More stories

  • in

    Enhanced fish production during a period of extreme global warmth

    1.
    FAO. State of the world’s fisheries and aquaculture. State of the world’s fisheries and aquaculture 3, (2018).
    2.
    Nelson, J. S., Grande, T. C. & Wilson, M. V. Fishes of the World. (John Wiley & Sons, Ltd, 2016).

    3.
    Ryther, J. H. Photosynthesis and fish production in the sea. Science 166, 72–76 (1969).
    ADS  CAS  Article  Google Scholar 

    4.
    Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12907–12912 (2019).
    CAS  Article  Google Scholar 

    5.
    Moore, J. K. et al. Sustained climate warming drives declining marine biological productivity. Science 359, 1139–1143 (2018).
    ADS  CAS  Article  Google Scholar 

    6.
    Sommer, U., Stibor, H., Katechakis, A., Sommer, F. & Hansen, T. Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: primary production. Hydrobiologia 484, 11–20 (2002).
    Article  Google Scholar 

    7.
    Fu, W., Randerson, J. T. & Moore, J. K. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences 13, 5151–5170 (2016).
    ADS  Article  Google Scholar 

    8.
    Mora, C. et al. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol. 11, e1001682 (2013).
    CAS  Article  Google Scholar 

    9.
    Stock, C. A. et al. Reconciling fisheries catch and ocean productivity. Proc. Natl Acad. Sci. USA E1441, E1441–E1449 (2017).
    Article  CAS  Google Scholar 

    10.
    Chust, G. et al. Biomass changes and trophic amplification of plankton in a warmer ocean. Glob. Chang. Biol. 2010, 2124–2139 (2014).
    ADS  Article  Google Scholar 

    11.
    Blanchard, J. L. et al. Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 367, 2979–2989 (2012).
    Article  Google Scholar 

    12.
    Britten, G. L., Dowd, M. & Worm, B. Changing recruitment capacity in global fish stocks. Proc. Natl Acad. Sci. USA 113, 134–139 (2015).
    ADS  Article  CAS  Google Scholar 

    13.
    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 983, 979–983 (2019).
    ADS  Article  CAS  Google Scholar 

    14.
    Cheung, W. W. L. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Chang. Biol. 16, 24–35 (2010).
    ADS  Article  Google Scholar 

    15.
    Gibbs, S. J., Bralower, T. J., Bown, P. R., Zachos, J. C. & Bybell, L. M. Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene thermal maximum: Implications for global productivity gradients. Geology 34, 233–236 (2006).
    ADS  CAS  Article  Google Scholar 

    16.
    Muttoni, G. & Kent, D. V. Widespread formation of cherts during the early Eocene climate optimum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 253, 348–362 (2007).
    Article  Google Scholar 

    17.
    Faul, K. L. & Delaney, M. L. A comparison of early Paleogene export productivity and organic carbon burial flux for Maud Rise, Weddell Sea, and Kerguelen Plateau, south Indian Ocean. Paleoceanography 25, 1–15 (2010).

    18.
    Witkowski, J., Bohaty, S. M., McCartney, K. & Harwood, D. M. Enhanced siliceous plankton productivity in response to middle Eocene warming at Southern Ocean ODP Sites 748 and 749. Palaeogeogr. Palaeoclimatol. Palaeoecol. 326–328, 78–94 (2012).
    Article  Google Scholar 

    19.
    Yasuhara, M. et al. Climatic forcing of Quaternary deep-sea benthic communities in the North Pacific Ocean. Paleobiology 38, 162–179 (2012).
    Article  Google Scholar 

    20.
    Lowery, C. M., Bown, P. R., Fraass, A. J. & Hull, P. M. Ecological response of plankton to environmental change thresholds for extinction. Annu. Rev. Earth Planet. Sci. 48, 1–27 (2020).
    Article  CAS  Google Scholar 

    21.
    Moore, J. K., Doney, S. C. & Lindsay, K. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Glob. Biogeochem. Cycles 18, 1–21 (2004).
    Article  CAS  Google Scholar 

    22.
    O’Gorman, E. J. et al. Temperature effects on fish production across a natural thermal gradient. Glob. Chang. Biol. 22, 3206–3220 (2016).
    ADS  Article  Google Scholar 

    23.
    Maureaud, A. et al. Global change in the trophic functioning of marine food webs. PLoS ONE 12, 1–21 (2017).
    Article  CAS  Google Scholar 

    24.
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).
    ADS  CAS  Article  Google Scholar 

    25.
    Allen, A. P. & Gillooly, J. F. The mechanistic basis of the metabolic theory of ecology. Oikos 116, 1073–1077 (2007).
    Article  Google Scholar 

    26.
    Cheung, W. W. L. et al. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat. Clim. Chang. 3, 254–258 (2012).
    ADS  Article  Google Scholar 

    27.
    Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106, 12788–12793 (2009).
    ADS  CAS  Article  Google Scholar 

    28.
    Chen, B., Landry, M. R., Huang, B. & Liu, H. Does warming enhance the effect of microzooplankton grazing on marine phytoplankton in the ocean? Limnol. Oceanogr. 57, 519–526 (2012).
    ADS  CAS  Article  Google Scholar 

    29.
    Schmoker, C., Hernández-León, S. & Calbet, A. Microzooplankton grazing in the oceans: impacts, data variability, knowledge gaps and future directions. J. Plankton Res. 35, 691–706 (2013).
    Article  Google Scholar 

    30.
    Persson, L. Temperature-induced shift in foraging ability in two fish species, roach (Rutilus rutilus) and perch (Perca fluviatilis): implications for coexistence between poikilotherms. J. Anim. Ecol. 55, 829–839 (1986).
    Article  Google Scholar 

    31.
    Grigaltchik, V. S., Ward, A. J. W. & Seebacher, F. Thermal acclimation of interactions: Differential responses to temperature change alter predator-prey relationship. Proc. R. Soc. B Biol. Sci. 279, 4058–4064 (2012).
    Article  Google Scholar 

    32.
    Öhlund, G., Hedström, P., Norman, S., Hein, C. L. & Englund, G. Temperature dependence of predation depends on the relative performance of predators and prey. Proc. R. Soc. B Biol. Sci. 282, 1–8 (2014).

    33.
    Flombaum, P., Wang, W. L., Primeau, F. W. & Martiny, A. C. Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nat. Geosci. 13, 116–120 (2020).

    34.
    Anagnostou, E. et al. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature 533, 380–384 (2016).
    ADS  CAS  Article  Google Scholar 

    35.
    Hyland, E. G. & Sheldon, N. D. Coupled CO2-climate response during the Early Eocene Climatic Optimum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 369, 125–135 (2013).
    Article  Google Scholar 

    36.
    Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).
    ADS  CAS  Article  Google Scholar 

    37.
    Sibert, E. C., Cramer, K. L., Hastings, P. A. & Norris, R. D. Methods for isolation and quantification of microfossil fish teeth and elasmobranch dermal denticles (ichthyoliths) from marine sediments. Palaentologia Electron. 20, 1–14 (2017).
    Google Scholar 

    38.
    Sibert, E. C., Hull, P. M. & Norris, R. D. Resilience of Pacific pelagic fish across theCretaceous/Palaeogene mass extinction. Nat. Geosci. 7, 667–670 (2014).
    ADS  CAS  Article  Google Scholar 

    39.
    Sibert, E. C., Zill, M. E., Frigyik, E. T. & Norris, R. D. No state change in pelagic fish production and biodiversity during the Eocene–Oligocene transition. Nat. Geosci. 13, 238–242 (2020).
    ADS  CAS  Article  Google Scholar 

    40.
    Sibert, E., Norris, R., Cuevas, J. & Graves, L. Eighty-five million years of Pacific Ocean gyre ecosystem structure: long-term stability marked by punctuated change. Proc. Biol. Sci. 283, 20160189 (2016).

    41.
    Cramer, B. S., Miller, K. G., Barrett, P. J. & Wright, J. D. Late Cretaceous-Neogene trends in deep ocean temperature and continental ice volume: Reconciling records of benthic foraminiferal geochemistry (δ18O and Mg/Ca) with sea level history. J. Geophys. Res. Ocean. 116, 1–23 (2011).
    Article  CAS  Google Scholar 

    42.
    Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 1–10 (2014).
    Article  CAS  Google Scholar 

    43.
    Sibert, E. C. & Norris, R. D. New Age of Fishes initiated by the Cretaceous − Paleogene mass extinction. Proc. Natl Acad. Sci. USA 112, 8537–8542 (2015).
    ADS  CAS  Article  Google Scholar 

    44.
    Sibert, E., Friedman, M., Hull, P., Hunt, G. & Norris, R. Two pulses of morphological diversification in Pacific pelagic fishes following the Cretaceous – Palaeogene mass extinction. Proc. R. Soc. B 285, 1–7 (2018).
    Article  Google Scholar 

    45.
    Armstrong, R. A. Grazing limitation and nutrient limitation in marine ecosystems: steady state solutions of an ecosystem model with multiple food chains. Limnol. Oceanogr. 39, 597–608 (1994).
    ADS  CAS  Article  Google Scholar 

    46.
    Maranon, E. Cell Size as a key determinant of phytoplankton metabolism and community structure. Ann. Rev. Mar. Sci. 7, 241–264 (2015).
    Article  Google Scholar 

    47.
    Knoll, A. H. & Follows, M. J. A bottom-up perspective on ecosystem change in Mesozoic oceans. Proc. R. Soc. B 283, 1–10 (2016).
    Article  Google Scholar 

    48.
    Zhou, L. & Kyte, F. T. Sedimentation history of the South Pacific pelagic clay province over the last 85 million years inferred from the geochemistry of Deep Sea Drilling Project Hole 596. Paleoceanography 7, 441–465 (1992).
    ADS  Article  Google Scholar 

    49.
    Harrison, J. S., Higgins, B. A. & Mehta, R. S. Scaling of dentition and prey size in the California moray (Gymnothorax mordax). Zoology 122, 16–26 (2017).
    Article  Google Scholar 

    50.
    Shimada, K. The relationship between tooth size and total body length in white shark. J. Foss. Res. 35, 28–33 (2002).
    Google Scholar 

    51.
    Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).
    ADS  CAS  Article  Google Scholar 

    52.
    Wirtz, K. W. A biomechanical and optimality-based derivation of prey-size dependencies in planktonic prey selection and ingestion rates. Mar. Ecol. Prog. Ser. 507, 81–94 (2014).
    ADS  Article  Google Scholar  More

  • in

    Epidemiological hypothesis testing using a phylogeographic and phylodynamic framework

    1.
    Lemey, P., Rambaut, A., Welch, J. J. & Suchard, M. A. Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol. 27, 1877–1885 (2010).
    CAS  PubMed Central  PubMed  Google Scholar 
    2.
    Pybus, O. G. et al. Unifying the spatial epidemiology and molecular evolution of emerging epidemics. Proc. Natl Acad. Sci. USA 109, 15066–15071 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    3.
    Baele, G., Dellicour, S., Suchard, M. A., Lemey, P. & Vrancken, B. Recent advances in computational phylodynamics. Curr. Opin. Virol. 31, 24–32 (2018).
    PubMed  PubMed Central  Google Scholar 

    4.
    Dellicour, S., Rose, R. & Pybus, O. G. Explaining the geographic spread of emerging epidemics: a framework for comparing viral phylogenies and environmental landscape data. BMC Bioinform. 17, 1–12 (2016).
    Google Scholar 

    5.
    Jacquot, M., Nomikou, K., Palmarini, M., Mertens, P. & Biek, R. Bluetongue virus spread in Europe is a consequence of climatic, landscape and vertebrate host factors as revealed by phylogeographic inference. Proc. R. Soc. Lond. B 284, 20170919 (2017).
    Google Scholar 

    6.
    Brunker, K. et al. Landscape attributes governing local transmission of an endemic zoonosis: Rabies virus in domestic dogs. Mol. Ecol. 27, 773–788 (2018).
    CAS  PubMed Central  PubMed  Google Scholar 

    7.
    Dellicour, S., Vrancken, B., Trovão, N. S., Fargette, D. & Lemey, P. On the importance of negative controls in viral landscape phylogeography. Virus Evol. 4, vey023 (2018).
    PubMed Central  PubMed  Google Scholar 

    8.
    Minin, V. N., Bloomquist, E. W. & Suchard, M. A. Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics. Mol. Biol. Evol. 25, 1459–1471 (2008).
    CAS  PubMed Central  PubMed  Google Scholar 

    9.
    Gill, M. S. et al. Improving Bayesian population dynamics inference: A coalescent-based model for multiple loci. Mol. Biol. Evol. 30, 713–724 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    10.
    Gill, M. S., Lemey, P., Bennett, S. N., Biek, R. & Suchard, M. A. Understanding past population dynamics: Bayesian coalescent-based modeling with covariates. Syst. Biol. 65, 1041–1056 (2016).
    PubMed Central  PubMed  Google Scholar 

    11.
    Reisen, W. K. Ecology of West Nile virus in North America. Viruses 5, 2079–2105 (2013).
    PubMed Central  PubMed  Google Scholar 

    12.
    Hayes, E. B. et al. Epidemiology and transmission dynamics of West Nile virus disease. Emerg. Infect. Dis. 11, 1167–1173 (2005).
    PubMed Central  PubMed  Google Scholar 

    13.
    May, F. J., Davis, C. T., Tesh, R. B. & Barrett, A. D. T. Phylogeography of West Nile Virus: from the cradle of evolution in Africa to Eurasia, Australia, and the Americas. J. Virol. 85, 2964–2974 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Kramer, L. D. & Bernard, K. A. West Nile virus in the western hemisphere. Curr. Opin. Infect. Dis. 14, 519–525 (2001).
    CAS  PubMed  Google Scholar 

    15.
    Kilpatrick, A. M., Kramer, L. D., Jones, M. J., Marra, P. P. & Daszak, P. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol. 4, 606–610 (2006).
    CAS  Google Scholar 

    16.
    Molaei, G., Andreadis, T. G., Armstrong, P. M., Anderson, J. F. & Vossbrinck, C. R. Host feeding patterns of Culex mosquitoes and West Nile virus transmission, northeastern United States. Emerg. Infect. Dis. 12, 468–474 (2006).
    PubMed Central  PubMed  Google Scholar 

    17.
    Colpitts, T. M., Conway, M. J., Montgomery, R. R. & Fikrig, E. West Nile virus: biology, transmission, and human infection. Clin. Microbiol. Rev. 25, 635–648 (2012).
    CAS  PubMed Central  PubMed  Google Scholar 

    18.
    Bowen, R. A. & Nemeth, N. M. Experimental infections with West Nile virus. Curr. Opin. Infect. Dis. 20, 293–297 (2007).
    PubMed  Google Scholar 

    19.
    Petersen, L. R. & Marfin, A. A. West Nile Virus: A primer for the clinician. Ann. Intern. Med. 137, 173–179 (2002).
    PubMed  Google Scholar 

    20.
    Petersen, L. R. & Fischer, M. Unpredictable and difficult to control—the adolescence of West Nile virus. N. Engl. J. Med. 367, 1281–1284 (2012).
    CAS  PubMed  Google Scholar 

    21.
    Lanciotti, R. S. et al. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286, 2333–2337 (1999).
    CAS  PubMed  Google Scholar 

    22.
    Dohm, D. J., Sardelis, M. R. & Turell, M. J. Experimental vertical transmission of West Nile virus by Culex pipiens (Diptera: Culicidae). J. Med. Entomol. 39, 640–644 (2002).
    PubMed  Google Scholar 

    23.
    Goddard, L. B., Roth, A. E., Reisen, W. K. & Scott, T. W. Vertical transmission of West Nile virus by three California Culex (Diptera: Culicidae) species. J. Med. Entomol. 40, 743–746 (2003).
    PubMed  Google Scholar 

    24.
    Lequime, S. & Lambrechts, L. Vertical transmission of arboviruses in mosquitoes: A historical perspective. Infect. Genet. Evol. 28, 681–690 (2014).
    PubMed  Google Scholar 

    25.
    Ronca, S. E., Murray, K. O. & Nolan, M. S. Cumulative incidence of West Nile virus infection, continental United States, 1999–2016. Emerg. Infect. Dis. 25, 325–327 (2019).
    PubMed Central  PubMed  Google Scholar 

    26.
    George, T. L. et al. Persistent impacts of West Nile virus on North American bird populations. Proc. Natl Acad. Sci. USA 112, 14290–14294 (2015).
    ADS  CAS  PubMed  Google Scholar 

    27.
    Kilpatrick, A. M. & Wheeler, S. S. Impact of West Nile Virus on bird populations: limited lasting effects, evidence for recovery, and gaps in our understanding of impacts on ecosystems. J. Med. Entomol. 56, 1491–1497 (2019).
    PubMed Central  PubMed  Google Scholar 

    28.
    LaDeau, S. L., Kilpatrick, A. M. & Marra, P. P. West Nile virus emergence and large-scale declines of North American bird populations. Nature 447, 710–713 (2007).
    ADS  CAS  PubMed  Google Scholar 

    29.
    Davis, C. T. et al. Phylogenetic analysis of North American West Nile virus isolates, 2001–2004: evidence for the emergence of a dominant genotype. Virology 342, 252–265 (2005).
    CAS  PubMed  Google Scholar 

    30.
    Añez, G. et al. Evolutionary dynamics of West Nile virus in the United States, 1999–2011: Phylogeny, selection pressure and evolutionary time-scale analysis. PLoS Negl. Trop. Dis. 7, e2245 (2013).
    PubMed Central  PubMed  Google Scholar 

    31.
    Di Giallonardo, F. et al. Fluid spatial dynamics of West Nile Virus in the United States: Rapid spread in a permissive host environment. J. Virol. 90, 862–872 (2016).
    PubMed Central  Google Scholar 

    32.
    Hadfield, J. et al. Twenty years of West Nile virus spread and evolution in the Americas visualized by Nextstrain. PLOS Pathog. 15, e1008042 (2019).
    CAS  PubMed Central  PubMed  Google Scholar 

    33.
    Dellicour, S. et al. Using viral gene sequences to compare and explain the heterogeneous spatial dynamics of virus epidemics. Mol. Biol. Evol. 34, 2563–2571 (2017).
    CAS  PubMed  Google Scholar 

    34.
    Dijkstra, E. W. A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959).
    MathSciNet  MATH  Google Scholar 

    35.
    McRae, B. H. Isolation by resistance. Evolution 60, 1551–1561 (2006).
    PubMed  Google Scholar 

    36.
    La Sorte, F. A. et al. The role of atmospheric conditions in the seasonal dynamics of North American migration flyways. J. Biogeogr. 41, 1685–1696 (2014).
    Google Scholar 

    37.
    Holmes, E. C. & Grenfell, B. T. Discovering the phylodynamics of RNA viruses. PLoS Comput. Biol. 5, e1000505 (2009).
    ADS  PubMed Central  PubMed  Google Scholar 

    38.
    Faria, N. R. et al. Genomic and epidemiological monitoring of yellow fever virus transmission potential. Science 361, 894–899 (2018).
    ADS  CAS  PubMed Central  PubMed  Google Scholar 

    39.
    Carrington, C. V. F., Foster, J. E., Pybus, O. G., Bennett, S. N. & Holmes, E. C. Invasion and maintenance of dengue virus type 2 and Type 4 in the Americas. J. Virol. 79, 14680–14687 (2005).
    CAS  PubMed Central  PubMed  Google Scholar 

    40.
    Rappole, J. H. et al. Modeling movement of West Nile virus in the western hemisphere. Vector Borne Zoonotic Dis. 6, 128–139 (2006).
    PubMed  Google Scholar 

    41.
    Goldberg, T. L., Anderson, T. K. & Hamer, G. L. West Nile virus may have hitched a ride across the Western United States on Culex tarsalis mosquitoes. Mol. Ecol. 19, 1518–1519 (2010).
    PubMed  Google Scholar 

    42.
    Swetnam, D. et al. Terrestrial bird migration and West Nile virus circulation, United States. Emerg. Infect. Dis. 24, 12 (2018).

    43.
    Kwan, J. L., Kluh, S. & Reisen, W. K. Antecedent avian immunity limits tangential transmission of West Nile virus to humans. PLoS ONE 7, e34127 (2012).
    ADS  CAS  PubMed Central  PubMed  Google Scholar 

    44.
    Duggal, N. K. et al. Genotype-specific variation in West Nile virus dispersal in California. Virology 485, 79–85 (2015).
    CAS  PubMed Central  PubMed  Google Scholar 

    45.
    McMullen, A. R. et al. Evolution of new genotype of West Nile virus in North America. Emerg. Infect. Dis. 17, 785–793 (2011).
    PubMed Central  PubMed  Google Scholar 

    46.
    Hepp, C. M. et al. Phylogenetic analysis of West Nile Virus in Maricopa County, Arizona: evidence for dynamic behavior of strains in two major lineages in the American Southwest. PLOS ONE 13, e0205801 (2018).
    PubMed Central  PubMed  Google Scholar 

    47.
    Goddard, L. B., Roth, A. E., Reisen, W. K. & Scott, T. W. Vector competence of California mosquitoes for West Nile virus. Emerg. Infect. Dis. 8, 1385–1391 (2002).
    PubMed Central  PubMed  Google Scholar 

    48.
    Richards, S. L., Mores, C. N., Lord, C. C. & Tabachnick, W. J. Impact of extrinsic incubation temperature and virus exposure on vector competence of Culex pipiens quinquefasciatus say (Diptera: Culicidae) for West Nile virus. Vector Borne Zoonotic Dis. 7, 629–636 (2007).
    PubMed Central  PubMed  Google Scholar 

    49.
    Anderson, S. L., Richards, S. L., Tabachnick, W. J. & Smartt, C. T. Effects of West Nile virus dose and extrinsic incubation temperature on temporal progression of vector competence in Culex pipiens quinquefasciatus. J. Am. Mosq. Control Assoc. 26, 103–107 (2010).
    PubMed Central  PubMed  Google Scholar 

    50.
    Worwa, G. et al. Increases in the competitive fitness of West Nile virus isolates after introduction into California. Virology 514, 170–181 (2018).
    CAS  PubMed  Google Scholar 

    51.
    Duggal, N. K., Langwig, K. E., Ebel, G. D. & Brault, A. C. On the fly: interactions between birds, mosquitoes, and environment that have molded west nile virus genomic structure over two decades. J. Med. Entomol. 56, 1467–1474 (2019).
    PubMed Central  PubMed  Google Scholar 

    52.
    Reed, K. D., Meece, J. K., Henkel, J. S. & Shukla, S. K. Birds, migration and emerging zoonoses: West Nile virus, Lyme disease, influenza A and enteropathogens. Clin. Med. Res. 1, 5–12 (2003).
    PubMed Central  PubMed  Google Scholar 

    53.
    Dusek, R. J. et al. Prevalence of West Nile virus in migratory birds during spring and fall migration. Am. J. Trop. Med. Hyg. 81, 1151–1158 (2009).
    Google Scholar 

    54.
    Samuel, G. H., Adelman, Z. N. & Myles, K. M. Temperature-dependent effects on the replication and transmission of arthropod-borne viruses in their insect hosts. Curr. Opin. Insect Sci. 16, 108–113 (2016).
    PubMed Central  PubMed  Google Scholar 

    55.
    Paz, S. & Semenza, J. C. Environmental drivers of West Nile fever epidemiology in Europe and Western Asia-a review. Int. J. Environ. Res. Public Health 10, 3543–3562 (2013).
    PubMed Central  PubMed  Google Scholar 

    56.
    Dohm, D. J., O’Guinn, M. L. & Turell, M. J. Effect of environmental temperature on the ability of Culex pipiens (Diptera: Culicidae) to transmit West Nile virus. J. Med. Entomol. 39, 221–225 (2002).
    PubMed  PubMed Central  Google Scholar 

    57.
    Kilpatrick, A. M., Meola, M. A., Moudy, R. M. & Kramer, L. D. Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes. PLoS Path. 4, e1000092 (2008).

    58.
    DeFelice, N. B. et al. Use of temperature to improve West Nile virus forecasts. PLoS Comput. Biol. 14, e1006047 (2018).
    PubMed Central  PubMed  Google Scholar 

    59.
    Morin, C. W. & Comrie, A. C. Regional and seasonal response of a West Nile virus vector to climate change. Proc. Natl Acad. Sci. USA 110, 15620–15625 (2013).
    ADS  CAS  PubMed  Google Scholar 

    60.
    Samy, A. M. et al. Climate change influences on the global potential distribution of the mosquito Culex quinquefasciatus, vector of West Nile virus and lymphatic filariasis. PLoS ONE 11, e0163863 (2016).
    PubMed Central  PubMed  Google Scholar 

    61.
    Dellicour, S. et al. Phylodynamic assessment of intervention strategies for the West African Ebola virus outbreak. Nat. Commun. 9, 2222 (2018).
    ADS  PubMed Central  PubMed  Google Scholar 

    62.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
    CAS  PubMed Central  PubMed  Google Scholar 

    63.
    Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278 (2014).
    CAS  PubMed Central  PubMed  Google Scholar 

    64.
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
    ADS  PubMed Central  PubMed  Google Scholar 

    65.
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).
    PubMed Central  PubMed  Google Scholar 

    66.
    Ayres, D. L. et al. BEAGLE 3: Improved performance, scaling, and usability for a high-performance computing library for statistical phylogenetics. Syst. Biol., https://doi.org/10.1093/sysbio/syz020 (2019).

    67.
    Tavaré, S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures Math. Life Sci. 17, 57–86 (1986).
    MathSciNet  MATH  Google Scholar 

    68.
    Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, 699–710 (2006).
    CAS  Google Scholar 

    69.
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
    CAS  PubMed Central  PubMed  Google Scholar 

    70.
    Fisher, A. A., Ji, X., Zhang, Z., Lemey, P. & Suchard, M. A. Relaxed random walks at scale. Syst. Biol., https://doi.org/10.1093/sysbio/syaa056 (2020).

    71.
    Lemey, P. et al. Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2. PLoS Path. 10, e1003932 (2014).
    Google Scholar 

    72.
    Bedford, T. et al. Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature 523, 217 (2015).
    ADS  CAS  PubMed Central  PubMed  Google Scholar 

    73.
    Hadfield, J. et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 34, 4121–4123 (2018).
    CAS  PubMed Central  PubMed  Google Scholar 

    74.
    Dellicour, S., Rose, R., Faria, N. R., Lemey, P. & Pybus, O. G. SERAPHIM: studying environmental rasters and phylogenetically informed movements. Bioinformatics 32, 3204–3206 (2016).
    CAS  PubMed Central  Google Scholar 

    75.
    Dellicour, S. et al. Using phylogeographic approaches to analyse the dispersal history, velocity, and direction of viral lineages–application to rabies virus spread in Iran. Mol. Ecol. 28, 4335–4350 (2019).
    PubMed Central  Google Scholar 

    76.
    Suchard, M. A., Weiss, R. E. & Sinsheimer, J. S. Models for estimating Bayes factors with applications to phylogeny and tests of monophyly. Biometrics 61, 665–673 (2005).
    MathSciNet  MATH  PubMed Central  PubMed  Google Scholar  More

  • in

    Genetic diversity and population structure in Nothofagus pumilio, a foundation species of Patagonian forests: defining priority conservation areas and management

    1.
    Silander, J. A. Temperate Forests. In: Encyclopedia of Biodiversity (Second Edition) (ed. Simon A Levin), 112–227 (Academic Press, 2001).
    2.
    Glasser, N. F., Harrison, S., Winchester, V. & Aniya, M. Late pleistocene and holocene palaeoclimate and glacier fluctuations in patagonia. Glob. Planet. Change 43, 79–101 (2004).
    ADS  Article  Google Scholar 

    3.
    Markgraf, V. Paleoenvironments and paleoclimates in Tierra del Fuego and southernmost Patagonia, South America. Palaeogeogr. Palaeoclimatol. Palaeoecol. 102, 53–67 (1993).
    Article  Google Scholar 

    4.
    Markgraf, V., McGlone, M. & Hope, G. Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems—a southern perspective. Trends Ecol. Evol. 10(4), 143–147 (1995).
    CAS  Article  Google Scholar 

    5.
    Amoroso, M. M., Rodríguez-Catón, M., Villalba, R. & Daniels, L. D. Forest Decline in Northern Patagonia: The Role of Climatic Variability. In: Dendroecology, Ecological Studies (Analysis and Synthesis): volume 231 (ed. Amoroso, M. M.; Daniels, L. D.; Baker, P. J.; Camarero, J. J.), 325–342 (Springer, 2007).

    6.
    Rodríguez-Catón, M., Villalba, R., Morales, M. & Srur, A. Influence of droughts on Nothofagus pumilio forest decline across northern Patagonia, Argentina. Ecosphere 7(7), e01390. https://doi.org/10.1002/ecs2.1390 (2016).
    Article  Google Scholar 

    7.
    Barros, V. R. et al. Climate change in Argentina: trends, projections, impacts and adaptation. Wiley Interdiscip. Rev. Clim. Change 6, 151–169 (2005).
    Article  Google Scholar 

    8.
    Rusticucci, M. & Barrucand, M. Observed trends and changes in temperature extremes over Argentina. J. Clim. 17, 4099–4107 (2004).
    ADS  Article  Google Scholar 

    9.
    Mundo, I. A. et al. Fire history in southern Patagonia: human and climate influences on fire activity in Nothofagus pumilio forests. Ecosphere 8(9), e01932. https://doi.org/10.1002/ecs2.1932 (2017).
    Article  Google Scholar 

    10.
    Mohr-Bell, F. D. Superficies afectadas por incendios en la región bosque Andino Patagónico (BAP) durante los veranos de 2013–2014 y 2014–2015. Patagon. For. 21, 34–41 (2015).
    Google Scholar 

    11.
    Veblen, T. T., Hill, R. S. & Read, J. Ecology of Southern Chilean and Argentinean Nothofagus Forests. In: The Ecology and Biogeography of Nothofagus Forests, pp. 293–353 (Yale University, USA, 1996).

    12.
    Donoso Zegers, C. Las Especies Arbóreas de los Bosques Templados de Chile y Argentina: Autoecología. 678p (María Cuneo Ediciones, 2006)

    13.
    Soliani, C. & Aparicio, A. G. Evidence of genetic determination in the growth habit of Nothofagus pumilio (Poepp. & Endl.) Krasser at the extremes of an elevation gradient. Scand. J. For. Res. 35 (5–6), 211–220 (2020).

    14.
    Rusch, V. E. Altitudinal variation in the phenology of Nothofagus pumilio in Argentina. Rev. Chil. Hist. Nat. 66, 131–141 (1993).
    Google Scholar 

    15.
    Fajardo, A. & Piper, F. I. Intraspecific trait variation and covariation in a widespread tree species (Nothofagus pumilio) in southern Chile. N. Phytol. 189, 259–271 (2011).
    Article  Google Scholar 

    16.
    Burns, S. L., Cellini, J. M., Lencinas, M. V., Martínez Pastur, G. J. & Rivera, S. M. Description of possible natural hybrids between Nothofagus pumilio and N. antarctica at South Patagonia (Argentina). Bosque 31(1), 9–16 (2010).
    Article  Google Scholar 

    17.
    Quiroga, P., Vidal Russel, R. & Premoli, A. C. Evidencia morfológica e isoenzimática de hibridación natural entre Nothofagus antarctica y N. pumilio en el noroeste patagónico. Bosque 26(2), 25–32 (2005).
    Article  Google Scholar 

    18.
    Acosta, M. C. & Premoli, A. C. Evidence of chloroplast capture in South American Nothofagus (subgenus Nothofagus, Nothofagaceae). Mol. Phylogenet. Evol. 54, 235–242 (2010).
    Article  CAS  Google Scholar 

    19.
    Soliani, C. et al. Halfway encounters: meeting points of colonization routes among the southern beeches Nothofagus pumilio and N. antarctica. Mol. Phylogenet. Evol. 85, 197–207 (2015).
    Article  Google Scholar 

    20.
    Pastorino, M. J. & Gallo, L. A. Preliminary operational genetic management units of a highly fragmented forest tree species of southern South America. For. Ecol. Manag. 257, 2350–2358 (2009).
    Article  Google Scholar 

    21.
    Pastorino, M. J., Aparicio, A. & Azpilicueta, M. M. Regiones de Procedencia del Ciprés de la Cordillera y Bases Conceptuales para el Manejo de sus Recursos Genéticos en Argentina.108 p (Ediciones INTA, 2015).

    22.
    Azpilicueta, M. M. et al. Management of Nothofagus genetic resources: definition of genetic zones based on a combination of nuclear and chloroplast marker data. For. Ecol. Manag. 302, 414–424 (2013).
    Article  Google Scholar 

    23.
    Azpilicueta et al. Zonas Genéticas de Raulí y Roble Pellín en Argentina: Herramientas para la Conservación y el Manejo de la Diversidad Genética (ed. M.M. Azpilicueta, P. Marchelli) 50 p (Ediciones INTA, 2016).

    24.
    OTBN. Ordenamiento Territorial de Bosque Nativo/Mapa Legal CREA. https://www.crea.org.ar/mapalegal/otbn

    25.
    Bucci, G. & Vendramin, G. G. Delineation of genetic zones in the European Norway spruce natural range: preliminary evidence. Mol. Ecol. 9, 923–934 (2000).
    CAS  Article  Google Scholar 

    26.
    McKay, J. K., Christian, C. E., Harrison, S. & Rice, K. J. “How Local Is Local?”—a review of practical and conceptual issues in the genetics of restoration. Restor. Ecol. 13, 432–440 (2005).
    Article  Google Scholar 

    27.
    Williams, M. I. & Dumroese, R. K. Preparing for climate change: forestry and assisted migration. J. For. 111(4), 287–297 (2013).
    Google Scholar 

    28.
    Geburek, T. Isozymes and DNA markers in gene conservation of forest trees. Biodivers. Conserv. 6, 1639–1654 (1997).
    Article  Google Scholar 

    29.
    Ballesteros-Mejia, L., Lima, J. S. & Collevatti, R. G. Spatially-explicit analyses reveal the distribution of genetic diversity and plant conservation status in Cerrado biome. Biodivers. Conserv. 29, 1537–1554 (2018).
    Article  Google Scholar 

    30.
    Frankel, O. H., Brown, A. H. D. & Bordon, J. The Genetic Diversity of Wild Plants. In: The Conservation of Plant Biodiversity. (Cambridge University Press, Cambridge, 1995).

    31.
    Petit, R. J., El Mousadik, A. & Pons, O. Identifying populations for conservation on the basis of genetic markers. Conserv. Biol. 12, 844–855 (1998).
    Article  Google Scholar 

    32.
    van Zonneveld, M. et al. Mapping genetic diversity of cherimoya (Annona cherimola Mill.): application of spatial analysis for conservation and use of plant genetic resources. PLoS ONE 7, e29845. https://doi.org/10.1371/journal.pone.0029845 (2010).
    CAS  Article  Google Scholar 

    33.
    Soliani, C., Gallo, L. & Marchelli, P. Phylogeography of two hybridizing southern beeches (Nothofagus spp.) with different adaptive abilities. Tree Genet. Genomes 8, 659–673 (2012).
    Article  Google Scholar 

    34.
    Laikre, L. et al. Neglect of genetic diversity in implementation of the convention on biological diversity. Conserv. Biol. 24(1), 86–88 (2009).
    Article  Google Scholar 

    35.
    Fady, B. et al. Forests and global change: what can genetics contribute to the major forest management and policy challenges of the twenty-first century?. Reg. Environ. Change 16, 927–939 (2016).
    Article  Google Scholar 

    36.
    Graudal, L. et al. Global to local genetic diversity indicators of evolutionary potential in tree species within and outside forests. For. Ecol. Manag. 333, 35–51 (2014).
    Article  Google Scholar 

    37.
    Sgrò, C. M., Lowe, A. J. & Hoffmann, A. A. Building evolutionary resilience for conserving biodiversity under climate change. Evol. Appl. 4, 326–337 (2011).
    Article  Google Scholar 

    38.
    Perez, et al. Assessing population structure in the face of isolation by distance: Are we neglecting the problem?. Divers. Distrib. 24(12), 1883–1889 (2018).
    Article  Google Scholar 

    39.
    Mathiasen, P. & Premoli, A. C. Out in the cold: genetic variation of Nothofagus pumilio (Nothofagaceae) provides evidence for latitudinally distinct evolutionary histories in austral South America. Mol. Ecol. 19, 371–385 (2010).
    CAS  Article  Google Scholar 

    40.
    Jump, A. & Peñuelas, J. Extensive spatial genetic structure revealed by AFLP but not SSR molecular markers in the wind-pollinated tree, Fagus sylvatica. Mol. Ecol. 16, 925–936 (2007).
    CAS  Article  Google Scholar 

    41.
    Oddou-Muratorio, S. et al. Comparison of direct and indirect genetic methods for estimating seed and pollen dispersal in Fagus sylvatica and Fagus crenata. For. Ecol. Manag. 259, 2151–2159 (2010).
    Article  Google Scholar 

    42.
    Marchelli, P. & Gallo, L. Multiple ice-age refugia in a southern beech of South America as evidenced by chloroplast DNA markers. Conserv. Genet. 7, 591–603 (2006).
    Article  CAS  Google Scholar 

    43.
    Pastorino, M. J. & Gallo, L. A. Quaternary evolutionary history of Austrocedrus chilensis, a cypress native to the Andean-Patagonian forest. J. Biogeogr. 29, 1167–1178 (2002).
    Article  Google Scholar 

    44.
    Villagrán, C. Un modelo de la historia de la vegetación de la cordillera de la costa de Chile central-sur: la hipótesis glacial de Darwin. Rev. Chil. Hist. Nat. 74, 793–803 (2001).
    Article  Google Scholar 

    45.
    Cosacov, A., Sersic, A., Sosa, V., Johnson, L. & Cocucci, A. Multiple periglacial refugia in the Patagonian steppe and post-glacial colonization of the Andes: the phylogeography of Calceolaria polyrhiza. J. Biogeogr. 37, 1463–1477 (2010).
    Google Scholar 

    46.
    Breitman, M. F., Avila, L. J., Sites, J. W. & Morando, M. Lizards from the end of the world: phylogenetic relationships of the Liolaemus lineomaculatus section (Squamata: Iguania: Liolaemini). Mol. Phylogenet. Evol. 59, 364–376 (2011).
    Article  Google Scholar 

    47.
    Flint, R. F. & Fidalgo, F. Glacial drift in the eastern argentine Andes between latitude 41° 10’ S. and latitude 43° 10’ S. GSA Bull. 80, 1043–1052 (1969).
    Article  Google Scholar 

    48.
    Holderegger, R. & Thiel-Egenter, C. A discussion of different types of glacial refugia used in mountain biogeography and phylogeography. J. Biogeogr. 36, 476–480 (2009).
    Article  Google Scholar 

    49.
    Glasser, N. F., Jansson, K., Harrison, S. & Kleman, J. The glacial geomorphology and Pleistocene history of South America between 38°S and 56°S. Quaternary Sci. Rev. 27(3), 365–390 (2008).
    ADS  Article  Google Scholar 

    50.
    Premoli, A. C., Mathiasen, P. & Kitzberger, T. Southern-most Nothofagus trees enduring ice ages: genetic evidence and ecological niche retrodiction reveal high latitude (54°S) glacial refugia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 298, 247–256 (2010).
    Article  Google Scholar 

    51.
    Derory, J. et al. What can nuclear microsatellites tell us about maritime pine genetic resources conservation and provenance certification strategies?. Ann. For. Sci. 59, 699–708 (2002).
    Article  Google Scholar 

    52.
    Honjo, M. et al. Management units of the endangered herb Primula sieboldii based on microsatellite variation among and within populations throughout Japan. Conserv. Genet. 10, 257–267 (2009).
    CAS  Article  Google Scholar 

    53.
    Väli, U., Einarsson, A., Waits, L. & Ellegren, H. To what extent do microsatellite markers reflect genome-wide genetic diversity in natural populations?. Mol Ecol. 17(17), 3808–3817 (2018).
    Article  Google Scholar 

    54.
    Reed, D. H. & Frankham, R. How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evol. 55(6), 1095–1103 (2001).
    CAS  Article  Google Scholar 

    55.
    Crandall, K. A., Bininda-Emonds, O. R. P., Mace, G. M. & Wayne, R. K. Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15, 290–295 (2000).
    CAS  Article  Google Scholar 

    56.
    Widmer, A. & Lexer, C. Glacial refugia: sanctuaries for allelic richness, but not for gene diversity. Trends Ecol. Evol. 16, 267–269 (2001).
    CAS  Article  Google Scholar 

    57.
    Reed, D. H. & Frankham, R. Correlation between fitness and genetic diversity. Conserv. Biol. 17, 230–237 (2003).
    Article  Google Scholar 

    58.
    Jump, A. S., Marchant, R. & Peñuelas, J. Environmental change and the option value of genetic diversity. Trends Plant Sci. 14, 51–58 (2009).
    CAS  Article  Google Scholar 

    59.
    Prober, S. et al. Climate-adjusted provenancing: a strategy for climate-resilient ecological restoration. Front. Ecol. Evol. 3, 65 (2015).
    Article  Google Scholar 

    60.
    Thomas, E. et al. Genetic considerations in ecosystem restoration using native tree species. For. Ecol. Manag. 333, 66–75 (2014).
    Article  Google Scholar 

    61.
    Marchelli, P., Thomas, E., Azpilicueta, M. M., van Zonneveld, M. & Gallo, L. Integrating genetics and suitability modelling to bolster climate change adaptation planning in Patagonian Nothofagus forests. Tree Genet. Genomes 13, 119 (2017).
    Article  Google Scholar 

    62.
    Thomas, E. et al. Genetic diversity of Enterolobium cyclocarpum in Colombian seasonally dry tropical forest: implications for conservation and restoration. Biodivers. Conserv. 26(4), 825–842 (2016).
    Article  Google Scholar 

    63.
    Jump, A. S. & Peñuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020 (2005).
    Article  Google Scholar 

    64.
    Dumolin, S., Demesure, B. & Petit, R. J. Inheritance of chloroplast and mitochondrial genomes in pedunculated oak investigated with an efficient PCR method. Theor. Appl. Genet. 91, 1253–1256 (1995).
    CAS  Article  Google Scholar 

    65.
    Soliani, C., Sebastiani, F., Marchelli, P., Gallo, L. & Giovanni, G. Development of novel genomic microsatellite markers in the southern beech Nothofagus pumilio (Poepp. et Endl.) Krasser. Mol. Ecol. Resour. 10, 404–408 (2010).
    Article  Google Scholar 

    66.
    Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 18, 233–234 (2000).
    CAS  Article  Google Scholar 

    67.
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. J. Bioinform. 28, 2537–2539 (2012).
    CAS  Article  Google Scholar 

    68.
    Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).
    CAS  PubMed  PubMed Central  Google Scholar 

    69.
    Balzarini, M. & Di Rienzo, J. Info-Gen: Software para Análisis Estadístico de Datos Genéticos. Facultad de Ciencia Agropecuarias. Universidad Nacional de Córdoba. Argentina. https://www.info-gen.com.ar/. (2003).

    70.
    Oosterhout, C. V., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
    Article  CAS  Google Scholar 

    71.
    Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2006).
    Article  CAS  Google Scholar 

    72.
    Chybicki, I. J. & Burczyk, J. Simultaneous estimation of null alleles and inbreeding coefficients. J. Heredity 100, 106–113 (2009).
    CAS  Article  Google Scholar 

    73.
    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).
    CAS  PubMed  PubMed Central  Google Scholar 

    74.
    Wright, S. The genetical structure of populations. Ann. Eugen. 15, 323–354 (1949).
    MathSciNet  Article  Google Scholar 

    75.
    Hedrick, P. W. A standardized genetic differentiation measure. Evolution 59, 1633–1638 (2005).
    CAS  Article  Google Scholar 

    76.
    Smouse, P. E. & Peakall, R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. J. Heredity 82, 561–573 (1999).
    Article  Google Scholar 

    77.
    Corander, J., Waldmann, P. & Sillanpää, M. J. Bayesian analysis of genetic differentiation between populations. Genetics 163, 367–374 (2003).
    CAS  PubMed  PubMed Central  Google Scholar 

    78.
    Pastorino, M. J., Marchelli, P., Milleron, M., Soliani, C. & Gallo, L. A. The effect of different glaciation patterns over the current genetic structure of the southern beech Nothofagus antarctica. Genetica 136, 79–88 (2009).
    CAS  Article  Google Scholar 

    79.
    Pritchard, J., Stephens, M. & Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. https://www.genetics.org/content/155/2/945.long. (2000).

    80.
    Thomas, E. et al. Present spatial diversity patterns of Theobroma cacao L. in the neotropics reflect genetic differentiation in pleistocene refugia followed by human-influenced dispersal. PLoS ONE 7, e47676. https://doi.org/10.1371/journal.pone.0047676 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    81.
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
    Article  Google Scholar 

    82.
    El Mousadik, A. & Petit, R. J. High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor. Appl. Genet. 92, 832–839 (1996).
    Article  Google Scholar 

    83.
    Goudet, J. FSTAT: a Program to Estimate and Test Gene Diversities and Fixation Indices (version 2.9.3.2) https://www.unil.ch/izea/softwares/fstat.html. (2001). More

  • in

    Plant functional traits are correlated with species persistence in the herb layer of old-growth beech forests

    1.
    Watt, A. S. Pattern and process in plant community. J. Ecol. 35, 1–22 (1947).
    Article  Google Scholar 
    2.
    Ozinga, W. et al. Local above-ground persistence of vascular plants: Life-history trade-offs and environmental constraints. J. Veg. Sci. 18, 489–497 (2007).
    Article  Google Scholar 

    3.
    Økland, R. H. & Eilertsen, O. Dynamics of understory vegetation in an old-growth boreal coniferous forest, 1988–1993. J. Veg. Sci. 7, 747–762 (1996).
    Article  Google Scholar 

    4.
    Nygaard, P. H. & Ødegaard, T. Sixty years of vegetation dynamics in a south boreal coniferous forest in southern Norway. J. Veg. Sci. 10, 5–16 (1999).
    Article  Google Scholar 

    5.
    Palmer, M. W. & Rusch, G. M. How fast is the carousel? Direct indices of species mobility with examples from an Oklahoma grassland. J. Veg. Sci. 12, 305–318 (2001).
    Article  Google Scholar 

    6.
    Zobel, M., Moora, M. & Herben, T. Clonal mobility and its implications for spatio-temporal patterns of plant communities: What do we need to know next?. Oikos 119, 802–806 (2010).
    Article  Google Scholar 

    7.
    Chaideftou, E., Kallimanis, A. S., Bergmeier, E. & Dimopoulos, P. How does plant species composition change from year to year? A case study from the herbaceous layer of a submediterranean oak woodland. Comm. Ecol. 13, 88–96 (2012).
    Article  Google Scholar 

    8.
    Chapman, J. I. & McEwan, R. W. Spatiotemporal dynamics of α-and β-diversity across topographic gradients in the herbaceous layer of an old-growth deciduous forest. Oikos 122, 1679–1686 (2013).
    Article  Google Scholar 

    9.
    Graae, B. J. & Sunde, P. B. The impact of forest continuity and management on forest floor vegetation evaluated by species traits. Ecography 23, 720–730 (2000).
    Article  Google Scholar 

    10.
    Bakker, J. P., Olff, H., Willems, J. H. & Zobel, M. Why do we need permanent plots in the study of long-term vegetation dynamics?. J. Veg. Sci. 7, 147–156 (1996).
    Article  Google Scholar 

    11.
    Van der Maarel, E. Pattern and process in the plant community: fifty years after A.S. Watt. J. Veg. Sci. 7, 19–28 (1996).
    Article  Google Scholar 

    12.
    Herben, T., Krahulec, F., Hadincová, V. & Skálová, H. Small-scale variability as a mechanism for large-scale stability in mountain grasslands. J. Veg. Sci. 4, 163–170 (1993).
    Article  Google Scholar 

    13.
    Økland, R. H. Persistence of vascular plants in a Norwegian boreal coniferous forest. Ecography 18, 3–14 (1995).
    Article  Google Scholar 

    14.
    Campetella, G. et al. Patterns of plant trait-environment relationship along a forest succession chronosequence. Agric. Ecosyst. Environ. 145, 38–48 (2011).
    Article  Google Scholar 

    15.
    Canullo, R. et al. Patterns of clonal growth modes along a chronosequence of post-coppice forest regeneration in beech forest of Central Italy. Fol. Geobot. 46, 271–288 (2011).
    Article  Google Scholar 

    16.
    Rūsiņa, S., Gavrilova, I., Roze, I. & Šulcs, V. Temporal species turnover and plant community changes across different habitats in the lake Engure nature park Latvia. Proc. Latv. Acad. Sci. Sect. B. Nat. Exact Appl. Sci. 68, 68–79 (2014).
    Google Scholar 

    17.
    Norden, B. & Appelqvist, T. Conceptual problems of ecological continuity and its bioindicators. Biodivers. Conserv. 10, 779–791 (2001).
    Article  Google Scholar 

    18.
    Bartha, S., Canullo, R., Chelli, S. & Campetella, G. Unimodal relationships of understory alpha and beta diversity along chronosequence in coppiced and unmanaged beech forests. Diversity 12, 101 (2020).
    Article  Google Scholar 

    19.
    Gilliam, F. S. The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience 57, 845–857 (2007).
    Article  Google Scholar 

    20.
    Campetella, G. et al. Scale dependent effects of coppicing on the species pool of late successional beech forest in the Central Apennines (Italy). Appl. Veg. Sci. 19, 474–485 (2016).
    Article  Google Scholar 

    21.
    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
    Article  Google Scholar 

    22.
    Weiher, E. et al. Challenging theophrastus: A common core list of plant traits for functional ecology. J. Veg. Sci. 10, 609–620 (1999).
    Article  Google Scholar 

    23.
    Westoby, M. A Leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199, 213–227 (1998).
    CAS  Article  Google Scholar 

    24.
    Wright, I. J. et al. The worldwide leaf economic spectrum. Nature 428, 821–827 (2004).
    ADS  CAS  Article  Google Scholar 

    25.
    Klimešová, J., Martínková, J. & Ottaviani, G. Belowground plant functional ecology: Towards an integrated perspective. Funct. Ecol. 32, 2115–2126 (2018).
    Article  Google Scholar 

    26.
    de Bello, F. et al. On the need for phylogenetic ‘corrections’ in functional trait-based approaches. Fol. Geobot. 50, 349–357 (2015).
    Article  Google Scholar 

    27.
    Aubin, I., Messier, C. & Bouchard, A. Can plantations develop understory biological and physical attributes of naturally regenerated forests?. Biol. Conserv. 141, 2462–2476 (2008).
    Article  Google Scholar 

    28.
    Dahlgren, J. P., Eriksson, O., Bolmgren, K., Strindell, M. & Ehrlén, J. Specific leaf area as a superior predictor of changes in field layer abundance during forest succession. J. Veg. Sci. 17, 577–582 (2006).
    Article  Google Scholar 

    29.
    Wellstein, C. et al. Effects of extreme drought on specific leaf area of grassland species: A meta-analysis of experimental studies in temperate and sub-Mediterranean systems. Glob. Change Biol. 23, 2473–2481 (2017).
    ADS  Article  Google Scholar 

    30.
    Lindacher, R., Böcker, R., Bemmerlein-Lux, F. A., Kleemann, A. & Haas, S. PHANART Datenbank der Gefäßpflanzen Mitteleuropas, Erklärung der Kennzahlen, Aufbau und Inhalt. Veröff. Geobot. Inst. ETH, Stift. Rübel 125, 1–436 (1995).
    Google Scholar 

    31.
    Turner, I. M. Sclerophylly: Primarily protective?. Funct. Ecol. 8, 669–675 (1994).
    Article  Google Scholar 

    32.
    Van Groenendael, J. M., Klimeš, L., Klimešová, J. & Hendriks, R. J. J. Comparative ecology of clonal plants. Philos. Trans. Roy. Soc. B 351, 1331–1339 (1996).
    ADS  Article  Google Scholar 

    33.
    Sammul, M., Kull, K., Niitla, T. & Mols, T. A comparison of plant communities on the basis of their clonal growth patterns. Evol. Ecol. 18, 443–467 (2004).
    Article  Google Scholar 

    34.
    Canullo, R. et al. Unravelling mechanisms of short-term vegetation dynamics in complex coppice forest systems. Fol. Geobot. 52, 71–81 (2017).
    Article  Google Scholar 

    35.
    Kidson, R. & Westoby, M. Seed mass and seedling dimensions in relation to seedling establishment. Oecologia 125, 11–17 (2000).
    ADS  CAS  Article  Google Scholar 

    36.
    Moles, A. T. & Westoby, M. Seed size and plant strategy across the whole life cycle. Oikos 113, 91–105 (2006).
    Article  Google Scholar 

    37.
    Campetella, G., Canullo, R. & Allegrini, M. C. Status and changes of ground vegetation at the CONECOFOR plots, 1999–2005. Ann. Silvicult. Res. 34, 29–48 (2008).
    Google Scholar 

    38.
    Wright, I. J., Reich, P. B. & Westoby, M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol. 15, 423–434 (2001).
    Article  Google Scholar 

    39.
    Ackerly, D. D. Functional traits of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol. Monogr. 74, 25–44 (2004).
    Article  Google Scholar 

    40.
    Kopecký, M., Hédl, R. & Szabó, P. Non-random extinctions dominate plant community changes in abandoned coppices. J. Appl. Ecol. 50, 79–87 (2013).
    Article  Google Scholar 

    41.
    Naaf, T. & Wulf, M. Traits of winner and loser species indicate drivers of herb layer changes over two decades in forests of NW Germany. J. Veg. Sci. 22, 516–527 (2011).
    Article  Google Scholar 

    42.
    Ottaviani, G., Martínková, J., Herben, T., Pausas, J. G. & Klimešová, J. On plant modularity traits: Functions and challenges. Trends Plant Sci. 22, 648–651 (2017).
    CAS  Article  Google Scholar 

    43.
    Klimešová, J. & Klimeš, L. Bud banks and their role in vegetative regeneration—A literature review and proposal for simple classification and assessment. Perspect. Plant Ecol. Evol. Syst. 8, 115–129 (2007).
    Article  Google Scholar 

    44.
    Chelli, S. et al. Climate is the main driver of clonal and bud bank traits in Italian forest understories. Persp. Plant Ecol. Evol. Syst. 40, 125478 (2019).
    Article  Google Scholar 

    45.
    Grime, J. P. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).
    Article  Google Scholar 

    46.
    Alpert, P. & Simms, E. L. The relative advantages of plasticity and fixity in different environments: When is it good for a plant to adjust?. Evol. Ecol. 16, 285–297 (2002).
    Article  Google Scholar 

    47.
    Denney, D. A., Jameel, M. I., Bemmels, J. B., Rochford, M. E. & Anderson, J. T. Small spaces, big impacts: Contributions of micro-environmental variation to population persistence under climate change. AoB Plants 12, 5 (2020).
    Article  Google Scholar 

    48.
    Swenson, N. G. et al. Temporal turnover in the composition of tropical tree communities: Functional determinism and phylogenetic stochasticity. Ecology 93, 490–499 (2012).
    Article  Google Scholar 

    49.
    Kichenin, E., Wardle, D. A., Peltzer, D. A., Morse, C. W. & Freschet, G. T. Contrasting effects of plant inter-and intraspecific variation on community-level trait measures along an environmental gradient. Funct. Ecol. 27, 1254–1261 (2013).
    Article  Google Scholar 

    50.
    Petriccione, B. & Pompei, E. The CONECOFOR programme: general presentation, aims and co-ordination. J. Limnol. 61, 3–11 (2002).
    Article  Google Scholar 

    51.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Article  Google Scholar 

    52.
    Bagnouls, F. & Gaussen, H. Les climats biologiques et leur classification. Ann. Geogr. 335, 193–220 (1957).
    Article  Google Scholar 

    53.
    FAO/UNESCO/WMO. World map of desertification. Food and Agricultural, Organization, Rome (1997).

    54.
    EUFORGEN. Distribution map of Beech (Fagus sylvatica), www.euforgen.org (2009).

    55.
    Dupouey, J. L. Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests Part VIII. Assessment of Ground Vegetation (ICP-Forests, Hamburg, 1998).
    Google Scholar 

    56.
    Canullo, R., Campetella, G., Allegrini, M. C. & Smargiassi, V. Management of forest vegetation data series: The role of database in the frame of quality assurance procedure. J. Limnol. 61, 100–105 (2002).
    Article  Google Scholar 

    57.
    Klimeš, L., Klimešová, J., Hendriks, R. & van Groenendael, J. Clonal plant architectures: a comparative analysis of form and function. In The Ecology and Evolution of Clonal Plants (eds de Kroon, H. & van Groenendael, J.) 1–29 (Backhuys Publishers, Leiden, 1997).
    Google Scholar 

    58.
    Cerabolini, B., Ceriani, R. M., Caccianiga, M., De Andreis, R. & Raimondi, B. Seed size, shape and persistence in soil: A test on Italian flora from Alps to Mediterranean coasts. Seed Sci. Res. 13, 75–85 (2003).
    Article  Google Scholar 

    59.
    Royal Botanical Gardens Kew. Seed Information Database (SID), Version 7.1. Available from https://data.kew.org/sid/ (2008).

    60.
    Kleyer, M. et al. The LEDA Traitbase: A database of plant life-history traits of North West European Flora. J. Ecol. 96, 1266–1274 (2008).
    Article  Google Scholar 

    61.
    Wellstein, C. & Kuss, P. Diversity and frequency of clonal traits along natural and land-use gradients in grasslands of the Swiss Alps. Fol. Geobot. 46, 255–270 (2011).
    Article  Google Scholar 

    62.
    Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Austr. J. Bot. 61, 167–234 (2013).
    Article  Google Scholar 

    63.
    Reinecke, J., Klemm, G. & Heinken, T. Vegetation change and homogenization of species composition in temperate nutrient deficient Scots pine forests after 45 yr. J. Veg. Sci. 25, 113–121 (2014).
    Article  Google Scholar 

    64.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Aust. Ecol. 26, 32–46 (2001).
    Google Scholar 

    65.
    Saitou, N. & Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).
    CAS  PubMed  Google Scholar 

    66.
    Tamura, K., Nei, M. & Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Nat. Acad. Sci. USA 101, 11030–11035 (2004).
    ADS  CAS  Article  Google Scholar 

    67.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
    CAS  Article  Google Scholar 

    68.
    Weiher, E., Clarke, G. D. P. & Keddy, P. A. Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos 81, 309 (1998).
    Article  Google Scholar 

    69.
    Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. Classification and regression trees (Wadsworth International Group, Belmont, 1984).
    Google Scholar 

    70.
    Ryo, M. & Rillig, M. C. Statistically reinforced machine learning for nonlinear patterns and variable interactions. Ecosphere 8(11), e01976 (2017).
    Article  Google Scholar 

    71.
    De’ath, G. & Fabricius, K. E. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 81, 3178–3192 (2000).
    Article  Google Scholar 

    72.
    Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M. H. H. & Wagner, H. Vegan: Community Ecology Package. R package version 2.0–7. (2013) Available at https://CRAN.R-project.org/package=vegan

    73.
    Hothorn, T., Hornik, K. & Zeileis, A. Unbiased recursive partitioning: A conditional inference framework. J. Comput. Graph. Stat. 15, 651–674 (2006).
    MathSciNet  Article  Google Scholar 

    74.
    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
    CAS  Article  Google Scholar 

    75.
    Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).
    Article  Google Scholar 

    76.
    Fabbio, G., Manetti, M. C. & Bertini, G. Aspects of biological diversity in the CONECOFOR plots. I. Structural and species diversity in the tree community. Ann. Silvicul. Res. 30, 17–28 (2006).
    Google Scholar 

    77.
    Trabucco, A. & Zomer, R. J. Global aridity index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database. CGIAR Consortium for Spatial Information (2009). More

  • in

    Designing profitable, resource use efficient and environmentally sound cereal based systems for the Western Indo-Gangetic plains

    Weather
    All the weather parameters measured during the study period were similar to the long-term averages (Fig. S1). During the study period (2014–2018), crops received an average annual rainfall of 763 mm, although its distribution was quite different amongst the rainy season (June–September) (Fig. S1). Rice/maize season in 2014, 2015, and 2016, 2017 received 485 (256 mm in September), 420 (255 mm in July), 533 (284 mm in August), and 695 mm (247 mm in June and 226 mm in September) of rainfall, respectively. In 1st year, the wheat crop receivedrainfall of 247 mm whereas in the 2nd, 3rd, and 4th years it was only 56, 96 and 78 mm, respectively.
    Crops and system productivity
    The management practices under different rice/maize-based scenarios influenced the crop grain yields over the 4-years (2014–2017) (Table 1). Scenarios with rice crops (Sc1-Sc3) did not differ in rice yields during the year 2014 and 2017, but CT direct seeded rice (Sc2) in the 2nd year (2015) and ZT direct seeded rice (Sc3) in the 3rd year (2016) produced 0.9 Mg ha−1 higher and 1.1 Mg ha−1 lower yield than farmers’ practice (Sc1), respectively (Table 1). Rice equivalent maize yields in CA-based scenarios (Sc6-Sc7) did not differ from scenarios with rice crops (Sc1-Sc3) in any of the study years. Rice equivalent maize yield of CA-based Sc5 with maize on PB, although was similar to Sc1 in all the years but was 1.41 Mg ha−1 lower than ZT-DSR (Sc3) in 1st year and 0.98 Mg ha−1 lower than CT-DSR (Sc2) in 2nd year. In contrast, rice equivalent yield (REY) of Sc4 with maize on fresh beds (FB) produced lower yields than one of the rice-based scenarios in three out of four years. These results suggest that maize performs better under CA-based management system than under conventional tillage system. Almost 5% higher yield of maize was recorded in the 1st year and 12–16% higher in the last three years under CA-based scenario (Sc7) compared to CT-based scenario (Sc4) and at par with Sc5. Based on the 4-years average, rice equivalent yield (REY) of Sc4 (maize on FB ) was 0.8 Mg ha−1 (12%) lower than Sc1 (business-as-usual) whereas other scenarios did not differ from each other in REY (Table 1).
    Table 1 Effect of different scenarios on grain yields (Mg ha−1) of rice, maize, wheat and systems during 4-years (2014–2018).
    Full size table

    The management practices influenced wheat grain yield over the years of experimentation (Table 1). Across study years, the grain yield of ZT wheat in CA-based scenario was either similar or higher than CT wheat. Results showed significantly (P  Sc2 = Sc3 (1753–1759 mm ha−1)  > S7 = Sc6 = Sc4 = S5 (289–365 mm ha−1) (Table 2). The same trend followed in all the study years except in the 4th year, where irrigation water input in Sc5 (maize on PB) was 109–154 mm ha−1 (22–28%) lower than Sc6 and Sc7 (ZT maize on flat beds). The amount of water applied in CT-based rice crop (Sc1; farmers’ practice) was significantly (P  Sc2 = Sc3  > Sc7  > Sc4-Sc6.
    Higher grain yield and low water use led to significantly (P  Sc4 (2.25 kg grain m−3)  > Sc7 (2.15 kg grain m−3)  > Sc6 (2.06 kg grain m−3), respectively compared to Sc1 (0.30 kg grain m−3) (Table 2). In wheat, CA-based management practices increased WPI by 9% (4-years’ mean) compared to Sc1 (1.21 kg grain m−3). CA-based management practices improved mean WPI by 23 and 438% in RW and MW system, respectively compared to Sc1 (0.42 kg grain m−3).
    Figure 3

    Effect of different scenarios on irrigation water productivity (kg grain m−3) of rice, maize, wheat and systems during 4-years (2014–2018).

    Full size image

    Energy use efficiency
    Energy equivalents for different agricultural operations used in the study are given in Table S2. The energy input and output (Tables S3 and S4), and energy use efficiency (EUE) of rice, maize, wheat and mungbean were influenced by the management practices and varied from year to year (Fig. 4). During rice/maize, higher EUE was observed in maize based scenarios (Sc4-Sc7) than in rice-based scenarios (Sc1-Sc3) (10.81–13.83 MJ MJ−1 versus 3.95–4.85 MJ MJ−1) (Table 2). Rice-based scenarios (Sc1-Sc3) did not differ in EUE. However, in maize-based scenarios (Sc4-Sc7), EUE of CA-based maize scenarios (Sc5-Sc7) was 17–28% higher than CT-based maize Sc4. Across years also, the same trend was observed with no difference in EUE of rice-based scenarios (Sc1-Sc3), whereas CA-based maize scenarios (Sc5-Sc7) had higher EUE than CT-based Sc4 (Table 2). In wheat crop, highest EUE was observed under CA-based scenarios (Sc2-Sc3 and Sc5-Sc7) compared to CT-based scenarios (Sc1 and Sc4) across all study years and based on four years’ average (9.26–10.05 MJ MJ−1 versus 7.44–7.84 MJ MJ−1), it is indicated that CA-based scenarios are more energy-efficient than those of CT-based scenarios (Fig. 4). In all the years, EUE of maize-based scenarios (Sc4-Sc7) were higher than rice-based scenarios (Sc1-Sc3) but within rice-based scenarios (Sc1-Sc3), results were more variable with higher EUE of CA-based Sc2 and Sc3 in 1st and 2nd year than CT-based scenarios (Sc1) but did not differ in 3rd and 4th year (Fig. 4). On system basis, the EUE of different scenarios decreased in the following order: Sc5 (11.92 MJ MJ−1)  > Sc6 = Sc7 (10.26–10.95 MJ MJ−1)  > Sc4 (9.25 MJ MJ−1)  > Sc3 = Sc2 (6.23–6.25 MJ MJ−1)  > Sc1 (5.05 MJ MJ−1) (Table 2). Maize-based scenarios (Sc5-Sc7) had 48 to 136% higher EUE than rice-based scenarios (Sc1-Sc3) suggesting maize-wheat based cropping systems were more efficient in energy use than rice–wheat based systems (Table 2). Scenario 3 (+ 24%) in RW and Sc5 (+ 136%) in MW system were the most energy-efficient among the different combinations of management practices in 4-years of study.
    Figure 4

    Effect of different scenarios on energy use efficiency of rice, maize, wheat and systems during 4-years (2014–2018).

    Full size image

    Methane (CH4) and nitrous oxide (N2O) emission from soil
    Methane (CH4) was emitted only from the rice plots (Table 3). The estimated mean value of CH4 emission (kg CO2 eq. ha−1) was 39% lower in CA-based rice scenarios without continuous flooding (Sc2 and Sc3) compared to CT-based Sc1 with continuous flooding for  > 1 month (Table 3).
    Table 3 Effect of different scenarios on GHGs emissions, C-sequestration and GWP of rice, maize, wheat and systems (based on 4-year average, 2014–18).
    Full size table

    N2O emission varied from 7 to 583 kg CO2 eq. ha−1 during the rice season (Table 3). The maximum amount of N2O emission (580–583 kg CO2 eq. ha−1) was observed in CA-based rice scenarios (Sc2-Sc3) followed by the maize-based scenarios (50–61 kg CO2 eq. ha−1) and was the lowest in CT-based rice Sc1 (7 kg CO2 eq. ha−1). The CA-based rice and maize scenarios produced 88 and 9 times higher N2O emission compared to Sc1, respectively. The N2O emission in the wheat season ranged between 50 to 102 kg CO2 eq. ha−1 (Table 3). The highest N2O emission was estimated with CA-based scenarios (Sc2-Sc3) (101–102 kg CO2 eq. ha−1) and followed by scenarios Sc5-Sc7 (72–73 kg CO2 eq. ha−1) and was lowest in CT-based scenarios Sc1 and Sc4 (50 kg CO2 eq. ha−1). The N2O emission in the wheat crop was increased by 57% under CA-based management scenarios compared to CT-based management scenario (Table 3). On system basis, CA-based rice and maize systems emitted 12 and 2.4 times more N2O compared to Sc1, respectively but methane emission was reduced to zero (Table 3). Overall CA-based cereal management systems emitted almost six-time higher N2O emission compared to farmers’ practice, irrespective of cropping systems (Table 3).
    GHG emission associated with residue burning (kg CO2 eq. ha−1)
    Crop residue burning is a common farmers’ practice in the western IGP. Therefore, GHG emission due to residue burning (kg CO2 eq. ha−1) was estimated with CT-based system of rice (Sc1; 278 kg CO2 eq. ha−1) and maize (Sc4; 69 kg CO2 eq. ha−1) cultivation (Table 3). In the case of wheat, the GHG emission due to residue burning (kg CO2 eq. ha−1) was estimated with CT-based cultivation of wheat in Sc1 (59 kg CO2 eq. ha−1) and Sc4 (40 kg CO2 eq. ha−1). No GHG emission (kg CO2 eq. ha−1) was considered due to burning where crop residues were retained/incorporated in CA-based management practices under different scenarios.
    GHG emission due to energy consumption (kg CO2 eq. ha−1)
    GHG emission due to energy consumption varied from 2414 to 2941, 1005 to 1126 and 1122 to 1299 kg CO2 eq. ha−1 in rice, maize, and wheat, respectively (Table 3). Compared to CA-based management scenarios, CT-based scenarios emitted more GHGs due to the higher consumption of electricity and diesel energy in all the crops and cropping systems. Compared to Sc1, GHG emission due to energy consumption from rice/maize season was 16–18% lower in CA-based rice scenarios (Sc2-Sc3) and 63–66% lower in maize-based scenarios (Sc4-Sc7) (Table 3). Overall, compared to Sc1, CA-based scenarios reduced ~ 17 and 63% of GHG emissions due to energy consumption in rice and maize across the years, respectively. Similarly, in wheat, CA-based scenarios (Sc2-Sc3 and Sc5-Sc7) reduced 10% GHG emission due to energy consumptions as compared to CT-based scenarios (Sc1 and Sc4). On the system basis, Sc2, Sc3, Sc4, Sc5, Sc6, and Sc7 recorded lower energy-related emission of GHG by 14, 15, 43, 50, 46, and 43% (4-years’ mean), respectively, relative to Sc1 (4240 kg CO2 eq. ha−1) (Table 3). Rice and maize-based systems recorded ~ 15 and 46% lower GHG related emissions, respectively compared to farmers’ practice (Sc1-4240 kg CO2 eq. ha−1).
    Carbon (C) sequestration
    The estimated C-sequestration was carried out in those scenarios where crop residues were retained/ incorporated during the study period. The C-sequestration varied with the amount of crop residue was recycled under different crops and cropping systems. Estimated C-sequestration in soil varied from 0 to − 625 kg CO2 eq. ha−1 in rice, 0 to − 908 CO2 eq. ha−1 in maize and 0 to − 1821 kg CO2 eq. ha−1 in wheat (Table 3). On system basis, the highest C-sequestration was estimated under CA-based management scenarios which varied in the following order of Sc7 (3039 kg CO2 eq. ha−1)  > Sc3 (2446 kg CO2 eq. ha−1)  > Sc2 (2086 kg CO2 ha−1)  > Sc6 (2070 kg CO2 eq. ha−1).
    Total global warming potential (GWP)
    Global warming potential (GWP) varied with crop management practices under different scenarios over the years. In 4-year, the total estimated GWP from rice was lower under the CA-based systems than CT-based system. On 4-year mean basis, the GWP under the CA-based rice (Sc2-Sc3) and maize (Sc5-Sc7) systems were lowered by ~ 28 and 90% compared to farmers’ practice (Sc1), respectively (Table 3). Within maize-based scenarios, the CA-based scenarios (Sc5-Sc7) reduced the GWP of maize by 77–83% compared to CT-based Sc4. The GWP in wheat varied from − 384 to 1409 kg CO2 eq. ha−1 based on 4 year average (Table 3). The 4 years mean GWP was significantly lower by 127–138% in CA-based RW system (Sc2-Sc3) and 96–99% in CA-based MW system (Sc5-Sc7) compared to Sc1, respectively (Table 3). The mean GWP of wheat under CT-based RW system (Sc1) was similar to CT-based MW (Sc1and Sc4) systems.
    The crop management practices under different scenarios influenced the total GWP (CO2 eq. ha−1) in both the cropping systems (RW and MW system) during the study years (Table 3). On 4-years system mean basis, GWP under Sc2, Sc3, Sc4, Sc5, Sc6, and Sc7 were 48, 54, 59, 96, 95, and 107% lower compared to Sc1 (farmers’ practice), respectively. In CA-based RW and MW systems, GWP was estimated lower by 50 and 89% compared to CT-based Sc1(6451 kg CO2 eq. ha−1), respectively. More

  • in

    Increased mosquito abundance and species richness in Connecticut, United States 2001–2019

    Summary statistics
    To date, The Connecticut Agricultural Experiment Station (CAES) has collected and tested 4,602,240 female mosquitoes comprised of 47 species in 8 genera. Approximately 98% of these collections were obtained from 92 trapping sites in 73 towns throughout the state, while the remainder of collections were from an additional 365 supplemental sites sampled between 1996 and 2007. Eighty-eight percent of collections come from CDC Light Traps, CDC Gravid Traps and Biogents BG Sentinel Traps (beginning in 2012). There have been several other collection methods used throughout the years that account for 11.6% of the mosquitoes collected (S. Table 1). Overall, there was considerable variation in mosquito abundance, surveillance effort, species richness/evenness, and the proportion of single species detections across CT (Fig. 1). One clear trend was that surveillance effort was greatest in CT’s human population centers (predominately CT’s southwestern and central counties) where WNV is commonly detected and along the CT-Rhode Island border where EEEV is most commonly detected (Fig. 1A). Another noticeable visual trend was that species evenness tends to be higher in the eastern portion of CT (Fig. 1B).
    Figure 1

    Maps of total mosquito abundance (log10 transformed) (A), total number of trap nights (A), average annual mosquito species richness (B), average annual mosquito species evenness (B), and average annual prevalence of single species detections (C) across 87 mosquito surveillance sites throughout Connecticut, U.S. sampled with ground level CDC CO2-baited light traps from 2001 to 2019. (A) Point sizes represent abundance while colors represent trap-nights; (B) point sizes represent species richness while colors represent species evenness; (C) point sizes represent prevalence of single species detections. (A–C) Solid black lines represent county political boundaries. The figure was created in R V 3.6.3 using the following packages: ggplot2 and maps.

    Full size image

    Objective 1: annual collections of mosquito populations among sites
    Our first objective was to identify spatial and temporal linear and nonlinear trends in mosquito abundance among sites. We also examined coarse-scale correlations between statewide (i.e., annual) and site-wide abundance and weather and land classification variables. All regression results and tables are provided as supporting information in Supporting Information: Regression Tables.
    Mosquito abundance
    Temporal regressions
    After accounting for trapping effort, regression parameters estimating the relationship between site-level mosquito abundance and year of collection were positive using generalized linear mixed effects models (GLMMs) (“Year”—Estimate 0.03, t-value 9.11) and generalized additive mixed effects models (GAMMs) (“Year”—Est. 0.77, t-value 2.7, p = 0.007), suggesting that site-level mosquito abundance has increased in CT since 2001 (Fig. 2A,B): this trend resulted in a predicted 60% increase in annual abundance from 2001 to 2019. While these regressions identified possible increasing trends in site-level abundance, they provided an overall poor-fit to the data: AIC scores from fixed effect GLMMs were higher than random effects-only models (ΔAIC 415.1). This poor model fit may be in part driven by directly modeling Year as a fixed continuous effect; Year as a random categorical effect may better capture variation in mosquito collections30. Despite large differences in AIC scores between fixed and random effects-only models, we detected a pattern of increasing intercept values when examining “Year” as a random effect (S. Fig. 1), providing further evidence of an increasing temporal trend in site-level mosquito abundance.
    Figure 2

    Average annual mosquito abundance (A), number of trap nights (B), mosquito species richness (C), mosquito species evenness (D), the annual correlation between mosquito species richness and evenness (E), and the prevalence of single mosquito species detections (F) across 87 mosquito surveillance sites throughout Connecticut, U.S. sampled with ground level CDC CO2-baited light traps from 2001 – 2019. For (A)–(D) and (F), points represent the average across all sites, solid lines represent the standard error of the average, and dashed lines are added to aid interpreting each plot as a time series. For (E), points represent the average across all sites while solid lines represent the 95% CI of the correlation point estimate. The figure was created in R V 3.6.3 using base functions.

    Full size image

    Spatial regressions
    After accounting for trapping effort, regression parameters estimating the relationship between site-level mosquito abundance and latitude/longitude were positive using a GLMM (“Latitude (centered)”—Est. 0.49, t-value 5.48; Longitude (centered)”—Est. 0.20, t-value 4.78), indicating that mosquito abundance tends to increase on a south to north and west to east gradient (which reflects the overall transition in land cover from developed to forested in CT). The best fitting fixed effect GAMM included Longitude by Latitude smoothing terms, which also predicted positive relationships between abundance and site coordinates (Smoothing term 1: Est. 0.24, p = 0.06; Smoothing term 2: Est. 0.05, p = 0.67). GAMM predictions of site-level mosquito abundance were considerably more complex than GLMM predictions, yet still supported the overall trend of increasing abundance from south to north and west to east (S. Fig. 2). Overall, the fixed effect GLMMs provided an extremely poor fit to the data compared to random effects-only GLMMs (Latitude—ΔAIC 1092.7; Longitude—ΔAIC 1099.8). These poor model fits may be in part driven by directly modeling coordinate (i.e., site) as a fixed continuous effect: GAMM predictions that account for nonlinear relationships between abundance and spatial location may provide a more appropriate fit to the data while site as a categorical random effect in the GLMMs may better capture variation in mosquito collections30.
    Weather correlations
    When comparing statewide annual mosquito abundance to weather variables, we found no correlations between summer temperatures, spring temperatures or precipitation. This was despite detecting a slight annual increase in temperatures across all three seasons examined (average daily temperature GLMM Est., Season/Summer: 0.05 °C, Prior Spring: 0.02 °C, Prior Winter: 0.07 °C) and a slight annual decline in within season and prior spring precipitation (total precipitation GLMM Est., Season/Summer: − 4.23 mm, Prior Spring: − 3.38 mm; Prior Winter: 2.22 mm) in CT since 2001. However, we did find a positive correlation between total summer precipitation and annual statewide mosquito abundance (r = 0.50, CI 0.07–0.78).
    Land cover correlations
    When comparing total site-wide abundance to land cover classifications, we found positive correlations between percent land cover categorized as barren (r = 0.22, CI 0.01–0.41), forested wetland (r = 0.34, 0.14–0.52), and non-forested wetland (r = 0.21, 0.004–0.41). We also found a negative association in total site-level abundance and percent land cover categorized as grass (r = − 0.35, − 0.52 to − 0.15).
    Species richness
    Temporal regressions
    After accounting for trapping effort, regression parameters estimating the relationship between site-level species richness and year of collection were positive using both GLMMs (“Year (centered)”—Est. 0.10, t-value 9.46) and GAMMs (“Year”—Est. 1.78, t-value 1.93, p = 0.05) (Fig. 2C): this trend resulted in a predicted 10% increase in site-level species richness from 2001 to 2019. Overall, fixed effects GLMMs of species richness provided an overall poor fit to the data when compared to a random effects-only model (ΔAIC 319.37). However, we did observe a pattern of increasing intercept values when examining “Year” as a random effect (S. Fig. 3), further indicating that mosquito species richness has annually increased across sites in CT since 2001.
    Spatial regressions
    Similar to models of site-level mosquito abundance, GLMMs of species richness by coordinate predicted positive relationships (Latitude (centered): Est. 0.63, t-value = 2.11; Longitude (centered): Est. 1.26, t-value = 9.34), indicating the species richness tends to increase along a south to north, west to east gradient. The best fitting GAMM included Longitude by Latitude smoothing terms, which also predicted positive relationships between species richness and site coordinate (Smoothing term 1: Est. 1.45, p = 0.0001; Smoothing term 2: Est. 0.70, p = 0.05). The GAMM further predicted a complex relationship of species richness among sites, yet overall predicted richness was lowest in the southwest/central portions of CT (areas of greatest development) and highest along coastal/eastern portions of CT (areas of non-forested and forested wetlands) (S. Fig. 4). The fixed effect GLMMs provided very poor fits to the data compared with random effects-only models (Latitude: ΔAIC 953.01; Longitude: ΔAIC 871.93; see the above results for Site-level collections: spatial regressions for possible reasons for these poor fits).
    Weather correlations
    We found no correlations of note between mosquito species richness and seasonal temperatures and precipitation.
    Land cover correlations
    Positive correlations of note for site-level species richness included: coniferous forest (r = 0.25, 0.04–0.43), deciduous forest (r = 0.56, 0.40–0.69), and forested wetland (r = 0.43, 0.23–0.58). Negative correlations included: barren (r = − 0.30, − 0.48 to − 0.10), developed (r = − 0.66, − 0.77 to − 0.53), grass (r = − 0.24, − 0.43 to − 0.03), and open water (r = − 0.31, − 0.49 to − 0.11).
    Species evenness
    Temporal regressions
    Trends in species evenness were negative using both GLMMs (“Year”—Est. − 0.01, t-value − 7.86) and GAMMs (“Year (centered)”—Est. − 0.04, t-value − 5.58, p = 0.000) (Fig. 2D): this trend resulted in a predicted 12% decrease in site-level species evenness from 2001 to 2019. Similar to fixed effects GLMMs of species richness, fixed effects GLMMs of species evenness were less informative than a random effects-only model (ΔAIC 66.5). Declining intercept values were evident when evaluating “Year” as a random effect (S. Fig. 5), further supporting an overall annual decline in species evenness estimates among sites.
    Spatial regressions
    Similar to spatial models of species richness, GLMMs predicted positive relationships between species evenness and coordinate (Latitude (centered): Est. 0.36, t-value = 7.63; Longitude (centered): Est. 0.18, t-value = 8.54); the best fitting GAMM, which included Longitude by Latitude smoothing terms, also predicted positive relationships (Smoothing term 1: Est. 0.12, p = 0.01; Smoothing term 2: Est. 0.16, p = 0.004). GAMM predictions of site-level species evenness were equally complex to predictions of abundance and richness, and predicted evenness to be highest in southcentral and eastern CT (S. Fig. 6). Fixed effect GLMMs provided very poor fits to the data compared with random effects-only models (Latitude: ΔAIC 502.6; Longitude: ΔAIC 488.4; see the above results for Site-level collections: spatial regressions for possible reasons for these poor fits).
    Weather correlations
    We did find a negative correlation between statewide prior spring minimum temperatures and mosquito species evenness (r = − 0.49, − 0.77 to − 0.04).
    Land cover correlations
    Positive correlations of note for species evenness included: deciduous forest (r = 0.46, 0.28–0.61) and forested wetland (r = 0.22, 0.01–0.41). Negative correlations included: barren (r = − 0.37, − 0.54 to − 0.18), developed (r = − 0.45, − 0.60 to − 0.26), and open water (r = − 0.32, − 0.50 to − 0.12).
    Correlations between abundance, richness, and evenness
    The relationships between abundance, richness, and evenness varied depending on the scale examined. Across all years of data at the site-level, the correlation between abundance and richness was positive (r = 0.53, 0.36–0.67), the correlation between abundance and evenness as negative (r = − 0.35, − 0.52 to − 0.15), and there was no correlation of note between richness and evenness. Across all sites at the year-level, there were no correlations of note between abundance, richness, and evenness. Annual statewide correlations between richness and evenness (RRE) were positive for all years yet there was no noticeable annual trend in these correlations (Fig. 2E). Spatially, the average site-level RRE was 0.15 (± 0.03 SE). Furthermore, the magnitude and direction of RRE tended to increase on a south to north gradient (r = 0.31, 0.11–0.49), yet there was no apparent relationship in RRE along a west to east gradient (S. Fig. 7). We did detect a positive correlation between RRE and average maximum spring temperatures (r = 0.46, 0.01–0.76) as well as a positive correlation between RRE and percent land cover classified as coniferous forest (r = 0.23, 0.02–0.42).
    Single detection events
    Single detection events were defined as the prevalence of single species detections at a site (i.e., number of species with a single pool divided by species richness). Changes in single species detections could indirectly indicate range expansion among species (i.e., the prevalence of single detections decreases with time) and/or areas of unique mosquito diversity (i.e., the prevalence of single detections changes across space).
    Temporal regressions
    We detected no overall pattern of increasing/decreasing annual prevalence of single-species detections among sites (GLMM, “Year”—Est. − 0.13, t-value = − 1.12, p = 0.22; GAMM, “Year”—Est. 0.02, t value = − 0.31, p = 0.75) (Fig. 2F). These models were considered equivalent to a random effects-only GLMM (ΔAIC  More

  • in

    Ecological and social constraints combine to promote evolution of non-breeding strategies in clownfish

    1.
    Emlen, S. T. In Behavioural Ecology: An Evolutionary Approach (eds Krebs, J. R. & Davies, N. B.) 301–337 (Blackwell, Oxford, 1991).
    2.
    Hamilton, W. D. The evolution of social behavior. J. Theor. Biol. 7, 1–52 (1964).
    CAS  Article  Google Scholar 

    3.
    West-Eberhard, M. J. The evolution of social behavior by kin selection. Q. Rev. Biol. 50, 1–33 (1975).
    Google Scholar 

    4.
    Emlen, S. T. & Wrege, P. H. A test of alternate hypotheses for helping behavior in white-fronted bee-eaters of Kenya. Behav. Ecol. Sociobiol. 25, 303–319 (1989).
    Article  Google Scholar 

    5.
    Reeve, H. K., Westneat, D. F., Noon, W. A., Sherman, P. W. & Aquadro, C. F. DNA fingerprinting’ reveals high levels of inbreeding in colonies of the eusocial naked mole- rat. Proc. Natn. Acad. Sci. 87, 2496–2500 (1990).
    CAS  Article  Google Scholar 

    6.
    Brouwere, L., Heg, D. & Taborsky, M. Experimental evidence for helper effects in a cooperatively breeding fish. Behav. Ecol. 16, 667–673 (2005).
    Article  Google Scholar 

    7.
    Wiley, R. H. & Rabenold, K. N. The evolution of cooperative breeding by delayed reciprocity and queuing for favorable social positions. Evolution 38, 97–107 (1984).
    Article  Google Scholar 

    8.
    Kokko, H. & Johnstone, R. A. Social queuing in animal societies: a dynamic model of reproductive skew. Proc. R. Soc. Lond. B 266, 571–578 (1999).
    Article  Google Scholar 

    9.
    Woolfenden, G. E. & Fitzpatrick, J. V. The inheritance of territory in group-breeding birds. Bioscience 28, 104–108 (1978).
    Article  Google Scholar 

    10.
    Creel, S. R. & Waser, P. M. Inclusive fitness and reproductive strategies in dwarf mongooses. Behav. Ecol. 5, 339–348 (1994).
    Article  Google Scholar 

    11.
    Balshine-Earn, S., Neat, F., Reid, H. & Taborsky, M. Paying to stay or paying to breed? Field evidence for directbenefits of helping in a cooperatively breeding fish. Behav. Ecol. 9, 432–438 (1998).
    Article  Google Scholar 

    12.
    Emlen, S. T. The evolution of helping. I. an ecological constraints model. Am. Nat. 119, 29–53 (1982).
    Article  Google Scholar 

    13.
    Hatchwell, B. J. & Komoder, J. Ecological constraints, life history traits and the evolution of cooperative breeding. Anim. Behav. 59, 1079–1086 (2000).
    CAS  Article  Google Scholar 

    14.
    Komdeur, J. Importance of habitat saturation and territory quality for evolution of cooperative breeding in the Seychelles warbler. Nature 358, 493–495 (1992).
    Article  Google Scholar 

    15.
    Faulkes, C. G. et al. Ecological constraints drive social evolution in the Africa mole rats. Proc. R. Soc. B 264, 1619–1627 (1997).
    CAS  Article  Google Scholar 

    16.
    Bergmüller, R., Heg, D. & Taborsky, M. Helpers in a cooperatively breeding cichlid stay and pay or disperse and breed, depending on ecological constraints. Proc. R. Soc. B 272, 325–331 (2005).
    Article  Google Scholar 

    17.
    Koenig, W. D. & Pitelka, F. A. Relatedness and inbreeding avoidance: Counterploys in the communally nesting acorn woodpecker. Science 206, 1103–1105 (1979).
    CAS  Article  Google Scholar 

    18.
    Cant, M. A., Hodge, S. J., Bell, M. B. V., Gilchrist, J. S. & Nichols, H. J. Reproductive control via eviction (but not the threat of eviction) in banded mongooses. Proc. R. Soc. B 277, 2219–2226 (2010).
    Article  Google Scholar 

    19.
    Dey, C. J., Tan, J. Q. Y., O’Connor, C. M., Reddon, A. R. & Caldwell, R. J. Dominance network structure across reproductive contexts in the cooperatively breeding cichlid fish Neolamprologus pulcher. Curr. Zool. 61, 45–54 (2015).
    Article  Google Scholar 

    20.
    Cant, M. A. The role of threats in animal cooperation. Proc. R. Soc. B 278, 170–178 (2011).
    Article  Google Scholar 

    21.
    Sherman, P. W., Lacey, E. A., Reeve, H. K. & Keller, L. Forum: The eusociality continuum. Behav. Ecol. 6, 102–108 (1995).
    Article  Google Scholar 

    22.
    Hing, M. L., Klanten, O. S., Dowton, M. & Wong, M. Y. L. The right tools for the job: cooperative breeding theory and an evaluation of the methodological approaches to understanding the evolution and maintenance of sociality. Front. Ecol. Evol. 5, 100 (2017).
    Article  Google Scholar 

    23.
    Fricke, H. & Fricke, S. Monogamy and sex change by aggressive dominance in coral reef fish. Nature 266, 830–832 (1977).
    CAS  Article  Google Scholar 

    24.
    Buston, P. M. Size and growth modification in clownfish. Nature 424, 145–146 (2003).
    CAS  Article  Google Scholar 

    25.
    Buston, P. M. & Balshine, S. Cooperating in the face of uncertainty: a consistent framework for understanding the evolution of cooperation. Behav. Process. 76, 152–159 (2007).
    Article  Google Scholar 

    26.
    Kokko, H., Johnstone, R. A. & Wright, J. The evolution of parental and alloparental effort in cooperatively breeding groups: when should helpers pay to stay? Behav. Ecol. 13, 291–300 (2002).
    Article  Google Scholar 

    27.
    Buston, P. M., Bogdanowicz, S. M., Wong, A. & Harrison, R. G. Are clownfish groups composed of relatives? Analysis of microsatellite DNA variation in Amphiprion percula. Mol. Ecol. 16, 3671–3678 (2007).
    CAS  Article  Google Scholar 

    28.
    Buston, P. M. Does the presence of non-breeders enhance the fitness of breeders? An experimental analysis in the clown anemonefish Amphiprion percula. Behav. Ecol. Sociobiol. 57, 23–31 (2004).
    Article  Google Scholar 

    29.
    Buston, P. M. Territory inheritance in the clown anemonefish. Proc. R. Soc. B (Suppl.) 271, S252–S254 (2004).
    Google Scholar 

    30.
    Mariscal, R. N. The nature of the symbiosis between Indo-Pacific anemone fish and seaanemones. Mar. Biol. 6, 58–65 (1970).
    Article  Google Scholar 

    31.
    Verwey, J. Coral reef studies. I. The symbiosis between damselfishesand sea anemones in Batavia Bay. Treubia 12, 305–366 (1930).
    Google Scholar 

    32.
    Fautin, D. G. The anemonefish symbiosis: what is known and what is not. Symbiosis 10, 23–46 (1991).
    Google Scholar 

    33.
    Elliott, J. K., Elliott, J. M. & Mariscal, R. N. Host selection, location and association behaviors of anemonefishes in field settlement experiments. Mar. Biol. 122, 377–389 (1995).
    Article  Google Scholar 

    34.
    Elliott, J. & Mariscal, R. Coexistence of nine anemonefish species: differential host and habitat utilization, size and recruitment. Mar. Biol. 138, 23–36 (2001).
    Article  Google Scholar 

    35.
    Buston, P. M. Forcible eviction and prevention of recruitment in the clown anemonefish. Behav. Ecol. 14, 576–582 (2003).
    Article  Google Scholar 

    36.
    Almany, G. et al. Larval fish dispersal in a coral-reef seascape. Nat. Ecol. Evol. 1, 0148 (2017).
    Article  Google Scholar 

    37.
    Buston, P. M. & Garcia, M. B. An extraordinary life span estimate for the clown anemonefish Amphiprion percula. J. Fish. Biol. 70, 1710–1719 (2007).
    Article  Google Scholar 

    38.
    Buston, P. M. Mortality is associated with social rank in the clown anemonefish (Amphiprion percula). Mar. Biol. 143, 811–815 (2003).
    Article  Google Scholar 

    39.
    Eibl-Eibesfeldt, I. Beobachtungen und Versuche an Anemonenfischen (Amphiprion) der Maldiven und der Nicobaren. Z. Tierpsychol. 17, 1–10 (1960).
    Article  Google Scholar 

    40.
    Moyer, J. T. & Nakazono, A. Protandrous hermaphroditism in six species of the anemonefish genus Amphiprion in Japan. Jpn J. Ichthyol. 25, 101–106 (1978).
    Google Scholar 

    41.
    Buston, P. M. & Cant, M. A. A new perspective on size hierarchies in nature: patterns, causes and consequences. Oecologia 149, 362–372 (2006).
    Article  Google Scholar 

    42.
    Wong. M.Y. Ecological constraints and benefits of philopatry promote group-living in a social but non-cooperatively breeding fish. Proc. R. Soc. B 277, 353–358 (2010).

    43.
    Kokko, H., Johnstone, R. A. & Clutton-Brock, T. H. The evolution of cooperative breeding through group augmentationProc. R. Soc. Lond. B. 268, 187–196 (2001).
    CAS  Article  Google Scholar 

    44.
    Bourke, A. F. G. Principles of Social Evolution (Oxford University Press, 2011).

    45.
    Nonacs, P. Go high or go low? Adaptive evolution of high and low relatedness societies in social hymenoptera. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00087 (2017)

    46.
    Grinsted, L. & Field, J. Market forces influence helping behaviour in cooperatively breeding paper wasps. Nat. Commun. 8, 13750 (2017).
    CAS  Article  Google Scholar 

    47.
    Wong, Y. L. M., Buston, P. M., Munday, P. L. & Jones, G. P. The threat of punishment enforces peaceful cooperation and stabilizes queues in a coral-reef fish. Proc. Biol. Sci. USA 274, 1093–1099 (2007).
    Google Scholar 

    48.
    Rueger, T. et al. Reproductve control via the threat of eviction in the clown anemonefish. Proc. R. Soc. B. 285, 20181295 (2018).
    Article  Google Scholar 

    49.
    Barbasch, T. et al. Substantial plasticity of reproduction and parental care in response to local resource availability. Oikos https://doi.org/10.1111/oik.07674 (2020).

    50.
    Salles, O. C. et al. Strong habitat and weak genetic effects shape the lifetime reproductive success in a wild clownfish population. Ecol. Lett. 23, 265–273 (2020).
    Article  Google Scholar 

    51.
    Holbrook, S. J. & Schmitt, R. J. Growth, reproduction and survival of a tropical sea anemone (Actiniaria): benefits of hosting anemone fish. Coral Reefs 24, 67–73 (2005).
    Article  Google Scholar 

    52.
    Cleveland, A., Verde, E. A. & Lee, R. W. Nutritional exchange in a tropical tripartite symbiosis: direct evidence for the transfer of nutrients from anemonefish to host anemone and zooxanthellae. Mar. Biol. 158, 589–602 (2011).
    Article  Google Scholar 

    53.
    Porat, D. & Chadwick-Furman, N. E. Effects of anemonefish on giant sea anemones: expansion behavior, growth, and survival. Hydrobiologia 530, 513–520 (2004).
    Google Scholar 

    54.
    Réale, D., Reader, S. M., Sol, D., McDougall, P. T. & Dingemanse, N. J. Integrating animal temperament within ecology and evolution. Biol. Rev. Camb. Philos. Soc. 82, 291–318 (2007).
    Article  Google Scholar 

    55.
    Schmiege, P. F. P., D’Aloia, C. C. & Buston P. M. Anemonefish personalities influence the strength of mutualistic interactions with host sea anemones. Mar Biol. https://doi.org/10.1007/s00227-016-3053-1 (2017).

    56.
    Barbasch, T. A. & Buston, P. M. Plasticity and personality of parental care in the clown anemonefish. Anim. Behav. 136, 65–73 (2018).
    Article  Google Scholar 

    57.
    Wong, M. Y. L. et al. Brief communication: consistent behavioural traits and behavioural syndromes in pairs of the false clown anemonefish Amphiprion ocellaris. J. Fish. Biol. 83, 207–213 (2013).
    CAS  Article  Google Scholar 

    58.
    Muthoo, A. A non-technical introduction to bargaining theory. World Econ. 1, 145–166 (2000).
    Google Scholar 

    59.
    Cant, M. A. & Johnstone, R. A. How threats influence the evolutionary resolution of within-group conflict. Am. Nat. 173, 759-771 (2009).

    60.
    Buston, P. M. & Zink, A. G. Reproductive skew and the evolution of conflict resolution: a synthesis of transactional and tug-of-war models. Behav. Ecol. 20, 672–684 (2009).
    Article  Google Scholar 

    61.
    Dixson, D. L. et al. Coral reef fish smell leaves to find island homes. Proc. R. Soc. Lond. B Biol. Sci. 275, 2831–2839 (2008).
    Google Scholar 

    62.
    Dixson, D. L. et al. Experimental evaluation of imprinting and the role innate preference plays in habitat selection in a coral reef fish. Oecologia 174, 99–107 (2014).
    Article  Google Scholar  More

  • in

    Climate reverses directionality in the richness–abundance relationship across the World’s main forest biomes

    1.
    Wright, A. J., Wardle, D. A., Callaway, R. & Gaxiola, A. The overlooked role of facilitation in biodiversity experiments. Trends Ecol. Evol. 32, 383–390 (2017).
    Article  PubMed  Google Scholar 
    2.
    Pacala, S. W. & Levin, S. A. Biologically generated spatial pattern and the coexistence of competing species. In Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions (Eds Tilman, D. and Kareiva, P.) (Princeton University Press, Princeton, NJ, 1997).

    3.
    Liang, J. et al. Positive biodiversity–productivity relationship predominant in global forests. Science 354, aaf8957 (2016).

    4.
    Poorter, L. et al. Biodiversity and climate determine the functioning of Neotropical forests. Glob. Ecol. Biogeogr. 26, 1423–1434 (2017).
    Article  Google Scholar 

    5.
    Ratcliffe, S. et al. Modes of functional biodiversity control on tree productivity across the European continent. Glob. Ecol. Biogeogr. 25, 251–262 (2016).
    Article  Google Scholar 

    6.
    Scherer-Lorenzen, M. & Schulze, E. D. Forest Diversity and Function: Temperate and Boreal Systems, Vol. 176 (Springer Science & Business Media, 2005).

    7.
    Paquette, A. & Messier, C. The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob. Ecol. Biogeogr. 20, 170–180 (2011).
    Article  Google Scholar 

    8.
    Liu, X. et al. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. R. Soc. B. 285, 20181240 (2018).
    Article  PubMed  Google Scholar 

    9.
    Holzwarth, F., Rüger, N. & Wirth, C. Taking a closer look: disentangling effects of functional diversity on ecosystem functions with a trait-based model across hierarchy and time. R. Soc. Open Sci. 2, 140541 (2015).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    10.
    Bongers, F. J. et al. Growth–trait relationships in subtropical forest are stronger at higher diversity. J. Ecol. 108, 256–266 (2020).
    Article  Google Scholar 

    11.
    Adair, E. C., Hooper, D. U., Paquette, A. & Hungate, B. A. Ecosystem context illuminates conflicting roles of plant diversity in carbon storage. Ecol. Lett. 21, 1604–1619 (2018).
    Article  Google Scholar 

    12.
    Aponte, C. et al. Structural diversity underpins carbon storage in Australian temperate forests. Glob. Ecol. Biogeogr. 29, 789–802 (2020).
    Article  Google Scholar 

    13.
    Waide, R. B. et al. The relationship between productivity and species richness. Annu. Rev. Ecol. Evol. Syst. 30, 257–300 (1999).
    Article  Google Scholar 

    14.
    Dormann, C. F., Schneider, H. & Gorges, J. Neither global nor consistent: a technical comment on the tree diversity-productivity analysis of Liang et al. (2016). BioRxiv, 524363 (2019).

    15.
    Srivastava, D. S. & Lawton, J. H. Why more productive sites have more species: an experimental test of theory using tree-hole communities. Am. Nat. 152, 510–529 (1998).
    CAS  Article  PubMed  Google Scholar 

    16.
    Gaston, K. J. Global patterns in biodiversity. Nature 405, 220 (2000).
    CAS  Article  PubMed  Google Scholar 

    17.
    McGlynn, T. P., Weiser, M. D. & Dunn, R. R. More individuals but fewer species: testing the ‘more individuals hypothesis’ in a diverse tropical fauna. Biol. Lett. 6, 490–493 (2010).
    Article  PubMed  PubMed Central  Google Scholar 

    18.
    Yee, D. A. & Juliano, S. A. Abundance matters: a field experiment testing the more individuals hypothesis for richness–productivity relationships. Oecologia 153, 153–162 (2007).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    19.
    Storch, D., Bohdalková, E. & Okie, J. The more‐individuals hypothesis revisited: the role of community abundance in species richness regulation and the productivity–diversity relationship. Ecol. Lett. 21, 920–937 (2018).
    Article  Google Scholar 

    20.
    Ratcliffe, S. et al. Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecol. Lett. 20, 1414–1426 (2017).
    Article  PubMed  Google Scholar 

    21.
    Zhai, P., Pörtner, H. O., & Roberts, D. (Eds). Summary for policymakers. In: global warming of 1.5 °C. An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways. The Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, 32 (2018).

    22.
    Shipley, B. Testing causal explanations in organismal biology: causation, correlation and structural equation modelling. Oikos 86, 374–382 (1999).
    Article  Google Scholar 

    23.
    Yoda, K., Kira, T., Ogawa, H. & Hozami, K. Self-thinning in overcrowded pure stands under cultivated and natural conditions. J. Biol. Osaka City Univ. 14, 107–129 (1963).
    Google Scholar 

    24.
    Westoby, M. The self-thinning rule. Adv. Ecol. Res. 14, 167–225 (1984).
    Article  Google Scholar 

    25.
    Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought‐induced forest dieback. Glob. Change Biol. 23, 3742–3757 (2017).
    ADS  Article  Google Scholar 

    26.
    Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).
    Article  Google Scholar 

    27.
    Schluter, D. Experimental evidence that competition promotes divergence in adaptive radiation. Science 266, 798–801 (1994).
    ADS  CAS  Article  PubMed  Google Scholar 

    28.
    Francis, A. P. & Currie, D. J. A globally consistent richness–climate relationship for angiosperms. Am. Nat. 161, 523–536 (2003).
    Article  PubMed  Google Scholar 

    29.
    Grossiord, C. et al. Tree diversity does not always improve resistance of forest ecosystems to drought. Proc. Natl Acad. Sci. USA 111, 14812–14815 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    30.
    Lavergne, S., Mouquet, N., Thuiller, W. & Ronce, O. Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu. Rev. Ecol. Evol. Syst. 41, 321–350 (2010).
    Article  Google Scholar 

    31.
    Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).
    Article  Google Scholar 

    32.
    Meehl, G. A. et al. Global climate projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) (Cambridge University Press, Cambridge, United Kingdom and New York, NY, 2007).

    33.
    Lieth, H. Modelling the Primary Productivity of the Earth. Nature and Resources. UNESCO, VIII, 2:5-10 (1972).

    34.
    Lieth, H. Modeling the primary productivity of the world. In Primary Productivity of the Biosphere (eds Lieth, H. & Whittaker, R. H.) 237–264 (Springer-Verlag, New York, NY, 1975).

    35.
    Grieser, J., Gommes, R., Cofield, S. & Bernardi, M. In World Maps of Climatological Net Primary Production of Biomass, NPP (Food and Agriculture Organization of the United Nations, GEONETWORK, FAO, Rome, 2006).

    36.
    Revadekar, J. V. et al. Impact of altitude and latitude on changes in temperature extremes over South Asia during 1971–2000. Int. J. Climatol. 33, 199–209 (2013).
    Article  Google Scholar 

    37.
    Ali, S. et al. Effect of altitude on forest soil properties at Northern Karakoram. Eurasia. Soil Sci. 52, 1159–1169 (2019).
    ADS  Article  Google Scholar 

    38.
    Zhu, Z. X., Nizamani, M. M., Sahu, S. K., Kunasingam, A. & Wang, H. F. Tree abundance, richness, and phylogenetic diversity along an elevation gradient in the tropical forest of Diaoluo Mountain in Hainan, China. Acta Oecol. 101, 103481 (2019).
    Article  Google Scholar 

    39.
    Malizia, A. et al. Elevation and latitude drives structure and tree species composition in Andean forests: results from a large-scale plot network. PLoS ONE 15, e0231553 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Homeier, J., Breckle, S. W., Günter, S., Rollenbeck, R. T. & Leuschner, C. Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species‐rich Ecuadorian montane rain forest. Biotropica 42, 140–148 (2010).
    Article  Google Scholar 

    41.
    Benavides, R. et al. Recruitment patterns of four tree species along elevation gradients in Mediterranean mountains: not only climate matters. For. Ecol. Manag. 360, 287–296 (2016).
    Article  Google Scholar 

    42.
    R Core Team R. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2013).

    43.
    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. R Core Team nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-148. https://CRAN (2020). More