More stories

  • in

    Impact of local and landscape complexity on the stability of field-level pest control

    1.
    Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).
    Article  Google Scholar 
    2.
    Fahrig, L. et al. Farmlands with smaller crop fields have higher within-field biodiversity. Agric. Ecosyst. Environ. 200, 219–234 (2015).
    Article  Google Scholar 

    3.
    Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442–16447 (2019).
    CAS  Article  Google Scholar 

    4.
    Martin, E. A., Seo, B., Park, C.-R., Reineking, B. & Steffan-Dewenter, I. Scale-dependent effects of landscape composition and configuration on natural enemy diversity, crop herbivory, and yields. Ecol. Appl. 26, 448–462 (2016).
    Article  Google Scholar 

    5.
    Root, R. B. Organization of a plant–arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol. Monogr. 43, 95–124 (1973).
    Article  Google Scholar 

    6.
    McCann, K. The diversity–stability debate. Nature 405, 228–233 (2000).
    CAS  Article  Google Scholar 

    7.
    MacArthur, R. Fluctuations of animal populations and a measure of community stability. Ecology 36, 533–536 (1955).
    Article  Google Scholar 

    8.
    Tilman, D. Biodiversity: population versus ecosystem stability. Ecology 77, 350–363 (1996).
    Article  Google Scholar 

    9.
    Tilman, D. & Wedin, D. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).
    CAS  Google Scholar 

    10.
    McNaughton, S. Diversity and stability of ecological communities: a comment on the role of empiricism in ecology. Am. Natur. 111, 515–525 (1977).
    Article  Google Scholar 

    11.
    Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).
    CAS  Article  Google Scholar 

    12.
    Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201 (2000).
    CAS  Article  Google Scholar 

    13.
    Chaplin-Kramer, R., O’Rourke, M. E., Blitzer, E. J. & Kremen, C. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).
    Article  Google Scholar 

    14.
    Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl Acad. Sci. USA 111, E7863–E7870 (2018).
    Article  CAS  Google Scholar 

    15.
    Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).
    Article  Google Scholar 

    16.
    Larsen, A. E. & Noack, F. Identifying the landscape drivers of agricultural insecticide use leveraging evidence from 100,000 fields. Proc. Natl Acad. Sci. USA 114, 5473–5478 (2017).
    CAS  Article  Google Scholar 

    17.
    Sexton, S. E., Lei, Z. & Zilberman, D. The economics of pesticides and pest control. Int. Rev. Envir. Resour. Econ. 1, 271–326 (2007).
    Article  Google Scholar 

    18.
    Waterfield, G. & Zilberman, D. Pest management in food systems: an economic perspective. Annu. Rev. 37, 223–245 (2012).

    19.
    O’Rourke, M. E. & Jones, L. E. Analysis of landscape-scale insect pest dynamics and pesticide use: an empirical and modeling study. Ecol. Appl. 21, 3199–3210 (2011).
    Article  Google Scholar 

    20.
    Gross, K. & Rosenheim, J. A. Quantifying secondary pest outbreaks in cotton and their monetary cost with causal-inference statistics. Ecol. Appl. 21, 2770–2780 (2011).
    Article  Google Scholar 

    21.
    Rosenheim, J. A. & Meisner, M. H. Ecoinformatics can reveal yield gaps associated with crop–pest interactions: a proof-of-concept. PLoS ONE 8, e80518 (2013).
    Article  CAS  Google Scholar 

    22.
    Meisner, M. H., Zaviezo, T. & Rosenheim, J. A. Landscape crop composition effects on cotton yield, Lygus hesperus densities and pesticide use. Pest Manag. Sci. 73, 232–239 (2016).
    Article  CAS  Google Scholar 

    23.
    Farrar, J. J., Baur, M. E. & Elliott, S. F. Adoption of IPM practices in grape, tree fruit, and nut production in the western United States. J. Integr. Pest Manag. 7, 8 (2016).

    24.
    Rosenheim, J. A., Cass, B. N., Kahl, H. & Steinmann, K. P. Variation in pesticide use across crops in California agriculture: economic and ecological drivers. Sci. Total Environ. 733, 138683 (2020).
    CAS  Article  Google Scholar 

    25.
    Möhring, N., Bozzola, M., Hirsch, S. & Finger, R. Are pesticides risk decreasing? The relevance of pesticide indicator choice in empirical analysis. Agric. Econ. 51, 429–444 (2020).
    Article  Google Scholar 

    26.
    Larsen, A. E., Patton, M. & Martin, E. A. High highs and low lows: elucidating striking seasonal variability in pesticide use and its environmental implications. Sci. Total Environ. 651, 828–837 (2019).
    CAS  Article  Google Scholar 

    27.
    Dudley, N. et al. How should conservationists respond to pesticides as a driver of biodiversity loss in agroecosystems? Biol. Conserv. 209, 449–453 (2017).
    Article  Google Scholar 

    28.
    Kim, K.-H., Kabir, E. & Jahan, S. A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 575, 525–535 (2017).
    CAS  Article  Google Scholar 

    29.
    Chay, K. Y. & Greenstone, M. The impact of air pollution on infant mortality: evidence from the Clean Air Act of 1970. Q. J. Econ. 118, 1121–1167 (2003).
    Article  Google Scholar 

    30.
    Larsen, A. E., Gaines, S. D. & Deschenes, O. Agricultural pesticide use and adverse birth outcomes in the San Joaquin Valley of California. Nat. Commun. 8, 302 (2017).

    31.
    California Agricultural Statistics Review 2017–2018 1–105 (California Department of Food & Agriculture, 2018).

    32.
    Summary of Pesticide Use Report Data 2017 (California Department of Pesticide Regulation, 2018).

    33.
    Bourque, K. et al. Balancing agricultural production, groundwater management, and biodiversity goals: a multi-benefit optimization model of agriculture in Kern County, California. Sci. Total Environ. 670, 865–875 (2019).
    CAS  Article  Google Scholar 

    34.
    Larsen, A. E., Meng, K. & Kendall, B. E. Causal analysis in control–impact ecological studies with observational data. Methods Ecol. Evol. 10, 924–934 (2019).
    Article  Google Scholar 

    35.
    Just, R. E. & Pope, R. D. Stochastic specification of production functions and economic implications. J. Econ. 7, 67–86 (1978).
    Article  Google Scholar 

    36.
    Murdoch, W. W. Diversity, complexity, stability and pest control. J. Appl. Ecol. 12, 795–807 (1975).
    Article  Google Scholar 

    37.
    Van Emden, H. F. & Williams, G. Insect stability and diversity in agro-ecosystems. Annu. Rev. Entomol. 19, 455–475 (1974).
    Article  Google Scholar 

    38.
    Edwards, C. B., Rosenheim, J. A. & Segoli, M. Aggregating fields of annual crops to form larger-scale monocultures can suppress dispersal-limited herbivores. Theor. Ecol. 11, 321–331.

    39.
    O’Rourke, M. E., Rienzo-Stack, K. & Power, A. G. A multi-scale, landscape approach to predicting insect populations in agroecosystems. Ecol. Appl. 21, 1782–1791 (2011).
    Article  Google Scholar 

    40.
    Hass, A. L. et al. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in Western Europe. Proc. R. Soc. B 285, 1872 (2018).
    Article  Google Scholar 

    41.
    Holzschuh, A., Dewenter, I. S. & Tscharntke, T. How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids? J. Anim. Ecol. 79, 491–500 (2010).
    Article  Google Scholar 

    42.
    Rusch, A. et al. Agricultural landscape simplification reduces natural pest control: a quantitative synthesis. Agric. Ecosyst. Environ. 221, 198–204 (2016).
    Article  Google Scholar 

    43.
    Rusch, A., Bommarco, R., Jonsson, M., Smith, H. G. & Ekbom, B. Flow and stability of natural pest control services depend on complexity and crop rotation at the landscape scale. J. Appl. Ecol. 50, 345–354 (2013).
    Article  Google Scholar 

    44.
    Zhao, Z. & Reddy, G. V. P. Semi-natural habitats mediate influence of inter-annual landscape variation on cereal aphid-parasitic wasp system in an agricultural landscape. Biol. Control 128, 17–23 (2019).
    Article  Google Scholar 

    45.
    Costello, C., Quérou, N. & Tomini, A. Private eradication of mobile public bads. Eur. Econ. Rev. 94, 23–44 (2017).
    Article  Google Scholar 

    46.
    Noack, F. & Larsen, A. The contrasting effects of farm size on farm incomes and food production. Environ. Res. Lett. 14, 084024 (2019).
    Article  Google Scholar 

    47.
    Gong, Y., Baylis, K., Kozak, R. & Bull, G. Farmers’ risk preferences and pesticide use decisions: evidence from field experiments in China. Agric. Econ. 47, 411–421 (2016).
    Article  Google Scholar 

    48.
    Möhring, N., Wuepper, D., Musa, T. & Finger, R. Why farmers deviate from recommended pesticide timing: the role of uncertainty and information. Pest Manag. Sci. 76, 2787–2798 (2020).
    Article  CAS  Google Scholar 

    49.
    Larsen, A. E., Farrant, D. N. & MacDonald, A. J. Spatiotemporal overlap of pesticide use and species richness hotspots in California. Agric. Ecosyst. Environ. 289, 106741 (2020).
    CAS  Article  Google Scholar 

    50.
    Gavrilescu, M. Fate of pesticides in the environment and its bioremediation. Eng. Life Sci. 5, 497–526 (2005).
    CAS  Article  Google Scholar 

    51.
    Haan, N. L., Zhang, Y. & Landis, D. A. Predicting landscape configuration effects on agricultural pest suppression. Trends Ecol. Evol. 35, 175–186 (2020).
    Article  Google Scholar 

    52.
    Damalas, C. A. & Eleftherohorinos, I. G. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health 8, 1402–1419 (2011).
    CAS  Article  Google Scholar 

    53.
    Mullin, C. A., Fine, J. D., Reynolds, R. D. & Frazier, M. T. Toxicological risks of agrochemical spray adjuvants: organosilicone surfactants may not be safe. Front. Public Health 4, 320–328 (2016).
    Article  Google Scholar 

    54.
    Kniss, A. R. Long-term trends in the intensity and relative toxicity of herbicide use. Nat. Commun. 8, 14865–14867 (2017).
    CAS  Article  Google Scholar 

    55.
    Estrada, J. Mean-semivariance optimization: a heuristic approach. J. Appl. Financ. 18, 1–16 (2008).
    Article  Google Scholar 

    56.
    Finger, R., Dalhaus, T., Allendorf, J. & Hirsch, S. Determinants of downside risk exposure of dairy farms. Eur. Rev. Agric. Econ. 45, 641–674 (2018).
    Article  Google Scholar 

    57.
    Miranda, M. J. & Glauber, J. W. Providing crop disaster assistance through a modified deficiency payment program. Am. J. Agric. Econ. 73, 1233–1243 (1991).
    Article  Google Scholar 

    58.
    Wooldridge, J. M. Econometric Analysis of Cross Section and Panel Data (MIT Press, 2002).

    59.
    Cabas, J., Weersink, A. & Olale, E. Crop yield response to economic, site and climatic variables. Clim. Change 101, 599–616 (2009).
    Article  CAS  Google Scholar 

    60.
    Isik, M. & Devadoss, S. An analysis of the impact of climate change on crop yields and yield variability. Appl. Econ. 38, 835–844 (2006).
    Article  Google Scholar 

    61.
    Arellano, M. & Bond, S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 58, 277–297 (1991).
    Article  Google Scholar 

    62.
    Bellemare, M. F. & Wichman, C. J. Elasticities and the inverse hyperbolic sine transformation. Oxf. Bull. Econ. Stat. 82, 50–61 (2019).
    Article  Google Scholar 

    63.
    Conley, T. G. & Molinari, F. Spatial correlation robust inference with errors in location or distance. J. Econ. 140, 76–96 (2007).
    Article  Google Scholar 

    64.
    Hsiang, S. M. Temperatures and cyclones strongly associated with economic production in the Caribbean and Central America. Proc. Natl Acad. Sci. USA 107, 15367–15372 (2010).
    CAS  Article  Google Scholar 

    65.
    Fetzer, T. Can Workfare Programs Moderate Conflict? Evidence from India The Warwick Economics Research Paper Series (TWERPS) 1220 (University of Warwick, Department of Economics, 2019); https://ideas.repec.org/p/wrk/warwec/1220.html More

  • in

    Vibrational modes of water predict spectral niches for photosynthesis in lakes and oceans

    1.
    Engelmann, T. W. Über Sauerstoffausscheidung von Pflanzenzellen im Mikrospektrum. Bot. Zeit. 40, 419–426 (1882).
    Google Scholar 
    2.
    Engelmann, T. W. Farbe und assimilation. Bot. Zeit. 41, 1–29 (1883).
    Google Scholar 

    3.
    Stomp, M. et al. Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432, 104–107 (2004).
    CAS  Google Scholar 

    4.
    Stomp, M., Huisman, J., Stal, L. J. & Matthijs, H. C. P. Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME J. 1, 271–282 (2007).
    CAS  Google Scholar 

    5.
    Pick, F. R. The abundance and composition of freshwater picocyanobacteria in relation to light penetration. Limnol. Oceanogr. 36, 1457–1462 (1991).
    CAS  Google Scholar 

    6.
    Vörös, L., Callieri, C., Balogh, K. V. & Bertoni, R. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia 369–370, 117–125 (1998).
    Google Scholar 

    7.
    Stomp, M. et al. Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol. Lett. 10, 290–298 (2007).
    Google Scholar 

    8.
    Ting, C. S., Rocap, G., King, J. & Chisholm, S. W. Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol. 10, 134–142 (2002).
    CAS  Google Scholar 

    9.
    Grébert, T. et al. Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. Proc. Natl Acad. Sci. USA 115, E2010–E2019 (2018).
    Google Scholar 

    10.
    Luimstra, V. M., Verspagen, J. M. H., Xu, T., Schuurmans, J. M. & Huisman, J. Changes in water color shift competition between phytoplankton species with contrasting light-harvesting strategies. Ecology 101, e02951 (2020).
    PubMed  PubMed Central  Google Scholar 

    11.
    Mobley, C. D. Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).

    12.
    Kirk, J. T. O. Light and Photosynthesis in Aquatic Ecosystems 3rd edn (Cambridge Univ. Press, 2011).

    13.
    Dall’Olmo, G., Westberry, T. K., Behrenfeld, M. J., Boss, E. & Slade, W. H. Significant contribution of large particles to optical backscattering in the open ocean. Biogeosciences 6, 947–967 (2009).
    Google Scholar 

    14.
    Morel, A. et al. Optical properties of the “clearest” natural waters. Limnol. Oceanogr. 52, 217–229 (2007).
    CAS  Google Scholar 

    15.
    Pegau, W. S., Gray, D. & Zaneveld, J. R. Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity. Appl. Opt. 36, 6035–6046 (1997).
    CAS  Google Scholar 

    16.
    Sogandares, F. M. & Fry, E. S. Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements. Appl. Opt. 36, 8699–8709 (1997).
    CAS  Google Scholar 

    17.
    Pope, R. M. & Fry, E. S. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt. 36, 8710–8723 (1997).
    CAS  Google Scholar 

    18.
    Mason, J. D., Cone, M. T. & Fry, E. S. Ultraviolet (250–550 nm) absorption spectrum of pure water. Appl. Opt. 55, 7163–7172 (2016).
    CAS  Google Scholar 

    19.
    Mobley, C. D. & Sundman, L. K. HydroLight 5.3—EcoLight 5.3 (Sequoia Scientific Inc., 2016).

    20.
    Sathyendranath, S., Brewin, R. J., Jackson, T., Mélin, F. & Platt, T. Ocean-colour products for climate-change studies: what are their ideal characteristics? Remote Sens. Environ. 203, 125–138 (2017).
    Google Scholar 

    21.
    Neeley, A. R. & Mannino, A. (eds) IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation, Volume 1.0. Inherent Optical Property Measurements and Protocols: Absorption Coefficient (IOCCG, 2018).

    22.
    Farrant, G. K. et al. Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proc. Natl Acad. Sci. USA 113, E3365–E3374 (2016).
    CAS  Google Scholar 

    23.
    Chisholm, S. W. et al. Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch. Microbiol. 157, 297–300 (1992).
    CAS  Google Scholar 

    24.
    Partensky, F., Hess, W. R. & Vaulot, D. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev. 63, 106–127 (1999).
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Moore, L. R., Goericke, R. & Chisholm, S. W. Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar. Ecol. Prog. Ser. 116, 259–275 (1995).
    Google Scholar 

    26.
    Tandeau de Marsac, N. Phycobiliproteins and phycobilisomes: the early observations. Photosynth. Res. 76, 193–205 (2003).
    Google Scholar 

    27.
    Six, C. et al. Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol. 8, R259 (2007).
    PubMed  PubMed Central  Google Scholar 

    28.
    Watanabe, M. & Ikeuchi, M. Phycobilisome: architecture of a light-harvesting supercomplex. Photosynth. Res. 116, 265–276 (2013).
    CAS  Google Scholar 

    29.
    Sanfilippo, J. E., Garczarek, L., Partensky, F. & Kehoe, D. M. Chromatic acclimation in cyanobacteria: a diverse and widespread process for optimizing photosynthesis. Annu. Rev. Microbiol. 73, 407–433 (2019).
    CAS  Google Scholar 

    30.
    Palenik, B. Chromatic adaptation in marine Synechococcus strains. Appl. Environ. Microbiol. 67, 991–994 (2001).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Stomp, M. et al. The timescale of phenotypic plasticity and its impact on competition in fluctuating environments. Am. Nat. 172, E169–E185 (2008).
    Google Scholar 

    32.
    Hirose, Y. et al. Diverse chromatic acclimation processes regulating phycoerythrocyanin and rod-shaped phycobilisome in cyanobacteria. Mol. Plant 12, 715–725 (2019).
    CAS  Google Scholar 

    33.
    Luimstra, V. M. et al. Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II. Photosynth. Res. 138, 177–189 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    34.
    Humily, F. et al. A gene island with two possible configurations is involved in chromatic acclimation in marine Synechococcus. PLoS ONE 8, e84459 (2013).
    PubMed  PubMed Central  Google Scholar 

    35.
    Haverkamp, T. et al. Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein operons. Environ. Microbiol. 10, 174–188 (2008).
    CAS  Google Scholar 

    36.
    Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).
    CAS  Google Scholar 

    37.
    Chen, F. et al. Phylogenetic diversity of Synechococcus in the Chesapeake Bay revealed by ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) large subunit gene (rbcL) sequences. Aquat. Microb. Ecol. 36, 153–164 (2004).
    Google Scholar 

    38.
    Somogyi, B., Felföldi, T., Tóth, L. G., Bernát, G. & Vörös, L. Photoautotrophic picoplankton: a review on their occurrence, role and diversity in Lake Balaton. Biol. Futur. https://doi.org/10.1007/s42977-020-00030-8 (2020).

    39.
    Kardinaal, W. E. A. et al. Competition for light between toxic and nontoxic strains of the harmful cyanobacterium Microcystis. Appl. Environ. Microbiol. 73, 2939–2946 (2007).
    PubMed  PubMed Central  Google Scholar 

    40.
    Bricaud, A., Claustre, H., Ras, J. & Oubelkheir, K. Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations. J. Geophys. Res. 109, C11010 (2004).
    Google Scholar 

    41.
    Monteith, D. T. et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450, 537–541 (2007).
    CAS  Google Scholar 

    42.
    Weyhenmeyer, G. A., Müller, R. A., Norman, M. & Tranvik, L. J. Sensitivity of freshwaters to browning in response to future climate change. Clim. Change 134, 225–239 (2016).
    Google Scholar 

    43.
    Kritzberg, E. S. Centennial‐long trends of lake browning show major effect of afforestation. Limnol. Oceanogr. Lett. 2, 105–112 (2017).
    Google Scholar 

    44.
    Leech, D. M., Pollard, A. I., Labou, S. G. & Hampton, S. E. Fewer blue lakes and more murky lakes across the continental U.S.: implications for planktonic food webs. Limnol. Oceanogr. 63, 2661–2680 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Ekvall, M. K. et al. Synergistic and species‐specific effects of climate change and water colour on cyanobacterial toxicity and bloom formation. Freshw. Biol. 58, 2414–2422 (2013).
    CAS  Google Scholar 

    46.
    Urrutia‐Cordero, P. et al. Phytoplankton diversity loss along a gradient of future warming and brownification in freshwater mesocosms. Freshw. Biol. 62, 1869–1878 (2017).
    Google Scholar 

    47.
    Wilken, S. et al. Primary producers or consumers? Increasing phytoplankton bacterivory along a gradient of lake warming and browning. Limnol. Oceanogr. 63, S142–S155 (2018).
    Google Scholar 

    48.
    Feuchtmayr, H. et al. Effects of brownification and warming on algal blooms, metabolism and higher trophic levels in productive shallow lake mesocosms. Sci. Tot. Environ. 678, 227–238 (2019).
    CAS  Google Scholar 

    49.
    Deininger, A., Faithfull, C. L. & Bergström, A. K. Phytoplankton response to whole lake inorganic N fertilization along a gradient in dissolved organic carbon. Ecology 98, 982–994 (2017).
    CAS  Google Scholar 

    50.
    Tan, X., Zhang, D., Duan, Z., Parajuli, K. & Hu, J. Effects of light color on interspecific competition between Microcystis aeruginosa and Chlorella pyrenoidosa in batch experiment. Environ. Sci. Pollut. Res. 27, 344–352 (2020).
    CAS  Google Scholar 

    51.
    Burson, A., Stomp, M., Greenwell, E., Grosse, J. & Huisman, J. Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community. Ecology 99, 1108–1118 (2018).
    Google Scholar 

    52.
    Dutkiewicz, S. et al. Dimensions of marine phytoplankton diversity. Biogeosciences 17, 609–634 (2020).
    Google Scholar 

    53.
    Johnson, Z. I. et al. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740 (2006).
    CAS  Google Scholar 

    54.
    Malmstrom, R. R. et al. Temporal dynamics of Prochlorococcus ecotypes in the Atlantic and Pacific Oceans. ISME J. 4, 1252–1264 (2010).
    Google Scholar 

    55.
    Lange, P. K. et al. Scratching beneath the surface: a model to predict the vertical distribution of Prochlorococcus using remote sensing. Remote Sens. 10, 847 (2018).
    Google Scholar 

    56.
    Wernand, M. R., van der Woerd, H. J. & Gieskes, W. W. C. Trends in ocean colour and chlorophyll concentration from 1889 to 2000, worldwide. PLoS ONE 8, e63766 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    57.
    Dutkiewicz, S. et al. Ocean colour signature of climate change. Nat. Commun. 10, 578 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Bricaud, A., Morel, A. & Prieur, L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol. Oceanogr. 26, 43–53 (1981).
    CAS  Google Scholar 

    59.
    Twardowski, M. S., Boss, E., Sullivan, J. M. & Donaghay, P. L. Modeling the spectral shape of absorption by chromophoric dissolved organic matter. Mar. Chem. 89, 69–88 (2004).
    CAS  Google Scholar 

    60.
    Babin, M. et al. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J. Geophys. Res. 108, 1–20 (2003).
    Google Scholar 

    61.
    Babin, M., Morel, A., Fournier-Sicre, V., Fell, F. & Stramski, D. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnol. Oceanogr. 48, 843–859 (2003).
    Google Scholar 

    62.
    Doxaran, D. et al. Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared. Limnol. Oceanogr. 54, 1257–1271 (2009).
    CAS  Google Scholar 

    63.
    Nechad, B., Ruddick, K. G. & Park, Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens. Environ. 114, 854–866 (2010).
    Google Scholar 

    64.
    Petzold, T. J. Volume Scattering Functions for Selected Ocean Waters (No. SIO-REF-72-78) (Scripps Institution of Oceanography, 1972).

    65.
    Morel, A. & Gentili, B. Diffuse reflectance of oceanic waters: its dependence on sun angle as influenced by the molecular scattering contribution. Appl. Opt. 30, 4427–4438 (1991).
    CAS  Google Scholar 

    66.
    Sathyendranath, S. et al. An ocean-colour time series for use in climate studies: the experience of the Ocean-Colour Climate Change Initiative (OC-CCI). Sensors 19, 4285 (2019).
    CAS  Google Scholar 

    67.
    Holtrop, T. et al. Data: vibrational modes of water predict spectral niches for photosynthesis in lakes and oceans. https://doi.org/10.6084/m9.figshare.c.5140601.v1 (2020).

    68.
    Sanfilippo, J. E. et al. Interplay between differentially expressed enzymes contributes to light color acclimation in marine Synechococcus. Proc. Natl Acad. Sci. USA 116, 6457–6462 (2019).
    CAS  Google Scholar  More

  • in

    Tree mode of death and mortality risk factors across Amazon forests

    School of Geography, Earth and Enviornmental Sciences, University of Birmingham, Birmingham, UK
    Adriane Esquivel-Muelbert & Thomas A. M. Pugh

    School of Geography, University of Leeds, Leeds, UK
    Adriane Esquivel-Muelbert, Oliver L. Phillips, Roel J. W. Brienen, Martin J. P. Sullivan, Timothy R. Baker, Emanuel Gloor, Aurora Levesley, Simon L. Lewis, Karina Liana Lisboa Melgaço Ladvocat, Gabriela Lopez-Gonzalez, Nadir Pallqui Camacho, Julie Peacock, Georgia Pickavance & David Galbraith

    Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
    Adriane Esquivel-Muelbert & Thomas A. M. Pugh

    School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
    Sophie Fauset

    Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
    Martin J. P. Sullivan

    International Master Program of Agriculture, National Chung Hsing University, Taichung, Taiwan
    Kuo-Jung Chao

    Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
    Ted R. Feldpausch

    Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
    Niro Higuchi, Adriano José Nogueira Lima & Carlos Quesada

    School of Mathematics, University of Leeds, Leeds, UK
    Jeanne Houwing-Duistermaat & Haiyan Liu

    Faculty of Natural Sciences, Department of Life, Imperial College London Sciences, London, UK
    Jon Lloyd

    Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
    Yadvinder Malhi & Simone Matias de Almeida Reis

    UNEMAT – Universidade do Estado de Mato Grosso PPG-Ecologia e Conservação, Campus de Nova Xavantina, Nova Xavantina, MT, Brazil
    Beatriz Marimon, Ben Hur Marimon Junior, Paulo Morandi, Edmar Almeida de Oliveira & Simone Matias de Almeida Reis

    Jardín Botánico de Missouri, Oxapampa, Peru
    Abel Monteagudo-Mendoza, Victor Chama Moscoso, Luis Valenzuela Gamarra & Rodolfo Vasquez Martinez

    Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
    Lourens Poorter, Frans Bongers, Marielos Peña-Claros & Pieter Zuidema

    Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, AC, Brazil
    Marcos Silveira

    Instituto de Investigaciones para el Desarrollo Forestal (INDEFOR), Universidad de Los Andes, Mérida, Venezuela
    Emilio Vilanova Torre & Julio Serrano

    University of California, Berkeley, CA, USA
    Emilio Vilanova Torre

    Escuela de Ciencias Agropecuarias y Ambientales, Universidad Nacional Abierta y a Distancia, Boyacá, Colombia
    Esteban Alvarez Dávila

    Fundación ConVida, Medellín, Colombia
    Esteban Alvarez Dávila

    Instituto de Investigaciones de la Amazonia Peruana, Iquitos, Peru
    Jhon del Aguila Pasquel, Gerardo A. Aymard C., Nallaret Davila Cardozo & Eurídice Honorio Coronado

    Instituto de Biodiversidade e Florestas, Universidade Federal do Oeste do Pará, Santarém, Brazil
    Everton Almeida

    Center for Tropical Conservation, Nicholas School of the Environment, University in Durham, Durham, NC, USA
    Patricia Alvarez Loayza

    Projeto Dinâmica Biológica de Fragmentos, Instituto Nacional de Pesquisas da Amazônia Florestais, Manaus, AM, Brazil
    Ana Andrade & José Luís Camargo

    National Institute for Space Research (INPE), São José dos Campos, SP, Brazil
    Luiz E. O. C. Aragão

    Museo de Historia Natural Noel Kempff Mercado, Universidad Autónoma Gabriel Rene Moreno, Santa Cruz de la Sierra, Bolivia
    Alejandro Araujo-Murakami & Marisol Toledo

    Wageningen Environmental Research, Wageningen University and Research, Wageningen, Netherlands
    Eric Arets

    Dirección de la Carrera de Biología, Universidad Autónoma Gabriel René Moreno, Santa Cruz de la Sierra, Bolivia
    Luzmila Arroyo

    INRAE, UMR EcoFoG, CNRS, Cirad, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, France
    Michel Baisie, Damien Bonal, Benoit Burban, Aurélie Dourdain, Maxime Rejou-Machain & Clement Stahl

    Department of Biological Sciences, International Center for Tropical Botany, Florida International University, Miami, FL, USA
    Christopher Baraloto

    Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil
    Plínio Barbosa Camargo

    Universidade Federal do Acre, Campus Floresta, Cruzeiro do Sul, Brazil
    Jorcely Barroso

    UR Forest & Societies, CIRAD, Montpellier, France
    Lilian Blanc

    Department of Biology, Utrecht, Netherlands
    René Boot

    Woods Hole Research Center, Falmouth, MA, USA
    Foster Brown

    Laboratório de Botânica e Ecologia Vegetal, Universidade Federal do Acre, Rio Branco, AC, Brazil
    Wendeson Castro

    Laboratoire Evolution et Diversite Biologique, CNRS, Toulouse, France
    Jerome Chave

    Inventory and Monitoring Program, National Park Service, Fort Collins, CO, USA
    James Comiskey

    Proyecto Castaña, Madre de Dios, Peru
    Fernando Cornejo Valverde

    Instituto de Geociências, Faculdade de Meteorologia, Universidade Federal do Para, Belém, Brazil
    Antonio Lola da Costa

    Department of Anthropology and Primate Molecular Ecology and Evolution Laboratory, University of Texas, Austin, TX, USA
    Anthony Di Fiore

    National Museum of Natural History, Smithsonian Institute, Washington, DC, USA
    Terry Erwin

    Universidad Nacional Jorge Basadre de Grohmann, Tacna, Peru
    Gerardo Flores Llampazo

    Museu Paraense Emílio Goeldi, Belém, Brazil
    Ima Célia Guimarães Vieira & Rafael Salomão

    Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
    Rafael Herrera

    IIAMA, Universitat Politécnica de València, València, Spain
    Rafael Herrera

    Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
    Isau Huamantupa-Chuquimaco

    Instituto Amazónico de Investigaciones Imani, Universidad Nacional de Colombia Sede Amazonia, Leticia, Colombia
    Eliana Jimenez-Rojas

    Agteca, Santa Cruz, Bolivia
    Timothy Killeen

    College of Science and Engineering, James Cook University, Cairns, QLD, Australia
    Susan Laurance & William Laurance

    Department of Geography, University College London, London, UK
    Simon L. Lewis

    Environmental Science and Policy, George Mason University, Fairfax, VA, USA
    Thomas Lovejoy

    Research School of Biology, Australian National University, Canberra, ACT, Australia
    Patrick Meir

    School of Geosciences, University of Edinburgh, Edinburgh, UK
    Patrick Meir

    Escuela de Ciencias Forestales, Unidad Académica del Trópico, Universidad Mayor de San Simón, Cochabamba, Bolivia
    Casimiro Mendoza

    Facultad de Ingeniería Ambiental, Universidad Estatal Amazónica, Puyo, Ecuador
    David Neill

    Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú
    Percy Nuñez Vargas, Nadir Pallqui Camacho & Javier Silva Espejo

    Universidad Autónoma del Beni José Ballivián, Trinidad, Bolivia
    Guido Pardo & Vincent Vos

    Universidad Regional Amazónica Ikiam, Ikiam, Ecuador
    Maria Cristina Peñuela-Mora

    Broward County Parks Recreation, Oakland Park, FL, USA
    John Pipoly

    Keller Science Action Center, Field Museum, Chicago, IL, USA
    Nigel Pitman

    Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
    Adriana Prieto & Agustín Rudas

    Institute of Research for Forestry Development (INDEFOR), Universidad de los Andes, Mérida, Venezuela
    Hirma Ramirez-Angulo

    Socioecosistemas y Cambio Climatico, Fundacion Con Vida, Medellín, Colombia
    Zorayda Restrepo Correa

    Centro de Conservacion, Investigacion y Manejo de Areas Naturales, CIMA Cordillera Azul, Lima, Peru
    Lily Rodriguez Bayona

    Universidade Federal Rural da Amazônia, Belém, Brazil
    Rafael Salomão & Natalino Silva

    Departamento de Biología, Universidad de La Serena, La Serena, Chile
    Javier Silva Espejo

    Guyana Forestry Commission, Georgetown, Guyana
    James Singh

    Federal University of Alagoas, Maceió, Brazil
    Juliana Stropp

    Institute for Conservation Research, Escondido, CA, USA
    Varun Swamy

    Institute for Transport Studies, University of Leeds, Leeds, UK
    Joey Talbot

    Biodiversity Dynamics, Naturalis Biodiversity Center, Leiden, The Netherlands
    Hans ter Steege

    Systems Ecology, Free University, De Boelelaan 1087, Amsterdam, Netherlands
    Hans ter Steege

    Department of Biology, University of Florida, Gainesville, FL, USA
    John Terborgh

    Iwokrama International Centre for Rainforest Conservation and Development, Georgetown, Guyana
    Raquel Thomas

    Universidad de los Andes, Mérida, Venezuela
    Armando Torres-Lezama

    School of Geography, University of Nottingham, Nottingham, UK
    Geertje van der Heijden

    Van Hall Larenstein University of Applied Sciences, Leeuwarden, Netherlands
    Peter van der Meer

    Van der Hoult Forestry Consulting, Leeuwarden, The Netherlands
    Peter van der Hout

    Núcleo de Estudos e Pesquisas Ambientais – Universidade Estadual de Campinas, Campinas, Brazil
    Simone Aparecida Vieira

    Herbario del Sur de Bolivia, Universidad de San Francisco Xavier de Chuquisaca, Sucre, Bolivia
    Jeanneth Villalobos Cayo

    Tropenbos International, Wageningen, Netherlands
    Roderick Zagt

    A.E.-M. and D.G. designed the study with contributions from O.L.P., R.J.W.B., S.F. and M.J.P.S. A.E.-M. carried out the analyses with inputs from D.G., O.L.P., R.J.W.B., S.F., M.J.P.S., J.H.-.D. and H.L. A.E.-M. wrote a first draft with contributions from D.G., M.J.P.S., T.A.M.P., S.F. and O.L.P. O.L.P., R.J.W.B., S.F., M.J.P.S., T.R.B., K.-J.C., T.R.F., N.H., Y.M., B.M., B.H.M.J., A.M.-M., L.P., M.S., E.V.T., E.A.D., J.d.A.P., E.A., P.A.L., A.A., L.E.O.CA., A.A.-M., E.Arets, L.A., G.A.A.C., M.B., C.B., P.B.C., J.B., L.B., D.B., F.B., R.J.W.B., F.Brown, B.B., J.L.C., W.C., V.C.M., J.C., J.Comiskey, F.C.V., A.L.d.C., N.D.C., A.D.F., A.D., T.E., G.F.L., I.C.G.V., R.H., E.H.C., I.H.-C., E.J.-R., T.K., S.L., W.L., S.L.L., T.L., P.M., C.M., P.Morandi, D.N., A.J.N.L., P.N.V., E.A.d.O., N.P.C., G.Prado, J.Pipoly, M.P.-C., M.C.P.-M., N.P., A.P., C.Q., H.R.-A., S.M.d.A.R., M.R.-M., Z.R.C., L.R.B., A.R., R.S., J.S., J.S.E., N.S., J.Singh, C.S., J.Stroop, V.S., J.T., H.t.S., J.T., R.T., M.T., A.T.-L., L.V.G., G.v.d.H., P.v.d.M., P.v.d.H., R.V.M., S.A.V., J.V.C., V.V., R.Z. and P.Z. led field expeditions for data collection. O.L.P., J.L. and Y.M. conceived the RAINFOR forest plot network; D.G., E.G. and T.R.B. contributed to its development. O.L.P., R.J.W.B., T.R.F., T.R.B., A.M.‐M., L.E.O.C.A., E.A.D., B.M., B.H.M.J., N.H., E.V.T., J.C., E.G. and Y.M. coordinated data collection with the help of many co‐authors. O.L.P., T.R.B., S.L.L. and G.L.-G. conceived ForestPlots.net, and M.J.P.S., A.L., J.Peacock, G.P., K.L.L.M.L., D.G. and E.G. helped to develop it. All authors read and approved the manuscript (with important insights provided by O.L.P., L.P., H.t.S., T.E., W.C., S.M.d.A.R., E.G., E.A.d.O., P.M., M.J.P.S., D.B., G.v.d.H. and P.Z.). More

  • in

    Microevolution in our megadont relative

    1.
    Broom, R. Nature 142, 377–379 (1938).
    Article  Google Scholar 
    2.
    Grine, F. E. (ed.) Evolutionary History of the “Robust” Australopithecines (Aldine de Gruyter, 1988).

    3.
    Herries, A. I. R. & Adams, J. W. J. Hum. Evol. 65, 676–681 (2013).
    Article  Google Scholar 

    4.
    Pickering, R. et al. Nature 565, 226–229 (2019).
    CAS  Google Scholar 

    5.
    Herries, A. I. R. et al. Science 368, eaaw7293 (2020).
    CAS  Article  Google Scholar 

    6.
    Martin, J. M. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-01319-6 (2020).

    7.
    Wood, B. & Grabowski, M. in Macroevolution (eds Serrelli, E. & Gontier, N.) 345–376 (Springer, 2015).

    8.
    Vrba, E. S. in Paleoclimate and Evolution with Emphasis on Human Origins (eds Vrba, E. S. et al.) 24–45 (Yale Univ. Press, 1995).

    9.
    Potts, R. & Faith, J. T. J. Hum. Evol. 87, 5–20 (2015).
    Article  Google Scholar  More

  • in

    Designing profitable, resource use efficient and environmentally sound cereal based systems for the Western Indo-Gangetic plains

    Weather
    All the weather parameters measured during the study period were similar to the long-term averages (Fig. S1). During the study period (2014–2018), crops received an average annual rainfall of 763 mm, although its distribution was quite different amongst the rainy season (June–September) (Fig. S1). Rice/maize season in 2014, 2015, and 2016, 2017 received 485 (256 mm in September), 420 (255 mm in July), 533 (284 mm in August), and 695 mm (247 mm in June and 226 mm in September) of rainfall, respectively. In 1st year, the wheat crop receivedrainfall of 247 mm whereas in the 2nd, 3rd, and 4th years it was only 56, 96 and 78 mm, respectively.
    Crops and system productivity
    The management practices under different rice/maize-based scenarios influenced the crop grain yields over the 4-years (2014–2017) (Table 1). Scenarios with rice crops (Sc1-Sc3) did not differ in rice yields during the year 2014 and 2017, but CT direct seeded rice (Sc2) in the 2nd year (2015) and ZT direct seeded rice (Sc3) in the 3rd year (2016) produced 0.9 Mg ha−1 higher and 1.1 Mg ha−1 lower yield than farmers’ practice (Sc1), respectively (Table 1). Rice equivalent maize yields in CA-based scenarios (Sc6-Sc7) did not differ from scenarios with rice crops (Sc1-Sc3) in any of the study years. Rice equivalent maize yield of CA-based Sc5 with maize on PB, although was similar to Sc1 in all the years but was 1.41 Mg ha−1 lower than ZT-DSR (Sc3) in 1st year and 0.98 Mg ha−1 lower than CT-DSR (Sc2) in 2nd year. In contrast, rice equivalent yield (REY) of Sc4 with maize on fresh beds (FB) produced lower yields than one of the rice-based scenarios in three out of four years. These results suggest that maize performs better under CA-based management system than under conventional tillage system. Almost 5% higher yield of maize was recorded in the 1st year and 12–16% higher in the last three years under CA-based scenario (Sc7) compared to CT-based scenario (Sc4) and at par with Sc5. Based on the 4-years average, rice equivalent yield (REY) of Sc4 (maize on FB ) was 0.8 Mg ha−1 (12%) lower than Sc1 (business-as-usual) whereas other scenarios did not differ from each other in REY (Table 1).
    Table 1 Effect of different scenarios on grain yields (Mg ha−1) of rice, maize, wheat and systems during 4-years (2014–2018).
    Full size table

    The management practices influenced wheat grain yield over the years of experimentation (Table 1). Across study years, the grain yield of ZT wheat in CA-based scenario was either similar or higher than CT wheat. Results showed significantly (P  Sc2 = Sc3 (1753–1759 mm ha−1)  > S7 = Sc6 = Sc4 = S5 (289–365 mm ha−1) (Table 2). The same trend followed in all the study years except in the 4th year, where irrigation water input in Sc5 (maize on PB) was 109–154 mm ha−1 (22–28%) lower than Sc6 and Sc7 (ZT maize on flat beds). The amount of water applied in CT-based rice crop (Sc1; farmers’ practice) was significantly (P  Sc2 = Sc3  > Sc7  > Sc4-Sc6.
    Higher grain yield and low water use led to significantly (P  Sc4 (2.25 kg grain m−3)  > Sc7 (2.15 kg grain m−3)  > Sc6 (2.06 kg grain m−3), respectively compared to Sc1 (0.30 kg grain m−3) (Table 2). In wheat, CA-based management practices increased WPI by 9% (4-years’ mean) compared to Sc1 (1.21 kg grain m−3). CA-based management practices improved mean WPI by 23 and 438% in RW and MW system, respectively compared to Sc1 (0.42 kg grain m−3).
    Figure 3

    Effect of different scenarios on irrigation water productivity (kg grain m−3) of rice, maize, wheat and systems during 4-years (2014–2018).

    Full size image

    Energy use efficiency
    Energy equivalents for different agricultural operations used in the study are given in Table S2. The energy input and output (Tables S3 and S4), and energy use efficiency (EUE) of rice, maize, wheat and mungbean were influenced by the management practices and varied from year to year (Fig. 4). During rice/maize, higher EUE was observed in maize based scenarios (Sc4-Sc7) than in rice-based scenarios (Sc1-Sc3) (10.81–13.83 MJ MJ−1 versus 3.95–4.85 MJ MJ−1) (Table 2). Rice-based scenarios (Sc1-Sc3) did not differ in EUE. However, in maize-based scenarios (Sc4-Sc7), EUE of CA-based maize scenarios (Sc5-Sc7) was 17–28% higher than CT-based maize Sc4. Across years also, the same trend was observed with no difference in EUE of rice-based scenarios (Sc1-Sc3), whereas CA-based maize scenarios (Sc5-Sc7) had higher EUE than CT-based Sc4 (Table 2). In wheat crop, highest EUE was observed under CA-based scenarios (Sc2-Sc3 and Sc5-Sc7) compared to CT-based scenarios (Sc1 and Sc4) across all study years and based on four years’ average (9.26–10.05 MJ MJ−1 versus 7.44–7.84 MJ MJ−1), it is indicated that CA-based scenarios are more energy-efficient than those of CT-based scenarios (Fig. 4). In all the years, EUE of maize-based scenarios (Sc4-Sc7) were higher than rice-based scenarios (Sc1-Sc3) but within rice-based scenarios (Sc1-Sc3), results were more variable with higher EUE of CA-based Sc2 and Sc3 in 1st and 2nd year than CT-based scenarios (Sc1) but did not differ in 3rd and 4th year (Fig. 4). On system basis, the EUE of different scenarios decreased in the following order: Sc5 (11.92 MJ MJ−1)  > Sc6 = Sc7 (10.26–10.95 MJ MJ−1)  > Sc4 (9.25 MJ MJ−1)  > Sc3 = Sc2 (6.23–6.25 MJ MJ−1)  > Sc1 (5.05 MJ MJ−1) (Table 2). Maize-based scenarios (Sc5-Sc7) had 48 to 136% higher EUE than rice-based scenarios (Sc1-Sc3) suggesting maize-wheat based cropping systems were more efficient in energy use than rice–wheat based systems (Table 2). Scenario 3 (+ 24%) in RW and Sc5 (+ 136%) in MW system were the most energy-efficient among the different combinations of management practices in 4-years of study.
    Figure 4

    Effect of different scenarios on energy use efficiency of rice, maize, wheat and systems during 4-years (2014–2018).

    Full size image

    Methane (CH4) and nitrous oxide (N2O) emission from soil
    Methane (CH4) was emitted only from the rice plots (Table 3). The estimated mean value of CH4 emission (kg CO2 eq. ha−1) was 39% lower in CA-based rice scenarios without continuous flooding (Sc2 and Sc3) compared to CT-based Sc1 with continuous flooding for  > 1 month (Table 3).
    Table 3 Effect of different scenarios on GHGs emissions, C-sequestration and GWP of rice, maize, wheat and systems (based on 4-year average, 2014–18).
    Full size table

    N2O emission varied from 7 to 583 kg CO2 eq. ha−1 during the rice season (Table 3). The maximum amount of N2O emission (580–583 kg CO2 eq. ha−1) was observed in CA-based rice scenarios (Sc2-Sc3) followed by the maize-based scenarios (50–61 kg CO2 eq. ha−1) and was the lowest in CT-based rice Sc1 (7 kg CO2 eq. ha−1). The CA-based rice and maize scenarios produced 88 and 9 times higher N2O emission compared to Sc1, respectively. The N2O emission in the wheat season ranged between 50 to 102 kg CO2 eq. ha−1 (Table 3). The highest N2O emission was estimated with CA-based scenarios (Sc2-Sc3) (101–102 kg CO2 eq. ha−1) and followed by scenarios Sc5-Sc7 (72–73 kg CO2 eq. ha−1) and was lowest in CT-based scenarios Sc1 and Sc4 (50 kg CO2 eq. ha−1). The N2O emission in the wheat crop was increased by 57% under CA-based management scenarios compared to CT-based management scenario (Table 3). On system basis, CA-based rice and maize systems emitted 12 and 2.4 times more N2O compared to Sc1, respectively but methane emission was reduced to zero (Table 3). Overall CA-based cereal management systems emitted almost six-time higher N2O emission compared to farmers’ practice, irrespective of cropping systems (Table 3).
    GHG emission associated with residue burning (kg CO2 eq. ha−1)
    Crop residue burning is a common farmers’ practice in the western IGP. Therefore, GHG emission due to residue burning (kg CO2 eq. ha−1) was estimated with CT-based system of rice (Sc1; 278 kg CO2 eq. ha−1) and maize (Sc4; 69 kg CO2 eq. ha−1) cultivation (Table 3). In the case of wheat, the GHG emission due to residue burning (kg CO2 eq. ha−1) was estimated with CT-based cultivation of wheat in Sc1 (59 kg CO2 eq. ha−1) and Sc4 (40 kg CO2 eq. ha−1). No GHG emission (kg CO2 eq. ha−1) was considered due to burning where crop residues were retained/incorporated in CA-based management practices under different scenarios.
    GHG emission due to energy consumption (kg CO2 eq. ha−1)
    GHG emission due to energy consumption varied from 2414 to 2941, 1005 to 1126 and 1122 to 1299 kg CO2 eq. ha−1 in rice, maize, and wheat, respectively (Table 3). Compared to CA-based management scenarios, CT-based scenarios emitted more GHGs due to the higher consumption of electricity and diesel energy in all the crops and cropping systems. Compared to Sc1, GHG emission due to energy consumption from rice/maize season was 16–18% lower in CA-based rice scenarios (Sc2-Sc3) and 63–66% lower in maize-based scenarios (Sc4-Sc7) (Table 3). Overall, compared to Sc1, CA-based scenarios reduced ~ 17 and 63% of GHG emissions due to energy consumption in rice and maize across the years, respectively. Similarly, in wheat, CA-based scenarios (Sc2-Sc3 and Sc5-Sc7) reduced 10% GHG emission due to energy consumptions as compared to CT-based scenarios (Sc1 and Sc4). On the system basis, Sc2, Sc3, Sc4, Sc5, Sc6, and Sc7 recorded lower energy-related emission of GHG by 14, 15, 43, 50, 46, and 43% (4-years’ mean), respectively, relative to Sc1 (4240 kg CO2 eq. ha−1) (Table 3). Rice and maize-based systems recorded ~ 15 and 46% lower GHG related emissions, respectively compared to farmers’ practice (Sc1-4240 kg CO2 eq. ha−1).
    Carbon (C) sequestration
    The estimated C-sequestration was carried out in those scenarios where crop residues were retained/ incorporated during the study period. The C-sequestration varied with the amount of crop residue was recycled under different crops and cropping systems. Estimated C-sequestration in soil varied from 0 to − 625 kg CO2 eq. ha−1 in rice, 0 to − 908 CO2 eq. ha−1 in maize and 0 to − 1821 kg CO2 eq. ha−1 in wheat (Table 3). On system basis, the highest C-sequestration was estimated under CA-based management scenarios which varied in the following order of Sc7 (3039 kg CO2 eq. ha−1)  > Sc3 (2446 kg CO2 eq. ha−1)  > Sc2 (2086 kg CO2 ha−1)  > Sc6 (2070 kg CO2 eq. ha−1).
    Total global warming potential (GWP)
    Global warming potential (GWP) varied with crop management practices under different scenarios over the years. In 4-year, the total estimated GWP from rice was lower under the CA-based systems than CT-based system. On 4-year mean basis, the GWP under the CA-based rice (Sc2-Sc3) and maize (Sc5-Sc7) systems were lowered by ~ 28 and 90% compared to farmers’ practice (Sc1), respectively (Table 3). Within maize-based scenarios, the CA-based scenarios (Sc5-Sc7) reduced the GWP of maize by 77–83% compared to CT-based Sc4. The GWP in wheat varied from − 384 to 1409 kg CO2 eq. ha−1 based on 4 year average (Table 3). The 4 years mean GWP was significantly lower by 127–138% in CA-based RW system (Sc2-Sc3) and 96–99% in CA-based MW system (Sc5-Sc7) compared to Sc1, respectively (Table 3). The mean GWP of wheat under CT-based RW system (Sc1) was similar to CT-based MW (Sc1and Sc4) systems.
    The crop management practices under different scenarios influenced the total GWP (CO2 eq. ha−1) in both the cropping systems (RW and MW system) during the study years (Table 3). On 4-years system mean basis, GWP under Sc2, Sc3, Sc4, Sc5, Sc6, and Sc7 were 48, 54, 59, 96, 95, and 107% lower compared to Sc1 (farmers’ practice), respectively. In CA-based RW and MW systems, GWP was estimated lower by 50 and 89% compared to CT-based Sc1(6451 kg CO2 eq. ha−1), respectively. More

  • in

    Increased mosquito abundance and species richness in Connecticut, United States 2001–2019

    Summary statistics
    To date, The Connecticut Agricultural Experiment Station (CAES) has collected and tested 4,602,240 female mosquitoes comprised of 47 species in 8 genera. Approximately 98% of these collections were obtained from 92 trapping sites in 73 towns throughout the state, while the remainder of collections were from an additional 365 supplemental sites sampled between 1996 and 2007. Eighty-eight percent of collections come from CDC Light Traps, CDC Gravid Traps and Biogents BG Sentinel Traps (beginning in 2012). There have been several other collection methods used throughout the years that account for 11.6% of the mosquitoes collected (S. Table 1). Overall, there was considerable variation in mosquito abundance, surveillance effort, species richness/evenness, and the proportion of single species detections across CT (Fig. 1). One clear trend was that surveillance effort was greatest in CT’s human population centers (predominately CT’s southwestern and central counties) where WNV is commonly detected and along the CT-Rhode Island border where EEEV is most commonly detected (Fig. 1A). Another noticeable visual trend was that species evenness tends to be higher in the eastern portion of CT (Fig. 1B).
    Figure 1

    Maps of total mosquito abundance (log10 transformed) (A), total number of trap nights (A), average annual mosquito species richness (B), average annual mosquito species evenness (B), and average annual prevalence of single species detections (C) across 87 mosquito surveillance sites throughout Connecticut, U.S. sampled with ground level CDC CO2-baited light traps from 2001 to 2019. (A) Point sizes represent abundance while colors represent trap-nights; (B) point sizes represent species richness while colors represent species evenness; (C) point sizes represent prevalence of single species detections. (A–C) Solid black lines represent county political boundaries. The figure was created in R V 3.6.3 using the following packages: ggplot2 and maps.

    Full size image

    Objective 1: annual collections of mosquito populations among sites
    Our first objective was to identify spatial and temporal linear and nonlinear trends in mosquito abundance among sites. We also examined coarse-scale correlations between statewide (i.e., annual) and site-wide abundance and weather and land classification variables. All regression results and tables are provided as supporting information in Supporting Information: Regression Tables.
    Mosquito abundance
    Temporal regressions
    After accounting for trapping effort, regression parameters estimating the relationship between site-level mosquito abundance and year of collection were positive using generalized linear mixed effects models (GLMMs) (“Year”—Estimate 0.03, t-value 9.11) and generalized additive mixed effects models (GAMMs) (“Year”—Est. 0.77, t-value 2.7, p = 0.007), suggesting that site-level mosquito abundance has increased in CT since 2001 (Fig. 2A,B): this trend resulted in a predicted 60% increase in annual abundance from 2001 to 2019. While these regressions identified possible increasing trends in site-level abundance, they provided an overall poor-fit to the data: AIC scores from fixed effect GLMMs were higher than random effects-only models (ΔAIC 415.1). This poor model fit may be in part driven by directly modeling Year as a fixed continuous effect; Year as a random categorical effect may better capture variation in mosquito collections30. Despite large differences in AIC scores between fixed and random effects-only models, we detected a pattern of increasing intercept values when examining “Year” as a random effect (S. Fig. 1), providing further evidence of an increasing temporal trend in site-level mosquito abundance.
    Figure 2

    Average annual mosquito abundance (A), number of trap nights (B), mosquito species richness (C), mosquito species evenness (D), the annual correlation between mosquito species richness and evenness (E), and the prevalence of single mosquito species detections (F) across 87 mosquito surveillance sites throughout Connecticut, U.S. sampled with ground level CDC CO2-baited light traps from 2001 – 2019. For (A)–(D) and (F), points represent the average across all sites, solid lines represent the standard error of the average, and dashed lines are added to aid interpreting each plot as a time series. For (E), points represent the average across all sites while solid lines represent the 95% CI of the correlation point estimate. The figure was created in R V 3.6.3 using base functions.

    Full size image

    Spatial regressions
    After accounting for trapping effort, regression parameters estimating the relationship between site-level mosquito abundance and latitude/longitude were positive using a GLMM (“Latitude (centered)”—Est. 0.49, t-value 5.48; Longitude (centered)”—Est. 0.20, t-value 4.78), indicating that mosquito abundance tends to increase on a south to north and west to east gradient (which reflects the overall transition in land cover from developed to forested in CT). The best fitting fixed effect GAMM included Longitude by Latitude smoothing terms, which also predicted positive relationships between abundance and site coordinates (Smoothing term 1: Est. 0.24, p = 0.06; Smoothing term 2: Est. 0.05, p = 0.67). GAMM predictions of site-level mosquito abundance were considerably more complex than GLMM predictions, yet still supported the overall trend of increasing abundance from south to north and west to east (S. Fig. 2). Overall, the fixed effect GLMMs provided an extremely poor fit to the data compared to random effects-only GLMMs (Latitude—ΔAIC 1092.7; Longitude—ΔAIC 1099.8). These poor model fits may be in part driven by directly modeling coordinate (i.e., site) as a fixed continuous effect: GAMM predictions that account for nonlinear relationships between abundance and spatial location may provide a more appropriate fit to the data while site as a categorical random effect in the GLMMs may better capture variation in mosquito collections30.
    Weather correlations
    When comparing statewide annual mosquito abundance to weather variables, we found no correlations between summer temperatures, spring temperatures or precipitation. This was despite detecting a slight annual increase in temperatures across all three seasons examined (average daily temperature GLMM Est., Season/Summer: 0.05 °C, Prior Spring: 0.02 °C, Prior Winter: 0.07 °C) and a slight annual decline in within season and prior spring precipitation (total precipitation GLMM Est., Season/Summer: − 4.23 mm, Prior Spring: − 3.38 mm; Prior Winter: 2.22 mm) in CT since 2001. However, we did find a positive correlation between total summer precipitation and annual statewide mosquito abundance (r = 0.50, CI 0.07–0.78).
    Land cover correlations
    When comparing total site-wide abundance to land cover classifications, we found positive correlations between percent land cover categorized as barren (r = 0.22, CI 0.01–0.41), forested wetland (r = 0.34, 0.14–0.52), and non-forested wetland (r = 0.21, 0.004–0.41). We also found a negative association in total site-level abundance and percent land cover categorized as grass (r = − 0.35, − 0.52 to − 0.15).
    Species richness
    Temporal regressions
    After accounting for trapping effort, regression parameters estimating the relationship between site-level species richness and year of collection were positive using both GLMMs (“Year (centered)”—Est. 0.10, t-value 9.46) and GAMMs (“Year”—Est. 1.78, t-value 1.93, p = 0.05) (Fig. 2C): this trend resulted in a predicted 10% increase in site-level species richness from 2001 to 2019. Overall, fixed effects GLMMs of species richness provided an overall poor fit to the data when compared to a random effects-only model (ΔAIC 319.37). However, we did observe a pattern of increasing intercept values when examining “Year” as a random effect (S. Fig. 3), further indicating that mosquito species richness has annually increased across sites in CT since 2001.
    Spatial regressions
    Similar to models of site-level mosquito abundance, GLMMs of species richness by coordinate predicted positive relationships (Latitude (centered): Est. 0.63, t-value = 2.11; Longitude (centered): Est. 1.26, t-value = 9.34), indicating the species richness tends to increase along a south to north, west to east gradient. The best fitting GAMM included Longitude by Latitude smoothing terms, which also predicted positive relationships between species richness and site coordinate (Smoothing term 1: Est. 1.45, p = 0.0001; Smoothing term 2: Est. 0.70, p = 0.05). The GAMM further predicted a complex relationship of species richness among sites, yet overall predicted richness was lowest in the southwest/central portions of CT (areas of greatest development) and highest along coastal/eastern portions of CT (areas of non-forested and forested wetlands) (S. Fig. 4). The fixed effect GLMMs provided very poor fits to the data compared with random effects-only models (Latitude: ΔAIC 953.01; Longitude: ΔAIC 871.93; see the above results for Site-level collections: spatial regressions for possible reasons for these poor fits).
    Weather correlations
    We found no correlations of note between mosquito species richness and seasonal temperatures and precipitation.
    Land cover correlations
    Positive correlations of note for site-level species richness included: coniferous forest (r = 0.25, 0.04–0.43), deciduous forest (r = 0.56, 0.40–0.69), and forested wetland (r = 0.43, 0.23–0.58). Negative correlations included: barren (r = − 0.30, − 0.48 to − 0.10), developed (r = − 0.66, − 0.77 to − 0.53), grass (r = − 0.24, − 0.43 to − 0.03), and open water (r = − 0.31, − 0.49 to − 0.11).
    Species evenness
    Temporal regressions
    Trends in species evenness were negative using both GLMMs (“Year”—Est. − 0.01, t-value − 7.86) and GAMMs (“Year (centered)”—Est. − 0.04, t-value − 5.58, p = 0.000) (Fig. 2D): this trend resulted in a predicted 12% decrease in site-level species evenness from 2001 to 2019. Similar to fixed effects GLMMs of species richness, fixed effects GLMMs of species evenness were less informative than a random effects-only model (ΔAIC 66.5). Declining intercept values were evident when evaluating “Year” as a random effect (S. Fig. 5), further supporting an overall annual decline in species evenness estimates among sites.
    Spatial regressions
    Similar to spatial models of species richness, GLMMs predicted positive relationships between species evenness and coordinate (Latitude (centered): Est. 0.36, t-value = 7.63; Longitude (centered): Est. 0.18, t-value = 8.54); the best fitting GAMM, which included Longitude by Latitude smoothing terms, also predicted positive relationships (Smoothing term 1: Est. 0.12, p = 0.01; Smoothing term 2: Est. 0.16, p = 0.004). GAMM predictions of site-level species evenness were equally complex to predictions of abundance and richness, and predicted evenness to be highest in southcentral and eastern CT (S. Fig. 6). Fixed effect GLMMs provided very poor fits to the data compared with random effects-only models (Latitude: ΔAIC 502.6; Longitude: ΔAIC 488.4; see the above results for Site-level collections: spatial regressions for possible reasons for these poor fits).
    Weather correlations
    We did find a negative correlation between statewide prior spring minimum temperatures and mosquito species evenness (r = − 0.49, − 0.77 to − 0.04).
    Land cover correlations
    Positive correlations of note for species evenness included: deciduous forest (r = 0.46, 0.28–0.61) and forested wetland (r = 0.22, 0.01–0.41). Negative correlations included: barren (r = − 0.37, − 0.54 to − 0.18), developed (r = − 0.45, − 0.60 to − 0.26), and open water (r = − 0.32, − 0.50 to − 0.12).
    Correlations between abundance, richness, and evenness
    The relationships between abundance, richness, and evenness varied depending on the scale examined. Across all years of data at the site-level, the correlation between abundance and richness was positive (r = 0.53, 0.36–0.67), the correlation between abundance and evenness as negative (r = − 0.35, − 0.52 to − 0.15), and there was no correlation of note between richness and evenness. Across all sites at the year-level, there were no correlations of note between abundance, richness, and evenness. Annual statewide correlations between richness and evenness (RRE) were positive for all years yet there was no noticeable annual trend in these correlations (Fig. 2E). Spatially, the average site-level RRE was 0.15 (± 0.03 SE). Furthermore, the magnitude and direction of RRE tended to increase on a south to north gradient (r = 0.31, 0.11–0.49), yet there was no apparent relationship in RRE along a west to east gradient (S. Fig. 7). We did detect a positive correlation between RRE and average maximum spring temperatures (r = 0.46, 0.01–0.76) as well as a positive correlation between RRE and percent land cover classified as coniferous forest (r = 0.23, 0.02–0.42).
    Single detection events
    Single detection events were defined as the prevalence of single species detections at a site (i.e., number of species with a single pool divided by species richness). Changes in single species detections could indirectly indicate range expansion among species (i.e., the prevalence of single detections decreases with time) and/or areas of unique mosquito diversity (i.e., the prevalence of single detections changes across space).
    Temporal regressions
    We detected no overall pattern of increasing/decreasing annual prevalence of single-species detections among sites (GLMM, “Year”—Est. − 0.13, t-value = − 1.12, p = 0.22; GAMM, “Year”—Est. 0.02, t value = − 0.31, p = 0.75) (Fig. 2F). These models were considered equivalent to a random effects-only GLMM (ΔAIC  More

  • in

    Ecological and social constraints combine to promote evolution of non-breeding strategies in clownfish

    1.
    Emlen, S. T. In Behavioural Ecology: An Evolutionary Approach (eds Krebs, J. R. & Davies, N. B.) 301–337 (Blackwell, Oxford, 1991).
    2.
    Hamilton, W. D. The evolution of social behavior. J. Theor. Biol. 7, 1–52 (1964).
    CAS  Article  Google Scholar 

    3.
    West-Eberhard, M. J. The evolution of social behavior by kin selection. Q. Rev. Biol. 50, 1–33 (1975).
    Google Scholar 

    4.
    Emlen, S. T. & Wrege, P. H. A test of alternate hypotheses for helping behavior in white-fronted bee-eaters of Kenya. Behav. Ecol. Sociobiol. 25, 303–319 (1989).
    Article  Google Scholar 

    5.
    Reeve, H. K., Westneat, D. F., Noon, W. A., Sherman, P. W. & Aquadro, C. F. DNA fingerprinting’ reveals high levels of inbreeding in colonies of the eusocial naked mole- rat. Proc. Natn. Acad. Sci. 87, 2496–2500 (1990).
    CAS  Article  Google Scholar 

    6.
    Brouwere, L., Heg, D. & Taborsky, M. Experimental evidence for helper effects in a cooperatively breeding fish. Behav. Ecol. 16, 667–673 (2005).
    Article  Google Scholar 

    7.
    Wiley, R. H. & Rabenold, K. N. The evolution of cooperative breeding by delayed reciprocity and queuing for favorable social positions. Evolution 38, 97–107 (1984).
    Article  Google Scholar 

    8.
    Kokko, H. & Johnstone, R. A. Social queuing in animal societies: a dynamic model of reproductive skew. Proc. R. Soc. Lond. B 266, 571–578 (1999).
    Article  Google Scholar 

    9.
    Woolfenden, G. E. & Fitzpatrick, J. V. The inheritance of territory in group-breeding birds. Bioscience 28, 104–108 (1978).
    Article  Google Scholar 

    10.
    Creel, S. R. & Waser, P. M. Inclusive fitness and reproductive strategies in dwarf mongooses. Behav. Ecol. 5, 339–348 (1994).
    Article  Google Scholar 

    11.
    Balshine-Earn, S., Neat, F., Reid, H. & Taborsky, M. Paying to stay or paying to breed? Field evidence for directbenefits of helping in a cooperatively breeding fish. Behav. Ecol. 9, 432–438 (1998).
    Article  Google Scholar 

    12.
    Emlen, S. T. The evolution of helping. I. an ecological constraints model. Am. Nat. 119, 29–53 (1982).
    Article  Google Scholar 

    13.
    Hatchwell, B. J. & Komoder, J. Ecological constraints, life history traits and the evolution of cooperative breeding. Anim. Behav. 59, 1079–1086 (2000).
    CAS  Article  Google Scholar 

    14.
    Komdeur, J. Importance of habitat saturation and territory quality for evolution of cooperative breeding in the Seychelles warbler. Nature 358, 493–495 (1992).
    Article  Google Scholar 

    15.
    Faulkes, C. G. et al. Ecological constraints drive social evolution in the Africa mole rats. Proc. R. Soc. B 264, 1619–1627 (1997).
    CAS  Article  Google Scholar 

    16.
    Bergmüller, R., Heg, D. & Taborsky, M. Helpers in a cooperatively breeding cichlid stay and pay or disperse and breed, depending on ecological constraints. Proc. R. Soc. B 272, 325–331 (2005).
    Article  Google Scholar 

    17.
    Koenig, W. D. & Pitelka, F. A. Relatedness and inbreeding avoidance: Counterploys in the communally nesting acorn woodpecker. Science 206, 1103–1105 (1979).
    CAS  Article  Google Scholar 

    18.
    Cant, M. A., Hodge, S. J., Bell, M. B. V., Gilchrist, J. S. & Nichols, H. J. Reproductive control via eviction (but not the threat of eviction) in banded mongooses. Proc. R. Soc. B 277, 2219–2226 (2010).
    Article  Google Scholar 

    19.
    Dey, C. J., Tan, J. Q. Y., O’Connor, C. M., Reddon, A. R. & Caldwell, R. J. Dominance network structure across reproductive contexts in the cooperatively breeding cichlid fish Neolamprologus pulcher. Curr. Zool. 61, 45–54 (2015).
    Article  Google Scholar 

    20.
    Cant, M. A. The role of threats in animal cooperation. Proc. R. Soc. B 278, 170–178 (2011).
    Article  Google Scholar 

    21.
    Sherman, P. W., Lacey, E. A., Reeve, H. K. & Keller, L. Forum: The eusociality continuum. Behav. Ecol. 6, 102–108 (1995).
    Article  Google Scholar 

    22.
    Hing, M. L., Klanten, O. S., Dowton, M. & Wong, M. Y. L. The right tools for the job: cooperative breeding theory and an evaluation of the methodological approaches to understanding the evolution and maintenance of sociality. Front. Ecol. Evol. 5, 100 (2017).
    Article  Google Scholar 

    23.
    Fricke, H. & Fricke, S. Monogamy and sex change by aggressive dominance in coral reef fish. Nature 266, 830–832 (1977).
    CAS  Article  Google Scholar 

    24.
    Buston, P. M. Size and growth modification in clownfish. Nature 424, 145–146 (2003).
    CAS  Article  Google Scholar 

    25.
    Buston, P. M. & Balshine, S. Cooperating in the face of uncertainty: a consistent framework for understanding the evolution of cooperation. Behav. Process. 76, 152–159 (2007).
    Article  Google Scholar 

    26.
    Kokko, H., Johnstone, R. A. & Wright, J. The evolution of parental and alloparental effort in cooperatively breeding groups: when should helpers pay to stay? Behav. Ecol. 13, 291–300 (2002).
    Article  Google Scholar 

    27.
    Buston, P. M., Bogdanowicz, S. M., Wong, A. & Harrison, R. G. Are clownfish groups composed of relatives? Analysis of microsatellite DNA variation in Amphiprion percula. Mol. Ecol. 16, 3671–3678 (2007).
    CAS  Article  Google Scholar 

    28.
    Buston, P. M. Does the presence of non-breeders enhance the fitness of breeders? An experimental analysis in the clown anemonefish Amphiprion percula. Behav. Ecol. Sociobiol. 57, 23–31 (2004).
    Article  Google Scholar 

    29.
    Buston, P. M. Territory inheritance in the clown anemonefish. Proc. R. Soc. B (Suppl.) 271, S252–S254 (2004).
    Google Scholar 

    30.
    Mariscal, R. N. The nature of the symbiosis between Indo-Pacific anemone fish and seaanemones. Mar. Biol. 6, 58–65 (1970).
    Article  Google Scholar 

    31.
    Verwey, J. Coral reef studies. I. The symbiosis between damselfishesand sea anemones in Batavia Bay. Treubia 12, 305–366 (1930).
    Google Scholar 

    32.
    Fautin, D. G. The anemonefish symbiosis: what is known and what is not. Symbiosis 10, 23–46 (1991).
    Google Scholar 

    33.
    Elliott, J. K., Elliott, J. M. & Mariscal, R. N. Host selection, location and association behaviors of anemonefishes in field settlement experiments. Mar. Biol. 122, 377–389 (1995).
    Article  Google Scholar 

    34.
    Elliott, J. & Mariscal, R. Coexistence of nine anemonefish species: differential host and habitat utilization, size and recruitment. Mar. Biol. 138, 23–36 (2001).
    Article  Google Scholar 

    35.
    Buston, P. M. Forcible eviction and prevention of recruitment in the clown anemonefish. Behav. Ecol. 14, 576–582 (2003).
    Article  Google Scholar 

    36.
    Almany, G. et al. Larval fish dispersal in a coral-reef seascape. Nat. Ecol. Evol. 1, 0148 (2017).
    Article  Google Scholar 

    37.
    Buston, P. M. & Garcia, M. B. An extraordinary life span estimate for the clown anemonefish Amphiprion percula. J. Fish. Biol. 70, 1710–1719 (2007).
    Article  Google Scholar 

    38.
    Buston, P. M. Mortality is associated with social rank in the clown anemonefish (Amphiprion percula). Mar. Biol. 143, 811–815 (2003).
    Article  Google Scholar 

    39.
    Eibl-Eibesfeldt, I. Beobachtungen und Versuche an Anemonenfischen (Amphiprion) der Maldiven und der Nicobaren. Z. Tierpsychol. 17, 1–10 (1960).
    Article  Google Scholar 

    40.
    Moyer, J. T. & Nakazono, A. Protandrous hermaphroditism in six species of the anemonefish genus Amphiprion in Japan. Jpn J. Ichthyol. 25, 101–106 (1978).
    Google Scholar 

    41.
    Buston, P. M. & Cant, M. A. A new perspective on size hierarchies in nature: patterns, causes and consequences. Oecologia 149, 362–372 (2006).
    Article  Google Scholar 

    42.
    Wong. M.Y. Ecological constraints and benefits of philopatry promote group-living in a social but non-cooperatively breeding fish. Proc. R. Soc. B 277, 353–358 (2010).

    43.
    Kokko, H., Johnstone, R. A. & Clutton-Brock, T. H. The evolution of cooperative breeding through group augmentationProc. R. Soc. Lond. B. 268, 187–196 (2001).
    CAS  Article  Google Scholar 

    44.
    Bourke, A. F. G. Principles of Social Evolution (Oxford University Press, 2011).

    45.
    Nonacs, P. Go high or go low? Adaptive evolution of high and low relatedness societies in social hymenoptera. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00087 (2017)

    46.
    Grinsted, L. & Field, J. Market forces influence helping behaviour in cooperatively breeding paper wasps. Nat. Commun. 8, 13750 (2017).
    CAS  Article  Google Scholar 

    47.
    Wong, Y. L. M., Buston, P. M., Munday, P. L. & Jones, G. P. The threat of punishment enforces peaceful cooperation and stabilizes queues in a coral-reef fish. Proc. Biol. Sci. USA 274, 1093–1099 (2007).
    Google Scholar 

    48.
    Rueger, T. et al. Reproductve control via the threat of eviction in the clown anemonefish. Proc. R. Soc. B. 285, 20181295 (2018).
    Article  Google Scholar 

    49.
    Barbasch, T. et al. Substantial plasticity of reproduction and parental care in response to local resource availability. Oikos https://doi.org/10.1111/oik.07674 (2020).

    50.
    Salles, O. C. et al. Strong habitat and weak genetic effects shape the lifetime reproductive success in a wild clownfish population. Ecol. Lett. 23, 265–273 (2020).
    Article  Google Scholar 

    51.
    Holbrook, S. J. & Schmitt, R. J. Growth, reproduction and survival of a tropical sea anemone (Actiniaria): benefits of hosting anemone fish. Coral Reefs 24, 67–73 (2005).
    Article  Google Scholar 

    52.
    Cleveland, A., Verde, E. A. & Lee, R. W. Nutritional exchange in a tropical tripartite symbiosis: direct evidence for the transfer of nutrients from anemonefish to host anemone and zooxanthellae. Mar. Biol. 158, 589–602 (2011).
    Article  Google Scholar 

    53.
    Porat, D. & Chadwick-Furman, N. E. Effects of anemonefish on giant sea anemones: expansion behavior, growth, and survival. Hydrobiologia 530, 513–520 (2004).
    Google Scholar 

    54.
    Réale, D., Reader, S. M., Sol, D., McDougall, P. T. & Dingemanse, N. J. Integrating animal temperament within ecology and evolution. Biol. Rev. Camb. Philos. Soc. 82, 291–318 (2007).
    Article  Google Scholar 

    55.
    Schmiege, P. F. P., D’Aloia, C. C. & Buston P. M. Anemonefish personalities influence the strength of mutualistic interactions with host sea anemones. Mar Biol. https://doi.org/10.1007/s00227-016-3053-1 (2017).

    56.
    Barbasch, T. A. & Buston, P. M. Plasticity and personality of parental care in the clown anemonefish. Anim. Behav. 136, 65–73 (2018).
    Article  Google Scholar 

    57.
    Wong, M. Y. L. et al. Brief communication: consistent behavioural traits and behavioural syndromes in pairs of the false clown anemonefish Amphiprion ocellaris. J. Fish. Biol. 83, 207–213 (2013).
    CAS  Article  Google Scholar 

    58.
    Muthoo, A. A non-technical introduction to bargaining theory. World Econ. 1, 145–166 (2000).
    Google Scholar 

    59.
    Cant, M. A. & Johnstone, R. A. How threats influence the evolutionary resolution of within-group conflict. Am. Nat. 173, 759-771 (2009).

    60.
    Buston, P. M. & Zink, A. G. Reproductive skew and the evolution of conflict resolution: a synthesis of transactional and tug-of-war models. Behav. Ecol. 20, 672–684 (2009).
    Article  Google Scholar 

    61.
    Dixson, D. L. et al. Coral reef fish smell leaves to find island homes. Proc. R. Soc. Lond. B Biol. Sci. 275, 2831–2839 (2008).
    Google Scholar 

    62.
    Dixson, D. L. et al. Experimental evaluation of imprinting and the role innate preference plays in habitat selection in a coral reef fish. Oecologia 174, 99–107 (2014).
    Article  Google Scholar  More

  • in

    Climate reverses directionality in the richness–abundance relationship across the World’s main forest biomes

    1.
    Wright, A. J., Wardle, D. A., Callaway, R. & Gaxiola, A. The overlooked role of facilitation in biodiversity experiments. Trends Ecol. Evol. 32, 383–390 (2017).
    Article  PubMed  Google Scholar 
    2.
    Pacala, S. W. & Levin, S. A. Biologically generated spatial pattern and the coexistence of competing species. In Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions (Eds Tilman, D. and Kareiva, P.) (Princeton University Press, Princeton, NJ, 1997).

    3.
    Liang, J. et al. Positive biodiversity–productivity relationship predominant in global forests. Science 354, aaf8957 (2016).

    4.
    Poorter, L. et al. Biodiversity and climate determine the functioning of Neotropical forests. Glob. Ecol. Biogeogr. 26, 1423–1434 (2017).
    Article  Google Scholar 

    5.
    Ratcliffe, S. et al. Modes of functional biodiversity control on tree productivity across the European continent. Glob. Ecol. Biogeogr. 25, 251–262 (2016).
    Article  Google Scholar 

    6.
    Scherer-Lorenzen, M. & Schulze, E. D. Forest Diversity and Function: Temperate and Boreal Systems, Vol. 176 (Springer Science & Business Media, 2005).

    7.
    Paquette, A. & Messier, C. The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob. Ecol. Biogeogr. 20, 170–180 (2011).
    Article  Google Scholar 

    8.
    Liu, X. et al. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. R. Soc. B. 285, 20181240 (2018).
    Article  PubMed  Google Scholar 

    9.
    Holzwarth, F., Rüger, N. & Wirth, C. Taking a closer look: disentangling effects of functional diversity on ecosystem functions with a trait-based model across hierarchy and time. R. Soc. Open Sci. 2, 140541 (2015).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    10.
    Bongers, F. J. et al. Growth–trait relationships in subtropical forest are stronger at higher diversity. J. Ecol. 108, 256–266 (2020).
    Article  Google Scholar 

    11.
    Adair, E. C., Hooper, D. U., Paquette, A. & Hungate, B. A. Ecosystem context illuminates conflicting roles of plant diversity in carbon storage. Ecol. Lett. 21, 1604–1619 (2018).
    Article  Google Scholar 

    12.
    Aponte, C. et al. Structural diversity underpins carbon storage in Australian temperate forests. Glob. Ecol. Biogeogr. 29, 789–802 (2020).
    Article  Google Scholar 

    13.
    Waide, R. B. et al. The relationship between productivity and species richness. Annu. Rev. Ecol. Evol. Syst. 30, 257–300 (1999).
    Article  Google Scholar 

    14.
    Dormann, C. F., Schneider, H. & Gorges, J. Neither global nor consistent: a technical comment on the tree diversity-productivity analysis of Liang et al. (2016). BioRxiv, 524363 (2019).

    15.
    Srivastava, D. S. & Lawton, J. H. Why more productive sites have more species: an experimental test of theory using tree-hole communities. Am. Nat. 152, 510–529 (1998).
    CAS  Article  PubMed  Google Scholar 

    16.
    Gaston, K. J. Global patterns in biodiversity. Nature 405, 220 (2000).
    CAS  Article  PubMed  Google Scholar 

    17.
    McGlynn, T. P., Weiser, M. D. & Dunn, R. R. More individuals but fewer species: testing the ‘more individuals hypothesis’ in a diverse tropical fauna. Biol. Lett. 6, 490–493 (2010).
    Article  PubMed  PubMed Central  Google Scholar 

    18.
    Yee, D. A. & Juliano, S. A. Abundance matters: a field experiment testing the more individuals hypothesis for richness–productivity relationships. Oecologia 153, 153–162 (2007).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    19.
    Storch, D., Bohdalková, E. & Okie, J. The more‐individuals hypothesis revisited: the role of community abundance in species richness regulation and the productivity–diversity relationship. Ecol. Lett. 21, 920–937 (2018).
    Article  Google Scholar 

    20.
    Ratcliffe, S. et al. Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecol. Lett. 20, 1414–1426 (2017).
    Article  PubMed  Google Scholar 

    21.
    Zhai, P., Pörtner, H. O., & Roberts, D. (Eds). Summary for policymakers. In: global warming of 1.5 °C. An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways. The Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, 32 (2018).

    22.
    Shipley, B. Testing causal explanations in organismal biology: causation, correlation and structural equation modelling. Oikos 86, 374–382 (1999).
    Article  Google Scholar 

    23.
    Yoda, K., Kira, T., Ogawa, H. & Hozami, K. Self-thinning in overcrowded pure stands under cultivated and natural conditions. J. Biol. Osaka City Univ. 14, 107–129 (1963).
    Google Scholar 

    24.
    Westoby, M. The self-thinning rule. Adv. Ecol. Res. 14, 167–225 (1984).
    Article  Google Scholar 

    25.
    Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought‐induced forest dieback. Glob. Change Biol. 23, 3742–3757 (2017).
    ADS  Article  Google Scholar 

    26.
    Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).
    Article  Google Scholar 

    27.
    Schluter, D. Experimental evidence that competition promotes divergence in adaptive radiation. Science 266, 798–801 (1994).
    ADS  CAS  Article  PubMed  Google Scholar 

    28.
    Francis, A. P. & Currie, D. J. A globally consistent richness–climate relationship for angiosperms. Am. Nat. 161, 523–536 (2003).
    Article  PubMed  Google Scholar 

    29.
    Grossiord, C. et al. Tree diversity does not always improve resistance of forest ecosystems to drought. Proc. Natl Acad. Sci. USA 111, 14812–14815 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    30.
    Lavergne, S., Mouquet, N., Thuiller, W. & Ronce, O. Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu. Rev. Ecol. Evol. Syst. 41, 321–350 (2010).
    Article  Google Scholar 

    31.
    Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).
    Article  Google Scholar 

    32.
    Meehl, G. A. et al. Global climate projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) (Cambridge University Press, Cambridge, United Kingdom and New York, NY, 2007).

    33.
    Lieth, H. Modelling the Primary Productivity of the Earth. Nature and Resources. UNESCO, VIII, 2:5-10 (1972).

    34.
    Lieth, H. Modeling the primary productivity of the world. In Primary Productivity of the Biosphere (eds Lieth, H. & Whittaker, R. H.) 237–264 (Springer-Verlag, New York, NY, 1975).

    35.
    Grieser, J., Gommes, R., Cofield, S. & Bernardi, M. In World Maps of Climatological Net Primary Production of Biomass, NPP (Food and Agriculture Organization of the United Nations, GEONETWORK, FAO, Rome, 2006).

    36.
    Revadekar, J. V. et al. Impact of altitude and latitude on changes in temperature extremes over South Asia during 1971–2000. Int. J. Climatol. 33, 199–209 (2013).
    Article  Google Scholar 

    37.
    Ali, S. et al. Effect of altitude on forest soil properties at Northern Karakoram. Eurasia. Soil Sci. 52, 1159–1169 (2019).
    ADS  Article  Google Scholar 

    38.
    Zhu, Z. X., Nizamani, M. M., Sahu, S. K., Kunasingam, A. & Wang, H. F. Tree abundance, richness, and phylogenetic diversity along an elevation gradient in the tropical forest of Diaoluo Mountain in Hainan, China. Acta Oecol. 101, 103481 (2019).
    Article  Google Scholar 

    39.
    Malizia, A. et al. Elevation and latitude drives structure and tree species composition in Andean forests: results from a large-scale plot network. PLoS ONE 15, e0231553 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Homeier, J., Breckle, S. W., Günter, S., Rollenbeck, R. T. & Leuschner, C. Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species‐rich Ecuadorian montane rain forest. Biotropica 42, 140–148 (2010).
    Article  Google Scholar 

    41.
    Benavides, R. et al. Recruitment patterns of four tree species along elevation gradients in Mediterranean mountains: not only climate matters. For. Ecol. Manag. 360, 287–296 (2016).
    Article  Google Scholar 

    42.
    R Core Team R. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2013).

    43.
    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. R Core Team nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-148. https://CRAN (2020). More