Influence of individual biological traits on GPS fix-loss errors in wild bird tracking
1.
 Moen, R., Pastor, J., Cohen, Y. & Schwartz, C. C. Effects of moose movement and habitat use on GPS collar performance. J. Wildl. Manag. 60, 659–668 (1996).
 Article  Google Scholar 
 2.
 Cain, J. W. III., Krausman, P. R., Jansen, B. D. & Morgart, J. R. Influence of topography and GPS fix interval on GPS collar performance. Wildl. Soc. Bull. 33, 926–934 (2005).
 Article  Google Scholar 
3.
 Graves, T. A. & Waller, J. S. Understanding the causes of missed global positioning system telemetry fixes. J. Wildl. Manag. 70, 844–851 (2006).
 Article  Google Scholar 
4.
 Moen, R., John, P. & Cohen, Y. Effects of animal activity on GPS telemetry location attempts. Alces 37, 207–216 (2001).
 Google Scholar 
5.
 D’Eon, R. G. Effects of a stationary GPS fix-rate bias on habitat-selection analyses. J. Wildl. Manag. 67, 858–863 (2003).
 Article  Google Scholar 
6.
 Dussault, C., Courtois, R., Ouellet, J. P. & Huot, J. Evaluation of GPS telemetry collar performance for habitat studies in the boreal forest. Wildl. Soc. Bull. 27, 965–972 (1999).
 Google Scholar 
7.
 Nielson, R. M., Manly, B. F. J., Mcdonald, L. L., Sawyer, H. & Mcdonald, T. L. Estimating habitat selection when GPS fix success is less than 100 %. Ecology 90, 2956–2962 (2009).
 Article  PubMed  Google Scholar 
8.
 Rempel, R. S., Rodgers, A. R. & Abraham, K. F. Performance of a GPS animal location system under boreal forest canopy. J. Wildl. Manag. 59, 543–551 (1995).
 Article  Google Scholar 
9.
 Bowman, J. L., Kochanny, C. O., Demarais, S. & Leopold, B. D. Evaluation of a GPS collar for white-tailed deer. Wildl. Soc. Bull. 28, 141–145 (2000).
 Google Scholar 
10.
 Jung, T. S. & Kuba, K. Performance of GPS collars on free-ranging bison (Bison bison) in north-western Canada. Wildl. Res. 42, 315–323 (2015).
 Article  Google Scholar 
11.
 Recio, M. R., Mathieu, R., Denys, P., Sirguey, P. & Seddon, P. J. Lightweight GPS-tags, one giant leap for wildlife tracking? An assessment approach. PLoS One 6, e28225 (2011).
 ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 
12.
 Mattisson, J., Andrén, H., Persson, J. & Segerström, P. Effects of species behavior on global positioning system collar fix rates. J. Wildl. Manag. 74, 557–563 (2010).
 Article  Google Scholar 
13.
 Kaczensky, P., Ito, T. Y. & Walzer, C. Satellite telemetry of large mammals in Mongolia: What expectations should we have for collar function?. Wildl. Biol. Pract. 6, 108–126 (2010).
 CAS  PubMed  PubMed Central  Google Scholar 
14.
 Harris, R. B. et al. Tracking Wildlife by Satellite: Current systems and Performance. Fish and Wildlife Technical Report https://pubs.er.usgs.gov/publication/70185512 (1990).
15.
 Schwartz, C. C. & Arthur, S. M. Radiotracking large wilderness mammals: Integration of GPS and argostechnology. Ursus 11, 261–274 (1999).
 Google Scholar 
16.
 Tomkiewicz, S. M., Fuller, M. R., Kie, J. G. & Bates, K. K. Global positioning system and associated technologies in animal behaviour and ecological research. Philos. Trans. R. Soc. B Biol. Sci. 365, 2163–2176 (2010).
 Article  Google Scholar 
17.
 Rodgers, A. R. Recent telemetry technology. In Radio Tracking and Animal Populations (eds Marzluff, J. M. & Millspaugh, J. J.) 79–121 (Elsevier, New York, 2001). https://doi.org/10.1016/B978-012497781-5/50005-0.
 Google Scholar 
18.
 Thomas, B., Holland, J. D. & Minot, E. O. Wildlife tracking technology options and cost considerations. Wildl. Res. 38, 653–663 (2011).
 Article  Google Scholar 
19.
 Margalida, A., Pérez-García, J. M., Afonso, I. & Moreno-Opo, R. Spatial and temporal movements in Pyrenean bearded vultures (Gypaetus barbatus): Integrating movement ecology into conservation practice. Sci. Rep. 6, 35746 (2016).
 ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 
20.
 García-Jiménez, R., Pérez-García, J. M. & Margalida, A. Drivers of daily movement patterns affecting an endangered vulture flight activity. BMC Ecol. 18, 39 (2018).
 Article  PubMed  PubMed Central  Google Scholar 
21.
 BirdLife International. (2017). Gypaetus barbatus (Amended Version of 2017 Assessment). The IUCN Red List of Threatened Species 2017: e.T22695174A118590506. https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T22695174A118590506.en. Accessed: 12th Mar 2020.
22.
 Houston D. C. Reintroduction programmes for vulture species. In Proceedings of the International Conference on Conservation and Management of Vulture populations 1, (eds Houston D. C. & Piper, S. E., 2006). Natural History Museum, University of Crete, Thessaloniki.
23.
 Britten, M. W., Kennedy, P. L. & Ambrose, S. Performance and accuracy evaluation of small satellite transmitters. J. Wildl. Manag. 63, 1349–1358 (1999).
 Article  Google Scholar 
24.
 Soutullo, A., Cadahía, L., Urios, V., Ferrer, M. & Negro, J. J. Accuracy of lightweight satellite telemetry: A case study in the Iberian Peninsula. J. Wildl. Manag. 71, 1010–1015 (2007).
 Article  Google Scholar 
25.
 Silva, R., Afán, I., Gil, J. A. & Bustamante, J. Seasonal and circadian biases in bird tracking with solar GPS-tags. PLoS One 12, e0185344 (2017).
 Article  CAS  PubMed  PubMed Central  Google Scholar 
26.
 Byrne, M. E., Holland, A. E., Bryan, A. L. & Beasley, J. C. Environmental conditions and animal behavior influence performance of solar-powered GPS-GSM transmitters. Condor 119, 389–404 (2017).
 Article  Google Scholar 
27.
 Hofman, M. P. G. et al. Right on track? Performance of satellite telemetry in terrestrial wildlife research. PLoS One 14, 1–26 (2019).
 Google Scholar 
28.
 Aubrecht, C. et al. Vertical roughness mapping – ALS based classification of the vertical vegetation structure in forested areas. In Symposium A Quarterly Journal In Modern Foreign Literatures (eds. Wagner, W. & Székely, B.) XXXVIII, 35–40 (2010).
29.
 Frair, J. L. et al. Resolving issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data. Philos. Trans. R. Soc. B Biol. Sci. 365, 2187–2200 (2010).
 Article  Google Scholar 
30.
 Péron, G. et al. The challenges of estimating the distribution of flight heights from telemetry or altimetry data. Anim. Biotelemetry 8, 1–13 (2020).
 Article  Google Scholar 
31.
 Cargnelutti, B. et al. Testing global positioning system performance for wildlife monitoring using mobile collars and known reference points. J. Wildl. Manag. 71, 1380–1387 (2007).
 Article  Google Scholar 
32.
 Edenius, L. Field test of a GPS location system for moose Alces alces under Scandinavian boreal conditions. Wildl. Biol. 3, 39–43 (1997).
 Article  Google Scholar 
33.
 Jurdak, R., Corke, P., Dharman, D. & Salagnac, G. Adaptive GPS duty cycling and radio ranging for energy-efficient localization. In Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems-SenSys ’10 57–70 (ACM Press, 2010). https://doi.org/10.1145/1869983.1869990.
34.
 Gau, R. J. et al. Uncontrolled field performance of Televilt GPS-SimplexTM collars on grizzly bears in western and northern Canada. Wildl. Soc. Bull. 32, 693–701 (2004).
 Article  Google Scholar 
35.
 Girard, I. et al. Feasibility of GPS use to locate wild ungulates in high mountain environment. Pirineos 157, 7–14 (2002).
 Article  Google Scholar 
36.
 Krüger, S., Reid, T. & Amar, A. Differential range use between age classes of Southern African bearded vultures Gypaetus barbatus. PLoS One 9, e114920 (2014).
 ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 
37.
 Augustine, B. C., Crowley, P. H. & Cox, J. J. A mechanistic model of GPS collar location data: Implications for analysis and bias mitigation. Ecol. Modell. 222, 3616–3625 (2011).
 Article  Google Scholar 
38.
 Douglas, D. C. et al. Moderating Argos location errors in animal tracking data. Methods Ecol. Evol. 3, 999–1007 (2012).
 Article  Google Scholar 
39.
 Cuadrat, J. M. et al. El clima de los Pirineos. Base de datos y primeros resultados. Tiempo Clima 45, 38–41 (2010).
 Google Scholar 
40.
 Margalida, A., Bertran, J. & Heredia, R. Diet and food preferences of the endangered Bearded Vulture Gypaetus barbatus: A basis for their conservation. Ibis (Lond. 1859) 151, 235–243 (2009).
 Google Scholar 
41.
 del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & Kirwan, G. Handbook of the Birds of the World,2 (Lynx Edicions, Barcelona, 1994).
 Google Scholar 
42.
 Antor, R. J. et al. First breeding age in captive and wild bearded vultures Gypaetus barbatus. Acta Ornithol. 42, 114–118 (2007).
 Article  Google Scholar 
43.
 Gil, J. A. et al. Home ranges and movements of non-breeding bearded vultures tracked by satellite telemetry in the Pyrenees. Ardeola 61, 379–387 (2014).
 Article  Google Scholar 
44.
 Sunyer, C. El periodo de emancipación en el Quebrantahuesos (Gypaetus barbatus): Consideraciones sobre su conservación. In El quebrantahuesos (Gypaetus barbatus) en los Pirineos. Características Ecológicas y Biología (eds Heredia, R. & Heredia, B.) 47–65 (ICONA, Turin, 1991).
 Google Scholar 
45.
 Margalida, A. et al. Uneven large-scale movement patterns in wild and reintroduced pre-adult Bearded Vultures: Conservation implications. PLoS One 8, e65857 (2013).
 ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 
46.
 Ellergren, H. First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Proc. R Soc. Lond. Ser. B Biol. Sci. 263, 1635–1641 (1996).
 ADS  Article  Google Scholar 
47.
 Cruz, S., Proaño, C. B., Anderson, D., Huyvaert, K. & Wikelski, M. Data from: The Environmental-Data Automated Track Annotation (Env-DATA) System: Linking animal tracks with environmental data. (2013). https://doi.org/10.5441/001/1.3hp3s250.
48.
 Dodge, S. et al. The environmental-data automated track annotation (Env-DATA) system: Linking animal tracks with environmental data. Mov. Ecol. 1, 3 (2013).
 Article  PubMed  PubMed Central  Google Scholar 
49.
 Cuscó, F., Cardador, L., Bota, G., Morales, M. B. & Mañosa, S. Inter-individual consistency in habitat selection patterns and spatial range constraints of female little bustards during the non-breeding season. BMC Ecol. 18, 1–12 (2018).
 Article  Google Scholar 
50.
 Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
 Article  Google Scholar 
51.
 Anadón, J. D. et al. Factors determining the distribution of the spur-thighed tortoise Testudo graeca in south-east Spain: A hierarchical approach. Ecography (Cop.) 29, 339–346 (2006).
 Article  Google Scholar 
52.
 R Foundation for Statistical Computing. R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (2019).
53.
 Bates, D., Maechler, M. & Dai, B. lme4: Linear mixed-effects models using S4 classes. 2009. R package version 0.999375-31. https://CRAN.R-project.org/package=lme4 (2009).
54.
 Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach Vol 2 (Springer, Berlin, 2002).
 Google Scholar 
55.
 Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, Berlin, 2009).
 Google Scholar 
56.
 Barton, K. Package ‘MuMIn’. R package version 1.43. 15. https://CRAN.R-project.org/package=MuMIn (2019).
57.
 Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage publications, Thousand Oaks, 2018).
 Google Scholar 
58.
 Mitchell, L. J., White, P. C. & Arnold, K. E. The trade-off between fix rate and tracking duration on estimates of home range size and habitat selection for small vertebrates. PLoS One 14, e0219357 (2019).
 CAS  Article  PubMed  PubMed Central  Google Scholar  More
 
 
