1.
Pfäffle, M., Littwin, N., Muders, S. V. & Petney, T. N. The ecology of tick-borne diseases. Int. J. Parasitol. 43, 1059–1077 (2013).
Article Google Scholar
2.
Han, B. A. & Yang, L. Predicting novel tick vectors of zoonotic disease. in ICML Workshop on #Data4Good: Machine Learning in Social Good Applications 71–75 (2016).
3.
de la Fuente, J., Estrada-Pena, A., Venzal, J. M., Kocan, K. M. & Sonenshine, D. E. Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 13, 6938–6946 (2008).
Article Google Scholar
4.
Michelet, L. et al. High-throughput screening of tick-borne pathogens in Europe. Front. Cell. Infect. Microbiol. 4, 103 (2014).
Article Google Scholar
5.
Estrada-Peña, A. & de la Fuente, J. The ecology of ticks and epidemiology of tick-borne viral diseases. Antiviral Res. 108, 104–128 (2014).
Article CAS Google Scholar
6.
Paul, R. E. L. et al. Environmental factors influencing tick densities over seven years in a French suburban forest. Parasit. Vectors 9, 309 (2016).
Article CAS Google Scholar
7.
Randolph, S. E. Tick-borne disease systems emerge from the shadows: the beauty lies in molecular detail, the message in epidemiology. Parasitology 136, 1403 (2009).
CAS Article Google Scholar
8.
Jore, S. et al. Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit. Parasit. Vectors 4, 1–11 (2011).
Article Google Scholar
9.
Bernstein, L. et al. Climate Change 2007: Synthesis Report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)] https://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_full_report.pdf (2007).
10.
Kovats, R. S., Campbell-Lendrum, D. H., McMichael, A. J., Woodward, A. & Cox, J. S. Early effects of climate change: do they include changes in vector-borne disease?. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356, 1057–1068 (2001).
CAS PubMed PubMed Central Google Scholar
11.
Gage, K. L., Burkot, T. R., Eisen, R. J. & Hayes, E. B. Climate and vectorborne diseases. Am. J. Prev. Med. 35, 436–450 (2008).
Article Google Scholar
12.
Medlock, J. M. et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit. Vectors 6, 1–11 (2013).
Article Google Scholar
13.
Andreassen, A. et al. Prevalence of tick borne encephalitis virus in tick nymphs in relation to climatic factors on the southern coast of Norway. Parasit. Vectors 5, 1–12 (2012).
Article Google Scholar
14.
Soleng, A. et al. Distribution of Ixodes ricinus ticks and prevalence of tick-borne encephalitis virus among questing ticks in the Arctic Circle region of northern Norway. Ticks Tick. Borne. Dis. 9, 97–103 (2018).
CAS Article Google Scholar
15.
Kjelland, V. et al. Tick-borne encephalitis virus, Borrelia burgdorferi sensu lato, Borrelia miyamotoi, Anaplasma phagocytophilum and Candidatus Neoehrlichia mikurensis in Ixodes ricinus ticks collected from recreational islands in southern Norway. Ticks Tick. Borne. Dis. 9, 1098–1102 (2018).
Article Google Scholar
16.
Paulsen, K. M. et al. Prevalence of tick-borne encephalitis virus in Ixodes ricinus ticks from three islands in north-western Norway. APMIS 123, 759–764 (2015).
Article Google Scholar
17.
Kjær, L. J. et al. A large-scale screening for the taiga tick, Ixodes persulcatus, and the meadow tick, Dermacentor reticulatus, in southern Scandinavia, 2016. Parasit. Vectors 12, 338 (2019).
Article Google Scholar
18.
Oechslin, C. P. et al. Prevalence of tick-borne pathogens in questing Ixodes ricinus ticks in urban and suburban areas of Switzerland. Parasit. Vectors 10, 558 (2017).
Article CAS Google Scholar
19.
Becker, N. S. et al. Recurrent evolution of host and vector association in bacteria of the Borrelia burgdorferi sensu lato species complex. BMC Genom. 17, 734 (2016).
Article CAS Google Scholar
20.
Bowman, A. S. & Nuttall, P. A. Ticks: Biology, Disease and Control (Cambridge University Press, Cambridge, 2004).
Google Scholar
21.
Hasle, G. et al. Transport of ticks by migratory passerine birds to Norway. J. Parasitol. 95, 1342–1351 (2009).
PubMed Google Scholar
22.
Klitgaard, K. et al. Screening for multiple tick-borne pathogens in Ixodes ricinus ticks from birds in Denmark during spring and autumn migration seasons. Ticks Tick. Borne. Dis. 10, 546–552 (2019).
PubMed Google Scholar
23.
Skarphédinsson, S. et al. Detection and identification of Anaplasma phagocytophilum, Borrelia burgdorferi, and Rickettsia helvetica in Danish Ixodes ricinus ticks. APMIS 115, 225–230 (2007).
PubMed Google Scholar
24.
Fraenkel, C.-J., Garpmo, U. & Berglund, J. Determination of novel Borrelia genospecies in Swedish Ixodes ricinus ticks. J. Clin. Microbiol. 40, 3308–3312 (2002).
CAS PubMed PubMed Central Google Scholar
25.
Wilhelmsson, P. et al. Prevalence, diversity, and load of Borrelia species in ticks that have fed on humans in regions of Sweden and Åland Islands, Finland with different Lyme borreliosis incidences. PLoS ONE 8, e81433 (2013).
ADS PubMed PubMed Central Google Scholar
26.
Vennestrøm, J., Egholm, H. & Jensen, P. M. Occurrence of multiple infections with different Borrelia burgdorferi genospecies in Danish Ixodes ricinus nymphs. Parasitol. Int. 57, 32–37 (2008).
PubMed Google Scholar
27.
Kjelland, V., Stuen, S., Skarpaas, T. & Slettan, A. Prevalence and genotypes of Borrelia burgdorferi sensu lato infection in Ixodes ricinus ticks in southern Norway. Scand. J. Infect. Dis. 42, 579–585 (2010).
CAS PubMed Google Scholar
28.
Klitgaard, K., Kjær, L. J., Isbrand, A., Hansen, M. F. & Bødker, R. Multiple infections in questing nymphs and adult female Ixodes ricinus ticks collected in a recreational forest in Denmark. Ticks Tick. Borne. Dis. 10, 1060–1065 (2019).
PubMed Google Scholar
29.
Maraspin, V., Ruzic-Sabljic, E. & Strle, F. Lyme borreliosis and Borrelia spielmanii. Emerg. Infect. Dis. 12, 1177–1177 (2006).
PubMed PubMed Central Google Scholar
30.
Rudenko, N., Golovchenko, M., Grubhoffer, L. & Oliver, J. H. Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick. Borne. Dis. 2, 123–128 (2011).
Article Google Scholar
31.
Fertner, M. E., Mølbak, L., Pihl, T. P. B., Fomsgaard, A. & Bødker, R. First detection of tick-borne “Candidatus Neoehrlichia mikurensis” in Denmark 2011. Eurosurveillance 17, 20096 (2012).
Google Scholar
32.
Quarsten, H. et al. Candidatus Neoehrlichia mikurensis and Borrelia burgdorferi sensu lato detected in the blood of Norwegian patients with erythema migrans. Ticks Tick. Borne. Dis. 8, 715–720 (2017).
CAS Article Google Scholar
33.
Stuen, S., Granquist, E. G. & Silaghi, C. Anaplasma phagocytophilum—a widespread multi-host pathogen with highly adaptive strategies. Front. Cell. Infect. Microbiol. 3, 31 (2013).
Article CAS Google Scholar
34.
Fomsgaard, A. et al. Tick-borne encephalitis virus, Zealand, Denmark, 2011. Emerg. Infect. Dis. 19, 1171–1173 (2013).
Article Google Scholar
35.
Jensen, P. M. et al. Transmission differentials for multiple pathogens as inferred from their prevalence in larva, nymph and adult of Ixodes ricinus (Acari: Ixodidae). Exp. Appl. Acarol. 71, 171–182 (2017).
Article Google Scholar
36.
Lundkvist, Å., Wallensten, A., Vene, S. & Hjertqvist, M. Tick-borne encephalitis increasing in Sweden, 2011. Eurosurveillance 16, 19981 (2011).
Article Google Scholar
37.
Svensson, J., Hunfeld, K.-P. & Persson, K. E. M. High seroprevalence of Babesia antibodies among Borrelia burgdorferi-infected humans in Sweden. Ticks Tick. Borne. Dis. 10, 186–190 (2019).
Article Google Scholar
38.
Mørch, K., Holmaas, G., Frolander, P. S. & Kristoffersen, E. K. Severe human Babesia divergens infection in Norway. Int. J. Infect. Dis. 33, 37–38 (2015).
Article Google Scholar
39.
Uhnoo, I. et al. First documented case of human babesiosis in Sweden. Scand. J. Infect. Dis. 24, 541–547 (2009).
Article Google Scholar
40.
Dumler, J. S., Barat, N. C., Barat, C. E. & Bakken, J. S. Human granulocytic anaplasmosis and macrophage activation. Clin. Infect. Dis. 45, 199–204 (2007).
CAS Article Google Scholar
41.
Nilsson, K., Elfving, K. & Påhlson, C. Rickettsia helvetica in patient with meningitis, Sweden, 2006. Emerg. Infect. Dis. 16, 490–492 (2010).
CAS Article Google Scholar
42.
Frivik, J. O., Noraas, S., Grankvist, A., Wennerås, C. & Quarsten, H. En mann i 60-årene fra Sørlandet med intermitterende feber (In Norwegian). Tidsskr. Den Nor. legeforening 137, (2017).
43.
Grankvist, A. et al. Infections with the tick-borne bacterium ‘Candidatus Neoehrlichia mikurensis’ mimic noninfectious conditions in patients with B cell malignancies or autoimmune diseases. Clin. Infect. Dis. 58, 1716–1722 (2014).
CAS Article Google Scholar
44.
Welinder-Olsson, C., Kjellin, E., Vaht, K., Jacobsson, S. & Wenneras, C. First case of human ‘Candidatus Neoehrlichia mikurensis’ infection in a febrile patient with chronic lymphocytic leukemia. J. Clin. Microbiol. 48, 1956–1959 (2010).
Article Google Scholar
45.
Rizzoli, A. et al. Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: new hazards and relevance for public health. Front. Public Health 2, 251 (2014).
Article Google Scholar
46.
Michelitsch, A., Wernike, K., Klaus, C., Dobler, G. & Beer, M. Exploring the reservoir hosts of tick-borne encephalitis virus. Viruses vol. 11 (2019).
47.
Keesing, F. et al. Reservoir competence of vertebrate hosts for Anaplasma phagocytophilum. Emerg. Infect. Dis. 18, 2013–2016 (2012).
Article Google Scholar
48.
Zhan, L. et al. Anaplasma phagocytophilum in livestock and small rodents. Vet. Microbiol. 144, 405–408 (2010).
ADS Article Google Scholar
49.
Portillo, A., Santibáñez, P., Palomar, A. M., Santibáñez, S. & Oteo, J. A. Candidatus Neoehrlichia mikurensis, Europe. New Microbes New Infect. 22, 30–36 (2018).
CAS Article Google Scholar
50.
Jenkins, A. et al. Detection of Candidatus Neoehrlichia mikurensis in Norway up to the northern limit of Ixodes ricinus distribution using a novel real time PCR test targeting the groEL gene. BMC Microbiol. 19, 199 (2019).
PubMed PubMed Central Google Scholar
51.
Obiegala, A. & Silaghi, C. Candidatus Neoehrlichia mikurensis—recent insights and future perspectives on clinical cases, vectors, and reservoirs in Europe. Curr. Clin. Microbiol. Rep. 5, 1–9 (2018).
Google Scholar
52.
Yabsley, M. J. & Shock, B. C. Natural history of zoonotic Babesia: role of wildlife reservoirs. Int. J. Parasitol. Parasites Wildl. 2, 18–31 (2013).
PubMed Google Scholar
53.
Sprong, H. et al. Ixodes ricinus ticks are reservoir hosts for Rickettsia helvetica and potentially carry flea-borne Rickettsia species. Parasit. Vectors 2, 41 (2009).
PubMed PubMed Central Google Scholar
54.
Jaenson, T. G. T. et al. Risk indicators for the tick Ixodes ricinus and Borrelia burgdorferi sensu lato in Sweden. Med. Vet. Entomol. 23, 226–237 (2009).
CAS PubMed Google Scholar
55.
Hudson, P. J. et al. Tick-borne encephalitis virus in northern Italy: molecular analysis, relationships with density and seasonal dynamics of Ixodes ricinus. Med. Vet. Entomol. 15, 304–313 (2001).
MathSciNet CAS Article Google Scholar
56.
Nazzi, F. et al. Ticks and Lyme borreliosis in an alpine area in northeast Italy. Med. Vet. Entomol. 24, 220–226 (2010).
CAS PubMed Google Scholar
57.
Hubalek, Z., Halouzka, J. & Juricova, Z. Longitudinal surveillance of the tick Ixodes ricinus for Borreliae. Med. Vet. Entomol. 17, 46–51 (2003).
CAS Article Google Scholar
58.
Lindström, A. & Jaenson, T. G. T. Distribution of the common tick, Ixodes ricinus (Acari: Ixodidae), in different vegetation types in southern Sweden. J. Med. Entomol. 40, 375–378 (2003).
Article Google Scholar
59.
Mejlon, H. A. & Jaenson, T. G. T. Jaenson (1993) Seasonal prevalence of Borrelia burgdorferi in Ixodes ricinus in different vegetation types in Sweden. Scand. J. Infect. Dis. 25, 449–456 (2009).
Article Google Scholar
60.
Tack, W. et al. Local habitat and landscape affect Ixodes ricinus tick abundances in forests on poor, sandy soils. For. Ecol. Manag. 265, 30–36 (2012).
Google Scholar
61.
Walhström, L. K. & Kjellander, P. Ideal free distribution and natal dispersal in female roe deer. Oecologia 103, 302–308 (1995).
ADS PubMed Google Scholar
62.
Zeman, P. Objective assessment of risk maps of tick-borne encephalitis and Lyme borreliosis based on spatial patterns of located cases. Int. J. Epidemiol. 26, 1121–1129 (1997).
CAS PubMed Google Scholar
63.
Jat, M. K. & Mala, S. Application of GIS and space-time scan statistic for vector born disease clustering. In ICEGOV ’17 Proceedings of the 10th International Conference on Theory and Practice of Electronic Governance (2017) https://doi.org/10.1145/3047273.3047361.
64.
Hönig, V. et al. Model of risk of exposure to Lyme borreliosis and tick-borne encephalitis virus-infected ticks in the border area of the Czech Republic (South Bohemia) and Germany (Lower Bavaria and Upper Palatinate). Int. J. Environ. Res. Public Health 16, 1173 (2019).
PubMed Central Google Scholar
65.
Randolph, S. E. & Rogers, D. J. Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proc. Biol. Sci. 267, 1741–1744 (2000).
CAS PubMed PubMed Central Google Scholar
66.
Stefanoff, P. et al. A Predictive model has identified tick-borne encephalitis high-risk areas in regions where no cases were reported previously, Poland, 1999–2012. Int. J. Environ. Res. Public Health 15, 677 (2018).
PubMed Central Google Scholar
67.
Kjær, L. J. et al. Predicting and mapping human risk of exposure to Ixodes ricinus nymphs using climatic and environmental data, Denmark, Norway and Sweden, 2016. Eurosurveillance 24, 1800101 (2019).
PubMed Central Google Scholar
68.
Kjær, L. J. et al. Predicting the spatial abundance of Ixodes ricinus ticks in southern Scandinavia using environmental and climatic data. Sci. Rep. 9, 18144 (2019).
ADS Google Scholar
69.
Kjær, L. J. et al. Spatial data of Ixodes ricinus instar abundance and nymph pathogen prevalence, Scandinavia, 2016–2017. Collection https://doi.org/10.6084/m9.figshare.c.4938270.v1 (2020).
Article Google Scholar
70.
Kjær, L. J. et al. Spatial data of Ixodes ricinus instar abundance and nymph pathogen prevalence, Scandinavia, 2016–2017. Sci. Data 7, 1–7 (2020).
Google Scholar
71.
Scharlemann, J. P. W. et al. Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data. PLoS ONE 3, e1408 (2008).
ADS Article Google Scholar
72.
Corine Land Cover 2006 raster data. European Environment Agency https://www.eea.europa.eu/data-and-maps/data/clc-2006-raster (2010).
73.
Klitgaard, K., Chriél, M., Isbrand, A., Jensen, T. K. & Bødker, R. Identification of Dermacentor reticulatus ticks carrying Rickettsia raoultii on migrating jackal, Denmark. Emerg. Infect. Dis. 23, 2072–2074 (2017).
Article Google Scholar
74.
Moutailler, S. et al. Co-infection of ticks: the rule rather than the exception. PLoS Negl. Trop. Dis. 10, e0004539 (2016).
Article CAS Google Scholar
75.
Reye, A. L. et al. Prevalence of tick-borne pathogens in Ixodes ricinus and Dermacentor reticulatus ticks from different geographical locations in Belarus. PLoS ONE 8, e54476 (2013).
ADS CAS Article Google Scholar
76.
R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.r-project.org (2018).
77.
Cowling, D. W., Gardner, I. A. & Johnson, W. O. Comparison of methods for estimation of individual-level prevalence based on pooled samples. Prev. Vet. Med. 39, 211–225 (1999).
CAS Article Google Scholar
78.
ESRI. ArcGIS Desktop: Release 10.6.1. Redlands, CA: Environmental Systems Research Institute. (2017).
79.
Kulldorff M. and Information Management Services, I. SaTScanTM v9.6: Software for the spatial and space-time scan statistics www.satscan.org, 2018.
80.
Kleinman, K. rsatscan: Tools, classes, and methods for interfacing with SaTScan stand-alone software. (2015).
81.
Kulldorff, M. A spatial scan statistic. Communications in Statistics – Theory and Methods vol. 26 https://www.tandfonline.com/doi/abs/10.1080/03610929708831995 (1997).
82.
Han, J. et al. Using Gini coefficient to determining optimal cluster reporting sizes for spatial scan statistics. Int. J. Health Geogr. 15, 27 (2016).
Article Google Scholar
83.
Kuhn., M., Contributions from Jed Wing, Steve Weston, Andre Williams, Chris Keefer, Allan Engelhardt, T., Cooper, Zachary Mayer, Brenton Kenkel, the R Core Team, Michael Benesty, Reynald Lescarbeau, A. Z. & Luca Scrucca, Yuan Tang, C. C. and T. H. caret: Classification and regression training. R package version 6.0-81. https://CRAN.R-project.org/package=caret. (2018).
84.
Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).
CAS Article Google Scholar
85.
Vapnik, V., Golowich, S. E. & Smola, A. Support vector method for function approximation, regression estimation, and signal processing. in Advances in Neural Information Processing Systems 9 (eds. Mozer, M., Jordan, M. & Petsche, T.) 281–287 (MIT Press., 1997).
86.
Sanz, H., Valim, C., Vegas, E., Oller, J. M. & Reverter, F. SVM-RFE: selection and visualization of the most relevant features through non-linear kernels. BMC Bioinform. 19, 432 (2018).
Article Google Scholar
87.
Ghojogh, B., Ca, B., Crowley, M. & Ca, M. The theory behind overfitting, cross validation, rRegularization, bagging, and boosting: tTutorial. https://arxiv.org/abs/1905.12787 [stat.ML] 1–23 (2019).
88.
Skarphédinsson, S., Jensen, P. M. & Kristiansen, K. Survey of tickborne infections in Denmark. Emerg. Infect. Dis. 11, 1055–1061 (2005).
Article Google Scholar
89.
Quarsten, H., Skarpaas, T., Fajs, L., Noraas, S. & Kjelland, V. Tick-borne bacteria in Ixodes ricinus collected in southern Norway evaluated by a commercial kit and established real-time PCR protocols. Ticks Tick. Borne. Dis. 6, 538–544 (2015).
CAS Article Google Scholar
90.
Wilhelmsson, P. et al. Prevalence and diversity of Borrelia species in ticks that have bitten humans in Sweden. J. Clin. Microbiol. 48, 4169–4176 (2010).
CAS PubMed PubMed Central Google Scholar
91.
Strnad, M., Hönig, V., Růžek, D., Grubhoffer, L. & Rego, R. O. M. Europe-wWide meta-analysis of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks. Appl. Environ. Microbiol. 83, 3838 (2017).
Google Scholar
92.
Mysterud, A. et al. Tick abundance, pathogen prevalence, and disease incidence in two contrasting regions at the northern distribution range of Europe. Parasit. Vectors 11, 309 (2018).
PubMed PubMed Central Google Scholar
93.
Severinsson, K., Jaenson, T. G., Pettersson, J., Falk, K. & Nilsson, K. Detection and prevalence of Anaplasma phagocytophilum and Rickettsia helvetica in Ixodes ricinus ticks in seven study areas in Sweden. Parasit. Vectors 3, 66 (2010).
PubMed PubMed Central Google Scholar
94.
Karlsson, M. E. & Andersson, M. O. Babesia species in questing Ixodes ricinus, Sweden. Ticks Tick. Borne. Dis. 7, 10–12 (2016).
PubMed Google Scholar
95.
Øines, Ø., Radzijevskaja, J., Paulauskas, A. & Rosef, O. Prevalence and diversity of Babesia spp. in questing Ixodes ricinus ticks from Norway. Parasit. Vectors 5, 156 (2012).
PubMed PubMed Central Google Scholar
96.
Andersson, M., Bartkova, S., Lindestad, O. & Råberg, L. Co-Infection with ‘Candidatus Neoehrlichia mikurensis’ and Borrelia afzelii in Ixodes ricinus Ticks in Southern Sweden. Vector-Borne Zoonotic Dis. 13, 438–442 (2013).
PubMed Google Scholar
97.
Pedersen, B. N. et al. Distribution of Neoehrlichia mikurensis in Ixodes ricinus ticks along the coast of Norway: the western seaboard is a low-prevalence region. Zoonoses Public Health https://doi.org/10.1111/zph.12662 (2019).
Article PubMed Google Scholar
98.
Kantsø, B., Bo Svendsen, C., Moestrup Jensen, P., Vennestrøm, J. & Krogfelt, K. A. Seasonal and habitat variation in the prevalence of Rickettsia helvetica in Ixodes ricinus ticks from Denmark. Ticks Tick. Borne. Dis. 1, 101–103 (2010).
PubMed Google Scholar
99.
Solano-Gallego, L., Sainz, Á., Roura, X., Estrada-Peña, A. & Miró, G. A review of canine babesiosis: the European perspective. Parasit. Vectors 9, 336 (2016).
Article CAS Google Scholar
100.
Randolph, S. E. The shifting landscape of tick-borne zoonoses: tick-borne encephalitis and Lyme borreliosis in Europe. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356, 1045–1056 (2001).
CAS PubMed PubMed Central Google Scholar
101.
Sumilo, D. et al. Tick-borne encephalitis in the Baltic States : Identifying risk factors in space and time. Int. J. Med. Microbiol. 296(Suppl), 76–79 (2006).
PubMed Google Scholar
102.
Sumilo, D. et al. Socio-economic factors in the differential upsurge of tick-borne encephalitis in Central and Eastern Europe. Rev. Med. Virol. 18, 81–95 (2008).
PubMed Google Scholar
103.
Randolph, S. E., Green, R. M., Peacey, M. F. & Rogers, D. J. Seasonal synchrony : the key to tick-borne encephalitis foci identified by satellite data. Parasitology 121, 15–23 (2000).
PubMed Google Scholar
104.
Halos, L. et al. Ecological factors characterizing the prevalence of bacterial tick-borne pathogens in Ixodes ricinus ticks in pastures and woodlands. Appl. Environ. Microbiol. 76, 4413–4420 (2010).
CAS PubMed PubMed Central Google Scholar
105.
Sjörs, H. Nordisk växtgeografi (in Swedish) (Bonniers, Scandinavian University Books, 1967).
Google Scholar More