Enhanced fish production during a period of extreme global warmth
1.
FAO. State of the world’s fisheries and aquaculture. State of the world’s fisheries and aquaculture 3, (2018).
2.
Nelson, J. S., Grande, T. C. & Wilson, M. V. Fishes of the World. (John Wiley & Sons, Ltd, 2016).
3.
Ryther, J. H. Photosynthesis and fish production in the sea. Science 166, 72–76 (1969).
ADS CAS Article Google Scholar
4.
Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12907–12912 (2019).
CAS Article Google Scholar
5.
Moore, J. K. et al. Sustained climate warming drives declining marine biological productivity. Science 359, 1139–1143 (2018).
ADS CAS Article Google Scholar
6.
Sommer, U., Stibor, H., Katechakis, A., Sommer, F. & Hansen, T. Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: primary production. Hydrobiologia 484, 11–20 (2002).
Article Google Scholar
7.
Fu, W., Randerson, J. T. & Moore, J. K. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences 13, 5151–5170 (2016).
ADS Article Google Scholar
8.
Mora, C. et al. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol. 11, e1001682 (2013).
CAS Article Google Scholar
9.
Stock, C. A. et al. Reconciling fisheries catch and ocean productivity. Proc. Natl Acad. Sci. USA E1441, E1441–E1449 (2017).
Article CAS Google Scholar
10.
Chust, G. et al. Biomass changes and trophic amplification of plankton in a warmer ocean. Glob. Chang. Biol. 2010, 2124–2139 (2014).
ADS Article Google Scholar
11.
Blanchard, J. L. et al. Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 367, 2979–2989 (2012).
Article Google Scholar
12.
Britten, G. L., Dowd, M. & Worm, B. Changing recruitment capacity in global fish stocks. Proc. Natl Acad. Sci. USA 113, 134–139 (2015).
ADS Article CAS Google Scholar
13.
Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 983, 979–983 (2019).
ADS Article CAS Google Scholar
14.
Cheung, W. W. L. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Chang. Biol. 16, 24–35 (2010).
ADS Article Google Scholar
15.
Gibbs, S. J., Bralower, T. J., Bown, P. R., Zachos, J. C. & Bybell, L. M. Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene thermal maximum: Implications for global productivity gradients. Geology 34, 233–236 (2006).
ADS CAS Article Google Scholar
16.
Muttoni, G. & Kent, D. V. Widespread formation of cherts during the early Eocene climate optimum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 253, 348–362 (2007).
Article Google Scholar
17.
Faul, K. L. & Delaney, M. L. A comparison of early Paleogene export productivity and organic carbon burial flux for Maud Rise, Weddell Sea, and Kerguelen Plateau, south Indian Ocean. Paleoceanography 25, 1–15 (2010).
18.
Witkowski, J., Bohaty, S. M., McCartney, K. & Harwood, D. M. Enhanced siliceous plankton productivity in response to middle Eocene warming at Southern Ocean ODP Sites 748 and 749. Palaeogeogr. Palaeoclimatol. Palaeoecol. 326–328, 78–94 (2012).
Article Google Scholar
19.
Yasuhara, M. et al. Climatic forcing of Quaternary deep-sea benthic communities in the North Pacific Ocean. Paleobiology 38, 162–179 (2012).
Article Google Scholar
20.
Lowery, C. M., Bown, P. R., Fraass, A. J. & Hull, P. M. Ecological response of plankton to environmental change thresholds for extinction. Annu. Rev. Earth Planet. Sci. 48, 1–27 (2020).
Article CAS Google Scholar
21.
Moore, J. K., Doney, S. C. & Lindsay, K. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Glob. Biogeochem. Cycles 18, 1–21 (2004).
Article CAS Google Scholar
22.
O’Gorman, E. J. et al. Temperature effects on fish production across a natural thermal gradient. Glob. Chang. Biol. 22, 3206–3220 (2016).
ADS Article Google Scholar
23.
Maureaud, A. et al. Global change in the trophic functioning of marine food webs. PLoS ONE 12, 1–21 (2017).
Article CAS Google Scholar
24.
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).
ADS CAS Article Google Scholar
25.
Allen, A. P. & Gillooly, J. F. The mechanistic basis of the metabolic theory of ecology. Oikos 116, 1073–1077 (2007).
Article Google Scholar
26.
Cheung, W. W. L. et al. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat. Clim. Chang. 3, 254–258 (2012).
ADS Article Google Scholar
27.
Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106, 12788–12793 (2009).
ADS CAS Article Google Scholar
28.
Chen, B., Landry, M. R., Huang, B. & Liu, H. Does warming enhance the effect of microzooplankton grazing on marine phytoplankton in the ocean? Limnol. Oceanogr. 57, 519–526 (2012).
ADS CAS Article Google Scholar
29.
Schmoker, C., Hernández-León, S. & Calbet, A. Microzooplankton grazing in the oceans: impacts, data variability, knowledge gaps and future directions. J. Plankton Res. 35, 691–706 (2013).
Article Google Scholar
30.
Persson, L. Temperature-induced shift in foraging ability in two fish species, roach (Rutilus rutilus) and perch (Perca fluviatilis): implications for coexistence between poikilotherms. J. Anim. Ecol. 55, 829–839 (1986).
Article Google Scholar
31.
Grigaltchik, V. S., Ward, A. J. W. & Seebacher, F. Thermal acclimation of interactions: Differential responses to temperature change alter predator-prey relationship. Proc. R. Soc. B Biol. Sci. 279, 4058–4064 (2012).
Article Google Scholar
32.
Öhlund, G., Hedström, P., Norman, S., Hein, C. L. & Englund, G. Temperature dependence of predation depends on the relative performance of predators and prey. Proc. R. Soc. B Biol. Sci. 282, 1–8 (2014).
33.
Flombaum, P., Wang, W. L., Primeau, F. W. & Martiny, A. C. Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nat. Geosci. 13, 116–120 (2020).
34.
Anagnostou, E. et al. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature 533, 380–384 (2016).
ADS CAS Article Google Scholar
35.
Hyland, E. G. & Sheldon, N. D. Coupled CO2-climate response during the Early Eocene Climatic Optimum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 369, 125–135 (2013).
Article Google Scholar
36.
Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).
ADS CAS Article Google Scholar
37.
Sibert, E. C., Cramer, K. L., Hastings, P. A. & Norris, R. D. Methods for isolation and quantification of microfossil fish teeth and elasmobranch dermal denticles (ichthyoliths) from marine sediments. Palaentologia Electron. 20, 1–14 (2017).
Google Scholar
38.
Sibert, E. C., Hull, P. M. & Norris, R. D. Resilience of Pacific pelagic fish across theCretaceous/Palaeogene mass extinction. Nat. Geosci. 7, 667–670 (2014).
ADS CAS Article Google Scholar
39.
Sibert, E. C., Zill, M. E., Frigyik, E. T. & Norris, R. D. No state change in pelagic fish production and biodiversity during the Eocene–Oligocene transition. Nat. Geosci. 13, 238–242 (2020).
ADS CAS Article Google Scholar
40.
Sibert, E., Norris, R., Cuevas, J. & Graves, L. Eighty-five million years of Pacific Ocean gyre ecosystem structure: long-term stability marked by punctuated change. Proc. Biol. Sci. 283, 20160189 (2016).
41.
Cramer, B. S., Miller, K. G., Barrett, P. J. & Wright, J. D. Late Cretaceous-Neogene trends in deep ocean temperature and continental ice volume: Reconciling records of benthic foraminiferal geochemistry (δ18O and Mg/Ca) with sea level history. J. Geophys. Res. Ocean. 116, 1–23 (2011).
Article CAS Google Scholar
42.
Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 1–10 (2014).
Article CAS Google Scholar
43.
Sibert, E. C. & Norris, R. D. New Age of Fishes initiated by the Cretaceous − Paleogene mass extinction. Proc. Natl Acad. Sci. USA 112, 8537–8542 (2015).
ADS CAS Article Google Scholar
44.
Sibert, E., Friedman, M., Hull, P., Hunt, G. & Norris, R. Two pulses of morphological diversification in Pacific pelagic fishes following the Cretaceous – Palaeogene mass extinction. Proc. R. Soc. B 285, 1–7 (2018).
Article Google Scholar
45.
Armstrong, R. A. Grazing limitation and nutrient limitation in marine ecosystems: steady state solutions of an ecosystem model with multiple food chains. Limnol. Oceanogr. 39, 597–608 (1994).
ADS CAS Article Google Scholar
46.
Maranon, E. Cell Size as a key determinant of phytoplankton metabolism and community structure. Ann. Rev. Mar. Sci. 7, 241–264 (2015).
Article Google Scholar
47.
Knoll, A. H. & Follows, M. J. A bottom-up perspective on ecosystem change in Mesozoic oceans. Proc. R. Soc. B 283, 1–10 (2016).
Article Google Scholar
48.
Zhou, L. & Kyte, F. T. Sedimentation history of the South Pacific pelagic clay province over the last 85 million years inferred from the geochemistry of Deep Sea Drilling Project Hole 596. Paleoceanography 7, 441–465 (1992).
ADS Article Google Scholar
49.
Harrison, J. S., Higgins, B. A. & Mehta, R. S. Scaling of dentition and prey size in the California moray (Gymnothorax mordax). Zoology 122, 16–26 (2017).
Article Google Scholar
50.
Shimada, K. The relationship between tooth size and total body length in white shark. J. Foss. Res. 35, 28–33 (2002).
Google Scholar
51.
Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).
ADS CAS Article Google Scholar
52.
Wirtz, K. W. A biomechanical and optimality-based derivation of prey-size dependencies in planktonic prey selection and ingestion rates. Mar. Ecol. Prog. Ser. 507, 81–94 (2014).
ADS Article Google Scholar More