More stories

  • in

    Mutual mate choice and its benefits for both sexes

    1.
    Bateman, A. J. Intra-sexual selection in Drosophila. Heredity (Edinb). 2, 349–368 (1948).
    CAS  Article  Google Scholar 
    2.
    Trivers, R. L. Parental investment and sexual selection. In Sexual Selection and the Descent of Man (Ed. B. Campbell.) 136–179 (Aldinc, Chicago, 1972).

    3.
    Parker, G. A. & Pizzari, T. Sexual selection: the logical imperative. In Current Perspectives on Sexual Selection: What’s Left After Darwin? (Ed. T. Horquet.) 119–163 (Springer, Dordrecht, 2015).

    4.
    Clutton-Brock, T. Reproductive competition and sexual selection. Philos. Trans. R. Soc. Biol. B Sci. 372, 20160310 (2017).
    Article  Google Scholar 

    5.
    Kokko, H., Brooks, R., Jennions, M. D. & Morley, J. The evolution of mate choice and mating biases. Proc. R. Soc. London. Ser. B Biol. Sci. 270, 653–664 (2003).
    Article  Google Scholar 

    6.
    Ihle, M., Kempenaers, B. & Forstmeier, W. Fitness benefits of mate choice for compatibility in a socially monogamous species. PLoS Biol. 13, e1002248 (2015).
    Article  CAS  PubMed  PubMed Central  Google Scholar 

    7.
    Fromhage, L. & Jennions, M. D. Coevolution of parental investment and sexually selected traits drives sex-role divergence. Nat. Commun. 7, 12517 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    8.
    Courtiol, A., Etienne, L., Feron, R., Godelle, B. & Rousset, F. The evolution of mutual mate choice under direct benefits. Am. Nat. 188, 521–538 (2016).
    Article  Google Scholar 

    9.
    Byrne, P. G. & Rice, W. R. Evidence for adaptive male mate choice in the fruit fly Drosophila melanogaster. Proc. R. Soc. B Biol. Sci. 273, 917–922 (2006).
    Article  Google Scholar 

    10.
    Simmons, L. W., LĂŒpold, S. & Fitzpatrick, J. L. Evolutionary trade-off between secondary sexual traits and ejaculates. Trends Ecol. Evol. 32, 964–976 (2017).
    Article  PubMed  Google Scholar 

    11.
    Gwynne, D. T. Sexual competition among females: What causes courtship-role reversal?. Trends Ecol. Evol. 6, 118–121 (1991).
    CAS  Article  PubMed  Google Scholar 

    12.
    Edward, D. A. & Chapman, T. The evolution and significance of male mate choice. Trends Ecol. Evol. 26, 647–654 (2011).
    Article  PubMed  Google Scholar 

    13.
    Vallejos, J. G., Grafe, T. U., Sah, H. H. A. & Wells, K. D. Calling behavior of males and females of a Bornean frog with male parental care and possible sex-role reversal. Behav. Ecol. Sociobiol. 71, 95 (2017).
    Article  Google Scholar 

    14.
    Amundsen, T. & Forsgren, E. Male mate choice selects for female coloration in a fish. Proc. Natl. Acad. Sci. 98, 13155–13160 (2001).
    ADS  CAS  Article  PubMed  Google Scholar 

    15.
    Bonduriansky, R. The evolution of male mate choice in insects: A synthesis of ideas and evidence. Biol. Rev. 76, 305–339 (2001).
    CAS  Article  PubMed  Google Scholar 

    16.
    Servedio, M. R. & Lande, R. Population genetic models of male and mutual mate choice. Evolution (N. Y.). 60, 674–685 (2006).
    Google Scholar 

    17.
    Lailvaux, S. P. & Irschick, D. J. A functional perspective on sexual selection: Insights and future prospects. Anim. Behav. 72, 263–273 (2006).
    Article  Google Scholar 

    18.
    Kirkpatrick, M., Rand, A. S. & Ryan, M. J. Mate choice rules in animals. Anim. Behav. 71, 1215–1225 (2006).
    Article  Google Scholar 

    19.
    Holveck, M.-J. & Riebel, K. Low-quality females prefer low-quality males when choosing a mate. Proc. R. Soc. B Biol. Sci. 277, 153–160 (2009).
    Article  Google Scholar 

    20.
    Aquiloni, L. & Gherardi, F. Mutual mate choice in crayfish: Large body size is selected by both sexes, virginity by males only. J. Zool. 274, 171–179 (2008).
    Article  Google Scholar 

    21.
    Honěk, A. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66, 483–492 (1993).
    Article  Google Scholar 

    22.
    Monroe, M. J., South, S. H. & Alonzo, S. H. The evolution of fecundity is associated with female body size but not female-biased sexual size dimorphism among frogs. J. Evol. Biol. 28, 1793–1803 (2015).
    CAS  Article  PubMed  Google Scholar 

    23.
    Pincheira-Donoso, D. & Hunt, J. Fecundity selection theory: Concepts and evidence. Biol. Rev. 92, 341–356 (2017).
    Article  PubMed  Google Scholar 

    24.
    Dosen, L. D. & Montgomerie, R. Female size influences mate preferences of male guppies. Ethology 110, 245–255 (2004).
    Article  Google Scholar 

    25.
    Kokko, H., Jennions, M. D. & Brooks, R. Unifying and testing models of sexual selection. Annu. Rev. Ecol. Evol. Syst. 37, 43–66 (2006).
    Article  Google Scholar 

    26.
    Booksmythe, I., Mautz, B., Davis, J., Nakagawa, S. & Jennions, M. D. Facultative adjustment of the offspring sex ratio and male attractiveness: A systematic review and meta-analysis. Biol. Rev. 92, 108–134 (2017).
    Article  PubMed  Google Scholar 

    27.
    Hamilton, W. D. & Zuk, M. Heritable true fitness and bright birds: A role for parasites?. Science 218, 384–387 (1982).
    ADS  CAS  Article  PubMed  Google Scholar 

    28.
    Dunn, P. O., Garvin, J. C., Whittingham, L. A., Freeman-Gallant, C. R. & Hasselquist, D. Carotenoid and melanin-based ornaments signal similar aspects of male quality in two populations of the common yellowthroat. Funct. Ecol. 24, 149–158 (2010).
    Article  Google Scholar 

    29.
    Emlen, D. J., Warren, I. A., Johns, A., Dworkin, I. & Lavine, L. C. A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science (80-). 337, 860–864 (2012).
    ADS  CAS  Article  Google Scholar 

    30.
    Dhole, S., Stern, C. A. & Servedio, M. R. Direct detection of male quality can facilitate the evolution of female choosiness and indicators of good genes: Evolution across a continuum of indicator mechanisms. Evolution (N.Y.). 72, 770–784 (2018).
    Google Scholar 

    31.
    Roberts, M. L., Buchanan, K. L. & Evans, M. R. Testing the immunocompetence handicap hypothesis: A review of the evidence. Anim. Behav. 68, 227–239 (2004).
    Article  Google Scholar 

    32.
    Joye, P. & Kawecki, T. J. Sexual selection favours good or bad genes for pathogen resistance depending on males’ pathogen exposure. Proc. R. Soc. B 286, 20190226 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Able, D. J. The contagion indicator hypothesis for parasite-mediated sexual selection. Proc. Natl. Acad. Sci. 93, 2229–2233 (1996).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    34.
    Penn, D. & Potts, W. K. Chemical signals and parasite-mediated sexual selection. Trends Ecol. Evol. 13, 391–396 (1998).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Arakawa, H., Cruz, S. & Deak, T. From models to mechanisms: Odorant communication as a key determinant of social behavior in rodents during illness-associated states. Neurosci. Biobehav. Rev. 35, 1916–1928 (2011).
    Article  PubMed  PubMed Central  Google Scholar 

    36.
    Beltran-Bech, S. & Richard, F.-J. Impact of infection on mate choice. Anim. Behav. 90, 159–170 (2014).
    Article  Google Scholar 

    37.
    Rantala, M. J., Kortet, R., Kotiaho, J. S., Vainikka, A. & Suhonen, J. Condition dependence of pheromones and immune function in the grain beetle, Tenebrio molitor. Funct. Ecol. 17, 534–540 (2003).
    Article  Google Scholar 

    38.
    Wyatt, T. D. Pheromones. Curr. Biol. 27, R739–R743 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Johansson, B. G. & Jones, T. M. The role of chemical communication in mate choice. Biol. Rev. 82, 265–289 (2007).
    Article  PubMed  PubMed Central  Google Scholar 

    40.
    Koh, T. H., Seah, W. K., Yap, L.-M.Y.L. & Li, D. Pheromone-based female mate choice and its effect on reproductive investment in a spitting spider. Behav. Ecol. Sociobiol. 63, 923–930 (2009).
    Article  Google Scholar 

    41.
    Peso, M., Elgar, M. A. & Barron, A. B. Pheromonal control: Reconciling physiological mechanism with signalling theory. Biol. Rev. 90, 542–559 (2015).
    Article  PubMed  Google Scholar 

    42.
    Roberts, S. C., Gosling, L. M., Thornton, E. A. & McClung, J. Scent-marking by male mice under the risk of predation. Behav. Ecol. 12, 698–705 (2001).
    Article  Google Scholar 

    43.
    Foster, S. P. & Anderson, K. G. Sex pheromones in mate assessment: Analysis of nutrient cost of sex pheromone production by females of the moth, Heliothis virescens. J. Exp. Biol. 218, 1252–1258 (2015).
    Article  PubMed  Google Scholar 

    44.
    Happ, G. M. Multiple sex pheromones of the mealworm beetle, Tenebrio molitor L.. Nature 222, 180 (1969).
    ADS  CAS  Article  PubMed  Google Scholar 

    45.
    Stökl, J. & Steiger, S. Evolutionary origin of insect pheromones. Curr. Opin. Insect Sci. 24, 36–42 (2017).
    Article  PubMed  Google Scholar 

    46.
    Roitberg, B. D. Chemical communication. in Insect Behavior: From Mechanisms to Ecological and Evolutionary Consequences (eds. CĂłrdoba-Aguilar et al.) vol. I 416 (Oxford University Press, 2018).

    47.
    Hurd, H. & Parry, G. Metacestode-induced depression of the production of, and response to, sex pheromone in the intermediate host, Tenebrio molitor. J. Invertebr. Pathol. 58, 82–87 (1991).
    CAS  Article  PubMed  Google Scholar 

    48.
    McConnell, M. W. & Judge, K. A. Body size and lifespan are condition dependent in the mealworm beetle, Tenebrio molitor, but not sexually selected traits. Behav. Ecol. Sociobiol. 72, 32 (2018).
    Article  Google Scholar 

    49.
    Bryning, G. P., Chambers, J. & Wakefield, M. E. Identification of a sex pheromone from male yellow mealworm beetles, Tenebrio molitor. J. Chem. Ecol. 31, 2721–2730 (2005).
    CAS  Article  PubMed  Google Scholar 

    50.
    Nielsen, M. L. & Holman, L. Terminal investment in multiple sexual signals: Immune-challenged males produce more attractive pheromones. Funct. Ecol. 26, 20–28 (2012).
    Article  Google Scholar 

    51.
    Worden, B. D., Parker, P. G. & Pappas, P. W. Parasites reduce attractiveness and reproductive success in male grain beetles. Anim. Behav. 59, 543–550 (2000).
    CAS  Article  PubMed  Google Scholar 

    52.
    Worden, B. D. & Parker, P. G. Females prefer noninfected males as mates in the grain beetle Tenebrio molitor: Evidence in pre-and postcopulatory behaviours. Anim. Behav. 70, 1047–1053 (2005).
    Article  Google Scholar 

    53.
    Sadd, B. et al. Modulation of sexual signalling by immune challenged male mealworm beetles (Tenebrio molitor, L.): Evidence for terminal investment and dishonesty. J. Evol. Biol. 19, 321–325 (2006).
    CAS  Article  PubMed  Google Scholar 

    54.
    Krams, I. A. et al. Male mealworm beetles increase resting metabolic rate under terminal investment. J. Evol. Biol. 27, 541–550 (2014).
    CAS  Article  PubMed  Google Scholar 

    55.
    Kivleniece, I., Krams, I., Daukơte, J., Krama, T. & Rantala, M. J. Sexual attractiveness of immune-challenged male mealworm beetles suggests terminal investment in reproduction. Anim. Behav. 80, 1015–1021 (2010).
    Article  Google Scholar 

    56.
    Reyes-RamĂ­rez, A., EnrĂ­quez-Vara, J. N., Rocha-Ortega, M., TĂ©llez-GarcĂ­a, A. & CĂłrdoba-Aguilar, A. Female choice for sick males over healthy males: Consequences for offspring. Ethology 125, 241–249 (2019).
    Article  Google Scholar 

    57.
    Oliveira, A. S., Braga, G. U. L. & Rangel, D. E. N. Metarhizium robertsii illuminated during mycelial growth produces conidia with increased germination speed and virulence. Fungal Biol. 122, 555–562 (2018).
    Article  PubMed  Google Scholar 

    58.
    Sasan, R. K. & Bidochka, M. J. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. Am. J. Bot. 99, 101–107 (2012).
    Article  PubMed  Google Scholar 

    59.
    Barelli, L., Moonjely, S., Behie, S. W. & Bidochka, M. J. Fungi with multifunctional lifestyles: Endophytic insect pathogenic fungi. Plant Mol. Biol. 90, 657–664 (2016).
    CAS  Article  PubMed  Google Scholar 

    60.
    Branine, M., Bazzicalupo, A. & Branco, S. Biology and applications of endophytic insect-pathogenic fungi. PLoS Pathog. 15, e1007831 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    61.
    Keyser, C. A., Thorup-Kristensen, K. & Meyling, N. V. Metarhizium seed treatment mediates fungal dispersal via roots and induces infections in insects. Fungal. Ecol. 11, 122–131 (2014).
    Article  Google Scholar 

    62.
    Castro, T. et al. Persistence of Brazilian isolates of the entomopathogenic fungi Metarhizium anisopliae and M. robertsii in strawberry crop soil after soil drench application. Agric. Ecosyst. Environ. 233, 361–369 (2016).
    Article  Google Scholar 

    63.
    HĂ€rdling, R. & Kokko, H. The evolution of prudent choice. Evol. Ecol. Res. 7, 697–715 (2005).
    Google Scholar 

    64.
    Venner, S., Bernstein, C., Dray, S. & Bel-Venner, M.-C. Make love not war: When should less competitive males choose low-quality but defendable females?. Am. Nat. 175, 650–661 (2010).
    Article  PubMed  Google Scholar 

    65.
    Bhattacharya, A. K., Ameel, J. J. & Waldbauer, G. P. A method for sexing living pupal and adult yellow mealworms. Ann. Entomol. Soc. Am. 63, 1783 (1970).
    Article  Google Scholar 

    66.
    Silva, W. O. B., Mitidieri, S., Schrank, A. & Vainstein, M. H. Production and extraction of an extracellular lipase from the entomopathogenic fungus, Metarhizium anisopliae. Process Biochem. 40, 321–326 (2005).
    Article  CAS  Google Scholar 

    67.
    Zhou, J., Jiang, W., Ding, J., Zhang, X. & Gao, S. Effect of Tween 80 and ÎČ-cyclodextrin on degradation of decabromodiphenyl ether (BDE-209) by white rot fungi. Chemosphere 70, 172–177 (2007).
    ADS  CAS  Article  PubMed  Google Scholar 

    68.
    Liu, Y.-S. & Wu, J.-Y. Effects of Tween 80 and pH on mycelial pellets and exopolysaccharide production in liquid culture of a medicinal fungus. J. Ind. Microbiol. Biotechnol. 39, 623–628 (2012).
    CAS  Article  PubMed  Google Scholar 

    69.
    Gerber, G. H. Reproductive behaviour and physiology of Tenebrio molitor (Coleoptera: Tenebrionidae). III. Histogenetic changes in the internal genitalia, mesenteron, and cuticle during sexual maturation. Can. J. Zool. 54, 990–1002 (1976).
    Article  Google Scholar 

    70.
    Briscoe, A. D. & Chittka, L. The evolution of color vision in insects. Annu. Rev. Entomol. 46, 471–510 (2001).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    71.
    Team, R. C. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. https://www.R-project.org (2017).

    72.
    Bates, D., MĂ€chler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. arXiv Prepr. arXiv1406.5823 (2014).

    73.
    Jaeger, B. Package ‘r2glmm’. R Found. Stat. Comput. Vienna Avail. CRAN R-Project org/package=R2glmm Stat https://doi.org/10.1002/sim.3429 (2017).
    Article  Google Scholar 

    74.
    Williams, G. C. Natural selection, the costs of reproduction, and a refinement of Lack’s principle. Am. Nat. 100, 687–690 (1966).
    Article  Google Scholar 

    75.
    Clutton-Brock, T. H. Reproductive effort and terminal investment in iteroparous animals. Am. Nat. 123, 212–229 (1984).
    Article  Google Scholar 

    76.
    Duffield, K. R., Bowers, E. K., Sakaluk, S. K. & Sadd, B. M. A dynamic threshold model for terminal investment. Behav. Ecol. Sociobiol. 71, 185 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    77.
    Jones, K. M., Monaghan, P. & Nager, R. G. Male mate choice and female fecundity in zebra finches. Anim. Behav. 62, 1021–1026 (2001).
    Article  Google Scholar 

    78.
    Griggio, M., Valera, F., Casas, A. & Pilastro, A. Males prefer ornamented females: A field experiment of male choice in the rock sparrow. Anim. Behav. 69, 1243–1250 (2005).
    Article  Google Scholar 

    79.
    Naud, M.-J., Curtis, J. M. R., Woodall, L. C. & Gaspar, M. B. Mate choice, operational sex ratio, and social promiscuity in a wild population of the long-snouted seahorse Hippocampus guttulatus. Behav. Ecol. 20, 160–164 (2008).
    Article  Google Scholar 

    80.
    Cutrera, A. P., Fanjul, M. S. & Zenuto, R. R. Females prefer good genes: MHC-associated mate choice in wild and captive tuco-tucos. Anim. Behav. 83, 847–856 (2012).
    Article  Google Scholar 

    81.
    Mobley, K. B., Chakra, M. A. & Jones, A. G. No evidence for size-assortative mating in the wild despite mutual mate choice in sex-role-reversed pipefishes. Ecol. Evol. 4, 67–78 (2014).
    Article  PubMed  Google Scholar 

    82.
    Tschinkel, W. R. & Willson, C. D. Inhibition of pupation due to crowding in some tenebrionid beetles. J. Exp. Zool. 176, 137–145 (1971).
    CAS  Article  PubMed  Google Scholar 

    83.
    Morales-Ramos, J. A. & Rojas, M. G. Effect of larval density on food utilization efficiency of Tenebrio molitor (Coleoptera: Tenebrionidae). J. Econ. Entomol. 108, 2259–2267 (2015).
    CAS  Article  PubMed  Google Scholar 

    84.
    Morales-Ramos, J. A., Rojas, M. G., Kay, S., Shapiro-Ilan, D. I. & Tedders, W. L. Impact of adult weight, density, and age on reproduction of Tenebrio molitor (Coleoptera: Tenebrionidae). J. Entomol. Sci. 47, 208–220 (2012).
    Article  Google Scholar 

    85.
    Kraak, S. B. M. & Bakker, T. C. M. Mutual mate choice in sticklebacks: Attractive males choose big females, which lay big eggs. Anim. Behav. 56, 859–866 (1998).
    CAS  Article  PubMed  Google Scholar 

    86.
    Sandvik, M., Rosenqvist, G. & Berglund, A. Male and female mate choice affects offspring quality in a sex–role–reversed pipefish. Proc. R. Soc. Lond. Ser. B Biol. Sci. 267, 2151–2155 (2000).
    CAS  Article  Google Scholar 

    87.
    Drickamer, L. C., Gowaty, P. A. & Wagner, D. M. Free mutual mate preferences in house mice affect reproductive success and offspring performance. Anim. Behav. 65, 105–114 (2003).
    Article  Google Scholar 

    88.
    Bertram, S. M. et al. Linking mating preferences to sexually selected traits and offspring viability: Good versus complementary genes hypotheses. Anim. Behav. 119, 75–86 (2016).
    Article  Google Scholar 

    89.
    Bowers, E. K. et al. Sex-biased terminal investment in offspring induced by maternal immune challenge in the house wren (Troglodytes aedon). Proc. R. Soc. B Biol. Sci. 279, 2891–2898 (2012).
    Article  Google Scholar 

    90.
    Poulin, R. & Maure, F. Host manipulation by parasites: A look back before moving forward. Trends Parasitol. 31, 563–570 (2015).
    Article  PubMed  Google Scholar 

    91.
    August, C. J. The role of male and female pheromones in the mating behaviour of Tenebrio molitor. J. Insect Physiol. 17, 739–751 (1971).
    Article  Google Scholar 

    92.
    Font, E. & Desfilis, E. Courtship, mating, and sex pheromones in the mealworm beetle (Tenebrio molitor). In Exploring Animal Behavior in Laboratory and Field (eds. Ploger, B. J. & Yasukawa, K.) 43–58 (Elsevier, New York, 2003).

    93.
    Obata, S. & Hidaka, T. Experimental analysis of mating behavior in Tenebrio molitor L. (Coleoptera: Tenebrionidae). Appl. Entomol. Zool. 17, 60–66 (1982).
    Article  Google Scholar  More

  • in

    Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae produced at an industrial scale

    1.
    Otles, S., Despoudi, S., Bucatariu, C. & Kartal, C. Food waste management, valorization, and sustainability in the food industry. In Food Waste Recovery (ed. Galanakis, C. M.) 3–23 (Academic Press, London, 2015).
    Google Scholar 
    2.
    Schieber, A., Stintzing, F. C. & Carle, R. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 12, 401–413 (2001).
    CAS  Article  Google Scholar 

    3.
    Gowe, C. Review on potential use of fruit and vegetables by-products as a valuable source of natural food additives. Food Sci. Qual. Manag. 45, 47–61 (2015).
    Google Scholar 

    4.
    Chia, S. Y. et al. Effects of waste stream combinations from brewing industry on performance of Black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). PeerJ. 6, e5885 (2018).
    Article  CAS  Google Scholar 

    5.
    Newman, P. & Jennings, I. Cities as Sustainable Ecosystems: Principles and Practices (Island Press, Washington, D.C., 2008).
    Google Scholar 

    6.
    Lynch, K. M., Steffen, E. J. & Arendt, E. K. Brewers’ spent grain: A review with an emphasis on food and health. J. Inst. Brew. 122, 553–568 (2016).
    CAS  Article  Google Scholar 

    7.
    Bolwig, S., Mark, M. S., Happel, M. K. & Brekke, A. Beyond animal feed?: the valorisation of brewers’ spent grain. In From Waste to Value: Valorisation Pathways for Organic Waste Streams in Circular Bioeconomies (ed. Taylor & Francis) 107–126 (2019).

    8.
    Malakhova, D. V., Egorova, M. A., Prokudina, L. I., Netrusov, A. I. & Tsavkelova, E. A. The biotransformation of brewer’s spent grain into biogas by anaerobic microbial communities. World J. Microbiol. Biotechnol. 31, 2015–2023 (2015).
    CAS  Article  Google Scholar 

    9.
    Čičková, H., Newton, G. L., Lacy, R. C. & Kozánek, M. The use of fly larvae for organic waste treatment. Waste Manag. 35, 68–80 (2015).
    Article  CAS  Google Scholar 

    10.
    Van Huis, A. Potential of insects as food and feed in assuring food security. Ann. Rev. Entomol. 58, 563–583 (2013).
    Article  CAS  Google Scholar 

    11.
    Oonincx, D. G. A. B., Van Broekhoven, S., Van Huis, A. & van Loon, J. J. A. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE 10, e0144601 (2015).
    Article  Google Scholar 

    12.
    Wang, Y. S. & Shelomi, M. Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods. 6, 91 (2017).
    Article  CAS  Google Scholar 

    13.
    Costa-Neto, E. M. Insects as human food: An overview. Amazon. Rev. Antropol. 5, 562–582 (2013).
    Google Scholar 

    14.
    Diener, S. et al. Black soldier fly larvae for organic waste treatment–prospects and constraints. In Proceedings, WasteSafe 2011—2nd Int. Conf. on Solid Waste Management in the Developing Countries (eds. Alamgir, M. et al.) 52–59 (2011).

    15.
    Zhou, F., Tomberlin, J. K., Zheng, L., Yu, Z. & Zhang, J. Developmental and waste reduction plasticity of three black soldier fly strains (Diptera: Stratiomyidae) raised on different livestock manures. J. Med. Entomol. 50, 1224–1230 (2013).
    Article  Google Scholar 

    16.
    Nguyen, T., Tomberlin, J. K. & Vanlaerhoven, S. Ability of black soldier fly (Diptera: Stratiomyidae) larvae to recycle food waste. Environ. Entomol. 44, 406–410 (2015).
    CAS  Article  Google Scholar 

    17.
    Zheng, L., Li, Q., Zhang, J. & Yu, Z. Double the biodiesel yield: Rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production. Renew. Energy. 41, 75–79 (2012).
    CAS  Article  Google Scholar 

    18.
    Webster, C. D. et al. Bio-ag reutilization of distiller’s dried grains with solubles (DDGS) as a substrate for black soldier fly larvae, Hermetia illucens, along with poultry by-product meal and soybean meal, as total replacement of fish meal in diets for Nile tilapia, Oreochromis niloticus.. Aquacult. Nutr. 22, 976–988 (2016).
    CAS  Article  Google Scholar 

    19.
    Lalander, C. et al. Faecal sludge management with the larvae of the black soldier fly (Hermetia illucens)—From a hygiene aspect. Sci. Total Environ. 458, 312–318 (2013).
    ADS  Article  CAS  Google Scholar 

    20.
    Banks, I. J., Gibson, W. T. & Cameron, M. M. Growth rates of black soldier fly larvae fed on fresh human faeces and their implication for improving sanitation. Trop. Med. Int. Health. 19, 14–22 (2014).
    Article  Google Scholar 

    21.
    Barroso, F. G. et al. The potential of various insect species for use as food for fish. Aquaculture 422, 193–201 (2014).
    Article  Google Scholar 

    22.
    Henry, M., Gasco, L., Piccolo, G. & Fountoulaki, E. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Technol. 203, 1–22 (2015).
    CAS  Article  Google Scholar 

    23.
    Surendra, K. C., Olivier, R., Tomberlin, J. K., Rajesh Jha, R. & Khanalet, S. K. Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renew. Energy. 98, 197–202 (2016).
    CAS  Article  Google Scholar 

    24.
    Leong, S. Y., Kutty, S. R. M., Malakahmad, A. & Tan, C. K. Feasibility study of biodiesel production using lipids of Hermetia illucens larva fed with organic waste. Waste Manag. 47, 84–90 (2016).
    CAS  Article  Google Scholar 

    25.
    Li, W. et al. Potential biodiesel and biogas production from corncob by anaerobic fermentation and black soldier fly. Bioresour Technol. 194, 276–282 (2015).
    CAS  Article  Google Scholar 

    26.
    Cammack, J. A. & Tomberlin, J. K. The impact of diet protein and carbohydrate on select life-history traits of the black soldier fly Hermetia illucens (L.) (Diptera: Stratiomyidae). Insects. 8, 56 (2017).
    Article  Google Scholar 

    27.
    Li, W. et al. Simultaneous utilization of glucose and xylose for lipid accumulation in black soldier fly. Biotechnol. Biofuels. 8, 1–6 (2015).
    Article  CAS  Google Scholar 

    28.
    Soma, D. D. et al. Does mosquito mass-rearing produce an inferior mosquito?. Malar. J. 16, 357 (2017).
    Article  CAS  Google Scholar 

    29.
    Sþrensen, J., Addison, M. & Terblanche, J. Mass-rearing of insects for pest management: Challenges, synergies and advances from evolutionary physiology. Crop Prot. 38, 87–94 (2012).
    Article  Google Scholar 

    30.
    Kuriwada, T., Kumano, N., Shiromoto, K. & Haraguchi, D. Effect of mass rearing on life history traits and inbreeding depression in the sweetpotato weevil (Coleoptera: Brentidae). J. econ. entomol. 103, 1144–1148 (2010).
    CAS  Article  Google Scholar 

    31.
    Zheng, M. L., Zhang, D. J., Damiens, D. D., Yamada, H. & Gilles, J. R. Standard operating procedures for standardized mass rearing of the dengue and chikungunya vectors Aedes aegypti and Aedes albopictus (Diptera: Culicidae)—I—egg quantification. Parasit. Vectors. 8, 42 (2015).
    Article  Google Scholar 

    32.
    Ghimire, M. N. & Phillips, T. W. Mass rearing of Habrobracon hebetor Say (Hymenoptera: Braconidae) on larvae of the Indian meal moth, Plodia interpunctella (Lepidoptera: Pyralidae): Effects of host density, parasitoid density, and rearing containers. J. Stored Prod. Res. 46, 214–220 (2010).
    Article  Google Scholar 

    33.
    Chia, S. Y. et al. Threshold temperatures and thermal requirements of black soldier fly Hermetia illucens: Implications for mass production. PLoS ONE 13, 1–26 (2018).
    Article  CAS  Google Scholar 

    34.
    McGill, B. J. Matters of scale. Science 328, 575–576 (2010).
    ADS  CAS  Article  Google Scholar 

    35
    Jucker, C., Erba, D., Leonardi, M. G., Lupi, D. & Savoldelli, S. Assessment of vegetable and fruit substrates as potential rearing media for Hermetia illucens (Diptera: Stratiomyidae) larvae. Environ. Entomol. 46, 1415–1423 (2017).
    CAS  Article  Google Scholar 

    36.
    Jucker, C., Leonardi, M. G., Rigamonti, I., Lupi, D. & Savoldelli, S. Brewery’s waste streams as a valuable substrate for Black Soldier Fly Hermetia illucens (Diptera: Stratiomyidae). J. Entomol. Acarol. Res. 51, 8876 (2020).
    Article  Google Scholar 

    37.
    Nguyen, T. T. X., Tomberlin, J. K. & Vanlaerhoven, S. Influence of resources on Hermetia illucens (Diptera: Stratiomyidae) larval development. J. Med. Entomol. 50, 898–906 (2013).
    Article  Google Scholar 

    38.
    Barbi, S. et al. Valorization of seasonal agri-food leftovers through insects. Sci. Total Environ. 709, 136209 (2020).
    ADS  CAS  Article  Google Scholar 

    39.
    Bava, L. et al. Rearing of Hermetia illucens on different organic by-products: Influence on growth, waste reduction, and environmental impact. Animals 29, 289 (2019).
    Article  Google Scholar 

    40.
    Meneguz, M. et al. Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J. Sci. Food Agric. 98, 5776–5784 (2018).
    CAS  Article  Google Scholar 

    41.
    Slone, D. & Gruner, S. V. Thermoregulation in larval aggregations of carrion-feeding blow flies (Diptera: Calliphoridae). J. Med. Entomol. 44, 516–523 (2007).
    CAS  Article  Google Scholar 

    42.
    Gere, G. Investigations into the laws governing the growth of Hyphantria cunea drury caterpillars. Acta Biol. Hung. 7, 43–72 (1956).
    Google Scholar 

    43.
    Long, D. B. Effects of population density on larvae of Lepidoptera. Trans. R. Entomol. Soc. Lond. 104, 543–585 (1953).
    Article  Google Scholar 

    44.
    Parra Paz, A. S., Carrejo, N. S. & Gómez Rodríguez, C. H. Effects of larval density and feeding rates on the bioconversion of vegetable waste using black soldier fly larvae Hermetia illucens (L.), (Diptera: Stratiomyidae). Waste Biomass Valor. 6, 1059–1065 (2015).
    Article  Google Scholar 

    45.
    Bonelli, M. et al. Structural and functional characterization of Hermetia illucens larval midgut. Front. Physiol. 10, 204 (2019).
    Article  Google Scholar 

    46.
    Tschirner, M. & Simon, A. Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. J. Insect Food Feed. 1, 249–259 (2015).
    Article  Google Scholar 

    47.
    Gobbi, P., Martinez Sanchez, A. & Rojo, S. The effects of larval diet on adult life history traits of the black soldier fly, Hermetia illucens [Diptera: Stratiomyidae]. Eur. J. Entomol. 110, 461–468. https://doi.org/10.14411/eje.2013.061 (2013).
    Article  Google Scholar 

    48.
    Kim, E., Park, J., Lee, S. & Kim, Y. Identification and physiological characters of intestinal bacteria of the black soldier fly, Hermetia illucens. Korean J. Appl. Entomol. 53, 15–26 (2014).
    Article  Google Scholar 

    49.
    Spranghers, T. et al. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 97, 2594–2600 (2017).
    CAS  Article  Google Scholar 

    50.
    Inagaki, S. & Yamashita, O. Metabolic shift from lipogenesis to glycogenesis in the last instar larval fat body of the silkworm, Bombyx mori. Insect Biochem. 16, 327–331 (1986).
    CAS  Article  Google Scholar 

    51.
    Tomberlin, J. K., Sheppard, D. C. & Joyce, J. A. Selected life-history traits of black soldier flies (Diptera: Stratiomyidae) reared on three artificial diets. Ann. Entomol. Soc. Am. 95, 379–386 (2002).
    Article  Google Scholar 

    52.
    Bosch, G. et al. Standardisation of quantitative resource conversion studies with black soldier fly larvae. J. Insects Food Feed. 6, 95–109 (2020).
    Article  Google Scholar 

    53.
    StÄhls, G. et al. The puzzling mitochondrial phylogeography of the black soldier fly (Hermetia illucens), the commercially most important insect protein species. BMC Evol. Biol. 20, 60 (2020).
    Article  Google Scholar 

    54.
    Zhan, S. et al. Genomic landscape and genetic manipulation of the black soldier fly Hermetia illucens, a natural waste recycler. Cell. Res. 30, 50–60 (2019).
    Article  Google Scholar 

    55.
    Barragan-Fonseca, K. B., Dicke, M. & van Loon, J. J. A. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed—A review. J. Insects Food Feed 1, 1–16 (2017).
    Google Scholar 

    56.
    Booth, D. C. & Sheppard, C. Oviposition of the black soldier fly, Hermetia Illucens (Diptera: Stratiomyidae): Eggs, masses, timing, and site characteristics. Environ. Entomol. 13, 421–423 (1984).
    Article  Google Scholar 

    57.
    Hogsette, J. A. New diets for production of house flies and stable flies (Diptera: Muscidae) in the laboratory. J. Econ. Entomol. 85, 2291–2294 (1992).
    CAS  Article  Google Scholar 

    58.
    Loveridge, J. P. Age and the changes in water and fat content of adult laboratory- reared Locusta migratoria migratorioides. Rhod. J. Agric. Res. 11, 131–143 (1973).
    Google Scholar 

    59.
    Sokal, R. R. & Rohlf, F. J. Biometry: The Principles and Practice of Statistics in Biological Research 887 (W.H. Freeman & Company, New York, 1995).
    Google Scholar  More

  • in

    Spatial patterns of pathogen prevalence in questing Ixodes ricinus nymphs in southern Scandinavia, 2016

    1.
    PfĂ€ffle, M., Littwin, N., Muders, S. V. & Petney, T. N. The ecology of tick-borne diseases. Int. J. Parasitol. 43, 1059–1077 (2013).
    Article  Google Scholar 
    2.
    Han, B. A. & Yang, L. Predicting novel tick vectors of zoonotic disease. in ICML Workshop on #Data4Good: Machine Learning in Social Good Applications 71–75 (2016).

    3.
    de la Fuente, J., Estrada-Pena, A., Venzal, J. M., Kocan, K. M. & Sonenshine, D. E. Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 13, 6938–6946 (2008).
    Article  Google Scholar 

    4.
    Michelet, L. et al. High-throughput screening of tick-borne pathogens in Europe. Front. Cell. Infect. Microbiol. 4, 103 (2014).
    Article  Google Scholar 

    5.
    Estrada-Peña, A. & de la Fuente, J. The ecology of ticks and epidemiology of tick-borne viral diseases. Antiviral Res. 108, 104–128 (2014).
    Article  CAS  Google Scholar 

    6.
    Paul, R. E. L. et al. Environmental factors influencing tick densities over seven years in a French suburban forest. Parasit. Vectors 9, 309 (2016).
    Article  CAS  Google Scholar 

    7.
    Randolph, S. E. Tick-borne disease systems emerge from the shadows: the beauty lies in molecular detail, the message in epidemiology. Parasitology 136, 1403 (2009).
    CAS  Article  Google Scholar 

    8.
    Jore, S. et al. Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit. Parasit. Vectors 4, 1–11 (2011).
    Article  Google Scholar 

    9.
    Bernstein, L. et al. Climate Change 2007: Synthesis Report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)] https://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_full_report.pdf (2007).

    10.
    Kovats, R. S., Campbell-Lendrum, D. H., McMichael, A. J., Woodward, A. & Cox, J. S. Early effects of climate change: do they include changes in vector-borne disease?. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356, 1057–1068 (2001).
    CAS  PubMed  PubMed Central  Google Scholar 

    11.
    Gage, K. L., Burkot, T. R., Eisen, R. J. & Hayes, E. B. Climate and vectorborne diseases. Am. J. Prev. Med. 35, 436–450 (2008).
    Article  Google Scholar 

    12.
    Medlock, J. M. et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit. Vectors 6, 1–11 (2013).
    Article  Google Scholar 

    13.
    Andreassen, A. et al. Prevalence of tick borne encephalitis virus in tick nymphs in relation to climatic factors on the southern coast of Norway. Parasit. Vectors 5, 1–12 (2012).
    Article  Google Scholar 

    14.
    Soleng, A. et al. Distribution of Ixodes ricinus ticks and prevalence of tick-borne encephalitis virus among questing ticks in the Arctic Circle region of northern Norway. Ticks Tick. Borne. Dis. 9, 97–103 (2018).
    CAS  Article  Google Scholar 

    15.
    Kjelland, V. et al. Tick-borne encephalitis virus, Borrelia burgdorferi sensu lato, Borrelia miyamotoi, Anaplasma phagocytophilum and Candidatus Neoehrlichia mikurensis in Ixodes ricinus ticks collected from recreational islands in southern Norway. Ticks Tick. Borne. Dis. 9, 1098–1102 (2018).
    Article  Google Scholar 

    16.
    Paulsen, K. M. et al. Prevalence of tick-borne encephalitis virus in Ixodes ricinus ticks from three islands in north-western Norway. APMIS 123, 759–764 (2015).
    Article  Google Scholar 

    17.
    KjĂŠr, L. J. et al. A large-scale screening for the taiga tick, Ixodes persulcatus, and the meadow tick, Dermacentor reticulatus, in southern Scandinavia, 2016. Parasit. Vectors 12, 338 (2019).
    Article  Google Scholar 

    18.
    Oechslin, C. P. et al. Prevalence of tick-borne pathogens in questing Ixodes ricinus ticks in urban and suburban areas of Switzerland. Parasit. Vectors 10, 558 (2017).
    Article  CAS  Google Scholar 

    19.
    Becker, N. S. et al. Recurrent evolution of host and vector association in bacteria of the Borrelia burgdorferi sensu lato species complex. BMC Genom. 17, 734 (2016).
    Article  CAS  Google Scholar 

    20.
    Bowman, A. S. & Nuttall, P. A. Ticks: Biology, Disease and Control (Cambridge University Press, Cambridge, 2004).
    Google Scholar 

    21.
    Hasle, G. et al. Transport of ticks by migratory passerine birds to Norway. J. Parasitol. 95, 1342–1351 (2009).
    PubMed  Google Scholar 

    22.
    Klitgaard, K. et al. Screening for multiple tick-borne pathogens in Ixodes ricinus ticks from birds in Denmark during spring and autumn migration seasons. Ticks Tick. Borne. Dis. 10, 546–552 (2019).
    PubMed  Google Scholar 

    23.
    SkarphĂ©dinsson, S. et al. Detection and identification of Anaplasma phagocytophilum, Borrelia burgdorferi, and Rickettsia helvetica in Danish Ixodes ricinus ticks. APMIS 115, 225–230 (2007).
    PubMed  Google Scholar 

    24.
    Fraenkel, C.-J., Garpmo, U. & Berglund, J. Determination of novel Borrelia genospecies in Swedish Ixodes ricinus ticks. J. Clin. Microbiol. 40, 3308–3312 (2002).
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Wilhelmsson, P. et al. Prevalence, diversity, and load of Borrelia species in ticks that have fed on humans in regions of Sweden and Åland Islands, Finland with different Lyme borreliosis incidences. PLoS ONE 8, e81433 (2013).
    ADS  PubMed  PubMed Central  Google Scholar 

    26.
    Vennestrþm, J., Egholm, H. & Jensen, P. M. Occurrence of multiple infections with different Borrelia burgdorferi genospecies in Danish Ixodes ricinus nymphs. Parasitol. Int. 57, 32–37 (2008).
    PubMed  Google Scholar 

    27.
    Kjelland, V., Stuen, S., Skarpaas, T. & Slettan, A. Prevalence and genotypes of Borrelia burgdorferi sensu lato infection in Ixodes ricinus ticks in southern Norway. Scand. J. Infect. Dis. 42, 579–585 (2010).
    CAS  PubMed  Google Scholar 

    28.
    Klitgaard, K., Kjér, L. J., Isbrand, A., Hansen, M. F. & Bþdker, R. Multiple infections in questing nymphs and adult female Ixodes ricinus ticks collected in a recreational forest in Denmark. Ticks Tick. Borne. Dis. 10, 1060–1065 (2019).
    PubMed  Google Scholar 

    29.
    Maraspin, V., Ruzic-Sabljic, E. & Strle, F. Lyme borreliosis and Borrelia spielmanii. Emerg. Infect. Dis. 12, 1177–1177 (2006).
    PubMed  PubMed Central  Google Scholar 

    30.
    Rudenko, N., Golovchenko, M., Grubhoffer, L. & Oliver, J. H. Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick. Borne. Dis. 2, 123–128 (2011).
    Article  Google Scholar 

    31.
    Fertner, M. E., Mþlbak, L., Pihl, T. P. B., Fomsgaard, A. & Bþdker, R. First detection of tick-borne “Candidatus Neoehrlichia mikurensis” in Denmark 2011. Eurosurveillance 17, 20096 (2012).
    Google Scholar 

    32.
    Quarsten, H. et al. Candidatus Neoehrlichia mikurensis and Borrelia burgdorferi sensu lato detected in the blood of Norwegian patients with erythema migrans. Ticks Tick. Borne. Dis. 8, 715–720 (2017).
    CAS  Article  Google Scholar 

    33.
    Stuen, S., Granquist, E. G. & Silaghi, C. Anaplasma phagocytophilum—a widespread multi-host pathogen with highly adaptive strategies. Front. Cell. Infect. Microbiol. 3, 31 (2013).
    Article  CAS  Google Scholar 

    34.
    Fomsgaard, A. et al. Tick-borne encephalitis virus, Zealand, Denmark, 2011. Emerg. Infect. Dis. 19, 1171–1173 (2013).
    Article  Google Scholar 

    35.
    Jensen, P. M. et al. Transmission differentials for multiple pathogens as inferred from their prevalence in larva, nymph and adult of Ixodes ricinus (Acari: Ixodidae). Exp. Appl. Acarol. 71, 171–182 (2017).
    Article  Google Scholar 

    36.
    Lundkvist, Å., Wallensten, A., Vene, S. & Hjertqvist, M. Tick-borne encephalitis increasing in Sweden, 2011. Eurosurveillance 16, 19981 (2011).
    Article  Google Scholar 

    37.
    Svensson, J., Hunfeld, K.-P. & Persson, K. E. M. High seroprevalence of Babesia antibodies among Borrelia burgdorferi-infected humans in Sweden. Ticks Tick. Borne. Dis. 10, 186–190 (2019).
    Article  Google Scholar 

    38.
    Mþrch, K., Holmaas, G., Frolander, P. S. & Kristoffersen, E. K. Severe human Babesia divergens infection in Norway. Int. J. Infect. Dis. 33, 37–38 (2015).
    Article  Google Scholar 

    39.
    Uhnoo, I. et al. First documented case of human babesiosis in Sweden. Scand. J. Infect. Dis. 24, 541–547 (2009).
    Article  Google Scholar 

    40.
    Dumler, J. S., Barat, N. C., Barat, C. E. & Bakken, J. S. Human granulocytic anaplasmosis and macrophage activation. Clin. Infect. Dis. 45, 199–204 (2007).
    CAS  Article  Google Scholar 

    41.
    Nilsson, K., Elfving, K. & PĂ„hlson, C. Rickettsia helvetica in patient with meningitis, Sweden, 2006. Emerg. Infect. Dis. 16, 490–492 (2010).
    CAS  Article  Google Scholar 

    42.
    Frivik, J. O., Noraas, S., Grankvist, A., WennerÄs, C. & Quarsten, H. En mann i 60-Ärene fra SÞrlandet med intermitterende feber (In Norwegian). Tidsskr. Den Nor. legeforening 137, (2017).

    43.
    Grankvist, A. et al. Infections with the tick-borne bacterium ‘Candidatus Neoehrlichia mikurensis’ mimic noninfectious conditions in patients with B cell malignancies or autoimmune diseases. Clin. Infect. Dis. 58, 1716–1722 (2014).
    CAS  Article  Google Scholar 

    44.
    Welinder-Olsson, C., Kjellin, E., Vaht, K., Jacobsson, S. & Wenneras, C. First case of human ‘Candidatus Neoehrlichia mikurensis’ infection in a febrile patient with chronic lymphocytic leukemia. J. Clin. Microbiol. 48, 1956–1959 (2010).
    Article  Google Scholar 

    45.
    Rizzoli, A. et al. Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: new hazards and relevance for public health. Front. Public Health 2, 251 (2014).
    Article  Google Scholar 

    46.
    Michelitsch, A., Wernike, K., Klaus, C., Dobler, G. & Beer, M. Exploring the reservoir hosts of tick-borne encephalitis virus. Viruses vol. 11 (2019).

    47.
    Keesing, F. et al. Reservoir competence of vertebrate hosts for Anaplasma phagocytophilum. Emerg. Infect. Dis. 18, 2013–2016 (2012).
    Article  Google Scholar 

    48.
    Zhan, L. et al. Anaplasma phagocytophilum in livestock and small rodents. Vet. Microbiol. 144, 405–408 (2010).
    ADS  Article  Google Scholar 

    49.
    Portillo, A., Santibåñez, P., Palomar, A. M., Santibåñez, S. & Oteo, J. A. Candidatus Neoehrlichia mikurensis, Europe. New Microbes New Infect. 22, 30–36 (2018).
    CAS  Article  Google Scholar 

    50.
    Jenkins, A. et al. Detection of Candidatus Neoehrlichia mikurensis in Norway up to the northern limit of Ixodes ricinus distribution using a novel real time PCR test targeting the groEL gene. BMC Microbiol. 19, 199 (2019).
    PubMed  PubMed Central  Google Scholar 

    51.
    Obiegala, A. & Silaghi, C. Candidatus Neoehrlichia mikurensis—recent insights and future perspectives on clinical cases, vectors, and reservoirs in Europe. Curr. Clin. Microbiol. Rep. 5, 1–9 (2018).
    Google Scholar 

    52.
    Yabsley, M. J. & Shock, B. C. Natural history of zoonotic Babesia: role of wildlife reservoirs. Int. J. Parasitol. Parasites Wildl. 2, 18–31 (2013).
    PubMed  Google Scholar 

    53.
    Sprong, H. et al. Ixodes ricinus ticks are reservoir hosts for Rickettsia helvetica and potentially carry flea-borne Rickettsia species. Parasit. Vectors 2, 41 (2009).
    PubMed  PubMed Central  Google Scholar 

    54.
    Jaenson, T. G. T. et al. Risk indicators for the tick Ixodes ricinus and Borrelia burgdorferi sensu lato in Sweden. Med. Vet. Entomol. 23, 226–237 (2009).
    CAS  PubMed  Google Scholar 

    55.
    Hudson, P. J. et al. Tick-borne encephalitis virus in northern Italy: molecular analysis, relationships with density and seasonal dynamics of Ixodes ricinus. Med. Vet. Entomol. 15, 304–313 (2001).
    MathSciNet  CAS  Article  Google Scholar 

    56.
    Nazzi, F. et al. Ticks and Lyme borreliosis in an alpine area in northeast Italy. Med. Vet. Entomol. 24, 220–226 (2010).
    CAS  PubMed  Google Scholar 

    57.
    Hubalek, Z., Halouzka, J. & Juricova, Z. Longitudinal surveillance of the tick Ixodes ricinus for Borreliae. Med. Vet. Entomol. 17, 46–51 (2003).
    CAS  Article  Google Scholar 

    58.
    Lindström, A. & Jaenson, T. G. T. Distribution of the common tick, Ixodes ricinus (Acari: Ixodidae), in different vegetation types in southern Sweden. J. Med. Entomol. 40, 375–378 (2003).
    Article  Google Scholar 

    59.
    Mejlon, H. A. & Jaenson, T. G. T. Jaenson (1993) Seasonal prevalence of Borrelia burgdorferi in Ixodes ricinus in different vegetation types in Sweden. Scand. J. Infect. Dis. 25, 449–456 (2009).
    Article  Google Scholar 

    60.
    Tack, W. et al. Local habitat and landscape affect Ixodes ricinus tick abundances in forests on poor, sandy soils. For. Ecol. Manag. 265, 30–36 (2012).
    Google Scholar 

    61.
    Walhström, L. K. & Kjellander, P. Ideal free distribution and natal dispersal in female roe deer. Oecologia 103, 302–308 (1995).
    ADS  PubMed  Google Scholar 

    62.
    Zeman, P. Objective assessment of risk maps of tick-borne encephalitis and Lyme borreliosis based on spatial patterns of located cases. Int. J. Epidemiol. 26, 1121–1129 (1997).
    CAS  PubMed  Google Scholar 

    63.
    Jat, M. K. & Mala, S. Application of GIS and space-time scan statistic for vector born disease clustering. In ICEGOV ’17 Proceedings of the 10th International Conference on Theory and Practice of Electronic Governance (2017) https://doi.org/10.1145/3047273.3047361.

    64.
    Hönig, V. et al. Model of risk of exposure to Lyme borreliosis and tick-borne encephalitis virus-infected ticks in the border area of the Czech Republic (South Bohemia) and Germany (Lower Bavaria and Upper Palatinate). Int. J. Environ. Res. Public Health 16, 1173 (2019).
    PubMed Central  Google Scholar 

    65.
    Randolph, S. E. & Rogers, D. J. Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proc. Biol. Sci. 267, 1741–1744 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    66.
    Stefanoff, P. et al. A Predictive model has identified tick-borne encephalitis high-risk areas in regions where no cases were reported previously, Poland, 1999–2012. Int. J. Environ. Res. Public Health 15, 677 (2018).
    PubMed Central  Google Scholar 

    67.
    KjĂŠr, L. J. et al. Predicting and mapping human risk of exposure to Ixodes ricinus nymphs using climatic and environmental data, Denmark, Norway and Sweden, 2016. Eurosurveillance 24, 1800101 (2019).
    PubMed Central  Google Scholar 

    68.
    KjĂŠr, L. J. et al. Predicting the spatial abundance of Ixodes ricinus ticks in southern Scandinavia using environmental and climatic data. Sci. Rep. 9, 18144 (2019).
    ADS  Google Scholar 

    69.
    Kjér, L. J. et al. Spatial data of Ixodes ricinus instar abundance and nymph pathogen prevalence, Scandinavia, 2016–2017. Collection https://doi.org/10.6084/m9.figshare.c.4938270.v1 (2020).
    Article  Google Scholar 

    70.
    Kjér, L. J. et al. Spatial data of Ixodes ricinus instar abundance and nymph pathogen prevalence, Scandinavia, 2016–2017. Sci. Data 7, 1–7 (2020).
    Google Scholar 

    71.
    Scharlemann, J. P. W. et al. Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data. PLoS ONE 3, e1408 (2008).
    ADS  Article  Google Scholar 

    72.
    Corine Land Cover 2006 raster data. European Environment Agency https://www.eea.europa.eu/data-and-maps/data/clc-2006-raster (2010).

    73.
    Klitgaard, K., ChriĂ©l, M., Isbrand, A., Jensen, T. K. & BĂždker, R. Identification of Dermacentor reticulatus ticks carrying Rickettsia raoultii on migrating jackal, Denmark. Emerg. Infect. Dis. 23, 2072–2074 (2017).
    Article  Google Scholar 

    74.
    Moutailler, S. et al. Co-infection of ticks: the rule rather than the exception. PLoS Negl. Trop. Dis. 10, e0004539 (2016).
    Article  CAS  Google Scholar 

    75.
    Reye, A. L. et al. Prevalence of tick-borne pathogens in Ixodes ricinus and Dermacentor reticulatus ticks from different geographical locations in Belarus. PLoS ONE 8, e54476 (2013).
    ADS  CAS  Article  Google Scholar 

    76.
    R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.r-project.org (2018).

    77.
    Cowling, D. W., Gardner, I. A. & Johnson, W. O. Comparison of methods for estimation of individual-level prevalence based on pooled samples. Prev. Vet. Med. 39, 211–225 (1999).
    CAS  Article  Google Scholar 

    78.
    ESRI. ArcGIS Desktop: Release 10.6.1. Redlands, CA: Environmental Systems Research Institute. (2017).

    79.
    Kulldorff M. and Information Management Services, I. SaTScanTM v9.6: Software for the spatial and space-time scan statistics www.satscan.org, 2018.

    80.
    Kleinman, K. rsatscan: Tools, classes, and methods for interfacing with SaTScan stand-alone software. (2015).

    81.
    Kulldorff, M. A spatial scan statistic. Communications in Statistics – Theory and Methods vol. 26 https://www.tandfonline.com/doi/abs/10.1080/03610929708831995 (1997).

    82.
    Han, J. et al. Using Gini coefficient to determining optimal cluster reporting sizes for spatial scan statistics. Int. J. Health Geogr. 15, 27 (2016).
    Article  Google Scholar 

    83.
    Kuhn., M., Contributions from Jed Wing, Steve Weston, Andre Williams, Chris Keefer, Allan Engelhardt, T., Cooper, Zachary Mayer, Brenton Kenkel, the R Core Team, Michael Benesty, Reynald Lescarbeau, A. Z. & Luca Scrucca, Yuan Tang, C. C. and T. H. caret: Classification and regression training. R package version 6.0-81. https://CRAN.R-project.org/package=caret. (2018).

    84.
    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).
    CAS  Article  Google Scholar 

    85.
    Vapnik, V., Golowich, S. E. & Smola, A. Support vector method for function approximation, regression estimation, and signal processing. in Advances in Neural Information Processing Systems 9 (eds. Mozer, M., Jordan, M. & Petsche, T.) 281–287 (MIT Press., 1997).

    86.
    Sanz, H., Valim, C., Vegas, E., Oller, J. M. & Reverter, F. SVM-RFE: selection and visualization of the most relevant features through non-linear kernels. BMC Bioinform. 19, 432 (2018).
    Article  Google Scholar 

    87.
    Ghojogh, B., Ca, B., Crowley, M. & Ca, M. The theory behind overfitting, cross validation, rRegularization, bagging, and boosting: tTutorial. https://arxiv.org/abs/1905.12787 [stat.ML] 1–23 (2019).

    88.
    SkarphĂ©dinsson, S., Jensen, P. M. & Kristiansen, K. Survey of tickborne infections in Denmark. Emerg. Infect. Dis. 11, 1055–1061 (2005).
    Article  Google Scholar 

    89.
    Quarsten, H., Skarpaas, T., Fajs, L., Noraas, S. & Kjelland, V. Tick-borne bacteria in Ixodes ricinus collected in southern Norway evaluated by a commercial kit and established real-time PCR protocols. Ticks Tick. Borne. Dis. 6, 538–544 (2015).
    CAS  Article  Google Scholar 

    90.
    Wilhelmsson, P. et al. Prevalence and diversity of Borrelia species in ticks that have bitten humans in Sweden. J. Clin. Microbiol. 48, 4169–4176 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    91.
    Strnad, M., Hönig, V., RĆŻĆŸek, D., Grubhoffer, L. & Rego, R. O. M. Europe-wWide meta-analysis of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks. Appl. Environ. Microbiol. 83, 3838 (2017).
    Google Scholar 

    92.
    Mysterud, A. et al. Tick abundance, pathogen prevalence, and disease incidence in two contrasting regions at the northern distribution range of Europe. Parasit. Vectors 11, 309 (2018).
    PubMed  PubMed Central  Google Scholar 

    93.
    Severinsson, K., Jaenson, T. G., Pettersson, J., Falk, K. & Nilsson, K. Detection and prevalence of Anaplasma phagocytophilum and Rickettsia helvetica in Ixodes ricinus ticks in seven study areas in Sweden. Parasit. Vectors 3, 66 (2010).
    PubMed  PubMed Central  Google Scholar 

    94.
    Karlsson, M. E. & Andersson, M. O. Babesia species in questing Ixodes ricinus, Sweden. Ticks Tick. Borne. Dis. 7, 10–12 (2016).
    PubMed  Google Scholar 

    95.
    Øines, Ø., Radzijevskaja, J., Paulauskas, A. & Rosef, O. Prevalence and diversity of Babesia spp. in questing Ixodes ricinus ticks from Norway. Parasit. Vectors 5, 156 (2012).
    PubMed  PubMed Central  Google Scholar 

    96.
    Andersson, M., Bartkova, S., Lindestad, O. & RĂ„berg, L. Co-Infection with ‘Candidatus Neoehrlichia mikurensis’ and Borrelia afzelii in Ixodes ricinus Ticks in Southern Sweden. Vector-Borne Zoonotic Dis. 13, 438–442 (2013).
    PubMed  Google Scholar 

    97.
    Pedersen, B. N. et al. Distribution of Neoehrlichia mikurensis in Ixodes ricinus ticks along the coast of Norway: the western seaboard is a low-prevalence region. Zoonoses Public Health https://doi.org/10.1111/zph.12662 (2019).
    Article  PubMed  Google Scholar 

    98.
    Kantsþ, B., Bo Svendsen, C., Moestrup Jensen, P., Vennestrþm, J. & Krogfelt, K. A. Seasonal and habitat variation in the prevalence of Rickettsia helvetica in Ixodes ricinus ticks from Denmark. Ticks Tick. Borne. Dis. 1, 101–103 (2010).
    PubMed  Google Scholar 

    99.
    Solano-Gallego, L., Sainz, Á., Roura, X., Estrada-Peña, A. & Miró, G. A review of canine babesiosis: the European perspective. Parasit. Vectors 9, 336 (2016).
    Article  CAS  Google Scholar 

    100.
    Randolph, S. E. The shifting landscape of tick-borne zoonoses: tick-borne encephalitis and Lyme borreliosis in Europe. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356, 1045–1056 (2001).
    CAS  PubMed  PubMed Central  Google Scholar 

    101.
    Sumilo, D. et al. Tick-borne encephalitis in the Baltic States : Identifying risk factors in space and time. Int. J. Med. Microbiol. 296(Suppl), 76–79 (2006).
    PubMed  Google Scholar 

    102.
    Sumilo, D. et al. Socio-economic factors in the differential upsurge of tick-borne encephalitis in Central and Eastern Europe. Rev. Med. Virol. 18, 81–95 (2008).
    PubMed  Google Scholar 

    103.
    Randolph, S. E., Green, R. M., Peacey, M. F. & Rogers, D. J. Seasonal synchrony : the key to tick-borne encephalitis foci identified by satellite data. Parasitology 121, 15–23 (2000).
    PubMed  Google Scholar 

    104.
    Halos, L. et al. Ecological factors characterizing the prevalence of bacterial tick-borne pathogens in Ixodes ricinus ticks in pastures and woodlands. Appl. Environ. Microbiol. 76, 4413–4420 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    105.
    Sjörs, H. Nordisk vÀxtgeografi (in Swedish) (Bonniers, Scandinavian University Books, 1967).
    Google Scholar  More

  • in

    A first look at the metabolic rate of Greenland sharks (Somniosus microcephalus) in the Canadian Arctic

    1.
    Cavicchioli, R., Amils, R., Wagner, D. & McGenity, T. Life and applications of extremophiles. Environ. Microbiol. 13, 1903–1907 (2011).
    Article  Google Scholar 
    2.
    Riesch, R., Tobler, M. & Plath, M. Extremophile Fishes (Springer, New York, 2015).
    Google Scholar 

    3.
    Wharton, D. A. Life at the Limits: Organisms in Extreme Environments (Cambridge University Press, Cambridge, 2007).
    Google Scholar 

    4.
    Lear, K. O. et al. Divergent field metabolic rates highlight the challenges of increasing temperatures and energy limitation in aquatic ectotherms. Oecologia 193, 311–323 (2020).
    ADS  Article  Google Scholar 

    5.
    Elliott, K. H. et al. High flight costs, but low dive costs, in auks support the biomechanical hypothesis for flightlessness in penguins. Proc. Natl. Acad. Sci. 110, 9380–9384 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    6.
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Article  Google Scholar 

    7.
    Clarke, A. & Johnston, N. M. Scaling of metabolic rate with body mass and temperature in teleost fish. J. Anim. Ecol. 68, 893–905 (1999).
    Article  Google Scholar 

    8.
    Schulte, P. M. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218, 1856–1866 (2015).
    Article  Google Scholar 

    9.
    Kleiber, M. Body size and metabolism. ENE 1, 315–353 (1932).
    Google Scholar 

    10.
    Glazier, D. S. A unifying explanation for diverse metabolic scaling in animals and plants. Biol. Rev. 85, 111–138 (2010).
    Article  PubMed  Google Scholar 

    11.
    Jerde, C. L. et al. Strong evidence for an intraspecific metabolic scaling coefficient near 0.89 in fish. Front. Physiol. 10, 1166 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    12.
    van der Meer, J. Metabolic theories in ecology. Trends Ecol. Evol. 21, 136–140 (2006).
    Article  PubMed  Google Scholar 

    13.
    Luongo, S. M. & Lowe, C. G. Seasonally acclimated metabolic Q10 of the California horn shark, Heterodontus francisci. J. Exp. Mar. Bio. Ecol. 503, 129–135 (2018).
    Article  Google Scholar 

    14.
    White, C. R., Alton, L. A. & Frappell, P. B. Metabolic cold adaptation in fishes occurs at the level of whole animal, mitochondria and enzyme. Proc. R. Soc. B Biol. Sci. 279, 1740–1747 (2011).
    Article  CAS  Google Scholar 

    15.
    Krogh, A. The Quantitative Relation Between Temperature and Standard Metabolism in Animals (Internationale Zeitschrift fuÈr Physikalisch-Chemische Biologie, New York, 1914).
    Google Scholar 

    16.
    Messamah, B., Kellermann, V., Malte, H., Loeschcke, V. & Overgaard, J. Metabolic cold adaptation contributes little to the interspecific variation in metabolic rates of 65 species of Drosophilidae. J. Insect Physiol. 98, 309–316 (2017).
    CAS  Article  PubMed  Google Scholar 

    17.
    Holeton, G. F. Metabolic cold adaptation of polar fish: fact or artefact?. Physiol. Zool. 47, 137–152 (1974).
    Article  Google Scholar 

    18.
    Steffensen, J. F. Metabolic cold adaptation of polar fish based on measurements of aerobic oxygen consumption: fact or artefact? Artefact!. Comp. Biochem. Physiol. A. 132, 789–795 (2002).
    Article  Google Scholar 

    19.
    Peck, L. S. A cold limit to adaptation in the sea. Trends Ecol. Evol. 31, 13–26 (2016).
    Article  PubMed  Google Scholar 

    20.
    Chabot, D., Steffensen, J. F. & Farrell, A. P. The determination of standard metabolic rate in fishes. J. Fish Biol. 88, 81–121 (2016).
    CAS  Article  PubMed  Google Scholar 

    21.
    Lawson, C. L. et al. Powering ocean giants : the energetics of shark and ray megafauna. Trends Ecol. Evol. 34, 1–13 (2019).
    MathSciNet  Article  Google Scholar 

    22.
    Lowe, C. Metabolic rates of juvenile scalloped hammerhead sharks (Sphyrna lewini). Mar. Biol. 139, 447–453 (2001).
    Article  Google Scholar 

    23.
    Payne, N. L. et al. A new method for resolving uncertainty of energy requirements in large water breathers: the ‘mega-flume’ seagoing swim-tunnel respirometer. Methods Ecol. Evol. 6, 668–677 (2015).
    Article  Google Scholar 

    24.
    Byrnes, E. E., Lear, K. O., Morgan, D. L. & Gleiss, A. C. Respirometer in a box: development and use of a portable field respirometer for estimating oxygen consumption of large-bodied fishes. J. Fish Biol. 96, 1045–1050 (2020).
    CAS  Article  PubMed  Google Scholar 

    25.
    MacNeil, M. A. et al. Biology of the greenland shark Somniosus microcephalus. J. Fish Biol. 80, 991–1018 (2012).
    CAS  Article  PubMed  Google Scholar 

    26.
    Edwards, J. E. et al. Advancing research for the management of long-lived species: a case study on the Greenland shark. Front. Mar. Sci. 6, 12 (2019).
    Article  Google Scholar 

    27.
    Augustine, S., Lika, K. & Kooijman, S. A. L. M. Comment on the ecophysiology of the Greenland shark, Somniosus microcephalus. Polar Biol. 40, 2429–2433 (2017).
    Article  Google Scholar 

    28.
    Nielsen, J. et al. Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science 353, 702–704 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    29.
    Watanabe, Y. Y., Lydersen, C., Fisk, A. T. & Kovacs, K. M. The slowest fish: Swim speed and tail-beat frequency of Greenland sharks. J. Exp. Mar. Biol. Ecol. 426–427, 5–11 (2012).
    Article  Google Scholar 

    30.
    Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. 17, 239–250 (2014).
    Article  Google Scholar 

    31.
    Devine, B. M., Wheeland, L. J. & Fisher, J. A. D. First estimates of Greenland shark (Somniosus microcephalus) local abundances in Arctic waters. Sci. Rep. 8, 1–10 (2018).
    CAS  Article  Google Scholar 

    32.
    Wilson, E. E. & Wolkovich, E. M. Scavenging: how carnivores and carrion structure communities. Trends Ecol. Evol. 26, 129–135 (2011).
    Article  Google Scholar 

    33.
    Lear, K. O. et al. Correlations of metabolic rate and body acceleration in three species of coastal sharks under contrasting temperature regimes. J. Exp. Biol. 220, 397–407 (2017).
    Article  Google Scholar 

    34.
    Killen, S. S., Atkinson, D. & Glazier, D. S. The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature. Ecol. Lett. 13, 184–193 (2010).
    Article  Google Scholar 

    35.
    Lear, K. O., Whitney, N. M., Brewster, L. R. & Gleiss, A. C. Treading water: respirometer choice may hamper comparative studies of energetics in fishes. Mar. Freshw. Res. 70, 437–448 (2018).
    Article  Google Scholar 

    36.
    Whitney, N. M., Lear, K. O., Gaskins, L. C. & Gleiss, A. C. The effects of temperature and swimming speed on the metabolic rate of the nurse shark (Ginglymostoma cirratum, Bonaterre). J. Exp. Mar. Bio. Ecol. 477, 40–46 (2016).
    Article  Google Scholar 

    37.
    Sims, D. W. The effect of body size on the standard metabolic rate of the lesser spotted dogfish. J. Fish Biol. 48, 542–544 (1996).
    Article  Google Scholar 

    38.
    Semmens, J. M., Payne, N. L., Huveneers, C., Sims, D. W. & Bruce, B. D. Feeding requirements of white sharks may be higher than originally thought. Sci. Rep. 3, 10–13 (2013).
    Article  CAS  Google Scholar 

    39.
    Giacomin, M., Schulte, P. M. & Wood, C. M. Differential effects of temperature on oxygen consumption and branchial fluxes of urea, ammonia, and water in the dogfish shark (Squalus acanthias suckleyi). Physiol. Biochem. Zool. 90, 627–637 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    40.
    Lowe, C. G. Bioenergetics of free-ranging juvenile scalloped hammerhead sharks (Sphyrna lewini) in Kāne’ohe Bay, ƌ’ahu, HI. J. Exp. Mar. Biol. Ecol. 278, 141–156 (2002).
    Article  Google Scholar 

    41.
    Ezcurra, J. M., Lowe, C. G., Mollet, H. F., Ferry, L. A. & O’Sullivan, J. B. Oxygen consumption rate of young-of-the-year white sharks, Carcharodon carcharias during transport to the Monterey Bay Aquarium. Glob. Perspect. Biol. Life Hist. 1, 17–26 (2012).
    Article  Google Scholar 

    42.
    Barnett, A. et al. The utility of bioenergetics modelling in quantifying predation rates of marine apex predators: ecological and fisheries implications. Sci. Rep. 7, 12982 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Watanabe, Y. Y., Payne, N. L., Semmens, J. M., Fox, A. & Huveneers, C. Swimming strategies and energetics of endothermic white sharks during foraging. J. Exp. Biol. 222, 4 (2019).
    Article  Google Scholar 

    44.
    Secor, S. M. Specific dynamic action: a review of the postprandial metabolic response. J. Comp. Physiol. B 179, 1–56 (2009).
    ADS  Article  PubMed  Google Scholar 

    45.
    Auer, S. K., Dick, C. A., Metcalfe, N. B. & Reznick, D. N. Metabolic rate evolves rapidly and in parallel with the pace of life history. Nat. Commun. 9, 8–13 (2018).
    ADS  Article  CAS  Google Scholar 

    46.
    Drazen, J. C. & Seibel, B. A. Depth-related trends in metabolism of benthic and benthopelagic deep-sea fishes. Limnol. Oceanogr. 52, 2306–2316 (2007).
    ADS  CAS  Article  Google Scholar 

    47.
    Brett, J. R. & Groves, T. D. D. Physiological energetics. Fish Physiol. 8, 280–352 (1979).
    Google Scholar 

    48.
    Widdows, J. Application of calorimetric methods in ecological studies. Therm. Energy. Stud. Cell. Biol. Syst. 1, 182–215 (1987).
    Article  Google Scholar 

    49.
    Armstrong, J. B. & Schindler, D. E. Excess digestive capacity in predators reflects a life of feast and famine. Nature 476, 84–87 (2011).
    CAS  Article  PubMed  Google Scholar 

    50.
    Stirling, I. & McEwan, E. Caloric value of whole ringed seals (Phoca hispida) in relation to Polar Bear (Ursus maritimus) ecology and hunting behavior. Can. J. Zool. 53, 1021–1027 (1975).
    CAS  Article  PubMed  Google Scholar 

    51.
    Furey, N. B., Hinch, S. G., Mesa, M. G. & Beauchamp, D. A. Piscivorous fish exhibit temperature-influenced binge feeding during an annual prey pulse. J. Anim. Ecol. 85, 1307–1317 (2016).
    Article  PubMed  Google Scholar 

    52.
    Svendsen, M. B. S., Bushnell, P. G. & Steffensen, J. F. Design and setup of intermittent-flow respirometry system for aquatic organisms. J. Fish Biol. 88, 26–50 (2016).
    CAS  Article  PubMed  Google Scholar 

    53.
    Clark, T. D., Sandblom, E. & Jutfelt, F. Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. J. Exp. Biol. 216, 2771–2782 (2013).
    Article  PubMed  Google Scholar 

    54.
    Leclerc, L.-M.E. et al. A missing piece in the Arctic food web puzzle? Stomach contents of Greenland sharks sampled in Svalbard, Norway. Polar Biol. 35, 1197–1208 (2012).
    Article  Google Scholar  More

  • in

    The resilience of weed seedbank regulation by carabid beetles, at continental scales, to alternative prey

    1.
    Begg, G. S. et al. A functional overview of conservation biological control. Crop Prot. 97, 145–158 (2017).
    Article  Google Scholar 
    2.
    Shields, M. W. et al. History, current situation and challenges for conservation biological control. Biol. Control 131, 25–35 (2019).
    Article  Google Scholar 

    3.
    Petit, S., Boursault, A. & Bohan, D. A. Weed seed choice by carabid beetles (Coleoptera: Carabidae): Linking field measurements with laboratory diet assessments. Eur. J. Entomol. 111, 1–6 (2014).
    Article  Google Scholar 

    4.
    Saska, P., Honěk, A. & Martinková, Z. Preferences of carabid beetles (Coleoptera: Carabidae) for herbaceous seeds. Acta Zool. Acad. Sci. Hung. 65, 57–76 (2019).
    Article  Google Scholar 

    5.
    Honěk, A., Martinkova, Z., Saska, P. & Pekar, S. Size and taxonomic constraints determine the seed preferences of Carabidae (Coleoptera). Basic Appl. Ecol. 8, 343–353 (2007).
    Article  Google Scholar 

    6.
    Honěk, A., Martinkova, Z. & Jarosik, V. Ground beetles (Carabidae) as seed predators. Eur. J. Entomol. 100, 531–544 (2003).
    Article  Google Scholar 

    7.
    Kulkarni, S. S., Dosdall, L. M. & Willenborg, C. J. The role of ground beetles (Coleoptera: Carabidae) in weed seed consumption: A review. Weed Sci. 63, 355–376 (2015).
    Article  Google Scholar 

    8.
    Petit, S., Trichard, A., Biju-Duval, L., McLaughlin, B. & Bohan, D. A. Interactions between conservation agricultural practice and landscape composition promote weed seed predation by invertebrates. Agric. Ecosyst. Environ. 240, 45–53 (2017).
    Article  Google Scholar 

    9.
    Kromp, B. Carabid beetles in sustainable agriculture: A review on pest control efficacy, cultivation impacts and enhancement. Agric. Ecosyst. Environ. 74, 187–228 (1999).
    Article  Google Scholar 

    10.
    Firbank, L. G. & Watkinson, A. R. On the analysis of competition within two-species mixtures of plants. J. Appl. Ecol. 22, 503–517 (1985).
    Article  Google Scholar 

    11.
    Westerman, P. R. et al. Are many little hammers effective? Velvetleaf (Abutilon theophrasti) population dynamics in two- and four-year crop rotation systems. Weed Sci. 53, 382–392 (2005).
    CAS  Article  Google Scholar 

    12.
    Petit, S. et al. Biodiversity-based options for arable weed management. A review. Agron. Sustain. Dev. 38, 48 (2018).
    Article  Google Scholar 

    13.
    Westerman, P. R., Dixon, P. M. & Liebman, M. Burial rates of surrogate seeds in arable fields. Weed Res. 49, 142–152 (2009).
    Article  Google Scholar 

    14.
    Trichard, A., Ricci, B., Ducourtieux, C. & Petit, S. The spatio-temporal distribution of weed seed predation differs between conservation agriculture and conventional tillage. Agric. Ecosyst. Environ. 188, 40–47 (2014).
    Article  Google Scholar 

    15.
    Carbonne, B., Bohan, D. A. & Petit, S. Key carabid species drive spring weed seed predation of Viola arvensis. Biol. Control 141, 104148 (2020).
    CAS  Article  Google Scholar 

    16.
    Westerman, P. R., Wes, J. S., Kropff, M. J. & Van Der Werf, W. Annual losses of weed seeds due to predation in organic cereal fields. J. Appl. Ecol. 40, 824–836 (2003).
    Article  Google Scholar 

    17.
    Blubaugh, C. K. & Kaplan, I. Invertebrate seed predators reduce weed emergence following seed rain. Weed Sci. 64, 80–86 (2016).
    Article  Google Scholar 

    18.
    Pannwitt, H., Westerman, P. R. & Gerowitt, B. Post-dispersal seed predation can limit the number of seedlings of Echinochloa crus-galli. Biol. Control 143, 95–98 (2019).
    Google Scholar 

    19.
    Bohan, D. A., Boursault, A., Brooks, D. R. & Petit, S. National-scale regulation of the weed seedbank by carabid predators. J. Appl. Ecol. 48, 888–898 (2011).
    Article  Google Scholar 

    20.
    Saska, P., Van Der Werf, W., De Vries, E. & Westerman, P. R. Spatial and temporal patterns of carabid activity-density in cereals do not explain levels of predation on weed seeds. Bull. Entomol. Res. 98, 169–181 (2008).
    CAS  Article  PubMed  Google Scholar 

    21.
    Mauchline, A. L., Watson, S. J., Brown, V. K. & Froud-Williams, R. J. Post-dispersal seed predation of non-target weeds in arable crops. Weed Res. 45, 157–164 (2005).
    Article  Google Scholar 

    22.
    Davis, A. S. & Raghu, S. Weighing abiotic and biotic influences on weed seed predation. Weed Res. 50, 402–412 (2010).
    Article  Google Scholar 

    23.
    Davis, A. S., Taylor, E. C., Haramoto, E. R. & Renner, K. A. Annual postdispersal weed seed predation in contrasting field environments. Weed Sci. 61, 296–302 (2013).
    CAS  Article  Google Scholar 

    24.
    Lövei, G. L. & Szentkiralyi, F. Carabids climbing maize plants. Z. Angew. Entomol. 97, 107–110 (1984).
    Article  Google Scholar 

    25.
    Frei, B., Guenay, Y., Bohan, D. A., Traugott, M. & Wallinger, C. Molecular analysis indicates high levels of carabid weed seed consumption in cereal fields across Central Europe. J. Pest Sci. 2004(92), 935–942 (2019).
    Article  Google Scholar 

    26.
    Roubinet, E. et al. High redundancy as well as complementary prey choice characterize generalist predator food webs in agroecosystems. Sci. Rep. 8, 8054 (2018).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Staudacher, K. et al. Habitat heterogeneity induces rapid changes in the feeding behaviour of generalist arthropod predators. Funct. Ecol. 32, 809–819 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    28.
    Evans, E. W. Multitrophic interactions among plants, aphids, alternate prey and shared natural enemies – A review. Eur. J. Entomol. 105, 369–380 (2008).
    Article  Google Scholar 

    29.
    Snyder, W. E. Give predators a complement: Conserving natural enemy biodiversity to improve biocontrol. Biol. Control 135, 73–82 (2019).
    Article  Google Scholar 

    30.
    Harwood, J. D. et al. Invertebrate biodiversity affects predator fitness and hence potential to control pests in crops. Biol. Control 51, 499–506 (2009).
    Article  Google Scholar 

    31.
    Chailleux, A., Mohl, E. K., Teixeira Alves, M., Messelink, G. J. & Desneux, N. Natural enemy-mediated indirect interactions among prey species: Potential for enhancing biocontrol services in agroecosystems. Pest Manag. Sci. 70, 1769–1779 (2014).

    32.
    von Berg, K., Thies, C., Tscharntke, T. & Scheu, S. Cereal aphid control by generalist predators in presence of belowground alternative prey: Complementary predation as affected by prey density. Pedobiologia (Jena). 53, 41–48 (2009).
    Article  Google Scholar 

    33.
    Mair, J. & Port, G. R. Predation by the carabid beetles Pterostichus madidus and Nebria brevicollis is affected by size and condition of the prey slug Deroceras reticulatum. Agric. For. Entomol. 3, 99–106 (2001).
    Article  Google Scholar 

    34.
    Symondson, W. O. C. et al. Biodiversity vs. biocontrol: positive and negative effects of alternative prey on control of slugs by carabid beetles. Bull. Entomol. Res. 96, 637–645 (2006).

    35.
    Prasad, R. P. & Snyder, W. E. Polyphagy complicates conservation biological control that targets generalist predators. J. Appl. Ecol. 43, 343–352 (2006).
    Article  Google Scholar 

    36.
    Renkema, J. M., Lynch, D. H., Cutler, G. C., MacKenzie, K. & Walde, S. J. Predation by Pterostichus melanarius (Illiger) (Coleoptera: Carabidae) on immature Rhagoletis mendax Curran (Diptera: Tephritidae) in semi-field and field conditions. Biol. Control 60, 46–53 (2012).
    Article  Google Scholar 

    37.
    Roubinet, E. et al. Diet of generalist predators reflects effects of cropping period and farming system on extra- and intraguild prey. Ecol. Appl. 27, 1167–1177 (2017).
    Article  Google Scholar 

    38.
    Honěk, A., Saska, P. & Martinkova, Z. Seasonal variation in seed predation by adult carabid beetles. Entomol. Exp. Appl. 118, 157–162 (2006).
    Article  Google Scholar 

    39.
    Talarico, F., Giglio, A., Pizzolotto, R. & Brandmayr, P. A synthesis of feeding habits and reproduction rhythm in Italian seed-feeding ground beetles (Coleoptera: Carabidae). Eur. J. Entomol. 113, 325–336 (2016).
    Article  Google Scholar 

    40.
    Charalabidis, A., Dechaume-Moncharmont, F.-X., Carbonne, B., Bohan, D. A. & Petit, S. Diversity of foraging strategies and responses to predator interference in seed-eating carabid beetles. Basic Appl. Ecol. 36, 13–24 (2019).
    Article  Google Scholar 

    41.
    Pilipaviius, V. Weed seed rain dynamics and ecological control ability in agrophytocenosis. in Herbicides—Advances in Research (ed. Price, A.) 51–83 (InTech, 2013). https://doi.org/10.5772/55972.

    42.
    Saska, P., Koprdová, S., Martinková, Z. & Honěk, A. Comparing methods of weed seed exposure to predators. Ann. Appl. Biol. 164, 301–312 (2014).
    Article  Google Scholar 

    43.
    Johnson, N. E. & Cameron, R. S. Phytophagous ground beetles. Ann. Entomol. Soc. Am. 62, 909–914 (1969).
    Article  Google Scholar 

    44.
    Russell, M. C., Lambrinos, J., Records, E. & Ellen, G. Seasonal shifts in ground beetle (Coleoptera: Carabidae) species and functional composition maintain prey consumption in Western Oregon agricultural landscapes. Biol. Control 106, 54–63 (2017).
    Article  Google Scholar 

    45.
    Williams, C. L. et al. Over-winter predation of Abutilon theophrasti and Setaria faberi seeds in arable land. Weed Res. 49, 439–447 (2009).
    Article  Google Scholar 

    46.
    Westerman, P., Luijendijk, C. D., Wevers, J. D. A. & Van Der Werf, W. Weed seed predation in a phenologically late crop. Weed Res. 51, 157–164 (2011).
    Article  Google Scholar 

    47.
    Winder, L. et al. Predatory activity and spatial pattern: The response of generalist carabids to their aphid prey. J. Anim. Ecol. 74, 443–454 (2005).
    Article  Google Scholar 

    48.
    Bohan, D. A. et al. Spatial dynamics of predation by carabid beetles on slugs. J. Anim. Ecol. 69, 367–379 (2000).
    Article  Google Scholar 

    49.
    Frank, S. D., Shrewsbury, P. M. & Denno, R. F. Plant versus prey resources: Influence on omnivore behavior and herbivore suppression. Biol. Control 57, 229–235 (2011).
    Article  Google Scholar 

    50.
    Abrams, P. A. & Matsuda, H. Positive indirect effects between prey species that share predators. Ecology 77, 610–616 (1996).
    Article  Google Scholar 

    51.
    Boetzl, F. A., Konle, A. & Krauss, J. Aphid cards – Useful model for assessing predation rates or bias prone nonsense?. J. Appl. Entomol. 144, 74–80 (2020).
    Article  Google Scholar 

    52.
    Bilde, T. & Toft, S. Consumption by carabid beetles of three cereal aphid species relative to other prey types. Entomophaga 42, 21–32 (1997).
    Article  Google Scholar 

    53.
    Madsen, M., Terkildsen, S. & Toft, S. Microcosm studies on control of aphids by generalist arthropod predators: Effects of alternative prey. Biocontrol 49, 483–504 (2004).
    Article  Google Scholar 

    54.
    Fawki, S. & Toft, S. Food preferences and the value of animal food for the carabid beetle Amara similata (Gyll.) (Col., Carabidae). J. Appl. Entomol. 129, 551–556 (2005).

    55.
    Saska, P. Effect of diet on the fecundity of three carabid beetles. Physiol. Entomol. 33, 188–192 (2008).
    ADS  Article  Google Scholar 

    56.
    Haschek, C., Drapela, T., Schuller, N., Fiedler, K. & Frank, T. Carabid beetle condition, reproduction and density in winter oilseed rape affected by field and landscape parameters. J. Appl. Entomol. 136, 665–674 (2012).
    Article  Google Scholar 

    57.
    Symondson, W. O. C., Sunderland, K. D. & Greenstone, M. H. Can generalist predators be effective biocontrol agents?. Annu. Rev. Entomol. 47, 561–594 (2002).
    CAS  Article  PubMed  Google Scholar 

    58.
    Lundgren, J. G. Chapter 18: Biological control of weed seeds in agriculture using omnivorous insects. in Relationships of Natural Enemies and Non-Prey Foods 333–351 (Springer Netherlands, 2009).

    59.
    Löbl, I. & Smetana, A. Catalogue of Palaearctic Colcoptera. Vol. 1 (2003).

    60.
    Homburg, K., Homburg, N., SchĂ€fer, F., Schuldt, A. & Assmann, T. Carabids.org—A dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conserv. Divers. 7, 195–205 (2014).

    61.
    Penell, A., Raub, F. & Höfer, H. Estimating biomass from body size of European spiders based on regression models. J. Arachnol. 46, 413 (2018).
    Article  Google Scholar 

    62.
    Pey, B. et al. A thesaurus for soil invertebrate trait-based approaches. PLoS ONE 9, e108985 (2014).
    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

    63.
    Nentwig, W., Blick, T., Gloor, D., HĂ€nggi, A. & Kropf, C. Araneae: Spiders of Europe. https://araneae.nmbe.ch, https://www.araneae.nmbe.ch (2019).

    64.
    Caballero, M., Baquero, E., Ariño, A. H. & Jordana, R. Indirect biomass estimations in Collembola. Pedobiologia (Jena). 48, 551–557 (2004).
    Article  Google Scholar 

    65.
    Migui, S. M. & Lamb, R. J. Sources of variation in the interaction between three cereal aphids (Hemiptera: Aphididae) and wheat (Poaceae). Bull. Entomol. Res. 96, 235–241 (2006).
    CAS  Article  PubMed  Google Scholar 

    66.
    Brooks, D. R. et al. Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring crops. I. Soil-surface-active invertebrates. Philos. Trans. R. Soc. B Biol. Sci. 358, 1847–1862 (2003).

    67.
    Bohan, D. A. et al. Effects on weed and invertebrate abundance and diversity of herbicide management in genetically modified herbicide-tolerant winter-sown oilseed rape. Proc. R. Soc. B Biol. Sci. 272, 463–474 (2005).
    Article  Google Scholar 

    68.
    John, F. & Weisberg, S. An R Companion to Applied Regression. (Sage, 2019).

    69.
    Long, J. jtools: Analysis and Presentation of Social Scientific Data. R package version 2.0.1. (2019).

    70.
    Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. (2020).

    71.
    Bates, D., MĂ€chler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    72.
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org (2019). More

  • in

    Life history and population regulation shape demographic competence and influence the maintenance of endemic disease

    1.
    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287, 443–449 (2000).
    CAS  PubMed  Google Scholar 
    2.
    Wiethoelter, A. K., Beltrán-Alcrudo, D., Kock, R. & Mor, S. M. Global trends in infectious diseases at the wildlife–livestock interface. Proc. Natl Acad. Sci. USA 112, 9662–9667 (2015).
    CAS  PubMed  Google Scholar 

    3.
    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).
    CAS  PubMed  PubMed Central  Google Scholar 

    4.
    Narrod, C., Zinsstag, J. & Tiongco, M. A One Health framework for estimating the economic costs of zoonotic diseases on society. Ecohealth 9, 150–162 (2012).
    PubMed  PubMed Central  Google Scholar 

    5.
    Cunningham, A. A., Daszak, P. & Wood, J. L. N. One Health, emerging infectious diseases and wildlife: two decades of progress? Phil. Trans. R. Soc. B 372, 20160167 (2017).
    PubMed  Google Scholar 

    6.
    Park, A. W. Phylogenetic aggregation increases zoonotic potential of mammalian viruses. Biol. Lett. 15, 20190668 (2019).
    PubMed  Google Scholar 

    7.
    Davies, T. J. & Pedersen, A. B. Phylogeny and geography predict pathogen community similarity in wild primates and humans. Proc. R. Soc. B 275, 1695–1701 (2008).
    PubMed  Google Scholar 

    8.
    Dallas, T., Park, A. W. & Drake, J. M. Predictability of helminth parasite host range using information on geography, host traits and parasite community structure. Parasitology 144, 200–205 (2017).
    PubMed  Google Scholar 

    9.
    Martin, L. B., Burgan, S. C., Adelman, J. S. & Gervasi, S. S. Host competence: an organismal trait to integrate immunology and epidemiology. Integr. Comp. Biol. 56, 1225–1237 (2016).
    PubMed  Google Scholar 

    10.
    Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).
    PubMed  PubMed Central  Google Scholar 

    11.
    Faust, C. L. et al. Pathogen spillover during land conversion. Ecol. Lett. 21, 471–483 (2018).
    PubMed  Google Scholar 

    12.
    Martin, G. et al. Climate change could increase the geographic extent of Hendra virus spillover risk. Ecohealth 15, 509–525 (2018).
    PubMed  PubMed Central  Google Scholar 

    13.
    Plowright, R. K. et al. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15, 502–510 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Viana, M. et al. Assembling evidence for identifying reservoirs of infection. Trends Ecol. Evol. 29, 270–279 (2014).
    PubMed  PubMed Central  Google Scholar 

    15.
    Thrall, P. H., Antonovics, J. & Hall, D. W. Host and pathogen coexistence in sexually transmitted and vector-borne diseases characterized by frequency-dependent disease transmission. Am. Nat. 142, 543–552 (1993).
    Google Scholar 

    16.
    Anderson, R. M. & May, R. M. The population dynamics of microparasites and their invertebrate hosts. Phil. Trans. R. Soc. Lond. B 291, 451–524 (1981).
    Google Scholar 

    17.
    Stearns, S. C. Life-history tactics: a review of the ideas. Q. Rev. Biol. 51, 3–47 (1976).
    CAS  PubMed  Google Scholar 

    18.
    Solomon, M. E. The natural control of animal populations. J. Anim. Ecol. 18, 1–35 (1949).

    19.
    McDonald, J. L. et al. Demographic buffering and compensatory recruitment promotes the persistence of disease in a wildlife population. Ecol. Lett. 19, 443–449 (2016).

    20.
    Promislow, D. E. L. & Harvey, P. H. Living fast and dying young: a comparative analysis of life-history variation among mammals. J. Zool. 220, 417–437 (1990).
    Google Scholar 

    21.
    Pfister, C. A. Patterns of variance in stage-structured populations: evolutionary predictions and ecological implications. Proc. Natl Acad. Sci. USA 95, 213–218 (1998).
    CAS  PubMed  Google Scholar 

    22.
    Johnson, P. T. J. et al. Living fast and dying of infection: host life history drives interspecific variation in infection and disease risk. Ecol. Lett. 15, 235–242 (2012).
    PubMed  Google Scholar 

    23.
    Cronin, J. P., RĂșa, M. A. & Mitchell, C. E. Why is living fast dangerous? Disentangling the roles of resistance and tolerance of disease. Am. Nat. 184, 172–187 (2014).
    PubMed  Google Scholar 

    24.
    Lachish, S., McCallum, H. & Jones, M. Demography, disease and the devil: life-history changes in a disease-affected population of Tasmanian devils (Sarcophilus harrisii). J. Anim. Ecol. 78, 427–436 (2009).
    PubMed  Google Scholar 

    25.
    Muths, E., Scherer, R. D. & Pilliod, D. S. Compensatory effects of recruitment and survival when amphibian populations are perturbed by disease. J. Appl. Ecol. 48, 873–879 (2011).
    Google Scholar 

    26.
    Arthur, A., Ramsey, D. & Efford, M. Impact of bovine tuberculosis on a population of brushtail possums (Trichosurus vulpecula Kerr) in the Orongorongo Valley, New Zealand. Wildl. Res. 31, 389–395 (2004).
    Google Scholar 

    27.
    Gaillard, J.-M. & Yoccoz, N. G. Temporal variation in survival of mammals: a case of environmental canalization? Ecology 84, 3294–3306 (2003).
    Google Scholar 

    28.
    KorpimĂ€ki, E., Brown, P. R., Jacob, J. & Pech, R. P. The puzzles of population cycles and outbreaks of small mammals solved? BioScience 54, 1071–1079 (2004).
    Google Scholar 

    29.
    Gaillard, J.-M., Festa-Bianchet, M. & Yoccoz, N. G. Population dynamics of large herbivores: variable recruitment with constant adult survival. Trends Ecol. Evol. 13, 58–63 (1998).
    CAS  PubMed  Google Scholar 

    30.
    McCallum, H., Barlow, N. & Hone, J. How should pathogen transmission be modelled? Trends Ecol. Evol. 16, 295–300 (2001).
    CAS  PubMed  Google Scholar 

    31.
    De Castro, F. & Bolker, B. Mechanisms of disease‐induced extinction. Ecol. Lett. 8, 117–126 (2005).
    Google Scholar 

    32.
    McCallum, H. Disease and the dynamics of extinction. Phil. Trans. R. Soc. B 367, 2828–2839 (2012).
    PubMed  Google Scholar 

    33.
    Anderson, R. M. & May, R. M. Coevolution of hosts and parasites. Parasitology 85, 411–426 (1982).
    PubMed  Google Scholar 

    34.
    Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J. Evol. Biol. 22, 245–259 (2009).
    CAS  PubMed  Google Scholar 

    35.
    De Roode, J. C., Yates, A. J. & Altizer, S. Virulence-transmission trade-offs and population divergence in virulence in a naturally occurring butterfly parasite. Proc. Natl Acad. Sci. USA 105, 7489–7494 (2008).
    PubMed  Google Scholar 

    36.
    Anderson, R. M. Parasite pathogenicity and the depression of host population equilibria. Nature 279, 150 (1979).
    Google Scholar 

    37.
    Anderson, R. M. & May, R. M. Infectious Diseases of Humans: Dynamics and Control (Oxford Univ. Press, 1991).

    38.
    Lloyd-Smith, J. O. et al. Should we expect population thresholds for wildlife disease? Trends Ecol. Evol. 20, 511–519 (2005).
    PubMed  Google Scholar 

    39.
    Calvete, C. Modeling the effect of population dynamics on the impact of rabbit hemorrhagic disease. Conserv. Biol. 20, 1232–1241 (2006).
    PubMed  Google Scholar 

    40.
    GutiĂ©rrez, J. S., Piersma, T. & Thieltges, D. W. Micro- and macroparasite species richness in birds: the role of host life history and ecology. J. Anim. Ecol. 88, 1226–1239 (2019).
    PubMed  Google Scholar 

    41.
    Calisher, C. H. et al. Do unusual site-specific population dynamics of rodent reservoirs provide clues to the natural history of hantaviruses? J. Wildl. Dis. 37, 280–288 (2001).
    CAS  PubMed  Google Scholar 

    42.
    Rickman, S. J., Dulvy, N. K., Jennings, S. & Reynolds, J. D. Recruitment variation related to fecundity in marine fishes. Can. J. Fish. Aquat. Sci. 57, 116–124 (2000).
    Google Scholar 

    43.
    Séther, B.-E. & Bakke, Ø. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642–653 (2000).
    Google Scholar 

    44.
    Bielby, J. et al. The fast–slow continuum in mammalian life history: an empirical reevaluation. Am. Nat. 169, 748–757 (2007).
    CAS  PubMed  Google Scholar 

    45.
    Godfray, H. C. J. et al. A restatement of the natural science evidence base relevant to the control of bovine tuberculosis in Great Britain. Proc. R. Soc. Lond. B 280, 20131634 (2013).
    Google Scholar 

    46.
    Gaillard, J.-M. et al. Generation time: a reliable metric to measure life-history variation among mammalian populations. Am. Nat. 166, 119–123 (2005).
    PubMed  Google Scholar 

    47.
    Earn, D. J. D., Rohani, P. & Grenfell, B. T. Persistence, chaos and synchrony in ecology and epidemiology. Proc. R. Soc. Lond. B 265, 7–10 (1998).
    CAS  Google Scholar 

    48.
    Rohani, P., Earn, D. J. D. & Grenfell, B. T. Opposite patterns of synchrony in sympatric disease metapopulations. Science 286, 968–971 (1999).
    CAS  PubMed  Google Scholar 

    49.
    Salathé, M. & Jones, J. H. Dynamics and control of diseases in networks with community structure. PLoS Comput. Biol. 6, e1000736 (2010).
    PubMed  PubMed Central  Google Scholar 

    50.
    Sah, P., Leu, S. T., Cross, P. C., Hudson, P. J. & Bansal, S. Unraveling the disease consequences and mechanisms of modular structure in animal social networks. Proc. Natl Acad. Sci. USA 114, 4165–4170 (2017).

    51.
    Silk, M. J. et al. Integrating social behaviour, demography and disease dynamics in network models: applications to disease management in declining wildlife populations. Phil. Trans. R. Soc. B 374, 20180211 (2019).
    PubMed  Google Scholar 

    52.
    Hopkins, S. R., Fleming‐Davies, A. E., Belden, L. K. & Wojdak, J. M. Systematic review of modelling assumptions and empirical evidence: does parasite transmission increase nonlinearly with host density? Methods Ecol. Evol. 11, 476–486 (2020).
    Google Scholar 

    53.
    Froissart, R., Doumayrou, J., Vuillaume, F., Alizon, S. & Michalakis, Y. The virulence–transmission trade-off in vector-borne plant viruses: a review of (non-) existing studies. Phil. Trans. R. Soc. B 365, 1907–1918 (2010).
    CAS  PubMed  Google Scholar 

    54.
    Wickham, M. E., Brown, N. F., Boyle, E. C., Coombes, B. K. & Finlay, B. B. Virulence is positively selected by transmission success between mammalian hosts. Curr. Biol. 17, 783–788 (2007).
    CAS  PubMed  Google Scholar 

    55.
    Paul, R. E. L. et al. Experimental evaluation of the relationship between lethal or non-lethal virulence and transmission success in malaria parasite infections. BMC Evol. Biol. 4, 30 (2004).
    CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Agnew, P. & Koella, J. C. Virulence, parasite mode of transmission, and host fluctuating asymmetry. Proc. R. Soc. Lond. B 264, 9–15 (1997).
    CAS  Google Scholar 

    57.
    Medica, D. L. & Sukhdeo, M. V. K. Estimating transmission potential in gastrointestinal nematodes (Order: Strongylida). J. Parasitol. 87, 442–446 (2001).
    CAS  PubMed  Google Scholar 

    58.
    JĂ€kel, T. et al. Reduction of transmission stages concomitant with increased host immune responses to hypervirulent Sarcocystis singaporensis, and natural selection for intermediate virulence. Int. J. Parasitol. 31, 1639–1647 (2001).
    PubMed  Google Scholar 

    59.
    Stott, I., Hodgson, D. J. & Townley, S. popdemo: an R package for population demography using projection matrix analysis. Methods Ecol. Evol. 3, 797–802 (2012).
    Google Scholar 

    60.
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019). More

  • in

    The politics of biodiversity offsetting across time and institutional scales

    1.
    Bull, J. W., Gordon, A., Watson, J. E. M. & Maron, M. Seeking convergence on the key concepts in ‘no net loss’ policy. J. Appl. Ecol. 53, 1686–1693 (2016).
    Article  Google Scholar 
    2.
    Maron, M. et al. The many meanings of no net loss in environmental policy. Nat. Sustain 1, 19–27 (2018).
    Article  Google Scholar 

    3.
    Bull, J. W. & Strange, N. The global extent of biodiversity offset implementation under no net loss policies. Nat. Sustain 1, 790–798 (2018).
    Article  Google Scholar 

    4.
    von Hase, A. & ten Kate, K. Correct framing of biodiversity offsets and conservation: a response to Apostolopoulou & Adams. Oryx 51, 32–34 (2017).
    Article  Google Scholar 

    5.
    Standard on Biodiversity Offsets (BBOP, Forest Trends, 2012).

    6.
    Zu Ermgassen, S. O. S. E. et al. The ecological outcomes of biodiversity offsets under “no net loss” policies: a global review. Conserv. Lett. https://doi.org/10.1111/conl.12664 (2019).

    7.
    Moreno-Mateos, D., Maris, V., BĂ©chet, A. & Curran, M. The true loss caused by biodiversity offsets. Biol. Conserv. 192, 552–559 (2015).
    Article  Google Scholar 

    8.
    Bonneuil, C. Tell me where you come from, I will tell you who you are: a genealogy of biodiversity offsetting mechanisms in historical context. Biol. Conserv. 192, 485–491 (2015).
    Article  Google Scholar 

    9.
    Boon, P. I. & Prahalad, V. Ecologists, economics and politics: problems and contradictions in applying neoliberal ideology to nature conservation in Australia. Pac. Conserv. Biol. 23, 115–132 (2017).
    Article  Google Scholar 

    10.
    Penca, J. Marketing the market: the ideology of market mechanisms for biodiversity conservation. Transnatl Environ. Law 2, 235–257 (2013).
    Article  Google Scholar 

    11.
    Lapeyre, R., Froger, G. & Hrabanski, M. Biodiversity offsets as market-based instruments for ecosystem services? From discourses to practices. Ecosyst. Serv. 15, 125–133 (2015).
    Article  Google Scholar 

    12.
    Hackett, R. Market-based environmental governance and public resources in Alberta, Canada. Ecosyst. Serv. 15, 174–180 (2015).
    Article  Google Scholar 

    13.
    Zero Draft of the Post-2020 Global Biodiversity Framework (CBD, 2020).

    14.
    Feindt, P. H. & Oels, A. Does discourse matter? Discourse analysis in environmental policy making. J. Environ. Policy Plan. 7, 161–173 (2005).
    Article  Google Scholar 

    15.
    Leipold, S., Feindt, P. H., Winkel, G. & Keller, R. Discourse analysis of environmental policy revisited: traditions, trends, perspectives. J. Environ. Policy Plan. 21, 445–463 (2019).
    Article  Google Scholar 

    16.
    Hajer, M. & Versteeg, W. A decade of discourse analysis of environmental politics: achievements, challenges, perspectives. J. Environ. Policy Plan. 7, 175–184 (2005).
    Article  Google Scholar 

    17.
    Bacchi, C. & Goodwin, S. Poststructural Policy Analysis: A Guide to Practice (Springer, 2016).

    18.
    Dryzek, J. S. The Politics of the Earth: Environmental Discourses (Oxford Univ. Press, 2013).

    19.
    Foucault, M. The History of Sexuality: An Introduction Vol. 1(Penguin Group, 2008).

    20.
    Hajer, M. A. in Words Matter in Policy and Planning: Discource Theory and Method in the Social Sciences (eds Van den Brink, M. & Metze, T.) 65–76 (Netherlands Graduate School of Urban and Regional Research, 2006).

    21.
    Hajer, M. A. The Politics of Environmental Discourse: Ecological Modernization and the Policy Process (Clarendon Press, 1995).

    22.
    Hopwood, B., Mellor, M. & O’Brien, G. Sustainable development: mapping different approaches. Sustain. Dev. 13, 38–52 (2005).
    Article  Google Scholar 

    23.
    Carson, R. Silent Spring (Houghton Mifflin, 1962).

    24.
    Our Common Future (United Nations World Commission on Environment and Development, Oxford Univ. Press, 1987).

    25.
    Robertson, M. M. The neoliberalization of ecosystem services: wetland mitigation banking and problems in environmental governance. Geoforum 35, 361–373 (2004).
    Article  Google Scholar 

    26.
    Clapp, J. & Dauvergne, P. in Paths to a Green World: The Political Economy of the Global Environment (eds Clapp, J. & Dauvergne, P.) 161–191 (MIT Press, 2011).

    27.
    Werksman, J. The clean development mechanism: unwrapping the Kyoto surprise. Rev. Eur. Comp. Int. Environ. Law 7, 147–158 (1998).
    Article  Google Scholar 

    28.
    Christoff, P. Ecological modernisation, ecological modernities. Environ. Polit. 5, 476–500 (1996).
    Article  Google Scholar 

    29.
    Breaking New Ground: The Report of the Mining, Minerals and Sustainable Development Project (International Institute for Environment and Development, World Business Council for Sustainable Development, Earthscan Publications, 2002).

    30.
    Hrabanski, M. The biodiversity offsets as market-based instruments in global governance: origins, success and controversies. Ecosyst. Serv. 15, 143–151 (2015).
    Article  Google Scholar 

    31.
    Ecosystems and Human Well-Being: Our Human Planet: Summary for Decision Makers (Millennium Ecosystem Assessment, 2005); http://millenniumassessment.org/en/Global.html

    32.
    The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A Synthesis of the Approach, Conclusions and Recommendations of TEEB (TEEB, 2010); http://teebweb.org/publications/teeb-for/synthesis/

    33.
    Bassey, N. et al. IUCN Withdrawal (Friends of the Earth International, 2009).

    34.
    WWC 10 Final Resolution 12: Building a Global Alliance to Assert ‘No-Go Areas’ for Mining and Other Extractive Industries and Destructive Activities Threatening World Heritage Sites, and Protected Areas, including Indigenous Peoples’ and Local Communities Conserved Areas and Territories (ICCAs) and Sacred Natural Sites and Territories (WWC, 2013).

    35.
    WCC-2012-Res-110-EN: Biodiversity Offsets and Related Compensatory Approaches (WCC, 2012).

    36.
    IUCN Resolutions, Recommendations and Other Decisions (IUCN, 2016).

    37.
    Permitted Clearing of Native Vegetation: Biodiversity Assessment Guidelines (The Victorian Government, Department of Environment and Primary Industries, 2013).

    38.
    NSW Biodiversity Offsets Policy for Major Projects (State of NSW, Office of Environment and Heritage, 2014).

    39.
    Our Evolving Approach to Biodiversity: The Next Chapter in Biodiversity Management (Rio Tinto, 2017); http://www.riotinto.com/ourcommitment/spotlight-18130_21621.aspx

    40.
    Konisky, D. M. & Woods, N. D. Environmental federalism and the Trump presidency: a preliminary assessment. Publius 48, 345–371 (2018).
    Article  Google Scholar 

    41.
    Working for Biodiversity Net Gain: An Overview of the Business and Biodiversity Offsets Programme (BBOP) 2004–2018 (BBOP, Forest Trends, 2018).

    42.
    Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).

    43.
    Leipold, S. & Winkel, G. Discursive agency: (re-)conceptualizing actors and practices in the analysis of discursive policymaking. Policy Stud. J. 45, 510–534 (2017).
    Article  Google Scholar 

    44.
    Foucault, M. The History of Sexuality: The Will to Knowledge Vol. I (Penguin Group, 2008).

    45.
    Walker, S., Brower, A. L., Stephens, R. T. T. & Lee, W. G. Why bartering biodiversity fails. Conserv. Lett. 2, 149–157 (2009).
    Article  Google Scholar 

    46.
    BĂ€ckstrand, K. & Lövbrand, E. The road to Paris: contending climate governance discourses in the post-Copenhagen era. J. Environ. Policy Plan. 21, 519–532 (2016).
    Article  Google Scholar 

    47.
    Griggs, S. & Howarth, D. Discourse, policy and the environment: hegemony, statements and the analysis of UK airport expansion. J. Environ. Policy Plan. 21, 464–478 (2019).
    Article  Google Scholar 

    48.
    Reflections on the Zero Draft Post-2020 Global Biodiversity Framework (BirdLife International, 2020).

    49.
    IUCN Position: Zero Draft of the Post-2020 Global Biodiversity Framework (IUCN, 2020); https://go.nature.com/3kEA4rP

    50.
    Dingler, J. The discursive nature of nature: towards a post-modern concept of nature. J. Environ. Policy Plan. 7, 209–225 (2005).
    Article  Google Scholar 

    51.
    Sharp, L. & Richardson, T. Reflections on Foucauldian discourse analysis in planning and environmental policy research. J. Environ. Policy Plan. 3, 193–209 (2001).
    Article  Google Scholar 

    52.
    Moon, K. & Blackman, D. A guide to understanding social science research for natural scientists. Conserv. Biol. 28, 1167–1177 (2014).
    Article  Google Scholar 

    53.
    Fairclough, N. Critical discourse analysis. Marges Linguist. 9, 76–94 (2005).
    Google Scholar 

    54.
    NVivo qualitative data analysis software (QSR International, 2019); https://www.qsrinternational.com/nvivo/home

    55.
    Calvet, C., Ollivier, G. & Napoleone, C. Tracking the origins and development of biodiversity offsetting in academic research and its implications for conservation: a review. Biol. Conserv. 192, 492–503 (2015).
    Article  Google Scholar 

    56.
    Darier, É. (ed.) Discourses of the Environment (Blackwell, 1999).

    57.
    BĂ€ckstrand, K. & Lövbrand, E. in The Social Construction of Climate Change: Power, Knowledge, Norms, Discourses (ed. Pettenger, M. E.) 123–147 (Taylor & Francis Group, 2007).

    58.
    Mol, A. P. J., Spaargaren, G. & Sonnenfeld, D. A. in The Ecological Modernisation Reader. Environmental Reform in Theory and Practice (eds Mol, A. P. J. et al.) 3–14 (Routledge, 2009).

    59.
    Nilsen, H. R. The joint discourse ‘reflexive sustainable development’—from weak towards strong sustainable development. Ecol. Econ. 69, 495–501 (2010).
    Article  Google Scholar 

    60.
    Jacobs, M. in The Handbook of Global Climate and Environment Policy (ed. Falkner, R.) 197–214 (John Wiley & Sons, 2013); https://doi.org/10.1002/9781118326213.ch12

    61.
    Ferguson, P. The green economy agenda: business as usual or transformational discourse? Environ. Polit. 24, 17–37 (2015).
    Article  Google Scholar 

    62.
    Coffey, B. Unpacking the politics of natural capital and economic metaphors in environmental policy discourse. Environ. Polit. 25, 203–222 (2016).
    Article  Google Scholar 

    63.
    Bakker, K. The limits of ‘neoliberal natures’: debating green neoliberalism. Prog. Hum. Geogr. 34, 715–735 (2010).
    Article  Google Scholar  More

  • in

    Cryopreservation of testicular tissue from Murray River Rainbowfish, Melanotaenia fluviatilis

    Animal husbandry and sample collection
    All animal handling and experimental procedures were approved by the Animal Ethics Committee B at Monash Medical Centre (MMCB/2017/39) and conducted in accordance with the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes. Melanotaenia fluviatilis (Aquarium Industries, Victoria, Australia) were held at 25 °C ± 1 °C on a 12:12 light–dark cycle. At the time of experimentation, fish 5.76 cm ± 1.00 cm in length and weighing 3.25 g ± 1.38 g, were humanely killed by anesthetic overdose using aquatic anaesthetic AQUI-S (Primo Aquaculture, Queensland, Australia) and death was confirmed by destruction of the brain. The gonads were removed and placed into handling medium composed of Eagles minimum essential media (EMEM, SigmaAldrich) supplemented with 5% FBS (ThermoFisher Scientific, Victoria Australia), and 25 mM HEPES (ThermoFisher Scientific; pH 7.8) and kept on ice.
    Histology and immunohistochemistry
    Whole testes were fixed in 10% neutral buffered formalin (Merck, Victoria, Australia) for 48 h and processed by the Monash Histology Platform which included standard hematoxylin and eosin staining. Unstained sections were stained for Vasa using a zebrafish-specific anti-Vasa antibody (Sapphire Bioscience Pty. Ltd, New South Wales, Australia) and counter-stained with Hoechst (ThermoFisher Scientific). De-paraffinised sections were rehydrated through changes of xylene and a standard series of decreasing ethanol dilutions before antigen retrieval in 10 mM citrate buffer (pH 6), microwaved to boiling point for 10 min. Sections were rested in citrate buffer for 30 min prior to blocking with CAS Block (Invitrogen) for one hour followed by incubation with anti-Vasa antibody (1:200) in 5% BSA in PBS at 4 °C overnight. Sections were washed in PBS and incubated with secondary antibody, Alexa Fluor 488-conjugated goat anti-rabbit IgG (1:500; Invitrogen), and Hoechst nuclear counterstain (1:1000) in 5% BSA and PBS for one hour at room temperature.
    Images were captured using the EVOS FL Auto 2 Imaging system (ThermoFisher Scientific) and an Olympus BX43 Upright Microscope with an X-Cite Series 120 Q laser (Lumen Dynamics). Approximate cell sizes were measured using cellSens Standard imaging software (Software version: 1.16, build 15,404, Olympus) and images were analysed in FIJI23 (Software version: 2.0.0-rc-69/1.52p, Image J).
    Validation of size-based cell sorting by flow cytometry
    Using cell measurements taken from histological analysis as a guide, a size-based cell sorting method was developed to isolate our target spermatogonial cells. A set of five size-specific beads (16.5 Όm, 10.2 Όm, 7.56 Όm, 5.11 Όm, 3.3 Όm, Spherotech, Lake Forest, IL, USA) were analysed on a FACS Aria Fusion flow cytometer (BD Biosciences, New South Wales, Australia). These sizes cover the range of cell sizes seen in the testis, with sperm heads being approximately 2–3 Όm and spermatogonia being over 10 Όm in M.fluviatilis. Due to differences in the light scattering properties of plastic beads in comparison to live cells, these bead sizes can only be interpreted as a guide of scale and not as an exact size indication for cells in suspension. Using the scatter profile produced by these beads, two gates were set: the “A” gate surrounded events in the high forward scatter region on the scatter plot, approximately 9 Όm and larger to capture larger cells such as spermatogonia; the “B” gate surrounded events in a low forward scatter region, between 2—5 Όm, to capture smaller germ cells such as spermatids and spermatocytes. An unstained cell suspension was then sorted through these gates and sorted cells were pelleted by centrifugation (500 g for 15mins). Images were taken of live cells in suspension using the EVOS FL Auto 2 Imaging system (ThermoFisher Scientific) and cell sizes were measured in FIJI. Samples were then fixed in 2% PFA (Thermo Fisher Scientific) for 10 min and suspended in PBS.
    Aliquots of each sample (A gate, B gate and an unsorted control) were smeared onto Superfrost Plus slides (ThermoFisher Scientific), baked overnight at 37 °C and stained with anti-Vasa antibody to determine the number of Vasa-positive cells in each sample. Briefly, the slides were washed with MilliQ water to remove any salt that was present and irrigated with wash buffer (0.1% BSA in PBS) before blocking with 10% goat serum, 0.1% Triton X in PBS for 45 min. Sections were stained with anti-Vasa antibody (1:200) in PBS containing 5% BSA for 1 h at room temperature, washed with wash buffer, incubated with Alexa Fluor 488-conjugated goat anti-rabbit IgG (1:500), and counterstained with Hoechst (1:1000). Sections were imaged on the EVOS FL Auto 2 and analysed using FIJI.
    Cryopreservation protocol
    This cryopreservation method was adapted from research described by Lee et al.14,15. Whole gonads weighing 0.0124 g ± 0.0095 g were transferred into 1.2-ml CryoTubes with 500 Όl of cryomedia containing a permeating cryoprotectant, dimethyl sulfoxide (DMSO), ethylene glycol (EG), methanol or glycerol (all purchased from Merck), at concentrations ranging between 1.0 M and 2.0 M, with 0.1 M trehalose (Merck), and 1.5% BSA (Bovogen Biologicals Pty. Ltd, Victoria, Australia) in a mixed salt solution (~ 296 mOsm, pH 7.8) previously described by Lee et al.14. Control samples contained all components except the permeating cryoprotectant. Samples were equilibrated on ice for one hour and then cooled at a rate of -1 °C/minute in a CoolCell (Merck) in a -80 °C freezer for at least 3 h before being plunged into liquid nitrogen. Samples were held in liquid nitrogen for at least 24 h before thawing.
    Thawing and cell suspension preparation
    Samples were thawed in a 30 °C water bath for 1 min. The gonad was removed and gently blotted on a Kim-wipe to remove excess cryoprotectant residue and then rehydrated in three changes of handling medium (as described under “Animal husbandry and sample collection”) for 20 min per change (60 min total). After rehydration, the testis was placed in a tissue grinder with 500 Όl of PBS and crushed. The tissue grinder was washed with another 500 Όl of PBS resulting in a final volume of 1 ml. The cell suspension was passed through a 40 Όm nylon filter to remove any large particulates prior to flow cytometry.
    Viability assessment by flow cytometry
    Cell suspensions were stained with the LIVE/DEAD Sperm Viability Kit (ThermoFisher Scientific) which included a membrane-permeating SYBR14 nucleic acid dye for detecting live cells and membrane-impermeable Propidium Iodide (PI) nucleic acid dye to detect membrane-compromised, presumably dead cells. SYBR14 was added and incubated for 5 min in the dark, followed by PI for a further 5-min incubation.
    Prior to the assessment of experimental samples, the sized beads (Spherotech) were analysed on the FACS Aria Fusion flow cytometer. Using these beads as a guide, a gate was set for the approximate size of the spermatogonial cells based on our own histological analysis of this species and previous publications on fish in general24. An unstained control and two single stain controls (PI only or SYBR14 only) were included with the experimental samples in the analysis. The sample used for the PI-only control was flash frozen in liquid nitrogen three times to ensure a high percentage of dead cell to provide an adequate count for PI staining. Flow cytometry output was analysed in FlowJoTM25. Events captured by the gate were analysed for SYBR14 and PI spectra and divided into quartiles based on the absorbance of single stain controls (Fig. 1).
    Figure 1

    Flow cytometry scatter plots and gating method. (a) Analysis of size-specific beads shows five distinct clusters. (b) A gate is set to capture events from the 9 Όm measurement and above. (c) Events detected in this region are replotted to determine SYB14 and PI absorbance. Events in the Q3 region are SYB14 positive and PI negative and therefore viable. In samples treated with a negative control (d), the majority of events falls in the Q1 region, with only propidium iodide detected (e).

    Full size image

    Statistical analysis
    Statistical analysis was performed using GraphPad Prism version 8.1.2 for MacOS, GraphPad Software, La Jolla California USA, www.graphpad.com. Data is presented as mean ± standard deviation, with a p-value less than 0.05 considered statistically significant.
    For cell gating data, the proportion of cell sizes in live cell suspensions in each treatment group was analysed using a chi-square. The percentage of Vasa-positive cells in the unsorted sample and the “A” gate was analysed using an un-paired t-test; data for the “B” gate was excluded as no Vasa-positive cells were detected.
    For percentage viability data assumptions for normality and variance were met using the Shapiro–Wilk test and the Brown-Forsythe test, respectively. Following this, treatment groups were compared by one-way ANOVA and Tukey’s post hoc test. More