Impact of local and landscape complexity on the stability of field-level pest control
1.
Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).
Article Google Scholar
2.
Fahrig, L. et al. Farmlands with smaller crop fields have higher within-field biodiversity. Agric. Ecosyst. Environ. 200, 219–234 (2015).
Article Google Scholar
3.
Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442–16447 (2019).
CAS Article Google Scholar
4.
Martin, E. A., Seo, B., Park, C.-R., Reineking, B. & Steffan-Dewenter, I. Scale-dependent effects of landscape composition and configuration on natural enemy diversity, crop herbivory, and yields. Ecol. Appl. 26, 448–462 (2016).
Article Google Scholar
5.
Root, R. B. Organization of a plant–arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol. Monogr. 43, 95–124 (1973).
Article Google Scholar
6.
McCann, K. The diversity–stability debate. Nature 405, 228–233 (2000).
CAS Article Google Scholar
7.
MacArthur, R. Fluctuations of animal populations and a measure of community stability. Ecology 36, 533–536 (1955).
Article Google Scholar
8.
Tilman, D. Biodiversity: population versus ecosystem stability. Ecology 77, 350–363 (1996).
Article Google Scholar
9.
Tilman, D. & Wedin, D. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).
CAS Google Scholar
10.
McNaughton, S. Diversity and stability of ecological communities: a comment on the role of empiricism in ecology. Am. Natur. 111, 515–525 (1977).
Article Google Scholar
11.
Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).
CAS Article Google Scholar
12.
Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201 (2000).
CAS Article Google Scholar
13.
Chaplin-Kramer, R., O’Rourke, M. E., Blitzer, E. J. & Kremen, C. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).
Article Google Scholar
14.
Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl Acad. Sci. USA 111, E7863–E7870 (2018).
Article CAS Google Scholar
15.
Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).
Article Google Scholar
16.
Larsen, A. E. & Noack, F. Identifying the landscape drivers of agricultural insecticide use leveraging evidence from 100,000 fields. Proc. Natl Acad. Sci. USA 114, 5473–5478 (2017).
CAS Article Google Scholar
17.
Sexton, S. E., Lei, Z. & Zilberman, D. The economics of pesticides and pest control. Int. Rev. Envir. Resour. Econ. 1, 271–326 (2007).
Article Google Scholar
18.
Waterfield, G. & Zilberman, D. Pest management in food systems: an economic perspective. Annu. Rev. 37, 223–245 (2012).
19.
O’Rourke, M. E. & Jones, L. E. Analysis of landscape-scale insect pest dynamics and pesticide use: an empirical and modeling study. Ecol. Appl. 21, 3199–3210 (2011).
Article Google Scholar
20.
Gross, K. & Rosenheim, J. A. Quantifying secondary pest outbreaks in cotton and their monetary cost with causal-inference statistics. Ecol. Appl. 21, 2770–2780 (2011).
Article Google Scholar
21.
Rosenheim, J. A. & Meisner, M. H. Ecoinformatics can reveal yield gaps associated with crop–pest interactions: a proof-of-concept. PLoS ONE 8, e80518 (2013).
Article CAS Google Scholar
22.
Meisner, M. H., Zaviezo, T. & Rosenheim, J. A. Landscape crop composition effects on cotton yield, Lygus hesperus densities and pesticide use. Pest Manag. Sci. 73, 232–239 (2016).
Article CAS Google Scholar
23.
Farrar, J. J., Baur, M. E. & Elliott, S. F. Adoption of IPM practices in grape, tree fruit, and nut production in the western United States. J. Integr. Pest Manag. 7, 8 (2016).
24.
Rosenheim, J. A., Cass, B. N., Kahl, H. & Steinmann, K. P. Variation in pesticide use across crops in California agriculture: economic and ecological drivers. Sci. Total Environ. 733, 138683 (2020).
CAS Article Google Scholar
25.
Möhring, N., Bozzola, M., Hirsch, S. & Finger, R. Are pesticides risk decreasing? The relevance of pesticide indicator choice in empirical analysis. Agric. Econ. 51, 429–444 (2020).
Article Google Scholar
26.
Larsen, A. E., Patton, M. & Martin, E. A. High highs and low lows: elucidating striking seasonal variability in pesticide use and its environmental implications. Sci. Total Environ. 651, 828–837 (2019).
CAS Article Google Scholar
27.
Dudley, N. et al. How should conservationists respond to pesticides as a driver of biodiversity loss in agroecosystems? Biol. Conserv. 209, 449–453 (2017).
Article Google Scholar
28.
Kim, K.-H., Kabir, E. & Jahan, S. A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 575, 525–535 (2017).
CAS Article Google Scholar
29.
Chay, K. Y. & Greenstone, M. The impact of air pollution on infant mortality: evidence from the Clean Air Act of 1970. Q. J. Econ. 118, 1121–1167 (2003).
Article Google Scholar
30.
Larsen, A. E., Gaines, S. D. & Deschenes, O. Agricultural pesticide use and adverse birth outcomes in the San Joaquin Valley of California. Nat. Commun. 8, 302 (2017).
31.
California Agricultural Statistics Review 2017–2018 1–105 (California Department of Food & Agriculture, 2018).
32.
Summary of Pesticide Use Report Data 2017 (California Department of Pesticide Regulation, 2018).
33.
Bourque, K. et al. Balancing agricultural production, groundwater management, and biodiversity goals: a multi-benefit optimization model of agriculture in Kern County, California. Sci. Total Environ. 670, 865–875 (2019).
CAS Article Google Scholar
34.
Larsen, A. E., Meng, K. & Kendall, B. E. Causal analysis in control–impact ecological studies with observational data. Methods Ecol. Evol. 10, 924–934 (2019).
Article Google Scholar
35.
Just, R. E. & Pope, R. D. Stochastic specification of production functions and economic implications. J. Econ. 7, 67–86 (1978).
Article Google Scholar
36.
Murdoch, W. W. Diversity, complexity, stability and pest control. J. Appl. Ecol. 12, 795–807 (1975).
Article Google Scholar
37.
Van Emden, H. F. & Williams, G. Insect stability and diversity in agro-ecosystems. Annu. Rev. Entomol. 19, 455–475 (1974).
Article Google Scholar
38.
Edwards, C. B., Rosenheim, J. A. & Segoli, M. Aggregating fields of annual crops to form larger-scale monocultures can suppress dispersal-limited herbivores. Theor. Ecol. 11, 321–331.
39.
O’Rourke, M. E., Rienzo-Stack, K. & Power, A. G. A multi-scale, landscape approach to predicting insect populations in agroecosystems. Ecol. Appl. 21, 1782–1791 (2011).
Article Google Scholar
40.
Hass, A. L. et al. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in Western Europe. Proc. R. Soc. B 285, 1872 (2018).
Article Google Scholar
41.
Holzschuh, A., Dewenter, I. S. & Tscharntke, T. How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids? J. Anim. Ecol. 79, 491–500 (2010).
Article Google Scholar
42.
Rusch, A. et al. Agricultural landscape simplification reduces natural pest control: a quantitative synthesis. Agric. Ecosyst. Environ. 221, 198–204 (2016).
Article Google Scholar
43.
Rusch, A., Bommarco, R., Jonsson, M., Smith, H. G. & Ekbom, B. Flow and stability of natural pest control services depend on complexity and crop rotation at the landscape scale. J. Appl. Ecol. 50, 345–354 (2013).
Article Google Scholar
44.
Zhao, Z. & Reddy, G. V. P. Semi-natural habitats mediate influence of inter-annual landscape variation on cereal aphid-parasitic wasp system in an agricultural landscape. Biol. Control 128, 17–23 (2019).
Article Google Scholar
45.
Costello, C., Quérou, N. & Tomini, A. Private eradication of mobile public bads. Eur. Econ. Rev. 94, 23–44 (2017).
Article Google Scholar
46.
Noack, F. & Larsen, A. The contrasting effects of farm size on farm incomes and food production. Environ. Res. Lett. 14, 084024 (2019).
Article Google Scholar
47.
Gong, Y., Baylis, K., Kozak, R. & Bull, G. Farmers’ risk preferences and pesticide use decisions: evidence from field experiments in China. Agric. Econ. 47, 411–421 (2016).
Article Google Scholar
48.
Möhring, N., Wuepper, D., Musa, T. & Finger, R. Why farmers deviate from recommended pesticide timing: the role of uncertainty and information. Pest Manag. Sci. 76, 2787–2798 (2020).
Article CAS Google Scholar
49.
Larsen, A. E., Farrant, D. N. & MacDonald, A. J. Spatiotemporal overlap of pesticide use and species richness hotspots in California. Agric. Ecosyst. Environ. 289, 106741 (2020).
CAS Article Google Scholar
50.
Gavrilescu, M. Fate of pesticides in the environment and its bioremediation. Eng. Life Sci. 5, 497–526 (2005).
CAS Article Google Scholar
51.
Haan, N. L., Zhang, Y. & Landis, D. A. Predicting landscape configuration effects on agricultural pest suppression. Trends Ecol. Evol. 35, 175–186 (2020).
Article Google Scholar
52.
Damalas, C. A. & Eleftherohorinos, I. G. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health 8, 1402–1419 (2011).
CAS Article Google Scholar
53.
Mullin, C. A., Fine, J. D., Reynolds, R. D. & Frazier, M. T. Toxicological risks of agrochemical spray adjuvants: organosilicone surfactants may not be safe. Front. Public Health 4, 320–328 (2016).
Article Google Scholar
54.
Kniss, A. R. Long-term trends in the intensity and relative toxicity of herbicide use. Nat. Commun. 8, 14865–14867 (2017).
CAS Article Google Scholar
55.
Estrada, J. Mean-semivariance optimization: a heuristic approach. J. Appl. Financ. 18, 1–16 (2008).
Article Google Scholar
56.
Finger, R., Dalhaus, T., Allendorf, J. & Hirsch, S. Determinants of downside risk exposure of dairy farms. Eur. Rev. Agric. Econ. 45, 641–674 (2018).
Article Google Scholar
57.
Miranda, M. J. & Glauber, J. W. Providing crop disaster assistance through a modified deficiency payment program. Am. J. Agric. Econ. 73, 1233–1243 (1991).
Article Google Scholar
58.
Wooldridge, J. M. Econometric Analysis of Cross Section and Panel Data (MIT Press, 2002).
59.
Cabas, J., Weersink, A. & Olale, E. Crop yield response to economic, site and climatic variables. Clim. Change 101, 599–616 (2009).
Article CAS Google Scholar
60.
Isik, M. & Devadoss, S. An analysis of the impact of climate change on crop yields and yield variability. Appl. Econ. 38, 835–844 (2006).
Article Google Scholar
61.
Arellano, M. & Bond, S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 58, 277–297 (1991).
Article Google Scholar
62.
Bellemare, M. F. & Wichman, C. J. Elasticities and the inverse hyperbolic sine transformation. Oxf. Bull. Econ. Stat. 82, 50–61 (2019).
Article Google Scholar
63.
Conley, T. G. & Molinari, F. Spatial correlation robust inference with errors in location or distance. J. Econ. 140, 76–96 (2007).
Article Google Scholar
64.
Hsiang, S. M. Temperatures and cyclones strongly associated with economic production in the Caribbean and Central America. Proc. Natl Acad. Sci. USA 107, 15367–15372 (2010).
CAS Article Google Scholar
65.
Fetzer, T. Can Workfare Programs Moderate Conflict? Evidence from India The Warwick Economics Research Paper Series (TWERPS) 1220 (University of Warwick, Department of Economics, 2019); https://ideas.repec.org/p/wrk/warwec/1220.html More