1.
Silander, J. A. Temperate Forests. In: Encyclopedia of Biodiversity (Second Edition) (ed. Simon A Levin), 112–227 (Academic Press, 2001).
2.
Glasser, N. F., Harrison, S., Winchester, V. & Aniya, M. Late pleistocene and holocene palaeoclimate and glacier fluctuations in patagonia. Glob. Planet. Change 43, 79–101 (2004).
ADS Article Google Scholar
3.
Markgraf, V. Paleoenvironments and paleoclimates in Tierra del Fuego and southernmost Patagonia, South America. Palaeogeogr. Palaeoclimatol. Palaeoecol. 102, 53–67 (1993).
Article Google Scholar
4.
Markgraf, V., McGlone, M. & Hope, G. Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems—a southern perspective. Trends Ecol. Evol. 10(4), 143–147 (1995).
CAS Article Google Scholar
5.
Amoroso, M. M., Rodríguez-Catón, M., Villalba, R. & Daniels, L. D. Forest Decline in Northern Patagonia: The Role of Climatic Variability. In: Dendroecology, Ecological Studies (Analysis and Synthesis): volume 231 (ed. Amoroso, M. M.; Daniels, L. D.; Baker, P. J.; Camarero, J. J.), 325–342 (Springer, 2007).
6.
Rodríguez-Catón, M., Villalba, R., Morales, M. & Srur, A. Influence of droughts on Nothofagus pumilio forest decline across northern Patagonia, Argentina. Ecosphere 7(7), e01390. https://doi.org/10.1002/ecs2.1390 (2016).
Article Google Scholar
7.
Barros, V. R. et al. Climate change in Argentina: trends, projections, impacts and adaptation. Wiley Interdiscip. Rev. Clim. Change 6, 151–169 (2005).
Article Google Scholar
8.
Rusticucci, M. & Barrucand, M. Observed trends and changes in temperature extremes over Argentina. J. Clim. 17, 4099–4107 (2004).
ADS Article Google Scholar
9.
Mundo, I. A. et al. Fire history in southern Patagonia: human and climate influences on fire activity in Nothofagus pumilio forests. Ecosphere 8(9), e01932. https://doi.org/10.1002/ecs2.1932 (2017).
Article Google Scholar
10.
Mohr-Bell, F. D. Superficies afectadas por incendios en la región bosque Andino Patagónico (BAP) durante los veranos de 2013–2014 y 2014–2015. Patagon. For. 21, 34–41 (2015).
Google Scholar
11.
Veblen, T. T., Hill, R. S. & Read, J. Ecology of Southern Chilean and Argentinean Nothofagus Forests. In: The Ecology and Biogeography of Nothofagus Forests, pp. 293–353 (Yale University, USA, 1996).
12.
Donoso Zegers, C. Las Especies Arbóreas de los Bosques Templados de Chile y Argentina: Autoecología. 678p (María Cuneo Ediciones, 2006)
13.
Soliani, C. & Aparicio, A. G. Evidence of genetic determination in the growth habit of Nothofagus pumilio (Poepp. & Endl.) Krasser at the extremes of an elevation gradient. Scand. J. For. Res. 35 (5–6), 211–220 (2020).
14.
Rusch, V. E. Altitudinal variation in the phenology of Nothofagus pumilio in Argentina. Rev. Chil. Hist. Nat. 66, 131–141 (1993).
Google Scholar
15.
Fajardo, A. & Piper, F. I. Intraspecific trait variation and covariation in a widespread tree species (Nothofagus pumilio) in southern Chile. N. Phytol. 189, 259–271 (2011).
Article Google Scholar
16.
Burns, S. L., Cellini, J. M., Lencinas, M. V., Martínez Pastur, G. J. & Rivera, S. M. Description of possible natural hybrids between Nothofagus pumilio and N. antarctica at South Patagonia (Argentina). Bosque 31(1), 9–16 (2010).
Article Google Scholar
17.
Quiroga, P., Vidal Russel, R. & Premoli, A. C. Evidencia morfológica e isoenzimática de hibridación natural entre Nothofagus antarctica y N. pumilio en el noroeste patagónico. Bosque 26(2), 25–32 (2005).
Article Google Scholar
18.
Acosta, M. C. & Premoli, A. C. Evidence of chloroplast capture in South American Nothofagus (subgenus Nothofagus, Nothofagaceae). Mol. Phylogenet. Evol. 54, 235–242 (2010).
Article CAS Google Scholar
19.
Soliani, C. et al. Halfway encounters: meeting points of colonization routes among the southern beeches Nothofagus pumilio and N. antarctica. Mol. Phylogenet. Evol. 85, 197–207 (2015).
Article Google Scholar
20.
Pastorino, M. J. & Gallo, L. A. Preliminary operational genetic management units of a highly fragmented forest tree species of southern South America. For. Ecol. Manag. 257, 2350–2358 (2009).
Article Google Scholar
21.
Pastorino, M. J., Aparicio, A. & Azpilicueta, M. M. Regiones de Procedencia del Ciprés de la Cordillera y Bases Conceptuales para el Manejo de sus Recursos Genéticos en Argentina.108 p (Ediciones INTA, 2015).
22.
Azpilicueta, M. M. et al. Management of Nothofagus genetic resources: definition of genetic zones based on a combination of nuclear and chloroplast marker data. For. Ecol. Manag. 302, 414–424 (2013).
Article Google Scholar
23.
Azpilicueta et al. Zonas Genéticas de Raulí y Roble Pellín en Argentina: Herramientas para la Conservación y el Manejo de la Diversidad Genética (ed. M.M. Azpilicueta, P. Marchelli) 50 p (Ediciones INTA, 2016).
24.
OTBN. Ordenamiento Territorial de Bosque Nativo/Mapa Legal CREA. https://www.crea.org.ar/mapalegal/otbn
25.
Bucci, G. & Vendramin, G. G. Delineation of genetic zones in the European Norway spruce natural range: preliminary evidence. Mol. Ecol. 9, 923–934 (2000).
CAS Article Google Scholar
26.
McKay, J. K., Christian, C. E., Harrison, S. & Rice, K. J. “How Local Is Local?”—a review of practical and conceptual issues in the genetics of restoration. Restor. Ecol. 13, 432–440 (2005).
Article Google Scholar
27.
Williams, M. I. & Dumroese, R. K. Preparing for climate change: forestry and assisted migration. J. For. 111(4), 287–297 (2013).
Google Scholar
28.
Geburek, T. Isozymes and DNA markers in gene conservation of forest trees. Biodivers. Conserv. 6, 1639–1654 (1997).
Article Google Scholar
29.
Ballesteros-Mejia, L., Lima, J. S. & Collevatti, R. G. Spatially-explicit analyses reveal the distribution of genetic diversity and plant conservation status in Cerrado biome. Biodivers. Conserv. 29, 1537–1554 (2018).
Article Google Scholar
30.
Frankel, O. H., Brown, A. H. D. & Bordon, J. The Genetic Diversity of Wild Plants. In: The Conservation of Plant Biodiversity. (Cambridge University Press, Cambridge, 1995).
31.
Petit, R. J., El Mousadik, A. & Pons, O. Identifying populations for conservation on the basis of genetic markers. Conserv. Biol. 12, 844–855 (1998).
Article Google Scholar
32.
van Zonneveld, M. et al. Mapping genetic diversity of cherimoya (Annona cherimola Mill.): application of spatial analysis for conservation and use of plant genetic resources. PLoS ONE 7, e29845. https://doi.org/10.1371/journal.pone.0029845 (2010).
CAS Article Google Scholar
33.
Soliani, C., Gallo, L. & Marchelli, P. Phylogeography of two hybridizing southern beeches (Nothofagus spp.) with different adaptive abilities. Tree Genet. Genomes 8, 659–673 (2012).
Article Google Scholar
34.
Laikre, L. et al. Neglect of genetic diversity in implementation of the convention on biological diversity. Conserv. Biol. 24(1), 86–88 (2009).
Article Google Scholar
35.
Fady, B. et al. Forests and global change: what can genetics contribute to the major forest management and policy challenges of the twenty-first century?. Reg. Environ. Change 16, 927–939 (2016).
Article Google Scholar
36.
Graudal, L. et al. Global to local genetic diversity indicators of evolutionary potential in tree species within and outside forests. For. Ecol. Manag. 333, 35–51 (2014).
Article Google Scholar
37.
Sgrò, C. M., Lowe, A. J. & Hoffmann, A. A. Building evolutionary resilience for conserving biodiversity under climate change. Evol. Appl. 4, 326–337 (2011).
Article Google Scholar
38.
Perez, et al. Assessing population structure in the face of isolation by distance: Are we neglecting the problem?. Divers. Distrib. 24(12), 1883–1889 (2018).
Article Google Scholar
39.
Mathiasen, P. & Premoli, A. C. Out in the cold: genetic variation of Nothofagus pumilio (Nothofagaceae) provides evidence for latitudinally distinct evolutionary histories in austral South America. Mol. Ecol. 19, 371–385 (2010).
CAS Article Google Scholar
40.
Jump, A. & Peñuelas, J. Extensive spatial genetic structure revealed by AFLP but not SSR molecular markers in the wind-pollinated tree, Fagus sylvatica. Mol. Ecol. 16, 925–936 (2007).
CAS Article Google Scholar
41.
Oddou-Muratorio, S. et al. Comparison of direct and indirect genetic methods for estimating seed and pollen dispersal in Fagus sylvatica and Fagus crenata. For. Ecol. Manag. 259, 2151–2159 (2010).
Article Google Scholar
42.
Marchelli, P. & Gallo, L. Multiple ice-age refugia in a southern beech of South America as evidenced by chloroplast DNA markers. Conserv. Genet. 7, 591–603 (2006).
Article CAS Google Scholar
43.
Pastorino, M. J. & Gallo, L. A. Quaternary evolutionary history of Austrocedrus chilensis, a cypress native to the Andean-Patagonian forest. J. Biogeogr. 29, 1167–1178 (2002).
Article Google Scholar
44.
Villagrán, C. Un modelo de la historia de la vegetación de la cordillera de la costa de Chile central-sur: la hipótesis glacial de Darwin. Rev. Chil. Hist. Nat. 74, 793–803 (2001).
Article Google Scholar
45.
Cosacov, A., Sersic, A., Sosa, V., Johnson, L. & Cocucci, A. Multiple periglacial refugia in the Patagonian steppe and post-glacial colonization of the Andes: the phylogeography of Calceolaria polyrhiza. J. Biogeogr. 37, 1463–1477 (2010).
Google Scholar
46.
Breitman, M. F., Avila, L. J., Sites, J. W. & Morando, M. Lizards from the end of the world: phylogenetic relationships of the Liolaemus lineomaculatus section (Squamata: Iguania: Liolaemini). Mol. Phylogenet. Evol. 59, 364–376 (2011).
Article Google Scholar
47.
Flint, R. F. & Fidalgo, F. Glacial drift in the eastern argentine Andes between latitude 41° 10’ S. and latitude 43° 10’ S. GSA Bull. 80, 1043–1052 (1969).
Article Google Scholar
48.
Holderegger, R. & Thiel-Egenter, C. A discussion of different types of glacial refugia used in mountain biogeography and phylogeography. J. Biogeogr. 36, 476–480 (2009).
Article Google Scholar
49.
Glasser, N. F., Jansson, K., Harrison, S. & Kleman, J. The glacial geomorphology and Pleistocene history of South America between 38°S and 56°S. Quaternary Sci. Rev. 27(3), 365–390 (2008).
ADS Article Google Scholar
50.
Premoli, A. C., Mathiasen, P. & Kitzberger, T. Southern-most Nothofagus trees enduring ice ages: genetic evidence and ecological niche retrodiction reveal high latitude (54°S) glacial refugia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 298, 247–256 (2010).
Article Google Scholar
51.
Derory, J. et al. What can nuclear microsatellites tell us about maritime pine genetic resources conservation and provenance certification strategies?. Ann. For. Sci. 59, 699–708 (2002).
Article Google Scholar
52.
Honjo, M. et al. Management units of the endangered herb Primula sieboldii based on microsatellite variation among and within populations throughout Japan. Conserv. Genet. 10, 257–267 (2009).
CAS Article Google Scholar
53.
Väli, U., Einarsson, A., Waits, L. & Ellegren, H. To what extent do microsatellite markers reflect genome-wide genetic diversity in natural populations?. Mol Ecol. 17(17), 3808–3817 (2018).
Article Google Scholar
54.
Reed, D. H. & Frankham, R. How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evol. 55(6), 1095–1103 (2001).
CAS Article Google Scholar
55.
Crandall, K. A., Bininda-Emonds, O. R. P., Mace, G. M. & Wayne, R. K. Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15, 290–295 (2000).
CAS Article Google Scholar
56.
Widmer, A. & Lexer, C. Glacial refugia: sanctuaries for allelic richness, but not for gene diversity. Trends Ecol. Evol. 16, 267–269 (2001).
CAS Article Google Scholar
57.
Reed, D. H. & Frankham, R. Correlation between fitness and genetic diversity. Conserv. Biol. 17, 230–237 (2003).
Article Google Scholar
58.
Jump, A. S., Marchant, R. & Peñuelas, J. Environmental change and the option value of genetic diversity. Trends Plant Sci. 14, 51–58 (2009).
CAS Article Google Scholar
59.
Prober, S. et al. Climate-adjusted provenancing: a strategy for climate-resilient ecological restoration. Front. Ecol. Evol. 3, 65 (2015).
Article Google Scholar
60.
Thomas, E. et al. Genetic considerations in ecosystem restoration using native tree species. For. Ecol. Manag. 333, 66–75 (2014).
Article Google Scholar
61.
Marchelli, P., Thomas, E., Azpilicueta, M. M., van Zonneveld, M. & Gallo, L. Integrating genetics and suitability modelling to bolster climate change adaptation planning in Patagonian Nothofagus forests. Tree Genet. Genomes 13, 119 (2017).
Article Google Scholar
62.
Thomas, E. et al. Genetic diversity of Enterolobium cyclocarpum in Colombian seasonally dry tropical forest: implications for conservation and restoration. Biodivers. Conserv. 26(4), 825–842 (2016).
Article Google Scholar
63.
Jump, A. S. & Peñuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020 (2005).
Article Google Scholar
64.
Dumolin, S., Demesure, B. & Petit, R. J. Inheritance of chloroplast and mitochondrial genomes in pedunculated oak investigated with an efficient PCR method. Theor. Appl. Genet. 91, 1253–1256 (1995).
CAS Article Google Scholar
65.
Soliani, C., Sebastiani, F., Marchelli, P., Gallo, L. & Giovanni, G. Development of novel genomic microsatellite markers in the southern beech Nothofagus pumilio (Poepp. et Endl.) Krasser. Mol. Ecol. Resour. 10, 404–408 (2010).
Article Google Scholar
66.
Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 18, 233–234 (2000).
CAS Article Google Scholar
67.
Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. J. Bioinform. 28, 2537–2539 (2012).
CAS Article Google Scholar
68.
Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).
CAS PubMed PubMed Central Google Scholar
69.
Balzarini, M. & Di Rienzo, J. Info-Gen: Software para Análisis Estadístico de Datos Genéticos. Facultad de Ciencia Agropecuarias. Universidad Nacional de Córdoba. Argentina. https://www.info-gen.com.ar/. (2003).
70.
Oosterhout, C. V., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
Article CAS Google Scholar
71.
Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2006).
Article CAS Google Scholar
72.
Chybicki, I. J. & Burczyk, J. Simultaneous estimation of null alleles and inbreeding coefficients. J. Heredity 100, 106–113 (2009).
CAS Article Google Scholar
73.
Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).
CAS PubMed PubMed Central Google Scholar
74.
Wright, S. The genetical structure of populations. Ann. Eugen. 15, 323–354 (1949).
MathSciNet Article Google Scholar
75.
Hedrick, P. W. A standardized genetic differentiation measure. Evolution 59, 1633–1638 (2005).
CAS Article Google Scholar
76.
Smouse, P. E. & Peakall, R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. J. Heredity 82, 561–573 (1999).
Article Google Scholar
77.
Corander, J., Waldmann, P. & Sillanpää, M. J. Bayesian analysis of genetic differentiation between populations. Genetics 163, 367–374 (2003).
CAS PubMed PubMed Central Google Scholar
78.
Pastorino, M. J., Marchelli, P., Milleron, M., Soliani, C. & Gallo, L. A. The effect of different glaciation patterns over the current genetic structure of the southern beech Nothofagus antarctica. Genetica 136, 79–88 (2009).
CAS Article Google Scholar
79.
Pritchard, J., Stephens, M. & Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. https://www.genetics.org/content/155/2/945.long. (2000).
80.
Thomas, E. et al. Present spatial diversity patterns of Theobroma cacao L. in the neotropics reflect genetic differentiation in pleistocene refugia followed by human-influenced dispersal. PLoS ONE 7, e47676. https://doi.org/10.1371/journal.pone.0047676 (2012).
ADS CAS Article PubMed PubMed Central Google Scholar
81.
Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
Article Google Scholar
82.
El Mousadik, A. & Petit, R. J. High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor. Appl. Genet. 92, 832–839 (1996).
Article Google Scholar
83.
Goudet, J. FSTAT: a Program to Estimate and Test Gene Diversities and Fixation Indices (version 2.9.3.2) https://www.unil.ch/izea/softwares/fstat.html. (2001). More