfly and damselfly assemblages (Odonata: Insecta)? A preliminary study. Int. J. Odonatol. 17, 187–197 (2014).
    Article  Google Scholar 

    42.
    Lencioni, F. A. A. The Damselflies of Brazil: An Illustrated Guide the Non Coenagrionidae Families (All Print Editora, São Paulo, 2005).
    Google Scholar 

    43.
    Lencioni, F. A. A. The Damselflies of Brazil: An Illustrated Guide—Coenagrionidae (All Print Editora, São Paulo, 2006).
    Google Scholar 

    44.
    Garrison, N. & Ellenrieder, J. A. L. Louton Damselfly Genera of the New World: An Illustrated and Annotated Key to the Zygoptera University Press (Johns Hopkins, Baltimore, 2010).
    Google Scholar 

    45.
    Frissell, C. R., Liss, W. J., Warren, C. E. & Hurley, M. D. A hierarchical framework for stream habitat classification: Viewing streams in a watershed context. Environ. Manag. 10, 199–214 (1986).
    ADS  Article  Google Scholar 

    46.
    Espírito-Santo, H. M. V., Magnusson, W. E., Zuanon, J., Mendonça, F. P. & Landeiro, V. L. Seasonal variation in the composition of fish assemblages in small Amazonian forest streams: Evidence for predictable changes. Freshw. Biol. 54, 536–548 (2009).
    Article  Google Scholar 

    47.
    Uieda, V. S. & Castro, R. M. C. Coleta e fixação de peixes de riachos: Ecologia de peixes de riacho (OecologiaAustralis, Rio de Janeiro, 1999).
    Google Scholar 

    48.
    Planquette, P., Keith, P. & Bail, P. Y. L. Atlas des poissons d’eau douce de Guyane (Service du patrimoine naturel, Paris, 1996).
    Google Scholar 

    49.
    Albert JS. Species Diversity and Phylogenetic Systematics of American Knifefishes (Gymnotiformes, Teleostei). (Miscellaneous Publications of the Museum of Zoology of the University of Michigan, Michigan, 2001).

    50.
    Kaufmann, P. R., Levine, P., Robison, E. G., Seeliger, C. & Peck, D. V. Quantifying Physical Habitat in Wadeable Streams (U.S. Environmental Protection Agency, Washington, 1999).
    Google Scholar 

    51.
    Peck, D. V. et al. Invironmental Monitoring and Assessment Program-Surface Waters: Western Pilot Study Field Operations Manual for Wadeable Streams (U.S. Environmental ProtectionAgency, Washington, 2006).
    Google Scholar 

    52.
    De Marco, P. & Nobrega, C. C. Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PLoS ONE 13, 1–25 (2018).
    Google Scholar 

    53.
    Legendre, P. Spatial autocorrelation: Trouble or new paradigm?. Ecology 74, 1659–1673 (1993).
    Article  Google Scholar  More

  • in

    Audio long-read: The enigmatic organisms of the Ediacaran Period

    These bizarre ancient species are rewriting animal evolution – read by Benjamin Thompson
    Your browser does not support the audio element.
    Download MP3

    The Cambrian explosion, around 541 million years ago, has long been regarded as a pivotal point in evolutionary history, as this is when the ancient ancestors of most of today’s animals made their first appearances in the fossil record.
    Before this was a period known as the Ediacaran – a time when the world was believed to be populated by strange, simple organisms. But now, modern molecular research techniques, and some newly discovered fossils, are providing evidence that some of these organisms were actually animals, including ones with sophisticated features like legs and guts.
    This is an audio version of our feature: These bizarre ancient species are rewriting animal evolution
    Never miss an episode: Subscribe to the Nature Podcast on Apple Podcasts, Google Podcasts, Spotify or your favourite podcast app. Head here for the Nature Podcast RSS feed. More

  • in

    Author Correction: Insulin resistance in cavefish as an adaptation to a nutrient-limited environment

    Cave-adapted populations of the Mexican tetra, Astyanax mexicanus, have dysregulated blood glucose homeostasis and are insulin-resistant compared to river-adapted (‘surface’) populations. We found that multiple cave populations, including those inhabiting the Tinaja and Pachón caves, carry a mutation in the insulin receptor that leads to decreased insulin binding in vitro and contributes to hyperglycaemia. As part of the analysis that led to this conclusion, we measured fasting blood glucose levels in F2 fish derived from a cross between a surface fish homozygous for the ancestral insulin receptor allele and a cavefish homozygous for the derived allele, allowing us to correlate inheritance of the mutation with inheritance of glucose dysregulation. In this Article, we inadvertently indicated that the cavefish grandparent used in this cross was descended from the Tinaja population. However, subsequent analysis has definitively indicated that this individual actually belongs to the Pachón population. However, as both the Tinaja and Pachón populations carry the same P211L mutation in the insulin receptor, the logic of the experiment, the genotype–phenotype correlation we observed, and the conclusions of the study remain unchanged. Everything in the manuscript is still accurate, other than the name of the cave in the second and third paragraphs on page 649 of the PDF version of the original Article and in Fig. 3b and its legend. This error has not been corrected online. More

  • in

    Plant part and a steep environmental gradient predict plant microbial composition in a tropical watershed

    1.
    Zahn G, Amend AS. Foliar fungi alter reproductive timing and allocation in Arabidopsis under normal and water-stressed conditions. Fungal Ecol. 2019;41:101–6.
    Article  Google Scholar 
    2.
    Arnold AE, Engelbrecht BMJ. Fungal endophytes nearly double minimum leaf conductance in seedlings of a neotropical tree species. J Trop Ecol. 2007;23:369–72.
    Article  Google Scholar 

    3.
    Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, et al. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol. 2009;75:748–57.
    CAS  PubMed  Article  Google Scholar 

    4.
    Berg G, Köberl M, Rybakova D, Müller H, Grosch R, Smalla K. Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol Ecol. 2017;93:fix050. https://doi.org/10.1093/femsec/fix050.

    5.
    Choudoir MJ, Barberan A, Menninger HL, Dunn RR, Fierer N. Variation in range size and dispersal capabilities of microbial taxa. Ecology. 2017;99:322–34.
    Article  Google Scholar 

    6.
    Klironomos JN. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature. 2002;417:67–70.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Dini-Andreote F, Raaijmakers JM. Embracing community ecology in plant microbiome research. Trends Plant Sci. 2018;23:467–9.
    CAS  PubMed  Article  Google Scholar 

    8.
    Beilsmith K, Thoen MPM, Brachi B, Gloss AD, Khan MH, Bergelson J. Genome-wide association studies on the phyllosphere microbiome: embracing complexity in host-microbe interactions. Plant J Cell Mol Biol. 2019;97:164–81.
    CAS  Article  Google Scholar 

    9.
    Peay KG, Kennedy PG, Talbot JM. Dimensions of biodiversity in the Earth mycobiome. Nat Rev Microbiol. 2016;14:434–47.
    CAS  PubMed  Article  Google Scholar 

    10.
    Wang J, Soininen J, He J, Shen J. Phylogenetic clustering increases with elevation for microbes. Environ Microbiol Rep. 2012;4:217–26.
    PubMed  Article  Google Scholar 

    11.
    Zimmerman NB, Vitousek PM. Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. Proc Natl Acad Sci USA. 2012;109:13022–7.
    CAS  PubMed  Article  Google Scholar 

    12.
    Yang Y, Gao Y, Wang S, Xu D, Yu H, Wu L, et al. The microbial gene diversity along an elevation gradient of the Tibetan grassland. ISME J. 2014;8:430–40.
    CAS  PubMed  Article  Google Scholar 

    13.
    Shen C, Ni Y, Liang W, Wang J, Chu H. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra. Front Microbiol. 2015;6:582.

    14.
    Yao F, Yang S, Wang Z, Wang X, Ye J, Wang X, et al. Microbial taxa distribution is associated with ecological trophic cascades along an elevation gradient. Front Microbiol. 2017;8:2071.

    15.
    Na X, Xu TT, Li M, Ma F, Kardol P. Bacterial diversity in the rhizosphere of two phylogenetically closely related plant species across environmental gradients. J Soils Sediment. 2017;17:122–32.
    CAS  Article  Google Scholar 

    16.
    Jangid K, Williams MA, Franzluebbers AJ, Schmidt TM, Coleman DC, Whitman WB. Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biol Biochem. 2011;43:2184–93.
    CAS  Article  Google Scholar 

    17.
    Talbot JM, Bruns TD, Taylor JW, Smith DP, Branco S, Glassman SI, et al. Endemism and functional convergence across the North American soil mycobiome. Proc Natl Acad Sci USA. 2014;111:6341–6.
    CAS  PubMed  Article  Google Scholar 

    18.
    Oono R, Rasmussen A, Lefèvre E. Distance decay relationships in foliar fungal endophytes are driven by rare taxa: distance decay in fungal endophytes. Environ Microbiol. 2017;19:2794–805.
    CAS  PubMed  Article  Google Scholar 

    19.
    Amend AS, Cobian GM, Laruson AJ, Remple K, Tucker SJ, Poff KE, et al. Phytobiomes are compositionally nested from the ground up. PeerJ. 2019;7:e6609.
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci USA. 2018;115:E1157–65.
    CAS  PubMed  Article  Google Scholar 

    21.
    Bálint M, Tiffin P, Hallström B, O’Hara RB, Olson MS, Fankhauser JD, et al. Host genotype shapes the foliar fungal microbiome of balsam poplar (Populus balsamifera). PLoS ONE. 2013;8:e53987.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Bálint M, Bartha L, O’Hara RB, Olson MS, Otte J, Pfenninger M, et al. Relocation, high-latitude warming and host genetic identity shape the foliar fungal microbiome of poplars. Mol Ecol. 2015;24:235–48.
    PubMed  Article  CAS  Google Scholar 

    23.
    Coleman‐Derr D, Desgarennes D, Fonseca‐Garcia C, Gross S, Clingenpeel S, Woyke T, et al. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. N. Phytol. 2016;209:798–811.
    Article  CAS  Google Scholar 

    24.
    Lindow SE, Brandl MT. Microbiology of the phyllosphere. Appl Environ Microbiol. 2003;69:1875–83.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol. 2010;12:2885–93.
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Leff JW, Del Tredici P, Friedman WE, Fierer N. Spatial structuring of bacterial communities within individual Ginkgo biloba trees. Environ Microbiol. 2015;17:2352–61.
    PubMed  Article  Google Scholar 

    27.
    Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    de Souza RSC, Okura VK, Armanhi JSL, Jorrín B, Lozano N, da Silva MJ, et al. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep. 2016;6:28774.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    29.
    Wearn JA, Sutton BC, Morley NJ, Gange AC. Species and organ specificity of fungal endophytes in herbaceous grassland plants. J Ecol. 2012;100:1085–92.
    Article  Google Scholar 

    30.
    Beckers B, Op De Beeck M, Weyens N, Boerjan W, Vangronsveld J. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome. 2017;5:25.
    PubMed  PubMed Central  Article  Google Scholar 

    31.
    Desgarennes D, Garrido E, Torres-Gomez MJ, Peña-Cabriales JJ, Partida-Martinez LP. Diazotrophic potential among bacterial communities associated with wild and cultivated Agave species. FEMS Microbiol Ecol. 2014;90:844–57.
    CAS  PubMed  Article  Google Scholar 

    32.
    Fonseca-García C, Coleman-Derr D, Garrido E, Visel A, Tringe SG, Partida-Martínez LP. The cacti microbiome: interplay between habitat-filtering and host-specificity. Front Microbiol. 2016;7:150.
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Lindström ES, Langenheder S. Local and regional factors influencing bacterial community assembly. Environ Microbiol Rep. 2012;2012:1–9.
    Article  Google Scholar 

    34.
    Kembel SW, O’Connor TK, Arnold HK, Hubbell SP, Wright SJ, Green JL. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc Natl Acad Sci USA. 2014;111:13715–20.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Frank AC, Saldierna Guzmán JP, Shay JE. Transmission of bacterial endophytes. Microorganisms. 2017;5:70.
    PubMed Central  Article  CAS  Google Scholar 

    36.
    Wu Z, Raven PH, Hong D. Hibiscus tiliaceus. eFloras. St. Louis, MO: Missouri Botanical Garden & Cambridge, MA: Harvard University Herbaria; 2019. p. 287–8.

    37.
    Motooka P, Castro L, Nelson D, Nagai G, Ching L. Weeds of Hawaiʻi’s pastures and natural areas: an identification and management guide. Honolulu: University of Hawaiʻi Press; 2014.
    Google Scholar 

    38.
    Quesada T, Hughes J, Smith K, Shin K, James P, Smith J. A low-cost spore trap allows collection and real-time PCR quantification of airborne Fusarium circinatum spores. Forests. 2018;9:586.
    Article  Google Scholar 

    39.
    Smith DP, Peay KG. Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS ONE. 2014;9:e90234.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems. 2016;1:e00009–15.
    PubMed  Article  Google Scholar 

    41.
    Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol. 2010;10:189.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Rivers AR, Weber KC, Gardner TG, Liu S, Armstrong SD. ITSxpress: software to rapidly trim internally transcribed spacer sequences with quality scores for marker gene analysis. F1000Research. 2018;7:1418.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Hannon GJ. FASTX-Toolkit: FASTQ/A short-reads pre-processing tools. 2010. http://hannonlab.cshl.edu/fastx_toolkit/.

    44.
    Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Gdanetz K, Benucci GMN, Vande Pol N, Bonito G. CONSTAX: a tool for improved taxonomic resolution of environmental fungal ITS sequences. BMC Bioinforma. 2017;18:538.
    Article  Google Scholar 

    48.
    Frøslev TG, Kjøller R, Bruun HH, Ejrnæs R, Brunbjerg AK, Pietroni C, et al. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat Commun. 2017;8:1188.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:226.
    PubMed  PubMed Central  Article  Google Scholar 

    51.
    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Giambelluca TW, Shuai X, Barnes ML, Alliss RJ, Longman RJ, Miura T, et al. Evapotranspiration of Hawai’i. 2014. Final report submitted to the U.S. Army Corps of Engineers—Honolulu District, and the Commission on Water Resource Management, State of Hawai’i.

    53.
    Hijmans RJ. raster: geographic data analysis and modeling. R package v 2.9-5. 2019. https://CRAN.R-project.org/package=raster.

    54.
    Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
    Google Scholar 

    55.
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package v 2.5-5. 2019. https://CRAN.R-project.org/package=vegan.

    56.
    Guillot G, Rousset F. Dismantling the Mantel tests. Methods Ecol Evol. 2013;4:336–44.
    Article  Google Scholar 

    57.
    Dormann CF, Gruber B, Fruend J. Introducing the bipartite package: analysing ecological networks. R N. 2008;8:8–11.
    Google Scholar 

    58.
    Dormann CF, Fründ J, Blüthgen N, Gruber B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol J. 2009;2:7–24.

    59.
    Atmar W, Patterson BD. The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia. 1993;96:373–82.
    PubMed  Article  Google Scholar 

    60.
    Almeida‐Neto M, Guimarães P, Guimarães PR, Loyola RD, Ulrich W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos. 2008;117:1227–39.
    Article  Google Scholar 

    61.
    Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, et al. The soil microbiome influences grapevine-associated microbiota. mBio. 2015;6:e02527–14. https://mbio.asm.org/content/6/2/e02527-14.

    62.
    Zinger L, Amaral-Zettler LA, Fuhrman JA, Horner-Devine MC, Huse SM, Welch DBM, et al. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE. 2011;6:e24570.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Matthew W, Fraser DBG, Pauline F, Grierson BL, Kendrick GaryA. Metagenomic evidence of microbial community responsiveness to phosphorus and salinity gradients in seagrass sediments. Front Microbiol. 2018;9:1703.
    Article  Google Scholar 

    64.
    Peay KG, Schubert MG, Nguyen NH, Bruns TD. Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Mol Ecol. 2012;21:4122–36.
    PubMed  Article  Google Scholar 

    65.
    Massoni J, Bortfeld-Miller M, Jardillier L, Salazar G, Sunagawa S, Vorholt JA. Consistent host and organ occupancy of phyllosphere bacteria in a community of wild herbaceous plant species. ISME J. 2020;14:245–58.
    CAS  PubMed  Article  Google Scholar 

    66.
    Treseder KK, Maltz MR, Hawkins BA, Fierer N, Stajich JE, McGuire KL. Evolutionary histories of soil fungi are reflected in their large-scale biogeography. Ecol Lett. 2014;17:1086–93.
    PubMed  Article  Google Scholar 

    67.
    Nguyen HDT, Chabot D, Hirooka Y, Roberson RW, Seifert KA. Basidioascus undulatus: genome, origins, and sexuality. IMA Fungus. 2015;6:215–31.
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    Becraft ED, Woyke T, Jarett J, Ivanova N, Godoy-Vitorino F, Poulton N, et al. Rokubacteria: genomic giants among the uncultured bacterial phyla. Front Microbiol. 2017;8:2264.

    69.
    Meiser A, Bálint M, Schmitt I. Meta-analysis of deep-sequenced fungal communities indicates limited taxon sharing between studies and the presence of biogeographic patterns. N Phytol. 2014;201:623–35.
    CAS  Article  Google Scholar 

    70.
    Crowther TW, Maynard DS, Crowther TR, Peccia J, Smith JR, Bradford MA. Untangling the fungal niche: the trait-based approach. Front Microbiol. 2014;5:579.
    PubMed  PubMed Central  Article  Google Scholar 

    71.
    Shakya M, Gottel N, Castro H, Yang ZK, Gunter L, Labbé J, et al. A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature Populus deltoides trees. PLoS ONE. 2013;8:e76382.
    CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    The invasive butterbur contaminates stream and seepage water in groundwater wells with toxic pyrrolizidine alkaloids

    1.
    Andersen, H. C. Den grimme ælling. In Nye Eventyr. Første Bind. Første Samling (C.A. Reitzels Forlag, 1843).
    2.
    Brøndegaard, V. J. Folk og flora: dansk etnobotanik (Rosenkilde og Bagger, 1987).

    3.
    Giles, M. et al. Butterbur. J. Herb. Pharmacother. 5, 119–143 (2009).
    Google Scholar 

    4.
    Aydin, A. A., Zerbes, V., Parlar, H. & Letzel, T. The medical plant butterbur (Petasites): analytical and physiological (re)view. J. Pharm. Biomed. Anal. 75, 220–229 (2013).
    CAS  Article  PubMed  Google Scholar 

    5.
    Giversen, I., Brimer, L., & Kristiansen, B. Danmarks Vilde Lægeplanter (Gyldendal A/S, 2014).

    6.
    Asen, A. Plants of possible monastic origin, growing in the past or present, at medieval monastery grounds in Norway. In Plants and Culture: Seeds of the Cultural Heritage of Europe (ed. Morel, J.P.) 227–238 (Edipuglia, 2009).

    7.
    Solberg, S. O. More than just weeds. NordGen’s work with Cultural Relict Plants and Bernt Løjtnant’s inventories from Denmark (Nordic Genetic Resource Center, 2014).

    8.
    Thomet, O. A., Wiesmann, U. N., Blaser, K. & Simon, H. U. Differential inhibition of inflammatory effector functions by petasin, isopetasin and neopetasin in human eosinophils. Clin. Exp. Allergy 31, 1310–1320 (2001).
    CAS  Article  PubMed  Google Scholar 

    9.
    Sutherland, A. & Sweet, B. V. Butterbur: an alternative therapy for migraine prevention. Am. J. Health Syst. Pharm. 67, 705–711 (2010).
    CAS  Article  PubMed  Google Scholar 

    10.
    Benemei, S., De Logu, F., Li, Puma, S., Marone, I.M., Coppi, E., Ugolini, F., Liedtke, W., Pollastro, F., Appendino, G., Geppetti, P., Materazzi, S., Nassini, R. The anti-migraine component of butterbur extracts, isopetasin, desensitizes peptidergic nociceptors by acting on TRPA1 cation channel. Br J Pharmacol. 174, 2897–2911 (2017).

    11.
    Anderson, N. & Borlak, J. Hepatobiliary events in migraine therapy with herbs: the case of petadolex, a petasites hybridus extract. J. Clin. Med. 8, 652 (2019).
    CAS  Article  PubMed Central  Google Scholar 

    12.
    Kozlov, V., Lavrenova, G., Savlevich, E. & Bazarkina, K. Evidence-based phytotherapy in allergicrhinitis rhinitis. Clin. Phytosci. 4, 1–8 (2018).
    Article  CAS  Google Scholar 

    13.
    Avula, B., Wang, Y. H., Wang, M., Smillie, T. J. & Khan, I. A. Simultaneous determination of sesquiterpenes and pyrrolizidine alkaloids from the rhizomes of Petasites hybridus (L.) GM et Sch and dietary supplements using UPLC-UV and HPLC-TOF-MS methods. J. Pharm. Biomed. Anal. 70, 53–63 (2012).
    CAS  Article  PubMed  Google Scholar 

    14.
    Kalin, P. The common butterbur (Petasites hybridus)—portrait of a medicinal herb. Forsch Komplementarmed Klass Naturheilkd 10, 41–44 (2003).
    PubMed  PubMed Central  Google Scholar 

    15.
    Roberts, M. F. & Wink, M. Alkaloids: Biochemistry, Ecology, and Medicinal Applications (Springer, Berlin, 1998).
    Google Scholar 

    16.
    Aniszewski, T. Alkaloids: Chemistry, Biology, Ecology, and Applications 2nd edn. (Elsevier, Hoboken, 2015).
    Google Scholar 

    17.
    International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; Some Traditional Herbal Medicines, Somemycotoxins, Naphthalene and Styrene (IARC Press, Lyon, 2002).
    Google Scholar 

    18.
    Xia, Q., He, X., Ma, L., Chen, S. & Fu, P. P. Pyrrolizidine alkaloid secondary pyrrolic metabolites construct multiple activation pathways leading to DNA adduct formation and potential liver tumor initiation. Chem. Res. Toxicol. 31, 619–628 (2018).
    CAS  Article  PubMed  Google Scholar 

    19.
    Yang, L. & Stockigt, J. Trends for diverse production strategies of plant medicinal alkaloids. Nat. Prod. Rep. 27, 1469–1479 (2010).
    CAS  Article  PubMed  Google Scholar 

    20.
    Wang, T. et al. Pyrrolizidine alkaloids in honey: quantification with and without standards. Food Control 98, 227–237 (2019).
    CAS  Article  Google Scholar 

    21.
    Scholtz, S., MacMorris, L., Krogmann, F. & Auffarth, G. U. Poisons, drugs and medicine: on the use of atropine and scopolamine in medicine and ophthalmology: an historical review of their applications. J. Eye Stud. Treat. 1, 51–58 (2019).
    Google Scholar 

    22.
    Matolcsy, G., Nadasy, M. & Andriska, V. Pesticide Chemistry 32nd edn. (Elsevier, Hoboken, 1989).
    Google Scholar 

    23.
    Dembitsky, V. M., Gloriozova, T. A. & Poroikov, V. V. Naturally occurring plant isoquinoline N-oxide alkaloids: their pharmacological and SAR activities. Phytomedicine 22, 183–202 (2015).
    CAS  Article  PubMed  Google Scholar 

    24.
    Europen Food Safety Authority. Risks for human health related to the presence of pyrrolizidine alkaloids in honey, tea, herbal infusions and food supplements. EFSA Journal. https://www.efsa.europa.eu/en/efsajournal/pub/4908 (2017).

    25.
    European Medicines Agency, Committee on Herbal Medicinal Products. Public Statement on Contamination of Herbal Medicinal Products/Traditional Herbal Medicinal Products with Pyrrolizidine Alkaloids—Transitional Recommendations for Risk Management and Quality Control. https://www.ema.europa.eu/en/documents/public-statement/public-statement-contamination-herbal-medicinal-products/traditional-herbal-medicinal-products-pyrrolizidine-alkaloids_en.pdf (2016).

    26.
    López-Pacheco, I. Y. et al. Anthropogenic contaminants of high concern: existence in water resources and their adverse effects. Sci. Total Environ. 690, 1068–1088 (2019).
    ADS  Article  CAS  PubMed  Google Scholar 

    27.
    Angeles, L. F. & Aga, D. S. Catching the elusive persistent and mobile organic compounds: novel sample preparation and advanced analytical techniques. Trends Environ. Anal. Chem. 25, e00078 (2020).
    CAS  Article  Google Scholar 

    28.
    Reemtsma, T. et al. Mind the gap: persistent and mobile organic compounds—water contaminants that slip through. Environ. Sci. Technol. 50, 10308–10315 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    29.
    Furlong, E. T. et al. Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States: pharmaceuticals. Sci. Total Environ. 579, 1629–1642 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    30.
    Boxall, A. B. A. The environmental side effects of medication. EMBO Rep. 5, 1110–1116 (2004).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Gao, J. et al. Stability of alcohol and tobacco consumption biomarkers in a real rising main sewer. Water Res. 138, 19–26 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Lian, L., Yan, S., Yao, B., Chan, S. & Song, W. Photochemical transformation of nicotine in wastewater effluent. Environ. Sci. Technol. 51, 11718–11730 (2017).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    33.
    Stuart, M., Lapworth, D., Crane, E. & Hart, A. Review of risk from potential emerging contaminants in UK groundwater. Sci. Total Environ. 416, 1–21 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Turner, R. D. R., Warne, M. S., Dawes, L. A., Thompson, K. & Will, G. D. Greywater irrigation as a source of organic micro-pollutants to shallow groundwater and nearby surface water. Sci. Total Environ. 669, 570–578 (2019).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    35.
    Robertson, J. & Stevens, K. Pyrrolizidine alkaloids. Nat. Prod. Rep. 31, 1721–1788 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Rosemann, G. M., Botha, C. J. & Eloff, J. N. Distinguishing between toxic and non-toxic pyrrolizidine alkaloids and quantification by liquid chromatography–mass spectrometry. Phytochem. Lett. 8, 126–131 (2014).
    CAS  Google Scholar 

    37.
    European Medicines Agency, Committee on Herbal Medicinal Products. Public Statement on the Use of Herbal Medicinal Products Containing Toxic, Unsaturated Pyrrolizidine Alkaloids (PAs). https://www.ema.europa.eu/en/use-herbal-medicinal-products-containing-toxic-unsaturated-pyrrolizidine-alkaloids-pas (2014).

    38.
    Prakash, A. S., Pereira, T. N., Reilly, P. E. & Seawright, A. A. Pyrrolizidine alkaloids in human diet. Mutat. Res. 433, 53–67 (1999).
    Google Scholar 

    39.
    Bolechova, M., Caslavsky, J., Pospichalova, M. & Kosubova, P. UPLC-MS/MS method for determination of selected pyrrolizidine alkaloids in feed. Food Chem. 170, 265–270 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    40.
    van Egmond, H. P. Natural toxins: risks, regulations and the analytical situation in Europe. Anal. Bioanal. Chem. 378, 1152–1160 (2004).
    Article  CAS  PubMed  Google Scholar 

    41.
    Hoogenboom, L. A. P. et al. Carry-over of pyrrolizidine alkaloids from feed to milk in dairy cows. Food Addit. Contam. A 28, 359–372 (2011).
    CAS  Article  Google Scholar 

    42.
    Mattocks, A.R. Chemistry and toxicology of pyrrolizidine alkaloids. Academic Pr. (1986).

    43.
    Molyneux, R. J., Gardner, D. L., Colegate, S. M. & Edgar, J. A. Pyrrolizidine alkaloid toxicity in livestock: a paradigm for human poisoning?. Food Addit. Contam. A 28, 293–307 (2011).
    CAS  Article  Google Scholar 

    44.
    Ebmeyer, J. et al. Human CYP3A4-mediated toxification of the pyrrolizidine alkaloid lasiocarpine. Food Chem. Toxicol. 130, 79–88 (2019).
    CAS  Article  PubMed  Google Scholar 

    45.
    He, X. et al. Primary and secondary pyrrolic metabolites of pyrrolizidine alkaloids form DNA adducts in human A549 cells. Toxicol. In Vitro 54, 286–294 (2019).
    CAS  Article  PubMed  Google Scholar 

    46.
    Chen, T., Mei, N. & Fu, P. P. Genotoxicity of pyrrolizidine alkaloids. J. Appl. Toxicol. 30, 183–196 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    47.
    Huxtable, R. J. Activation and pulmonary toxicity of pyrrolizidine alkaloids. Pharmacol. Therapeut. 47, 371–389 (1990).
    CAS  Article  Google Scholar 

    48.
    McLean, E. K. The toxic actions of pyrrolizidine senecio-D alkaloids. Pharmacol. Ther. 47, 371–389 (1990).
    Google Scholar 

    49.
    Mori, H. et al. Some toxic properties of a carcinogenic pyrrolizidine alkaloid, petasitenine. J. Toxicol. Sci. 9, 143–149 (1984).
    CAS  Article  PubMed  Google Scholar 

    50.
    European Food Safety Authority. Scientific opinion on pyrrolizidine alkaloids in food and feed. EFSA J. 9, 2406 (2011).
    Article  CAS  Google Scholar 

    51.
    Wang, Y. P., Yan, J., Fu, P. P. & Chou, M. W. Human liver microsomal reduction of pyrrolizidine alkaloid N-oxides to form the corresponding carcinogenic parent alkaloid. Toxicol. Lett. 155, 411–420 (2005).
    CAS  Article  PubMed  Google Scholar 

    52.
    Yang, M. et al. Intestinal and hepatic biotransformation of pyrrolizidine alkaloid N-oxides to toxic pyrrolizidine alkaloids. Arch. Toxicol. 93, 2197–2209 (2019).
    CAS  Article  PubMed  Google Scholar 

    53.
    Chou, M. W. et al. Riddelliine N-oxide is a phytochemical and mammalian metabolite with genotoxic activity that is comparable to the parent pyrrolizidine alkaloid riddelliine. Toxicol. Lett. 145, 239–247 (2003).
    CAS  Article  PubMed  Google Scholar 

    54.
    Xia, Q., Chou, M. W., Kadlubar, F. F., Chan, P. C. & Fu, P. P. Human liver microsomal metabolism and DNA adduct formation of the tumorigenic pyrrolizidine alkaloid, riddelliine. Chem. Res. Toxicol. 16, 66–73 (2003).
    CAS  Article  PubMed  Google Scholar 

    55.
    Moreira, R., Pereira, D. M., Valentao, P. & Andrade, P. Pyrrolizidine alkaloids: chemistry, pharmacology, toxicology and food safety. Int. J. Mol. Sci. 19, 1668 (2018).
    Article  CAS  PubMed Central  Google Scholar 

    56.
    Edgar, J. A., Colegate, S. M., Boppre, M. & Molyneux, R. J. Pyrrolizidine alkaloids in food: a spectrum of potential health consequences. Food Addit. Contam. A 28, 308–324 (2011).
    CAS  Article  Google Scholar 

    57.
    International Programme on Chemical Safety (WHO). Pyrrolizidine Alkaloids. Environmental Health Criteria 80 (1988).

    58.
    European Medicines Agency. Committee on Herbal Medicinal Products (HMPC), EMA/HMPC/893108/2011 Rev. 1. Public statement on the use of herbal medicinal products containing toxic, unsaturated pyrrolizidine alkaloids (PAs) including recommendations regarding contamination of herbal medicinal products with pyrrolizidine alkaloids (2020).

    59.
    Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment (United Kingdom). COT Statement on Pyrrolizidine Alkaloids in Food (2008).

    60.
    Chen, L. H. et al. Simultaneous determination and risk assessment of pyrrolizidine alkaloids in Artemisia capillaris Thunb by UPLC-MS/MS together with chemometrics. Molecules 24, 1077 (2019).
    CAS  Article  PubMed Central  Google Scholar 

    61.
    The German Federal Institute for Risk Assessment (BfR) (in German: Bundesinstitut für Risikobewertung). Analytik und Toxizität von Pyrrolizidinalkaloiden sowie eine Einschätzung des gesundheitlichen Risikos durch deren Vorkommen in Honig (2013).

    62.
    The German Federal Institute for Risk Assessment (in German: Bundesinstitut für Risikobewertung). Updated risk assessment on levels of 1,2-unsaturated pyrrolizidine alkaloids (2020).

    63.
    The German Federal Institute for Risk Assessment (in German: Bundesinstitut für Risikobewertung). Frequently asked questions on pyrrolizidine alkaloids in foods (2020).

    64.
    Kopp, T., Abdel-Tawab, M. & Mizaikoff, B. Extracting and analyzing pyrrolizidine alkaloids in medicinal plants: a review. Toxins. 12, 320 (2020).
    CAS  Article  PubMed Central  Google Scholar 

    65.
    Smith, L. W. & Culvenor, C. C. Plant sources of hepatotoxic pyrrolizidine alkaloids. J. Nat. Prod. 44, 129–152 (1981).
    CAS  Article  PubMed  Google Scholar 

    66.
    Edgar, J. A., Roeder, E. & Molyneux, R. J. Honey from plants containing pyrrolizidine alkaloids: a potential threat to health. J. Agric. Food Chem. 50, 2719–2730 (2002).
    CAS  Article  PubMed  Google Scholar 

    67.
    Kempf, M., Reinhard, A. & Beuerle, T. Pyrrolizidine alkaloids (PAs) in honey and pollen-legal regulation of PA levels in food and animal feed required. Mol. Nutr. Food Res. 54, 158–168 (2010).
    CAS  Article  PubMed  Google Scholar 

    68.
    Dubecke, A., Beckh, G. & Lullmann, C. Pyrrolizidine alkaloids in honey and bee pollen. Food Addit. Contam. A 28, 348–358 (2011).
    CAS  Article  Google Scholar 

    69.
    Gottschalk, C. et al. Spread of Jacobaea vulgaris and occurrence of pyrrolizidine alkaloids in regionally produced honeys from Northern Germany: inter- and intra-site variations and risk assessment for special consumer groups. Toxins 12, 1–19 (2020).
    Article  CAS  Google Scholar 

    70.
    Hama, J. R. & Strobel, B. W. Pyrrolizidine alkaloids quantified in soil and water using UPLC-MS/MS. RSC Adv. 9, 30350–30357 (2019).
    CAS  Article  Google Scholar 

    71.
    Selmar, D. et al. Horizontal natural product transfer: intriguing insights into a newly discovered phenomenon. J. Agric. Food Chem. 67, 8740–8745 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    72.
    Gunthardt, B. F. et al. “Is there anybody else out there?”—First insights from a suspect screening for phytotoxins in surface water. Chimia 74, 129–135 (2020).
    PubMed  PubMed Central  Google Scholar 

    73.
    Schonsee, C. D. & Bucheli, T. D. Experimental Determination of octanol−water partition coefficients of selected natural toxins. J. Chem. Eng. 65, 1946–1953 (2020).
    CAS  Google Scholar 

    74.
    Ellegaard-Jensen, L., Horemans, B., Raes, B., Aamand, J. & Hansen, L. H. Groundwater contamination with 2,6-dichlorobenzamide (BAM) and perspectives for its microbial removal. Appl. Microbiol. Biotechnol. 101, 5235–5245 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    75.
    Stuart, M., Lapwortha, D., Cranea, E. & Hart, A. Review of risk from potential emerging contaminants in UK groundwater. Sci. Total Environ. 416, 1–21 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    76.
    Lapworth, D. J., Baran, N., Stuart, M. E. & Ward, R. S. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ. Pollut. 163, 287–303 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    77.
    Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration.

    78.
    Bucheli, T. D. Phytotoxins: environmental micropollutants of concern?. Environ. Sci. Technol. 48, 13027–13033 (2014).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    79.
    Wink, M. & Hartmann, T. Sites of enzymatic synthesis of quinolizidine alkaloids and their accumulation in Lupinus polyphyllus. Zeitschrift für Pflanzenphysiologie 102, 337–344 (1981).
    CAS  Google Scholar 

    80.
    Hama, J. R. & Strobel, B. W. Natural alkaloids from narrow-leaf and yellow lupins transfer to soil and soil solution in agricultural fields. Environ. Sci. Eur. 32, 126 (2020).
    CAS  Article  Google Scholar 

    81.
    Anonymous. Solanine poisoning. Br. Med. J. 2, 1458–1459. https://doi.org/10.1136/bmj.2.6203.1458-a (1979).
    Article  Google Scholar 

    82.
    Aichinger, G., Pantazi, F. & Marko, D. Combinatory estrogenic effects of bisphenol A in mixtures with alternariol and zearalenone in human endometrial cells. Toxicol. Lett. 319, 242–249 (2020).
    CAS  Article  PubMed  Google Scholar 

    83.
    Gunthardt, B. F., Hollender, J., Hungerbuhler, K., Scheringer, M. & Bucheli, T. D. Comprehensive toxic plants–phytotoxins database and its application in assessing aquatic micropollution potential. J. Agric. Food Chem. 66, 7577–7588 (2018).
    CAS  Article  PubMed  Google Scholar 

    84.
    Global Biodiversity Information Facility. https://www.gbif.org/species/9490132. Accessed 6th February 2020.

    85.
    Hama, J.R. & Strobel, B.W. Occurrence of pyrrolizidine alkaloids in ragwort plants, soils and surface waters at the field scale in Grassland. Sci. Total Environ (Article reference:STOTEN_142822) (Accepted). Available online 16 October 2020, 142822 (2020). More