More stories

  • in

    Human-mediated dispersal drives the spread of the spotted lanternfly (Lycorma delicatula)

    Simberloff, D. et al. (eds) Invasive Species in a Globalized World (University of Chicago Press, 2015).
    Google Scholar 
    Gippet, J. M., Liebhold, A. M., Fenn-Moltu, G. & Bertelsmeier, C. Human-mediated dispersal in insects. Curr. Opin. Insect Sci. 35, 96–102 (2019).Article 

    Google Scholar 
    Hall, C. M. Biological invasion, biosecurity, tourism, and globalisation. In Handbook of Globalisation and Tourism (Edward Elgar Publishing, 2019).
    Google Scholar 
    Bertelsmeier, C. Globalization and the anthropogenic spread of invasive social insects. Curr. Opin. Insect Sci. https://doi.org/10.1016/j.cois.2021.01.006 (2021).Article 

    Google Scholar 
    Simberloff, D. How common are invasion-induced ecosystem impacts?. Biol. Invasions 13, 1255–1268 (2011).Article 

    Google Scholar 
    Hayes, K. R. & Barry, S. C. Are there any consistent predictors of invasion success?. Biol. Invasions 10, 483–506 (2008).Article 

    Google Scholar 
    Catford, J. A., Vesk, P. A., Richardson, D. M. & Pyšek, P. Quantifying levels of biological invasion: Towards the objective classification of invaded and invasible ecosystems. Glob. Change Biol. 18, 44–62 (2012).Article 
    ADS 

    Google Scholar 
    Arim, M., Abades, S. R., Neill, P. E., Lima, M. & Marquet, P. A. Spread dynamics of invasive species. Proc. Natl. Acad. Sci. USA 103, 374–378 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Kamenova, S. et al. Invasions toolkit: Current methods for tracking the spread and impact of invasive species. Adv. Ecol. Res. 56, 85–182 (2017).Article 

    Google Scholar 
    Hulme, P. E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).Article 

    Google Scholar 
    Banks, N. C., Paini, D. R., Bayliss, K. L. & Hodda, M. The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecol. Lett. 18, 188–199 (2015).Article 

    Google Scholar 
    Crooks, J. A. & Rilov, G. The establishment of invasive species. In Biological Invasions in Marine Ecosystems 173–175 (Springer, 2009).Chapter 

    Google Scholar 
    Lockwood, J. L., Cassey, P. & Blackburn, T. M. The more you introduce the more you get: The role of colonization pressure and propagule pressure in invasion ecology. Divers. Distrib. 15, 904–910 (2009).Article 

    Google Scholar 
    Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332 (2001).Article 

    Google Scholar 
    O’Reilly-Nugent, A. et al. Landscape effects on the spread of invasive species. Curr. Landsc. Ecol. Rep. 1, 107–114 (2016).Article 

    Google Scholar 
    Simberloff, D. We can eliminate invasions or live with them. Successful management projects. In Ecological Impacts of Non-native Invertebrates and Fungi on Terrestrial Ecosystems 149–157 (Springer, 2008).
    Google Scholar 
    Gutierrez, A. P. & Ponti, L. Eradication of invasive species: Why the biology matters. Environ. Entomol. 42, 395–411 (2013).Article 

    Google Scholar 
    McLaughlin, G. M. & Dearden, P. K. Invasive insects: Management methods explored. J. Insect Sci. 19, 17 (2019).Article 

    Google Scholar 
    Han, J. M. et al. Lycorma delicatula (hemiptera: Auchenorrhyncha: Fulgoridae: Aphaeninae) finally, but suddenly arrived in Korea. Entomol. Res. 38, 281–286 (2008).Article 

    Google Scholar 
    Park, J.-D. et al. Biological characteristics of lycorma delicatula and the control effects of some insecticides. Korean J. Appl. Entomol. 48, 53–57 (2009).Article 

    Google Scholar 
    Shin, Y.-H., Moon, S.-R., Yoon, C.-M., Ahn, K.-S. & Kim, G.-H. Insecticidal activity of 26 insectcides against eggs and nymphs of Lycorma delicatula (hemiptera: Fulgoridae). Korean J. Pestic. Sci. 14, 157–163 (2010).
    Google Scholar 
    Dara, S. K., Barringer, L. & Arthurs, S. P. Lycorma delicatula (hemiptera: Fulgoridae): A new invasive pest in the United States. J. Integr. Pest Manag. 6, 20 (2015).Article 

    Google Scholar 
    Urban, J. M. Perspective: Shedding light on spotted lanternfly impacts in the USA. Pest Manag. Sci. 76, 10–17 (2020).Article 
    CAS 

    Google Scholar 
    Liu, G. Some extracts from the history of entomology in china. Psyche 46, 23–28 (1939).Article 

    Google Scholar 
    Barringer, L. E., Donovall, L. R., Spichiger, S.-E., Lynch, D. & Henry, D. The first new world record of Lycorma delicatula (insecta: Hemiptera: Fulgoridae). Entomol. News 125, 20–23 (2015).Article 

    Google Scholar 
    Parra, G., Moylett, H. & Bulluck, R. Technical Working Group Summary Report: Spotted Lanternfly, Lycorma Delicatula (White, 1845). (2018).Harper, J. K., Stone, W., Kelsey, T. W. & Kime, L. F. Potential Economic Impact of the Spotted Lanternfly on Agriculture and Forestry in Pennsylvania 1–84 (The Center for Rural Pennsylvania, 2019).
    Google Scholar 
    Kim, J. G., Lee, E.-H., Seo, Y.-M. & Kim, N.-Y. Cyclic behavior of Lycorma delicatula (insecta: Hemiptera: Fulgoridae) on host plants. J. Insect Behav. 24, 423–435 (2011).Article 

    Google Scholar 
    Albright, T. A. et al. Pennsylvania forests 2014. Resour. Bull. 111, 1–140 (2017).
    Google Scholar 
    Liu, H. Oviposition substrate selection, egg mass characteristics, host preference, and life history of the spotted lanternfly (hemiptera: Fulgoridae) in North America. Environ. Entomol. 48, 1452–1468 (2019).
    Google Scholar 
    Barringer, L. & Ciafré, C. M. Worldwide feeding host plants of spotted lanternfly, with significant additions from North America. Environ. Entomol. 49, 999–1011 (2020).Article 

    Google Scholar 
    Murman, K. et al. Distribution, survival, and development of spotted lanternfly on host plants found in North America. Environ. Entomol. 49, 1270–1281 (2020).Article 

    Google Scholar 
    Huron, N. A., Behm, J. E. & Helmus, M. R. Paninvasion severity assessment of a us grape pest to disrupt the global wine market. bioRxiv (2021).Dara, S. K. Update on the Spotted Lanternfly.Jung, J.-M., Jung, S., Byeon, D.-H. & Lee, W.-H. Model-based prediction of potential distribution of the invasive insect pest, spotted lanternfly Lycorma delicatula (hemiptera: Fulgoridae), by using climex. J. Asia-Pac. Biodivers. 10, 532–538 (2017).Article 

    Google Scholar 
    Namgung, H., Kim, M.-J., Baek, S., Lee, J.-H. & Kim, H. Predicting potential current distribution of Lycorma delicatula (hemiptera: Fulgoridae) using maxent model in south korea. J. Asia-Pac. Entomol. 23, 291–297 (2020).Article 

    Google Scholar 
    Wakie, T. T., Neven, L. G., Yee, W. L. & Lu, Z. The establishment risk of Lycorma delicatula (hemiptera: Fulgoridae) in the United States and globally. J. Econ. Entomol. 113, 306–314 (2020).
    Google Scholar 
    Grimm, V. et al. A standard protocol for describing individual-based and agent-based models. Ecol. Model. 198, 115–126 (2006).Article 

    Google Scholar 
    DeAngelis, D. L. Individual-Based Models and Approaches in Ecology: Populations, Communities and Ecosystems (CRC Press, 2018).Book 

    Google Scholar 
    Łomnicki, A. Individual-based models and the individual-based approach to population ecology. Ecol. Model. 115, 191–198 (1999).Article 

    Google Scholar 
    Grimm, V. & Railsback, S. F. A conceptual framework for designing individual-based models. In Individual-Based Modeling and Ecology 71–121 (Princeton University Press, 2005).Chapter 
    MATH 

    Google Scholar 
    Smith, N. R. et al. Agent-based models of malaria transmission: A systematic review. Malar. J. 17, 1–16 (2018).Article 
    CAS 

    Google Scholar 
    Venkatramanan, S. et al. Using data-driven agent-based models for forecasting emerging infectious diseases. Epidemics 22, 43–49 (2018).Article 

    Google Scholar 
    Harris, C. M., Park, K. J., Atkinson, R., Edwards, C. & Travis, J. Invasive species control: Incorporating demographic data and seed dispersal into a management model for rhododendron ponticum. Ecol. Inform. 4, 226–233 (2009).Article 

    Google Scholar 
    Gallien, L., Münkemüller, T., Albert, C. H., Boulangeat, I. & Thuiller, W. Predicting potential distributions of invasive species: Where to go from here?. Divers. Distrib. 16, 331–342 (2010).Article 

    Google Scholar 
    Rebaudo, F., Crespo-Pérez, V., Silvain, J.-F. & Dangles, O. Agent-based modeling of human-induced spread of invasive species in agricultural landscapes: Insights from the potato moth in ecuador. J. Artif. Soc. Soc. Simul. 14, 7 (2011).Article 

    Google Scholar 
    Day, C. C., Landguth, E. L., Bearlin, A., Holden, Z. A. & Whiteley, A. R. Using simulation modeling to inform management of invasive species: A case study of eastern brook trout suppression and eradication. Biol. Conserv. 221, 10–22 (2018).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    Phillips, S. J., Dudı’k, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-first International Conference on Machine Learning 83 (2004).Phillips, S. J. et al. A brief tutorial on maxent. AT&T Res. 190, 231–259 (2005).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    Urbanek, S. RJava: Low-Level R to Java Interface. (2020).Hijmans, R. J., Phillips, S., Leathwick, J., Elith, J. & Hijmans, M. R. J. Package ‘dismo’. Circles 9, 1–68 (2017).
    Google Scholar 
    Elith, J. et al. A statistical explanation of maxent for ecologists. Divers. Distrib. 17, 43–57 (2011).Article 

    Google Scholar 
    Lane, M. A. & Edwards, J. L. The global biodiversity information facility (gbif). Syst. Assoc. Spec. 73, 1 (2007).
    Google Scholar 
    O’Donnell, M. S. & Ignizio, D. A. Bioclimatic predictors for supporting ecological applications in the conterminous united states. US Geol. Surv. Data Ser. 691, 4–9 (2012).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Hijmans, R. J. Raster: Geographic Data Analysis and Modeling. (2020).Venter, O. et al. Last of the wild project, version 3 (lwp-3): 2009 human footprint, 2018 release. NASA Socioeconomic Data and Applications Center (SEDAC) 10, H46T40JQ44 (2018).Park, M. Overwintering ecology and population genetics of Lycorma delicatula (hemiptera: Fulgoridae) in Korea. Seoul National University, Seoul, Korea Doctoral Thesis (2015).Pearson, K. I. Mathematical contributions to the theory of evolution. VII. On the correlation of characters not quantitatively measurable. Philos. Trans. R. Soc. Lond. Ser. A 195, 1–47 (1900).ADS 
    MATH 

    Google Scholar 
    Warmerdam, F. The geospatial data abstraction library. In Open Source Approaches in Spatial Data Handling 87–104 (Springer, 2008).Chapter 

    Google Scholar 
    Greenberg, J. A., Mattiuzzi, M. & SystemRequirements, G. Package ‘gdalUtils’. (2020).Domingue, M. J. & Baker, T. C. Orientation of flight for physically disturbed spotted lanternflies, Lycorma delicatula, (Hemiptera, fulgoridae). J. Asia-Pac. Entomol. 22, 117–120 (2019).Article 

    Google Scholar 
    Myrick, A. J. & Baker, T. C. Analysis of anemotactic flight tendencies of the spotted lanternfly (Lycorma delicatula) during the 2017 mass dispersal flights in pennsylvania. J. Insect Behav. 32, 11–23 (2019).Article 

    Google Scholar 
    Wolfin, M. S., Myrick, A. J. & Baker, T. C. Flight duration capabilities of dispersing adult spotted lanternflies, Lycorma delicatula. J. Insect Behav. 33, 125–137 (2020).Article 

    Google Scholar 
    Strömbom, D. & Pandey, S. Modeling the life cycle of the spotted lanternfly (Lycorma delicatula) with management implications. Math. Biosci. 340, 108670 (2021).Article 
    MATH 

    Google Scholar 
    Wellington, W. G. Conditions governing the distribution of insects in the free atmosphere. Can. Entomol. 77, 7–15 (1945).Article 

    Google Scholar 
    DeLong, D. M. The bionomics of leafhoppers. Annu. Rev. Entomol. 16, 179–210 (1971).Article 

    Google Scholar 
    Baker, T. et al. Progression of seasonal activities of adults of the spotted lanternfly, Lycorma delicatula, during the 2017 season of mass flight dispersal behavior in eastern Pennsylvania. J. Asia-Pac. Entomol. 22, 705–713 (2019).Article 

    Google Scholar 
    Leach, H. & Leach, A. Seasonal phenology and activity of spotted lanternfly (Lycorma delicatula) in eastern us vineyards. J. Pest Sci. 93, 1215–1224 (2020).Article 

    Google Scholar 
    Goutte, C. & Gaussier, E. A probabilistic interpretation of precision, recall and f-score, with implication for evaluation. In European Conference on Information Retrieval 345–359 (Springer, 2005).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Tukey, J. Multiple comparisons. J. Am. Stat. Assoc. 48, 624–625 (1953).
    Google Scholar 
    Mendiburu, F. de & Mendiburu, M. F. de. Package ‘agricolae’. R Package, Version 1-2 (2019).McAvoy, T. J., Snyder, A. L., Johnson, N., Salom, S. M. & Kok, L. T. Road survey of the invasive tree-of-heaven (Ailanthus altissima) in Virginia. Invasive Plant Sci. Manag. 5, 506–512 (2012).Article 

    Google Scholar 
    Casella, F. & Vurro, M. Ailanthus altissima (tree of heaven): Spread and harmfulness in a case-study urban area. Arboricult. J. 35, 172–181 (2013).Article 

    Google Scholar 
    Takahashi, D. & Park, Y.-S. Spatial heterogeneities of human-mediated dispersal vectors accelerate the range expansion of invaders with source–destination-mediated dispersal. Sci. Rep. 10, 1–9 (2020).Article 

    Google Scholar 
    Meijer, J. R., Huijbregts, M. A., Schotten, K. C. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).Article 
    ADS 

    Google Scholar 
    Turner, R. M. et al. Worldwide border interceptions provide a window into human-mediated global insect movement. Ecol. Appl. 31, e02412 (2021).Article 

    Google Scholar 
    Ricciardi, A. Are modern biological invasions an unprecedented form of global change?. Conserv. Biol. 21, 329–336 (2007).Article 

    Google Scholar 
    Wilson, J. R., Dormontt, E. E., Prentis, P. J., Lowe, A. J. & Richardson, D. M. Something in the way you move: Dispersal pathways affect invasion success. Trends Ecol. Evol. 24, 136–144 (2009).Article 

    Google Scholar 
    Auffret, A. G., Berg, J. & Cousins, S. A. The geography of human-mediated dispersal. Divers. Distrib. 20, 1450–1456 (2014).Article 

    Google Scholar 
    Koch, F. H., Yemshanov, D., Magarey, R. D. & Smith, W. D. Dispersal of invasive forest insects via recreational firewood: A quantitative analysis. J. Econ. Entomol. 105, 438–450 (2012).Article 

    Google Scholar 
    Eyer, P.-A. et al. Extensive human-mediated jump dispersal within and across the native and introduced ranges of the invasive termite Reticulitermes flavipes. Mol. Ecol. 30, 3948–3964 (2020).Article 

    Google Scholar 
    Petrice, T. R. & Haack, R. A. Effects of cutting date, outdoor storage conditions, and splitting on survival of Agrilus planipennis (coleoptera: Buprestidae) in firewood logs. J. Econ. Entomol. 99, 790–796 (2006).Article 

    Google Scholar 
    Petrice, T. R. & Haack, R. A. Can emerald ash borer, Agrilus planipennis (coleoptera: Buprestidae), emerge from logs two summers after infested trees are cut?. Great Lakes Entomol. 40, 92–95 (2007).
    Google Scholar 
    Muirhead, J. R. et al. Modelling local and long-distance dispersal of invasive emerald ash borer Agrilus planipennis (coleoptera) in North America. Divers. Distrib. 12, 71–79 (2006).Article 

    Google Scholar 
    Güneralp, B., Reba, M., Hales, B. U., Wentz, E. A. & Seto, K. C. Trends in urban land expansion, density, and land transitions from 1970 to 2010: A global synthesis. Environ. Res. Lett. 15, 044015 (2020).Article 
    ADS 

    Google Scholar 
    Hulme, P. E. Unwelcome exchange: International trade as a direct and indirect driver of biological invasions worldwide. One Earth 4, 666–679 (2021).Article 
    ADS 

    Google Scholar  More

  • in

    Human fingerprint on structural density of forests globally

    Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).Article 

    Google Scholar 
    Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. https://doi.org/10.1126/sciadv.1600821 (2017).Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).Article 
    CAS 

    Google Scholar 
    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).Article 
    CAS 

    Google Scholar 
    Grantham, H. S. et al. The emerging threat of extractives sector to intact forest landscapes. Front. For. Glob. Change https://doi.org/10.3389/ffgc.2021.692338 (2021).IPBES: Summary for Policymakers. In The Global Assessment Report on Biodiversity and Ecosystem Services (eds Díaz, S. et al.) (IPBES, 2019).Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01026-5 (2021).Article 

    Google Scholar 
    Maxwell, S. L. et al. Degradation and forgone removals increase the carbon impact of intact forest loss by 626%. Sci. Adv. 5, eaax2546 (2019).Article 
    CAS 

    Google Scholar 
    Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).Article 
    CAS 

    Google Scholar 
    Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).Article 

    Google Scholar 
    Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012).Article 
    CAS 

    Google Scholar 
    Coad, L. et al. Measuring impact of protected area management interventions: current and future use of the global database of protected area management effectiveness. Phil. Trans. R. Soc. B 370, 20140281 (2015).Article 

    Google Scholar 
    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).Article 
    CAS 

    Google Scholar 
    Ehbrecht, M. et al. Global patterns and climatic controls of forest structural complexity. Nat. Commun. 12, 519 (2021).Article 
    CAS 

    Google Scholar 
    Zhang, J., Nielsen, S. E., Mao, L., Chen, S. & Svenning, J. C. Regional and historical factors supplement current climate in shaping global forest canopy height. J. Ecol. 104, 469–478 (2016).Article 

    Google Scholar 
    Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl Acad. Sci. USA 118, e2023483118 (2021).Article 
    CAS 

    Google Scholar 
    Knight, C. A. et al. Land management explains major trends in forest structure and composition over the last millennium in California’s Klamath Mountains. Proc. Natl Acad. Sci. USA 119, e2116264119 (2022).Article 
    CAS 

    Google Scholar 
    Stephens, L. et al. Archaeological assessment reveals Earth’s early transformation through land use. Science 365, 897–902 (2019).Article 
    CAS 

    Google Scholar 
    Asner, G. P., Llactayo, W., Tupayachi, R. & Luna, E. R. Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring. Proc. Natl Acad. Sci. USA 110, 18454–18459 (2013).Article 
    CAS 

    Google Scholar 
    Hoang, N. T. & Kanemoto, K. Mapping the deforestation footprint of nations reveals growing threat to tropical forests. Nat. Ecol. Evol. 5, 845–853 (2021).Article 

    Google Scholar 
    Lim, C. L., Prescott, G. W., De Alban, J. D. T., Ziegler, A. D. & Webb, E. L. Untangling the proximate causes and underlying drivers of deforestation and forest degradation in Myanmar. Conserv. Biol. 31, 1362–1372 (2017).Article 

    Google Scholar 
    Sandel, B. & Svenning, J. C. Human impacts drive a global topographic signature in tree cover. Nat Commun. https://doi.org/10.1038/ncomms3474 (2013).Potapov, P. et al. Mapping the world’s intact forest landscapes by remote sensing. Ecol. Soc. 13, 51 (2008).Article 

    Google Scholar 
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).Article 
    CAS 

    Google Scholar 
    Yang, H. et al. A global assessment of the impact of individual protected areas on preventing forest loss. Sci. Total Environ. 777, 145995 (2021).Article 
    CAS 

    Google Scholar 
    Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).Article 
    CAS 

    Google Scholar 
    Clerici, N. et al. Deforestation in Colombian protected areas increased during post-conflict periods. Sci. Rep. 10, 4971 (2020).Article 
    CAS 

    Google Scholar 
    Heino, M. et al. Forest loss in protected areas and intact forest landscapes: a global analysis. PLoS ONE 10, e0138918 (2015).Article 

    Google Scholar 
    Leberger, R., Rosa, I. M. D., Guerra, C. A., Wolf, F. & Pereira, H. M. Global patterns of forest loss across IUCN categories of protected areas. Biol. Conserv. 241, 108299 (2020).Article 

    Google Scholar 
    Wade, C. M. et al. What is threatening forests in protected areas? A global assessment of deforestation in protected areas, 2001–2018. Forests 11, 539 (2020).Article 

    Google Scholar 
    Transforming Our World: The 2030 Agenda for Sustainable Development (UN DESA, 2016).Burleson, E. Paris Agreement and consensus to address climate challenge. ASIL Insight 20, 8 (2016).
    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).Article 
    CAS 

    Google Scholar 
    Quegan, S. et al. The European Space Agency BIOMASS mission: measuring forest above-ground biomass from space. Remote Sens. Environ. 227, 44–60 (2019).Article 

    Google Scholar 
    Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2011JG001708 (2011).Potapov, P. et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 253, 112165 (2021).Article 

    Google Scholar 
    Atkins, J. W., Fahey, R. T., Hardiman, B. S. & Gough, C. M. Forest canopy structural complexity and light absorption relationships at the subcontinental scale. J. Geophys. Res. Biogeosci. 123, 1387–1405 (2018).Article 

    Google Scholar 
    Scarth, P., Armston, J., Lucas, R. & Bunting, P. A structural classification of Australian vegetation using ICESat/GLAS, ALOS PALSAR, and Landsat sensor data. Remote Sens. 11, 147 (2019).Article 

    Google Scholar 
    Dubayah, R. et al. The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 1, 100002 (2020).Article 

    Google Scholar 
    Lang, N. et al. Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles. Remote Sens. Environ. 268, 112760 (2022).Article 

    Google Scholar 
    Marselis, S. M., Keil, P., Chase, J. M. & Dubayah, R. The use of GEDI canopy structure for explaining variation in tree species richness in natural forests. Environ. Res. Lett. 17, 045003 (2022).Article 

    Google Scholar 
    MacArthur, R. H. & MacArthur, J. W. On bird species diversity. Ecology 42, 594–598 (1961).Article 

    Google Scholar 
    Walter, J. A., Stovall, A. E. L. & Atkins, J. W. Vegetation structural complexity and biodiversity in the Great Smoky Mountains. Ecosphere 12, e03390 (2021).Article 

    Google Scholar 
    Camps-Valls, G. et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 7, eabc7447 (2021).Article 
    CAS 

    Google Scholar 
    Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Change Biol. 25, 811–826 (2019).Article 

    Google Scholar 
    Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336 (2018).Article 
    CAS 

    Google Scholar 
    Chazdon, R. L. et al. A policy‐driven knowledge agenda for global forest and landscape restoration. Conserv. Lett. 10, 125–132 (2017).Article 

    Google Scholar 
    Skidmore, A. K. et al. Priority list of biodiversity metrics to observe from space. Nat. Ecol. Evol. 5, 896–906 (2021).Article 

    Google Scholar 
    Schneider, F. D. et al. Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nat. Commun. 8, 1441 (2017).Article 

    Google Scholar 
    Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).Article 
    CAS 

    Google Scholar 
    Ponta, N. et al. Drivers of transgression: what pushes people to enter protected areas. Biol. Conserv. 257, 109121 (2021).Article 

    Google Scholar 
    Pack, S. M. et al. Protected area downgrading, downsizing, and degazettement (PADDD) in the Amazon. Biol. Conserv. 197, 32–39 (2016).Article 

    Google Scholar 
    Tollefson, J. Illegal mining in the Amazon hits record high amid Indigenous protests. Nature 598, 15–16 (2021).Article 
    CAS 

    Google Scholar 
    Thies, C., Rosoman, G., Cotter, J. & Meaden, S. Intact Forest Landscapes. Why It Is Crucial to Protect Them from Industrial Exploitation Technical Note Bd 5 (Greenpeace, 2011).Chazdon, R. L. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320, 1458–1460 (2008).Article 
    CAS 

    Google Scholar 
    Lindenmayer, D. B. et al. New policies for old trees: averting a global crisis in a keystone ecological structure. Conserv. Lett. 7, 61–69 (2014).Article 

    Google Scholar 
    Dave, R. et al. Second Bonn Challenge Progress Report: Application of the Barometer in 2018 (IUCN, 2018).Tang, H. & Armston, J. Algorithm Theoretical Basis Document (ATBD) for GEDI L2B Footprint Canopy Cover and Vertical Profile Metrics (Goddard Space Flight Center, 2019).Adam, M., Urbazaev, M., Dubois, C. & Schmullius, C. Accuracy assessment of GEDI terrain elevation and canopy height estimates in European temperate forests: influence of environmental and acquisition parameters. Remote Sens. 12, 3948 (2020).Article 

    Google Scholar 
    Dorado-Roda, I. et al. Assessing the accuracy of GEDI data for canopy height and aboveground biomass estimates in Mediterranean forests. Remote Sens. 13, 2279 (2021).Article 

    Google Scholar 
    Duncanson, L. et al. Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sens. Environ. 270, 112845 (2022).Article 

    Google Scholar 
    Hofton, M., Blair, J. B., Story, S. & Yi, D. Algorithm Theoretical Basis Document (ATBD) (NASA, 2020).Dubayah, R. et al. GEDI L3 Gridded Land Surface Metrics v.2 (ORNL DAAC, 2021).Roy, D. P., Kashongwe, H. B. & Armston, J. The impact of geolocation uncertainty on GEDI tropical forest canopy height estimation and change monitoring. Sci. Remote Sens. 4, 100024 (2021).Article 

    Google Scholar 
    Potapov, P., Hansen, M. C., Stehman, S. V., Loveland, T. R. & Pittman, K. Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss. Remote Sens. Environ. 112, 3708–3719 (2008).Article 

    Google Scholar 
    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).Article 

    Google Scholar 
    Silva, C. A. et al. rGEDI: NASA’s global ecosystem ynamics investigation (GEDI) data visualization and processing. R package version 0.1.2. (2020).The R Project for Statistical Computing (The R Foundation, 2014); https://www.R-project.org/Fischer, B., Smith, M., Pau, G., Morgan, M. & van Twisk, D. rhdf5: R interface to HDF5. R package version 2.40.0 (2022).Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).Article 

    Google Scholar 
    Giglio, L., Loboda, T., Roy, D. P., Quayle, B. & Justice, C. O. An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sens. Environ. 113, 408–420 (2009).Article 

    Google Scholar 
    Hengl, T. & Wheeler, I. Soil organic carbon content in x 5 g/kg at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution. Zenodo https://doi.org/10.5281/zenodo.1475458 (2018).Farr, T. The shuttle radar topography mission. Rev. Geophys. https://doi.org/10.1029/2005RG000183 (2007).James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning Vol. 112 (Springer, 2013).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Bivand, R. et al. Package ‘spdep’: spatial dependence: weighting schemes, statistics version 1.2-7 (The Comprehensive R Archive Network, 2015).Bivand, R., Yu, D., Nakaya, T., Garcia-Lopez, M.-A. & Bivand, M. R. Package ‘spgwr’: geographically eighted regression. R package version 0.6-35 (2020).Fotheringham, A. S., Brunsdon, C. & Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships (Wiley, 2003). More

  • in

    Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems

    Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).Article 
    CAS 

    Google Scholar 
    DeSoto, L. et al. Low growth resilience to drought is related to future mortality risk in trees. Nat. Commun. 11, 545 (2020).Article 
    CAS 

    Google Scholar 
    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015).Article 

    Google Scholar 
    Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).Article 
    CAS 

    Google Scholar 
    IPCC. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).Gazol, A. et al. Forest resilience to drought varies across biomes. Glob. Change Biol. 24, 2143–2158 (2018).Wu, X. et al. Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Glob. Change Biol. 24, 504–516 (2018).Article 

    Google Scholar 
    Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).Article 
    CAS 

    Google Scholar 
    Li, X. et al. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nat. Ecol. Evol. 4, 1075–1083 (2020).Article 

    Google Scholar 
    Kannenberg, S. A. et al. Drought legacies are dependent on water table depth, wood anatomy and drought timing across the eastern US. Ecol. Lett. 22, 119–127 (2019).Article 

    Google Scholar 
    Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).Article 

    Google Scholar 
    Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).Article 

    Google Scholar 
    Bastos, A. et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 6, eaba2724 (2020).Article 
    CAS 

    Google Scholar 
    Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110–114 (2018).Article 
    CAS 

    Google Scholar 
    Lian, X. et al. Seasonal biological carryover dominates northern vegetation growth. Nat. Commun. 12, 983 (2021).Myneni, R. B. et al. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).Article 
    CAS 

    Google Scholar 
    Jeong, S. J. et al. Application of satellite solar-induced chlorophyll fluorescence to understanding large-scale variations in vegetation phenology and function over northern high latitude forests. Remote Sens. Environ. 190, 178–187 (2017).Article 

    Google Scholar 
    Zeng, Z. et al. Legacy effects of spring phenology on vegetation growth under preseason meteorological drought in the Northern Hemisphere. Agric. Meteorol. 310, 108630 (2021).Article 

    Google Scholar 
    Kelsey, K. C. et al. Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities. Glob. Change Biol. 27, 1572–1586 (2021).Article 

    Google Scholar 
    Wang, X. et al. Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. Glob. Change Biol. 24, 1651–1662 (2018).Article 

    Google Scholar 
    IPCC. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).Article 

    Google Scholar 
    Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl Acad. Sci. USA 116, 11640–11645 (2019).Article 
    CAS 

    Google Scholar 
    Zhang, Y. et al. Large and projected strengthening moisture limitation on end-of-season photosynthesis. Proc. Natl Acad. Sci. USA 117, 9216–9222 (2020).Article 
    CAS 

    Google Scholar 
    Liu, Y. Y. et al. Global long-term passive microwave satellite-based retrievals of vegetation optical depth. Geophys. Res. Lett. 38, L18402 (2011).Article 

    Google Scholar 
    Beguería, S. et al. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).Article 

    Google Scholar 
    Wolf, S. et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl Acad. Sci. USA 113, 5880–5885 (2016).Article 
    CAS 

    Google Scholar 
    D’Andrea, E. et al. Unravelling resilience mechanisms in forests: role of non-structural carbohydrates in responding to extreme weather events. Tree Physiol. 41, 1808–1818 (2021).Article 

    Google Scholar 
    Yun, J. et al. Influence of winter precipitation on spring phenology in boreal forests. Glob. Change Biol. 24, 5176–5187 (2018).Article 

    Google Scholar 
    Xie, J. et al. Spring temperature and snow cover climatology drive the advanced springtime phenology (1991–2014) in the European Alps. J. Geophys. Res. Biogeosci. 126, e2020JG006150 (2021).Xie, J. et al. Altitude-dependent influence of snow cover on alpine land surface phenology. J. Geophys. Res. Biogeosci. 122, 1107–1122 (2017).Article 

    Google Scholar 
    Peng, S. et al. Change in winter snow depth and its impacts on vegetation in China. Glob. Change Biol. 16, 3004–3013 (2010).
    Google Scholar 
    Wu, X. et al. Uneven winter snow influence on tree growth across temperate China. Glob. Change Biol. 25, 144–154 (2019).Article 

    Google Scholar 
    Angert, A. et al. Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proc. Natl Acad. Sci. USA 102, 10823–10827 (2005).Article 
    CAS 

    Google Scholar 
    Musselman, K. N. et al. Winter melt trends portend widespread declines in snow water resources. Nat. Clim. Change 11, 418–424 (2021).Article 

    Google Scholar 
    Kreyling, J. Winter climate change: a critical factor for temperate vegetation performance. Ecology 91, 1939–1948 (2010).Article 

    Google Scholar 
    Bose, A. K. et al. Growth and resilience responses of Scots pine to extreme droughts across Europe depend on predrought growth conditions. Glob. Change Biol. 26, 4521–4537 (2020).Article 

    Google Scholar 
    Martinez-Vilalta, J. et al. Hydraulic adjustment of Scots pine across Europe. New Phytol. 184, 353–364 (2009).Article 
    CAS 

    Google Scholar 
    Klein, T. et al. Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest. Tree Physiol. 34, 981–992 (2014).Article 
    CAS 

    Google Scholar 
    Kannenberg, S. A. & Phillips, R. P. Non-structural carbohydrate pools not linked to hydraulic strategies or carbon supply in tree saplings during severe drought and subsequent recovery. Tree Physiol. 40, 259–271 (2020).Article 
    CAS 

    Google Scholar 
    Karst, J. et al. Stress differentially causes roots of tree seedlings to exude carbon. Tree Physiol. 37, 154–164 (2017).CAS 

    Google Scholar 
    Chitra-Tarak, R. et al. Hydraulically-vulnerable trees survive on deep-water access during droughts in a tropical forest. New Phytol. 231, 1798–1813 (2021).Article 

    Google Scholar 
    Jiao, W. et al. Observed increasing water constraint on vegetation growth over the last three decades. Nat. Commun. 12, 3777 (2021).Wu, X. et al. Higher temperature variability reduces temperature sensitivity of vegetation growth in Northern Hemisphere. Geophys. Res. Lett. 44, 6173–6181 (2017).Article 

    Google Scholar 
    Anderegg, W. R. L. et al. Widespread drought-induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Glob. Change Biol. 25, 3793–3802 (2019).Article 

    Google Scholar 
    Martin-Benito, D. & Pederson, N. Convergence in drought stress, but a divergence of climatic drivers across a latitudinal gradient in a temperate broadleaf forest. J. Biogeogr. 42, 925–937 (2015).Article 

    Google Scholar 
    Tucker, C. J. et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 26, 4485–4498 (2005).Article 

    Google Scholar 
    Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).Article 
    CAS 

    Google Scholar 
    Zhang, W. et al. Divergent response of vegetation growth to soil water availability in dry and wet periods over Central Asia. J. Geophys. Res. Biogeosci. 126, e2020JG005912 (2021).Article 

    Google Scholar 
    Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173 (2013).Article 

    Google Scholar 
    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).Article 

    Google Scholar 
    Liang, W. et al. Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agric. For. Meteorol. 204, 22–36 (2015).Article 

    Google Scholar 
    Zhang, Y. et al. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15, 5779–5800 (2018).Article 
    CAS 

    Google Scholar 
    Jones, M. O. et al. Satellite passive microwave remote sensing for monitoring global land surface phenology. Remote Sens. Environ. 115, 1102–1114 (2011).Article 

    Google Scholar 
    Konings, A. G. et al. Interannual variations of vegetation optical depth are due to both water stress and biomass changes. Geophys. Res. Lett. 48, e2021GL095267 (2021).Article 

    Google Scholar 
    Du, J. et al. A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth observations. Earth Syst. Sci. Data 9, 791–808 (2017).Article 

    Google Scholar 
    Harris, I. et al. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar 
    Barichivich, J. et al. Temperature and snow-mediated moisture controls of summer photosynthetic activity in northern terrestrial ecosystems between 1982 and 2011. Remote Sens. 6, 1390–1431 (2014).Article 

    Google Scholar 
    Vicente-Serrano, S. M., Begueria, S. & Lopez-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).Article 

    Google Scholar 
    Wieder, W. R. et al. Regridded Harmonized World Soil Database v1.2 (ORNL DAAC, 2014); https://doi.org/10.3334/ORNLDAAC/1247Kottek, M. et al. World map of the Koppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006).Article 

    Google Scholar 
    Jakubauskas, M. E., Legates, D. R. & Kastens, J. H. Harmonic analysis of time-series AVHRR NDVI data. Photogramm. Eng. Remote Sens. 67, 461–470 (2001).
    Google Scholar 
    Liu, Q. et al. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Glob. Change Biol. 22, 644–655 (2016).Article 
    CAS 

    Google Scholar 
    Fu, Y. H. et al. Recent spring phenology shifts in western Central Europe based on multiscale observations. Glob. Ecol. Biogeogr. 23, 1255–1263 (2014).Article 

    Google Scholar 
    Jiang, P. et al. Enhanced growth after extreme wetness compensates for post-drought carbon loss in dry forests. Nat. Commun. 10, 195 (2019).Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).Pham, L. T. H. & Brabyn, L. Monitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach combined with machine learning algorithms. ISPRS J. Photogramm. Remote Sens. 128, 86–97 (2017).Article 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 

    Google Scholar 
    Li, Y. Code for ‘Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems’. GitHub https://github.com/leeyang1991/phenology-effects-on-drought-recovery (2022). More

  • in

    The vulnerability of global forests to human and climate impacts

    Duke, N. C. et al. Mar. Freshw. Res. 68, 1816–1829 (2017).Article 

    Google Scholar 
    Li, W. et al. Nat. Sustain. https://doi.org/10.1038/s41893-022-01020-5 (2023).Article 

    Google Scholar 
    Potapov, P. et al. Ecol. Soc. 13, 51 (2008).Article 

    Google Scholar 
    Hancock, S. et al. Earth Space Sci. 6, 294–310 (2019).Article 

    Google Scholar 
    Wade, C. M. et al. Forests 11, 539 (2020).Article 

    Google Scholar 
    Abhilash, P. C. Land 10, 201 (2021).Article 

    Google Scholar 
    Biermann, F., Kanie, N. & Kim, R. E. Curr. Opin. Environ. Sustain. 26–27, 26–31 (2017).Article 

    Google Scholar 
    den Elzen, M. et al. Energy Policy 126, 238–250 (2019).Article 

    Google Scholar 
    Betts, M. G. et al. Nature 547, 441–444 (2017).Article 
    CAS 

    Google Scholar 
    Watson, J. E. M. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0490-x (2018).Article 

    Google Scholar  More

  • in

    Spring phenology alters vegetation drought recovery

    Mishra, A. K. & Singh, V. P. J. Hydrol. 391, 202–216 (2010).Article 

    Google Scholar 
    Jiao, W. et al. Nat. Commun. 12, 3777 (2021).Article 
    CAS 

    Google Scholar 
    Gampe, D. et al. Nat. Clim. Change 11, 772–779 (2021).Article 

    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Schwalm, C. R. et al. Nature 548, 202–205 (2017).Article 
    CAS 

    Google Scholar 
    Li, Y. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01584-2 (2023).Fourth National Climate Assessment: Volume II—Impacts, Risks, and Adaptation in the United States (US Global Change Research Program, 2018).Daryanto, S., Wang, L. & Jacinthe, P. A. PLoS ONE 11, e0156362 (2016).Article 

    Google Scholar 
    Jiao, W. et al. J. Geophys. Res. Biogeosci. 127, e2021JG006431 (2022).Augspurger, C. K. Oecologia 156, 281–286 (2008).Article 

    Google Scholar 
    Lian, X. et al. Nat. Commun. 12, 983 (2021).Article 
    CAS 

    Google Scholar 
    Buermann, W. et al. Nature 562, 110–114 (2018).Article 
    CAS 

    Google Scholar 
    Lian, X. et al. Sci. Adv. 6, eaax0255 (2020).Article 

    Google Scholar 
    Jiao, W., Wang, L. & McCabe, M. F. Rem. Sens. Environ. 256, 112313 (2021).Article 

    Google Scholar  More

  • in

    Long-term spatiotemporal patterns in the number of colonies and honey production in Mexico

    Hung, K.-L.J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. B 285, 20172140 (2018).Article 

    Google Scholar 
    Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313 (2007).Article 

    Google Scholar 
    Mashilingi, S. K., Zhang, H., Garibaldi, L. A. & An, J. Honeybees are far too insufficient to supply optimum pollination services in agricultural systems worldwide. Agr. Ecosyst. Environ. 335, 108003 (2022).Article 

    Google Scholar 
    Stein, K. et al. Bee pollination increases yield quantity and quality of cash crops in Burkina Faso West Africa. Sci. Rep. 7, 17691 (2017).Article 
    ADS 

    Google Scholar 
    Neumann, P. & Carreck, N. L. Honey bee colony losses. J. Apic. Res. 49, 1–6 (2010).Article 

    Google Scholar 
    Pettis, J. S. & Delaplane, K. S. Coordinated responses to honey bee decline in the USA. Apidologie 41, 256–263 (2010).Article 

    Google Scholar 
    Potts, S. G. et al. Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 49, 15–22 (2010).Article 

    Google Scholar 
    Moritz, R. F. A. & Erler, S. Lost colonies found in a data mine: Global honey trade but not pests or pesticides as a major cause of regional honeybee colony declines. Agr. Ecosyst. Environ. 216, 44–50 (2016).Article 

    Google Scholar 
    Osterman, J. et al. Global trends in the number and diversity of managed pollinator species. Agr. Ecosyst. Environ. 322, 107653 (2021).Article 

    Google Scholar 
    Requier, F. et al. Trends in beekeeping and honey bee colony losses in Latin America. J. Apic. Res. 57, 657–662 (2018).Article 

    Google Scholar 
    Vandame, R. & Palacio, M. A. Preserved honey bee health in Latin America: a fragile equilibrium due to low-intensity agriculture and beekeeping?. Apidologie 41, 243–255 (2010).Article 

    Google Scholar 
    Antúnez, K., Invernizzi, C., Mendoza, Y., vanEngelsdorp, D. & Zunino, P. Honeybee colony losses in Uruguay during 2013–2014. Apidologie 48, 364–370 (2017).Article 

    Google Scholar 
    Castilhos, D., Bergamo, G. C. & Kastelic, J. P. Honey bee colony losses in Brazil in 2018–2019 / Perdas de colônias de abelhas no Brasil em 2018–2019. Braz. J. Anim. Environ. Res. 4, 5017–5041 (2021).
    Google Scholar 
    Castilhos, D., Bergamo, G. C., Gramacho, K. P. & Gonçalves, L. S. Bee colony losses in Brazil: a 5-year online survey. Apidologie 50, 263–272 (2019).Article 

    Google Scholar 
    Maggi, M. et al. Honeybee health in South America. Apidologie 47, 835–854 (2016).Article 

    Google Scholar 
    SIAP. Sistema de Información Agroalimentaria de Consulta. http://www.agricultura.gob.mx/datos-abiertos/siap (2019).Namdar-Irani, M., Sotomayor, O. & Rodrigues, M. Tendencias estructurales en la agricultura de América Latina: desafíos para las políticas públicas. 45 (2020).Torres-Ruiz, A., Jones, R. W. & Barajas, R. A. Present and Potential use of Bees as Managed Pollinators in Mexico1. Southwestern entomologist (2013).Brodschneider, R. et al. Multi-country loss rates of honey bee colonies during winter 2016/2017 from the COLOSS survey. J. Apic. Res. 57, 452–457 (2018).Article 

    Google Scholar 
    Gray, A. et al. Loss rates of honey bee colonies during winter 2017/18 in 36 countries participating in the COLOSS survey, including effects of forage sources. J. Apic. Res. 58, 479–485 (2019).Article 

    Google Scholar 
    Medina-Flores, C. A. et al. Pérdida de colonias de abejas melíferas y factores asociados en el centro-occidente de México en los inviernos del 2016 al 2019. Revista Bio Ciencias 8, 11 (2021).Article 

    Google Scholar 
    vanEngelsdorp, D. & Meixner, M. D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invert. Pathol. 103(Supplement), S80–S95 (2010).Hristov, P., Shumkova, R., Palova, N. & Neov, B. Honey bee colony losses: Why are honey bees disappearing?. Sociobiology 68, e5851–e5851 (2021).Article 

    Google Scholar 
    Shanahan, M. Honey bees and industrial agriculture: What researchers are missing, and why it’s a problem. J. Insect Sci. 22, 14 (2022).Article 

    Google Scholar 
    Nearman, A. & vanEngelsdorp, D. Water provisioning increases caged worker bee lifespan and caged worker bees are living half as long as observed 50 years ago. Sci. Rep. 12, 18660. https://doi.org/10.1038/s41598-022-21401-2 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Ellis, J. D., Evans, J. D. & Pettis, J. Colony losses, managed colony population decline, and Colony Collapse Disorder in the United States. J. Apic. Res. 49, 134–136 (2010).Article 

    Google Scholar 
    Guzmán-Novoa, E., Benítez, A. C., Montaño, L. G. E. & Novoa, G. G. Colonization, impact and control of Africanized honey bees in Mexico. Veterinaria México OA 42, (2011).Becerra-Guzmán, F., Guzmán-Novoa, E., Correa-Benítez, A. & Zozaya-Rubio, A. Length of life, age at first foraging and foraging life of Africanized and European honey bee (Apis mellifera) workers, during conditions of resource abundance. J. Apic. Res. 44, 151–156 (2005).Article 

    Google Scholar 
    Guzman-Novoa, E. & Uribe-Rubio, J. L. Honey production by European, Africanized and hybrid honey bee (Apis mellifera) colonies in Mexico. American bee journal (2004).Guzman-Novoa, E. et al. The Process and Outcome of the Africanization of Honey Bees in Mexico: Lessons and Future Directions. Front. Ecol. Evol. 8, (2020).Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).Article 

    Google Scholar 
    Otto, C. R. V., Roth, C. L., Carlson, B. L. & Smart, M. D. Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains. PNAS 113, 10430–10435 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Outhwaite, C. L., McCann, P. & Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 605, 97–102 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A.-L. & Totland, Ø. How does climate warming affect plant-pollinator interactions?. Ecol. Lett. 12, 184–195 (2018).Article 

    Google Scholar 
    Cooper, P. D., Schaffer, W. M. & Buchmann, S. L. Temperature Regulation of Honey Bees (Apis Mellifera) Foraging in the Sonoran Desert. J. Exp. Biol. 114, 1–15 (1985).Article 

    Google Scholar 
    Stalidzans, E. et al. Dynamics of weight change and temperature of Apis mellifera (Hymenoptera: Apidae) Colonies in a wintering building with controlled temperature. J. Econ. Entomol. 110, 13–23 (2017).CAS 

    Google Scholar 
    Qu, M., Wan, J. & Hao, X. Analysis of diurnal air temperature range change in the continental United States. Weather Clim. Extremes 4, 86–95 (2014).Article 

    Google Scholar 
    Braganza, K., Karoly, D. J. & Arblaster, J. M. Diurnal temperature range as an index of global climate change during the twentieth century. Geophys. Res. Lett. 31, (2004).Halsch, C. A. et al. Insects and recent climate change. Proc. Natl. Acad. Sci. 118, e2002543117 (2021).Article 
    CAS 

    Google Scholar 
    Abou-Shaara, H. F. The foraging behaviour of honey bees, Apis mellifera: A review. Vet. Med. 59, 1–10 (2014).Article 

    Google Scholar 
    Joshi, N. & Joshi, P. Foraging Behaviour of Apis Spp. on Apple Flowers in a Subtropical Environment. New York Sci. J. 3, (2010).Gounari, S., Proutsos, N. & Goras, G. How does weather impact on beehive productivity in a Mediterranean island? Ital. J. Agrometeorol. 65–81. https://doi.org/10.36253/ijam-1195 (2022).Delgado, D. L., Pérez, M. E., Galindo-Cardona, A., Giray, T. & Restrepo, C. Forecasting the Influence of Climate Change on Agroecosystem Services: Potential Impacts on Honey Yields in a Small-Island Developing State. Psyche J. Entomol. https://www.hindawi.com/journals/psyche/2012/951215/. https://doi.org/10.1155/2012/951215 (2012).Alves, L. H. S., Cassino, P. C. R. & Prezoto, F. Effects of abiotic factors on the foraging activity of Apis mellifera Linnaeus, 1758 in inflorescences of Vernonia polyanthes Less (Asteraceae). Acta Sci. Anim. Sci. 37, 405–409 (2015).Abou-Shaara, H. Expectations about the potential impacts of climate change on Honey Bee Colonies in Egypt. J. Apicult. 31, 157–164 (2016).Article 

    Google Scholar 
    Donkersley, P., Rhodes, G., Pickup, R. W., Jones, K. C. & Wilson, K. Honeybee nutrition is linked to landscape composition. Ecol. Evol. 4, 4195–4206 (2014).Article 

    Google Scholar 
    Michel-Cuello, C. & Aguilar-Rivera, N. Climate change effects on agricultural production systems in México. in Handbook of Climate Change Across the Food Supply Chain (eds. Leal Filho, W., Djekic, I., Smetana, S. & Kovaleva, M.) 335–353 (Springer International Publishing, 2022). https://doi.org/10.1007/978-3-030-87934-1_19.LaFevor, M. C. Spatial and temporal changes in crop species production diversity in Mexico (1980–2020). Agriculture 12, 985 (2022).Article 

    Google Scholar 
    Smart, M. D., Otto, C. R. V. & Lundgren, J. G. Nutritional status of honey bee (Apis mellifera L.) workers across an agricultural land-use gradient. Sci. Rep. 9, 1–10 (2019).Alaux, C., Ducloz, F., Crauser, D. & Conte, Y. L. Diet effects on honeybee immunocompetence. Biol. Lett. rsbl20090986. https://doi.org/10.1098/rsbl.2009.0986 (2010).Dolezal, A. G., Carrillo-Tripp, J., Miller, W. A., Bonning, B. C. & Toth, A. L. Intensively Cultivated Landscape and Varroa Mite Infestation Are Associated with Reduced Honey Bee Nutritional State. PLoS One 11, (2016).Pasquale, G. D. et al. Variations in the Availability of Pollen Resources Affect Honey Bee Health. PLoS ONE 11, e0162818 (2016).Article 

    Google Scholar 
    Kaluza, B. F. et al. Social bees are fitter in more biodiverse environments. Sci Rep 8, 1–10 (2018).Article 
    CAS 

    Google Scholar 
    Ricigliano, V. A. et al. Honey bee colony performance and health are enhanced by apiary proximity to US Conservation Reserve Program (CRP) lands. Sci. Rep. 9, 4894 (2019).Article 
    ADS 

    Google Scholar 
    Clermont, A., Eickermann, M., Kraus, F., Hoffmann, L. & Beyer, M. Correlations between land covers and honey bee colony losses in a country with industrialized and rural regions. Sci. Total Environ. 532, 1–13 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Kuchling, S. et al. Investigating the role of landscape composition on honey bee colony winter mortality: A long-term analysis. Sci. Rep. 8, 1 (2018).Article 
    CAS 

    Google Scholar 
    Dixon, D. J., Zheng, H. & Otto, C. R. V. Land conversion and pesticide use degrade forage areas for honey bees in America’s beekeeping epicenter. PLoS ONE 16, e0251043 (2021).Article 
    CAS 

    Google Scholar 
    Mendoza-Ponce, A., Corona-Núñez, R. O., Galicia, L. & Kraxner, F. Identifying hotspots of land use cover change under socioeconomic and climate change scenarios in Mexico. Ambio 48, 336–349 (2019).Article 

    Google Scholar 
    Magaña, M. et al. Productividad de la apicultura en México y su impacto sobre la rentabilidad. Revista mexicana de ciencias agrícolas 7, 1103–1115 (2016).Article 

    Google Scholar 
    Mitchell, E. a. D. et al. A worldwide survey of neonicotinoids in honey. Science 358, 109–111 (2017).Pacheco, A. P. Identificación de residuos tóxicos en miel de diferentes procedencias en la zona centro del Estado de Veracruz / Identification of toxic residues in honey from different sources in the central zone of the State of Veracruz. CIBA Revista Iberoamericana de las Ciencias Biológicas y Agropecuarias 1, 1–42 (2014).Article 

    Google Scholar 
    Ruiz-Toledo, J. et al. Organochlorine Pesticides in Honey and Pollen Samples from Managed Colonies of the Honey Bee Apis mellifera Linnaeus and the Stingless Bee Scaptotrigona mexicana Guérin from Southern Mexico. Insects 9, 54 (2018).Article 

    Google Scholar 
    Valdovinos-Flores, C., Alcantar-Rosales, V. M., Gaspar-Ramírez, O., Saldaña-Loza, L. M. & Dorantes-Ugalde, J. A. Agricultural pesticide residues in honey and wax combs from Southeastern, Central and Northeastern Mexico. J. Apic. Res. 56, 667–679 (2017).Article 

    Google Scholar 
    Gómez-Escobar, E. et al. Effect of GF-120 (Spinosad) aerial sprays on colonies of the stingless Bee Scaptotrigona mexicana (Hymenoptera: Apidae) and the Honey Bee (Hymenoptera: Apidae). J. Econ. Entomol. 111, 1711–1715 (2018).Article 

    Google Scholar 
    Sánchez, D., Solórzano, E. D. J., Liedo, P. & Vandame, R. Effect of the natural pesticide Spinosad (GF-120 Formulation) on the Foraging behavior of Plebeia moureana (Hymenoptera: Apidae). J. Econ. Entomol. 105, 1234–1237 (2012).Article 

    Google Scholar 
    Cabrera-Marín, N. V., Liedo, P. & Sánchez, D. The Effect of Application Rate of GF-120 (Spinosad) and Malathion on the Mortality of Apis mellifera (Hymenoptera: Apidae) Foragers. J. Econ. Entomol. 109, 515–519 (2016).Article 

    Google Scholar 
    Valdovinos-Núñez, G. R. et al. Comparative toxicity of pesticides to stingless bees (Hymenoptera: Apidae: Meliponini). J. Econ. Entomol. 102, 1737–1742 (2009).Article 

    Google Scholar 
    ANADA. Atlas Nacional de las Abejas y Derivados Apícolas. https://atlas-abejas.agricultura.gob.mx/cap2.html#212_Enfermedades_y_Plagas_de_las_Colmenas (2021).Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).Article 

    Google Scholar 
    Daberkow, S., Korb, P. & Hoff, F. Structure of the U.S. beekeeping industry: 1982–2002. J. Econ. Entomol. 102, 868–886 (2009).Saunders, S. P. et al. Unraveling a century of global change impacts on winter bird distributions in the eastern United States. Glob. Change Biol. 28, 2221–2235 (2022).Article 
    CAS 

    Google Scholar 
    CICESE. Base de datos climatológica nacional (Sistema CLICOM). http://clicom-mex.cicese.mx/ (2018).CONEVAL. Metodología para la medición de pobreza en México | CONEVAL. https://www.coneval.org.mx/Medicion/MP/Paginas/Metodologia.aspx.Wood, S. N. Generalized Additive Models: An Introduction with R, Second Edition. (CRC Press, 2017).Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. (Springer-Verlag, 2009).Team, R. C. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2016).Lichstein, J. W., Simons, T. R., Shriner, S. A. & Franzreb, K. E. Spatial autocorrelation and autoregressive models in ecology. Ecol. Monogr. 72, 445–463 (2002).Article 

    Google Scholar 
    Döke, M. A., Frazier, M. & Grozinger, C. M. Overwintering honey bees: biology and management. Curr. Opin. Insect Sci. 10, 185–193 (2015).Article 

    Google Scholar 
    Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. Performance: An R package for assessment, comparison and testing of statistical models. J. Open Sour. Softw. 6, 3139 (2021).Article 
    ADS 

    Google Scholar 
    Simpson, G. L. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. 6, 1 (2018).Article 

    Google Scholar 
    Furrer, R., Nychka, D., Sain, S. & Nychka, M. D. Title Tools for spatial data. (2012). More

  • in

    Under-ice observations by trawls and multi-frequency acoustics in the Central Arctic Ocean reveals abundance and composition of pelagic fauna

    Stroeve, J. & Notz, D. Changing state of Arctic sea ice across all seasons. Environ. Res. Lett. 13, 103001 (2018).Article 
    ADS 

    Google Scholar 
    Polyakov, I. V. et al. Borealization of the Arctic Ocean in response to anomalous advection from sub-Arctic seas. Front. Mar. Sci. 7, 983–992 (2020).Article 

    Google Scholar 
    Lannuzel, D. et al. The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems. Nat. Clim. Change. 10, 983–992 (2020).Article 
    ADS 

    Google Scholar 
    Macias-Fauria, M. & Post, E. Effects of sea ice on Arctic biota: An emerging crisis discipline. Biol. Lett. 14, 20170702 (2018).Article 

    Google Scholar 
    Kohlbach, D. et al. The importance of ice algae-produced carbon in the central Arctic Ocean ecosystem: Food web relationships revealed by lipid and stable isotope analyses. Limnol. Oceanogr. 61, 2027–2044 (2016).Article 
    ADS 

    Google Scholar 
    Søreide, J. E. et al. Sympagic-pelagic-benthic coupling in Arctic and Atlantic waters around Svalbard revealed by stable isotopic and fatty acid tracers. Mar. Biol. Res. 9, 831–850 (2013).Article 

    Google Scholar 
    Slagstad, D., Wassmann, P. F. J. & Ellingsen, I. Physical constrains and productivity in the future Arctic Ocean. Front. Mar. Sci. 2015, 2 (2015).
    Google Scholar 
    FISCAO. Final Report of the Fifth Meeting of Scientific Experts on Fish Stocks in the Central Arctic Ocean. https://apps-afsc.fisheries.noaa.gov/documents/Arctic_fish_stocks_fifth_meeting/508_Documents/508_Final_report_of_the_505th_FiSCAO_meeting.pdf (2018).David, C. et al. Under-ice distribution of polar cod Boreogadus saida in the central Arctic Ocean and their association with sea-ice habitat properties. Polar Biol. 39, 981–994 (2016).Article 

    Google Scholar 
    Gradinger, R. Vertical fine structure of the biomass and composition of algal communities in Arctic pack ice. Mar. Biol. 133, 745–754 (1999).Article 

    Google Scholar 
    Kosobokova, K. N., Hopcroft, R. R. & Hirche, H.-J. Patterns of zooplankton diversity through the depths of the Arctic’s central basins. Mar Biodivers. 41, 29–50 (2011).Article 

    Google Scholar 
    Mumm, N. et al. Breaking the ice: Large-scale distribution of mesozooplankton after a decade of Arctic and transpolar cruises. Polar Biol. 20, 189–197 (1998).Article 

    Google Scholar 
    Snoeijs-Leijonmalm, P. et al. Unexpected fish and squid in the central Arctic deep scattering layer. Sci. Adv. 8, 7536 (2022).Article 

    Google Scholar 
    David, C., Lange, B., Rabe, B. & Flores, H. Community structure of under-ice fauna in the Eurasian central Arctic Ocean in relation to environmental properties of sea-ice habitats. Mar. Ecol. Prog. Ser. 522, 15–32 (2015).Article 
    ADS 

    Google Scholar 
    Gosselin, M., Levasseur, M., Wheeler, P. A., Horner, R. A. & Booth, B. C. New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Res. Part II(44), 1623–1644 (1997).Article 
    ADS 

    Google Scholar 
    Ardyna, M. & Arrigo, K. R. Phytoplankton dynamics in a changing Arctic Ocean. Nat. Clim. Change. 10, 892–903 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Hays, G. C. In Migrations and Dispersal of Marine Organisms. (eds Jones, M. B. et al.) 163–170 (Springer).Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).Article 
    ADS 

    Google Scholar 
    Geoffroy, M. et al. Mesopelagic sound scattering layers of the high arctic: Seasonal variations in biomass, species assemblage, and trophic relationships. Front. Mar. Sci. 2019, 6 (2019).
    Google Scholar 
    Gjøsæter, H., Wiebe, P. H., Knutsen, T. & Ingvaldsen, R. B. Evidence of Diel vertical migration of mesopelagic sound-scattering organisms in the Arctic. Front. Mar. Sci. 2017, 4 (2017).
    Google Scholar 
    Knutsen, T., Wiebe, P. H., Gjøsæter, H., Ingvaldsen, R. B. & Lien, G. High latitude epipelagic and mesopelagic scattering layers—a reference for future arctic ecosystem change. Front. Mar. Sci. 2017, 4 (2017).
    Google Scholar 
    Priou, P. et al. Dense mesopelagic sound scattering layer and vertical segregation of pelagic organisms at the Arctic-Atlantic gateway during the midnight sun. Prog. Oceanogr. 196, 102611 (2021).Article 

    Google Scholar 
    Snoeijs-Leijonmalm, P. et al. A deep scattering layer under the North Pole pack ice. Prog. Oceanogr. 194, 102560 (2021).Article 

    Google Scholar 
    St-John, M. A. et al. A dark hole in our understanding of marine ecosystems and their services: Perspectives from the mesopelagic community. Front. Mar. Sci. 2016, 3 (2016).
    Google Scholar 
    Fransson, A. et al. Joint cruise 2-2 2021: Cruise report. The Nansen Legacy Report Series, 30/2022. https://doi.org/10.7557/nlrs.6413 (2022).Rudels, B. et al. Observations of water masses and circulation with focus on the Eurasian Basin of the Arctic Ocean from the 1990s to the late 2000s. Ocean Sci. 9, 147–169 (2013).Article 
    ADS 

    Google Scholar 
    Krumpen, T. et al. Arctic warming interrupts the Transpolar Drift and affects long-range transport of sea ice and ice-rafted matter. Sci. Rep. 9, 5459 (2019).Article 
    ADS 

    Google Scholar 
    Aagaard, K. A synthesis of the Arctic Ocean circulation. Rapp. P.-V. Rcun. Cons. int. Explor. Mer. 188, 11–22 (1989).
    Google Scholar 
    Perez-Hernandez, M. D. et al. The Atlantic Water boundary current north of Svalbard in late summer. J. Geophys. Res. 122, 2269–2290 (2017).Article 
    ADS 

    Google Scholar 
    Våge, K. et al. The Atlantic Water boundary current in the Nansen Basin: Transport and mechanisms of lateral exchange. J. Geophys. Res. 121, 6946–6960 (2016).Article 
    ADS 

    Google Scholar 
    Crews, L., Sundfjord, A., Albretsen, J. & Hattermann, T. Mesoscale Eddy Activity and Transport in the Atlantic Water Inflow Region North of Svalbard. J. Geophys. Res. 123, 201–215 (2018).Article 
    ADS 

    Google Scholar 
    Kolås, E. H., Koenig, Z., Fer, I., Nilsen, F. & Marnela, M. Structure and Transport of Atlantic Water North of Svalbard From Observations in Summer and Fall 2018. J. Geophys. Res. 125, 6174 (2020).Article 

    Google Scholar 
    Basedow, S. L. et al. Seasonal variation in transport of zooplankton into the arctic basin through the atlantic gateway. Fram Strait. Front. Mar. Sci. 2018, 5 (2018).
    Google Scholar 
    Vernet, M., Carstensen, J., Reigstad, M. & Svensen, C. Editorial: Carbon bridge to the Arctic. Front. Mar. Sci. 2020, 7 (2020).
    Google Scholar 
    Wassmann, P. et al. The contiguous domains of Arctic Ocean advection: Trails of life and death. Prog. Oceanogr. 139, 42–65 (2015).Article 
    ADS 

    Google Scholar 
    Wassmann, P., Slagstad, D. & Ellingsen, I. Advection of mesozooplankton into the northern svalbard shelf region. Front. Mar. Sci. 2019, 6 (2019).
    Google Scholar 
    Auel, H. Egg size and reproductive adaptations among Arctic deep-sea copepods (Calanoida, Paraeuchaeta). Helgol. Mar. Res. 58, 147–153 (2004).Article 
    ADS 

    Google Scholar 
    Gluchowska, M. et al. Zooplankton in Svalbard fjords on the Atlantic-Arctic boundary. Polar Biol. 39, 1785–1802 (2016).Article 

    Google Scholar 
    Wang, Y.-G., Tseng, L.-C., Lin, M. & Hwang, J.-S. Vertical and geographic distribution of copepod communities at late summer in the Amerasian Basin. Arctic Ocean. Plos One. 14, e0219319 (2019).Article 
    CAS 

    Google Scholar 
    Gislason, A. & Silva, T. Abundance, composition, and development of zooplankton in the Subarctic Iceland Sea in 2006, 2007, and 2008. ICES J. Mar. Sci. 69, 1263–1276 (2012).Article 

    Google Scholar 
    Zhukova, N. G., Nesterova, V. N., Prokopchuk, I. P. & Rudneva, G. B. Winter distribution of euphausiids (Euphausiacea) in the Barents Sea (2000–2005). Deep-Sea Res. Part II(56), 1959–1967 (2009).Article 
    ADS 

    Google Scholar 
    Dalpadado, P. & Skjoldal, H. R. Abundance, maturity and growth of the krill species Thysanoessa inermis and T. longicaudata in the Barents Sea. Mar. Ecol. Prog. Ser. 144, 175–183 (1996).Article 
    ADS 

    Google Scholar 
    Koszteyn, J., Timofeev, S., Węsławski, J. M. & Malinga, B. Size structure of Themisto abyssorum Boeck and Themisto libellula (Mandt) populations in European Arctic seas. Polar Biol. 15, 85–92 (1995).Article 

    Google Scholar 
    Dalpadado, P., Borkner, N., Bogstad, B. & Mehl, S. Distribution of Themisto (Amphipoda) spp. in the Barents Sea and predator-prey interactions. ICES J. Mar. Sci. 58, 876–895 (2001).Article 

    Google Scholar 
    Macnaughton, M. O., Thormar, J. & Berge, J. Sympagic amphipods in the Arctic pack ice: Redescriptions of Eusirus holmii Hansen, 1887 and Pleusymtes karstensi (Barnard, 1959). Polar Biol. 30, 1013–1025 (2007).Article 

    Google Scholar 
    Kraft, A., Graeve, M., Janssen, D., Greenacre, M. & Falk-Petersen, S. Arctic pelagic amphipods: Lipid dynamics and life strategy. J. Plankton Res. 37, 790–807 (2015).Article 
    CAS 

    Google Scholar 
    Kreibich, T., Hagen, W. & Saborowski, R. Food utilization of two pelagic crustaceans in the Greenland Sea: Meganyctiphanes norvegica (Euphausiacea) and Hymenodora glacialis (Decapoda, Caridea). Mar. Ecol. Prog. Ser. 413, 105–115 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Geoffroy, M. et al. Increased occurrence of the jellyfish Periphylla periphylla in the European high Arctic. Polar Biol. 41, 2615–2619 (2018).Article 

    Google Scholar 
    Grigor, J. J., Søreide, J. E. & Varpe, Ø. Seasonal ecology and life-history strategy of the high-latitude predatory zooplankter Parasagitta elegans. Mar. Ecol. Prog. Ser. 499, 77–88 (2014).Article 
    ADS 

    Google Scholar 
    Maclennan, D. N., Fernandes, P. G. & Dalen, J. A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59, 365–369 (2002).Article 

    Google Scholar 
    Gjøsæter, H. & Ushakov, N. G. Acoustic estimates of the Barents Sea Arctic cod Stock (Boreogadus saida). Forage Fishes in Marine Ecosystems. Alaska Sea Grant Collage Program, University of Alaska Fairbanks 97:01, 485–504 (1997).Raskoff, K. A., Hopcroft, R. R., Kosobokova, K. N., Purcell, J. E. & Youngbluth, M. Jellies under ice: ROV observations from the Arctic 2005 hidden ocean expedition. Deep-Sea Res. Part II(57), 111–126 (2010).Article 
    ADS 

    Google Scholar 
    Bluhm, B. A. et al. The Pan-Arctic continental slope: Sharp gradients of physical processes affect pelagic and benthic ecosystems. Front. Mar. Sci. 2020, 7 (2020).
    Google Scholar 
    Hop, H. et al. Pelagic ecosystem characteristics across the atlantic water boundary current from Rijpfjorden, Svalbard, to the Arctic Ocean During Summer (2010–2014). Front. Mar. Sci. 2019, 6 (2019).
    Google Scholar 
    Mumm, N. Composition and distribution of mesozooplankton in the Nansen Basin, Arctic Ocean, during summer. Polar Biol. 13, 451–461 (1993).Article 

    Google Scholar 
    Ona, E. & Nielsen, J. Acoustic detection of the Greenland shark (Somniosus microcephalus) using multifrequency split beam echosounder in Svalbard waters. Prog. Oceanogr. 206, 102842 (2022).Article 

    Google Scholar 
    Gjøsæter, H., Ingvaldsen, R. & Christiansen, J. S. Acoustic scattering layers reveal a faunal connection across the Fram Strait. Prog. Oceanogr. 185, 102348 (2020).Article 

    Google Scholar 
    Ingvaldsen, R. B., Gjosaeter, H., Ona, E. & Michalsen, K. Atlantic cod (Gadus morhua) feeding over deep water in the high Arctic. Polar Biol. 40, 2105–2111 (2017).Article 

    Google Scholar 
    Chawarski, J., Klevjer, T. A., Coté, D. & Geoffroy, M. Evidence of temperature control on mesopelagic fish and zooplankton communities at high latitudes. Front. Mar. Sci. 2022, 9 (2022).
    Google Scholar 
    Chernova, N. V. Catching of Greenland halibut Reinhardtius hippoglossoides (Pleuronectidae) on the shelf edge of the Laptev and East Siberian Seas. J. Ichthyol. 57, 219–227 (2017).Article 

    Google Scholar 
    Benzik, A. N., Budanova, L. K. & Orlov, A. M. Hard life in cold waters: Size distribution and gonads show that Greenland halibut temporarily inhabit the Siberian Arctic. Water Biol. Secur. 1, 100037 (2022).Article 

    Google Scholar 
    Olsen, L. M. et al. A red tide in the pack ice of the Arctic Ocean. Sci. Rep. 9, 9536 (2019).Article 
    ADS 

    Google Scholar 
    Assmy, P. et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci. Rep. 7, 40850 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Leu, E., Søreide, J. E., Hessen, D. O., Falk-Petersen, S. & Berge, J. Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: Timing, quantity, and quality. Prog. Oceanogr. 90, 18–32 (2011).Article 
    ADS 

    Google Scholar 
    Drivdal, M. et al. Connections to the deep: Deep vertical migrations, an important part of the life cycle of Apherusa glacialis, an arctic ice-associated amphipod. Front. Mar. Sci. 2021, 8 (2021).
    Google Scholar 
    Scoulding, B., Chu, D., Ona, E. & Fernandes, P. G. Target strengths of two abundant mesopelagic fish species. J. Acoust. Soc. Am. 137, 989–1000 (2015).Article 
    ADS 

    Google Scholar 
    Popova, E. E., Yool, A., Aksenov, Y. & Coward, A. C. Role of advection in Arctic Ocean lower trophic dynamics: A modeling perspective. J. Geophys. Res. 118, 1571–1586 (2013).Article 
    ADS 

    Google Scholar 
    Saunders, R. A., Ingvarsdóttir, A., Rasmussen, J., Hay, S. J. & Brierley, A. S. Regional variation in distribution pattern, population structure and growth rates of Meganyctiphanes norvegica and Thysanoessa longicaudata in the Irminger Sea, North Atlantic. Prog. Oceanogr. 72, 313–342 (2007).Article 
    ADS 

    Google Scholar 
    Tarling, G. A. et al. Can a key boreal Calanus copepod species now complete its life-cycle in the Arctic? Evidence and implications for Arctic food-webs. Ambio 51, 333–344 (2022).Article 

    Google Scholar 
    Purcell, J. E., Juhl, A. R., Manko, M. K. & Aumack, C. F. Overwintering of gelatinous zooplankton in the coastal Arctic Ocean. Mar. Ecol. Prog. Ser. 591, 281–286 (2018).Article 
    ADS 

    Google Scholar 
    Purcell, J. E., Hopcroft, R. R., Kosobokova, K. N. & Whitledge, T. E. Distribution, abundance, and predation effects of epipelagic ctenophores and jellyfish in the western Arctic Ocean. Deep-Sea Res. Part II(57), 127–135 (2010).Article 
    ADS 

    Google Scholar 
    Solvang, H. K. et al. Distribution of rorquals and Atlantic cod in relation to their prey in the Norwegian high Arctic. Polar Biol. 44, 761–782 (2021).Article 

    Google Scholar 
    Ingvaldsen, R. B. et al. Physical manifestations and ecological implications of Arctic Atlantification. Nat. Rev. Earth Environ. 2, 874–889 (2021).Article 
    ADS 

    Google Scholar 
    Flores, H. et al. Macrofauna under sea ice and in the open surface layer of the Lazarev Sea, Southern Ocean. Deep-Sea Res. Part II(58), 1948–1961 (2011).Article 
    ADS 

    Google Scholar 
    Godø, O. R., Valdemarsen, J. W. & Engås, A. Comparison of efficiency of standard and experimental juvenile gadoid sampling trawls. ICES Mar. Sci. Symp. 196, 196–201 (1993).
    Google Scholar 
    Klevjer, T. et al. Micronekton biomass distribution, improved estimates across four north Atlantic basins. Deep-Sea Res. Part II. 180, 104691 (2020).Article 

    Google Scholar 
    Krafft, B. A. et al. Distribution and demography of Antarctic krill in the Southeast Atlantic sector of the Southern Ocean during the austral summer 2008. Polar Biol. 33, 957–968 (2010).Article 

    Google Scholar 
    Foote, K. G. Maintaining precision calibrations with optimal copper spheres. J. Acoust. Soc. Am. 73, 1054–1063 (1983).Article 
    ADS 

    Google Scholar 
    Korneliussen, R. J. et al. Acoustic identification of marine species using a feature library. Methods Oceanogr. 17, 187–205 (2016).Article 

    Google Scholar 
    Lavergne, T. et al. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere. 13, 49–78 (2019).Article 
    ADS 

    Google Scholar 
    Firing, E., Ramada, J. & Caldwell, P. Processing ADCP Data with the CODAS Software System Version 3.1. Joint Institute for Marine and Atmospheric Research University of Hawaii. http://currents.soest.hawaii.edu/docs/adcp_doc/index.html (1995).Padman, L. & Erofeeva, S. A barotropic inverse tidal model for the Arctic Ocean. Geophys. Res. Lett. 31, 256 (2004).Article 

    Google Scholar  More

  • in

    Early human impact on lake cyanobacteria revealed by a Holocene record of sedimentary ancient DNA

    Taranu, Z. E. et al. Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene. Ecol. Lett. 18, 375–384 (2015).Article 

    Google Scholar 
    Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).Article 
    CAS 

    Google Scholar 
    Monchamp, M. E. et al. Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication. Nat. Ecol. Evol. 2, 317–324 (2018).Article 

    Google Scholar 
    Chorus, I. & Bartram, J. Toxic Cyanobacteria in Water. A Guide to Their Public Health Consequences, Monitoring, and Management. In: World Health Organization (eds. Chorus I. & Bertram J.) (CRC Press, 1999).Rabalais, N. N. et al. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7, 585–619 (2010).Article 
    CAS 

    Google Scholar 
    Carmichael, W. W. Health effects of toxin-producing cyanobacteria: “The CyanoHABs”. Hum. Ecol. Risk Assess. Int. J. 7, 1393–1407 (2001).Article 

    Google Scholar 
    Whitton, B. A. Ecology of Cyanobacteria II: Their Diversity in Space and Time (Springer, 2012).Smol, J. P., Birks, H. J. B. & Last, W. M. Tracking Environmental Change Using Lake Sediments. Volume 4: Zoological Indicators, Developments in Paleoenvironmental Research. (Springer, 2002).Domaizon, I., Winegardner, A., Capo, E., Gauthier, J. & Gregory-Eaves, I. DNA-based methods in paleolimnology: new opportunities for investigating long-term dynamics of lacustrine biodiversity. J. Paleolimnol. 52, 1–21 (2017).Article 

    Google Scholar 
    Livingstone, D. & Jaworski, G. H. M. The viability of akinetes of blue-green algae recovered from the sediments of rostherne mere. Br. Phycol. J. 15, 357–364 (1980).Article 

    Google Scholar 
    van Geel, B., Mur, L. R., Ralska-Jasiewiczowa, M. & Goslar, T. Fossil akinetes of Aphanizomenon and Anabaena as indicators for medieval phosphate-eutrophication of Lake Gosciaz (Central Poland). Rev. Palaeobot. Palynol. 83, 97–105 (1994).Article 

    Google Scholar 
    Hillbrand, M., van Geel, B., Hasenfratz, A., Hadorn, P. & Haas, J. N. Non-pollen palynomorphs show human- and livestock-induced eutrophication of Lake Nussbaumersee (Thurgau, Switzerland) since Neolithic times (3840 bc). Holocene 24, 559–568 (2014).Article 

    Google Scholar 
    Gosling, W. D. et al. Human occupation and ecosystem change on Upolu (Samoa) during the Holocene. J. Biogeogr. 47, 600–614 (2020).Article 

    Google Scholar 
    Hertzberg, S., Liaaen-Jensen, S. & Siegelman, H. W. The carotenoids of blue-green algae. Phytochemistry 10, 3121–3127 (1971).Article 
    CAS 

    Google Scholar 
    Leavitt, P. R. & Findlay, D. L. Comparison of fossil pigments with 20 years of phytoplankton data from eutrophic Lake 227, Experimental Lakes Area, Ontario. Can. J. Fish. Aquat. Sci. 51, 2286–2299 (1994).Article 
    CAS 

    Google Scholar 
    Kaiser, J., Ön, B., Arz, H. & Akçer-Ön, S. Sedimentary lipid biomarkers in the magnesium-rich and highly alkaline Lake Salda (south-western Anatolia). J. Limnol. 75, 581–596 (2016).
    Google Scholar 
    Bauersachs, T., Talbot, H. M., Sidgwick, F., Sivonen, K. & Schwark, L. Lipid biomarker signatures as tracers for harmful cyanobacterial blooms in the Baltic Sea. PLoS ONE 12, e0186360 (2017).Article 

    Google Scholar 
    Domaizon, I. et al. DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages. Biogeosci. Discuss. 10, 2515–2564 (2013).
    Google Scholar 
    Britton, G., Liaaen-Jensen, S. & Pfander, H. in Carotenoids (eds. Britton, G., Liaaen-Jensen, S., Pfander, H.). Vol. 4, 1–6 (Birkhäuser Press, 2008).Capo, E. et al. Lake sedimentary dna research on past terrestrial and aquatic biodiversity: overview and recommendations. Quaternary 4, 6 (2021).Article 

    Google Scholar 
    Monchamp, M. E., Walser, J. C., Pomati, F. & Spaak, P. Sedimentary DNA reveals cyanobacterial community diversity over 200 years in two perialpine lakes. Appl. Environ. Microbiol. 82, 6472–6482 (2016).Article 
    CAS 

    Google Scholar 
    Nwosu, E. C. et al. Evaluating sedimentary DNA for tracing changes in cyanobacteria dynamics from sediments spanning the last 350 years of Lake Tiefer See, NE Germany. J. Paleolimnol. 66, 279–296 (2021).Article 

    Google Scholar 
    Zhang, J. et al. Pre-industrial cyanobacterial dominance in Lake Moon (NE China) revealed by sedimentary ancient DNA. Quat. Sci. Rev. 261, 106966 (2021).Article 

    Google Scholar 
    Brauer, A., Schwab, M. J., Brademann, B., Pinkerneil, S. & Theuerkauf, M. Tiefer See–a key site for lake sediment research in NE Germany. DEUQUA Spec. Publ. 2, 89–93 (2019).Article 

    Google Scholar 
    Dräger, N. et al. Varve microfacies and varve preservation record of climate change and human impact for the last 6000 years at Lake Tiefer See (NE Germany). Holocene 27, 450–464 (2017).Article 

    Google Scholar 
    Dräger, N. et al. Hypolimnetic oxygen conditions influence varve preservation and δ13C of sediment organic matter in Lake Tiefer See, NE Germany. J. Paleolimnol. 62, 181–194 (2019).Article 

    Google Scholar 
    Theuerkauf, M., Dräger, N., Kienel, U., Kuparinen, A. & Brauer, A. Effects of changes in land management practices on pollen productivity of open vegetation during the last century derived from varved lake sediments. Holocene 25, 733–744 (2015).Article 

    Google Scholar 
    Heinrich, I. et al. Interdisciplinary geo-ecological research across time scales in the Northeast German Lowland Observatory (TERENO-NE). Vadose Zone J. 17, 1–25 (2018).Article 

    Google Scholar 
    Roeser, P. et al. Advances in understanding calcite varve formation: new insights from a dual lake monitoring approach in the southern Baltic lowlands. Boreas 50, 419–440 (2021).Article 

    Google Scholar 
    Nwosu, E. C. et al. From water into sediment—tracing freshwater Cyanobacteria via DNA analyses. Microorganisms 9, 1778 (2021).Article 
    CAS 

    Google Scholar 
    Schmidt, J. -P. Ein Fremdling im Nordischen Kreis Jungbronzezeitliche Funde aus dem Flachen See bei Sophienhof, Lkr. Mecklenburgische Seenplatte. In: D. Brandherm/B. Nessel (Hrsg.), Phasenübergänge und Umbrüche im bronzezeitlichen Europa. Beiträge zur Sitzung der Arbeitsgemeinschaft Bronzezeit auf der 80. Jahrestagung des Nordwestdeutschen Verbandes für Altertumskunde. Vol. 297, 271–281. (Universitätsforschungen zur Prähistorischen Archäologie, 2017).Raese, H. & Schmidt, J. -P. Zur Besiedlung Mecklenburg-Vorpommernswährend des Spätneolithikums und der frühenBronzezeit (2500–1500 v. Chr.). In: Siedlungsarchäologie des Endneolithikums und der frühen Bronzezeit. 11. Mitteldeutscher Archäologentag (eds. Meller, H., Friedderich, S., Küßner, M., Stäuble, H. & Risch, R.) 621–634 (2019).Kienel, U., Dulski, P., Ott, F., Lorenz, S. & Brauer, A. Recently induced anoxia leading to the preservation of seasonal laminae in two NE-German lakes. J. Paleolimnol. 50, 535–544 (2013).Article 

    Google Scholar 
    Callieri, C. & Stockner, J. Picocyanobacteria success in oligotrophic lakes: fact or fiction? J. Limnol. 59, 72–76 (2000).Article 

    Google Scholar 
    Sollai, M. et al. The Holocene sedimentary record of cyanobacterial glycolipids in the Baltic Sea: an evaluation of their application as tracers of past nitrogen fixation. Biogeosciences 14, 5789–5804 (2017).Article 

    Google Scholar 
    Mur, L. R., Skulberg, O. M. & Utkilen, H. In: Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring, and Management. (eds. Chorus, I. and Bartram, J.) 15–40 (St Edmundsbury Press, 1999).Schmidt, J.-P. Ein bronzenes Hallstattschwert der Periode VI aus dem Flachen See bei Sophienhof, Lkr. Mecklenburgische Seenplatte. Arch.äologische Ber. aus Mecklenbg.-Vorpommern 26, 26–34 (2019).
    Google Scholar 
    Schmidt, J.-P. “Aller guten Dinge sind drei!”–Ein weiteres bronzezeitliches Schwert aus dem Flachen See bei Lütgendorf, Lkr. Mecklenburgische Seenplatte. Arch.äologische Ber. aus Mecklenbg.-Vorpommern 27, 49–55 (2020).
    Google Scholar 
    Küster, M., Stöckmann, M., Fülling, A. & Weber, R. Kulturlandschaftselemente, Kolluvien und Flugsande als Archive der spätholozänen Landschaftsentwicklung im Bereich des Messtischblattes Thurow (Müritz-Nationalpark, Mecklenburg). In: Neue Beiträge zum Naturraum und zur Landschaftsgeschichte im Teilgebiet. (Geozon Science Media, 2015).Feeser, I., Dörfler, W., Kneisel, J., Hinz, M. & Dreibrodt, S. Human impact and population dynamics in the Neolithic and Bronze Age: Multi-proxy evidence from north-western Central Europe. Holocene 29, 1596–1606 (2019).Article 

    Google Scholar 
    Alsleben, A. In How’s Life? Living Conditions in the 2nd and 1st Millennia BCE. Scales of Transformation in Prehistoric and Archaic Societies (eds. Dal Corso, M. et al.) 85–102 (Sidestone Press, 2019).Kneisel, J., Bork, H.-R. & Czebreszuk, J. In Defensive Structures from Central Europe to the Aegean in the 3rd and 2nd Millennia bc (eds. Czebreszuk, J., Kadrow, S. & Müller, J.) 155–170 (Habelt, 2008).Haas, J. N. & Wahlmüller, N. Floren-, Vegetations- und Milieuveränderungen im Zuge der bronzezeitlichen Besiedlung von Bruszczewo (Polen) und der landwirtschaftlichen Nutzung der umliegenden Gebiete. In: Ausgrabungen und Forschungen in einer prähistorischen Siedlungskammer Großpolens. (eds. Müller, J., Czebreszuk, J. & Kneisel, J.) Studien zur Archäologie in Ostmitteleuropa Vol. 6.1, 50–81 (Bonn, 2010).Theuerkauf, M. et al. Holocene lake-level evolution of Lake Tiefer See, NE Germany, caused by climate and land cover changes. Boreas 51, 299–316 (2021).Article 

    Google Scholar 
    Büntgen, U. et al. 2500 years of European climate variability and human susceptibility. Science 331, 578–582 (2011).Article 

    Google Scholar 
    Büntgen, U. et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 9, 231–236 (2016).Article 

    Google Scholar 
    Kienel, U. et al. Effects of spring warming and mixing duration on diatom deposition in deep Tiefer See, NE Germany. J. Paleolimnol. 57, 37–49 (2017).Article 

    Google Scholar 
    Monchamp, M. E., Spaak, P. & Pomati, F. High dispersal levels and lake warming are emergent drivers of cyanobacterial community assembly in peri-Alpine lakes. Sci. Rep. 9, 7366 (2019).Article 

    Google Scholar 
    Erratt, K. et al. Paleolimnological evidence reveals climate-related preeminence of cyanobacteria in a temperate meromictic lake. Can. J. Fish. Aquat. Sci. 79, 558–565 (2021).Article 

    Google Scholar 
    Schmidt, J.-P. ders., Kein Ende in Sicht? Neue Untersuchungen auf dem Feuerstellenplatz von Naschendorf, Lkr. Nordwestmecklenburg. Arch.äologische Ber. aus Mecklenbg.-Vorpommern 19, 26–46 (2012).
    Google Scholar 
    Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).Article 
    CAS 

    Google Scholar 
    Wanner, H. et al. Holocene climate variability and change; a data-based review. J. Geol. Soc. Lond. 172, 254–263 (2015).Article 

    Google Scholar 
    Rigosi, A., Carey, C. C., Ibelings, B. W. & Brookes, J. D. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol. Oceanogr. 59, 99–114 (2014).Article 

    Google Scholar 
    Dittmann, E., Fewer, D. P. & Neilan, B. A. Cyanobacterial toxins: Biosynthetic routes and evolutionary roots. FEMS Microbiol. Rev. 37, 23–43 (2013).Article 
    CAS 

    Google Scholar 
    Dolman, A. M. et al. Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus. PLoS ONE 7, e38757 (2012).Article 
    CAS 

    Google Scholar 
    Kurmayer, R., Christiansen, G., Fastner, J. & Börner, T. Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp. Environ. Microbiol. 6, 831–841 (2004).Article 
    CAS 

    Google Scholar 
    Liu, A., Zhu, T., Lu, X. & Song, L. Hydrocarbon profiles and phylogenetic analyses of diversified cyanobacterial species. Appl. Energy 11, 383–393 (2013).Article 

    Google Scholar 
    Coates, R. C. et al. Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PLoS ONE 9, e85140 (2014).Article 

    Google Scholar 
    Marciniak, S. et al. Ancient human genomics: the methodology behind reconstructing evolutionary pathways. J. Hum. Evol. 79, 21–34 (2015).Article 

    Google Scholar 
    Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. MapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. in. Bioinformatics 29, 1682–1684 (2013).Article 

    Google Scholar 
    Borry, M., Hübner, A., Rohrlach, A. B. & Warinner, C. PyDamage: automated ancient damage identification and estimation for contigs in ancient DNA de novo assembly. PeerJ 9, e11845 (2021).Article 

    Google Scholar 
    Murchie, T. J. et al. Optimizing extraction and targeted capture of ancient environmental DNA for reconstructing past environments using the PalaeoChip Arctic-1.0 bait-set. Quat. Res. (U. S.) 99, 305–328 (2021).Article 
    CAS 

    Google Scholar 
    Armbrecht, L., Hallegraeff, G., Bolch, C. J. S., Woodward, C. & Cooper, A. Hybridisation capture allows DNA damage analysis of ancient marine eukaryotes. Sci. Rep. 11, 3220 (2021).Article 
    CAS 

    Google Scholar 
    Wulf, S. et al. Holocene tephrostratigraphy of varved sediment records from Lakes Tiefer See (NE Germany) and Czechowskie (N Poland). Quat. Sci. Rev. 132, 1–14 (2016).Article 

    Google Scholar 
    Sugita, S. Theory of quantitative reconstruction of vegetation I: Pollen from large sites REVEALS regional vegetation composition. Holocene 17, 2 (2007).Article 

    Google Scholar 
    Epp, L. S., Zimmermann, H. H. & Stoof-Leichsenring, K. R. In: Ancient DNA. Methods in Molecular Biology (eds. Shapiro B., Barlow A., Heintzman P., Hofreiter M., Paijmans J., Soares A.) Vol. 1963, 31–44 (Humana Press, 2019).Janse, I., Meima, M., Kardinaal, W. E. A. & Zwart, G. High-resolution differentiation of Cyanobacteria by using rRNA-internal transcribed spacer denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 69, 6634–6643 (2003).Article 
    CAS 

    Google Scholar 
    Nwosu, E. C. et al. Species-level spatio-temporal dynamics of cyanobacteria in a hard-water temperate lake in the Southern Baltics. Front. Microbiol. 12, https://doi.org/10.3389/fmicb.2021.761259 (2021).Savichtcheva, O. et al. Quantitative PCR enumeration of total/toxic Planktothrix rubescens and total cyanobacteria in preserved DNA isolated from lake sediments. Appl. Environ. Microbiol. 77, 8744–8753 (2011).Article 
    CAS 

    Google Scholar 
    Coolen, M. J. L. et al. Ancient DNA derived from alkenone-biosynthesizing haptophytes and other algae in Holocene sediments from the Black Sea. Paleoceanography 21, PA1005 (2006).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina 7 amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 

    Google Scholar 
    Kieser, S., Brown, J., Zdobnov, E. M., Trajkovski, M. & McCue, L. A. ATLAS: a Snakemake workflow for assembly, annotation, and genomic binning of metagenome sequence data. BMC Bioinformat. 21, 257 (2020).Article 

    Google Scholar 
    Yilmaz, P. et al. The SILVA and ‘all-species Living Tree Project (LTP)’ taxonomic frameworks. Nucleic Acids Res. 42, 643–648 (2014).Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article 
    CAS 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformat. 11, 119–119 (2010).Article 

    Google Scholar 
    Huerta-Cepas, J. et al. EggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).Article 
    CAS 

    Google Scholar 
    Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msab293 (2021).Shen, W. & Ren, H. TaxonKit: a practical and efficient NCBI taxonomy toolkit. J. Genet. Genomics. 48, 844–850 (2021).Article 

    Google Scholar 
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 29, 471–482 (2001).
    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R Package Version 2.5-2. Cran R (2019).Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).CAS 

    Google Scholar 
    Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).Article 

    Google Scholar  More