Mutual mate choice and its benefits for both sexes
1.
Bateman, A. J. Intra-sexual selection in Drosophila. Heredity (Edinb). 2, 349â368 (1948).
CAS Article Google ScholarÂ
2.
Trivers, R. L. Parental investment and sexual selection. In Sexual Selection and the Descent of Man (Ed. B. Campbell.) 136â179 (Aldinc, Chicago, 1972).
3.
Parker, G. A. & Pizzari, T. Sexual selection: the logical imperative. In Current Perspectives on Sexual Selection: What’s Left After Darwin? (Ed. T. Horquet.) 119â163 (Springer, Dordrecht, 2015).
4.
Clutton-Brock, T. Reproductive competition and sexual selection. Philos. Trans. R. Soc. Biol. B Sci. 372, 20160310 (2017).
Article Google ScholarÂ
5.
Kokko, H., Brooks, R., Jennions, M. D. & Morley, J. The evolution of mate choice and mating biases. Proc. R. Soc. London. Ser. B Biol. Sci. 270, 653â664 (2003).
Article Google ScholarÂ
6.
Ihle, M., Kempenaers, B. & Forstmeier, W. Fitness benefits of mate choice for compatibility in a socially monogamous species. PLoS Biol. 13, e1002248 (2015).
Article CAS PubMed PubMed Central Google ScholarÂ
7.
Fromhage, L. & Jennions, M. D. Coevolution of parental investment and sexually selected traits drives sex-role divergence. Nat. Commun. 7, 12517 (2016).
ADS CAS Article PubMed PubMed Central Google ScholarÂ
8.
Courtiol, A., Etienne, L., Feron, R., Godelle, B. & Rousset, F. The evolution of mutual mate choice under direct benefits. Am. Nat. 188, 521â538 (2016).
Article Google ScholarÂ
9.
Byrne, P. G. & Rice, W. R. Evidence for adaptive male mate choice in the fruit fly Drosophila melanogaster. Proc. R. Soc. B Biol. Sci. 273, 917â922 (2006).
Article Google ScholarÂ
10.
Simmons, L. W., LĂŒpold, S. & Fitzpatrick, J. L. Evolutionary trade-off between secondary sexual traits and ejaculates. Trends Ecol. Evol. 32, 964â976 (2017).
Article PubMed Google ScholarÂ
11.
Gwynne, D. T. Sexual competition among females: What causes courtship-role reversal?. Trends Ecol. Evol. 6, 118â121 (1991).
CAS Article PubMed Google ScholarÂ
12.
Edward, D. A. & Chapman, T. The evolution and significance of male mate choice. Trends Ecol. Evol. 26, 647â654 (2011).
Article PubMed Google ScholarÂ
13.
Vallejos, J. G., Grafe, T. U., Sah, H. H. A. & Wells, K. D. Calling behavior of males and females of a Bornean frog with male parental care and possible sex-role reversal. Behav. Ecol. Sociobiol. 71, 95 (2017).
Article Google ScholarÂ
14.
Amundsen, T. & Forsgren, E. Male mate choice selects for female coloration in a fish. Proc. Natl. Acad. Sci. 98, 13155â13160 (2001).
ADS CAS Article PubMed Google ScholarÂ
15.
Bonduriansky, R. The evolution of male mate choice in insects: A synthesis of ideas and evidence. Biol. Rev. 76, 305â339 (2001).
CAS Article PubMed Google ScholarÂ
16.
Servedio, M. R. & Lande, R. Population genetic models of male and mutual mate choice. Evolution (N. Y.). 60, 674â685 (2006).
Google ScholarÂ
17.
Lailvaux, S. P. & Irschick, D. J. A functional perspective on sexual selection: Insights and future prospects. Anim. Behav. 72, 263â273 (2006).
Article Google ScholarÂ
18.
Kirkpatrick, M., Rand, A. S. & Ryan, M. J. Mate choice rules in animals. Anim. Behav. 71, 1215â1225 (2006).
Article Google ScholarÂ
19.
Holveck, M.-J. & Riebel, K. Low-quality females prefer low-quality males when choosing a mate. Proc. R. Soc. B Biol. Sci. 277, 153â160 (2009).
Article Google ScholarÂ
20.
Aquiloni, L. & Gherardi, F. Mutual mate choice in crayfish: Large body size is selected by both sexes, virginity by males only. J. Zool. 274, 171â179 (2008).
Article Google ScholarÂ
21.
HonÄk, A. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66, 483â492 (1993).
Article Google ScholarÂ
22.
Monroe, M. J., South, S. H. & Alonzo, S. H. The evolution of fecundity is associated with female body size but not female-biased sexual size dimorphism among frogs. J. Evol. Biol. 28, 1793â1803 (2015).
CAS Article PubMed Google ScholarÂ
23.
Pincheira-Donoso, D. & Hunt, J. Fecundity selection theory: Concepts and evidence. Biol. Rev. 92, 341â356 (2017).
Article PubMed Google ScholarÂ
24.
Dosen, L. D. & Montgomerie, R. Female size influences mate preferences of male guppies. Ethology 110, 245â255 (2004).
Article Google ScholarÂ
25.
Kokko, H., Jennions, M. D. & Brooks, R. Unifying and testing models of sexual selection. Annu. Rev. Ecol. Evol. Syst. 37, 43â66 (2006).
Article Google ScholarÂ
26.
Booksmythe, I., Mautz, B., Davis, J., Nakagawa, S. & Jennions, M. D. Facultative adjustment of the offspring sex ratio and male attractiveness: A systematic review and meta-analysis. Biol. Rev. 92, 108â134 (2017).
Article PubMed Google ScholarÂ
27.
Hamilton, W. D. & Zuk, M. Heritable true fitness and bright birds: A role for parasites?. Science 218, 384â387 (1982).
ADS CAS Article PubMed Google ScholarÂ
28.
Dunn, P. O., Garvin, J. C., Whittingham, L. A., Freeman-Gallant, C. R. & Hasselquist, D. Carotenoid and melanin-based ornaments signal similar aspects of male quality in two populations of the common yellowthroat. Funct. Ecol. 24, 149â158 (2010).
Article Google ScholarÂ
29.
Emlen, D. J., Warren, I. A., Johns, A., Dworkin, I. & Lavine, L. C. A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science (80-). 337, 860â864 (2012).
ADS CAS Article Google ScholarÂ
30.
Dhole, S., Stern, C. A. & Servedio, M. R. Direct detection of male quality can facilitate the evolution of female choosiness and indicators of good genes: Evolution across a continuum of indicator mechanisms. Evolution (N.Y.). 72, 770â784 (2018).
Google ScholarÂ
31.
Roberts, M. L., Buchanan, K. L. & Evans, M. R. Testing the immunocompetence handicap hypothesis: A review of the evidence. Anim. Behav. 68, 227â239 (2004).
Article Google ScholarÂ
32.
Joye, P. & Kawecki, T. J. Sexual selection favours good or bad genes for pathogen resistance depending on malesâ pathogen exposure. Proc. R. Soc. B 286, 20190226 (2019).
CAS Article PubMed PubMed Central Google ScholarÂ
33.
Able, D. J. The contagion indicator hypothesis for parasite-mediated sexual selection. Proc. Natl. Acad. Sci. 93, 2229â2233 (1996).
ADS CAS Article PubMed PubMed Central Google ScholarÂ
34.
Penn, D. & Potts, W. K. Chemical signals and parasite-mediated sexual selection. Trends Ecol. Evol. 13, 391â396 (1998).
CAS Article PubMed PubMed Central Google ScholarÂ
35.
Arakawa, H., Cruz, S. & Deak, T. From models to mechanisms: Odorant communication as a key determinant of social behavior in rodents during illness-associated states. Neurosci. Biobehav. Rev. 35, 1916â1928 (2011).
Article PubMed PubMed Central Google ScholarÂ
36.
Beltran-Bech, S. & Richard, F.-J. Impact of infection on mate choice. Anim. Behav. 90, 159â170 (2014).
Article Google ScholarÂ
37.
Rantala, M. J., Kortet, R., Kotiaho, J. S., Vainikka, A. & Suhonen, J. Condition dependence of pheromones and immune function in the grain beetle, Tenebrio molitor. Funct. Ecol. 17, 534â540 (2003).
Article Google ScholarÂ
38.
Wyatt, T. D. Pheromones. Curr. Biol. 27, R739âR743 (2017).
CAS Article PubMed PubMed Central Google ScholarÂ
39.
Johansson, B. G. & Jones, T. M. The role of chemical communication in mate choice. Biol. Rev. 82, 265â289 (2007).
Article PubMed PubMed Central Google ScholarÂ
40.
Koh, T. H., Seah, W. K., Yap, L.-M.Y.L. & Li, D. Pheromone-based female mate choice and its effect on reproductive investment in a spitting spider. Behav. Ecol. Sociobiol. 63, 923â930 (2009).
Article Google ScholarÂ
41.
Peso, M., Elgar, M. A. & Barron, A. B. Pheromonal control: Reconciling physiological mechanism with signalling theory. Biol. Rev. 90, 542â559 (2015).
Article PubMed Google ScholarÂ
42.
Roberts, S. C., Gosling, L. M., Thornton, E. A. & McClung, J. Scent-marking by male mice under the risk of predation. Behav. Ecol. 12, 698â705 (2001).
Article Google ScholarÂ
43.
Foster, S. P. & Anderson, K. G. Sex pheromones in mate assessment: Analysis of nutrient cost of sex pheromone production by females of the moth, Heliothis virescens. J. Exp. Biol. 218, 1252â1258 (2015).
Article PubMed Google ScholarÂ
44.
Happ, G. M. Multiple sex pheromones of the mealworm beetle, Tenebrio molitor L.. Nature 222, 180 (1969).
ADS CAS Article PubMed Google ScholarÂ
45.
Stökl, J. & Steiger, S. Evolutionary origin of insect pheromones. Curr. Opin. Insect Sci. 24, 36â42 (2017).
Article PubMed Google ScholarÂ
46.
Roitberg, B. D. Chemical communication. in Insect Behavior: From Mechanisms to Ecological and Evolutionary Consequences (eds. CĂłrdoba-Aguilar et al.) vol. I 416 (Oxford University Press, 2018).
47.
Hurd, H. & Parry, G. Metacestode-induced depression of the production of, and response to, sex pheromone in the intermediate host, Tenebrio molitor. J. Invertebr. Pathol. 58, 82â87 (1991).
CAS Article PubMed Google ScholarÂ
48.
McConnell, M. W. & Judge, K. A. Body size and lifespan are condition dependent in the mealworm beetle, Tenebrio molitor, but not sexually selected traits. Behav. Ecol. Sociobiol. 72, 32 (2018).
Article Google ScholarÂ
49.
Bryning, G. P., Chambers, J. & Wakefield, M. E. Identification of a sex pheromone from male yellow mealworm beetles, Tenebrio molitor. J. Chem. Ecol. 31, 2721â2730 (2005).
CAS Article PubMed Google ScholarÂ
50.
Nielsen, M. L. & Holman, L. Terminal investment in multiple sexual signals: Immune-challenged males produce more attractive pheromones. Funct. Ecol. 26, 20â28 (2012).
Article Google ScholarÂ
51.
Worden, B. D., Parker, P. G. & Pappas, P. W. Parasites reduce attractiveness and reproductive success in male grain beetles. Anim. Behav. 59, 543â550 (2000).
CAS Article PubMed Google ScholarÂ
52.
Worden, B. D. & Parker, P. G. Females prefer noninfected males as mates in the grain beetle Tenebrio molitor: Evidence in pre-and postcopulatory behaviours. Anim. Behav. 70, 1047â1053 (2005).
Article Google ScholarÂ
53.
Sadd, B. et al. Modulation of sexual signalling by immune challenged male mealworm beetles (Tenebrio molitor, L.): Evidence for terminal investment and dishonesty. J. Evol. Biol. 19, 321â325 (2006).
CAS Article PubMed Google ScholarÂ
54.
Krams, I. A. et al. Male mealworm beetles increase resting metabolic rate under terminal investment. J. Evol. Biol. 27, 541â550 (2014).
CAS Article PubMed Google ScholarÂ
55.
Kivleniece, I., Krams, I., DaukĆĄte, J., Krama, T. & Rantala, M. J. Sexual attractiveness of immune-challenged male mealworm beetles suggests terminal investment in reproduction. Anim. Behav. 80, 1015â1021 (2010).
Article Google ScholarÂ
56.
Reyes-RamĂrez, A., EnrĂquez-Vara, J. N., Rocha-Ortega, M., TĂ©llez-GarcĂa, A. & CĂłrdoba-Aguilar, A. Female choice for sick males over healthy males: Consequences for offspring. Ethology 125, 241â249 (2019).
Article Google ScholarÂ
57.
Oliveira, A. S., Braga, G. U. L. & Rangel, D. E. N. Metarhizium robertsii illuminated during mycelial growth produces conidia with increased germination speed and virulence. Fungal Biol. 122, 555â562 (2018).
Article PubMed Google ScholarÂ
58.
Sasan, R. K. & Bidochka, M. J. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. Am. J. Bot. 99, 101â107 (2012).
Article PubMed Google ScholarÂ
59.
Barelli, L., Moonjely, S., Behie, S. W. & Bidochka, M. J. Fungi with multifunctional lifestyles: Endophytic insect pathogenic fungi. Plant Mol. Biol. 90, 657â664 (2016).
CAS Article PubMed Google ScholarÂ
60.
Branine, M., Bazzicalupo, A. & Branco, S. Biology and applications of endophytic insect-pathogenic fungi. PLoS Pathog. 15, e1007831 (2019).
CAS Article PubMed PubMed Central Google ScholarÂ
61.
Keyser, C. A., Thorup-Kristensen, K. & Meyling, N. V. Metarhizium seed treatment mediates fungal dispersal via roots and induces infections in insects. Fungal. Ecol. 11, 122â131 (2014).
Article Google ScholarÂ
62.
Castro, T. et al. Persistence of Brazilian isolates of the entomopathogenic fungi Metarhizium anisopliae and M. robertsii in strawberry crop soil after soil drench application. Agric. Ecosyst. Environ. 233, 361â369 (2016).
Article Google ScholarÂ
63.
HĂ€rdling, R. & Kokko, H. The evolution of prudent choice. Evol. Ecol. Res. 7, 697â715 (2005).
Google ScholarÂ
64.
Venner, S., Bernstein, C., Dray, S. & Bel-Venner, M.-C. Make love not war: When should less competitive males choose low-quality but defendable females?. Am. Nat. 175, 650â661 (2010).
Article PubMed Google ScholarÂ
65.
Bhattacharya, A. K., Ameel, J. J. & Waldbauer, G. P. A method for sexing living pupal and adult yellow mealworms. Ann. Entomol. Soc. Am. 63, 1783 (1970).
Article Google ScholarÂ
66.
Silva, W. O. B., Mitidieri, S., Schrank, A. & Vainstein, M. H. Production and extraction of an extracellular lipase from the entomopathogenic fungus, Metarhizium anisopliae. Process Biochem. 40, 321â326 (2005).
Article CAS Google ScholarÂ
67.
Zhou, J., Jiang, W., Ding, J., Zhang, X. & Gao, S. Effect of Tween 80 and ÎČ-cyclodextrin on degradation of decabromodiphenyl ether (BDE-209) by white rot fungi. Chemosphere 70, 172â177 (2007).
ADS CAS Article PubMed Google ScholarÂ
68.
Liu, Y.-S. & Wu, J.-Y. Effects of Tween 80 and pH on mycelial pellets and exopolysaccharide production in liquid culture of a medicinal fungus. J. Ind. Microbiol. Biotechnol. 39, 623â628 (2012).
CAS Article PubMed Google ScholarÂ
69.
Gerber, G. H. Reproductive behaviour and physiology of Tenebrio molitor (Coleoptera: Tenebrionidae). III. Histogenetic changes in the internal genitalia, mesenteron, and cuticle during sexual maturation. Can. J. Zool. 54, 990â1002 (1976).
Article Google ScholarÂ
70.
Briscoe, A. D. & Chittka, L. The evolution of color vision in insects. Annu. Rev. Entomol. 46, 471â510 (2001).
CAS Article PubMed PubMed Central Google ScholarÂ
71.
Team, R. C. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. https://www.R-project.org (2017).
72.
Bates, D., MĂ€chler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. arXiv Prepr. arXiv1406.5823 (2014).
73.
Jaeger, B. Package âr2glmmâ. R Found. Stat. Comput. Vienna Avail. CRAN R-Project org/package=R2glmm Stat https://doi.org/10.1002/sim.3429 (2017).
Article Google ScholarÂ
74.
Williams, G. C. Natural selection, the costs of reproduction, and a refinement of Lackâs principle. Am. Nat. 100, 687â690 (1966).
Article Google ScholarÂ
75.
Clutton-Brock, T. H. Reproductive effort and terminal investment in iteroparous animals. Am. Nat. 123, 212â229 (1984).
Article Google ScholarÂ
76.
Duffield, K. R., Bowers, E. K., Sakaluk, S. K. & Sadd, B. M. A dynamic threshold model for terminal investment. Behav. Ecol. Sociobiol. 71, 185 (2017).
Article PubMed PubMed Central Google ScholarÂ
77.
Jones, K. M., Monaghan, P. & Nager, R. G. Male mate choice and female fecundity in zebra finches. Anim. Behav. 62, 1021â1026 (2001).
Article Google ScholarÂ
78.
Griggio, M., Valera, F., Casas, A. & Pilastro, A. Males prefer ornamented females: A field experiment of male choice in the rock sparrow. Anim. Behav. 69, 1243â1250 (2005).
Article Google ScholarÂ
79.
Naud, M.-J., Curtis, J. M. R., Woodall, L. C. & Gaspar, M. B. Mate choice, operational sex ratio, and social promiscuity in a wild population of the long-snouted seahorse Hippocampus guttulatus. Behav. Ecol. 20, 160â164 (2008).
Article Google ScholarÂ
80.
Cutrera, A. P., Fanjul, M. S. & Zenuto, R. R. Females prefer good genes: MHC-associated mate choice in wild and captive tuco-tucos. Anim. Behav. 83, 847â856 (2012).
Article Google ScholarÂ
81.
Mobley, K. B., Chakra, M. A. & Jones, A. G. No evidence for size-assortative mating in the wild despite mutual mate choice in sex-role-reversed pipefishes. Ecol. Evol. 4, 67â78 (2014).
Article PubMed Google ScholarÂ
82.
Tschinkel, W. R. & Willson, C. D. Inhibition of pupation due to crowding in some tenebrionid beetles. J. Exp. Zool. 176, 137â145 (1971).
CAS Article PubMed Google ScholarÂ
83.
Morales-Ramos, J. A. & Rojas, M. G. Effect of larval density on food utilization efficiency of Tenebrio molitor (Coleoptera: Tenebrionidae). J. Econ. Entomol. 108, 2259â2267 (2015).
CAS Article PubMed Google ScholarÂ
84.
Morales-Ramos, J. A., Rojas, M. G., Kay, S., Shapiro-Ilan, D. I. & Tedders, W. L. Impact of adult weight, density, and age on reproduction of Tenebrio molitor (Coleoptera: Tenebrionidae). J. Entomol. Sci. 47, 208â220 (2012).
Article Google ScholarÂ
85.
Kraak, S. B. M. & Bakker, T. C. M. Mutual mate choice in sticklebacks: Attractive males choose big females, which lay big eggs. Anim. Behav. 56, 859â866 (1998).
CAS Article PubMed Google ScholarÂ
86.
Sandvik, M., Rosenqvist, G. & Berglund, A. Male and female mate choice affects offspring quality in a sexâroleâreversed pipefish. Proc. R. Soc. Lond. Ser. B Biol. Sci. 267, 2151â2155 (2000).
CAS Article Google ScholarÂ
87.
Drickamer, L. C., Gowaty, P. A. & Wagner, D. M. Free mutual mate preferences in house mice affect reproductive success and offspring performance. Anim. Behav. 65, 105â114 (2003).
Article Google ScholarÂ
88.
Bertram, S. M. et al. Linking mating preferences to sexually selected traits and offspring viability: Good versus complementary genes hypotheses. Anim. Behav. 119, 75â86 (2016).
Article Google ScholarÂ
89.
Bowers, E. K. et al. Sex-biased terminal investment in offspring induced by maternal immune challenge in the house wren (Troglodytes aedon). Proc. R. Soc. B Biol. Sci. 279, 2891â2898 (2012).
Article Google ScholarÂ
90.
Poulin, R. & Maure, F. Host manipulation by parasites: A look back before moving forward. Trends Parasitol. 31, 563â570 (2015).
Article PubMed Google ScholarÂ
91.
August, C. J. The role of male and female pheromones in the mating behaviour of Tenebrio molitor. J. Insect Physiol. 17, 739â751 (1971).
Article Google ScholarÂ
92.
Font, E. & Desfilis, E. Courtship, mating, and sex pheromones in the mealworm beetle (Tenebrio molitor). In Exploring Animal Behavior in Laboratory and Field (eds. Ploger, B. J. & Yasukawa, K.) 43â58 (Elsevier, New York, 2003).
93.
Obata, S. & Hidaka, T. Experimental analysis of mating behavior in Tenebrio molitor L. (Coleoptera: Tenebrionidae). Appl. Entomol. Zool. 17, 60â66 (1982).
Article Google Scholar More