Co-activation of Akt, Nrf2, and NF-κB signals under UPRER in torpid Myotis ricketti bats for survival
1.
Carey, H. V., Andrews, M. T. & Martin, S. L. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiological Rev. 83, 1153–1181 (2003).
CAS Article Google Scholar
2.
Geiser, F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239–274 (2004).
CAS Article Google Scholar
3.
Lindell, S. L. et al. Natural resistance to liver cold ischemia-reperfusion injury associated with the hibernation phenotype. Am. J. Physiol.-Gastrointest. Liver Physiol. 288, G473–G480 (2005).
CAS Article Google Scholar
4.
Dave, K. R., Christian, S. L., Perez-Pinzon, M. A. & Drew, K. L. Neuroprotection: lessons from hibernators. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 162, 1–9 (2012).
CAS Article Google Scholar
5.
Hofmann, S., Cherkasova, V., Bankhead, P., Bukau, B. & Stoecklin, G. Translation suppression promotes stress granule formation and cell survival in response to cold shock. Mol. Biol. Cell 23, 3786–3800 (2012).
CAS Article Google Scholar
6.
Pluquet, O., Pourtier, A. & Abbadie, C. The unfolded protein response and cellular senescence. A review in the theme: cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. Am. J. Physiol.-Cell Physiol. 308, C415–C425 (2015).
CAS Article Google Scholar
7.
Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13, 89 (2012).
CAS Article Google Scholar
8.
Guo, F.-J. et al. XBP1S protects cells from ER stress-induced apoptosis through Erk1/2 signaling pathway involving CHOP. Histochemistry Cell Biol. 138, 447–460 (2012).
CAS Article Google Scholar
9.
Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).
CAS Article Google Scholar
10.
Kramer, G. Two phosphorylation sites on eIF-2α. FEBS Lett. 267, 181–182 (1990).
CAS Article Google Scholar
11.
Wek, R., Jiang, H.-Y. & Anthony, T. Coping with stress: eIF2 kinases and translational control. (Portland Press Limited, 2006).
12.
Palam, L. R., Baird, T. D. & Wek, R. C. Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. J. Biol. Chem. 286, 10939–10949 (2011).
13.
Roller, C. & Maddalo, D. The molecular chaperone GRP78/BiP in the development of chemoresistance: mechanism and possible treatment. Front. Pharmacol. 4, 10 (2013).
Article CAS Google Scholar
14.
Lee, A. S. The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35, 373–381 (2005).
CAS Article Google Scholar
15.
Jiang, H.-Y. et al. Phosphorylation of the α subunit of eukaryotic initiation factor 2 is required for activation of NF-κB in response to diverse cellular stresses. Mol. Cell. Biol. 23, 5651–5663 (2003).
CAS Article Google Scholar
16.
Prell, T. et al. Endoplasmic reticulum stress is accompanied by activation of NF-κB in amyotrophic lateral sclerosis. J. Neuroimmunol. 270, 29–36 (2014).
CAS Article Google Scholar
17.
Rajesh, K. et al. Phosphorylation of the translation initiation factor eIF2α at serine 51 determines the cell fate decisions of Akt in response to oxidative stress. Cell Death Dis. 6, e1591 (2015).
CAS Article Google Scholar
18.
Nivon, M. et al. NFκB is a central regulator of protein quality control in response to protein aggregation stresses via autophagy modulation. Mol. Biol. Cell 27, 1712–1727 (2016).
CAS Article Google Scholar
19.
Lemasters, J. J. In Molecular Pathology (second edn) 1–24 (Elsevier, 2018).
20.
Karin, M. & Lin, A. NF-κB at the crossroads of life and death. Nat. Immunol. 3, 221 (2002).
CAS Article Google Scholar
21.
Schmidlin, C. J., Dodson, M. B., Madhavan, L. & Zhang, D. D. Redox regulation by NRF2 in aging and disease. Free Rad. Biol. Med. 134, 702–707 (2019).
22.
Cullinan, S. B. & Diehl, J. A. Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int. J. Biochem. Cell Biol. 38, 317–332 (2006).
CAS Article Google Scholar
23.
Wiersma, M. et al. Torpor-arousal cycles in Syrian hamster heart are associated with transient activation of the protein quality control system. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 223, 23–28 (2018).
24.
Mamady, H. & Storey, K. B. Up-regulation of the endoplasmic reticulum molecular chaperone GRP78 during hibernation in thirteen-lined ground squirrels. Mol. Cell. Biochem. 292, 89–98 (2006).
CAS Article Google Scholar
25.
Mamady, H. & Storey, K. B. Coping with the stress: expression of ATF4, ATF6, and downstream targets in organs of hibernating ground squirrels. Arch. Biochem. Biophys. 477, 77–85 (2008).
CAS Article Google Scholar
26.
Zhang, J. et al. Prosurvival roles mediated by the PERK signaling pathway effectively prevent excessive endoplasmic reticulum stress-induced skeletal muscle loss during high-stress conditions of hibernation. J. Cell. Physiol. 234, 19728–19739 (2019).
27.
Carey, H., Frank, C. & Seifert, J. Hibernation induces oxidative stress and activation of NF-κB in ground squirrel intestine. J. Comp. Physiol. B 170, 551–559 (2000).
CAS Article Google Scholar
28.
Fleck, C. C. & Carey, H. V. Modulation of apoptotic pathways in intestinal mucosa during hibernation. Am. J. Physiol.-Regulatory, Integr. Comp. Physiol. 289, R586–R595 (2005).
CAS Article Google Scholar
29.
Zhang, Y. et al. Critical roles of mitochondria in brain activities of torpid Myotis ricketti bats revealed by a proteomic approach. J. Proteom. 105, 266–284 (2014).
CAS Article Google Scholar
30.
Cui, X. A., Zhang, H. & Palazzo, A. F. p180 promotes the ribosome-independent localization of a subset of mRNA to the endoplasmic reticulum. PLoS Biol. 10, e1001336 (2012).
CAS Article Google Scholar
31.
Wen, W.-L. et al. Vgl1, a multi-KH domain protein, is a novel component of the fission yeast stress granules required for cell survival under thermal stress. Nucleic Acids Res. 38, 6555–6566 (2010).
CAS Article Google Scholar
32.
Tsuchiya, N. et al. SND1, a component of RNA-induced silencing complex, is up-regulated in human colon cancers and implicated in early stage colon carcinogenesis. Cancer Res. 67, 9568–9576 (2007).
CAS Article Google Scholar
33.
Yoo, B. K. et al. Increased RNA-induced silencing complex (RISC) activity contributes to hepatocellular carcinoma. Hepatology 53, 1538–1548 (2011).
CAS Article Google Scholar
34.
Halperin, L., Jung, J. & Michalak, M. The many functions of the endoplasmic reticulum chaperones and folding enzymes. IUBMB Life 66, 318–326 (2014).
CAS Article Google Scholar
35.
Obchoei, S. et al. Cyclophilin A: potential functions and therapeutic target for human cancer. Med. Sci. Monit. 15, RA221–RA232 (2009).
CAS Google Scholar
36.
Wei, Y. et al. Antiapoptotic and proapoptotic signaling of cyclophilin A in endothelial cells. Inflammation 36, 567–572 (2013).
Article CAS Google Scholar
37.
Kelleher, D. J. & Gilmore, R. DAD1, the defender against apoptotic cell death, is a subunit of the mammalian oligosaccharyltransferase. Proc. Natl Acad. Sci. USA 94, 4994–4999 (1997).
CAS Article Google Scholar
38.
Zhou, L. et al. DsbA-L alleviates endoplasmic reticulum stress-induced adiponectin downregulation. Diabetes 59, 2809–2816 (2010).
CAS Article Google Scholar
39.
Liu, M. et al. Endoplasmic reticulum (ER) localization is critical for DsbA-L protein to suppress ER stress and adiponectin down-regulation in adipocytes. J. Biol. Chem. 290, 10143–10148 (2015).
CAS Article Google Scholar
40.
Santhekadur, P. K. et al. Multifunction protein staphylococcal nuclease domain containing 1 (SND1) promotes tumor angiogenesis in human hepatocellular carcinoma through novel pathway that involves nuclear factor κB and miR-221. J. Biol. Chem. 287, 13952–13958 (2012).
CAS Article Google Scholar
41.
Pan, Y. H. et al. Adaptation of phenylalanine and tyrosine catabolic pathway to hibernation in bats. PLoS ONE 8, e62039 (2013).
CAS Article Google Scholar
42.
Vattem, K. M. & Wek, R. C. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl Acad. Sci. USA 101, 11269–11274 (2004).
CAS Article Google Scholar
43.
Lu, Z. & Xu, S. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life 58, 621–631 (2006).
CAS Article Google Scholar
44.
Sun, F.-C. et al. Localization of GRP78 to mitochondria under the unfolded protein response. Biochem. J. 396, 31–39 (2006).
CAS Article Google Scholar
45.
van Breukelen, F. & Martin, S. L. Translational initiation is uncoupled from elongation at 18 C during mammalian hibernation. Am. J. Physiol.-Regulatory, Integr. Comp. Physiol. 281, R1374–R1379 (2001).
Article Google Scholar
46.
van Breukelen, F., Sonenberg, N. & Martin, S. L. Seasonal and state-dependent changes of eIF4E and 4E-BP1 during mammalian hibernation: implications for the control of translation during torpor. Am. J. Physiol.-Regulatory, Integr. Comp. Physiol. 287, R349–R353 (2004).
Article Google Scholar
47.
Pan, P. & van Breukelen, F. Preference of IRES-mediated initiation of translation during hibernation in golden-mantled ground squirrels, Spermophilus lateralis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R370–R377 (2011).
CAS Article Google Scholar
48.
Liu, L. et al. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol. Cell 21, 521–531 (2006).
Article CAS Google Scholar
49.
Harvey, R., Dezi, V., Pizzinga, M. & Willis, A. E. Post-transcriptional control of gene expression following stress: the role of RNA-binding proteins. Biochem. Soc. Trans. 45, 1007–1014 (2017).
CAS Article Google Scholar
50.
Mobin, M. B. et al. The RNA-binding protein vigilin regulates VLDL secretion through modulation of Apob mRNA translation. Nat. Commun. 7, 12848 (2016).
CAS Article Google Scholar
51.
Srere, H. K., Wang, L. & Martin, S. L. Central role for differential gene expression in mammalian hibernation. Proc. Natl Acad. Sci. USA 89, 7119–7123 (1992).
CAS Article Google Scholar
52.
Han, Y. et al. Adaptation of peroxisome proliferator-activated receptor alpha to hibernation in bats. BMC Evolut. Biol. 15, 88 (2015).
Article CAS Google Scholar
53.
Lee, M., Choi, I. & Park, K. Activation of stress signaling molecules in bat brain during arousal from hibernation. J. Neurochem. 82, 867–873 (2002).
CAS Article Google Scholar
54.
Storey, K. B. Out cold: biochemical regulation of mammalian hibernation-a mini-review. Gerontology 56, 220–230 (2010).
Article Google Scholar
55.
Lei, M., Dong, D., Mu, S., Pan, Y.-H. & Zhang, S. Comparison of brain transcriptome of the greater horseshoe bats (Rhinolophus ferrumequinum) in active and torpid episodes. PLoS ONE 9, e107746 (2014).
Article CAS Google Scholar
56.
Wortel, I. M., van der Meer, L. T., Kilberg, M. S. & van Leeuwen, F. N. Surviving stress: modulation of ATF4-mediated stress responses in normal and malignant cells. Trends Endocrinol. Metab. 28, 794–806 (2017).
CAS Article Google Scholar
57.
Cullinan, S. B. et al. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell. Biol. 23, 7198–7209 (2003).
CAS Article Google Scholar
58.
Ni, M., Zhang, Y. & Lee, A. S. Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signalling and therapeutic targeting. Biochem. J. 434, 181–188 (2011).
CAS Article Google Scholar
59.
Yin, Q. et al. Antioxidant defenses in the brains of bats during hibernation. PLoS ONE 11, e0152135 (2016).
Article CAS Google Scholar
60.
Allan, M. E. & Storey, K. B. Expression of NF-κB and downstream antioxidant genes in skeletal muscle of hibernating ground squirrels, Spermophilus tridecemlineatus. Cell Biochem. Funct. 30, 166–174 (2012).
CAS Article Google Scholar
61.
Ni, Z., McMullen, D. C. & Storey, K. B. Expression of Nrf2 and its downstream gene targets in hibernating 13-lined ground squirrels, Spermophilus tridecemlineatus. Mol. Cell. Biochem. 312, 121–129 (2008).
Article CAS Google Scholar
62.
Németh, J. et al. S100A8 and S100A9 are novel nuclear factor kappa B target genes during malignant progression of murine and human liver carcinogenesis. Hepatology 50, 1251–1262 (2009).
Article CAS Google Scholar
63.
Sun, S. et al. Cyclophilin A (CypA) interacts with NF-κB subunit, p65/RelA, and contributes to NF-κB activation signaling. PLoS ONE 9, e96211 (2014).
Article CAS Google Scholar
64.
Bolignano, D. et al. Neutrophil gelatinase-associated lipocalin (NGAL) in human neoplasias: a new protein enters the scene. Cancer Lett. 288, 10–16 (2010).
CAS Article Google Scholar
65.
Drew, K. L., Rice, M. E., Kuhn, T. B. & Smith, M. A. Neuroprotective adaptations in hibernation: therapeutic implications for ischemia-reperfusion, traumatic brain injury and neurodegenerative diseases. Free Radic. Biol. Med. 31, 563–573 (2001).
CAS Article Google Scholar
66.
Bouma, H. R. et al. Induction of torpor: mimicking natural metabolic suppression for biomedical applications. J. Cell Physiol. 227, 1285–1290 (2012).
CAS Article Google Scholar
67.
Cerri, M. et al. Hibernation for space travel: Impact on radioprotection. Life Sci. Space Res. 11, 1–9 (2016).
Article Google Scholar
68.
Uchida, Y., Tokizawa, K. & Nagashima, K. Characteristics of activated neurons in the suprachiasmatic nucleus when mice become hypothermic during fasting and cold exposure. Neurosci. Lett. 579, 177–182 (2014).
CAS Article Google Scholar
69.
Sato, N., Marui, S., Ozaki, M. & Nagashima, K. Cold exposure and/or fasting modulate the relationship between sleep and body temperature rhythms in mice. Physiol. Behav. 149, 69–75 (2015).
CAS Article Google Scholar
70.
Tokizawa, K., Uchida, Y. & Nagashima, K. Thermoregulation in the cold changes depending on the time of day and feeding condition: physiological and anatomical analyses of involved circadian mechanisms. Neuroscience 164, 1377–1386 (2009).
CAS Article Google Scholar
71.
Van Breukelen, F. & Martin, S. L. Invited review: molecular adaptations in mammalian hibernators: unique adaptations or generalized responses? J. Appl. Physiol. 92, 2640–2647 (2002).
Article Google Scholar
72.
Piersma, S. R. et al. Workflow comparison for label-free, quantitative secretome proteomics for cancer biomarker discovery: method evaluation, differential analysis, and verification in serum. J. Proteome Res. 9, 1913–1922 (2010).
CAS Article Google Scholar
73.
Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2018).
Article CAS Google Scholar
74.
Yu, D. et al. EGPS 1.0: Comprehensive software for multi-omic and evolutionary analyses. Natl Sci. Rev. 6, 867–869 (2019).
75.
Yin, Q. et al. Maintenance of neural activities in torpid Rhinolophus ferrumequinum bats revealed by 2D gel-based proteome analysis. Biochim. Biophys. Acta Proteins Proteom. 1865, 1004–1019 (2017).
CAS Article Google Scholar
76.
Romero-Calvo, I. et al. Reversible Ponceau staining as a loading control alternative to actin in Western blots. Anal. Biochem. 401, 318–320 (2010).
CAS Article Google Scholar
77.
Deutsch, E. W. et al. The ProteomeXchange consortium in 2020: enabling ‘big data’approaches in proteomics. Nucleic Acids Res. 48, D1145–D1152 (2020).
CAS PubMed Google Scholar More