More stories

  • in

    Schrenk spruce leaf litter decomposition varies with snow depth in the Tianshan Mountains

    1.
    Correa Dias, A. T., Cornelissen, J. H. C. & Berg, M. P. Litter for life: Assessing the multifunctional legacy of plant traits. J. Ecol. 105(5), 1163–1168 (2017).
    Article  Google Scholar 
    2.
    Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol. Evol. 25(6), 372–380 (2010).
    Article  PubMed  Google Scholar 

    3.
    Grootemaat, S., Wright, I. J., van Bodegom, P. M., Cornelissen, J. H. C. & Cornwell, W. K. Burn or rot: Leaf traits explain why flammability and decomposability are decoupled across species. Funct. Ecol. 29(11), 1486–1497 (2015).
    Article  Google Scholar 

    4.
    Berg, B. Litter decomposition and organic matter turnover in northern forest soils. For. Ecol. Manag. 133(1–2), 13–22 (2000).
    Article  Google Scholar 

    5.
    Hobbie, S. E., Schimel, J. P., Trumbore, S. E. & Randerson, J. R. Controls over carbon storage and turnover in high-latitude soils. Glob. Change Biol. 61, 196–210 (2000).
    Article  Google Scholar 

    6.
    Vezzani, F. M. et al. The importance of plants to development and maintenance of soil structure, microbial communities and ecosystem functions. Soil Tillage Res. 175, 139–149 (2018).
    Article  Google Scholar 

    7.
    Schimel, J. P. & Bennett, J. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 85(3), 591–602 (2004).
    Article  Google Scholar 

    8.
    Siebers, M. et al. Disruption of microbial community composition and identification of plant growth promoting microorganisms after exposure of soil to rapeseed-derived glucosinolates. PLoS ONE 13, e02001607 (2018).
    Article  CAS  Google Scholar 

    9.
    Austin, A. T. & Zanne, A. E. Whether in life or in death: Fresh perspectives on how plants affect biogeochemical cycling. J. Ecol. 103(6), 1367–1371 (2015).
    CAS  Article  Google Scholar 

    10.
    Hattenschwiler, S., Tiunov, A.V. and Scheu, S. Biodiversity and litter decomposition interrestrial ecosystems. In Annual Review of Ecology Evolution and Systematics. Annual Reviews, Palo Alto, 191–218 (2005).

    11.
    Bradford, M. A., Berg, B., Maynard, D. S., Wieder, W. R. & Wood, S. A. Understanding the dominant controls on litter decomposition. J. Ecol. 104(1), 229–238 (2016).
    CAS  Article  Google Scholar 

    12.
    Strickland, M. S., Keiser, A. D. & Bradford, M. A. Climate history shapes contemporary leaf litter decomposition. Biogeochemistry 122(2–3), 165–174 (2015).
    Article  Google Scholar 

    13.
    Waring, B. G. A meta-analysis of climatic and chemical controls on leaf litter decay rates in tropical forests. Ecosystems 15(6), 999–1009 (2012).
    CAS  Article  Google Scholar 

    14.
    Vitousek, P. M., Turner, D. R., Parton, W. J. & Sanford, R. L. Litter decomposition on the Mauna-Loa environmental matrix, Hawaii—patterns, mechanisms, and models. Ecology 75(2), 418–429 (1994).
    Article  Google Scholar 

    15.
    Blok, D., Elberling, B. & Michelsen, A. Initial stages of tundra shrub litter decomposition may be accelerated by deeper winter snow but slowed down by spring warming. Ecosystems 19(1), 155–169 (2016).
    CAS  Article  Google Scholar 

    16.
    Carbognani, M., Petraglia, A. & Tomaselli, M. Warming effects and plant trait control on the early-decomposition in alpine snowbeds. Plant Soil 376(1–2), 277–290 (2014).
    CAS  Article  Google Scholar 

    17.
    Wu, Q. Q. Effects of snow depth manipulation on the releases of carbon, nitrogen and phosphorus from the foliar litter of two temperate tree species. Sci. Total Environ. 643, 1357–1365 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    18.
    Saccone, P. et al. The effects of snowpack properties and plant strategies on litter decomposition during winter in subalpine meadows. Plant Soil 363(1–2), 215–229 (2013).
    CAS  Article  Google Scholar 

    19.
    Makoto, K. et al. Winter climate change in plant–soil systems: Summary of recent findings and future perspectives. Ecol. Res. 29(4), 593–606 (2014).
    CAS  Article  Google Scholar 

    20.
    Bratt, A. R. et al. Contribution of leaf litter to nutrient export during winter months in an urban residential watershed. Environ. Sci. Technol. 51(6), 3138–3147 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    21.
    Wu, Q. Q. et al. Effect of seasonal snow cover on litter decomposition in alpine forest. Chin. J. Plant Ecol. 37(04), 296–305 (2013).
    Article  Google Scholar 

    22.
    Christenson, L. M., Mitchell, M. J., Groffman, P. M. & Lovett, G. M. Winter climate change implications for decomposition in northeastern forests: Comparisons of sugar maple litter with herbivore fecal inputs. Glob. Change Biol. 16(9), 2589–2601 (2010).
    Google Scholar 

    23.
    Wu, Q. Q. & Wang, C. K. Effects of changes in seasonal snow-cover on litter decomposition and soil nitrogen dynamics in forests. Chin. J. Appl. Ecol. 29(07), 2422–2432 (2018).
    Google Scholar 

    24.
    Groffman, P. M. et al. Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest. Biogeochemistry 56(2), 191–213 (2001).
    CAS  Article  Google Scholar 

    25.
    He, W. et al. Lignin degradation in foliar litter of two shrub species from the gap center to the closed canopy in an alpine fir forest. Ecosystems 19(1), 115–128 (2016).
    CAS  Article  Google Scholar 

    26.
    DeMarco, J., Mack, M. C. & Bret-Harte, M. S. Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition. Ecology 95(7), 1861–1875 (2014).
    Article  PubMed  Google Scholar 

    27.
    Edwards, A. C., Scalenghe, R. & Freppaz, M. Changes in the seasonal snow cover of alpine regions and its effect on soil processes: A review. Quatern. Int. 162, 172–181 (2007).
    Article  Google Scholar 

    28.
    Huo, Y. et al. Climate-growth relationships of Schrenk spruce (Picea schrenkiana) along an altitudinal gradient in the western Tianshan mountains, northwest China. Trees-Struct. Funct. 31(2), 429–439 (2017).
    MathSciNet  Article  Google Scholar 

    29.
    Chen, X., Gong, L. & Liu, Y. The ecological stoichiometry and interrelationship between litter and soil under seasonal snowfall in Tianshan Mountain. Ecosphere 9, e0252011 (2018).
    Google Scholar 

    30.
    Lu, H., Wei, W., Liu, M., Han, X. & Hong, W. Energy budget over seasonal snow surface at an open site and beneath forest canopy openness during the snowmelt period in western Tianshan Mountains, China. J. Mount. Sci. 12(2), 298–312 (2015).
    Article  Google Scholar 

    31.
    Anderson, J. M. & Ingram, J. S. I. (eds). Tropical soil biology and fertility: A handbook of methods, 2nd edn, 1–221 (Oxford, London, 1993).

    32.
    Olson, J. S. Energy-storage and balance of producers and decomposers in ecological-systems. Ecology 44(2), 322–330 (1963).
    Article  Google Scholar 

    33.
    Garcia-Palacios, P., Shaw, E. A., Wall, D. H. & Haettenschwiler, S. Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecol. Lett. 19(5), 554–563 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    34.
    Salinas, N. et al. The sensitivity of tropical leaf litter decomposition to temperature: Results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests. New Phytol. 189(4), 967–977 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Wang, J. et al. High night-time humidity and dissolved organic carbon content support rapid decomposition of standing litter in a semi-arid landscape. Funct. Ecol. 31(8), 1659–1668 (2017).
    Article  Google Scholar 

    36.
    Li, H. et al. Effects of forest gaps on litter lignin and cellulose dynamics vary seasonally in an alpine forest. Forests 7(2), 27 (2016).
    Article  Google Scholar 

    37.
    Mcclaugherty, C. & Berg, B. Cellulose, lignin and nitrogen concentrations as rate regulating factors in late stages of forest litter decomposition. Pedobiologia 30(2), 101–112 (1987).
    CAS  Google Scholar 

    38.
    Bosco, T., Beatriz Bertiller, M. & Lorena Carrera, A. Combined effects of litter features, UV radiation, and soil water on litter decomposition in denuded areas of the arid Patagonian Monte. PLANT AND SOIL 406(1–2), 71–82 (2016).
    CAS  Article  Google Scholar 

    39.
    Sheng, J. et al. Changes in the chemical composition of young Chinese fir wood exposed to different soil temperature and water content. Cellulose 27(7), 4067–4077 (2020).
    CAS  Article  Google Scholar 

    40.
    Puissant, J. et al. Seasonal influence of climate manipulation on microbial community structure and function in mountain soils. Soil Biol. Biochem. 80, 296–305 (2015).
    CAS  Article  Google Scholar 

    41.
    Osono, T. Leaf litter decomposition of 12 tree species in a subtropical forest in Japan. Ecol. Res. 32(3), 413–422 (2017).
    ADS  Article  Google Scholar 

    42.
    Wu, F., Yang, W., Zhang, J. & Deng, R. Litter decomposition in two subalpine forests during the freeze-thaw season. Acta Oecol. Int. J. Ecol. 36(1), 135–140 (2010).
    ADS  Article  Google Scholar 

    43.
    Bradley, D. C. & Ormerod, S. J. Long-term effects of catchment liming on invertebrates in upland streams. Freshw. Biol. 47(1), 161–171 (2002).
    CAS  Article  Google Scholar 

    44.
    Guesewell, S. & Gessner, M. O. N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Funct. Ecol. 23, 211–219 (2009).
    Article  Google Scholar 

    45.
    Aerts, R., Callaghan, T. V., Dorrepaal, E., van Logtestijn, R. S. P. & Cornelissen, J. H. C. Seasonal climate manipulations have only minor effects on litter decomposition rates and N dynamics but strong effects on litter P dynamics of sub-arctic bog species. Oecologia 170(3), 809–819 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    46.
    Bokhorst, S., Metcalfe, D. B. & Wardle, D. A. Reduction in snow depth negatively affects decomposers but impact on decomposition rates is substrate dependent. Soil Biol. Biochem. 62, 157–164 (2013).
    CAS  Article  Google Scholar 

    47.
    Wipf, S. & Rixen, C. A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Res 29(1), 95–109 (2010).
    Article  Google Scholar 

    48.
    Buckeridge, K. M. & Grogan, P. Deepened snow alters soil microbial nutrient limitations in arctic birch hummock tundra. Appl. Soil. Ecol. 39(2), 210–222 (2008).
    Article  Google Scholar 

    49.
    Shibata, H., Hasegawa, Y., Watanabe, T. & Fukuzawa, K. Impact of snowpack decrease on net nitrogen mineralization and nitrification in forest soil of northern Japan. Biogeochemistry 116(1–3), 69–82 (2013).
    CAS  Article  Google Scholar 

    50.
    Blair, J. M., Parmelee, R. W. & Beare, M. H. Decay-rates, nitrogen fluxes, and decomposer communities of single-species and mixed-species foliar litter. Ecology 71(5), 1976–1985 (1990).
    Article  Google Scholar 

    51.
    Yue, K. et al. Cellulose dynamics during foliar litter decomposition in an alpine forest meta-ecosystem. Forests 7(1768), 176 (2016).
    Article  Google Scholar 

    52.
    Boberg, J. B., Finlay, R. D., Stenlid, J., Ekblad, A. & Lindahl, B. D. Nitrogen and carbon reallocation in fungal mycelia during decomposition of boreal forest litter. PLoS ONE 9, e928973 (2014).
    Article  CAS  Google Scholar 

    53.
    He, Y., Cornelissen, J. H. C., Zhong, Z., Dong, M. & Jiang, C. How interacting fungal species and mineral nitrogen inputs affect transfer of nitrogen from litter via arbuscular mycorrhizal mycelium. Environ. Scie. Pollut. Res. 24(10), 9791–9801 (2017).
    CAS  Article  Google Scholar 

    54.
    Uchida, M. et al. Microbial activity and litter decomposition under snow cover in a cool-temperate broad-leaved deciduous forest. Agric. For. Meteorol. 134(1–4), 102–109 (2005).
    ADS  Article  Google Scholar  More

  • in

    Sensory pollutants alter bird phenology and fitness across a continent

    1.
    Buxton, R. T. et al. Noise pollution is pervasive in U.S. protected areas. Science 356, 531–533 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Kyba, C. C. M. et al. Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv. 3, e1701528 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Barber, J. R., Crooks, K. R. & Fristrup, K. M. The costs of chronic noise exposure for terrestrial organisms. Trends Ecol. Evol. 25, 180–189 (2010).
    PubMed  Article  Google Scholar 

    4.
    Swaddle, J. P. et al. A framework to assess evolutionary responses to anthropogenic light and sound. Trends Ecol. Evol. 30, 550–560 (2015).
    PubMed  Article  Google Scholar 

    5.
    Gaston, K. J., Davies, T. W., Nedelec, S. L. & Holt, L. A. Impacts of artificial light at night on biological timings. Annu. Rev. Ecol. Evol. Syst. 48, 49–68 (2017).
    Article  Google Scholar 

    6.
    Dominoni, D. M. et al. Why conservation biology can benefit from sensory ecology. Nat. Ecol. Evol. 4, 502–511 (2020).
    PubMed  Article  Google Scholar 

    7.
    Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–885 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    8.
    Francis, C. D. & Barber, J. R. A framework for understanding noise impacts on wildlife: an urgent conservation priority. Front. Ecol. Environ. 11, 305–313 (2013).
    Article  Google Scholar 

    9.
    Shannon, G. et al. A synthesis of two decades of research documenting the effects of noise on wildlife. Biol. Rev. Camb. Philos. Soc. 91, 982–1005 (2016).
    PubMed  Article  Google Scholar 

    10.
    van Langevelde, F., Ettema, J. A., Donners, M., WallisDeVries, M. F. & Groenendijk, D. Effect of spectral composition of artificial light on the attraction of moths. Biol. Conserv. 144, 2274–2281 (2011).
    Article  Google Scholar 

    11.
    Hale, J. D., Fairbrass, A. J., Matthews, T. J., Davies, G. & Sadler, J. P. The ecological impact of city lighting scenarios: exploring gap crossing thresholds for urban bats. Glob. Chang. Biol. 21, 2467–2478 (2015).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Halfwerk, W., Holleman, L. J. M., Lessells, C. M. & Slabbekoorn, H. Negative impact of traffic noise on avian reproductive success. J. Appl. Ecol. 48, 210–219 (2011).
    Article  Google Scholar 

    13.
    Kight, C. R., Saha, M. S. & Swaddle, J. P. Anthropogenic noise is associated with reductions in the productivity of breeding Eastern Bluebirds (Sialia sialis). Ecol. Appl. 22, 1989–1996 (2012).
    PubMed  Article  Google Scholar 

    14.
    Injaian, A. S., Poon, L. Y. & Patricelli, G. L. Effects of experimental anthropogenic noise on avian settlement patterns and reproductive success. Behav. Ecol. 29, 1181–1189 (2018).
    Article  Google Scholar 

    15.
    Kempenaers, B., Borgström, P., Loës, P., Schlicht, E. & Valcu, M. Artificial night lighting affects dawn song, extra-pair siring success, and lay date in songbirds. Curr. Biol. 20, 1735–1739 (2010).
    CAS  PubMed  Article  Google Scholar 

    16.
    Cooper, C. B., Hochachka, W. M., Butcher, G. & Dhondt, A. A. Seasonal and latitudinal trends in clutch size: thermal constraints during laying and incubation. Ecology 86, 2018–2031 (2005).
    Article  Google Scholar 

    17.
    Van Renterghem, T., Botteldooren, D. & Verheyen, K. Road traffic noise shielding by vegetation belts of limited depth. J. Sound Vibrat. 331, 2404–2425 (2012).
    ADS  Article  Google Scholar 

    18.
    Luginbuhl, C. B. et al. From the ground up II: sky glow and near-ground artificial light propagation in Flagstaff, Arizona. Publ. Astron. Soc. Pacif. 121, 204–212 (2009).
    ADS  Article  Google Scholar 

    19.
    Boncoraglio, G. & Saino, N. Habitat structure and the evolution of bird song: a meta-analysis of the evidence for the acoustic adaptation hypothesis. Funct. Ecol. 21, 134–142 (2007).
    Article  Google Scholar 

    20.
    Francis, C. D. Vocal traits and diet explain avian sensitivities to anthropogenic noise. Glob. Chang. Biol. 21, 1809–1820 (2015).
    ADS  PubMed  Article  Google Scholar 

    21.
    Huet des Aunay, G. et al. Negative impact of urban noise on sexual receptivity and clutch size in female domestic canaries. Ethology 123, 843–853 (2017).
    Article  Google Scholar 

    22.
    Proppe, D. S., Sturdy, C. B. & St Clair, C. C. Anthropogenic noise decreases urban songbird diversity and may contribute to homogenization. Glob. Chang. Biol. 19, 1075–1084 (2013).
    ADS  PubMed  Article  Google Scholar 

    23.
    Kleist, N. J., Guralnick, R. P., Cruz, A., Lowry, C. A. & Francis, C. D. Chronic anthropogenic noise disrupts glucocorticoid signaling and has multiple effects on fitness in an avian community. Proc. Natl Acad. Sci. USA 115, E648–E657 (2018).
    CAS  PubMed  Article  Google Scholar 

    24.
    Dominoni, D., Quetting, M. & Partecke, J. Artificial light at night advances avian reproductive physiology. Proc. Biol. Sci. B 280, 20123017 (2013).
    Google Scholar 

    25.
    Visser, M. E., Both, C. & Lambrechts, M. M. Global climate change leads to mistimed avian reproduction. Adv. Ecol. Res. 35, 89–110 (2004).
    Article  Google Scholar 

    26.
    Winkler, D. W., Dunn, P. O. & McCulloch, C. E. Predicting the effects of climate change on avian life-history traits. Proc. Natl Acad. Sci. USA 99, 13595–13599 (2002).
    ADS  CAS  PubMed  Article  Google Scholar 

    27.
    Dunn, P. O. & Winkler, D. W. Climate change has affected the breeding date of tree swallows throughout North America. Proc. Biol. Sci. 266, 2487–2490 (1999).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    28.
    Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    29.
    Burgess, M. D. et al. Tritrophic phenological match-mismatch in space and time. Nat. Ecol. Evol. 2, 970–975 (2018).
    PubMed  Article  Google Scholar 

    30.
    van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).
    Article  Google Scholar 

    31.
    Cornell Laboratory of Ornithology. The Birds of North America Online (Cornell Laboratory of Ornithology, 2015).

    32.
    Falchi, F. et al. The new world atlas of artificial night sky brightness. Sci. Adv. 2, e1600377 (2016).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Mennitt, D. J. & Fristrup, K. M. Influence factors and spatiotemporal patterns of environmental sound levels in the contiguous United States. Noise Control Eng. J. 64, 342–353 (2016).
    Article  Google Scholar 

    34.
    Dooling, R. J., Lohr, B. & Dent, M. L. in Comparative Hearing: Birds and Reptiles (eds. Dooling, R. J. et al.) 308–359 (Springer, 2000).

    35.
    Arnold, C. L. & Gibbons, C. J. Impervious surface coverage: the emergence of a key environmental indicator. J. Am. Plann. Assoc. 62, 243–258 (1996).
    Article  Google Scholar 

    36.
    McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).
    Article  Google Scholar 

    37.
    Xian, G. et al. Change of impervious surface area between 2001 and 2006 in the conterminous United States. Photogramm. Eng. Remote Sensing 77, 758–762 (2012).
    Google Scholar 

    38.
    United States Census Bureau. 2010 Census https://data.census.gov/cedsci/ (US Census Bureau, 2011).

    39.
    Hall, M. I. & Ross, C. F. Eye shape and activity pattern in birds. J. Zool. (Lond.) 271, 437–444 (2007).
    Article  Google Scholar 

    40.
    Kirk, E. C. Comparative morphology of the eye in primates. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 281, 1095–1103 (2004).
    PubMed  Article  Google Scholar 

    41.
    Martin, G. R. in Perception and Motor Control in Birds: An Ecological Approach (eds. Davies, M. & Green, P.) 5–34 (Springer, 1994).

    42.
    Blackwell, B. F., Fernández-Juricic, E., Seamans, T. W. & Dolan, T. Avian visual system configuration and behavioural response to object approach. Anim. Behav. 77, 673–684 (2009).
    Article  Google Scholar 

    43.
    Hall, M. I., Iwaniuk, A. N. & Gutiérrez-Ibáñez, C. Optic foramen morphology and activity pattern in birds. Anat. Rec. (Hoboken) 292, 1827–1845 (2009).
    Article  Google Scholar 

    44.
    Moore, B. A., Doppler, M., Young, J. E. & Fernández-Juricic, E. Interspecific differences in the visual system and scanning behavior of three forest passerines that form heterospecific flocks. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 199, 263–277 (2013).
    PubMed  Article  Google Scholar 

    45.
    Ritland, S. M. The Allometry of the Vertebrate Eye (Univ. of Chicago, 1983).

    46.
    Tyrrell, L. P. & Fernández-Juricic, E. The hawk-eyed songbird: retinal morphology, eye shape, and visual fields of an aerial insectivore. Am. Nat. 189, 709–717 (2017).
    PubMed  Article  Google Scholar 

    47.
    Goolsby, E. W., Bruggeman, J. & Ané, C. Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within-species variation. Methods Ecol. Evol. 8, 22–27 (2017).
    Article  Google Scholar 

    48.
    Uyeda, J. C., Pennell, M. W., Miller, E. T., Maia, R. & McClain, C. R. The evolution of energetic scaling across the vertebrate tree of life. Am. Nat. 190, 185–199 (2017).
    PubMed  Article  Google Scholar 

    49.
    Vitousek, M. N. et al. Macroevolutionary patterning in glucocorticoids suggests different selective pressures shape baseline and stress-induced levels. Am. Nat. 193, 866–880 (2019).
    PubMed  Article  Google Scholar 

    50.
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    51.
    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 1717–2032 (2014).
    Article  Google Scholar 

    52.
    Lislevand, T., Figuerola, J. & Székely, T. Avian body sizes in relation to fecundity, mating system, display behavior, and resource sharing. Ecology 88, 1605 (2007).
    Article  Google Scholar 

    53.
    Cornell Laboratory of Ornithology. All About Birds https://www.allaboutbirds.org (Cornell Laboratory of Ornithology, 2018).

    54.
    Rousset, F. & Ferdy, J.-B. Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography 37, 781–790 (2014).
    Article  Google Scholar 

    55.
    Smith, R. J. & Moore, F. R. Arrival timing and seasonal reproductive performance in a long-distance migratory landbird. Behav. Ecol. Sociobiol. 57, 231–239 (2005).
    Article  Google Scholar 

    56.
    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. nlme: linear and nonlinear mixed effects models (R package version 3.1-104, 2012).

    57.
    Revell, L. J. Phylogenetic signal and linear regression on species data. Methods Ecol. Evol. 1, 319–329 (2010).
    Article  Google Scholar 

    58.
    Ives, A. R., Midford, P. E. & Garland, T. Jr. Within-species variation and measurement error in phylogenetic comparative methods. Syst. Biol. 56, 252–270 (2007).
    PubMed  Article  Google Scholar 

    59.
    Garamszegi, L. Z. in Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology (ed. Garamszegi, L. Z.) 157–199 (Springer, 2014).

    60.
    Jones, K. E. & Purvis, A. An optimum body size for mammals? Comparative evidence from bats. Funct. Ecol. 11, 751–756 (1997).
    Article  Google Scholar 

    61.
    Hurlbert, S. H., Levine, R. A. & Utts, J. Coup de grâce for a tough old bull: “statistically significant” expires. Am. Stat. 73, 352–357 (2019).
    Article  Google Scholar 

    62.
    Amrhein, V., Greenland, S. & McShane, B. Scientists rise up against statistical significance. Nature 567, 305–307 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Halsey, L. G. The reign of the p-value is over: what alternative analyses could we employ to fill the power vacuum? Biol. Lett. 15, 20190174 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    64.
    Ware, H. E., McClure, C. J. W., Carlisle, J. D. & Barber, J. R. A phantom road experiment reveals traffic noise is an invisible source of habitat degradation. Proc. Natl Acad. Sci. USA 112, 12105–12109 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    65.
    R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2019).

    66.
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Article  Google Scholar 

    67.
    Lüdecke, D., Makowski, D. & Waggoner, P. Performance: Assessment of Regression Models Performance (2019).

    68.
    Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).
    Article  Google Scholar 

    69.
    Yu, G. & Ekstrøm, C. T. emojifont: emoji and font awesome in graphics (R package version 0.5.3, 2019). More

  • in

    Entrainment of circadian rhythms of locomotor activity by ambient temperature cycles in the dromedary camel

    1.
    Aschoff, J. Circadian activity pattern with two peaks. Ecology 47, 657–662 (1966).
    Article  Google Scholar 
    2.
    Daan, S. & Aschoff, J. Circadian rhythms of locomotor activity in captive birds and mammals: Their variations with season and latitude. Oecologia 18, 269–316 (1975).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    3.
    Katandukila, J. V., Bennett, N. C., Chimimba, C. T., Faulkes, C. G. & Oosthuizen, M. K. Locomotor activity patterns of captive East African root rats, Tachyoryctes splendens (Rodentia: Spalacidae), from Tanzania, East Africa. J. Mamm. 94, 1393–1400 (2013).
    Article  Google Scholar 

    4.
    Bennie, J. J., Duffy, J. P., Inger, R. & Gaston, K. J. Biogeography of time partitioning in mammals. Proc. Natl. Acad. Sci. U.S.A. 111, 13727–13732 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Cloudsley-Thompson, J. L. Rhythmic Activity in Animal Physiology and Behaviour (Academic Press, Cambridge, 1961).
    Google Scholar 

    6.
    Aschoff, J., Gercke, H., Pohl, P., Rieger, P. V. & Wever, S. P. U. R. Interdependent parameters of circadian activity rhythms in birds and man. In Biochronometry (ed. Menaker, M.) 3–29 (National Academy of Science, Washington, DC, 1971).
    Google Scholar 

    7.
    Risenhoover, K. L. Winter activity patterns of moose in interior Alaska. J. Wildl. Manage. 50, 727–734 (1986).
    Article  Google Scholar 

    8.
    Castillo-Ruiz, A., Paul, M. J. & Schwartz, W. J. In search of a temporal niche: Social interactions. Prog. Brain Res. 199, 267–280 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    9.
    Kronfeld-Schor, N., Visser, M. E., Salis, L. & van Gils, J. A. Chronobiology of interspecific interactions in a changing world. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. https://doi.org/10.1098/rstb.2016.0248 (2017).
    Article  Google Scholar 

    10.
    Farsi, H. et al. Validation of locomotion scoring as a new and inexpensive technique to record circadian locomotor activity in large mammals. Heliyon 4, e00980–e00980 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    El Allali, K. et al. Smartphone and a freely available application as a new tool to record locomotor activity rhythm in large mammals and humans. Chronobiol. Int. 36, 1047–1057 (2019).
    Article  PubMed  Google Scholar 

    12.
    Schmidt-Nielsen, K., Schmidt-Nielsen, B., Jarnum, S. A. & Houpt, T. R. Body temperature of the camel and its relation to water economy. Am. J. Physiol. 188, 103–112 (1957).
    CAS  Article  PubMed  Google Scholar 

    13.
    Bouâouda, H. et al. Daily regulation of body temperature rhythm in the camel (Camelus dromedarius) exposed to experimental desert conditions. Physiol. Rep. 2, e12151 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    14.
    El Allali, K. et al. Entrainment of the circadian clock by daily ambient temperature cycles in the camel (Camelus dromedarius). Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R1044–R1052 (2013).
    Article  CAS  PubMed  Google Scholar 

    15.
    Farsi, H. et al. Melatonin rhythm and other outputs of the master circadian clock in the desert goat (Capra hircus) are entrained by daily cycles of ambient temperature. J. Pineal Res. 68, e12634 (2020).
    CAS  Article  PubMed  Google Scholar 

    16.
    Ebling, F. J., Lincoln, G. A., Wollnik, F. & Anderson, N. Effects of constant darkness and constant light on circadian organization and reproductive responses in the ram. J. Biol. Rhythms 3, 365–384 (1988).
    CAS  Article  PubMed  Google Scholar 

    17.
    Johnson, R. F., Randall, S. & Randall, W. Freerunning and entrained circadian rhythms in activity, eating and drinking in the cat. J. Interdiscipl. Cycle Res. 14, 315–327 (1983).
    Article  Google Scholar 

    18.
    Jilge, B., Hörnicke, H. & Stähle, H. Circadian rhythms of rabbits during restrictive feeding. Am. J. Physiol. 253, R46–R54 (1987).
    CAS  PubMed  Google Scholar 

    19.
    Decoursey, G. & Decoursey, P. J. Adaptive aspects of activity rhythms in bats. Biol. Bull. 126, 14–27 (1964).
    Article  Google Scholar 

    20.
    Erkert, H. G., Nagel, B. & Stephani, I. Light and social effects on the free-running circadian activity rhythm in common marmosets (Callithrix jacchus; Primates): Social masking, pseudo-splitting, and relative coordination. Behav. Ecol. Sociobiol. 18, 443–452 (1986).
    Article  Google Scholar 

    21.
    O’Reilly, H., Armstrong, S. M. & Coleman, G. J. Restricted feeding and circadian activity rhythms of a predatory marsupial, Dasyuroides byrnei. Physiol. Behav. 38, 471–476 (1986).
    CAS  Article  PubMed  Google Scholar 

    22.
    Boulos, Z., Frim, D. M., Dewey, L. K. & Moore-Ede, M. C. Effects of restricted feeding schedules on circadian organization in squirrel monkeys. Physiol. Behav. 45, 507–515 (1989).
    CAS  Article  PubMed  Google Scholar 

    23.
    Mahoney, M., Bult, A. & Smale, L. Phase response curve and light-induced fos expression in the suprachiasmatic nucleus and adjacent hypothalamus of Arvicanthis niloticus. J. Biol. Rhythms 16, 149–162 (2001).
    CAS  Article  PubMed  Google Scholar 

    24.
    Alagaili, A. N., Bennett, N. C., Amor, N. M. & Hart, D. W. The locomotory activity patterns of the arid-dwelling desert hedgehog, Paraechinus aethiopicus, from Saudi Arabia. J. Arid Environ. 177, 104141 (2020).
    ADS  Article  Google Scholar 

    25.
    Verwey, M., Robinson, B. & Amir, S. Recording and analysis of circadian rhythms in running-wheel activity in rodents. J. Vis. Exp. https://doi.org/10.3791/50186 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    26.
    Refinetti, R. Early research on circadian rhythms. In Circadian Physiology 2nd edn (ed. Refinetti, R.) 1–667 (CRC Taylor and Frabcis Group, Boca Raton, 2006).
    Google Scholar 

    27.
    Goldman, B. D., Goldman, S. L., Riccio, A. P. & Terkel, J. Circadian patterns of locomotor activity and body temperature in blind mole-rats, Spalax ehrenbergi. J. Biol. Rhythms 12, 348–361 (1997).
    CAS  Article  PubMed  Google Scholar 

    28.
    Kopp, C. et al. Effects of a daylight cycle reversal on locomotor activity in several inbred strains of mice. Physiol. Behav. 63, 577–585 (1998).
    CAS  Article  PubMed  Google Scholar 

    29.
    Giannetto, C., Casella, S., Caola, G. & Piccione, G. Photic and non-photic entrainment on daily rhythm of locomotor activity in goats. Anim. Sci. J. 81, 122–128 (2010).
    Article  PubMed  Google Scholar 

    30.
    Piccione, G., Giannetto, C., Casella, S. & Caola, G. Daily locomotor activity in five domestic animals. Anim. Biol. 60, 15–24 (2010).
    Article  Google Scholar 

    31.
    Challet, E. Minireview: Entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148, 5648–5655 (2007).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Dibner, C., Schibler, U. & Albrecht, U. The mammalian circadian timing system: Organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517–549 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Tanaka, M., Ichitani, Y., Okamura, H., Tanaka, Y. & Ibata, Y. The direct retinal projection to VIP neuronal elements in the rat SCN. Brain Res. Bull. 31, 637–640 (1993).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    34.
    Jacomy, H., Burlet, A. & Bosler, O. Vasoactive intestinal peptide neurons as synaptic targets for vasopressin neurons in the suprachiasmatic nucleus. Double-label immunocytochemical demonstration in the rat. Neuroscience 88, 859–870 (1999).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Aton, S. J., Colwell, C. S., Harmar, A. J., Waschek, J. & Herzog, E. D. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat. Neurosci. 8, 476–483 (2005).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    36.
    Reppert, S. M. & Weaver, D. R. Comparing clockworks: Mouse versus fly. J. Biol. Rhythms 15, 357–364 (2000).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    37.
    Reppert, S. M. & Weaver, D. R. Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 63, 647–676 (2001).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    38.
    Shearman, L. P. et al. Interacting molecular loops in the mammalian circadian clock. Science 288, 1013–1019 (2000).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Okamura, H., Yamaguchi, S. & Yagita, K. Molecular machinery of the circadian clock in mammals. Cell Tissue Res. 309, 47–56 (2002).
    CAS  Article  Google Scholar 

    40.
    Takahashi, J. S., Hong, H. K., Ko, C. H. & McDearmon, E. L. The genetics of mammalian circadian order and disorder: Implications for physiology and disease. Nat. Rev. Genet. 9, 764–775 (2008).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    41.
    Mohawk, J. A., Green, C. B. & Takahashi, J. S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445–462 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    42.
    Rensing, L. & Ruoff, P. Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Chronobiol. Int. 19, 807–864 (2002).
    CAS  Article  PubMed  Google Scholar 

    43.
    Aschoff, J. & Tokura, H. Circadian activity rhythms in squirrel monkeys: Entrainment by temperature cycles 1. J. Biol. Rhythms 1, 91–99 (1986).
    CAS  Article  PubMed  Google Scholar 

    44.
    Pálková, M., Sigmund, L. & Erkert, H. G. Effect of ambient temperature on the circadian activity rhythm in common marmosets, Callithrix j jacchus (primates). Chronobiol. Int. 16, 149–161 (1999).
    Article  PubMed  Google Scholar 

    45.
    Rajaratnam, S. M. W. & Redman, J. R. Entrainment of activity rhythms to temperature cycles in diurnal palm squirrels. Physiol. Behav. 63, 271–277 (1998).
    CAS  Article  PubMed  Google Scholar 

    46.
    Refinetti, R. Entrainment of circadian rhythm by ambient temperature cycles in mice. J. Biol. Rhythms 25, 247–256 (2010).
    Article  Google Scholar 

    47.
    van Jaarsveld, B., Bennett, N. C., Hart, D. W. & Oosthuizen, M. K. Locomotor activity and body temperature rhythms in the Mahali mole-rat (C. h. mahali): The effect of light and ambient temperature variations. J. Therm. Biol. 79, 24–32 (2019).
    Article  Google Scholar 

    48.
    Schmidt-Nielsen, K. The physiology of the camel. Sci. Am. 201, 140–151 (1959).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    49.
    Wu, H. et al. Camelid genomes reveal evolution and adaptation to desert environments. Nat. Commun. 5, 5188 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Samara, E. M. Unraveling the relationship between the topographic distribution patterns of skin temperature and perspiration response in dromedary camels. J. Therm. Biol 84, 311–315 (2019).
    Article  PubMed  Google Scholar 

    51.
    Tibary, A. & El Allali, K. Dromedary camel: A model of heat resistant livestock animal. Theriogenology 154, 203–211 (2020).
    Article  PubMed  Google Scholar 

    52.
    Lindberg, R. G. & Hayden, P. Thermoperiodic entrainment of arousal from torpor in the little pocket mouse, Perognathus longimembris. Chronobiologia 1, 356–361 (1974).
    CAS  PubMed  Google Scholar 

    53.
    Erkert, H. G. & Rothmund, E. Differences in temperature sensitivity of the circadian systems of homoeothermic and heterothermic neotropical bats. Comp. Biochem. Physiol. 68A, 383–390 (1980).
    Google Scholar 

    54.
    Pohl, H. Temperature cycles as zeitgeber for the circadian clock of two burrowing rodents, the normothermic antelope ground squirrel and the heterothermic Syrian Hamster. Biol. Rhythm Res. 29, 311–325 (1998).
    Article  Google Scholar 

    55.
    Cain, J. W., Krausman, P. R., Rosenstock, S. S. & Turner, J. C. Mechanisms of thermoregulation and water balance in Desert Ungulates. Wildl. Soc. Bull. 1973–2006(34), 570–581 (2006).
    Article  Google Scholar 

    56.
    Mengistu, U., Dahlborn, K. & Olsson, K. Mechanisms of water economy in lactating Ethiopian Somali goats during repeated cycles of intermittent watering. Anim. Int. J. Anim. Biosci. 1, 1009–1017 (2007).
    CAS  Article  Google Scholar 

    57.
    Gauthier-Pilters, H. Aspects of dromedary ecology and ethology. In The Camelid (ed. Cockrill, W. R.) (Scandinavian Institute of African Studies, Uppsala, 1984).
    Google Scholar 

    58.
    Miller, G. D., Cochran, M. H. & Smith, E. L. Nighttime activity of desert bighorn sheep. Desert Bighorn Council Trans. 28, 23–25 (1984).
    Google Scholar 

    59.
    Hayes, C. L. & Krausman, P. R. Nocturnal activity of female desert mule deer. J. Wildl. Manage. 57, 897–904 (1993).
    Article  Google Scholar 

    60.
    Davimes, J. G. et al. Temporal niche switching in Arabian oryx (Oryx leucoryx): Seasonal plasticity of 24h activity patterns in a large desert mammal. Physiol. Behav. 177, 148–154 (2017).
    CAS  Article  PubMed  Google Scholar 

    61.
    Davimes, J. G. et al. Seasonal variations in sleep of free-ranging Arabian oryx (Oryx leucoryx) under natural hyperarid conditions. Sleep https://doi.org/10.1093/sleep/zsy038 (2018).
    Article  PubMed  Google Scholar 

    62.
    El Allali, K. et al. Seasonal variations in the nycthemeral rhythm of plasma melatonin in the camel (Camelus dromedarius). J. Pineal Res. 39, 121–128 (2005).
    Article  CAS  PubMed  Google Scholar 

    63.
    Mrosovsky, N. Circannual cycles in golden-mantled ground squirrels: Phase shift produced by low temperature. J. Comp. Physiol. 136, 349–353 (1980).
    Article  Google Scholar 

    64.
    Mrosovsky, N. Circannual cycles in golden-mantled ground squirrels: Experiments with food deprivation and effects of temperature on periodicity. J. Comp. Physiol. 136, 355–360 (1980).
    Article  Google Scholar 

    65.
    Mrosovsky, N. Thermal effects on the periodicity, phasing and peristance of circannual cycles. In Living in the Cold (eds Heller, H. C. et al.) 403–410 (Elsevier, New York, 1986).
    Google Scholar 

    66.
    Mrosovsky, N. Circannual cycles in golden-mantled ground squirrels: fall and spring cold pulses. J. Comp. Physiol. 167, 683–689 (1990).
    Article  Google Scholar 

    67.
    Canguilhem, B., Schieber, J. P. & Koch, A. Circannual weight rhythm of the European hamster (Cricetus cricetus). Respective influence of the photoperiod and external temperature during its course. Arch. Sci. Physiol. 27, 67–90 (1973).
    CAS  Google Scholar 

    68.
    Jallageas, M. & Assenmacher, I. External factors controlling annual testosterone and thyroxine cycles in the edible dormouse Glis glis. Comp. Biochem. Physiol. A Physiol. 77, 161–167 (1984).
    CAS  Article  Google Scholar 

    69.
    Touitou, Y., Smolensky, M. H. & Portaluppi, F. Ethics, standards, and procedures of animal and human chronobiology research. Chronobiol. Int. 23, 1083–1096 (2006).
    Article  PubMed  Google Scholar  More

  • in

    A comparative genomics multitool for scientific discovery and conservation

    1.
    Claussnitzer, M. et al. A brief history of human disease genetics. Nature 577, 179–189 (2020).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Hiller, M. et al. A “forward genomics” approach links genotype to phenotype using independent phenotypic losses among related species. Cell Rep. 2, 817–823 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    3.
    Wasser, S. K. et al. Genetic assignment of large seizures of elephant ivory reveals Africa’s major poaching hotspots. Science 349, 84–87 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    4.
    Wright, B. et al. Development of a SNP-based assay for measuring genetic diversity in the Tasmanian devil insurance population. BMC Genomics 16, 791 (2015).
    PubMed  PubMed Central  Google Scholar 

    5.
    Lappalainen, T., Scott, A. J., Brandt, M. & Hall, I. M. Genomic analysis in the age of human genome sequencing. Cell 177, 70–84 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    6.
    Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    7.
    Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476–482 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    9.
    IUCN. The IUCN Red List of Threatened Species. Version 2019-2 http://www.iucnredlist.org (2019).

    10.
    Ryder, O. A. & Onuma, M. Viable cell culture banking for biodiversity characterization and conservation. Annu. Rev. Anim. Biosci. 6, 83–98 (2018).
    PubMed  Google Scholar 

    11.
    Weisenfeld, N. I. et al. Comprehensive variation discovery in single human genomes. Nat. Genet. 46, 1350–1355 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Putnam, N. H. et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 26, 342–350 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    13.
    Kim, J. et al. Reconstruction and evolutionary history of eutherian chromosomes. Proc. Natl Acad. Sci. USA 114, E5379–E5388 (2017).
    CAS  PubMed  Google Scholar 

    14.
    Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Balasubramanian, S. et al. Using ALoFT to determine the impact of putative loss-of-function variants in protein-coding genes. Nat. Commun. 8, 382 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    16.
    Meadows, J. R. S. & Lindblad-Toh, K. Dissecting evolution and disease using comparative vertebrate genomics. Nat. Rev. Genet. 18, 624–636 (2017).
    CAS  PubMed  Google Scholar 

    17.
    Cooper, G. M. & Shendure, J. Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nat. Rev. Genet. 12, 628–640 (2011).
    CAS  PubMed  Google Scholar 

    18.
    Baiz, M. D., Tucker, P. K., Mueller, J. L. & Cortés-Ortiz, L. X-linked signature of reproductive isolation in humans is mirrored in a howler monkey hybrid zone. J. Hered. 111, 419–428 (2020).
    PubMed  PubMed Central  Google Scholar 

    19.
    Dobzhansky, T. & Dobzhansky, T. G. Genetics and the Origin of Species (Columbia Univ. Press, 1937).

    20.
    Herrera-Álvarez, S., Karlsson, E., Ryder, O. A., Lindblad-Toh, K. & Crawford, A. J. How to make a rodent giant: genomic basis and tradeoffs of gigantism in the capybara, the world’s largest rodent. Preprint at https://doi.org/10.1101/424606 (2018).

    21.
    Abegglen, L. M. et al. Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans. J. Am. Med. Assoc. 314, 1850–1860 (2015).
    CAS  Google Scholar 

    22.
    Casewell, N. R. et al. Solenodon genome reveals convergent evolution of venom in eulipotyphlan mammals. Proc. Natl Acad. Sci. USA 116, 25745–25755 (2019).
    CAS  PubMed  Google Scholar 

    23.
    Beichman, A. C. et al. Aquatic adaptation and depleted diversity: a deep dive into the genomes of the sea otter and giant otter. Mol. Biol. Evol. 36, 2631–2655 (2019).
    CAS  PubMed  Google Scholar 

    24.
    Damas, J. et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc. Natl Acad. Sci. USA 117, 22311–22322 (2020).
    CAS  PubMed  Google Scholar 

    25.
    Xue, Y. et al. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science 348, 242–245 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    26.
    Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M. & Wilson, J. F. Runs of homozygosity: windows into population history and trait architecture. Nat. Rev. Genet. 19, 220–234 (2018).
    CAS  PubMed  Google Scholar 

    27.
    Spielman, D., Brook, B. W. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. Proc. Natl Acad. Sci. USA 101, 15261–15264 (2004).
    ADS  CAS  PubMed  Google Scholar 

    28.
    Vinson, J. P. et al. Assembly of polymorphic genomes: algorithms and application to Ciona savignyi. Genome Res. 15, 1127–1135 (2005).
    PubMed  PubMed Central  Google Scholar 

    29.
    MacManes, M. D. & Lacey, E. A. The social brain: transcriptome assembly and characterization of the hippocampus from a social subterranean rodent, the colonial tuco-tuco (Ctenomys sociabilis). PLoS ONE 7, e45524 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    30.
    Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648 (2009).
    Google Scholar 

    31.
    Cardillo, M. Biological determinants of extinction risk: why are smaller species less vulnerable? Anim. Conserv. 6, 63–69 (2003).
    Google Scholar 

    32.
    Natesh, M. et al. Empowering conservation practice with efficient and economical genotyping from poor quality samples. Methods Ecol. Evol. 10, 853–859 (2019).
    PubMed  PubMed Central  Google Scholar 

    33.
    Lowry, D. B. et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol. Ecol. Resour. 17, 142–152 (2017).
    CAS  PubMed  Google Scholar 

    34.
    Shapiro, B. Pathways to de-extinction: how close can we get to resurrection of an extinct species? Funct. Ecol. 31, 996–1002 (2017).
    Google Scholar 

    35.
    Benazzo, A. et al. Survival and divergence in a small group: the extraordinary genomic history of the endangered Apennine brown bear stragglers. Proc. Natl Acad. Sci. USA 114, E9589–E9597 (2017).
    CAS  PubMed  Google Scholar 

    36.
    Saremi, N. F. et al. Puma genomes from North and South America provide insights into the genomic consequences of inbreeding. Nat. Commun. 10, 4769 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    37.
    Armstrong, J. et al. Progressive Cactus is a multiple-genome aligner for the thousand-genome era. Nature https://doi.org/10.1038/s41586-020-2871-y (2020).

    38.
    Haeussler, M. et al. The UCSC genome browser database: 2019 update. Nucleic Acids Res. 47, D853–D858 (2019).
    CAS  PubMed  Google Scholar 

    39.
    Rands, C. M., Meader, S., Ponting, C. P. & Lunter, G. 8.2% of the human genome is constrained: variation in rates of turnover across functional element classes in the human lineage. PLoS Genet. 10, e1004525 (2014).
    PubMed  PubMed Central  Google Scholar 

    40.
    ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
    ADS  Google Scholar 

    41.
    GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).
    PubMed Central  Google Scholar 

    42.
    Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017).
    PubMed  PubMed Central  Google Scholar 

    43.
    Lewin, H. A. et al. Earth BioGenome project: sequencing life for the future of life. Proc. Natl Acad. Sci. USA 115, 4325–4333 (2018).
    CAS  PubMed  Google Scholar 

    44.
    Koepfli, K.-P., Paten, B., the Genome 10K Community of Scientists & O’Brien, S. J. The Genome 10K project: a way forward. Annu. Rev. Anim. Biosci. 3, 57–111 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Teeling, E. C. et al. Bat biology, genomes, and the Bat1K project: to generate chromosome-level genomes for all living bat species. Annu. Rev. Anim. Biosci. 6, 23–46 (2018).
    PubMed  Google Scholar 

    46.
    Feng, S. et al. Dense sampling of bird diversity increases power of comparative genomics. Nature https://doi.org/10.1038/s41586-020-2873-9 (2020).

    47.
    Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).
    CAS  PubMed  Google Scholar 

    48.
    Wilson, D. E. & Reeder, D. M. (eds) Mammal Species of the World. A Taxonomic and Geographic Reference 3rd edn (Johns Hopkins Univ. Press, 2005).

    49.
    Vlieghe, D. et al. A new generation of JASPAR, the open-access repository for transcription factor binding site profiles. Nucleic Acids Res. 34, D95–D97 (2006).
    CAS  PubMed  Google Scholar 

    50.
    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
    PubMed  PubMed Central  Google Scholar 

    51.
    Farré, M. et al. A near-chromosome-scale genome assembly of the gemsbok (Oryx gazella): an iconic antelope of the Kalahari desert. Gigascience 8, giy162 (2019).
    PubMed Central  Google Scholar 

    52.
    McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    53.
    DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    54.
    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
    PubMed  PubMed Central  Google Scholar 

    55.
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    56.
    Benaglia, T., Chauveau, D., Hunter, D. & Young, D. mixtools: an R package for analyzing finite mixture models. J. Stat. Softw. 32, 1–29 (2009).
    Google Scholar 

    57.
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (2019).

    58.
    Paten, B. et al. Cactus: algorithms for genome multiple sequence alignment. Genome Res. 21, 1512–1528 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    59.
    Ondov, B. D. et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 17, 132 (2016).
    PubMed  PubMed Central  Google Scholar 

    60.
    Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0. http://www.repeatmasker.org/ (2013–2015).

    61.
    Hubisz, M. J., Pollard, K. S. & Siepel, A. PHAST and RPHAST: phylogenetic analysis with space/time models. Brief. Bioinform. 12, 41–51 (2011).
    CAS  PubMed  Google Scholar 

    62.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    63.
    Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–D42 (2013).
    CAS  PubMed  Google Scholar 

    64.
    Nguyen, N. et al. Comparative assembly hubs: web-accessible browsers for comparative genomics. Bioinformatics 30, 3293–3301 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    65.
    Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    66.
    Pinheiro, E. C., Taddei, V. A., Migliorini, R. H. & Kettelhut, I. C. Effect of fasting on carbohydrate metabolism in frugivorous bats (Artibeus lituratus and Artibeus jamaicensis). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 143, 279–284 (2006).
    PubMed  Google Scholar 

    67.
    Gordon, L. M. et al. Amorphous intergranular phases control the properties of rodent tooth enamel. Science 347, 746–750 (2015).
    ADS  CAS  PubMed  Google Scholar 

    68.
    Hindle, A. G. & Martin, S. L. Intrinsic circannual regulation of brown adipose tissue form and function in tune with hibernation. Am. J. Physiol. Endocrinol. Metab. 306, E284–E299 (2014).
    CAS  PubMed  Google Scholar 

    69.
    Stanford, K. I. et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J. Clin. Invest. 123, 215–223 (2013).
    CAS  PubMed  Google Scholar 

    70.
    Chondronikola, M. et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 63, 4089–4099 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    71.
    Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).
    CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    Revealed: the impact of noise and light pollution on birds

    Listen to the latest from the world of science, with Benjamin Thompson and Nick Howe.
    Your browser does not support the audio element.
    Download MP3

    In this episode:
    00:46 Sensory pollution and bird reproduction
    Light- and noise-pollution have been shown to affect the behaviour of birds. However, it’s been difficult to work out whether these behavioural changes have led to bird species thriving or declining. Now, researchers have assembled a massive dataset that can begin to give some answers. Research article: Senzaki et al.
    10:17 Coronapod
    Interim results from a phase III trial show compelling evidence that a coronavirus vaccine candidate can prevent COVID-19. However, amid the optimism there remain questions to be answered – we discuss these, and what the results might mean for other vaccines in development. News: What Pfizer’s landmark COVID vaccine results mean for the pandemic
    23:29 Research Highlights
    A tiny bat breaks a migration record, and researchers engineer a mouse’s sense of place. Research Highlight: The record-setting flight of a bat that weighs less than a toothbrush; Research Article: Robinson et al.
    25:39 Organised crime in fisheries
    When you think of fishing, organised crime probably isn’t the first thing that springs to mind. However, billions of dollars every year from the fishing industry are lost to criminal enterprises. We discuss some of the impacts and what can be done about it. Research Article: Witbooi et al.
    32:13 Briefing Chat
    We discuss some highlights from the Nature Briefing. This time, a time-capsule discovered on the Irish coast provides a damning indictment of Arctic warming, and some human remains challenge the idea of ‘man-the-hunter’. The Guardian: Arctic time capsule from 2018 washes up in Ireland as polar ice melts; Science: Woman the hunter: Ancient Andean remains challenge old ideas of who speared big game
    Subscribe to Nature Briefing, an unmissable daily round-up of science news, opinion and analysis free in your inbox every weekday.
    Never miss an episode: Subscribe to the Nature Podcast on Apple Podcasts, Google Podcasts, Spotify or your favourite podcast app. Head here for the Nature Podcast RSS feed. More

  • in

    Lipid content and stable isotopes of zooplankton during five winters around the northern Antarctic Peninsula

    Survey area
    The U.S. AMLR Program conducted five winter surveys (August and September 2012–2016) around the northern Antarctic Peninsula aboard the U.S. National Science Foundation research vessel/ice breaker (RVIB) Nathaniel B. Palmer (Fig. 1)19. We surveyed a historical grid of 110 fixed stations located 20–40 km apart around the northern Antarctic Peninsula and South Shetland Islands, which was divided into four sampling areas: the Elephant Island Area (EI; 43,865 km2), the South Area (the Bransfield Strait, SA; 24,479 km2), the West Area (the west shelf immediately north of Livingston and King George Islands, WA; 38,524 km2), and the Joinville Island Area (JI; 18,151 km2). In 2016, we also surveyed the Gerlache Strait (GS; 24,479 km2).
    At-sea sampling
    Detailed methods for all at-sea sampling by the U.S. AMLR Program have been previously reported19. At each sampling station, we performed a Conductivity-Temperature-Depth (CTD) cast to 750 m or to within 10 m of the bottom in shallower areas (SBE9/11; Sea-Bird Electronics). The CTD rosette was equipped with 24 10 l Niskin bottles triggered to close on the upcast at 750, 200, 100, 75, 50, 40, 30, 20, 15, and 5 m. We defined the Upper Mixed Layer (UML) depth (m) as the depth at which the density of the water changed by 0.05 kg m−3 relative to the mean density of the upper 10 m of the water column20. UML temperature and salinities were defined to be means over the depth range of the UML. We defined daylight conditions according to three categories. Day (D) was defined as one hour after local sunrise to one hour before local sunset; night (N) was defined as one hour after sunset to one hour before sunrise; and Twilight (T) was defined as one hour before and after sunrise and sunset.
    Chlorophyll-a (hereafter chl-a) was determined from water samples collected between 5 and 200 m21,22. Samples (285 ml) were filtered at a pressure differential of  More

  • in

    Trait convergence and trait divergence in lake phytoplankton reflect community assembly rules

    1.
    Götzenberger, L. et al. Ecological assembly rules in plant communities—Approaches, patterns and prospects. Biol. Rev. 87, 111–127. https://doi.org/10.1111/j.1469-185X.2011.00187.x (2012).
    Article  PubMed  Google Scholar 
    2.
    Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. P. Natl. Axad. Sci. USA 104, 20684–20689. https://doi.org/10.1073/pnas.0704716104 (2007).
    ADS  Article  Google Scholar 

    3.
    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185. https://doi.org/10.1016/j.tree.2006.02.002 (2006).
    Article  PubMed  Google Scholar 

    4.
    Nobel, I.R. & Slatyer, R.O. Post-fire succession of plants in Mediterranean ecosystems in: Proceedings of the Symposium on the Environmental Consequences of Fire and Fuel Management in Mediterranean Ecosystems (eds. Mooney, H.A. & Conrad, C.E.) 27–36 (California Palo Alto, 1977).

    5.
    Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 79, 109–126. https://doi.org/10.1890/07-1134.1 (2009).
    Article  Google Scholar 

    6.
    Kraft, N. J. B., Valencia, R. & Ackerly, D. D. Functional traits and niche-based tree community assembly in an amazonian forest. Science 322, 580–582. https://doi.org/10.1126/science.1160662 (2008).
    ADS  CAS  Article  PubMed  Google Scholar 

    7.
    MacArthur, R. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385. https://doi.org/10.1086/282505 (1967).
    Article  Google Scholar 

    8.
    Pásztor, L., Botta-Dukát, Z., Magyar, G., Czárán, T. & Meszéna, G. Theory-Based Ecology: A Darwinian Approach (Oxford University Press, Oxford, 2016).
    Google Scholar 

    9.
    Diamond, J.M. Assembly of Species Communities in Ecology and Evolution of Communities (eds. Cody, M.L. & Diamond, J.M.) 342–444 (Belknap Press, 1975).

    10.
    Litchman, E., Klausmeier, C. A., Schofield, O. M. & Falkowski, P. G. The role of functional traits and trade-offs in structuring phytoplankton communities: Scaling from cellular to ecosystem level. Ecol. Lett. 10, 1170–1181. https://doi.org/10.1111/j.1461-0248.2007.01117.x (2007).
    Article  PubMed  Google Scholar 

    11.
    Reynolds, C. S., Huszár, V., Kruk, C., Naselli-Flores, L. & Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24, 417–428. https://doi.org/10.1093/plankt/24.5.417 (2002).
    Article  Google Scholar 

    12.
    Salmaso, N. & Padisák, J. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578, 97–112. https://doi.org/10.1007/s10750-006-0437-0 (2007).
    Article  Google Scholar 

    13.
    Salmaso, N., Naselli-Flores, L. & Padisák, J. Functional classifications and their application in phytoplankton ecology. Freshw. Biol. 60, 603–619. https://doi.org/10.1111/fwb.12520 (2015).
    Article  Google Scholar 

    14.
    Borics, G., Tóthmérész, B., Lukács, B. A. & Várbíró, G. Functional groups of phytoplankton shaping diversity of shallow lake ecosystems. Hydrobiologia 698, 251–262. https://doi.org/10.1007/s10750-012-1129-6 (2012).
    Article  Google Scholar 

    15.
    Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206. https://doi.org/10.1086/652373 (2010).
    Article  PubMed  PubMed Central  Google Scholar 

    16.
    Padisák, J., Vasas, G. & Borics, G. Phycogeography of freshwater phytoplankton: Traditional knowledge and new molecular tools. Hydrobiologia 764, 3–27. https://doi.org/10.1007/s10750-015-2259-4 (2016).
    CAS  Article  Google Scholar 

    17.
    Padisák, J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Arch. Hydrobiol. 107, 563–593 (1997).
    Google Scholar 

    18.
    Méndez, V., Assaf, M., Masó-Puigdellosas, A., Campos, D. & Horsthemke, W. Demographic stochasticity and extinction in populations with Allee effect. Phys. Rev. E. 99, 022101. https://doi.org/10.1103/PhysRevE.99.022101 (2019).
    ADS  Article  Google Scholar 

    19.
    Parvinen, K., Dieckmann, U., Gyllenberg, M. & Metz, J. A. Evolution of dispersal in metapopulations with local density dependence and demographic stochasticity. J. Evolut. Biol. 16, 143–153. https://doi.org/10.1046/j.1420-9101.2003.00478.x (2003).
    CAS  Article  Google Scholar 

    20.
    Borics, G., Abonyi, A., Salmaso, N. & Ptacnik, R. Freshwater phytoplankton diversity: Models, drivers and implications for ecosystem properties. Hydrobiologia https://doi.org/10.1007/s10750-020-04332-9 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    21.
    Naselli-Flores, L., Padisák, J., Dokulil, M. T. & Chorus, I. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502, 395–403. https://doi.org/10.1023/B:HYDR.0000004297.52645.59 (2003).
    Article  Google Scholar 

    22.
    Weiher, E. & Keddy, P.A. Assembly rules, null models, and trait dispersion: New questions from old patterns. Oikos 74, 159–164 (1995). https://www.jstor.org/stable/3545686.

    23.
    Coyle, J. R. et al. Using trait and phylogenetic diversity to evaluate the generality of the stress-dominance hypothesis in eastern North American tree communities. Ecography 37, 814–826. https://doi.org/10.1111/ecog.00473 (2014).
    Article  Google Scholar 

    24.
    Baastrup-Spohr, L., Sand-Jensen, K., Nicolajsen, S. V. & Bruun, H. H. From soaking wet to bone dry: Predicting plant community composition along a steep hydrological gradient. J. Veg. Sci. 26, 619–630. https://doi.org/10.1111/jvs.12280 (2015).
    Article  Google Scholar 

    25.
    Lhotsky, B. et al. Changes in assembly rules along a stress gradient from open dry grasslands to wetlands. J. Ecol. 104, 507–517. https://doi.org/10.1111/1365-2745.12532 (2016).
    Article  Google Scholar 

    26.
    Butterfield, B. J., Bradford, J. B., Munson, S. M. & Gremer, J. R. Aridity increases below-ground niche breadth in grass communities. Plant Ecol. 218, 385–394. https://doi.org/10.1007/s11258-016-0696-4 (2017).
    Article  Google Scholar 

    27.
    Gastauer, M., Saporetti-Junior, A. W., Valladares, F. & Meira-Neto, J. A. Phylogenetic community structure reveals differences in plant community assembly of an oligotrophic white-sand ecosystem from the Brazilian Atlantic Forest. Acta Bot. Bras. 31, 531–538. https://doi.org/10.1590/0102-33062016abb0442 (2017).
    Article  Google Scholar 

    28.
    Chapman, J. & McEwan, R. The role of environmental filtering in structuring appalachian tree communities: Topographic influences on functional diversity are mediated through soil characteristics. Forests 9, 19. https://doi.org/10.3390/f9010019 (2018).
    Article  Google Scholar 

    29.
    Lukács, B. A. et al. Carbon forms, nutrients and water velocity filter hydrophyte and riverbank species differently: A trait-based study. J. Veg. Sci. 30, 471–484 (2019).
    Article  Google Scholar 

    30.
    Kuczynski, L. & Grenouillet, G. Community disassembly under global change: Evidence in favor of the stress-dominance hypothesis. Glob. Chang. Biol. 24, 4417–4427. https://doi.org/10.1111/gcb.14320 (2018).
    ADS  Article  PubMed  Google Scholar 

    31.
    Patrick, L. E. & Stevens, R. D. Phylogenetic community structure of North American desert bats: Influence of environment at multiple spatial and taxonomic scales. J. Anim. Ecol. 85, 1118–1130. https://doi.org/10.1111/1365-2656.12529 (2016).
    Article  PubMed  Google Scholar 

    32.
    Lopez, B. et al. A new framework for inferring community assembly processes using phylogenetic information, relevant traits and environmental gradients. One Ecosyst. 1, e9501. https://doi.org/10.3897/oneeco.1.e9501 (2016).
    Article  Google Scholar 

    33.
    Ács, E. et al. Trait-based community assembly of epiphytic diatoms in saline astatic ponds: a test of the stress-dominance hypothesis. Sci. Rep. 9(1), 15749 (2019).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    34.
    Downing, J. A. & McCauley, E. The nitrogen:phosphorus relationship in lakes. Limnol. Oceanogr. 37, 936–945 (1992).
    ADS  CAS  Article  Google Scholar 

    35.
    Phillips, G. et al. A phytoplankton trophic index to assess the status of lakes for the Water Framework Directive. Hydrobiologia 704, 75–95. https://doi.org/10.1007/s10750-012-1390-8 (2013).
    Article  Google Scholar 

    36.
    Padisák, J. et al. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502, 157–168. https://doi.org/10.1023/B:HYDR.0000004278.10887.40 (2003).
    Article  Google Scholar 

    37.
    HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248. https://doi.org/10.1146/annurev-ecolsys-110411-160411 (2012).
    Article  Google Scholar 

    38.
    Huisman, J., van Oostveen. P. & Weissing, F.J. Species dynamics in phytoplankton blooms: incomplete mixing and competition for light. Am. Nat. 154, 46–68, https://doi.org/10.1086/303220 (1999).

    39.
    Bird, D. F. & Kalff, J. Bacterial grazing by planktonic lake algae. Science 231, 493–495. https://doi.org/10.1126/science.231.4737.493 (1986).
    ADS  CAS  Article  Google Scholar 

    40.
    Stoecker, D. K. Mixotrophy among Dinoflagellates. J. Eukaryot. Microbiol. 46, 397–401. https://doi.org/10.1111/j.1550-7408.1999.tb04619.x (1999).
    Article  Google Scholar 

    41.
    Grime, J.P. Plant Strategies, Vegetation Processes, and Ecosystem Properties. (John Wiley and Sons, 2001). ISBN 0-471-49601-4.

    42.
    Navas, M. & Violle, C. Plant traits related to competition: How do they shape the functional diversity of communities?. Commun. Ecol. 10, 131–137. https://doi.org/10.1556/ComEc.10.2009.1.15 (2009).
    Article  Google Scholar 

    43.
    Reynolds, C. S. The Ecology of Phytoplankton (Cambridge University Press, Cambridge, 2006).
    Google Scholar 

    44.
    Borics, G., Grigorszky, I., Szabó, S. & Padisák, J. Phytoplankton associations in a small hypertrophic fishpond in East Hungary during a change from bottom-up to top-down control. Hydrobiologia 424, 79–90. https://doi.org/10.1023/A:1003948827254 (2000).
    Article  Google Scholar 

    45.
    Mason, N. W. H., de Bello, F., Doležal, J. & Lepš, J. Niche overlap reveals the effects of competition, disturbance and contrasting assembly processes in experimental grassland communities. J. Ecol. 99, 788–796. https://doi.org/10.1111/j.1365-2745.2011.01801.x (2011).
    Article  Google Scholar 

    46.
    Dobosi, Z. & Felméry, L. Climatology, ELTE TTK, Nemzeti Tankönyvkiadó, p. 500 (in Hungarian).

    47.
    Mihevc, A., Prelovšek, M. & Hajna, N.Z. Introduction to the Dinaric Karst. Inštitut za raziskovanje krasa ZRC SAZU. (2010).

    48.
    Borics, G. et al. Phytoplankton-based shallow lake types in the Carpathian basin: Steps towards a bottom-up typology. Fund. Appl. Limnol. 184, 23–34. https://doi.org/10.1127/1863-9135/2014/0518 (2014).
    Article  Google Scholar 

    49.
    Borics, G., Abonyi, A., Várbíró, G., Padisák, J. &T-Krasznai, E. Lake stratification in the Carpathian basin and its interesting biological consequences. Inland Waters 5, 173–186, https://doi.org/10.5268/IW-5.2.702 (2015).

    50.
    Utermöhl, H. Zur Vervollkommnung der quantitative Phytolankton-Methodik. Mitt. Int. Verein. Limnol. 9, 1–38. https://doi.org/10.1080/05384680.1958.11904091 (1958).
    Article  Google Scholar 

    51.
    Török, P. et al. Functional diversity supports the biomass–Diversity humped-back relationship in phytoplankton assemblages. Funct. Ecol. 30, 1593–1602. https://doi.org/10.1111/1365-2435.12631 (2016).
    Article  Google Scholar 

    52.
    Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424. https://doi.org/10.1046/j.1529-8817.1999.3520403.x (1999).
    Article  Google Scholar 

    53.
    MSZ ISO 10260:1993. Water Quality. Measurement of Biochemical Parameters. Spectrometric Determination of the Chlorophyll-a Concentration.

    54.
    MSZ EN ISO 6878:2004. Water Quality. Determination of Phosphorus. Ammonium Molybdate Spectrometric Method.

    55.
    ISO 11905-1:1997. Water Quality. Determination of Nitrogen. Part 1: Method Using Oxidative Digestion with Peroxodisulfate.

    56.
    MSZ ISO 6060:1991.Water Quality. Determination of the Chemical Oxygen Demand.

    57.
    Botta-Dukát, Z. Cautionary note on calculating standardized effect size (SES) in randomization test. Commun. Ecol. 19, 77–83, https://doi.org/10.1556/168.2018.19.1.8 (2018).

    58.
    Botta-Dukát, Z. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J. Veg. Sci. 16, 533–540. https://doi.org/10.1111/j.1654-1103.2005.tb02393.x (2005).
    Article  Google Scholar 

    59.
    Legendre, P. & Legendre, L.F. Numerical Ecology Vol. 24. (Elsevier, 2012).

    60.
    Götzenberger, L. et al. Which randomizations detect convergence and divergence in trait‐based community assembly? A test of commonly used null models. J. Veg. Sci. 27, https://doi.org/10.1111/jvs.12452, 1275–1287.

    61.
    Botta-Dukát, Z. & Czúcz, B. Testing the ability of functional diversity indices to detect trait convergence and divergence using individual-based simulation. Methods Ecol. Evol. 7, 114–126. https://doi.org/10.1111/2041-210X.12450 (2016).
    Article  Google Scholar 

    62.
    Garnier E. et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85, e2630–2637, https://doi.org/10.1890/03-0799.

    63.
    Dray, S. & Dufour, A.B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20, https://doi.org/10.18637/jss.v022.i04.

    64.
    Oksanen J. et al. Package ‘vegan’. Community Ecology Package, Version, 2(9) (2013).

    65.
    Team R. Core (2017) R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).
    Google Scholar  More

  • in

    DISPERSE, a trait database to assess the dispersal potential of European aquatic macroinvertebrates

    1.
    Bohonak, A. J. & Jenkins, D. G. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol. Lett. 6, 783–796 (2003).
    Article  Google Scholar 
    2.
    Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M. Dispersal Ecology and Evolution (Oxford Univ. Press, 2012).

    3.
    Heino, J. et al. Metacommunity organisation, spatial extent and dispersal in aquatic systems: Patterns, processes and prospects. Freshw. Biol. 60, 845–869 (2015).
    Article  Google Scholar 

    4.
    Barton, P. S. et al. Guidelines for using movement science to inform biodiversity policy. Environ. Manage. 56, 791–801 (2015).
    ADS  Article  Google Scholar 

    5.
    Heino, J. et al. Integrating dispersal proxies in ecological and environmental research in the freshwater realm. Environ. Rev. 25, 334–349 (2017).
    Article  Google Scholar 

    6.
    Rundle, S. D., Bilton, D. T. & Foggo, A. in Body Size: The Structure and Function of Aquatic Ecosystems (eds. Hildrew, A. G., Raffaelli, D. G. & Edmonds-Brown, R.) 186–209 (Cambridge Univ. Press, 2007).

    7.
    Macneale, K. H., Peckarsky, B. L. & Likens, G. E. Stable isotopes identify dispersal patterns of stonefly populations living along stream corridors. Freshw. Biol. 50, 1117–1130 (2005).
    Article  Google Scholar 

    8.
    Troast, D., Suhling, F., Jinguji, H., Sahlén, G. & Ware, J. A global population genetic study of Pantala flavescens. PLoS One 11, e0148949 (2016).
    Article  CAS  Google Scholar 

    9.
    French, S. K. & McCauley, S. J. The movement responses of three libellulid dragonfly species to open and closed landscape cover. Insect Conserv. Divers. 12, 437–447 (2019).
    Article  Google Scholar 

    10.
    Arribas, P. et al. Dispersal ability rather than ecological tolerance drives differences in range size between lentic and lotic water beetles (Coleoptera: Hydrophilidae). J. Biogeogr. 39, 984–994 (2012).
    Article  Google Scholar 

    11.
    Lancaster, J. & Downes, B. J. Dispersal traits may reflect dispersal distances, but dispersers may not connect populations demographically. Oecologia 184, 171–182 (2017).
    ADS  Article  Google Scholar 

    12.
    Lancaster, J. & Downes, B. J. Aquatic Entomology (Oxford Univ. Press, 2013).

    13.
    Stevens, V. M. et al. Dispersal syndromes and the use of life-histories to predict dispersal. Evol. Appl. 6, 630–642 (2013).
    Article  Google Scholar 

    14.
    Outomuro, D. & Johansson, F. Wing morphology and migration status, but not body size, habitat or Rapoport’s rule predict range size in North-American dragonflies (Odonata: Libellulidae). Ecography 42, 309–320 (2019).
    Article  Google Scholar 

    15.
    Tonkin, J. D. et al. The role of dispersal in river network metacommunities: patterns, processes, and pathways. Freshw. Biol. 63, 141–163 (2018).
    Article  Google Scholar 

    16.
    Brown, B. L. & Swan, C. M. Dendritic network structure constrains metacommunity properties in riverine ecosystems. J. Anim. Ecol. 79, 571–580 (2010).
    CAS  Article  Google Scholar 

    17.
    Wikelski, M. et al. Simple rules guide dragonfly migration. Biol. Lett. 2, 325–329 (2006).
    Article  Google Scholar 

    18.
    Schmidt-Kloiber, A. & Hering, D. An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecol. Indic. 53, 271–282, www.freshwaterecology.info (2015).
    Article  Google Scholar 

    19.
    Serra, S. R. Q., Cobo, F., Graça, M. A. S., Dolédec, S. & Feio, M. J. Synthesising the trait information of European Chironomidae (Insecta: Diptera): towards a new database. Ecol. Indic. 61, 282–292 (2016).
    Article  Google Scholar 

    20.
    Tachet, H., Richoux, P., Bournaud, M. & Usseglio-Polatera, P. Invertébrés d’Eau Douce: Systématique, Biologie, Écologie (CNRS Éditions, 2010).

    21.
    Vieira, N. K. M. et al. A Database of Lotic Invertebrate Traits for North America (U.S. Geological Survey Data Series 187, 2006).

    22.
    Chevenet, F., Dolédec, S. & Chessel, D. A fuzzy coding approach for the analysis of long-term ecological data. Freshw. Biol. 31, 295–309 (1994).
    Article  Google Scholar 

    23.
    Schmera, D., Podani, J., Heino, J., Erös, T. & Poff, N. L. R. A proposed unified terminology of species traits in stream ecology. Freshw. Sci. 34, 823–830 (2015).
    Article  Google Scholar 

    24.
    Lancaster, J., Downes, B. J. & Arnold, A. Lasting effects of maternal behaviour on the distribution of a dispersive stream insect. J. Anim. Ecol. 80, 1061–1069 (2011).
    Article  Google Scholar 

    25.
    Jenkins, D. G. et al. Does size matter for dispersal distance? Glob. Ecol. Biogeogr. 16, 415–425 (2007).
    Article  Google Scholar 

    26.
    Harrison, R. G. Dispersal polymorphisms in insects. Annu. Rev. Ecol. Syst. 11, 95–118 (1980).
    Article  Google Scholar 

    27.
    Graham, E. S., Storey, R. & Smith, B. Dispersal distances of aquatic insects: upstream crawling by benthic EPT larvae and flight of adult Trichoptera along valley floors. New Zeal. J. Mar. Freshw. Res. 51, 146–164 (2017).
    Article  Google Scholar 

    28.
    Hoffsten, P. O. Site-occupancy in relation to flight-morphology in caddisflies. Freshw. Biol. 49, 810–817 (2004).
    Article  Google Scholar 

    29.
    Bonada, N. & Dolédec, S. Does the Tachet trait database report voltinism variability of aquatic insects between Mediterranean and Scandinavian regions? Aquat. Sci. 80, 1–11 (2018).
    Article  Google Scholar 

    30.
    Sarremejane, R. et al. DISPERSE, a trait database to assess the dispersal potential of aquatic macroinvertebrates. figshare https://doi.org/10.6084/m9.figshare.c.5000633 (2020).

    31.
    Lévêque, C., Balian, E. V. & Martens, K. An assessment of animal species diversity in continental waters. Hydrobiologia 542, 39–67 (2005).
    Article  Google Scholar 

    32.
    Green, A. J. & Figuerola, J. Recent advances in the study of long-distance dispersal of aquatic invertebrates via birds. Divers. Distrib. 11, 149–156 (2005).
    Article  Google Scholar 

    33.
    Maasri, A. A global and unified trait database for aquatic macroinvertebrates: the missing piece in a global approach. Front. Environ. Sci. 7, 1–3 (2019).
    Article  Google Scholar 

    34.
    Cañedo-Argüelles, M. et al. Dispersal strength determines meta-community structure in a dendritic riverine network. J. Biogeogr. 42, 778–790 (2015).
    Article  Google Scholar 

    35.
    Datry, T. et al. Metacommunity patterns across three Neotropical catchments with varying environmental harshness. Freshw. Biol. 61, 277–292 (2016).
    Article  Google Scholar 

    36.
    Swan, C. M. & Brown, B. L. Metacommunity theory meets restoration: isolation may mediate how ecological communities respond to stream restoration. Ecol. Appl. 27, 2209–2219 (2017).
    Article  Google Scholar 

    37.
    Sarremejane, R., Mykrä, H., Bonada, N., Aroviita, J. & Muotka, T. Habitat connectivity and dispersal ability drive the assembly mechanisms of macroinvertebrate communities in river networks. Freshw. Biol. 62, 1073–1082 (2017).
    Article  Google Scholar 

    38.
    Jacobson, B. & Peres-Neto, P. R. Quantifying and disentangling dispersal in metacommunities: How close have we come? How far is there to go? Landsc. Ecol. 25, 495–507 (2010).
    Article  Google Scholar 

    39.
    Sarremejane, R. et al. Do metacommunities vary through time? Intermittent rivers as model systems. J. Biogeogr. 44, 2752–2763 (2017).
    Article  Google Scholar 

    40.
    Datry, T., Moya, N., Zubieta, J. & Oberdorff, T. Determinants of local and regional communities in intermittent and perennial headwaters of the Bolivian Amazon. Freshw. Biol. 61, 1335–1349 (2016).
    Article  Google Scholar 

    41.
    Cid, N. et al. A metacommunity approach to improve biological assessments in highly dynamic freshwater ecosystems. Bioscience 70, 427–438 (2020).
    Article  Google Scholar 

    42.
    Datry, T., Bonada, N. & Heino, J. Towards understanding the organisation of metacommunities in highly dynamic ecological systems. Oikos 125, 149–159 (2016).
    Article  Google Scholar 

    43.
    Hermoso, V., Cattarino, L., Kennard, M. J., Watts, M. & Linke, S. Catchment zoning for freshwater conservation: refining plans to enhance action on the ground. J. Appl. Ecol. 52, 940–949 (2015).
    Article  Google Scholar 

    44.
    Thuiller, W. et al. A road map for integrating eco-evolutionary processes into biodiversity models. Ecol. Lett. 16, 94–105 (2013).
    Article  Google Scholar 

    45.
    Mendes, P., Velazco, S. J. E., de Andrade, A. F. A. & De Marco, P. Dealing with overprediction in species distribution models: How adding distance constraints can improve model accuracy. Ecol. Model. 431, 109180 (2020).
    Article  Google Scholar 

    46.
    Willis, S. G. et al. Integrating climate change vulnerability assessments from species distribution models and trait-based approaches. Biol. Conserv. 190, 167–178 (2015).
    Article  Google Scholar 

    47.
    Cooper, J. C. & Soberón, J. Creating individual accessible area hypotheses improves stacked species distribution model performance. Glob. Ecol. Biogeogr. 27, 156–165 (2018).
    Article  Google Scholar 

    48.
    Markovic, D. et al. Europe’s freshwater biodiversity under climate change: distribution shifts and conservation needs. Divers. Distrib. 20, 1097–1107 (2014).
    Article  Google Scholar 

    49.
    Bush, A. & Hoskins, A. J. Does dispersal capacity matter for freshwater biodiversity under climate change? Freshw. Biol. 62, 382–396 (2017).
    Article  Google Scholar 

    50.
    Bohonak, A. J. Dispersal, gene flow, and population structure. Q. Rev. Biol. 74, 21–45 (1999).
    CAS  Article  Google Scholar 

    51.
    Dijkstra, K.-D. B., Monaghan, M. T. & Pauls, S. U. Freshwater biodiversity and aquatic insect diversification. Annu. Rev. Entomol. 59, 143–163 (2014).
    CAS  Article  Google Scholar 

    52.
    Múrria, C. et al. Local environment rather than past climate determines community composition of mountain stream macroinvertebrates across Europe. Mol. Ecol. 26, 6085–6099 (2017).
    Article  CAS  Google Scholar 

    53.
    Statzner, B. & Bêche, L. A. Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshw. Biol. 55, 80–119 (2010).
    Article  Google Scholar 

    54.
    Strayer, D. L. & Dudgeon, D. Freshwater biodiversity conservation: recent progress and future challenges. J. North Am. Benthol. Soc. 29, 344–358 (2010).
    Article  Google Scholar 

    55.
    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).
    Article  Google Scholar 

    56.
    R Core Team. R: A language and environment for statistical computing. https://www.r-project.org/ (2020).

    57.
    Dray, S. & Dufour, A.-B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 1, 1–20 (2007).
    Google Scholar  More