More stories

  • in

    Molecular data suggest multiple origins and diversification times of freshwater gammarids on the Aegean archipelago

    1.
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853 (2000).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 
    2.
    Whittaker, R. J. & Fernández-Palacios, J. M. Island Biogeography: Ecology, Evolution, and Conservation (Oxford University Press, Oxford, 2007).
    Google Scholar 

    3.
    Poulakakis, N. et al. A review of phylogeographic analyses of animal taxa from the Aegean and surrounding regions. J. Zool. Syst. Evol. Res. 53, 18–32 (2015).
    Article  Google Scholar 

    4.
    4Woodward, J. The Physical Geography of the Mediterranean. Vol. 8 (Oxford University Press on Demand, 2009).

    5.
    De Figueroa, J. M. T., López-Rodríguez, M. J., Fenoglio, S., Sánchez-Castillo, P. & Fochetti, R. Freshwater biodiversity in the rivers of the Mediterranean Basin. Hydrobiologia 719, 137–186 (2013).
    Article  Google Scholar 

    6.
    Triantis, K. A. & Mylonas, M. Greek islands biology. In Encyclopedia of Islands (eds Gillespie, R. & Glague, D. A.) 388–392 (University of California Press, Berkeley, CA, 2009).
    Google Scholar 

    7.
    Meulenkamp, J. The Neogene in the southern Aegean area. Opera Bot. 30, 5–12 (1971).
    Google Scholar 

    8.
    van der Geer, A., Dermitzakis, M. & de Vos, J. Crete before the Cretans: The reign of dwarfs. Pharos 13, 121–132 (2006).
    Google Scholar 

    9.
    9Dermitzakis, M. & Papanikolaou, D. In Annales geologiques des pays helleniques. 245–289.

    10.
    Perissoratis, C. & Conispoliatis, N. The impacts of sea-level changes during latest Pleistocene and Holocene times on the morphology of the Ionian and Aegean seas (SE Alpine Europe). Mar. Geol. 196, 145–156 (2003).
    ADS  Article  Google Scholar 

    11.
    MacNeil, C., Dick, J. T. & Elwood, R. W. The trophic ecology of freshwater Gammarus spp. (Crustacea: Amphipoda): Problems and perspectives concerning the functional feeding group concept. Biol. Rev. 72, 349–364 (1997).
    Article  Google Scholar 

    12.
    Kelly, D. W., Dick, J. T. & Montgomery, W. I. The functional role of Gammarus (Crustacea, Amphipoda): Shredders, predators, or both?. Hydrobiologia 485, 199–203 (2002).
    Article  Google Scholar 

    13.
    Bilton, D. T., Freeland, J. R. & Okamura, B. Dispersal in freshwater invertebrates. Annu. Rev. Ecol. Syst. 32, 159–181 (2001).
    Article  Google Scholar 

    14.
    Hupało, K., Mamos, T., Wrzesińska, W. & Grabowski, M. First endemic freshwater Gammarus from Crete and its evolutionary history—An integrative taxonomy approach. PeerJ 6, e4457 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    15.
    Karaman, G. S. & Pinkster, S. Freshwater Gammarus species from Europe, North Africa and Adjacent Regions of Asia (Crustacea-Amphipoda).: Part I. Gammarus pulex-Group and Related Species. Bijdragen tot de Dierkunde 47, 1–97 (1977).
    Article  Google Scholar 

    16.
    Karaman, G. S. & Pinkster, S. Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda): Part II. Gammarus roeseli-group and related species. Bijdragen tot de Dierkunde 47, 165–196 (1977).
    Article  Google Scholar 

    17.
    Karaman, G. S. & Pinkster, S. Freshwater Gammarus Species from Europe, North Africa and Adjacent Regions of Asia (Crustacea-Amphipoda).: Part III. Gammarus balcanicus-Group and Related Species. Bijdragen tot de Dierkunde 57, 207–260 (1987).
    Article  Google Scholar 

    18.
    Pinkster, S. A revision of the genus Echinogammarus Stebbing, 1899 with some notes on related genera (Crustacea, Amphipoda). Memorie del Museo Civico di Storia Naturale (IIa serie) Sezione Scienze della Vita (A. Biologia) 10, 1–183 (1993).
    Google Scholar 

    19.
    Copilaş-Ciocianu, D. & Petrusek, A. The southwestern Carpathians as an ancient centre of diversity of freshwater gammarid amphipods: Insights from the Gammarus fossarum species complex. Mol. Ecol. 24, 3980–3992 (2015).
    Article  PubMed  Google Scholar 

    20.
    Copilaş-Ciocianu, D. & Petrusek, A. Phylogeography of a freshwater crustacean species complex reflects a long-gone archipelago. J. Biogeogr. 44, 421–432 (2017).
    Article  Google Scholar 

    21.
    Grabowski, M., Mamos, T., Bącela-Spychalska, K., Rewicz, T. & Wattier, R. A. Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread Balkan freshwater amphipod. PeerJ 5, e3016 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    22.
    Grabowski, M., Wysocka, A. & Mamos, T. Molecular species delimitation methods provide new insight into taxonomy of the endemic gammarid species flock from the ancient Lake Ohrid. Zool. J. Linn. Soc. 181, 272–285 (2017).
    Google Scholar 

    23.
    Hou, Z., Sket, B. & Li, S. Phylogenetic analyses of Gammaridae crustacean reveal different diversification patterns among sister lineages in the Tethyan region. Cladistics 30, 352–365 (2014).
    Article  Google Scholar 

    24.
    Katouzian, A.-R. et al. Drastic underestimation of amphipod biodiversity in the endangered Irano-Anatolian and Caucasus biodiversity hotspots. Sci. Rep. 6, 22507 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    25.
    Mamos, T., Wattier, R., Burzyński, A. & Grabowski, M. The legacy of a vanished sea: A high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Mol. Ecol. 25, 795–810 (2016).
    Article  PubMed  Google Scholar 

    26.
    Mamos, T., Wattier, R., Majda, A., Sket, B. & Grabowski, M. Morphological vs molecular delineation of taxa across montane regions in Europe: The case study of Gammarus balcanicus Schäferna, (Crustacea: Amphipoda). J. Zool. Syst. Evol. Res. 52, 237–248 (2014).
    Article  Google Scholar 

    27.
    Hou, Z., Sket, B., Fišer, C. & Li, S. Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proc. Natl. Acad. Sci. 108, 14533–14538 (2011).
    ADS  CAS  Article  PubMed  Google Scholar 

    28.
    Özbek, M. & Özkan, N. Gökçeada içsularının Amphipoda (Crustacea: Malacostraca) faunası Amphipoda (Crustacea: Malacostraca) fauna of the inland-waters of Gökçeada Island. Ege J. Fish. Aquat. Sci. 34, 63–67 (2017).
    Google Scholar 

    29.
    Hillis, D. M., Moritz, C., Mable, B. K. & Olmstead, R. G. Molecular systematics Vol. 23 (Sinauer Associates, Sunderland, 1996).
    Google Scholar 

    30.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    CAS  Article  PubMed  Google Scholar 

    31.
    Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    32.
    Ratnasingham, S. & Hebert, P. D. BOLD: The Barcode of Life Data System (https://www.barcodinglife.org). Molecular ecology notes 7, 355–364 (2007).

    33.
    Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, automatic barcode gap discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).
    CAS  Article  PubMed  Google Scholar 

    34.
    Monaghan, M. T. et al. Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Syst. Biol. 58, 298–311 (2009).
    CAS  Article  PubMed  Google Scholar 

    35.
    Pons, J. et al. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 55, 595–609 (2006).
    Article  PubMed  Google Scholar 

    36.
    Kapli, P. et al. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33, 1630–1638 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    37.
    Fourment, M. & Gibbs, M. J. PATRISTIC: A program for calculating patristic distances and graphically comparing the components of genetic change. BMC Evol. Biol. 6, 1 (2006).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Lefébure, T., Douady, C., Gouy, M. & Gibert, J. Relationship between morphological taxonomy and molecular divergence within Crustacea: Proposal of a molecular threshold to help species delimitation. Mol. Phylogenet. Evol. 40, 435–447 (2006).
    Article  CAS  Google Scholar 

    39.
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
    CAS  Article  Google Scholar 

    40.
    Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 42 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    41.
    Xia, X. DAMBE7: New and improved tools for data analysis in molecular biology and evolution. Mol. Biol. Evol. 35, 1550–1552 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    42.
    Xia, X., Xie, Z., Salemi, M., Chen, L. & Wang, Y. An index of substitution saturation and its application. Mol. Phylogenet. Evol. 26, 1–7 (2003).
    CAS  Article  PubMed  Google Scholar 

    43.
    Lanfear, R., Calcott, B., Ho, S. Y. & Guindon, S. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).
    CAS  Article  PubMed  Google Scholar 

    44.
    Bouckaert, R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e10003537 (2014).

    45.
    Baele, G., Li, W. L. S., Drummond, A. J., Suchard, M. A. & Lemey, P. Accurate model selection of relaxed molecular clocks in Bayesian phylogenetics. Mol. Biol. Evol. 30, 239–243 (2012).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Drummond, A. J., Ho, S. Y., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).

    47.
    Wysocka, A. et al. A tale of time and depth: Intralacustrine radiation in endemic Gammarus species flock from the ancient Lake Ohrid. Zool. J. Linn. Soc. 167, 345–359 (2013).
    Article  Google Scholar 

    48.
    Wysocka, A. et al. Origin of the Lake Ohrid gammarid species flock: Ancient local phylogenetic lineage diversification. J. Biogeogr. 41, 1758–1768 (2014).
    Article  Google Scholar 

    49.
    Cristescu, M. E., Hebert, P. D. & Onciu, T. M. Phylogeography of Ponto-Caspian crustaceans: A benthic–planktonic comparison. Mol. Ecol. 12, 985–996 (2003).
    CAS  Article  PubMed  Google Scholar 

    50.
    Nahavandi, N., Ketmaier, V., Plath, M. & Tiedemann, R. Diversification of Ponto-Caspian aquatic fauna: Morphology and molecules retrieve congruent evolutionary relationships in Pontogammarus maeoticus (Amphipoda: Pontogammaridae). Mol. Phylogenet. Evol. 69, 1063–1076 (2013).
    Article  PubMed  Google Scholar 

    51.
    Macdonald Iii, K. S., Yampolsky, L. & Duffy, J. E. Molecular and morphological evolution of the amphipod radiation of Lake Baikal. Mol. Phylogenet. Evol. 35, 323–343 (2005).
    Article  CAS  Google Scholar 

    52.
    Mats, V., Shcherbakov, D. Y. & Efimova, I. Late Cretaceous-Cenozoic history of the Lake Baikal depression and formation of its unique biodiversity. Stratigr. Geol. Correl. 19, 404 (2011).
    ADS  Article  Google Scholar 

    53.
    Sherbakov, D. Y. On the phylogeny of Lake Baikal amphipods in the light of mitochondrial and nuclear DNA sequence data. Crustaceana 72, 911–919 (1999).
    Article  Google Scholar 

    54.
    Copilaş-Ciocianu, D., Sidorov, D. & Gontcharov, A. Adrift across tectonic plates: Molecular phylogenetics supports the ancient Laurasian origin of old limnic crangonyctid amphipods. Organ. Divers. Evol. 19, 191–207 (2019).
    Article  Google Scholar 

    55.
    Sigovini, M., Keppel, E. & Tagliapietra, D. Open Nomenclature in the biodiversity era. Methods Ecol. Evol. 7(10), 1217–1225 (2016).
    Article  Google Scholar 

    56.
    Ketmaier, V., Argano, R. & Caccone, A. Phylogeography and molecular rates of subterranean aquatic stenasellid isopods with a peri-Tyrrhenian distribution. Mol. Ecol. 12, 547–555 (2003).
    CAS  Article  PubMed  Google Scholar 

    57.
    Knowlton, N. & Weigt, L. A. New dates and new rates for divergence across the Isthmus of Panama. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 2257–2263 (1998).
    Article  Google Scholar 

    58.
    Papadopoulou, A., Anastasiou, I. & Vogler, A. P. Revisiting the insect mitochondrial molecular clock: The mid-Aegean trench calibration. Mol. Biol. Evol. 27, 1659–1672 (2010).
    CAS  Article  PubMed  Google Scholar 

    59.
    Hamilton, C. A., Hendrixson, B. E., Brewer, M. S. & Bond, J. E. An evaluation of sampling effects on multiple DNA barcoding methods leads to an integrative approach for delimiting species: A case study of the North American tarantula genus Aphonopelma (Araneae, Mygalomorphae, Theraphosidae). Mol. Phylogenet. Evol. 71, 79–93 (2014).
    CAS  Article  PubMed  Google Scholar 

    60.
    Fontaneto, D., Flot, J.-F. & Tang, C. Q. Guidelines for DNA taxonomy, with a focus on the meiofauna. Mar. Biodivers.s 45, 433–451 (2015).
    Article  Google Scholar 

    61.
    Yu, G., Rao, D., Matsui, M. & Yang, J. Coalescent-based delimitation outperforms distance-based methods for delineating less divergent species: The case of Kurixalus odontotarsus species group. Sci. Rep. 7, 1–13 (2017).
    Article  CAS  Google Scholar 

    62.
    De Queiroz, K. Species concepts and species delimitation. Syst. Biol. 56, 879–886 (2007).
    Article  PubMed  Google Scholar 

    63.
    Lagrue, C. et al. Confrontation of cryptic diversity and mate discrimination within G ammarus pulex and G ammarus fossarum species complexes. Freshw. Biol. 59, 2555–2570 (2014).
    Article  Google Scholar 

    64.
    Costa, F., Henzler, C., Lunt, D., Whiteley, N. & Rock, J. Probing marine Gammarus (Amphipoda) taxonomy with DNA barcodes. Syst. Biodivers. 7, 365–379 (2009).
    Article  Google Scholar 

    65.
    Karaman, G. New data on some gammaridean amphipods (Amphipoda, Gammaridea) from Palearctic. Glasnik Sect. Natl. Sci. Monten Acad. Sci. Arts 15, 20–37 (2003).
    Google Scholar 

    66.
    Steininger, F. F. & Rögl, F. Paleogeography and palinspastic reconstruction of the Neogene of the Mediterranean and Paratethys. Geol. Soc. Lond. Spec. Publ. 17, 659–668 (1984).
    ADS  Article  Google Scholar 

    67.
    Lefébure, T. et al. Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments. Mol. Ecol. 15, 1797–1806 (2006).
    Article  CAS  PubMed  Google Scholar 

    68.
    Sworobowicz, L. et al. Revisiting the phylogeography of Asellus aquaticus in Europe: Insights into cryptic diversity and spatiotemporal diversification. Freshw. Biol. 60, 1824–1840 (2015).
    Article  Google Scholar 

    69.
    Shih, H. T., Yeo, D. C. & Ng, P. K. The collision of the Indian plate with Asia: Molecular evidence for its impact on the phylogeny of freshwater crabs (Brachyura: Potamidae). J. Biogeogr. 36, 703–719 (2009).
    Article  Google Scholar 

    70.
    Jesse, R., Grudinski, M., Klaus, S., Streit, B. & Pfenninger, M. Evolution of freshwater crab diversity in the Aegean region (Crustacea: Brachyura: Potamidae). Mol. Phylogenet. Evol. 59, 23–33 (2011).
    Article  PubMed  Google Scholar 

    71.
    Szarowska, M., Osikowski, A., Hofman, S. & Falniowski, A. Do diversity patterns of the spring-inhabiting snail Bythinella (Gastropoda, Bythinellidae) on the Aegean Islands reflect geological history?. Hydrobiologia 765, 225–243 (2016).
    Article  Google Scholar 

    72.
    Trontelj, P., Machino, Y. & Sket, B. Phylogenetic and phylogeographic relationships in the crayfish genus Austropotamobius inferred from mitochondrial COI gene sequences. Mol. Phylogenet. Evol. 34, 212–226 (2005).
    CAS  Article  PubMed  Google Scholar 

    73.
    Szarowska, M., Hofman, S., Osikowski, A. & Falniowski, A. Divergence preceding island formation among Aegean insular populations of the freshwater snail genus Pseudorientalia (Caenogastropoda: Truncatelloidea). Zoolog. Sci. 31, 680–686 (2014).
    Article  PubMed  Google Scholar 

    74.
    Previšić, A., Walton, C., Kučinić, M., Mitrikeski, P. T. & Kerovec, M. Pleistocene divergence of Dinaric Drusus endemics (Trichoptera, Limnephilidae) in multiple microrefugia within the Balkan Peninsula. Mol. Ecol. 18, 634–647 (2009).
    Article  CAS  PubMed  Google Scholar 

    75.
    Gonçalves, H. et al. Multilocus phylogeography of the common midwife toad, Alytes obstetricans (Anura, Alytidae): Contrasting patterns of lineage diversification and genetic structure in the Iberian refugium. Mol. Phylogenet. Evol. 93, 363–379 (2015).
    Article  PubMed  Google Scholar 

    76.
    Rachalewski, M., Banha, F., Grabowski, M. & Anastácio, P. M. Ectozoochory as a possible vector enhancing the spread of an alien amphipod Crangonyx pseudogracilis. Hydrobiologia 717, 109–117 (2013).
    Article  Google Scholar 

    77.
    Szarowska, M., Hofman, S., Osikowski, A. & Falniowski, A. Daphniola Radoman, 1973 (Caenogastropoda: Truncatelloidea) at east Aegean islands. Folia Malacologica 22 (2014).

    78.
    Hupało, K. et al. Persistence of phylogeographic footprints helps to understand cryptic diversity detected in two marine amphipods widespread in the Mediterranean basin. Mol. Phylogenet. Evol. 132, 53–66 (2019).
    Article  CAS  PubMed  Google Scholar 

    79.
    Weiss, M., Macher, J. N., Seefeldt, M. A. & Leese, F. Molecular evidence for further overlooked species within the Gammarus fossarum complex (Crustacea: Amphipoda). Hydrobiologia 721, 165–184 (2014).
    CAS  Article  Google Scholar 

    80.
    Hopkins, L. IUCN and the Mediterranean Islands: Opportunities for biodiversity conservation and sustainable use (Gland, Switzerland, International Union for Conservation of Nature, 2002).
    Google Scholar 

    81.
    QGIS Development Team. QGIS Geographic Information System. Open source geospatial foundation project. (2016).

    82.
    Popov, S. V. et al. Lithological-paleogeographic maps of paratethys: 10 maps late eocene to pliocene. Cour. Forsch Senckenberg 250, 1–46 (2004).
    Google Scholar  More

  • in

    The importance of common and the irrelevance of rare species for partition the variation of community matrix: implications for sampling and conservation

    1.
    Hutchinson, G. E. Homage to santa rosalia or why are there so many kinds of animals?. Am. Nat. 93, 145–159 (1959).
    Article  Google Scholar 
    2.
    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton University Press, Princeton, 2001).
    Google Scholar 

    3.
    Leibold, M. A. et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).
    Article  Google Scholar 

    4.
    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, Amsterdam, 2012).
    Google Scholar 

    5.
    Cottenie, K. Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett. 8, 1175–1182 (2005).
    Article  PubMed  Google Scholar 

    6.
    Dray, S., Legendre, P. & Peres-Neto, P. R. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196, 483–493 (2006).
    Article  Google Scholar 

    7.
    Leibold, M. A. & Chase, J. M. Metacommunity Ecology (Princeton University Press, Princeton, 2018).
    Google Scholar 

    8.
    Grinnell, J. Field tests of theories concerning distributional control. Am. Nat. 51, 115–128 (1917).
    Article  Google Scholar 

    9.
    Elton, C. Competition and the structure of ecological communities. J. Anim. Ecol. 15, 54–68 (1946).
    Article  Google Scholar 

    10.
    Griffith, D. A. & Peres-Neto, P. R. Spatial modeling in ecology: The flexibility of eigenfunction spatial analyses. Ecology 87, 2603–2613 (2006).
    Article  PubMed  Google Scholar 

    11.
    Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).
    Article  PubMed  Google Scholar 

    12.
    Oksanen, J. et al. Vegan: community ecology package. R package version 2.4–5. https://cran.r-project.org/web/packages/vegan/index.html (2017).

    13.
    Montag, L. F. A. et al. Contrasting associations between habitat conditions and stream aquatic biodiversity in a forest reserve and its surrounding area in the Eastern Amazon. Hydrobiologia 826, 263–277 (2019).
    CAS  Article  Google Scholar 

    14.
    Juen, L. & De Marco, P. Odonate biodiversity in terra-firme forest streamlets in Central Amazonia: On the relative effects of neutral and niche drivers at small geographical extents. Insect Conserv. Divers. 4, 265–274 (2011).
    Article  Google Scholar 

    15.
    Brasil, L. S. et al. Spatial, biogeographic and environmental predictors of diversity in Amazonian Zygoptera. Insect Conserv. Divers. 11, 174–184 (2018).
    Article  Google Scholar 

    16.
    Dambros, C. S., Morais, J. W., Azevedo, R. A. & Gotelli, N. J. Isolation by distance, not rivers, control the distribution of termite species in the Amazonian rain forest. Ecography 40, 1242–1250 (2017).
    Article  Google Scholar 

    17.
    Hepp, L. U., Landeiro, V. L. & Melo, A. S. Experimental assessment of the effects of environmental factors and longitudinal position on alpha and beta diversities of aquatic insects in a neotropical stream. Int. Rev. Hydrobiol. 97, 157–167 (2012).
    Article  Google Scholar 

    18.
    Siqueira, T. et al. Common and rare species respond to similar niche processes in macroinvertebratemetacommunities. Ecography 35, 183–192 (2012).
    Article  Google Scholar 

    19.
    Alahuhta, J. & Heino, J. Spatial extent, regional specificity and metacommunity structuring in lake macrophytes. J. Biogeogr. 40, 1572–1582 (2013).
    Article  Google Scholar 

    20.
    Heino, J. & Alahuhta, J. Elements of regional beetle faunas: Faunal variation and compositional breakpoints along climate, land cover and geographical gradients. J. Anim. Ecol. 84, 427–441 (2015).
    Article  PubMed  Google Scholar 

    21.
    Algarte, V. M., Rodrigues, L., Landeiro, V. L., Siqueira, T. & Bini, L. M. Variance partitioning of deconstructed periphyton communities: Does the use of biological traits matter?. Hydrobiologia 722, 279–290 (2014).
    Article  Google Scholar 

    22.
    Brasil, L. S., Juen, L., Giehl, N. F. S. & Cabette, H. S. R. Effect of environmental and temporal factors on patterns of rarity of ephemeroptera in stream of the braziliancerrado. Neotrop. Entomol. 46, 29–35 (2017).
    CAS  Article  PubMed  Google Scholar 

    23.
    Gaston, K. J. Valuing common species. Science 327, 154–155 (2010).
    ADS  CAS  Article  PubMed  Google Scholar 

    24.
    Gaston, K. J. The importance of being rare. Ecology 487, 46–47 (2012).
    CAS  Google Scholar 

    25.
    Lários, M. C. et al. Evidence of cross-taxon congruence in Neotropical wetlands: Importance of environmental and spatial factors. Glob. Ecol. Conserv. 12, 108–118 (2017).
    Article  Google Scholar 

    26.
    Juen, L. et al. Effects of oil palm plantations on the habitat structure and biota of streams in eastern Amazon. River Res. Appl. 32, 2081–2094 (2016).
    Article  Google Scholar 

    27.
    Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24 (1999).
    Article  Google Scholar 

    28.
    Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, New York, 2018).
    Google Scholar 

    29.
    Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    30.
    Bini, L. M., Diniz-Filho, J. A. F., Rangel, T. F., Bastos, R. P. & Pinto, M. P. Challenging Wallacean and Linnean shortfalls: Knowledge gradients and conservation planning in a biodiversity hotspot. Divers. Distrib. 12, 475–482 (2006).
    Article  Google Scholar 

    31.
    Whittaker, R. J. et al. Conservation biogeography: Assessment and prospect. Divers. Distrib. 11, 3–23 (2005).
    Article  Google Scholar 

    32.
    Crouzeilles, R., Feltran-Barbieri, R., Ferreira, M. S. & Strassburg, B. B. Hard times for the Brazilian environment. Nature ecology & evolution. 1, 1213–1213 (2017).
    Article  Google Scholar 

    33.
    Vieira, T. B. et al. A multiple hypothesis approach to explain species richness patterns in neotropical stream-dweller fish communities. PLoS ONE 13, 1–17 (2018).
    Google Scholar 

    34.
    Brasil, L. S. et al. Net primary productivity and seasonality of temperature and precipitation are predictors of the species richness of the Damselflies in the Amazon. Basic Appl. Ecol. 35, 45–53 (2019).
    Article  Google Scholar 

    35.
    Kéry, M. & Schmid, H. Monitoring programs need to take into account imperfect species detectability. Basic Appl. Ecol. 5, 65–73 (2004).
    Article  Google Scholar 

    36.
    Leitão, R. P. et al. Rare species contribute disproportionately to the functional structure of species assemblages. Proc. R. Soc. B Biol. Sci. 2838, 20160084 (2016).
    Article  Google Scholar 

    37.
    Pereira, D. F. G., Oliveira-Junior, J. M. B. & Juen, L. Environmental changes promote larger species of Odonata (Insecta) in Amazonian streams. Ecol. Ind. 98, 179–192 (2019).
    Article  Google Scholar 

    38.
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403(6772), 853 (2000).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Rodrigues, M. E. et al. Nonlinear responses in damselfly community along a gradient of habitat loss in a savanna landscape. Biol. Conserv. 194, 113–120 (2016).
    Article  Google Scholar 

    40.
    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. 4, 439–473 (2007).
    ADS  Article  Google Scholar 

    41.
    Brasil, L. S. et al. Does the damming of streams in the southern Amazon basin affect dragonfly and damselfly assemblages (Odonata: Insecta)? A preliminary study. Int. J. Odonatol. 17, 187–197 (2014).
    Article  Google Scholar 

    42.
    Lencioni, F. A. A. The Damselflies of Brazil: An Illustrated Guide the Non Coenagrionidae Families (All Print Editora, São Paulo, 2005).
    Google Scholar 

    43.
    Lencioni, F. A. A. The Damselflies of Brazil: An Illustrated Guide—Coenagrionidae (All Print Editora, São Paulo, 2006).
    Google Scholar 

    44.
    Garrison, N. & Ellenrieder, J. A. L. Louton Damselfly Genera of the New World: An Illustrated and Annotated Key to the Zygoptera University Press (Johns Hopkins, Baltimore, 2010).
    Google Scholar 

    45.
    Frissell, C. R., Liss, W. J., Warren, C. E. & Hurley, M. D. A hierarchical framework for stream habitat classification: Viewing streams in a watershed context. Environ. Manag. 10, 199–214 (1986).
    ADS  Article  Google Scholar 

    46.
    Espírito-Santo, H. M. V., Magnusson, W. E., Zuanon, J., Mendonça, F. P. & Landeiro, V. L. Seasonal variation in the composition of fish assemblages in small Amazonian forest streams: Evidence for predictable changes. Freshw. Biol. 54, 536–548 (2009).
    Article  Google Scholar 

    47.
    Uieda, V. S. & Castro, R. M. C. Coleta e fixação de peixes de riachos: Ecologia de peixes de riacho (OecologiaAustralis, Rio de Janeiro, 1999).
    Google Scholar 

    48.
    Planquette, P., Keith, P. & Bail, P. Y. L. Atlas des poissons d’eau douce de Guyane (Service du patrimoine naturel, Paris, 1996).
    Google Scholar 

    49.
    Albert JS. Species Diversity and Phylogenetic Systematics of American Knifefishes (Gymnotiformes, Teleostei). (Miscellaneous Publications of the Museum of Zoology of the University of Michigan, Michigan, 2001).

    50.
    Kaufmann, P. R., Levine, P., Robison, E. G., Seeliger, C. & Peck, D. V. Quantifying Physical Habitat in Wadeable Streams (U.S. Environmental Protection Agency, Washington, 1999).
    Google Scholar 

    51.
    Peck, D. V. et al. Invironmental Monitoring and Assessment Program-Surface Waters: Western Pilot Study Field Operations Manual for Wadeable Streams (U.S. Environmental ProtectionAgency, Washington, 2006).
    Google Scholar 

    52.
    De Marco, P. & Nobrega, C. C. Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PLoS ONE 13, 1–25 (2018).
    Google Scholar 

    53.
    Legendre, P. Spatial autocorrelation: Trouble or new paradigm?. Ecology 74, 1659–1673 (1993).
    Article  Google Scholar  More

  • in

    Audio long-read: The enigmatic organisms of the Ediacaran Period

    These bizarre ancient species are rewriting animal evolution – read by Benjamin Thompson
    Your browser does not support the audio element.
    Download MP3

    The Cambrian explosion, around 541 million years ago, has long been regarded as a pivotal point in evolutionary history, as this is when the ancient ancestors of most of today’s animals made their first appearances in the fossil record.
    Before this was a period known as the Ediacaran – a time when the world was believed to be populated by strange, simple organisms. But now, modern molecular research techniques, and some newly discovered fossils, are providing evidence that some of these organisms were actually animals, including ones with sophisticated features like legs and guts.
    This is an audio version of our feature: These bizarre ancient species are rewriting animal evolution
    Never miss an episode: Subscribe to the Nature Podcast on Apple Podcasts, Google Podcasts, Spotify or your favourite podcast app. Head here for the Nature Podcast RSS feed. More

  • in

    Author Correction: Insulin resistance in cavefish as an adaptation to a nutrient-limited environment

    Cave-adapted populations of the Mexican tetra, Astyanax mexicanus, have dysregulated blood glucose homeostasis and are insulin-resistant compared to river-adapted (‘surface’) populations. We found that multiple cave populations, including those inhabiting the Tinaja and Pachón caves, carry a mutation in the insulin receptor that leads to decreased insulin binding in vitro and contributes to hyperglycaemia. As part of the analysis that led to this conclusion, we measured fasting blood glucose levels in F2 fish derived from a cross between a surface fish homozygous for the ancestral insulin receptor allele and a cavefish homozygous for the derived allele, allowing us to correlate inheritance of the mutation with inheritance of glucose dysregulation. In this Article, we inadvertently indicated that the cavefish grandparent used in this cross was descended from the Tinaja population. However, subsequent analysis has definitively indicated that this individual actually belongs to the Pachón population. However, as both the Tinaja and Pachón populations carry the same P211L mutation in the insulin receptor, the logic of the experiment, the genotype–phenotype correlation we observed, and the conclusions of the study remain unchanged. Everything in the manuscript is still accurate, other than the name of the cave in the second and third paragraphs on page 649 of the PDF version of the original Article and in Fig. 3b and its legend. This error has not been corrected online. More

  • in

    The effect of substrate wettability and modulus on gecko and gecko-inspired synthetic adhesion in variable temperature and humidity

    1.
    Autumn, K. et al. Evidence for van der Waals adhesion in gecko setae. Proc. Natl. Acad. Sci. US 99, 12252–12256 (2002).
    ADS  CAS  Article  Google Scholar 
    2.
    Autumn, K., Niewiarowski, P. H. & Puthoff, J. B. Gecko adhesion as a model system for integrative biology, interdisciplinary science, and bioinspired engineering. Annu. Rev. Ecol. Evol. Syst. 45, 445–470 (2014).
    Article  Google Scholar 

    3.
    Sitti, M. & Fearing, R. S. Synthetic gecko foot-hair micro/nano-structures as dry adhesives. J. Adhes. Sci. Technol. 17, 1055–1073 (2003).
    CAS  Article  Google Scholar 

    4.
    Kim, S. & Sitti, M. Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives. Appl. Phys. Lett. 89, 261911 (2006).
    ADS  Article  CAS  Google Scholar 

    5.
    Murphy, M. P., Aksak, B. & Sitti, M. Gecko-inspired directional and controllable adhesion. Small 5, 170–175 (2009).
    CAS  Article  PubMed  Google Scholar 

    6.
    Murphy, M. P., Kim, S. & Sitti, M. Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives. ACS Appl. Mater. Interfaces 1, 849–855 (2009).
    CAS  Article  PubMed  Google Scholar 

    7.
    Glass, P., Chung, H., Washburn, N. R. & Sitti, M. Enhanced wet adhesion of elastomeric micro-fiber arrays with mushroom tip geometry and a photopolymerized p(DMA-co-MEA) tip coating. Langmuir 26, 17357–17362 (2010).
    CAS  Article  PubMed  Google Scholar 

    8.
    Mengüç, Y., Röhrig, M., Abusomwan, U., Hölscher, H. & Sitti, M. Staying sticky: Contact self-cleaning of gecko-inspired adhesives. J. R. Soc. Interface 11, 20131205 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    9.
    Song, S. & Sitti, M. Soft grippers using micro-fibrillar adhesives for transfer printing. Adv. Mater. 26, 4901–4906 (2014).
    CAS  Article  PubMed  Google Scholar 

    10.
    Niewiarowski, P. H., Stark, A. Y. & Dhinojwala, A. Sticking to the story: Outstanding challenges in gecko-inspired adhesives. J. Exp. Biol. 219, 912–919 (2016).
    Article  PubMed  Google Scholar 

    11.
    Drotlef, D.-M., Amjadi, M., Yunusa, M. & Sitti, M. Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors. Adv. Mater. 29, 1701353 (2017).
    Article  CAS  Google Scholar 

    12.
    Song, S., Drotlef, D.-M., Majidi, C. & Sitti, M. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces. Proc. Natl. Acad. Sci. 114, E4344–E4353 (2017).
    CAS  Article  PubMed  Google Scholar 

    13.
    Russell, A. P., Stark, A. Y. & Higham, T. E. The integrative biology of gecko adhesion: Historical review, current understanding, and grand challenges. Integr. Comp. Biol. 59, 101–116 (2019).
    CAS  Article  PubMed  Google Scholar 

    14.
    Stark, A. Y. & Mitchell, C. T. Stick or slip: Adhesive performance of geckos and gecko-inspired synthetics in wet environments. Integr. Comp. Biol. 59, 214–226 (2019).
    CAS  Article  PubMed  Google Scholar 

    15.
    Liimatainen, V., Drotlef, D.-M., Son, D. & Sitti, M. Liquid-superrepellent bioinspired fibrillar adhesives. Adv. Mater. 32, 2000497 (2020).
    CAS  Article  Google Scholar 

    16.
    Huber, G. et al. Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc. Natl. Acad. Sci. US 102, 16293–16296 (2005).
    ADS  CAS  Article  Google Scholar 

    17.
    Sun, W., Neuzil, P., Kustandi, T. S., Oh, S. & Samper, V. D. The nature of the gecko lizard adhesive force. Biophys. J. 89, L14–L17 (2005).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    18.
    Kim, T. W. & Bhushan, B. The adhesion model considering capillarity for gecko attachment system. J. R. Soc. Interface 5, 319–327 (2008).
    Article  PubMed  Google Scholar 

    19.
    Puthoff, J. B., Prowse, M. S., Wilkinson, M. & Autumn, K. Changes in materials properties explain the effects of humidity on gecko adhesion. J. Exp. Biol. 213, 3699–3704 (2010).
    Article  PubMed  Google Scholar 

    20.
    Prowse, M. S., Wilkinson, M., Puthoff, J. B., Mayer, G. & Autumn, K. Effects of humidity on the mechanical properties of gecko setae. Acta Biomater. 7, 733–738 (2011).
    Article  PubMed  Google Scholar 

    21.
    Bauer, A. M. & Good, D. A. Phylogenetic systematics of the day geckos, genus, Rhoptropus (Reptilia: Gekkonidae), of south-western Africa. J. Zool. 238, 635–663 (1996).
    Article  Google Scholar 

    22.
    Pianka, E. R. & Vitt, L. J. Lizards: Windows to the Evolution of Diversity (University of California Press, Berkeley, 2003).
    Google Scholar 

    23.
    Lamb, T. & Bauer, A. M. Footprints in the sand: Independent reduction of subdigital lamellae in the Namib–Kalahari burrowing geckos. Proc. R. Soc. B Biol. Sci. 273, 855–864 (2006).
    Article  Google Scholar 

    24.
    Gamble, T., Greenbaum, E., Jackman, T. R., Russell, A. P. & Bauer, A. M. Repeated origin and loss of adhesive toepads in geckos. PLoS ONE 7, e39429 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    25.
    Collins, C. E., Russell, A. P. & Higham, T. E. Subdigital adhesive pad morphology varies in relation to structural habitat use in the Namib Day Gecko. Funct. Ecol. 29, 66–77 (2015).
    Article  Google Scholar 

    26.
    Autumn, K. & Hansen, W. Ultrahydrophobicity indicates a non-adhesive default state in gecko setae. J. Comp. Physiol. A 192, 1205 (2006).
    Article  Google Scholar 

    27.
    Badge, I., Stark, A. Y., Paoloni, E. L., Niewiarowski, P. H. & Dhinojwala, A. The role of surface chemistry in adhesion and wetting of gecko toe pads. Sci. Rep. 4, 6643 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    28.
    Maderson, P. F. A. Keratinized epidermal derivatives as an aid to climbing in gekkonid lizards. Nature 203, 780–781 (1964).
    ADS  Article  Google Scholar 

    29.
    Ruibal, R. & Ernst, V. The structure of the digital setae of lizards. J. Morphol. 117, 271–293 (1965).
    CAS  Article  PubMed  Google Scholar 

    30.
    Williams, E. E. & Peterson, J. A. Convergent and alternative designs in the digital adhesive pads of scincid lizards. Science 215, 1509–1511 (1982).
    ADS  CAS  Article  PubMed  Google Scholar 

    31.
    Autumn, K. et al. Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000).
    ADS  CAS  Article  PubMed  Google Scholar 

    32.
    Autumn, K. & Peattie, A. M. Mechanisms of adhesion in geckos. Integr. Comp. Biol. 42, 1081–1090 (2002).
    Article  PubMed  Google Scholar 

    33.
    Israelachvili, J. N. & Tabor, D. The measurement of van der Waals dispersion forces in the range 1.5 to 130 nm. Proc. R. Soc. Lond. Math. Phys. Sci. 331, 19–38 (1972).
    ADS  CAS  Google Scholar 

    34.
    Niewiarowski, P. H., Lopez, S., Ge, L., Hagan, E. & Dhinojwala, A. Sticky gecko feet: The role of temperature and humidity. PLoS ONE 3, e2192 (2008).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    35.
    Hsu, P. Y. et al. Direct evidence of phospholipids in gecko footprints and spatula–substrate contact interface detected using surface-sensitive spectroscopy. J. R. Soc. Interface 9, 657–664 (2012).
    CAS  Article  PubMed  Google Scholar 

    36.
    Jain, D., Stark, A. Y., Niewiarowski, P. H., Miyoshi, T. & Dhinojwala, A. NMR spectroscopy reveals the presence and association of lipids and keratin in adhesive gecko setae. Sci. Rep. 5, 9594 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    37.
    Alibardi, L. Immunolocalization of keratin-associated beta-proteins (beta-keratins) in the regenerating lizard epidermis indicates a new process for the differentiation of the epidermis in lepidosaurians. J. Morphol. 273, 1272–1279 (2012).
    CAS  Article  PubMed  Google Scholar 

    38.
    Alibardi, L. Immunolocalization of keratin-associated beta-proteins (beta-keratins) in pad lamellae of geckos suggest that glycine–cysteine-rich proteins contribute to their flexibility and adhesiveness. J. Exp. Zool. Part Ecol. Genet. Physiol. 319, 166–178 (2013).
    CAS  Article  Google Scholar 

    39.
    Peng, Z., Yang, Y. & Chen, S. Coupled effects of the temperature and the relative humidity on gecko adhesion. J. Phys. Appl. Phys. 50, 315402 (2017).
    ADS  Article  CAS  Google Scholar 

    40.
    Huey, R. B. & Kingsolver, J. G. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4, 131–135 (1989).
    CAS  Article  PubMed  Google Scholar 

    41.
    Huey, R. B., Niewiarowski, P. H., Kaufmann, J. & Herron, J. C. Thermal biology of nocturnal ectotherms: Is sprint performance of geckos maximal at low body temperatures?. Physiol. Zool. 62, 488–504 (1989).
    Article  Google Scholar 

    42.
    Bergmann, P. & Irschick, D. J. Effects of temperature on maximum acceleration, deceleration and power output during vertical running in geckos. J. Exp. Biol. 209, 1404–1412 (2006).
    Article  PubMed  Google Scholar 

    43.
    Losos, J. B. Thermal sensitivity of sprinting and clinging performance in the tokay gecko (Gekko gecko). Asiat. Herpetol. Res. 3, 54–59 (1990).
    ADS  Google Scholar 

    44.
    Bergmann, P. J. & Irschick, D. J. Effects of temperature on maximum clinging ability in a diurnal gecko: Evidence for a passive clinging mechanism?. J. Exp. Zool. A Comp. Exp. Biol. 303A, 785–791 (2005).
    Article  Google Scholar 

    45.
    Pesika, N. S. et al. Gecko adhesion pad: A smart surface?. J. Phys. Condens. Matter 21, 464132 (2009).
    Article  CAS  PubMed  Google Scholar 

    46.
    Grewal, S. H., Piao, S., Cho, I.-J., Jhang, K.-Y. & Yoon, E.-S. Nanotribological and wetting performance of hierarchical patterns. Soft Matter 12, 859–866 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    47.
    Stark, A. Y., Klittich, M. R., Sitti, M., Niewiarowski, P. H. & Dhinojwala, A. The effect of temperature and humidity on adhesion of a gecko-inspired adhesive: Implications for the natural system. Sci. Rep. 6, 30936 (2016).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    48.
    Cadirov, N., Booth, J. A., Turner, K. L. & Israelachvili, J. N. Influence of humidity on grip and release adhesion mechanisms for gecko-inspired microfibrillar surfaces. ACS Appl. Mater. Interfaces 9, 14497–14505 (2017).
    CAS  Article  PubMed  Google Scholar 

    49.
    Ceseracciu, L., Heredia-Guerrero, J. A., Dante, S., Athanassiou, A. & Bayer, I. S. Robust and biodegradable elastomers based on corn starch and polydimethylsiloxane (PDMS). ACS Appl. Mater. Interfaces 7, 3742–3753 (2015).
    CAS  Article  PubMed  Google Scholar 

    50.
    Stark, A. Y. et al. Surface wettability plays a significant role in gecko adhesion underwater. Proc. Natl. Acad. Sci. US. https://doi.org/10.1073/pnas.1219317110 (2013).
    Article  Google Scholar 

    51.
    Drotlef, D.-M., Dayan, C. B. & Sitti, M. Bio-inspired composite microfibers for strong and reversible adhesion on smooth surfaces. Integr. Comp. Biol. 59, 227–235 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    52.
    Tan, D. et al. Humidity-modulated core–shell nanopillars for enhancement of gecko-inspired adhesion. ACS Appl. Nano Mater. 3, 3596–3603 (2020).
    CAS  Article  Google Scholar 

    53.
    Geikowsky, E., Gorumlu, S. & Aksak, B. The effect of flexible joint-like elements on the adhesive performance of nature-inspired bent mushroom-like fibers. Beilstein J. Nanotechnol. 9, 2893–2905 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    54.
    Wang, Z. Slanted functional gradient micropillars for optimal bioinspired dry adhesion. ACS Nano 12, 1273–1284 (2018).
    CAS  Article  PubMed  Google Scholar 

    55.
    Moser, R. et al. From playroom to lab: Tough stretchable electronics analyzed with a tabletop tensile tester made from toy-bricks. Adv. Sci. 3, 1500396 (2016).
    Article  CAS  Google Scholar 

    56.
    BS EN ISO 527-2 Plastics-Determination of tensile properties. Br. Stand. BSI (1996).

    57.
    Kurian, A., Prasad, S. & Dhinojwala, A. Unusual surface aging of poly(dimethylsiloxane) elastomers. Macromolecules 43, 2438–2443 (2010).
    ADS  CAS  Article  Google Scholar 

    58.
    Pinheiro, J., Bates, D., Debroy, S. & Sarkar, D. nlme: Linear and Nonlinear Mixed Effects Models. R Core Team, R package version 3.1-137 (2018).

    59.
    Lenth, R. emmeans: Estimated Marginal Means, Aka Least-Squares Means. R Core Team, R package version 1.3.4 (2019).

    60.
    Core Team. R: A Language and Environment for Statistical Computing (Core Team, Vienna, 2019).
    Google Scholar  More

  • in

    Hemocytes released in seawater act as Trojan horses for spreading of bacterial infections in mussels

    1.
    Beyer, J. et al. Blue mussels (Mytilus edulis spp.) as sentinel organisms in coastal pollution monitoring: a review. Mar. Env. Res. 130, 338–365 (2017).
    ADS  Article  CAS  Google Scholar 
    2.
    Metzger, M. J., Reinisch, C., Sherry, J. & Goff, S. P. Horizontal transmission of clonal cancer cells causes leukemia in soft-shell clams. Cell 161, 255–263 (2015).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    3.
    Metzger, M. J. et al. Widespread transmission of independent cancer lineages within multiple bivalve species. Nature 534, 705–709 (2016).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    4.
    Rozen, Y. & Belkin, S. Survival of enteric bacteria in seawater. FEMS Microbiol. Rev. 25, 513–529 (2001).
    Article  CAS  PubMed  Google Scholar 

    5.
    Suttle, C. A. The significance of viruses to mortality in aquatic microbial communities. Microbiol. Ecol. 28, 237–243 (1994).
    Article  CAS  Google Scholar 

    6.
    Allam, B. & Raftos, D. Immune responses to infectious diseases in bivalves. J. Invertebr. Pathol. 131, 121–136 (2015).
    Article  CAS  PubMed  Google Scholar 

    7.
    Allam, B. & Espinosa, E. P. Mucosal immunity in mollusks. In Mucosal Health in Aquaculture (eds Beck, B. H. & Peatman, E.) 325–370 (Academic Press, Cambridge, 2015).
    Google Scholar 

    8.
    Lau, Y. T., Sussman, L., Espinosa, E. P., Katalay, S. & Allam, B. Characterization of hemocytes from different body fluids of the eastern oyster Crassostrea virginica. Fish Shellfish Immunol. 71, 372–379 (2017).
    Article  CAS  PubMed  Google Scholar 

    9.
    Lau, Y. T., Gambino, L., Santos, B., Espinosa, E. P. & Allam, B. Transepithelial migration of mucosal hemocytes in Crassostrea virginica and potential role in Perkinsus marinus pathogenesis. J. Invertebr. Pathol. 153, 122–129 (2018).
    Article  PubMed  Google Scholar 

    10.
    Allam, B. & Espinosa, E. P. Bivalve immunity and response to infections: are we looking at the right place?. Fish Shellfish Immunol. 53, 4–12 (2016).
    Article  CAS  PubMed  Google Scholar 

    11.
    Lau, Y. T., Gambino, L., Santos, B., Espinosa, E. P. & Allam, B. Regulation of oyster (Crassostrea virginica) hemocyte motility by the intracellular parasite Perkinsus marinus: a possible mechanism for host infection. Fish Shellfish Immunol. 78, 18–25 (2018).
    Article  PubMed  Google Scholar 

    12.
    Bodkin, J. L. et al. Variation in abundance of Pacific blue mussel (Mytilus trossulus) in the Northern Gulf of Alaska, 2006–2015. Deep Sea Res. Part II(147), 87–97 (2018).
    Article  Google Scholar 

    13.
    Bijlsma, R. & Loeschcke, V. Environmental stress, adaptation and evolution: an overview. J. Evol. Biol. 18, 744–749 (2005).
    Article  CAS  PubMed  Google Scholar 

    14.
    Caza, F., Cledon, M. & St-Pierre, Y. Biomonitoring climate change and pollution in marine ecosystems: a review on Aulacomya ater. J. Mar. Biol. https://doi.org/10.1155/2016/183813 (2016).
    Article  Google Scholar 

    15.
    Farcy, E., Voiseux, C., Lebel, J. M. & Fievet, B. Seasonal changes in mRNA encoding for cell stress markers in the oyster Crassostrea gigas exposed to radioactive discharges in their natural environment. Sci. Total Environ. 374, 328–341 (2007).
    ADS  Article  CAS  PubMed  Google Scholar 

    16.
    Yao, C. L. & Somero, G. N. Thermal stress and cellular signaling processes in hemocytes of native (Mytilus californianus) and invasive (M. galloprovincialis) mussels: cell cycle regulation and DNA repair. Comp. Biochem. Physiol. Part A 165, 159–168 (2013).
    Article  CAS  Google Scholar 

    17.
    Negri, A. et al. Transcriptional response of the mussel Mytilus galloprovincialis (Lam.) following exposure to heat stress and copper. PLoS ONE 8, e66802. https://doi.org/10.1371/journal.pone/0066802 (2013).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Heare, J. E., White, S. J., Vadopalas, B. & Roberts, S. B. Differential response to stress in Ostrea lurida as measured by gene expression. Peer J. 6, e4261. https://doi.org/10.7717/peerj.4261 (2018).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    19.
    Caza, F. et al. Comparative analysis of hemocyte properties from Mytilus edulis desolationis and Aulacomya ater in the Kerguelen Islands. Mar. Environ. Res. 110, 174–182 (2015).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Comeau, L. A., Babarro, J. M., Longa, A. & Padin, X. A. Valve-gaping behavior of raft-cultivated mussels in the Ría de Arousa, Spain. Aquac. Rep. 9, 68–73 (2018).
    Article  Google Scholar 

    21.
    Weston, S. A. & Parish, C. R. New fluorescent dyes for lymphocyte migration studies: analysis by flow cytometry and fluorescence microscopy. J. Immunol. Meth. 133, 87–97 (1990).
    Article  CAS  Google Scholar 

    22.
    Daley, R. J. & Hobbie, J. E. Direct counts of aquatic bacteria by a modified epifluorescence technique 1. Limnol. Oceanogr. 20, 875–882 (1975).
    ADS  Article  Google Scholar 

    23.
    Ferguson, R. L. & Rublee, P. Contribution of bacteria to standing crop of coastal plankton 1. Limnol. Oceanogr. 21, 141–145 (1976).
    ADS  Article  Google Scholar 

    24.
    Aubry, A., Mougari, F., Reibel, F. & Cambau, E. Mycobacterium marinum. In Tuberculosis and Nontuberculous Mycobacterial Infections (ed. Schlossberg, D.) 735–752 (McGraw-Hill, New York, 2017).
    Google Scholar 

    25.
    Kennedy, G. M., Morisaki, J. H. & Champion, P. A. Conserved mechanisms of Mycobacterium marinum pathogenesis within the environmental amoeba Acanthamoeba castellanii. Appl. Environ. Microbiol. 78, 20249–22052 (2012).
    Article  CAS  Google Scholar 

    26.
    Barker, L. P., George, K. M., Falkow, S. & Small, P. L. Differential trafficking of live and dead Mycobacterium marinum organisms in macrophages. Infect. Immun. 65, 1497–1504 (1997).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Nguyen, L. & Pieters, J. The Trojan horse: survival tactics of pathogenic mycobacteria in macrophages. Trends Cell Biol. 15, 269–276 (2005).
    Article  CAS  PubMed  Google Scholar 

    28.
    Jørgensen, C. B., Larsen, P. S. & Riisgård, H. U. Effects of temperature on the mussel pump. Mar. Ecol. Progr. Ser. 28, 89–97 (1990).
    ADS  Article  Google Scholar 

    29.
    Podolsky, R. D. Temperature and water viscosity: physiological versus mechanical effects on suspension feeding. Science 265, 100–103 (1994).
    ADS  Article  CAS  PubMed  Google Scholar 

    30.
    Riisgård, H. U. & Seerup, D. F. Filtration rates in the soft clam Mya arenaria: effects of temperature and body size. Sarsia 88, 416–428 (2003).
    Article  Google Scholar 

    31.
    Dowd, W. W. & Somero, G. N. Behavior and survival of Mytilus congeners following episodes of elevated body temperature in air and seawater. J. Exp. Biol. 216, 502–514 (2013).
    Article  PubMed  Google Scholar 

    32.
    Cellura, C., Toubiana, M., Parrinello, N. & Roch, P. HSP70 gene expression in Mytilus galloprovincialis hemocytes is triggered by moderate heat shock and Vibrio anguillarum, but not by V. splendidus or Micrococcus lysodeikticus. Dev. Comp. Immunol. 30, 984–997 (2006).
    Article  CAS  PubMed  Google Scholar 

    33.
    Watermann, B. T. et al. Pathology and mass mortality of Pacific oysters, Crassostrea gigas (Thunberg), in 2005 at the East Frisian coast, Germany. J. Fish Dis. 31, 621–630 (2008).
    Article  CAS  PubMed  Google Scholar 

    34.
    Polsenaere, P. et al. Potential environmental drivers of a regional blue mussel mass mortality event (winter of 2014, Breton Sound, France). J. Sea Res. 123, 39–50 (2017).
    ADS  Article  Google Scholar 

    35.
    Vázquez-Luis, M. et al. SOS Pinna nobilis: a mass mortality event in western Mediterranean Sea. Front. Mar. Sci. 4, 220. https://doi.org/10.3389/fmars.2017.00220 (2017).
    Article  Google Scholar 

    36.
    Lattos, A., Giantsis, I. A., Karagiannis, D. & Michaelidis, B. First detection of the invasive Haplosporidian and Mycobacteria parasites hosting the endangered bivalve Pinna nobilis in Thermaikos Gulf, North Greece. Mar. Environ. Res. https://doi.org/10.1016/j.marenvres.2020.104889 (2020).
    Article  PubMed  Google Scholar 

    37.
    Rivetti, I., Fraschetti, S., Lionello, P., Zambianchi, E. & Boero, F. Global warming and mass mortalities of benthic invertebrates in the Mediterranean Sea. PLoS ONE 9, e115655. https://doi.org/10.1371/journal.pone.0115655 (2014).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Zhang, Y., Li, J., Yu, F., He, X. & Yu, Z. Allograft inflammatory factor-1 stimulates hemocyte immune activation by enhancing phagocytosis and expression of inflammatory cytokines in Crassostrea gigas. Fish Shellfish Immunol. 34, 1071–1077 (2013).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Cellura, C., Toubiana, M., Parrinello, N. & Roch, P. Specific expression of antimicrobial peptide and HSP70 genes in response to heat-shock and several bacterial challenges in mussels. Fish Shellfish Immunol. 22, 340–350 (2007).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Novoa, B. et al. Immune tolerance in Mytilus galloprovincialis haemocytes after repeated contact with Vibrio splendidus. Front. Immunol. 10, 1894. https://doi.org/10.3389/fimmu.2019.01894 (2019).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Palmer, C. V. Immunity and the coral crisis. Commun. Biol. 1, 1–7 (2018).
    Article  Google Scholar 

    42.
    Yonemitsu, M. A. et al. A single clonal lineage of transmissible cancer identified in two marine mussel species in South America and Europe. Elife 8, e47788. https://doi.org/10.7554/eLife.47788 (2019).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    43.
    Seuront, L., Nicastro, K. R., Zardi, G. I. & Goberville, E. Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis. Sci. Rep. 9, 1–4 (2019).
    ADS  Article  Google Scholar 

    44.
    Carroll, P. et al. Sensitive detection of gene expression in mycobacteria under replicating and non-replicating conditions using optimized far-red reporters. PLoS ONE 5, e9823. https://doi.org/10.1371/journal.pone.0009823 (2010).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Li, Y. F. et al. Elevated seawater temperatures decrease microbial diversity in the gut of Mytilus coruscus. Front. Physiol. 9, 839. https://doi.org/10.3389/fphys.2018.00839 (2018).
    Article  PubMed  PubMed Central  Google Scholar  More

  • in

    Citizen science via social media revealed conditions of symbiosis between a marine gastropod and an epibiotic alga

    1.
    Wahl, M. Ecological lever and interface ecology: epibiosis modulates the interactions between host and environment. Biofouling 24, 427–438 (2008).
    Article  Google Scholar 
    2.
    Gutiérrez, J. L., Jones, C. G., Strayer, D. L. & Iribarne, O. O. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101, 79–90 (2003).
    Article  Google Scholar 

    3.
    Carrapiço, F. How symbiogenic is evolution ?. Theory Biosci. 129, 135–139 (2010).
    Article  Google Scholar 

    4.
    Apprill, A. The role of symbioses in the adaptation and stress responses of marine organisms. Ann. Rev. Mar. Sci. 12, 291–314 (2020).
    Article  Google Scholar 

    5.
    van Ommeren, R. J. & Whitham, T. G. Changes in interactions between juniper and mistletoe mediated by shared avian frugivores : parasitism to potential mutualism. Oecologia 130, 281–288 (2002).
    ADS  Article  Google Scholar 

    6.
    Lee, J. H., Kim, T. W. & Choe, C. J. Commensalism or mutualism: conditional outcomes in a branchiobdellid–crayfish symbiosis. Oecologia 159, 217–224 (2009).
    ADS  Article  Google Scholar 

    7.
    Bronstein, J. L. Conditional outcomes in mutualistic interactions. Trends Ecol. Evol. 9, 214–217 (1994).
    CAS  Article  Google Scholar 

    8.
    Dewitt, P. D., Williams, B. W., Lu, Z., Fard, A. N. & Gelder, S. R. Effects of environmental and host physical characteristics on an aquatic symbiont. Limnologica 43, 151–156 (2013).
    Article  Google Scholar 

    9.
    Wahl, M., Goecke, F., Labes, A., Dobretsov, S. & Weinberger, F. The second skin: ecological role of epibiotic biofilms on marine organisms. Front. Microbiol. 3, 1–21 (2012).
    Article  CAS  Google Scholar 

    10.
    Lacoste, E. & Gaertner-Mazouni, N. Biofouling impact on production and ecosystem functioning: A review for bivalve aquaculture. Rev. Aquac. 7, 187–196 (2015).
    Article  Google Scholar 

    11.
    Sakai, Y. The species of Cladophora from Japan and its vicinity. Sci. Pap. Inst. Algol. Res. Fac. Sci. Hokkaido Univ. 5, 1–104 (1964).
    Google Scholar 

    12.
    Matsuyama, K., Aruga, Y. & Tanaka, J. Ecological and morphological studies of Cladophora conchopheria Sakai (Ulvophyceae, Cladophoraceae). J. Jpn .Bot. 74, 136–141 (1999).
    Google Scholar 

    13.
    Yajima, T. & Yamada, K. Field experiments on the clinging selection by the green alga Cladophora conchopheria Sakai to the shell surfaces of the coronate moon turban Turbo (Lunella) coronatus coreensis (Recluz). Bull. Jpn. Sea Res. Institute, Kanazawa Univ. Nihon-kaiiki kenkyu 33, 87–94 (2002).

    14.
    Yamada, M., Wada, K. & Ohno, T. Observations on the alga Cladophora conchopheria on shells of the intertidal gastropod Turbo coronatus coreensis. Benthos Res. 58, 1–6 (2003).
    ADS  Article  Google Scholar 

    15.
    Kagawa, O. & Chiba, S. Snails wearing green heatproof suits: the benefits of algae growing on the shells of an intertidal gastropod. J. Zool. 307, 256–263 (2019).
    Article  Google Scholar 

    16.
    Dickinson, J. L. et al. The current state of citizen science as a tool for ecological research and public engagement. Front. Ecol. Environ. 10, 291–297 (2012).
    Article  Google Scholar 

    17.
    Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool : challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).
    Article  Google Scholar 

    18.
    Suzuki-Ohno, Y., Yokoyama, J., Nakashizuka, T. & Kawata, M. Utilization of photographs taken by citizens for estimating bumblebee distributions. Sci. Rep. 7, 1–11 (2017).
    CAS  Article  Google Scholar 

    19.
    Luigi Nimis, P. et al. Mapping invasive plants with citizen science. A case study from Trieste (NE Italy). Plant Biosyst. 153, 700–709 (2019).
    Article  Google Scholar 

    20.
    Sumner, S., Bevan, P., Hart, A. G. & Isaac, N. J. B. Mapping species distributions in 2 weeks using citizen science. Insect Conserv. Divers. 12, 382–388 (2019).
    Article  Google Scholar 

    21.
    Sequeira, A. M. M., Roetman, P. E. J., Daniels, C. B., Baker, A. K. & Bradshaw, C. J. A. Distribution models for koalas in South Australia using citizen science-collected data. Ecol. Evol. 4, 2103–2114 (2014).
    Article  Google Scholar 

    22.
    Giovos, I. et al. Citizen-science for monitoring marine invasions and stimulating public engagement: a case project from the eastern Mediterranean. Biol. Invasions 21, 3707–3721 (2019).
    Article  Google Scholar 

    23.
    Morii, Y. & Nakano, T. Citizen science reveals the present range and a potential native predator of the invasive slug Limax maximus Linnæus, 1758 in Hokkaido Japan. Bioinvasions Rec. 6, 1–5 (2017).
    Article  Google Scholar 

    24.
    Silvertown, J. A new dawn for citizen science. Trends Ecol. Evol. 24, 467–471 (1888).
    Article  Google Scholar 

    25.
    Kerstes, N. A. G., Breeschoten, T., Kalkman, V. J. & Schilthuizen, M. Snail shell colour evolution in urban heat islands detected via citizen science. Commun. Biol. 2, 1–11 (2019).
    Article  Google Scholar 

    26.
    Rotman, D. et al. Dynamic changes in motivation in collaborative citizen-science projects. In CSCW ’12 Proc. ACM 2012 Conf. Comput. Support. Coop. Work 217–226 (2012). https://doi.org/10.1145/2145204.2145238

    27.
    Newman, G. et al. The future of citizen science: emerging technologies and shifting paradigms. Front. Ecol. Environ. 10, 298–304 (2012).
    Article  Google Scholar 

    28.
    Brossard, D., Lewenstein, B. & Bonney, R. Scientific knowledge and attitude change: the impact of a citizen science project. Int. J. Sci. Educ. 27, 1099–1121 (2005).
    Article  Google Scholar 

    29.
    Schluter, D. The Ecology of Adaptive Radiation (Oxford University Press, Oxford, 2000).
    Google Scholar 

    30.
    Williams, S., Apte, D., Ozawa, T., Kaligis, F. & Nakano, T. Speciation and dispersal along continental coastlines and Island arcs in the Indo-West Pacific turbinid gastropod genus Lunella. Evolution (N. Y). 65, 1752–1771 (2011).
    Google Scholar 

    31.
    Yukihira, H., Noda, M., Hashimoto, H. & Gushima, K. On the distribution and foraging of the moon Coronate Turban, Lunella coronatacoreensis (Récluz, 1853). J. Fac. Appl. Biol. Sci. Hiroshima Univ. 34, 113–124 (1995).
    Google Scholar 

    32.
    Xing, Y. & Wada, K. Temporal and spatial patterns of the alga Cladophora conchopheria on the shell of the intertidal gastropod Turbo coronatus coreensis. Publ. SETO Mar. Biol. Lab. 39, 103–111 (2001).
    Article  Google Scholar 

    33.
    Brown, B. L., Creed, R. P., Skelton, J., Rollins, M. A. & Farrell, K. J. The fine line between mutualism and parasitism : complex effects in a cleaning symbiosis demonstrated by multiple field experiments. Oecologia 170, 199–207 (2012).
    ADS  Article  Google Scholar 

    34.
    Baeza, J. A. & Stotz, W. Host-use and selection of differently colored sea anemones by the symbiotic crab Allopetrolisthes spinifrons. J. Exp. Mar. Biol. Ecol. 284, 25–39 (2003).
    Article  Google Scholar 

    35.
    Takada, Y. Influence of shade and number of boulder layers on mobile organisms on a warm temperate boulder shore. Mar. Ecol. Prog. Ser. 189, 171–179 (1999).
    ADS  Article  Google Scholar 

    36.
    Stachowicz, J. J. Mutualism, facilitation, and the structure of ecological communities. Bioscience 51, 235–246 (2001).
    Article  Google Scholar 

    37.
    Wahl, M. Increased drag reduces growth of snails: comparison of flume and in situ experiments. Mar. Ecol. Prog. Ser. 151, 291–293 (1997).
    ADS  Article  Google Scholar 

    38.
    Wahl, M. Fouled snails in flow: potential of epibionts on Littorina littorea to increase drag and reduce snail growth rates. Mar. Ecol. Prog. Ser. 138, 157–168 (1996).
    ADS  Article  Google Scholar 

    39.
    Miller, L. P., Denny, M. W., Station, H. M. & Grove, P. Importance of behavior and morphological traits for controlling body temperature in Littorinid snails. Biol. Bull. 220, 209–223 (2011).
    Article  Google Scholar 

    40.
    Chan, D. H. L. & Chan, B. K. K. Effect of epibiosis on the fitness of the sandy shore snail Batillaria zonalis in Hong Kong. Mar. Biol. 146, 695–705 (2005). https://doi.org/10.1007/s00227-004-1468-6.
    Article  Google Scholar 

    41.
    Buschbaum, C. & Reise, K. Effects of barnacle epibionts on the periwinkle Littorina littorea (L.). Helgol. Mar. Res. 53, 56–61 (1999).
    ADS  Article  Google Scholar 

    42.
    Mouritsen, K. N. & Bay, G. M. Fouling of gastropods: a role for parasites?. Hydrobiologia 418, 243–246 (2000).
    Article  Google Scholar 

    43.
    Gerhart, D. J., Rittschof, D. & Mayo, S. W. Chemical ecology and the search for marine antifoulants – Studies of a predator-prey symbiosis. J. Chem. Ecol. 14, 1905–1917 (1988).
    CAS  Article  Google Scholar 

    44.
    Solomon Ogunola, O. & Ahmed Onada, O. Anti-biofouling defence mechanism of basibionts (a chemical Warfare)—a critical review. J. Environ. Anal. Toxicol. 6, 380 (2016).
    Article  Google Scholar 

    45.
    McGowan, K. L. & Iyengar, E. V. The difference between a rock and a biological hard place: epibionts in the rocky intertidal. Mar. Biol. 164, 1–15 (2017).
    Article  Google Scholar 

    46.
    Wahl, M. & Mark, O. The predominantly facultative nature of epibiosis: experimental and observational evidence. Mar. Ecol. Prog. Ser. 187, 59–66 (1999).
    ADS  Article  Google Scholar 

    47.
    Harvey, P. H. & Pagel, M. D. The comparative method in evolutionary biology. Trends Ecol. Evol. 239, 239 (1991).
    Google Scholar 

    48.
    Braverman, H., Leibovitz, L. & Lewbart, G. A. Green algal infection of American horseshoe crab (Limulus polyphemus) exoskeletal structures. J. Invertebr. Pathol. 111, 90–93 (2012).
    Article  Google Scholar 

    49.
    Laudien, J. & Wahl, M. Indirect effects of epibiosis on host mortality: seastar predation on differently fouled mussels. Mar. Ecol. 20, 35–47 (1999).
    ADS  Article  Google Scholar 

    50.
    Lyu, J., Auker, L. A., Priyadarshi, A. & Parshad, R. D. The effects of invasive epibionts on crab-mussel communities: a theoretical approach to understand mussel population decline. J. Biol. Syst. 28, 1–40 (2020).
    MathSciNet  MATH  Article  Google Scholar 

    51.
    Abe, N. Food and feeding habit of ( preliminary report some carnivorous gastropods. Benthos Res. 19, 39–47 (1980).
    Article  Google Scholar 

    52.
    Shigemiya, Y. Does the handedness of the pebble crab Eriphia smithii influence its attack success on two dextral snail species? J. Zool. 260, 259–265 (2003).
    Article  Google Scholar 

    53.
    Fujii, A. Predation on young topshell Batillus cornutus by carnivorous marine animals. SUISANZOUSHOKU 39, 123–128 (1991).
    Google Scholar 

    54.
    Kohn, A. J. & Leviten, P. J. Effect of habitat complexity on population density and species richness in tropical intertidal predatory gastropod assemblages. Oecologia 25, 199–210 (1976).
    ADS  Article  Google Scholar 

    55.
    Menge, B. A. & Sutherland, J. P. Community regulation: Variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am. Nat. 130, 730–757 (1987).
    Article  Google Scholar 

    56.
    Marsh, C. P. Impact of avian predators on high intertidal limpet populations. J. Exp. Mar. Biol. Ecol. 104, 185–201 (1986).
    Article  Google Scholar 

    57.
    Kiyosu, Y. Birds of Japan. (koudansya, 1978).

    58.
    Nakamura, T. & Nakamura, M. Bird’s life in Japan with color pictures: birds of marsh, shore and ocean. (Hoikusya, 1995).

    59.
    Underwood, A. J. & Zoology, P. J. Effects of interactions between algae and grazing gastropods on the structure of a low-shore intertidal algal community. Oecologia 48, 221–233 (1981).
    ADS  CAS  Article  Google Scholar 

    60.
    Wada, Y., Iwasaki, K., Ida, T. Y. & Yusa, Y. Roles of the seasonal dynamics of ecosystem components in fluctuating indirect interactions on a rocky shore. Ecology 98, 1093–1103 (2017).
    Article  Google Scholar 

    61.
    Wang, X. Y. & Sakai, Y. Life history of Cladophora opaca and Cl. conchopheria (Chlorophyta). Jpn. J. Phycol. 34, 209 (1986).
    Google Scholar 

    62.
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
    CAS  Article  Google Scholar 

    63.
    Burrows, M. T. Influences of wave fetch, tidal flow and ocean colour on subtidal rocky communities. Mar. Ecol. Prog. Ser. 445, 193–207 (2012).
    ADS  Article  Google Scholar 

    64.
    Kahma, K. K. A study of the growth of the wave spectrum with fetch. J. Phys. Oceanogr. 11, 1503–1515 (1981).
    ADS  Article  Google Scholar 

    65.
    Burrows, M. T., Harvey, R. & Robb, L. Wave exposure indices from digital coastlines and the prediction of rocky shore community structure. Mar. Ecol. Prog. Ser. 353, 1–12 (2008).
    ADS  Article  Google Scholar 

    66.
    Yamazaki, D., Hirano, T., Uchida, S., Miura, O. & Chiba, S. Relationship between contrasting morphotypes and the phylogeny of the marine gastropod genus Tegula (Vetigastropoda: Tegulidae) in East Asia. J. Molluscan Stud. 85, 92–102 (2019).
    Article  Google Scholar 

    67.
    Seers, B. fetchR: Calculate Wind Fetch. (2018). Available at: https://cran.r-project.org/package=fetchR.

    68.
    R Core Team. R: A Language and Environment for Statistical Computing. (2018). Available at: https://www.r-project.org/.

    69.
    Infrastructure Transport Ministry Tourismof Land. National Land Numerical Information’s download site. (2020). Available at: https://nlftp.mlit.go.jp/ksj/index.html.

    70.
    Agency Japan Meteorological. Japan Meteorological Agency website. (2020). Available at: https://www.jma.go.jp/jma/kishou/know/yougo_hp/toki.html.

    71.
    Douma, J. C. & Weedon, J. T. Analysing continuous proportions in ecology and evolution : a practical introduction to beta and Dirichlet regression. Methods Ecol. Evol. 10, 1412–1430 (2019).
    Article  Google Scholar 

    72.
    Chapperon, C., Studerus, K. & Clavier, J. Mitigating thermal effect of behaviour and microhabitat on the intertidal snail Littorina saxatilis (Olivi) over summer. J. Therm. Biol. 67, 40–48 (2017).
    Article  Google Scholar 

    73.
    Keddy, P. A. Quntifying within-lake gradients of wave enagy: interrelationships of wave energy, substrate particle size and shoreline plants in axe lake, ontario. Aquat. Bot. 14, 41–58 (1982).
    Article  Google Scholar 

    74.
    Gilks, W. R. & Roberts, G. O. Strategies for improving MCMC. Markov Chain Monte Carlo Pract. 6, 89–114 (1996).
    MATH  Google Scholar 

    75.
    Gelman, A. & Shirley, K. Inference from simulations and monitoring convergence. Handb. Markov Chain Monte Carlo 6, 163–174 (2011).
    MathSciNet  MATH  Google Scholar 

    76.
    Kruschke, J. K. Bayesian estimation supersedes the t test. J Exp Psychol 142, 573–603 (2013).
    Article  Google Scholar  More

  • in

    Rotating and stacking genes can improve crop resistance durability while potentially selecting highly virulent pathogen strains

    Overview of the model
    This model simulates the population and evolutionary dynamics of different pathogen strains, as they interact with different crop resistant cultivars planted in a single field over successive years. We assume one cultivar is planted each year and we consider a field divided into a finite number m of spatial units (representing limited spaces for infections, or potential lesion sites), in which the spatial aspect is implied rather than explicitly represented. For each year during the cropping season, a number of pathogen spores are released from the infested crop residues, it then lands on the crop plants leading to infections (Fig. 1). These infections are apportioned between the different pathogen strains depending on their previous abundance and interactions with the crop cultivar. At the end of the year, during the non-cropping season, these strains are assumed to sexually recombine in the crop residue. The number of spores released and the number of infections are considered as random variables. We denote these both quantities with an uppercase letter (for example N) in general sense, while their particular realisation or draw in the simulation will be noted with a lowercase letter (for example n). The model was developed using the R Language and Environment for Statistical Computing49.
    Figure 3

    Case 1, model predictions of total infection by each pathogen genotype (proportion of total locations infected, left), and the corresponding frequencies of each virulent allele (right) changing over time under different rotation strategies (From top to bottom: (S1) no rotation; (S2) rotation every year; (S3) rotation every 5 years; and (S4) rotation every year with stacked resistance genes). The parameters are at baseline values: the initial frequency of each virulent allele equals (5%), the fitness modifier is set at 0.9, the modifier of increase rate for non-virulent strains equals 0.05, and the initial amount of inoculum represents (10 %) of available locations.

    Full size image

    Figure 4

    Case 2, model predictions of total infection by each pathogen genotype (proportion of total locations infected, left), and the corresponding frequencies of each virulent allele (right) changing over time under different rotation strategies (from top to bottom: (S1) no rotation; (S2) rotation every year; (S3) rotation every 5 years; and (S4) rotation every year with stacked resistance genes). The initial frequency of each virulent allele equals (50%), and other parameters are at baseline values: the fitness modifier is set at 0.9, the modifier of increase rate for non-virulent strains equals 0.05, and the initial amount of inoculum represents (10 %) of available locations.

    Full size image

    We applied the general model described above to a specific situation with four genes of interaction where there are four different resistance genes that may or may not be deployed within each crop cultivar, and four virulence genes that may or may not be present within each pathogen strain. We assume that the presence of each virulence gene reduces the fitness of a strain independently. Specifically, for each strain i, we define the fitness of that strain (delta _i = delta ^{n_{vir,i}}), where (n_{vir,i}) is the number of virulence alleles present in strain i, and (delta) is a fixed model parameter with potential values between zero and one (Table 1).
    Table 1 Baseline model parameter values used for our analysis, with alternative values shown in parentheses.
    Full size table

    We first set the model parameter values to define a baseline situation where there is a relatively small fitness penalty for virulence alleles (i.e. (delta) is very close to 1, where the value 1 means no penalty); the pathogen has a relatively low ability to reproduce if it does not carry effective virulence genes (i.e. low value for (epsilon), in this baseline situation equal to 0.05); the initial virulence allele frequency (Init.freq) is relatively low, reflecting a low historical selection pressure and lastly the initial quantity of pathogen (Init.path) is also low at (10 %) of carrying capacity (Table 1). We then considered and compared four different strategies for rotating resistant crop cultivars:
    S1.
    No rotation, the same cultivar with only one gene of resistance is employed every year;

    S2.
    A cultivar with a single gene of resistance is employed each year, and the gene of resistance in the cultivar is changed every year, giving a 4-year rotation;

    S3.
    A cultivar with a single gene of resistance is employed each year, and the gene of resistance in the cultivar is changed every 5 years, giving a 20-year rotation; and

    S4.
    A cultivar with two genes of resistance (i.e. pyramided resistance) is employed each year, and the genes of resistance in the cultivar are changed every year, giving a 2-year rotation

    We then investigated how different parameterisations of the model would interact with the selected rotation strategies. We develop four cases in addition to the baseline case described above:
    Case 1.
    Baseline scenario (Table 1).

    Case 2.
    Baseline scenario, except for Init.freq which was increased from 0.05 to 0.5.

    Case 3.
    Baseline scenario, except for Init.freq which was increased from 0.05 to 0.5 and (delta) which was decreased from 0.9 to 0.7.

    Case 4.
    Baseline scenario, except for Init.freq which was increased from 0.05 to 0.5, (delta) which was decreased from 0.9 to 0.7 and (epsilon) which was increased from 0.05 to 0.5.

    Case 5.
    Baseline scenario, except for (epsilon) which was increased from 0.05 to 0.5.

    Genetics
    Cultivar and pathogen strain are both defined through their genotype being restricted to a specific set of interaction genes (loci) related to resistance (for the cultivar) or virulence (for the pathogen). Each gene has two versions (alleles): virulence or avirulence allele for the pathogen and resistance or susceptibility for the cultivar. Virulence and resistance are represented with a 1 and avirulence and susceptibility are represented with a 0 (Fig. 2). If we call ({mathcal {I}}) the set of strains and if (nu) genes of interaction are involved, then the total number of strains will be (left| {mathcal {I}}right| = 2^{nu }). During the infection process, after pathogen spores land on the cultivar, an interaction factor (beta (i,c)) defines the relative rate at which strain i can reproduce within a field of cultivar c, for each strain and cultivar combination (Fig. 2). We consider that a strain overcomes the cultivar genotype when the strain has a virulence allele for every resistance allele of the cultivar (Fig. 2), in which case (beta (i,c)=1), indicating maximum reproduction rate. Otherwise, if the strain does not have a virulence allele for every resistance allele of the cultivar, (beta (i,c)= epsilon), where (epsilon) is a model parameter with constant value (0 le epsilon < 1), indicating a less-than-maximum reproduction rate. As such, (epsilon) is the model parameter modifying the growth and reproduction of pathogen strains not carrying multiple virulence alleles (e.g. 0100) and/or an avirulent pathogen strain (e.g. 0000) (Fig. 2). Accordingly, lower (closer to 0) (epsilon) values represent reduced ability to grow and reproduce in pathogen strains with increasing number of avirulence alleles. Moreover, any strain i with one or more virulence genes is also assumed to suffer a fitness penalty (delta _i) depending on the number of genes involved. Together these interaction factors make a cultivar-strain interaction matrix (B = (beta (i,c))). This code and method for modelling resistance and virulence interactions (without fitness penalty) is similar to those in previous studies48,50. Figure 5 Case 3, model predictions of total infection by each pathogen genotype (proportion of total locations infected, left), and the corresponding frequencies of each virulent allele (right) changing over time under different rotation strategies (from top to bottom: (S1) no rotation; (S2) rotation every year; (S3) rotation every 5 years; and (S4) rotation every year with stacked resistance genes). The fitness modifier is set at 0.7, the initial frequency of each virulent allele equals (50%), and other parameters are at baseline values: the modifier of increase rate for non-virulent strains equals 0.05, and the initial amount of inoculum represents (10 %) of available locations. Full size image Figure 6 Case 4, model predictions of total infection by each pathogen genotype (proportion of total locations infected, left), and the corresponding frequencies of each virulent allele (right) changing over time under different rotation strategies (from top to bottom: (S1) no rotation; (S2) rotation every year; (S3) rotation every 5 years; and (S4) rotation every year with stacked resistance genes). The fitness modifier is set at 0.7, the initial frequency of each virulent allele equals (50%), the modifier of increase rate for non-virulent strains equals 0.5, and other parameters are at baseline values: the initial amount of inoculum represents (10 %) of available locations. Full size image Initial genetic structure of pathogen population At the start of each case, we define the initial proportion of each pathogen genotype using the equation: $$begin{aligned} strains.init = Init.freq^{nr}left( 1-Init.freqright) ^{4-nr} end{aligned}$$ (1) where strains.init is the initial proportion of each pathogen genotype; Init.freq is the frequency of the virulent genes as set by each case and nr is the number of virulent genes present in a given pathogen genotype. We then used a random Poisson distribution generator (rpois function from the stats package in R) to obtain the initial number of spores for each pathogen genotype, where the mean of the Poisson distribution is the proportion of a given pathogen genotype multiplied by the pre-determined pathogen load (Init.path, Table 1). Model dynamics The annual dynamics (Fig. 1) can be divided into two main phases: the phase of parasitic activity, representing events occurring through the cropping season, and the phase of dormancy, representing events occurring between the cropping seasons. During the phase of parasitic activity, the pathogen produces spores which are spread both through the air (sexual ascospores) and via water splash (asexual conidia). These spores may then infect leaves and stems of the cultivar, resulting in new lesions of different strains. During the phase of dormancy, the pathogen remains within the infected crop residue and sexual recombination occurs. These processes are modelled with four steps, three for the parasitic phase and one for the dormancy phase. Figure 7 Case 5, model predictions of total infection by each pathogen genotype (proportion of total locations infected, left), and the corresponding frequencies of each virulent allele (right) changing over time under different rotation strategies (from top to bottom: (S1) no rotation; (S2) rotation every year; (S3) rotation every 5 years; and (S4) rotation every year with stacked resistance genes). The modifier of increase rate for non-virulent strains equals 0.5 and other parameters are at baseline values: the initial frequency of each virulent allele equals (5%), the fitness modifier is set at 0.9, and the initial amount of inoculum represents (10 %) of available locations. Full size image Total amount of spores released First, the model generates the amount of pathogen spores of each strain that is released, using the equation: $$begin{aligned} lambda _{{ released},i}(t) = alpha . n_{{ recombined},i}(t-1) end{aligned}$$ (2) where (lambda _{{ released},i}(t)) represents the expected dispersed propagule (spore) pressure in the field due to strain (i in {mathcal {I}}) during the year t, the parameter (alpha) represents the normal rate of growth for the pathogen from 1 year to the next, and (n_{{ recombined},i}(t-1)) represents the number of spatial units or locations infected by the strain i at the end of the previous year and after genetic recombination. The actual quantity of pathogen strain i released in the current year, (n_{{ released},i}(t)) is then simulated as a Poisson random variable: $$begin{aligned} N_{{ released},i}(t) hookrightarrow {mathcal {P}}(alpha . n_{{ recombined},i}(t-1)) end{aligned}$$ (3) The infective pressure (lambda _{{ infected},i}(t)) is then calculated as: $$begin{aligned} lambda _{{ infected},i}(t) = beta (i,c(t)) . delta _i . n_{{ released},i}(t) end{aligned}$$ (4) where (beta (i,c(t))) is the interaction factor between the strain i and the cultivar c(t) i.e. the cultivar grown in year t, and (delta _i) is the fitness penalty for the particular strain i. Total number of infections Second, the model calculates the total number of infected sites, following a binomial distribution: $$begin{aligned} N_{ infected}(t) hookrightarrow {mathcal {B}}left( m, 1 - prod _{i = 1}^{2^{nu }} (1- rho _i(t))^{n_{{ released},i}(t)}right) end{aligned}$$ (5) where (rho _i(t)) is the probability that a particular given location (among the m possible locations in the field) during year t, will have a given spore from strain i fall down on it and cause a lesion, and thus (displaystyle 1 - prod nolimits _{i = 1}^{2^{nu }} (1- rho _i(t))^{n_{{ released},i}(t)}) represents the probability that at least one of the (displaystyle n_{ released}(t) = sum nolimits _{i = 1}^{2^{nu }} n_{{ released},i}(t)) spores produces a lesion. This equation can be justified in more detail as follows: $$begin{aligned}&P({At; least; one; of; the; n_{ released}(t); spores; produces; a; lesion}) \&quad = 1 - P({ No; released; spores; produces; a; lesion}) \&quad = 1 - prod _{i = 1}^{2^{nu }} P({ A; single; released; spore; of ; strain ; i ; doesn't; produce; a; lesion})^{n_{{ released},i}(t)} \&quad = 1 - prod _{i = 1}^{2^{nu }} (1 - P({A; single; released; spore; of ; strain ; i ; produces; a; lesion}))^{n_{{ released},i}(t)} end{aligned}$$ We assume that a spore will fall on any of the m specific locations with the same probability independently of its infection capabilities. The number of locations m is assumed to be the same for all years whatever the cultivar grown and thus, this probability is independent of the time dimension. Next, we assume that the probability that a spore will induce an infection depends on the interaction factor between the crop cultivar genotype and the pathogen strain (beta (i,c(t))) together with the fitness penalty for that strain (delta _i) . These assumptions mean that: $$begin{aligned} rho _i(t) = P({a; spore; fall; down; on; a; given; location; during ; year; t; and; causes; a; lesion}) \ = P({a; spore; falls; on; a; given; place; where; c(t); is; grown })times \ P({ the; spore; causes; a; lesion} mid { the; spore; falls; on; a; place; where; c(t); is; grown}) \ = frac{1}{m} . beta (i,c(t)) . delta _i end{aligned}$$ Number of infections for each strain Third, the number of infections of each strain is derived from the total number of infections depending on genetic interactions between each strain and crop cultivar being employed that year. Specifically, the total number of infections (N_{ infected}(t) = n_{ infected}(t)) is distributed among the different strains using the multinomial distribution: $$begin{aligned} left( N_{{ infected},1}(t), ldots , N_{{ infected},2^{nu }}(t)right) hookrightarrow {mathcal {M}}left( frac{lambda _{{ infected},1}(t)}{lambda _{ infected}(t)},ldots , frac{lambda _{{ infected},2^{nu }}(t)}{lambda _{{ infected}}(t)}, n_{ infected}(t)right) end{aligned}$$ (6) where (displaystyle lambda _{{ infected}} (t) = sum nolimits _{i = 1}^{2^{nu }} lambda _{{ infected},i}(t)). The number of infected sites due to strain i, without no loss of generalities, follows then the binomial distribution (displaystyle {mathcal {B}}left( n_{ infected}(t),frac{lambda _{{ infected},i}(t)}{lambda _{{ infected}}(t)}right)). Genetic recombination The fourth step involves simulating the process of sexual recombination, where new quantities of each strain are generated based on the previous quantities of each strain. At the end of the year t, we calculate the frequencies (f_j(t)) of each virulent version of each gene from the different genotypes of strains in the crop stubble. We let the genotype of any new spore be represented by a random vector (displaystyle G_i(t) = left( G_{i,1}(t), ldots ,G_{i,nu }(t)right)), where each (G_{i,j}(t)) is a Bernoulli random variable (displaystyle {mathcal {B}}(1,f_j(t))). This vector representation of genotype follows the coding illustrated in (Fig. 2). Assuming that strains recombine independently gene by gene, the probability that (G_i(t)) will be a particular genotype (displaystyle g_i(t) = left( g_{i,1}(t), ldots ,g_{i,nu }(t)right)) is given by: $$begin{aligned} p_i(t) = Pleft( G_i(t) = g_i(t)right) &= prod _{j=1}^{nu } P(G_{i,j}(t) = g_{i,j}(t)) nonumber \ &= prod _{j=1}^{nu } f_j(t)^{g_{i,j}(t)} left( 1 - f_j(t)right) ^{left( 1 - g_{i,j}(t)right) } end{aligned}$$ We can also confirm that across all possible genotypes these probabilities sum to one: $$begin{aligned} sum _{i=1}^{2^{nu }} Pleft( G_i(t) = g_i(t)right) = sum _{i=1}^{2^{nu }} prod _{j=1}^{nu } f_j(t)^{g_{i,j}(t)} left( 1 - f_j(t)right) ^{left( 1 - g_{i,j}(t)right) } = 1 end{aligned}$$ (7) If we shorten the notation for (P(G_i(t) = g_i(t))) to be (p_i(t)) then we can define the recombined version of infected numbers of units of each strain with the following multinomial distribution: $$begin{aligned} left( N_{{ recombined},1}(t), ldots , N_{{ recombined},2^{nu }}(t)right) hookrightarrow {mathcal {M}}left( p_1(t),ldots , p_{2^{nu }}(t), n_{ infected}(t)right) end{aligned}$$ (8) Poisson, binomial and multinomial distribution In plant pathology, it is often relevant to model infections by a random variable. Let’s imagine a released spore flying in the air, we can say that this spore will land on a specific leaf and infect it with a given probability p, then it won’t with probability (1 - p) because these are the only two possible events. We can define Y a random variable to model the situation. If we say the event ({Y = 1}) represents the success of the event (landing and infection) and ({Y = 0}) represents the failure, with this definition we say that Y follows a Bernoulli distribution. The values attributed to the variable depending on the events allow the following generalisation: If we consider n spores, each of them realizing an infection on a specific plant area they fell on with the same probability p, then we can associate to each spore a Bernoulli distribution (Y_i) where (i in {1,ldots ,n }). If we are interested in the total number of infections occurring on this leaf, assuming the fact that they will happen independently of each other, we can model this situation by the variable (displaystyle S = sum nolimits _{i = 1}^n{Y_i}), called binomial variable. We can also denote briefly (S hookrightarrow {mathcal {B}}(n,p)), where n represents the number of events and p the probability of success of each event. Moreover, the Bernoulli variable Y is related to binomial distribution in the way that we can write (Y hookrightarrow {mathcal {B}}(1,p))51,52. Usually it is more likely to model such events by a Poisson law rather than binomial law53,54. When the number of events is so big that we can approximate it by infinity, and when the probability of success of each event is very small, close to zero, it is possible to link both Poisson and binomial distribution through their respective expectations. So if (lim nolimits _{begin{array}{c} n nearrow +infty \ p searrow 0 end{array}} n*p = lambda ,) then if we define (X hookrightarrow {mathcal {P}}(lambda )), we have (S xrightarrow {text {distribution}} X). Returning to our example, that means that if we have a ‘close to infinity’ number of spores that could fall onto a given plant and infect it with a very small probability p for each of them and still acting independently, we can model the total number of infections by both S or X. Even if there are millions and millions of spores released, this amount is still small compared to infinity, so using X is still a modelling approximation. The use of binomial or Poisson laws depends on the complexity of the situation. For example, if the modeller wants to simulate a model where he anticipates 15 infections, they can use (X hookrightarrow {mathcal {P}}(15)) or (S hookrightarrow {mathcal {B}}(10000,0.0015)) or (S hookrightarrow {mathcal {B}}(1000000,0.000015)). We consider now a situation where the plant is attacked by a big number of spores, but with different genotypes modifying their ability to infect, some strains being more efficient than others. To model this situation, we can use a vector of variables, each component representing the number of successes due to a specific genotype. We can choose a vector of binomial number or Poisson number. If we consider the case of a threshold in terms of available space to be infected (a maximum number of infections for the plant), such that spores of different strains are competing for those places, we suggest using a vector of random numbers that follows a multinomial law. This distribution derives from the binomial law, although each component is a specified binomial distribution defined from the parameters of the multinomial distribution. But, it is still possible to interpret some of these components via a conditional Poisson distribution. From binomial to multinomial distribution The binomial distribution is a particular case of the multinomial distribution. We consider S a binomial distribution of parameters (n, p) counting the number of success of n independent events where the basic probability of success is p. Let U the random variable be defined by (n-S) the number of failures. In the case where S represents the number of infections, U represents the number of uninfected places. The probability to get k infections is given by: $$begin{aligned} P(S = k) = {n atopwithdelims ()k} p^k (1-p)^{n-k} = {n atopwithdelims ()n-k} p^k (1-p)^{n-k} = P(U = n-k) end{aligned}$$ (9) As a result, the probability of having k success is the same that having (n-k) failures. Then the Eq. (9) shows that U follows a binomial distribution with parameters ((n, 1-p)). We can also say that the couple (S, U) follows a multinomial distribution of parameter ((p, 1-p, n)), that we can denote ((S,U) hookrightarrow {mathcal {M}}(p, 1-p, n)). In a more general way, the analogue of the binomial distribution is the multinomial distribution, where each trial results in exactly one of some fixed finite number k possible successes, with probabilities (p_1), ..., (p_k) (so that (p_ige 0) for i = 1, ..., k and (sum nolimits _{i=1}^k p_i = 1)), and there are n independent trials. Then if the random variables (X_i) indicate the number of times outcome number i is observed over the n trials, the vector (X = (X_1, ldots , X_k)) follows a multinomial distribution with parameters n and p, where (p = (p_1, ldots , p_k)), that we can also write ({mathcal {M}}left( p_1,ldots ,p_n, N = kright))55. From Poisson to multinomial distribution We consider here a total number of successes (meaning in our example a number of spores that fall on a place and infect it) X being the sum of the infections due to (omega) different strains (X_i) ((1le i le omega)). If we consider that each (X_i) follows a Poisson law of parameter (lambda _i) and that they are all independent, then X follows a Poisson law of parameter (displaystyle lambda = sum nolimits _{i=1}^{omega } lambda _i). The distribution of each (X_i) conditionally to (X = n) is a binomial distribution ({mathcal {B}}(n,frac{lambda _i}{lambda })). We can prove it for all variable (X_j), with (j in {1,ldots ,omega }): $$begin{aligned} Pleft( X_j = k left| right. sum _{i=1}^{omega } X_i = n right) &= frac{P left( X_j = k,displaystyle sum nolimits _{begin{array}{c} i = 1 \ ine j end{array}}^{omega } X_i = n-k right) }{P left( displaystyle sum nolimits _{i = 1}^{omega } X_i = n right) } \ &= frac{Pleft( X_j = k right) Pleft( displaystyle sum nolimits _{begin{array}{c} i = 1 \ i ne j end{array}}^{omega } X_i = n-k right) }{P left( displaystyle sum nolimits _{i = 1}^{omega } X_i = n right) } end{aligned}$$ that we obtain using the Bayes formula for conditioning and the use of independence between the (X_i)’s. Then we replace the probabilities by their Poisson values: $$begin{aligned} Pleft( X_j = k left| right. sum _{i = 1}^{omega } X_i = n right) &= frac{e^{-lambda _j}{lambda _j}^k}{k!} frac{e^{- displaystyle sum nolimits _{begin{array}{c} i = 1 \ ine j end{array}}^{omega } lambda _i}{left( displaystyle sum nolimits _{begin{array}{c} i = 1 \ ine j end{array}}^{omega } lambda _i right) }^{n-k}}{(n-k)!} frac{n!}{e^{-displaystyle sum nolimits _{i = 1}^{omega } lambda _i}{left( displaystyle sum nolimits _{i = 1}^n lambda _i right) }^{omega }} \ &= {n atopwithdelims ()k} frac{{lambda _j}^k {left( displaystyle sum nolimits _{begin{array}{c} i = 1 \ ine j end{array}}^{omega } lambda _i right) }^{n-k}}{{left( displaystyle sum nolimits _{i = 1}^{omega } lambda _i right) }^n} = {n atopwithdelims ()k}{left( frac{lambda _j}{displaystyle sum nolimits _{i = 1}^{omega } lambda _i}right) }^k {left( frac{displaystyle sum nolimits _{begin{array}{c} i = 1 \ ine j end{array}}^{omega } lambda _i}{displaystyle sum nolimits _{i = 1}^{omega } lambda _i}right) }^{n-k} end{aligned}$$ Generalizing this result to the random vector of the (displaystyle (X_i)_{1 le ile omega }) for (omega) strains, the distribution of this vector conditionally to the total number X is a multinomial distribution ({mathcal {M}}left( frac{lambda _1}{lambda },ldots ,frac{lambda _n}{lambda }, X = nright))55. Properties of the model Let (X_1),..., (X_{2^{nu }}) independent random variables such that (X_j hookrightarrow {mathcal {P}}(lambda _{{ infected},j}(t))) for all (j in {1,ldots ,2^{nu }}), we have the following results: A. When (m rightarrow infty), (displaystyle N_{ infected}(t) hookrightarrow {mathcal {P}}(sum nolimits _{j=1}^{2^{nu }} lambda _{{ infected},j}(t))), B. For all (j in {1,ldots ,2^{nu }}), (displaystyle N_{ infected, j}(t) xrightarrow {text {distribution}} X_j left| right. sum nolimits _{i = 1}^{2^{nu }} X_i = n), C. With A and B when (m rightarrow infty), it is equivalent to either simulate (N_{ infected}(t)) then the conditional multinomial vector (displaystyle left( N_{{ infected},1}(t), ldots , N_{{ infected},2^{nu }}(t)right)) conditionally to the realisation (n_{ infected}(t)), or to simulate directly the previously defined variables (X_1),..., (X_{2^{nu }}). The number of infected sites due to strain j, without any loss of generalities, follows the binomial distribution (displaystyle {mathcal {B}}left( n_{ infected}(t),frac{lambda _{{ infected},j}(t)}{lambda _{{ infected}}(t)}right)). It is important to notice that it is the same law as a Poisson variable with parameter (lambda _{{ infected},j}(t)) conditionally to the realisation (n_{ infected}(t)) of a Poisson variable with parameter (lambda _{{ infected}}(t)). Referring to formula (10), we can see that when the number of sites available for infection goes towards infinity, meaning that (N_{{ infected}}(t)) behaves like a Poisson law of parameter (sum nolimits _{i = 1}^{2^{nu }} lambda _{{ infected},i}(t)), then the variables (displaystyle left( N_{{ infected},i}(t)right) _{1 le i le 2^{nu }}) behave like independent Poisson law of respective rates (displaystyle left( lambda _{{ infected},i}(t)right) _{1 le i le 2^{nu }}). Proof of the properties of the model A. With the help of the reminder, we just have to prove this result: $$begin{aligned} lim _{m rightarrow infty } Eleft( N_{ infected}(t)right) = sum _{i=1}^{2^{nu }} lambda _{{ infected},i}(t), end{aligned}$$ (10) which could be obtained with the mean value theorem56. It means that if the total number of places available for infections was unlimited, these infections could be regarded as being Poisson distributed, with infection pressure as defined previously. We consider the notation of (5), and to simplify the formula we will note: (rho _i = frac{1}{m} . beta _i) and because the result (10) does not depend on time we reduce the notation such that (10) is equivalent to: $$begin{aligned} lim _{m rightarrow infty } Eleft( N_{ infected}right) = sum _{i=1}^{2^{nu }} lambda _{{ infected}, i}, end{aligned}$$ (11) and then we want to prove that: $$begin{aligned} lim _{m rightarrow infty } m . left( 1 - prod _{i=1}^{2^{nu }} left( 1- frac{beta _i}{m}right) ^{n_{{ released},i}}right) = sum _{i=1}^{2^{nu }} lambda _{{ infected}, i} end{aligned}$$ (12) Replacing m by (frac{1}{x}), with (xne 0), the latest equation equals: $$begin{aligned} lim _{x rightarrow 0} frac{1}{x}. left( 1 - prod _{i=1}^{2^{nu }} (1- xbeta _i)^{n_{{ released},i}}right) = sum _{i=1}^{2^{nu }} lambda _{{ infected}, i} end{aligned}$$ (13) We define (displaystyle f_{beta , n_{released}}(x) = prod _{i=1}^{2^{nu }} f_{i,({beta , n_{released}})}(x) = prod _{i=1}^{2^{nu }} (1 - xbeta _i)^{n_{{ released},i}}). Taking into account the fact that $$begin{aligned} f_{beta , n_{released}}'(x) = left( prod _{i=1}^{2^{nu }} f_{i,({beta , n_{released}})}(x)right) ' = sum _{i=1}^{2^{nu }} left[ f_{i,({beta , n_{released}})}'(x) prod _{begin{array}{c} i=1 \ jne i end{array}}^{2^{nu }}f_{j,({beta , n_{released}})}(x)right] , end{aligned}$$ (14) we apply the mean value theorem (56) to the derivable function (f_{beta , n_{released}}), we got the following result: $$begin{aligned} lim _{x rightarrow 0} frac{left( 1 - f_{beta , n_{released}}(x)right) }{x} &= - lim _{x rightarrow 0} frac{left( f_{beta , n_{released}}(0) - f_{beta , n_{released}}(x)right) }{0 - x} nonumber \ &= -left( f_{beta , n_{released}}'(0)right) = sum _{i=1}^{2^{nu }} beta _i n_{released, i} end{aligned}$$ (15) that finishes the proof of point A. B. The result is immediate knowing the upper reminder concerning the Poisson–Multinomial laws relationship. We just have to take the value of (omega = 2^{nu }). C. When m is close to infinity, (N_{ infected}(t)) follows a Poisson distribution whose parameter (expectation) is a sum of parameters. A property of Poisson distribution is that the law of a sum equals in distribution the sum of independent Poisson variables with the respective terms. So that we can rewrite B: For all (j in {1,ldots ,2^{nu }}), (displaystyle N_{ infected, j}(t) xrightarrow {text {distribution}} X_j left| right. N_{ infected}(t) = n). More