More stories

  • in

    Increased mosquito abundance and species richness in Connecticut, United States 2001–2019

    Summary statistics
    To date, The Connecticut Agricultural Experiment Station (CAES) has collected and tested 4,602,240 female mosquitoes comprised of 47 species in 8 genera. Approximately 98% of these collections were obtained from 92 trapping sites in 73 towns throughout the state, while the remainder of collections were from an additional 365 supplemental sites sampled between 1996 and 2007. Eighty-eight percent of collections come from CDC Light Traps, CDC Gravid Traps and Biogents BG Sentinel Traps (beginning in 2012). There have been several other collection methods used throughout the years that account for 11.6% of the mosquitoes collected (S. Table 1). Overall, there was considerable variation in mosquito abundance, surveillance effort, species richness/evenness, and the proportion of single species detections across CT (Fig. 1). One clear trend was that surveillance effort was greatest in CT’s human population centers (predominately CT’s southwestern and central counties) where WNV is commonly detected and along the CT-Rhode Island border where EEEV is most commonly detected (Fig. 1A). Another noticeable visual trend was that species evenness tends to be higher in the eastern portion of CT (Fig. 1B).
    Figure 1

    Maps of total mosquito abundance (log10 transformed) (A), total number of trap nights (A), average annual mosquito species richness (B), average annual mosquito species evenness (B), and average annual prevalence of single species detections (C) across 87 mosquito surveillance sites throughout Connecticut, U.S. sampled with ground level CDC CO2-baited light traps from 2001 to 2019. (A) Point sizes represent abundance while colors represent trap-nights; (B) point sizes represent species richness while colors represent species evenness; (C) point sizes represent prevalence of single species detections. (A–C) Solid black lines represent county political boundaries. The figure was created in R V 3.6.3 using the following packages: ggplot2 and maps.

    Full size image

    Objective 1: annual collections of mosquito populations among sites
    Our first objective was to identify spatial and temporal linear and nonlinear trends in mosquito abundance among sites. We also examined coarse-scale correlations between statewide (i.e., annual) and site-wide abundance and weather and land classification variables. All regression results and tables are provided as supporting information in Supporting Information: Regression Tables.
    Mosquito abundance
    Temporal regressions
    After accounting for trapping effort, regression parameters estimating the relationship between site-level mosquito abundance and year of collection were positive using generalized linear mixed effects models (GLMMs) (“Year”—Estimate 0.03, t-value 9.11) and generalized additive mixed effects models (GAMMs) (“Year”—Est. 0.77, t-value 2.7, p = 0.007), suggesting that site-level mosquito abundance has increased in CT since 2001 (Fig. 2A,B): this trend resulted in a predicted 60% increase in annual abundance from 2001 to 2019. While these regressions identified possible increasing trends in site-level abundance, they provided an overall poor-fit to the data: AIC scores from fixed effect GLMMs were higher than random effects-only models (ΔAIC 415.1). This poor model fit may be in part driven by directly modeling Year as a fixed continuous effect; Year as a random categorical effect may better capture variation in mosquito collections30. Despite large differences in AIC scores between fixed and random effects-only models, we detected a pattern of increasing intercept values when examining “Year” as a random effect (S. Fig. 1), providing further evidence of an increasing temporal trend in site-level mosquito abundance.
    Figure 2

    Average annual mosquito abundance (A), number of trap nights (B), mosquito species richness (C), mosquito species evenness (D), the annual correlation between mosquito species richness and evenness (E), and the prevalence of single mosquito species detections (F) across 87 mosquito surveillance sites throughout Connecticut, U.S. sampled with ground level CDC CO2-baited light traps from 2001 – 2019. For (A)–(D) and (F), points represent the average across all sites, solid lines represent the standard error of the average, and dashed lines are added to aid interpreting each plot as a time series. For (E), points represent the average across all sites while solid lines represent the 95% CI of the correlation point estimate. The figure was created in R V 3.6.3 using base functions.

    Full size image

    Spatial regressions
    After accounting for trapping effort, regression parameters estimating the relationship between site-level mosquito abundance and latitude/longitude were positive using a GLMM (“Latitude (centered)”—Est. 0.49, t-value 5.48; Longitude (centered)”—Est. 0.20, t-value 4.78), indicating that mosquito abundance tends to increase on a south to north and west to east gradient (which reflects the overall transition in land cover from developed to forested in CT). The best fitting fixed effect GAMM included Longitude by Latitude smoothing terms, which also predicted positive relationships between abundance and site coordinates (Smoothing term 1: Est. 0.24, p = 0.06; Smoothing term 2: Est. 0.05, p = 0.67). GAMM predictions of site-level mosquito abundance were considerably more complex than GLMM predictions, yet still supported the overall trend of increasing abundance from south to north and west to east (S. Fig. 2). Overall, the fixed effect GLMMs provided an extremely poor fit to the data compared to random effects-only GLMMs (Latitude—ΔAIC 1092.7; Longitude—ΔAIC 1099.8). These poor model fits may be in part driven by directly modeling coordinate (i.e., site) as a fixed continuous effect: GAMM predictions that account for nonlinear relationships between abundance and spatial location may provide a more appropriate fit to the data while site as a categorical random effect in the GLMMs may better capture variation in mosquito collections30.
    Weather correlations
    When comparing statewide annual mosquito abundance to weather variables, we found no correlations between summer temperatures, spring temperatures or precipitation. This was despite detecting a slight annual increase in temperatures across all three seasons examined (average daily temperature GLMM Est., Season/Summer: 0.05 °C, Prior Spring: 0.02 °C, Prior Winter: 0.07 °C) and a slight annual decline in within season and prior spring precipitation (total precipitation GLMM Est., Season/Summer: − 4.23 mm, Prior Spring: − 3.38 mm; Prior Winter: 2.22 mm) in CT since 2001. However, we did find a positive correlation between total summer precipitation and annual statewide mosquito abundance (r = 0.50, CI 0.07–0.78).
    Land cover correlations
    When comparing total site-wide abundance to land cover classifications, we found positive correlations between percent land cover categorized as barren (r = 0.22, CI 0.01–0.41), forested wetland (r = 0.34, 0.14–0.52), and non-forested wetland (r = 0.21, 0.004–0.41). We also found a negative association in total site-level abundance and percent land cover categorized as grass (r = − 0.35, − 0.52 to − 0.15).
    Species richness
    Temporal regressions
    After accounting for trapping effort, regression parameters estimating the relationship between site-level species richness and year of collection were positive using both GLMMs (“Year (centered)”—Est. 0.10, t-value 9.46) and GAMMs (“Year”—Est. 1.78, t-value 1.93, p = 0.05) (Fig. 2C): this trend resulted in a predicted 10% increase in site-level species richness from 2001 to 2019. Overall, fixed effects GLMMs of species richness provided an overall poor fit to the data when compared to a random effects-only model (ΔAIC 319.37). However, we did observe a pattern of increasing intercept values when examining “Year” as a random effect (S. Fig. 3), further indicating that mosquito species richness has annually increased across sites in CT since 2001.
    Spatial regressions
    Similar to models of site-level mosquito abundance, GLMMs of species richness by coordinate predicted positive relationships (Latitude (centered): Est. 0.63, t-value = 2.11; Longitude (centered): Est. 1.26, t-value = 9.34), indicating the species richness tends to increase along a south to north, west to east gradient. The best fitting GAMM included Longitude by Latitude smoothing terms, which also predicted positive relationships between species richness and site coordinate (Smoothing term 1: Est. 1.45, p = 0.0001; Smoothing term 2: Est. 0.70, p = 0.05). The GAMM further predicted a complex relationship of species richness among sites, yet overall predicted richness was lowest in the southwest/central portions of CT (areas of greatest development) and highest along coastal/eastern portions of CT (areas of non-forested and forested wetlands) (S. Fig. 4). The fixed effect GLMMs provided very poor fits to the data compared with random effects-only models (Latitude: ΔAIC 953.01; Longitude: ΔAIC 871.93; see the above results for Site-level collections: spatial regressions for possible reasons for these poor fits).
    Weather correlations
    We found no correlations of note between mosquito species richness and seasonal temperatures and precipitation.
    Land cover correlations
    Positive correlations of note for site-level species richness included: coniferous forest (r = 0.25, 0.04–0.43), deciduous forest (r = 0.56, 0.40–0.69), and forested wetland (r = 0.43, 0.23–0.58). Negative correlations included: barren (r = − 0.30, − 0.48 to − 0.10), developed (r = − 0.66, − 0.77 to − 0.53), grass (r = − 0.24, − 0.43 to − 0.03), and open water (r = − 0.31, − 0.49 to − 0.11).
    Species evenness
    Temporal regressions
    Trends in species evenness were negative using both GLMMs (“Year”—Est. − 0.01, t-value − 7.86) and GAMMs (“Year (centered)”—Est. − 0.04, t-value − 5.58, p = 0.000) (Fig. 2D): this trend resulted in a predicted 12% decrease in site-level species evenness from 2001 to 2019. Similar to fixed effects GLMMs of species richness, fixed effects GLMMs of species evenness were less informative than a random effects-only model (ΔAIC 66.5). Declining intercept values were evident when evaluating “Year” as a random effect (S. Fig. 5), further supporting an overall annual decline in species evenness estimates among sites.
    Spatial regressions
    Similar to spatial models of species richness, GLMMs predicted positive relationships between species evenness and coordinate (Latitude (centered): Est. 0.36, t-value = 7.63; Longitude (centered): Est. 0.18, t-value = 8.54); the best fitting GAMM, which included Longitude by Latitude smoothing terms, also predicted positive relationships (Smoothing term 1: Est. 0.12, p = 0.01; Smoothing term 2: Est. 0.16, p = 0.004). GAMM predictions of site-level species evenness were equally complex to predictions of abundance and richness, and predicted evenness to be highest in southcentral and eastern CT (S. Fig. 6). Fixed effect GLMMs provided very poor fits to the data compared with random effects-only models (Latitude: ΔAIC 502.6; Longitude: ΔAIC 488.4; see the above results for Site-level collections: spatial regressions for possible reasons for these poor fits).
    Weather correlations
    We did find a negative correlation between statewide prior spring minimum temperatures and mosquito species evenness (r = − 0.49, − 0.77 to − 0.04).
    Land cover correlations
    Positive correlations of note for species evenness included: deciduous forest (r = 0.46, 0.28–0.61) and forested wetland (r = 0.22, 0.01–0.41). Negative correlations included: barren (r = − 0.37, − 0.54 to − 0.18), developed (r = − 0.45, − 0.60 to − 0.26), and open water (r = − 0.32, − 0.50 to − 0.12).
    Correlations between abundance, richness, and evenness
    The relationships between abundance, richness, and evenness varied depending on the scale examined. Across all years of data at the site-level, the correlation between abundance and richness was positive (r = 0.53, 0.36–0.67), the correlation between abundance and evenness as negative (r = − 0.35, − 0.52 to − 0.15), and there was no correlation of note between richness and evenness. Across all sites at the year-level, there were no correlations of note between abundance, richness, and evenness. Annual statewide correlations between richness and evenness (RRE) were positive for all years yet there was no noticeable annual trend in these correlations (Fig. 2E). Spatially, the average site-level RRE was 0.15 (± 0.03 SE). Furthermore, the magnitude and direction of RRE tended to increase on a south to north gradient (r = 0.31, 0.11–0.49), yet there was no apparent relationship in RRE along a west to east gradient (S. Fig. 7). We did detect a positive correlation between RRE and average maximum spring temperatures (r = 0.46, 0.01–0.76) as well as a positive correlation between RRE and percent land cover classified as coniferous forest (r = 0.23, 0.02–0.42).
    Single detection events
    Single detection events were defined as the prevalence of single species detections at a site (i.e., number of species with a single pool divided by species richness). Changes in single species detections could indirectly indicate range expansion among species (i.e., the prevalence of single detections decreases with time) and/or areas of unique mosquito diversity (i.e., the prevalence of single detections changes across space).
    Temporal regressions
    We detected no overall pattern of increasing/decreasing annual prevalence of single-species detections among sites (GLMM, “Year”—Est. − 0.13, t-value = − 1.12, p = 0.22; GAMM, “Year”—Est. 0.02, t value = − 0.31, p = 0.75) (Fig. 2F). These models were considered equivalent to a random effects-only GLMM (ΔAIC  More

  • in

    Increasing our ability to predict contemporary evolution

    1.
    Grant, P. R. & Grant, B. R. Unpredictable evolution in a 30-year study of Darwin’s Finches. Science 296, 707–711 (2002).
    ADS  CAS  Article  Google Scholar 
    2.
    Lässig, M., Mustonen, V. & Walczak, A. M. Predicting evolution. Nat. Ecol. Evol. 1, 77 (2017).

    3.
    Blount, Z. D., Lenski, R. E. & Losos, J. B. Contingency and determinism in evolution: replaying life’s tape. Science 362, eaam5979 (2018).

    4.
    Nosil, P. et al. Natural selection and the predictability of evolution in Timema stick insects. Science 359, 765–770 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Exposito-Alonso, M. et al. Natural selection on the Arabidopsis thaliana genome in present and future climates. Nature 573, 126–129 (2019).
    ADS  CAS  Article  Google Scholar 

    6.
    Stern, D. L. Evolution, Development, & the Predictable Genome (Roberts & Co. Publishers, USA, 2011).

    7.
    Reznick, D. N. & Travis, J. Is evolution predictable? Science 359, 738–739 (2018).
    ADS  CAS  Article  Google Scholar 

    8.
    Gould, S. J. The Structure of Evolutionary Theory (Harvard University Press, USA, 2002).

    9.
    Reimchen, T. E. Predator-induced cyclical changes in lateral plate frequencies of Gasterosteus. Behaviour 132, 1079–1094 (1995).
    Article  Google Scholar 

    10.
    Marques, D. A. et al. Experimental evidence for rapid genomic adaptation to a new niche in an adaptive radiation. Nat. Ecol. Evol. 2, 1128–1138 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    11.
    Rego-Costa, A., Débarre, F. & Chevin, L.-M. Chaos and the (un)predictability of evolution in a changing environment. Evolution (N. Y) 72, 375–385 (2018).
    Google Scholar 

    12.
    Zhou, X., Carbonetto, P. & Stephens, M. Polygenic modeling with bayesian sparse linear mixed models. PLoS Genet. 9, e1003264 (2013).

    13.
    Pfennig, D. W. et al. Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol. Evol. 25, 459–467 (2010).
    Article  Google Scholar 

    14.
    Storz, J. F. Causes of molecular convergence and parallelism in protein evolution. Nat. Rev. Genet. 17, 239–250 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Weinreich, D. M., Delaney, N. F., DePristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).
    ADS  CAS  Article  Google Scholar 

    16.
    Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).
    ADS  CAS  Article  Google Scholar 

    17.
    de Vladar, H. P. & Barton, N. H. The contribution of statistical physics to evolutionary biology. Trends Ecol. Evol. 26, 424–432 (2011).
    Article  Google Scholar 

    18.
    Milocco, L. & Salazar-Ciudad, I. Is evolution predictable? Quantitative genetics under complex genotype-phenotype maps. Evolution 74, 230–244 (2020).
    Article  Google Scholar 

    19.
    Hendry, A. P. Eco-evolutionary Dynamics (Princeton University Press, USA, 2017).

    20.
    Blount, Z.D., Borland, C.Z., & Lenski, R.E. Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli Proc. Natl Acad. Sci. 105, 7899–7906 (2008).

    21.
    Tebaldi, C. & Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365, 2053–2075 (2007).
    ADS  MathSciNet  Article  Google Scholar 

    22.
    Rabe-Hesketh, S., Skrondal, A. & Pickles, A. Generalized multilevel structural equation modeling. Psychometrika 69, 167–190 (2004).
    MathSciNet  Article  Google Scholar 

    23.
    Haller, B. C. & Messer, P. W. SLiM 3: forward genetic simulations beyond the Wright-Fisher model. Mol. Biol. Evol 36, 632–637 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Epperson, B. K. Geographical Genetics (MPB-38) (Princeton University Press, USA, 2003).

    25.
    McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (CRC Press, USA, 2020).

    26.
    Siepielski, A. M., DiBattista, J. D. & Carlson, S. M. It’s about time: the temporal dynamics of phenotypic selection in the wild. Ecol. Lett 12, 1261–1276 (2009).
    Article  Google Scholar 

    27.
    Siepielski, A. M. et al. Precipitation drives global variation in natural selection. Science 355, 959–962 (2017).
    ADS  CAS  Article  Google Scholar 

    28.
    Bergland, A. O., Behrman, E. L., O’Brien, K. R., Schmidt, P. S. & Petrov, D. A. Genomic evidence of rapid and stable adaptive oscillations over seasonal time scales in Drosophila. PLoS Genet. 10, e1004775 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    29.
    Olendorf, R. et al. Frequency-dependent survival in natural guppy populations. Nature 441, 633–636 (2006).
    ADS  CAS  Article  Google Scholar 

    30.
    Bolnick, D. I. & Stutz, W. E. Frequency dependence limits divergent evolution by favouring rare immigrants over residents. Nature 546, 285–288 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    31.
    Hori, M. Frequency-dependent natural selection in the handedness of scale-eating Cichlid fish. Science 260, 216–219 (1993).
    ADS  CAS  Article  PubMed  Google Scholar 

    32.
    Nosil, P. et al. Ecology shapes epistasis in a genotype-phenotype-fitness map for stick insect colour. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-01305-y (2020). More

  • in

    Intraspecific host variation plays a key role in virus community assembly

    1.
    Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. & Jetz, W. Homage to Linnaeus: How many parasites? How many hosts? Proc. Natl Acad. Sci. USA 105, 11482–11489 (2008).
    ADS  CAS  Google Scholar 
    2.
    Kreuze, J. F. et al. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology 388, 1–7 (2009).
    CAS  Google Scholar 

    3.
    Prendeville, H. R., Ye, X., Jack Morris, T. & Pilson, D. Virus infections in wild plant populations are both frequent and often unapparent. Am. J. Bot. 99, 1033–1042 (2012).
    Google Scholar 

    4.
    Treena, I. B. et al. Distribution and diversity of phytophthora across Australia distribution and diversity of phytophthora across Australia. Pac. Conserv. Biol. 23, 1–13 (2017).
    Google Scholar 

    5.
    Anderson, R. M. & May, R. M. Infectious Diseases of Humans; Dynamics and Control (1991).

    6.
    Hudson, P. J., Dobson, A. P. & Newborn, D. Prevention of population cycles by parasite removal. Science 282, 2256–2258 (1998).
    ADS  CAS  Google Scholar 

    7.
    Thrall, P. H. et al. Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation. Ecol. Lett. 15, 425–435 (2012).
    Google Scholar 

    8.
    Stevens, R. B. in Plant Pathology, an advanced treatise (eds Horsfall, J. G. & Dimond, A. E.) 357–429 (1960).

    9.
    Susi, H., Barrès, B., Vale, P. F. & Laine, A.-L. Co-infection alters population dynamics of infectious disease. Nat. Commun. 6, 5975 (2015).
    ADS  CAS  Google Scholar 

    10.
    Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).
    ADS  CAS  Google Scholar 

    11.
    Tilman, D. Resource competition and community structure. Monogr. Popul. Biol. 17, 1–296 (1982).

    12.
    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
    Google Scholar 

    13.
    Grime, P. J. Plant Strategies, Vegetation Processes, and Ecosystem Properties (2001).

    14.
    Ovaskainen, O., Rybicki, J. & Abrego, N. What can observational data reveal about metacommunity processes? Ecography 42, 1877–1886 (2019).
    Google Scholar 

    15.
    Seabloom, E. W., Hosseini, P. R., Power, A. G. & Borer, E. T. Diversity and composition of viral communities: coinfection of barley and cereal yellow dwarf viruses in California grasslands. Am. Nat. 173, E79–E98 (2009).
    Google Scholar 

    16.
    Mihaljevic, J. R. Linking metacommunity theory and symbiont evolutionary ecology. Trends Ecol. Evol. 27, 323–329 (2012).
    Google Scholar 

    17.
    Johnson, P. T. J., de Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology. Science 349, 1259504 (2015).
    Google Scholar 

    18.
    Borer, E. T., Laine, A.-L. & Seabloom, E. W. A Multiscale approach to plant disease using the metacommunity concept. Annu. Rev. Phytopathol. 54, 397–418 (2016).
    CAS  Google Scholar 

    19.
    Tollenaere, C., Susi, H. & Laine, A.-L. Evolutionary and epidemiological implications of multiple infection in plants. Trends Plant Sci. 21, 80–90 (2016).
    CAS  Google Scholar 

    20.
    Seabloom, E. W., Borer, E. T., Lacroix, C., Mitchell, C. E. & Power, A. G. Richness and composition of niche-assembled viral pathogen communities. PLoS ONE 8, 1–9 (2013).
    Google Scholar 

    21.
    Borer, T., Seabloom, E. W., Mitchell, C. E. & Power, A. G. Local context drives infection of grasses by vector-borne generalist viruses. Ecol. Lett. 13, 810–818 (2010).
    Google Scholar 

    22.
    Richgels, K. L. D., Hoverman, J. T. & Johnson, P. T. J. Evaluating the role of regional and local processes in structuring a larval trematode metacommunity of Helisoma trivolvis. Ecography 36, 854–863 (2013).
    Google Scholar 

    23.
    Rodelo-Urrego, M. et al. Landscape heterogeneity shapes host-parasite interactions and results in apparent plant-virus codivergence. Mol. Ecol. 22, 2325–2340 (2013).
    CAS  Google Scholar 

    24.
    Bernardo, P. et al. Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale. ISME J. 12, 173–184 (2018).
    Google Scholar 

    25.
    Makiola, A. et al. Land use is a determinant of plant pathogen alpha‐ but not beta‐diversity. Mol. Ecol. 28, 3786–3798 (2019).
    Google Scholar 

    26.
    Cottenie, K. Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett. 8, 1175–1182 (2005).
    Google Scholar 

    27.
    Dobson, A. Population dynamics of pathogens with multiple host species. Am. Nat. 164, 64–78 (2004).
    Google Scholar 

    28.
    Malpica, M. & Sacrista, S. Association and host selectivity in multi-host pathogens. PLoS ONE 1, e41 (2006).
    ADS  Google Scholar 

    29.
    Poulin, R., Blanar, C. A., Thieltges, D. W. & Marcogliese, D. J. Scaling up from epidemiology to biogeography: Local infection patterns predict geographical distribution in fish parasites. J. Biogeogr. 39, 1157–1166 (2012).
    Google Scholar 

    30.
    Nunn, C. L., Altizer, S., Jones, K. E. & Sechrest, W. Comparative tests of parasite species richness in primates. Am. Nat. 162, 687–614 (2003).
    Article  Google Scholar 

    31.
    Ezenwa, V. O., Price, S. A., Altizer, S., Vitone, N. D. & Cook, K. C. Host traits and parasite species richness in even and odd-toed hoofed mammals, Artiodactyla and Perissodactyla. Oikos 115, 526–536 (2006).

    32.
    Gilbert, G. S. & Webb, C. O. Phylogenetic signal in plant pathogen – host range. Proc. Natl Acad. Sci. USA 104, 4979–4983 (2007).
    ADS  CAS  Article  Google Scholar 

    33.
    Lindenfors, P. et al. Parasite species richness in carnivores: effects of host body mass, latitude, geographical range and population density. Glob. Ecol. Biogeogr. 16, 496–509 (2007).
    Article  Google Scholar 

    34.
    Mitchell, C. E., Blumenthal, D., Jarošík, V., Puckett, E. E. & Pyšek, P. Controls on pathogen species richness in plants’ introduced and native ranges: roles of residence time, range size and host traits. Ecol. Lett. 13, 1525–1535 (2010).
    Article  Google Scholar 

    35.
    Endara, M.-J. & Coley, P. D. The resource availability hypothesis revisited: a meta-analysis. Funct. Ecol. 25, 389–398 (2011).
    Article  Google Scholar 

    36.
    Miller, Z. J. Notes and comments fungal pathogen species richness: why do some plant species have more pathogens than others? Am. Nat. 179, 282–292 (2012).
    ADS  Article  Google Scholar 

    37.
    Dallas, T. A. & Presley, S. J. Relative importance of host environment, transmission potential and host phylogeny to the structure of parasite metacommunities. Oikos 123, 866–874 (2014).
    Article  Google Scholar 

    38.
    Strong, D. R. & Levin, D. A. Species richness of plant parasites and growth form of their hosts. Am. Nat. Nat. 114, 1–22 (2019).

    39.
    Louhi, K. R., Karvonen, A., Rellstab, C., Louhi, R. & Jokela, J. Prevalence of infection as a predictor of multiple genotype infection frequency in parasites with multiple-host life cycle. J. Anim. Ecol. 82, 191–200 (2013).
    Article  Google Scholar 

    40.
    Raybould, A. F., Maskell, L. C., Edwards, M. L., Cooper, J. I. & Gray, A. J. The prevalence and spatial distribution of viruses in natural populations of Brassica oleracea. N. Phytol. 141, 265–275 (1999).
    Article  Google Scholar 

    41.
    Shoemaker, L. G. et al. Pathogens manipulate the preference of vectors, slowing disease spread in a multi-host system. Ecol. Lett. 22, 1115–1125 (2019).
    Article  Google Scholar 

    42.
    Shaw, D. J. & Dobson, A. P. Patterns of macroparasite abundance and aggregation in wildlife populations: a quantitative review. Parasitology 111, S111–S127 (1995).
    Article  Google Scholar 

    43.
    Klein, J., Satta, Y. & Uigin, O. The molecular descent of the major histocompatibility complex. Annu. Rev. Immunol. 11, 269–295 (1993).
    CAS  Article  Google Scholar 

    44.
    Kamitani, M., Nagano, A. J., Honjo, M. N. & Kudoh, H. RNA-Seq reveals virus-virus and virus-plant interactions in nature. FEMS Microbiol. Ecol. 92, 1–11 (2016).
    Article  CAS  Google Scholar 

    45.
    Mysore, K. S. & Ryu, C. M. Nonhost resistance: How much do we know? Trends Plant Sci. 9, 97–104 (2004).
    CAS  Article  Google Scholar 

    46.
    Remold, S. K. Unapparent virus infection and host fitness in three weedy grass species. J. Ecol. 90, 967–977 (2002).

    47.
    Bergelson, J., Kreitman, M., Stahl, E. A. & Tian, D. Evolutionary dynamics of plant R-Genes. Plant Pathol. 292, 2281–2286 (2001).
    CAS  Google Scholar 

    48.
    Laine, A.-L. Detecting local adaptation in a natural plant-pathogen metapopulation: a laboratory vs. field transplant approach. J. Evol. Biol. 20, 1665–1673 (2007).
    Article  Google Scholar 

    49.
    Mandadi, K. K. & Scholthof, K. B. G. Plant immune responses against viruses: How does a virus cause disease? Plant Cell 25, 1489–1505 (2013).
    CAS  Article  Google Scholar 

    50.
    Bruns, E., Carson, M. & May, G. Pathogen and host genotype differently affect pathogen fitness through their effects on different life-history stages. BMC Evol. Biol. 12, 135 (2012).
    Google Scholar 

    51.
    Strauss, A. T., Bowling, A. M., Duffy, M. A., Cáceres, C. E. & Hall, S. R. Linking host traits, interactions with competitors and disease: mechanistic foundations for disease dilution. Funct. Ecol. 32, 1271–1279 (2018).
    Google Scholar 

    52.
    Mundt, C. C. Use of multiline cultivars and cultivar mixtures for disease management. Annu. Rev. Phytopathol. 40, 381–410 (2002).
    CAS  Google Scholar 

    53.
    Jousimo, J. et al. Disease ecology. Ecological and evolutionary effects of fragmentation on infectious disease dynamics. Science 344, 1289–1293 (2014).
    ADS  CAS  Google Scholar 

    54.
    Ekroth, A. K. E., Rafaluk-Mohr, C. & King, K. C. Host genetic diversity limits parasite success beyond agricultural systems: a meta-analysis. Proc. R. Soc. B Biol. Sci. 286, 20191811 (2019).
    Google Scholar 

    55.
    Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).
    Google Scholar 

    56.
    Rausher, M. D. Tradeoffs in performance on different hosts: evidence from within- and between-site variation in the beetle Deloyala guttata. Evolution 38, 582–595 (1984).
    Article  Google Scholar 

    57.
    Stearns, S. C. Trade-offs in life-history evolution. Funct. Ecol. 3, 259–268 (1989).
    Article  Google Scholar 

    58.
    Zhou, X. et al. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proc. Natl Acad. Sci. USA 115, 3174–3179 (2018).
    CAS  Article  Google Scholar 

    59.
    Karvonen, A., Jokela, J. & Laine, A. L. Importance of sequence and timing in parasite coinfections. Trends Parasitol. 35, 109–118 (2019).
    Article  Google Scholar 

    60.
    Van Hulten, M., Pelser, M., Van Loon, L. C., Pieterse, C. M. J. & Ton, J. Costs and benefits of priming for defense in Arabidopsis. Proc. Natl Acad. Sci. USA 103, 5602–5607 (2006).
    ADS  Google Scholar 

    61.
    Graham, A. L. Ecological rules governing helminth-microparasite coinfection. Proc. Natl Acad. Sci. USA 105, 566–570 (2008).
    ADS  CAS  Google Scholar 

    62.
    Laine, A.-L. Context-dependent effects of induced resistance under co-infection in a plant-pathogen interaction. Evol. Appl. 4, 696–707 (2011).
    Google Scholar 

    63.
    Syller, J. Facilitative and antagonistic interactions between plant viruses in mixed infections. Mol. Plant Pathol. 13, 204–216 (2012).
    Google Scholar 

    64.
    Porrozzi, R., Teva, A., Amaral, V. F., Santos Da Costa, M. V. & Grimaldi, G. Cross-immunity experiments between different species or strains of Leishmania in rhesus macaques (Macaca mulatta). Am. J. Trop. Med. Hyg. 71, 297–305 (2004).
    Google Scholar 

    65.
    Burdon, A. J. J., Thrall, P. H. & Brown, A. H. D. Resistance and virulence structure in two linum marginale-melampsora lini host-pathogen metapopulations with different mating systems. Evolution 53, 704–716 (1999).
    CAS  Google Scholar 

    66.
    Lively, C. M., de Roode, J. C., Duffy, M. A., Graham, A. L. & Koskella, B. Interesting open questions in disease ecology and evolution. Am. Nat. 184, S1–S8 (2014).

    67.
    Roossinck, M. J. & Bazán, E. R. Symbiosis: viruses as intimate partners. Annu. Rev. Virol. 4, 123–139 (2017).
    CAS  Google Scholar 

    68.
    Hily, J. M., Poulicard, N., Mora, M. Á., Pagán, I. & García-Arenal, F. Environment and host genotype determine the outcome of a plant-virus interaction: From antagonism to mutualism. N. Phytol. 209, 812–822 (2016).
    Google Scholar 

    69.
    Susi, H., Filloux, D., Frilander, M. J., Roumagnac, P. & Laine, A.-L. Diverse and variable virus communities in wild plant populations revealed by metagenomic tools. PeerJ 2019, e6140 (2019).
    Google Scholar 

    70.
    Warton, D. I. et al. So many variables: joint modeling in community ecology. Trends Ecol. Evol. 30, 766–779 (2015).
    Google Scholar 

    71.
    Ovaskainen, O. & Soininen, J. Making more out of sparse data: hierarchical modeling of species communities. Ecology 92, 289–295 (2011).
    Google Scholar 

    72.
    Norberg, A. et al. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol. Monogr. 89, e01370 (2019).
    Google Scholar 

    73.
    Aivelo, T. & Norberg, A. Parasite–microbiota interactions potentially affect intestinal communities in wild mammals. J. Anim. Ecol. 87, 438–447 (2018).

    74.
    Dallas, T. A., Laine, A., Ovaskainen, O. & Dallas, T. A. Detecting parasite associations within multi-species host and parasite communities. Proc. R. Soc. B Biol. Sci. 286, 20191109 (2019).
    Google Scholar 

    75.
    Alizon, S., de Roode, J. C. & Michalakis, Y. Multiple infections and the evolution of virulence. Ecol. Lett. 16, 556–567 (2013).
    Google Scholar 

    76.
    Thrall, P. H. & Burdon, J. J. Effect of resistance variation in a natural plant host-pathogen metapopulation on disease dynamics. Plant Pathol. 49, 767–773 (2000).
    Google Scholar 

    77.
    Thrall, P. H., Burdon, J. J. & Young, A. Variation in resistance and virulence among demes of a plant host-pathogen metapopulation. J. Ecol. 89, 736–748 (2001).
    Google Scholar 

    78.
    Lively, C. M. The effect of host genetic diversity on disease spread. Am. Nat. 175, E149–E152 (2010).

    79.
    Benavides, J. A. et al. From parasite encounter to infection: multiple-scale drivers of parasite richness in a wild social primate population. Am. J. Phys. Anthropol. 147, 52–63 (2012).
    Google Scholar 

    80.
    Susi, H. & Laine, A. L. The effectiveness and costs of pathogen resistance strategies in a perennial plant. J. Ecol. 103, 303–315 (2015).
    Google Scholar 

    81.
    Ojanen, S. P., Nieminen, M., Meyke, E., Pöyry, J. & Hanski, I. Long-term metapopulation study of the Glanville fritillary butterfly (Melitaea cinxia): survey methods, data management, and long-term population trends. Ecol. Evol. 3, 3713–3737 (2013).
    Google Scholar 

    82.
    Jackson, J. A., Pleass, R. J., Cable, J., Bradley, J. E. & Tinsley, R. C. Heterogenous interspecific interactions in a host–parasite system. Int. J. Parasitol. 36, 1341–1349 (2006).
    CAS  Google Scholar 

    83.
    Susi, H., Vale, P. F. & Laine, A.-L. Host genotype and coinfection modify the relationship of within and between host transmission. Am. Nat. 186, 000–000 (2015).
    Google Scholar 

    84.
    Laine, A. Resistance variation within and among host populations in a plant–pathogen metapopulation: implications for. J. Ecol. 92, 990–1000 (2004).
    Google Scholar 

    85.
    Greischar, M. A. & Koskella, B. A synthesis of experimental work on parasite local adaptation. Ecol. Lett. 10, 418–434 (2007).
    Google Scholar 

    86.
    Hoeksema, J. D. & Forde, S. E. A meta-analysis of factors affecting local adaptation between interacting species. Am. Nat. 171, 275–290 (2008).
    Google Scholar 

    87.
    Laine, A.-L., Burdon, J. J., Dodds, P. N. & Thrall, P. H. Spatial variation in disease resistance: from molecules to metapopulations. J. Ecol. 99, 96–112 (2011).
    Google Scholar 

    88.
    Smith, C. M. & Boyko, E. V. The molecular bases of plant resistance and defense responses to aphid feeding: current status. Entomol. Exp. Appl. 122, 1–16 (2007).
    CAS  Google Scholar 

    89.
    Crutsinger, G. M. et al. Plant genotypic diversity predicts community structure and governs an ecosystem process. Science 647, 966–968 (2006).
    ADS  Google Scholar 

    90.
    Mauck, K., Bosque-Pérez, N. A., Eigenbrode, S. D., De Moraes, C. M. & Mescher, M. C. Transmission mechanisms shape pathogen effects on host-vector interactions: Evidence from plant viruses. Funct. Ecol. 26, 1162–1175 (2012).
    Google Scholar 

    91.
    Susi, H. & Laine, A. L. Host resistance and pathogen aggressiveness are key determinants of coinfection in the wild. Evolution (N. Y). 71, 2110–2119 (2017).
    Google Scholar 

    92.
    Bergner, L. M. et al. Demographic and environmental drivers of metagenomic viral diversity in vampire bats. Mol. Ecol. 29, 26–39 (2019).
    Google Scholar 

    93.
    Telfer, S. et al. Species interactions ina parasite community drive infection risk in a wildlife population. Science 330, 243–247 (2010).
    ADS  CAS  Google Scholar 

    94.
    Halliday, F. W. et al. Facilitative priority effects drive parasite assembly under coinfection. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-01289-9 (2020).

    95.
    Mauch-Mani, B., Baccelli, I., Luna, E. & Flors, V. Defense priming: an adaptive part of induced resistance. Annu. Rev. Plant Biol. 68, 485–512 (2017).
    CAS  Google Scholar 

    96.
    Cassells, A. C. & Herrick, C. C. Cross protection between mild and severe strains of tobacco mosaic virus in doubly inoculated tomato plants. Virology 78, 253–260 (1977).
    CAS  Google Scholar 

    97.
    Sagar, A. G. R. & Harper, J. L. Plantago Major L., P. Media L. and P. Lancoeolata L. J. Ecol. 52, 189–221 (1964).
    Google Scholar 

    98.
    Laine, A.-L. & Hanski, I. Large-scale spatial dynamics of a specialist plant pathogen in a fragmented landscape. J. Ecol. 94, 217–226 (2006).
    Google Scholar 

    99.
    Baulcombe, D. RNA silencing in plants. Nature 431, 356–363 (2004).
    ADS  CAS  Google Scholar 

    100.
    Chang, S., Puryear, J. & Cairny, J. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Report. 11, 113–116 (1993).
    CAS  Google Scholar 

    101.
    Susi, H. et al. Genome sequences of a capulavirus infecting Plantago lanceolata in the Åland archipelago of Finland. Arch. Virol. 162, 2041–2045 (2017).
    CAS  Google Scholar 

    102.
    Griffith, D. M., Veech, J. A. & Marsh, C. J. cooccur: probabilistic species co-occurrence analysis in R. J. Stat. Softw. 69, 1–17 (2016).
    Google Scholar 

    103.
    Veech, J. A. A probabilistic model for analysing species co-occurrence. Glob. Ecol. Biogeogr. 22, 252–260 (2013).
    Google Scholar 

    104.
    Ovaskainen, O. et al. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 2, 561–576 (2017).
    Google Scholar 

    105.
    Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
    Google Scholar 

    106.
    Ovaskainen, O. & Abrego, N. Joint Species Distribution Modelling: With Applications in R. Ecology, Biodiversity and Conservation (Cambridge University Press, 2020).

    107.
    Tikhonov, G., Abrego, N., Dunson, D. & Ovaskainen, O. Using joint species distribution models for evaluating how species-to-species associations depend on the environmental context. Methods Ecol. Evol. 8, 443–452 (2017).
    Google Scholar 

    108.
    Tikhonov, G. et al. Hmsc: hierarchical model of species communities. R. package version 3, 0–7 (2020).
    Google Scholar 

    109.
    Bhattacharya, A. & Dunson, D. B. Sparse Bayesian infinite factor models. Biometrika 98, 291–306 (2011).
    MathSciNet  CAS  MATH  Google Scholar 

    110.
    Tjur, T. Coefficients of determination in logistic regression models—a new proposal: the coefficient of discrimination. Am. Stat. 63, 366–372 (2009).
    MathSciNet  MATH  Google Scholar 

    111.
    Watanabe, S. A widely applicable bayesian information criterion. J. Mach. Learn. Res. 14, 867–897 (2013).
    MathSciNet  MATH  Google Scholar 

    112.
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org (2020). More

  • in

    Omics approaches for conservation biology research on the bivalve Chamelea gallina

    1.
    Ghiselli, F. et al. Comparative transcriptomics in two bivalve species offers different perspectives on the evolution of sex-biased genes. Genome Biol. Evol. 10, 1389–1402. https://doi.org/10.1093/gbe/evy082 (2018).
    Article  Google Scholar 
    2.
    Connon, R. E., Jeffries, K. M., Komoroske, L. M., Todgham, A. E. & Fangue, N. A. The utility of transcriptomics in fish conservation. J. Exp. Biol. 221, jeb148833 (2018).
    Article  Google Scholar 

    3.
    Gaspar, M. B. & Monteiro, C. C. Reproductive cycles of the razor clam Ensis siliqua and the clam Venus striatula off Vilamoura Southern Portugal. J. Mar. Biol. Assoc. U.K. 78, 1247–1258 (1998).
    Article  Google Scholar 

    4.
    Poppe, G. T. & Goto, Y. European Seashells. Vol II (Scaphopoda, Bivalvia, Cephalopoda) 1–221 (Verlag Christa Hemmen, Germany, 1993).
    Google Scholar 

    5.
    Orban, E. et al. Nutritional and commercial quality of the striped venus clam, Chamelea gallina, from the Adriatic sea. Food Chem. 101, 1063–1070 (2007).
    CAS  Article  Google Scholar 

    6.
    Casali, C. Résumé des paramètres biologiques sur Venus gallina L. en Adriatique (Synopsis of biological data on Venus gallina L. in the Adriatic Sea). FAO Fish. Rep. 290, 171–173 (1984).
    Google Scholar 

    7.
    Froglia, C. Aspetti biologici, tecnologici e statistici della pesca delle vongole (Venus gallina) (Biological, technological and statistical observations on the fishery targeting common clams, Venus gallina). Incontri Tecnici, Laboratorio di Tecnologia della Pesca, Consiglio Nazionale delle Ricerche. 9, 7–22 (1975).
    Google Scholar 

    8.
    Keller, N., Del Piero, D. & Longinelli, A. Isotopic composition, growth rates and biological behaviour of Chamelea gallina and Callista chione in the Gulf of Trieste. Mar. Biol. 140, 9–15 (2002).
    Article  Google Scholar 

    9.
    Valli, G., Zardini, D. & Nodari, P. Cycle reproductif et biométrie chez Chamelea gallina (L.) (Mollusca, Bivalvia) dans le Golfe de Trieste (Reproductive cycle and biometry of the Chamelea gallina stock in the Gulf of Trieste). Rapp. Comm. Int. Mer Méditerr. 29, 339–340 (1985).
    Google Scholar 

    10.
    Dalgiç, G., Okumuş, I. & Karayücel, S. The effect of fishing on growth of the clam Chamelea gallina (Bivalvia: Veneridae) for the Turkish Black Sea coast. J. Mar. Biol. Assoc. UK 90, 261–265 (2009).
    Article  Google Scholar 

    11.
    Delgado, M., Silva, L. & Juárez, A. Aspects of reproduction of striped venus Chamelea gallina in the Gulf of Cádiz (SW Spain): implications for fishery management. Fish. Res. 146, 86–95 (2013).
    Article  Google Scholar 

    12.
    Romanelli, M., Cordisco, C. A. & Giovanardi, O. The long-term decline of the Chamelea gallina L. (Bivalvia: Veneridae) clam fishery in the Adriatic Sea: is a synthesis possible?. Acta Adriat. 50, 171–205 (2009).
    Google Scholar 

    13.
    Ministerial decree n.27 del 17/6/(2019), Ministry of Agricultural Food, forestry, and Tourism policies. Adozione del Piano di gestione nazionale per le attivita’ di pesca con il sistema draghe idrauliche e rastrelli da natante così come identificati nella denominazione degli attrezzi di pesca in draghe meccaniche comprese le turbosoffianti (HMD) e draga meccanizzata (DRB). (2019), Gazzetta ufficiale Italiana.

    14.
    Vaughn, C. C. & Hoellein, T. J. Bivalve impacts in freshwater and marine ecosystems. Annu. Rev. Ecol. Evol. Syst. 49, 183–208 (2018).
    Article  Google Scholar 

    15.
    Fitzer, S. C., Phoenix, V. R., Cusack, M. & Kamenos, N. A. Ocean acidification impacts mussel control on biomineralisation. Sci. Rep. 4, 6218 (2014).
    ADS  CAS  Article  Google Scholar 

    16.
    Li, Q., Zhao, X., Khong, L. & Yu, H. Transcriptomic response to stress in marine bivalves. Invert. Surviv. J. 10, 84–93 (2013).
    CAS  Google Scholar 

    17.
    Luchmann, K. H. et al. Biochemical biomarkers and hydrocarbons concentrations in the mangrove oyster Crassostrea brasiliana following exposure to diesel fuel water-accommodated fraction. Aquat. Toxicol. 105, 652–660 (2011).
    Article  CAS  Google Scholar 

    18.
    Philipp, E. E. et al. Massively parallel RNA sequencing identifies a complex immune gene repertoire in the lophotrochozoan Mytilus edulis. PLoS ONE 7, e33091 (2012).
    ADS  CAS  Article  Google Scholar 

    19.
    Ezgeta-Balic, D. et al. An energy budget for the subtidal bivalve Modiolus barbatus (Mollusca) at different temperatures. Mar. Environ. Res. 71, 79–85 (2011).
    CAS  Article  Google Scholar 

    20.
    Ivanina, A. V., Kurochkin, I. O., Leamy, L. & Sokolova, I. M. Effects of temperature and cadmium exposure on the mitochondria of oysters (Crassostrea virginica) exposed to hypoxia and subsequent reoxygenation. J. Exp. Biol. 215, 3142–3154 (2012).
    CAS  Article  Google Scholar 

    21.
    Matozzo, V. et al. First evidence of immunomodulation in bivalves under seawater acidification and increased temperature. PLoS ONE 7(3), e33820. https://doi.org/10.1371/journal.pone.0033820 (2012).
    ADS  CAS  Article  Google Scholar 

    22.
    Monari, M., Foschi, J., Rosmini, R., Marin, M. G. & Serrazanetti, G. P. Heat shock protein 70 response to physical and chemical stress in Chamelea gallina. J. Exp. Mar. Biol. Ecol. 397, 71–78 (2011).
    CAS  Article  Google Scholar 

    23.
    Sobral, P. & Widdows, J. Influence of hypoxia and anoxia on the physiological response of the clam Ruditapes decussatus from southern Portugal. Mar. Biol. 127, 455–461 (1997).
    Article  Google Scholar 

    24.
    Visciano, P. et al. Concentrations of contaminants with regulatory limits in samples of clam (Chamelea gallina) collected along the Abruzzi Region Coast in Central Italy. J. Food Prot. 78, 1719–1728 (2015).
    CAS  Article  Google Scholar 

    25.
    Moschino, V., Deppieri, M. & Marin, M. G. Evaluation of shell damage to the clam Chamelea gallina captured by hydraulic dredging in the Northern Adriatic Sea. ICES J. Mar. Sci. 60(2), 393–401 (2003).
    Article  Google Scholar 

    26.
    Milan, M. et al. Transcriptomic profiling of Chamelea gallina from sites along the Abruzzo coast (Italy), subject to periodic localized mortality events. Mar. Biol. 163, 163–169 (2016).
    Article  Google Scholar 

    27.
    Milan, M. et al. Host-microbiota interactions shed light on mortality events in the striped venus clam Chamelea gallina. Mol. Ecol. 28, 4486–4499 (2019).
    CAS  Article  Google Scholar 

    28.
    Coppe, A. et al. Sequencing and characterization of striped venus transcriptome expand resources for clam fishery genetics. PLoS ONE 7(9), e44185 (2012).
    ADS  CAS  Article  Google Scholar 

    29.
    Papetti, C. et al. Genetic variability of the striped venus Chamelea gallina in the northern Adriatic Sea. Fish. Res. 201, 68–78 (2018).
    Article  Google Scholar 

    30.
    Eizaguirre, C. & Baltazar-Soares, M. Evolutionary conservation-evaluating the adaptive potential of species. Evol. Appl. 7, 963–967 (2014).
    Article  Google Scholar 

    31.
    Mable, B. K. Conservation of adaptive potential and functional diversity: integrating old and new approaches. Conserv. Genet. 20, 89–100 (2019).
    CAS  Article  Google Scholar 

    32.
    He, X., Johansson, M. L. & Heath, D. D. Role of genomics and transcriptomics in selection of reintroduction source populations. Conserv. Biol. 30, 1010–1018 (2016).
    Article  Google Scholar 

    33.
    Bertucci, A. et al. Transcriptomic responses of the endangered freshwater mussel Margaritifera margaritifera to trace metal contamination in the Dronne River France. Environ. Sci. Pollut. R. 24, 27145–27159 (2017).
    CAS  Article  Google Scholar 

    34.
    Gonzalez, P. & Pierron, F. Omics in aquatic ecotoxicology: the ultimate response to biological questions? In aquatic ecotoxicology (eds Amiard, J. C. et al.) 183–203 (Academic Press, Cambridge, 2015). https://doi.org/10.1016/B978-0-12-800949-9.00008-5.
    Google Scholar 

    35.
    Milan, M. et al. Ecotoxicological effects of the herbicide glyphosate in non-target aquatic species: transcriptional responses in the mussel Mytilus galloprovincialis. Environ. Pollut. 237, 442–451 (2018).
    CAS  Article  Google Scholar 

    36.
    Vendrami, D. L. J. et al. RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity. R. Soc. Open Sci. 4, 160548 (2017).
    ADS  Article  Google Scholar 

    37.
    Vendrami, D. L. J. et al. RAD sequencing sheds new light on the genetic structure and local adaptation of European scallops and resolves their demographic histories. Sci. Rep. 9, 7455 (2019).
    ADS  Article  CAS  Google Scholar 

    38.
    Joaquim, S. et al. Biochemical and energy dynamics throughout the reproductive cycle of the striped venus Chamelea gallina (Mollusca, Bivalvia). Invertebr. Reprod. Dev. 58, 284–293 (2014).
    CAS  Article  Google Scholar 

    39.
    Hamdani, A. & Soltani-Mazouni, N. Changes in biochemical composition of the gonads of Donax trunculus L. (Mollusca, Bivalvia) from the Gulf of Annaba (Algeria) in relation to reproductive events and pollution. Jordan J. Biol. Sci. 4, 149–156 (2011).
    Google Scholar 

    40.
    Mancuso, A. et al. Environmental influence on calcification of the bivalve Chamelea gallina along a latitudinal gradient in the Adriatic Sea. Sci. Rep. 9, 11198 (2019).
    ADS  Article  CAS  Google Scholar 

    41.
    Artegiani, A. et al. The Adriatic Sea general circulation. Part II: baroclinic circulation structure. J. Phys. Oceanogr. 27, 1515–1532 (1997).
    ADS  Article  Google Scholar 

    42.
    Wold, S., Esbensen, K. & Geladi, P. Principal component analysis. Chemometr. Intell. Lab. 2, 37–52 (1987).
    CAS  Article  Google Scholar 

    43.
    Bianchi, C. N. & Morri, C. Marine biodiversity of the Mediterranean Sea: situation, problems and prospects for future research. Mar. Pollut. Bull. 40, 367–376 (2000).
    CAS  Article  Google Scholar 

    44.
    Nakayama, K. I. & Nakayama, K. Ubiquitin ligases: cell-cycle control and cancer. Nat. Rev. Cancer 6, 369–381 (2006).
    CAS  Article  Google Scholar 

    45.
    Mackintosh, C. Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem. J. 15, 329–342 (2004).
    Article  Google Scholar 

    46.
    Gardino, A. K. & Yaffe, M. B. 14-3-3 Proteins as signaling integration points for cell cycle control and apoptosis. Semin. Cell. Dev. Biol. 22, 688–695 (2012).
    Article  CAS  Google Scholar 

    47.
    Telles, E., Hosing, A. S., Kundu, S. T., Venkatraman, P. & Dalal, S. N. A novel pocket in 14-3-3epsilon is required to mediate specific complex formation with cdc25C and to inhibit cell cycle progression upon activation of checkpoint pathways. Exp. Cell. Res. 315, 1448–1457 (2009).
    CAS  Article  Google Scholar 

    48.
    Llera-Herrera, R., Garcıa-Gasca, A., Abreu-Goodger, C., Huvet, A. & Ibarra, A. M. Identification of male gametogenesis expressed genes from the scallop Nodipecten subnodosus by suppressive subtraction hybridization and pyrosequencing. PLoS ONE 8(9), e73176 (2013).
    ADS  CAS  Article  Google Scholar 

    49.
    Lucas, A. & Beninger, P. G. The use of physiological condition indices in marine bivalve aquaculture. Aquaculture 44, 187–200 (1985).
    Article  Google Scholar 

    50.
    Artigaud, S. et al. Deciphering the molecular adaptation of the king scallop (Pecten maximus) to heat stress using transcriptomics and proteomics. BMC Genom. 16, 988 (2015).
    Article  CAS  Google Scholar 

    51.
    Clark, M. S. et al. Identification of molecular and physiological responses to chronic environmental challenge in an invasive species: the Pacific oyster Crassostrea gigas. Ecol. Evol. 3, 3283–3297 (2013).
    Google Scholar 

    52.
    Lockwood, B. L., Sanders, J. G. & Somero, G. N. Transcriptomic responses to heat stress in invasive and native blue mussels (genus Mytilus): molecular correlates of invasive success. J. Exp. Biol. 213, 3548–3558 (2010).
    CAS  Article  Google Scholar 

    53.
    Darriba, S., San Juan, F. & Guerra, A. Energy storage and utilization in relation to the reproductive cycle in the razor clam. ICES J. Mar. Sci. 62, 886–896 (2005).
    Article  Google Scholar 

    54.
    Mathieu, M. & Lubet, P. Storage tissue metabolism and reproduction in marine bivalves: a brief review. Invertebr. Reprod. Dev. 23, 123–129 (1993).
    CAS  Article  Google Scholar 

    55.
    Usero, J., Morillo, J. & El Bakouri, H. A general integrated ecotoxicological method for marine sediment quality assessment: application to sediments from littoral ecosystems on Southern Spain’s Atlantic coast. Mar. Pollut. Bull. 56, 2027–2036 (2008).
    CAS  Article  Google Scholar 

    56.
    Bocchetti, R. & Regoli, F. Seasonal variability of oxidative biomarkers, lysosomal parameters, metallothioneins and peroxisomal enzymes in the Mediterranean mussel Mytilus galloprovincialis from Adriatic Sea. Chemosphere 65, 913–921 (2006).
    ADS  CAS  Article  Google Scholar 

    57.
    Nahrgang, J. et al. Seasonal variation in biomarkers in blue mussel (Mytilus edulis), Icelandic scallop (Chlamys islandica) and Atlantic cod (Gadus morhua)-Implications for environmental monitoring in the Barents Sea. Aquat. Toxicol. 127, 21–35 (2013).
    CAS  Article  Google Scholar 

    58.
    Sardi, A. E., Renaud, P. E., da Cunha Lanna, P. & Camus, L. Baseline levels of oxidative stress biomarkers in species from a subtropical estuarine system (Paranaguá Bay, southern Brazil). Mar. Pollut. Bull. 113, 496–508 (2016).
    CAS  Article  Google Scholar 

    59.
    Gorbi, S., Baldini, C. & Regoli, F. Seasonal variability of metallothioneins, cytochrome P450, bile metabolites and oxyradical metabolism in the European eel Anguilla anguilla L. (Anguillidae) and striped mullet Mugil cephalus L. (Mugilidae). Arch. Environ. Con. Tox. 49, 62–70 (2005).
    CAS  Article  Google Scholar 

    60.
    Gorbi, S. et al. An ecotoxicological protocol with caged mussels, Mytilus galloprovincialis, for monitoring the impact of an offshore platform in the Adriatic Sea. Mar. Environ. Res. 65, 34–49 (2008).
    CAS  Article  Google Scholar 

    61.
    Fernández, R., Lemer, S., McIntyre, E. & Giribet, G. Comparative phylogeography and population genetic structure of three widespread mollusc species in the Mediterranean and near Atlantic. Mar. Ecol. 36, 701–715 (2015).
    ADS  Article  Google Scholar 

    62.
    Lourenço, C. R. et al. Evidence for rangewide panmixia despite multiple barriers to dispersal in a marine mussel. Sci. Rep. 7, 10279 (2017).
    ADS  Article  CAS  Google Scholar 

    63.
    Villamor, A., Costantini, F. & Abbiati, M. Genetic structuring across marine biogeographic boundaries in rocky shore invertebrates. PLoS ONE 9, e101135 (2014).
    ADS  Article  CAS  Google Scholar 

    64.
    Garoia, F. et al. Microsatellite DNA variation reveals high gene flow and panmictic populations in the Adriatic shared stocks of the European squid and cuttlefish (Cephalopoda). Heredity 93, 166–174 (2004).
    CAS  Article  Google Scholar 

    65.
    Marie, A. D. et al. Implications for management and conservation of the population genetic structure of the wedge clam Donax trunculus across two biogeographic boundaries. Sci. Rep. 6, 39152 (2016).
    ADS  CAS  Article  Google Scholar 

    66.
    De Luca, D., Catanese, G., Procaccini, G. & Fiorito, G. Octopus vulgaris (Cuvier, 1797) in the Mediterranean Sea: genetic diversity and population structure. PLoS ONE 11(2), e0149496 (2016).
    Article  CAS  Google Scholar 

    67.
    Melis, R. et al. Genetic population structure and phylogeny of the common octopus Octopus vulgaris Cuvier, 1797 in the western Mediterranean Sea through nuclear and mitochondrial markers. Hydrobiologia 807, 277–296 (2018).
    CAS  Article  Google Scholar 

    68.
    Bahri-Sfar, L., Lemaire, C., Hassine, O. K. B. & Bonhomme, F. Fragmentation of sea bass populations in the Western and Eastern Mediterranean as revealed by microsatellite polymorphism. Proc. R. Soc. Lond. 267, 929–935 (2000).
    CAS  Article  Google Scholar 

    69.
    Maggio, T., Lo Brutto, S., Garoia, F., Tinti, F. & Arculeo, M. Microsatellite analysis of red mullet Mullus barbatus (Perciformes, Mullidae) reveals the isolation of the Adriatic Basin in the Mediterranean Sea. ICES J. Mar. Sci. 66, 1883–1891 (2009).
    Article  Google Scholar 

    70.
    Schunter, C. et al. Matching genetics with oceanography: directional gene flow in a Mediterranean fish species. Mol. Ecol. 20, 5167–5181 (2011).
    CAS  Article  Google Scholar 

    71.
    Aguirre, J. D. & Marshall, D. J. Genetic diversity increases population productivity in a sessile marine invertebrate. Ecology 93, 1134–1142 (2012).
    Article  Google Scholar 

    72.
    Gamfeldt, L. & Källström, B. Increasing intraspecific diversity increases predictability in population survival in the face of perturbations. Oikos 116, 700–705 (2007).
    Article  Google Scholar 

    73.
    Lloyd, M. M., Makukhov, A. D. & Pespeni, M. H. Loss of genetic diversity as a consequence of selection in response to high pCO2. Evol. Appl. 9, 1124–1132 (2016).
    CAS  Article  Google Scholar 

    74.
    Griffiths, S. M., Taylor-Cox, E. D., Behringer, D. C., Butler, M. J. IV. & Preziosi, R. F. Using genetics to inform restoration and predict resilience in declining populations of a keystone marine sponge. Biodivers. Conserv. 29, 1383–1410 (2020).
    Article  Google Scholar 

    75.
    Plough, L. V. Genetic load in marine animals: a review. Curr. Zool. 62, 567–579 (2016).
    Article  Google Scholar 

    76.
    Biondi, S. & Del Piero, D. Survey on Chamelea gallina beds in the Lignano area (Gulf of Trieste, Adriatic Sea). Ann. Istrian Mediterr. Stud. 22, 1–8 (2012).
    Google Scholar 

    77.
    Nojima, S. & Russo, G. F. Struttura della popolazione del bivalve Chamelea gallina(L.) in un fondo sabbioso dell’isola di Ischia (Golfo di Napoli) (Population structure of Chamelea gallinain infralittoral sand off Ischia Island, Gulf of Naples). Oebalia 15, 189–201 (1989).
    Google Scholar 

    78.
    Artegiani, A. et al. The Adriatic Sea general circulation. Part I: air-sea interactions and water mass structure. J. Phys. Oceanogr. 27, 1492–1514 (1997).
    ADS  Article  Google Scholar 

    79.
    El Ayari, T., El Menif, N. T., Hamer, B., Cahill, A. E. & Bierne, N. The hidden side of a major marine biogeographic boundary: a wide mosaic hybrid zone at the Atlantic-Mediterranean divide reveals the complex interaction between natural and genetic barriers in mussels. Heredity 122, 70–784 (2019).
    Article  Google Scholar 

    80.
    Keen, A. M. Veneridae. In Treatise of Invertebrate Paleontology (ed. Moore, R. C.) N671–N688 (Geological Society of America University of Kansas Press Lawrence, Boulder, 1969).
    Google Scholar 

    81.
    Bellan-Santini, D., Fredj, G. & Bellan, G. Mise au point sur les connaissance concernant le benthos profond Mediterraneen. Oebalia 17, 21–36 (1992).
    Google Scholar 

    82.
    Bouchet, P. & Taviani, M. The Mediterranean deep-sea fauna: pseudopopulations of Atlantic species?. Deep-Sea Res. 39, 169–184 (1992).
    ADS  Article  Google Scholar 

    83.
    Myers, A. A. Species and generic gamma-scale diversity in shallow-water marine Amphipoda with particular reference to the Mediterranean. J. Mar. Biol. Assoc. UK 76, 195–202 (1996).
    Article  Google Scholar 

    84.
    Stanley, D. J. & Wezel, F.-C. Geological Evolution of the Mediterranean Basin (Springer, New York, 1985).
    Google Scholar 

    85.
    Walne, P. R. Factors affecting the relation between feeding and growth in bivalves. In Harvesting Polluted Waters Vol. 8 (ed. Devil, O.) 169–176 (Plenum Press, New York, 1976).
    Google Scholar 

    86.
    Del Fabbro, C., Scalabrin, S., Morgante, M. & Giorgi, F. M. An extensive evaluation of read trimming effects on Illumina NGS data analysis. PLoS ONE 8(12), e85024 (2013).
    ADS  Article  CAS  Google Scholar 

    87.
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).
    Article  Google Scholar 

    88.
    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
    CAS  Article  Google Scholar 

    89.
    Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-Seq reads. Nat. Biotechnol. 33, 290–295 (2015).
    CAS  Article  Google Scholar 

    90.
    Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
    CAS  Article  Google Scholar 

    91.
    Love, M., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
    Article  CAS  Google Scholar 

    92.
    Punta, M. et al. The Pfam protein families database. Nucleic Acid Res. 40, 290–301 (2012).
    Article  CAS  Google Scholar 

    93.
    Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
    CAS  Article  Google Scholar 

    94.
    Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K. & Tanabe, M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 47, D590-595 (2019).
    CAS  Article  Google Scholar 

    95.
    Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951 (2019).
    CAS  Article  Google Scholar 

    96.
    Bocchetti, R. et al. Contaminant accumulation and biomarker responses in caged mussels, Mytilus galloprovincialis, to evaluate bioavailability and toxicological effects of remobilized chemicals during dredging and disposal operations in harbour areas. Aquat. Toxicol. 89, 257–266 (2008).
    CAS  Article  Google Scholar 

    97.
    Bocchetti, R. et al. Seasonal variations of exposure biomarkers, oxidative stress responses and cell damage in the clams, Tapes philippinarum, and mussels, Mytilus galloprovincialis, from Adriatic Sea. Mar. Environ. R. 66, 24–26 (2008).
    CAS  Article  Google Scholar 

    98.
    Viarengo, A., Ponzano, E., Dondero, F. & Fabbri, R. A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Mar. Environ. Res. 44, 69–84 (1997).
    CAS  Article  Google Scholar 

    99.
    Fattorini, D. et al. Seasonal, spatial and inter-annual variations of trace metals in mussels from the Adriatic Sea: a regional gradient for arsenic and implications for monitoring the impact of off-shore activities. Chemosphere 72, 1524–1533 (2008).
    ADS  CAS  Article  Google Scholar 

    100.
    Clementi, E. et al. Mediterranean Sea Analysis and Forecast (CMEMS MED-Currents, EAS5 system). Copernicus Monitoring Environment Marine Service (CMEMS) (2019). https://doi.org/10.25423/CMCC/MEDSEA_ANALYSIS_FORECAST_PHY_006_013_EAS5.

    101.
    Bolzon, G. et al. Mediterranean Sea Biogeochemical Analysis and Forecast (CMEMS MED-Biogeochemistry (2018)-Present). Copernicus Monitoring Environment Marine Service (CMEMS) (2020). https://doi.org/10.25423/CMCC/MEDSEA_ANALYSIS_FORECAST_BIO_006_014_MEDBFM3.

    102.
    Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7(5), e37135 (2012).
    ADS  CAS  Article  Google Scholar 

    103.
    Rochette, N. C., Rivera-Colón, A. G. & Catchen, J. M. Stacks 2: analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 28, 4737–4754 (2019).
    CAS  Article  Google Scholar 

    104.
    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).
    Article  CAS  Google Scholar 

    105.
    Huson, D. H. et al. MEGAN community edition-interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12(6), e1004957 (2016).
    Article  CAS  Google Scholar 

    106.
    Malinsky, M., Trucchi, E., Lawson, D. J. & Falush, D. RADpainter and fineRADstructure: population inference from RADseq data. Mol. Biol. Evol. 35, 1284–1290 (2018).
    CAS  Article  Google Scholar 

    107.
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
    CAS  Article  Google Scholar 

    108.
    Liu, X. & Fu, Y.-X. Exploring population size changes using SNP frequency spectra. Nat. Genet. 47, 555–559. https://doi.org/10.1038/ng.3254 (2015).
    CAS  Article  Google Scholar  More

  • in

    Hydrochar did not reduce rice paddy NH3 volatilization compared to pyrochar in a soil column experiment

    1.
    Zhang, Y. et al. Concentrations and chemical compositions of fine particles (PM2.5) during haze and non-haze days in Beijing. Atmos. Res. 174–175, 62–69 (2016).
    Article  CAS  Google Scholar 
    2.
    Li, Y. et al. Observations of ammonia, nitric acid, and fine particles in a rural gas production region. Atmos. Environ. 83, 80–89 (2014).
    ADS  CAS  Article  Google Scholar 

    3.
    Singh, J., Kunhikrishnan, A., Bolan, N. S. & Saggar, S. Impact of urease inhibitor on ammonia and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine. Sci. Total Environ. 465, 56–63 (2013).
    ADS  CAS  Article  Google Scholar 

    4.
    Sha, Z., Li, Q., Lv, T., Misselbrook, T. & Liu, X. Response of ammonia volatilization to biochar addition: A meta-analysis. Sci. Total Environ. 655, 1387–1396 (2019).
    ADS  CAS  Article  Google Scholar 

    5.
    Wang, H. et al. Ammonia emissions from paddy fields are underestimated in China. Environ. Pollut. 235, 482–488 (2018).
    CAS  Article  Google Scholar 

    6.
    Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).
    ADS  CAS  Article  Google Scholar 

    7.
    Huang, Y. et al. Methane and nitrous oxide flux after biochar application in subtropical acidic paddy soils under tobacco-rice rotation. Sci. Rep. 9, 17277 (2019).
    ADS  Article  CAS  Google Scholar 

    8.
    Sheng, Y. & Zhu, L. Biochar alters microbial community and carbon sequestration potential across different soil pH. Sci. Total Environ. 622–623, 1391–1399 (2018).
    ADS  Article  CAS  Google Scholar 

    9.
    Liu, Q. et al. How does biochar influence soil N cycle? A meta-analysis. Plant Soil 426, 211–225 (2018).
    CAS  Article  Google Scholar 

    10.
    Huang, M., Fan, L., Chen, J., Jiang, L. & Zou, Y. Continuous applications of biochar to rice: Effects on nitrogen uptake and utilization. Sci. Rep. 8, 11461 (2018).
    ADS  Article  CAS  Google Scholar 

    11.
    Feng, Y. et al. Biochar applied at an appropriate rate can avoid increasing NH3 volatilization dramatically in rice paddy soil. Chemosphere 168, 1277–1284 (2016).
    ADS  Article  CAS  Google Scholar 

    12.
    Sun, H., Zhang, H., Min, J., Feng, Y. & Shi, W. Controlled-release fertilizer, floating duckweed, and biochar affect ammonia volatilization and nitrous oxide emission from rice paddy fields irrigated with nitrogen-rich wastewater. Paddy Water Environ. 14, 1–7 (2015).
    Google Scholar 

    13.
    Sun, H., Lu, H., Chu, L., Shao, H. & Shi, W. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Sci. Total Environ. 575, 820–825 (2017).
    ADS  CAS  Article  Google Scholar 

    14.
    Sun, H. et al. Responses of ammonia volatilization from rice paddy soil to application of wood vinegar alone or combined with biochar. Chemosphere 242, 125247 (2020).
    ADS  CAS  Article  Google Scholar 

    15.
    Nizamuddin, S. et al. Upgradation of chemical, fuel, thermal, and structural properties of rice husk through microwave-assisted hydrothermal carbonization. Environ. Sci Pollut. R. 25, 17529–17539 (2018).
    CAS  Article  Google Scholar 

    16.
    Gronwald, M., Vos, C., Helfrich, M. & Don, A. Stability of pyrochar and hydrochar in agricultural soil—A new field incubation method. Geoderma 284, 85–92 (2016).
    ADS  CAS  Article  Google Scholar 

    17.
    Liu, Y. et al. Effect of pyrochar and hydrochar on water evaporation in clayey soil under greenhouse cultivation. Environ. Res. Public Health 16, 2580 (2019).
    CAS  Article  Google Scholar 

    18.
    Malghani, S., Gleixner, G. & Trumbore, S. E. Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions. Soil Biol. Biochem. 62, 137–146 (2013).
    CAS  Article  Google Scholar 

    19.
    Han, L. et al. New evidence for high sorption capacity of hydrochar for hydrophobic organic pollutants. Environ. Sci. Technol. 50, 13274–13282 (2016).
    ADS  CAS  Article  Google Scholar 

    20.
    Hua, Y. et al. Microbial aging of hydrochar as a way to increase cadmium ion adsorption capacity: Process and mechanism. Bioresour. Technol. 300, 122708 (2020).
    CAS  Article  Google Scholar 

    21.
    Schimmelpfennig, S., Müller, C., Grünhage, L., Koch, C. & Kammann, C. Biochar, hydrochar and uncarbonized feedstock application to permanent grassland—Effects on greenhouse gas emissions and plant growth. Agric. Ecosyst. Environ. 191, 39–52 (2014).
    CAS  Article  Google Scholar 

    22.
    Elaigwu, S. E. & Greenway, G. M. Microwave-assisted and conventional hydrothermal carbonization of lignocellulosic waste material: Comparison of the chemical and structural properties of the hydrochars. J. Anal. Appl. Pyrol. 118, 1–8 (2016).
    CAS  Article  Google Scholar 

    23.
    Huang, R. & Tang, Y. Speciation dynamics of phosphorus during (hydro)thermal treatments of sewage sludge. Environ. Sci. Technol. 49, 14466–14474 (2015).
    ADS  CAS  Article  Google Scholar 

    24.
    Donar, Y. O., Çağlar, E. & Sınağ, A. Preparation and characterization of agricultural waste biomass based hydrochars. Fuel 183, 366–372 (2016).
    CAS  Article  Google Scholar 

    25.
    Mumme, J. et al. Hydrothermal carbonization of digestate in the presence of zeolite: Process efficiency and composite properties. ACS Sustain. Chem. Eng. 3, 2967–2974 (2015).
    CAS  Article  Google Scholar 

    26.
    Bargmann, I., Rillig, M., Kruse, A., Greef, J. & Kücke, M. Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability. J. Plant. Nutr. Soil. Sci. 177, 48–58 (2014).
    Article  CAS  Google Scholar 

    27.
    Chu, Q. et al. Microalgae-derived hydrochar application on rice paddy soil: Higher rice yield but increased gaseous nitrogen loss. Sci. Total Environ. 717, 137127 (2020).
    ADS  CAS  Article  Google Scholar 

    28.
    Chu, Q. et al. Sewage sludge-derived hydrochar that inhibits ammonia volatilization, improves soil nitrogen retention and rice nitrogen utilization. Chemosphere 245, 125558 (2020).
    ADS  CAS  Article  Google Scholar 

    29.
    Xue, Y. et al. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chem. Eng. J. 200–202, 673–680 (2012).
    Article  CAS  Google Scholar 

    30.
    Yu, S. et al. Biowaste to treasure: Application of microbial-aged hydrochar in rice paddy could improve nitrogen use efficiency and rice grain free amino acids. J. Clean Prod. 240, 118180 (2019).
    CAS  Article  Google Scholar 

    31.
    Ti, C., Xia, L., Chang, S. X. & Yan, X. Potential for mitigating global agricultural ammonia emission: A meta-analysis. Environ. Pollut. 245, 141–148 (2019).
    CAS  Article  Google Scholar 

    32.
    Chu, Q. et al. Bentonite hydrochar composites mitigate ammonia volatilization from paddy soil and improve nitrogen use efficiency. Sci. Total Environ. 718, 137301 (2020).
    ADS  CAS  Article  Google Scholar 

    33.
    Luo, S. et al. Long-term biochar application influences soil microbial community and its potential roles in semiarid farmland. Appl. Soil Ecol. 117–118, 10–15 (2017).
    Article  Google Scholar 

    34.
    Zhu, X., Chen, B., Zhu, L. & Xing, B. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environ. Pollut. 227, 98–115 (2017).
    CAS  Article  Google Scholar 

    35.
    Rutherford, D. W., Wershaw, R. L., Rostad, C. E. & Kelly, C. N. Effect of formation conditions on biochars: Compositional and structural properties of cellulose, lignin, and pine biochars. Biomass Bioenerg. 46, 693–701 (2012).
    CAS  Article  Google Scholar 

    36.
    Kastner, J. R., Miller, J. & Das, K. C. Pyrolysis conditions and ozone oxidation effects on ammonia adsorption in biomass generated chars. J. Hazard. Mater. 164, 1420–1427 (2009).
    CAS  Article  Google Scholar 

    37.
    Zhao, L., Cao, X., Mašek, O. & Zimmerman, A. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J. Hazard. Mater. 256–257, 1–9 (2013).
    PubMed  PubMed Central  Google Scholar 

    38.
    Lehmann, J. A handful of carbon. Nature 447, 143–144 (2007).
    ADS  CAS  Article  Google Scholar 

    39.
    de la Rosa, J. M., Rosado, M., Paneque, M., Miller, A. Z. & Knicker, H. Effects of aging under field conditions on biochar structure and composition: Implications for biochar stability in soils. Sci. Total Environ. 613–614, 969–976 (2018).
    Article  CAS  Google Scholar 

    40.
    Huang, Z. et al. Effect of aging on surface chemistry of rice husk-derived biochar. Environ. Prog. Sustain. Energy. 37, 410–417 (2017).
    Article  CAS  Google Scholar 

    41.
    Mia, S., Dijkstra, F. A. & Singh, B. Aging induced changes in biochar’s functionality and adsorption behavior for phosphate and ammonium. Environ. Sci. Technol. 51, 8359–8367 (2017).
    ADS  CAS  Article  Google Scholar 

    42.
    Zhou, B. et al. Impact of hydrochar on rice paddy CH4 and N2O emissions: A comparative study with pyrochar. Chemosphere 204, 474–482 (2018).
    ADS  CAS  Article  Google Scholar 

    43.
    Sun, X., Zhong, T., Zhang, L., Zhang, K. & Wu, W. Reducing ammonia volatilization from paddy field with rice straw derived biochar. Sci. Total Environ. 660, 512–518 (2019).
    ADS  CAS  Article  Google Scholar  More

  • in

    A new understanding and evaluation of food sustainability in six different food systems in Kenya and Bolivia

    Food sustainability indicators
    The indicators of the five dimensions of food sustainability that were collectively defined and assessed in the six food systems are presented in Table 2 and in the Supplementary Data (sheets 1–9). Relevant across contexts, the indicators represent a consensual output of the research process with scientists from the Global North and South and non-academic actors related to the different food systems (see Methods). The indicators cover different activities, from production to consumption, and some are transversal, i.e. occurring along the value chain.
    How the six food systems scored
    Food systems B3 (Agroecological food system) and K3 (Local food system) had the highest overall sustainability scores. In addition, these scores were more equally distributed across the five dimensions than in the other food systems. The greatest contributor to these high scores was environmental performance: both food systems demonstrated a high capacity to provide agroecosystem services (e.g. through crop diversity or combining livestock with trees29,33); low external inputs and recycling of organic materials; a low carbon footprint; and perceived positive health impacts by producers, workers and consumers. The food system that scored highest (4.0) in environmental performance is the Domestic–indigenous food system (B2). However, it obtained the lowest scores in poverty and inequality (1.6, with particularly low ratings for incomes, livelihood capitals and social protection), pulling down its overall score.
    Figures 1 and 2 display the aggregated qualitative and quantitative research results on a five-point Likert scale from 0 (very low) to 4 (very high). The area covered by one food system reflects its overall sustainability, while the axes reflect the five dimensions. The median is calculated as an average value for one dimension from all its indicators; for each food system it represents strengths (comparatively high scores) and weaknesses (comparatively low scores) of food sustainability of the six assessed food systems.
    Figure 1

    Overall food sustainability scores and median scores of five dimensions for three food systems in Kenya, rated from 0 (very low), 1 (low), 2 (medium), 3 (high) to 4 (very high). For detailed results, see Supplementary Data.

    Full size image

    Figure 2

    Overall food sustainability scores and median scores of five dimensions for three food systems in Bolivia, from 0 (very low), 1 (low), 2 (medium), 3 (high) to 4 (very high). For detailed results, see Supplementary Data.

    Full size image

    The lowest overall sustainability scores were obtained by the Agro-industrial food systems, B1 (scoring 1.6) and K1 (scoring 1.8). This was mainly due to their poor environmental performance on pesticide and resource use. Of the pesticides documented during this study, 65% in Bolivia and 67% in Kenya contained substances considered “highly hazardous” jointly by the FAO and WHO36. Additionally, resource use along the value chain was high, with examples including water, packaging material, electricity and diesel, and, in Kenya, aviation turbine oil30,37. Lowest-scoring B1 demonstrated a low diversity of crops and breeds, high greenhouse gas emissions and perceived negative health impacts. Right to food was particularly low in B1 due to low quality and accessibility of land and water resources for the local population, low food diversity and access to seeds, low access for women to land and finance, and a lack of participation in decision-making. In second-lowest scoring K1, water use was around 100 times higher than in K3, pesticide use seven times higher, and the carbon footprint of exported vegetables 67 times higher than for vegetables consumed in K330.
    Food security of local households in the study areas was highest in the Agroecological food system (B3), with better scores than the other food systems for access to land and water, contribution to local consumption, accessibility of food, and capacity to provide what is considered to constitute a “good diet”. In general, household food security was high in the study area in Bolivia, and low to medium in the study area in Kenya. Food security was lowest in the Agro-industrial system in Kenya (K1). This is because K1 exports almost all the food it produces and does not engage in processing or storage activities, implying low accessibility to, and consumption of, the produced food locally. Households involved in K1 through labour had medium food security and a low perception of the food system’s capacity to provide a “good diet”.
    Contrary to expectations, the Agro-industrial food systems obtained medium (B1) and above-medium (K1) resilience scores. Key factors were a high or very high level of self-organization in interest groups, knowledge on threats and opportunities, and functioning feedback mechanisms between system components, such as supportive policies that translated into subsidies, relief payments and reduced tax rates24. This social dimension of resilience somewhat mitigated the low scores that B1 and K1 obtained for agroecosystem resilience and their high dependence on external inputs and monocultures (which, in turn, rendered them vulnerable to e.g. climate impacts or price fluctuations).
    The weakest dimensions across food systems
    The weakest dimension was right to food. K1 and B1 both scored particularly low in this dimension due to high land concentration (e.g. average land plot size was 90 ha in K1, compared to 2 ha in K324) and a lack of food diversity, supply of nutritional needs, and local food traditions. All food systems obtained low scores for women’s access to land and credit (in Kenya, only 5% and in Bolivia 17% of landowners are women38). K3 obtained slightly higher scores, as more women had access to land (although this did not mean they held the property deeds) and because of the prevalence of women’s groups that operated a system of microcredits.
    The second-weakest dimension was poverty and inequality. This was due to low farming incomes and high income inequality (e.g. salaries for selling agricultural inputs in B1 were 220% higher than for the other activities in this food system24). Salaries for workers (e.g. farm workers in Kenya39) were around the minimum wage, and workers throughout the value chain were excluded from social protection. Nevertheless, the Agro-industrial food systems obtained a high (K1) and a medium score (B1) for the reduction of poverty and inequality, due to high scores for physical capital (infrastructure, fulfilment of basic needs, transport and storage facilities, livestock) and human capital (education, experience, health), and relatively low household expenditure on food.
    Contributions of food system activities to sustainability
    To understand the contribution of different food system activities to the overall sustainability scores, the indicators for each food system are grouped according to activity: production, processing and storage, retail and trade, consumption, and transversal (across activities, e.g. carbon footprint of a food product). Figure 3 shows the sum of the medians according to activity, and Fig. 4 shows the range of scores for each activity in each food system.
    Figure 3

    Median food system activity score of food sustainability. “Transversal” means across all food system activities. The maximum score for each food system activity is 4 (or “very high” on the Likert scale), and the overall maximum score is 20.

    Full size image

    Figure 4

    Distribution of sustainability scores for each food system according to food system activity: production, processing/storage, retail/trade, consumption and transversal indicators.

    Full size image

    In the food systems with a comparably high overall sustainability score (B3, K3), all activities obtained relatively high scores (e.g. consumption in B3: locally produced food, provision of food to food system actors, a perceived “good diet”, contribution to food diversity, information and participation). The “transversal” category recorded similar scores across food systems. It comprised household food security, livelihood assets, material and energy use along the value chain, and resilience indicators (e.g. organization in interest groups, also along the value chain). The food system with the lowest cumulative score, K1, scored 0 in processing/storage and retail/trade, and it obtained low scores for production (due to low incomes), access to productive resources, environmental performance, and consumption (due to low contributions to the local food system and its diversity). Transversal scored higher than the other activities in K1, mainly due to the positive social resilience scores mentioned above. Figure 4 shows the per-activity contribution to the overall food sustainability rating for each food system.
    Most food system activities (especially production, consumption and transversal) had a high variability of scores, ranging from 0–3 or even from 0–4 (minimum to maximum value). In B3, every activity obtained a comparably high score, although all but retail and trade were still very variable. Processing and storage (capacity in the food system to provide both processing and storage) was medium to high in B2, but storage was low in K3 and B3 (weakening overall food security) and K1 (freshly sold perishable produce). Retail and trade (affordable food prices, above-medium retail employee wages) contributed strongly to overall food sustainability in B3 and K3, at a medium level to B1 and K2, and little to B2. Consumption obtained a medium or above-medium score, which means that it played an important role in overall sustainability (e.g. in the form of food diversity in K3). An exception was K1, where consumption took place so far away that most of the related indicators obtained low scores for the food system context under study. Scores obtained for the “transversal” category also varied highly, but augmented overall food sustainability mainly through resilience (K1, B1) and environmental performance indicators (K2, K3, B3, K3).
    Most decisive indicators for food sustainability
    To identify general trends, we further analysed the importance of individual indicators for overall food sustainability across all six food systems (Fig. 5).
    Figure 5

    Frequency of difference from the median (to the left of 0: frequency with which the indicators across all six food systems scored worse than the median; to the right of 0: frequency with which they scored better than the median).

    Full size image

    Resilience indicators often had a strongly positive influence on overall sustainability, especially the knowledge of threats and opportunities indicator, with above-median scores in five of the six food systems, and the indicators on functioning feedback mechanisms, interest groups and shared vision, which achieved above-median scores in four of the food systems. A notable exception was diversity of crops and breeds, a resilience indicator which scored lower than the overall median in five food systems. Several indicators from the food security dimension scored better than the median in four food systems: ability to provide food to food system actors, capacity to process food, access to land, access to water, and household food security.
    In addition, environmental performance indicators were often high (e.g. use of energy, soil quality, use of materials, water footprint, Agroecosystem Service Capacity Index, carbon footprint), but mainly for the more local and diversified food systems. Exceptions were formed by the water footprint and use of materials along the value chain or food system stages, which were low also in B1 (as calculated up to the first consumption stage, e.g. use of soybeans for feed in meat and dairy production).
    Low-scoring dimensions—those that pulled down the overall food sustainability score, i.e. poverty and inequality, and right to food—included indicators that most frequently scored lower than the median. These were related to gender, dwindling agrobiodiversity and food diversity, and precarious work conditions at the production level. Of these, women’s access to credit and diversity of crops and breeds scored five times below the median. The second-worst indicators (four times below the median) with no positive score were social protection and local food traditions, and the third-worst were the proportion of women with land rights, remedies for violations of the right to food, and liveable wage.
    A principal component analysis (PCA) providing information on which combinations of indicators are most decisive for overall food sustainability in our case studies confirmed the trend shown in Fig. 5. Four principal components retained based on their eigenvalues explained 99% of variance (Supplementary Table S1). By retaining indicators with component loadings  > 0.45, the first principal component was most influenced by human capital, social protection, remedies for violations of the right to food, local food traditions, access to information, landscape heterogeneity, water quality for domestic consumption, and women’s access to credit. Most of these indicators belong to the right to food and poverty inequality dimensions and are related to diversity and quality of human and natural resources that households, and especially women, have access to. The second principal component was most influenced by the capacity to process food, accessibility of water for domestic consumption, farmer incomes, ability to provide food to food system actors, use of materials, use of energy, and the capacity to cover nutritional needs, and was thus mainly linked to environmental performance and food security. The third principal component was dominated by resilience indicators: interest groups, knowledge of threats and opportunities, decent and safe working conditions, use of energy, shared vision, and ecological self-regulation. The fourth principal component was mostly influenced by access to water for domestic consumption and for irrigation, wages in retail, household food security, the proportion of women with land rights, and reflective and shared learning, and was thus strongly related to access to resources and incomes, particularly for women.
    From the two analyses (frequency of positive/negative scoring of indicators, and PCA), we can identify the indicators with the greatest influence across the food systems under study. Six of these contributed positively, meaning that they were in a rather good state in several of the food systems. Four of the six indicators were from the food security dimension (capacity of the food system to process food, ability of the food system to provide food to food system actors, household food security, access to water) and two were from the environmental performance dimension (use of materials and use of energy). We identify six indicators, all but diversity of crops and breeds from the right to food dimension, which had a strongly negative influence (women’s access to credit, social protection, local food traditions, women’s land rights, and remedies for violations of the right to food). This means that these indicators were in an undesirable state in most of the food systems. More

  • in

    Low genetic diversity indicating the threatened status of Rhizophora apiculata (Rhizophoraceae) in Malaysia: declined evolution meets habitat destruction

    1.
    Gandhi, S. & Jones, T. G. Identifying mangrove deforestation hotspots in South Asia, Southeast Asia and Asia-Pacific. Remote Sens. 11, 728 (2019).
    ADS  Article  Google Scholar 
    2.
    Hamdan, O., Khali-Aziz, H., Shamsudin, I. & Raja-Barizan, R.S. Status of Mangroves in Peninsular Malaysia. 153 (Forest Research Institute Malaysia, 2012).

    3.
    Taillardat, P., Friess, D. A. & Lupascu, M. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Lett. 14, 20180251 (2018).
    Article  CAS  Google Scholar 

    4.
    Richards, D. R. & Friess, D. A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 113, 344–349 (2016).
    ADS  CAS  Article  Google Scholar 

    5.
    Friess, D. A. et al. Mangroves give cause for conservation optimism, for now. Curr. Biol. 30, R153–R154 (2020).
    CAS  Article  Google Scholar 

    6.
    Polidoro, B. A. et al. The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS ONE 5, e10095 (2010).
    ADS  Article  CAS  Google Scholar 

    7.
    Matesanz, S., Rubio-Teso, M. L., García-Fernández, A. & Escudero, A. Habitat fragmentation differentially affects genetic variation, phenotypic plasticity and survival in populations of a gypsum endemic. Front. Plant Sci. 8, 843 (2017).
    Article  Google Scholar 

    8.
    Furches, M. S., Small, R. L. & Furches, A. Genetic diversity in three endangered pitcher plant species (Sarracenia; Sarraceniaceae) is lower than widespread congeners. Am. J. Bot. 100, 2092–2101 (2013).
    Article  Google Scholar 

    9.
    Yan, Y. B., Duke, N. C. & Sun, M. Comparative analysis of the pattern of population genetic diversity in three Indo-West Pacific Rhizophora mangrove species. Front. Plant Sci. 7, 1434 (2016).
    PubMed  Google Scholar 

    10.
    Wan-Ismail, W. N., Wan-Ahmad, W. J., Salam, M. R. & Latiff, A. Structural and floristic pattern in a disturbed mangrove tropical swamp forest: a case study from the Langkawi UNESCO Global Geopark Forest, Peninsular Malaysia. Sains Malays. 47, 861–869 (2018).
    Article  Google Scholar 

    11.
    Setyawan, A.D., Ulumuddin, Y.I. & Ragavan, P. Mangrove hybrid of Rhizophora and its parentals species in Indo-Malayan region. Nusantara Biosci. 6 (2014).

    12.
    Lahjie, A.M., Nouval, B., Lahjie, A.A., Ruslim, Y. & Kristiningrum, R. Economic valuation from direct use of mangrove forest restoration in Balikpapan Bay, East Kalimantan, Indonesia. F1000Res. 8 (2019).

    13.
    Omar, H., Misman, M.A. & Musa, S. GIS and remote sensing for mangroves mapping and monitoring. Geographic Information Systems and Science. IntechOpen https://www.intechopen.com/books/geographic-information-systems-and-science/gis-and-remote-sensing-for-mangroves-mapping-and-monitoring (2019).

    14.
    Takayama, K., Tamura, M., Tateishi, Y., Webb, E. L. & Kajita, T. Strong genetic structure over the American continents and transoceanic dispersal in the mangrove genus Rhizophora (Rhizophoraceae) revealed by broad-scale nuclear and chloroplast DNA analysis. Am. J. Bot. 100, 1191–1201 (2013).
    CAS  Article  Google Scholar 

    15.
    Ng, W. L. et al. Closely related and sympatric but not all the same: genetic variation of Indo-West Pacific Rhizophora mangroves across the Malay Peninsula. Conserv. Genet. 16, 137–150 (2015).
    Article  Google Scholar 

    16.
    Yahya, A. F. et al. Genetic variation and population genetic structure of Rhizophora apiculata (Rhizophoraceae) in the greater Sunda Islands, Indonesia using microsatellite markers. J. Plant Res. 127, 287–297 (2014).
    CAS  Article  Google Scholar 

    17.
    Chen, Y. et al. Applications of multiple nuclear genes to the molecular phylogeny, population genetics and hybrid identification in the mangrove genus Rhizophora. PLoS ONE. 10 (2015).

    18.
    Guo, Z. et al. Genetic discontinuities in a dominant mangrove Rhizophora apiculata (Rhizophoraceae) in the Indo-Malesian region. J. Biogeogr. 43, 1856–1868 (2016).
    Article  Google Scholar 

    19.
    Cheng, A. et al. Molecular marker technology for genetic improvement of underutilised crops. In Crop improvement (eds Abdullah, S. et al.) 47–70 (Springer, Cham, 2017).
    Google Scholar 

    20.
    Ali, A. et al. Genetic diversity and population structure analysis of Saccharum and Erianthus genera using microsatellite (SSR) markers. Sci. Rep. 9, 1–10 (2019).
    Article  CAS  Google Scholar 

    21.
    Shinmura, Y. et al. Isolation and characterization of 14 microsatellite markers for Rhizophora mucronata (Rhizophoraceae) and their potential use in range-wide population studies. Conserv. Genet. Resour. 4, 951–954 (2012).
    Article  Google Scholar 

    22.
    Xu, S. et al. The origin, diversification and adaptation of a major mangrove clade (Rhizophoraceae) revealed by whole-genome sequencing. Natl. Sci. Rev. 4, 721–734 (2017).
    CAS  Article  Google Scholar 

    23.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  Article  Google Scholar 

    24.
    Nei, M., Tajima, F. & Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 19, 153–170 (1983).
    ADS  CAS  Article  Google Scholar 

    25.
    Maguire, T.L., Edwards, K.J., Saenger, P. & Henry, R. Characterisation and analysis of microsatellite loci in a mangrove species, Avicennia marina (Forsk.) Vierh. (Avicenniaceae). Theor. Appl. Genet. 101, 279–285 (2000).

    26.
    Torre, S. et al. RNA-seq analysis of Quercus pubescens leaves: de novo transcriptome assembly, annotation and functional markers development. PLoS ONE 9, e112487 (2014).
    ADS  Article  CAS  Google Scholar 

    27.
    Ye, Y. et al. Characterization, validation, and cross-species transferability of newly developed EST-SSR markers and their application for genetic evaluation in crape myrtle (Lagerstroemia spp). Mol. Breed. 39, 26 (2019).
    Article  CAS  Google Scholar 

    28.
    Nei, M. Molecular Evolutionary Genetics (Columbia University Press, London, 1987).
    Google Scholar 

    29.
    Wee, A. K. et al. Vicariance and oceanic barriers drive contemporary genetic structure of widespread mangrove species Sonneratia alba, J. Sm in the Indo-West Pacific. Forests 8, 483 (2017).
    Article  Google Scholar 

    30.
    Ellstrand, N. C. & Elam, D. R. Population genetic consequences of small population size: implications for plant conservation. Annu. Rev. Ecol. Evol. Syst. 24, 217–242 (1993).
    Article  Google Scholar 

    31.
    Feder, J. L., Gejji, R., Yeaman, S. & Nosil, P. Establishment of new mutations under divergence and genome hitchhiking. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 461–474 (2012).
    Article  Google Scholar 

    32.
    Annuar, A. S. & Latip, N. A. Mangrove contributions towards environmental conservation and tourism in Balik Pulau. Adv. Conserv. Sci. Technol. 1, 1–7 (2020).
    Google Scholar 

    33.
    Wee, A.K. et al. Oceanic currents, not land masses, maintain the genetic structure of the mangrove Rhizophora mucronata Lam. (Rhizophoraceae) in Southeast Asia. J. Biogeogr. 41, 954–964 (2014).

    34.
    Ismail, M. H., Zaki, P. H. & Hamed, A. A. Wood density and carbon estimates of mangrove species in Kuala Sepetang, Perak, Malaysia. Malays. For. 78, 115–124 (2015).
    Google Scholar 

    35.
    Vitorino, C. A., Nogueira, F., Souza, I. L., Araripe, J. & Venere, P. C. Low genetic diversity and structuring of the Arapaima (Osteoglossiformes, Arapaimidae) population of the Araguaia-Tocantins basin. Front. Genet. 8, 159 (2017).
    Article  Google Scholar 

    36.
    Wright, S. The genetical structure of populations. Ann. Eugen. 15, 323–354 (1951).
    MathSciNet  CAS  MATH  Article  Google Scholar 

    37.
    Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462 (1995).
    CAS  PubMed  Google Scholar 

    38.
    Goodman, S. J. RST calc: a collection of computer programs for calculating estimates of genetic differentiation from microsatellite data and determining their significance. Mol. Ecol. 6, 881–885 (1997).
    CAS  Article  Google Scholar 

    39.
    Moulin, N. L., Wyttenbach, A., Brüunner, H., Goudet, J. & Hausser, J. Study of gene flow through a hybrid zone in the common shrew (Sorex araneus) using microsatellites. Hereditas. 125, 159–168 (1996).
    Article  Google Scholar 

    40.
    Ge, X. J. & Sun, M. Population genetic structure of Ceriops tagal (Rhizophoraceae) in Thailand and China. Wetl. Ecol. Manag. 9, 213–219 (2001).
    Article  Google Scholar 

    41.
    Dodd, R.S., Afzal-Rafii, Z., Kashani, N. & Budrick, J. Land barriers and open oceans: effects on gene diversity and population structure in Avicennia germinans L. (Avicenniaceae). Mol. Ecol. 11, 1327–1338 (2002).

    42.
    Rizal, S. et al. General circulation in the Malacca strait and Andaman Sea: a numerical model study. Am. J. Environ. Sci. 8, 479–488 (2012).
    Article  Google Scholar 

    43.
    Nathan, R. et al. Mechanisms of long-distance seed dispersal. Trends Ecol. Evol. 23, 638–647 (2008).
    Article  Google Scholar 

    44.
    Drexler, J.Z. Maximum longevities of Rhizophora apiculata and R. mucronata propagules. Pac. Sci. 55, 17–22 (2001).

    45.
    Li, J. et al. Pronounced genetic differentiation and recent secondary contact in the mangrove tree Lumnitzera racemosa revealed by population genomic analyses. Sci. Rep. 6, 29486 (2016).
    ADS  CAS  Article  Google Scholar 

    46.
    Murray, M. G. & Thompson, W. F. Rapid isolation of high molecular weight plant DNA. Nucl. Acids Res. 8, 4321–4326 (1980).
    CAS  Article  Google Scholar 

    47.
    Andrews, S. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).

    48.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinform. 30, 2114–2120 (2014).
    CAS  Article  Google Scholar 

    49.
    Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29, 644 (2011).
    CAS  Article  Google Scholar 

    50.
    Varshney, R. K., Thiel, T., Stein, N., Langridge, P. & Graner, A. In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol. Biol. Lett. 7, 537–546 (2002).
    CAS  PubMed  Google Scholar 

    51.
    Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers in Bioinformatics methods and protocols. 365–386 (Humana Press, 2000).

    52.
    Van-Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes. 4, 535–538 (2004).
    CAS  Article  Google Scholar 

    53.
    Lewis, P.O. & Zaykin, D. Genetic Data Analysis (GDA) version 1.1: a computer program for the analysis of allelic data. UConn https://phylogeny.uconn.edu/software/ (2002).

    54.
    Rice, W. R. Analyzing tables of statistical tests. Evol. 43, 223–225 (1989).
    Article  Google Scholar 

    55.
    Park, S.D.E. Trypanotolerance in West African cattle and the population genetic effects of selection. Ph. D (University of Dublin, 2001).

    56.
    Goudet, J. FSTAT version 2.9.3.2: a program to estimate and test gene diversities and fixation indices. Unil https://www2.unil.ch/popgen/softwares/fstat.htm (2002).

    57.
    Nei, M., Tajima, F. & Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 19, 153–170 (1983).

    58.
    Liu, K. & Muse, S. V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinform. 21, 2128–2129 (2005).
    CAS  Article  Google Scholar 

    59.
    Nei, M. F-statistics and analysis of gene diversity in subdivided populations. Ann. Hum. Genet. 41, 225–233 (1977).
    CAS  MATH  Article  Google Scholar 

    60.
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinform. 28, 2537–2539 (2012).
    CAS  Article  Google Scholar 

    61.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  Google Scholar 

    62.
    Li, Y. L. & Liu, J. X. StructureSelector: a web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177 (2018).
    Article  Google Scholar 

    63.
    Goudet, J. PCAGEN version 1.2: a program to perform a principal component analysis (PCA) on genetic data. Unil https://www2.unil.ch/popgen/softwares/pcagen.htm (1999).

    64.
    Tamura, K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).
    CAS  Article  Google Scholar  More

  • in

    Transcriptomic and life history responses of the mayfly Neocloeon triangulifer to chronic diel thermal challenge

    1.
    Angilletta, M. J. Jr. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, Oxford, 2009).
    Google Scholar 
    2.
    Atkinson, D. Temperature and organism size: a biological law for ectortherms?. Adv. Ecol. Res. 25, 1–58 (1994).
    Article  Google Scholar 

    3.
    Atkinson, D. & Sibly, R. M. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol. Evol. 12, 235–239 (1997).
    CAS  Article  PubMed  Google Scholar 

    4.
    Hynes, H. B. N. The ecology of stream insects. Ann. Rev. Entomol. 15, 25–42 (1970).
    Article  Google Scholar 

    5.
    Sweeney, B. W. & Vannote, R. L. Size variation and the distribution of hemimetabolous aquatic insects: two thermal equilibrium hypotheses. Science 200, 444–446 (1978).
    ADS  CAS  Article  PubMed  Google Scholar 

    6.
    Sweeney, B. W. & Vannote, R. L. Ephemerella mayflies of Whie Clay Creek: bioenergetic and ecological relationships among six coexisting species. Ecology 62, 1353–1369 (1981).
    Article  Google Scholar 

    7.
    Sweeney, B. W. & Vannote, R. L. Influence of food quality and temperature on life-history characteristics of the parthenogenetic mayfly Cloeon triangulifer. Freshw. Biol. 14, 621–630 (1984).
    Article  Google Scholar 

    8.
    Sweeney, B. W., Funk, D. H., Jackson, J. K., Camp, A. A. & Buchwalter, D. Why a mayfly Cloeon dipterum (Ephemeroptera: Baetidae) gets smaller as temperatures warm. Freshw. Sci. 37, 64–81 (2018).
    Article  Google Scholar 

    9.
    Caissie, D. The thermal regime of rivers: a review. Freshw. Biol. 51, 1389–1406 (2006).
    Article  Google Scholar 

    10.
    Haidekker, A. & Hering, D. Relationship between benthic insects (Ephemeroptera, Plecoptera, Coleoptera, Trichoptera) and temperature in small and medium-sized streams in Germany: a multivariate study. Aquat. Ecol. 42, 463–481 (2008).
    Article  Google Scholar 

    11.
    Woodward, G., Perkins, D. M. & Brown, L. E. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos. Trans. R. Soc. B Biol. Sci. 365, 2093–2106 (2010).
    Article  Google Scholar 

    12.
    Woodward, G. et al. The effects of climatic fluctuations and extreme events on running water ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150274 (2016).
    Article  Google Scholar 

    13.
    Carpenter, S. R., Fisher, S. G., Grimm, N. B. & Ktchell, J. F. Global change and freshwater ecosystems. Annu. Rev. Ecol. Syst. 23, 119–139 (1992).
    Article  Google Scholar 

    14.
    El-Jabi, N., Caissie, D. & Turkkan, N. Water quality index assessment under climate change. J. Water Resour. Prot. 06, 533–542 (2014).
    Article  CAS  Google Scholar 

    15.
    Madden, N., Lewis, A. & Davis, M. Thermal effluent from the power sector: an analysis of once-through cooling system impacts on surface water temperature. Environ. Res. Lett. 8, 035006 (2013).
    ADS  Article  Google Scholar 

    16.
    Null, S. E., Ligare, S. T. & Viers, J. H. A method to consider whether dams mitigate climate change effects on stream temperatures. JAWRA J. Am. Water Resour. Assoc. 49, 1456–1472 (2013).
    ADS  Article  Google Scholar 

    17.
    Schulte, P. M., Healy, T. M. & Fangue, N. A. Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr. Comp. Biol. 51, 691–702 (2011).
    Article  PubMed  Google Scholar 

    18.
    Sweeney, B. W., Jackson, J. K., Newbold, J. D. & Funk, D. H. Climate change and the life histories and biogeography of aquatic insects in Eastern North America. In Global Cilmate Change and Freshwater Ecosystems (eds Firth, P. & Fisher, S.) 143–176 (Springer, Berlin, 1990).
    Google Scholar 

    19.
    Hawkins, C. P., Norris, R. H., Hogue, J. N. & Feminella, J. W. Development and evaluation of predictive models for measuring the biological integrity of streams. Ecol. Appl. 10, 1456–1477 (2000).
    Article  Google Scholar 

    20.
    Hodkinson, I. D. & Jackson, J. K. Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environ. Manag. 35, 649–666 (2005).
    Article  Google Scholar 

    21.
    Bonada, N., Prat, N., Resh, V. H. & Statzner, B. Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu. Rev. Entomol. 51, 495–523 (2006).
    CAS  Article  PubMed  Google Scholar 

    22.
    Atkinson, D. Effects of temperature on the size of aquatic ectotherms: exceptions to the general rule. J. Therm. Biol. 20, 61–74 (1995).
    Article  Google Scholar 

    23.
    Kingsolver, J. G. & Huey, R. B. Size, temperature, and fitness: three rules. Evol. Ecol. Res. 10, 251–268 (2008).
    Google Scholar 

    24.
    Colinet, H., Sinclair, B. J., Vernon, P. & Renault, D. Insects in fluctuating thermal environments. Annu. Rev. Entomol. 60, 123–140 (2015).
    CAS  Article  PubMed  Google Scholar 

    25.
    Conley, J. M., Funk, D. H. & Buchwalter, D. B. Selenium bioaccumulation and maternal transfer in the mayfly Centroptilum triangulifer in a life-cycle, periphyton-biofilm trophic assay. Environ. Sci. Technol. 43, 7952–7957 (2009).
    ADS  CAS  Article  PubMed  Google Scholar 

    26.
    Conley, J. M., Funk, D. H., Cariello, N. J. & Buchwalter, D. B. Food rationing affects dietary selenium bioaccumulation and life cycle performance in the mayfly Centroptilum triangulifer. Ecotoxicology 20, 1840–1851 (2011).
    CAS  Article  PubMed  Google Scholar 

    27.
    Xie, L. T. et al. Cadmium biodynamics in the oligochaete Lumbriculus variegatus and its implications for trophic transfer. Aquat. Toxicol. 86, 265–271 (2008).
    CAS  Article  PubMed  Google Scholar 

    28.
    Xie, L. & Buchwalter, D. B. Cadmium exposure route affects antioxidant responses in the mayfly Centroptilum triangulifer. Aquat. Toxicol. 105, 199–205 (2011).
    CAS  Article  PubMed  Google Scholar 

    29.
    Kim, K. S., Funk, D. H. & Buchwalter, D. B. Dietary (periphyton) and aqueous Zn bioaccumulation dynamics in the mayfly Centroptilum triangulifer. Ecotoxicology 21, 2288–2296 (2012).
    CAS  Article  PubMed  Google Scholar 

    30.
    Wesner, J. S., Kraus, J. M., Schmidt, T. S., Walters, D. M. & Clements, W. H. Metamorphosis enhances the effects of metal exposure on the mayfly Centroptilum triangulifer. Environ. Sci. Technol. 48, 10415–10422 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    31.
    Soucek, D. J. & Dickinson, A. Full-life chronic toxicity of sodium salts to the mayfly Neocloeon triangulifer in tests with laboratory cultured food. Environ. Toxicol. Chem. 34, 2126–2137 (2015).
    CAS  Article  PubMed  Google Scholar 

    32.
    Kunz, J. L. et al. Use of reconstituted waters to evaluate effects of elevated major ions associated with mountaintop coal mining on freshwater invertebrates. Environ. Toxicol. Chem. 32, 2826–2835 (2013).
    CAS  Article  PubMed  Google Scholar 

    33.
    Orr, S. E. & Buchwalter, D. B. It’s all about the fluxes: temperature influences ion transport and toxicity in aquatic insects. Aquat. Toxicol. 221, 105405 (2020).
    CAS  Article  PubMed  Google Scholar 

    34.
    Buchwalter, D., Scheibener, S., Chou, H., Soucek, D. & Elphick, J. Are sulfate effects in the mayfly Neocloeon triangulifer driven by the cost of ion regulation?. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180013 (2018).
    Article  CAS  PubMed  Google Scholar 

    35.
    Jackson John, K. & Funk David, H. Temperature affects acute mayfly responses to elevated salinity: implications for toxicity of road de-icing salts. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180081 (2019).
    Article  CAS  Google Scholar 

    36.
    Kim, K. S. et al. Physiological responses to short-term thermal stress in mayfly (Neocloeon triangulifer) larvae in relation to upper thermal limits. J. Exp. Biol. 220, 2598–2605 (2017).
    Article  PubMed  Google Scholar 

    37.
    Chou, H., Pathmasiri, W., Deese-Spruill, J., Sumner, S. & Buchwalter, D. B. Metabolomics reveal physiological changes in mayfly larvae (Neocloeon triangulifer) at ecological upper thermal limits. J. Insect. Physiol. https://doi.org/10.1016/j.jinsphys.2017.07.008 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    38.
    Chou, H. et al. The good, the bad, and the lethal: gene expression and metabolomics reveal physiological mechanisms underlying chronic thermal effects in mayfly larvae (Neocloeon triangulifer). Front. Ecol. Evol. 101, 107–112 (2018).
    ADS  Google Scholar 

    39.
    Funk, D. H., Jackson, J. K. & Sweeney, B. W. Taxonomy and genetics of the parthenogenetic mayfly Centroptilum triangulifer and its sexual sister Centroptilum alamance (Ephemeroptera: Baetidae). J. North Am. Benthol. Soc. 25, 417–429 (2006).
    Article  Google Scholar 

    40.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  Article  PubMed  Google Scholar 

    41.
    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).
    CAS  Article  PubMed  Google Scholar 

    42.
    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).
    Article  CAS  Google Scholar 

    43.
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
    Article  CAS  PubMed  Google Scholar 

    44.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    45.
    Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. & Gilad, Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18, 1509–1517 (2008).
    CAS  Article  PubMed  Google Scholar 

    46.
    Nagalakshmi, U. et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320, 1344–1349 (2008).
    ADS  CAS  Article  PubMed  Google Scholar 

    47.
    Ramani, A. K. et al. High resolution transcriptome maps for wild-type and nonsense-mediated decay-defective Caenorhabditis elegans. Genome Biol. 10, R101 (2009).
    Article  CAS  PubMed  Google Scholar 

    48.
    Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).
    CAS  Article  PubMed  Google Scholar 

    49.
    Yassour, M. et al. Ab initio construction of a eukaryotic transcriptome by massively parallel mRNA sequencing. Proc. Natl. Acad. Sci. U. S. A. 106, 3264–3269 (2009).
    ADS  CAS  Article  PubMed  Google Scholar 

    50.
    Katz, B. & Minke, B. Drosophila photoreceptors and signaling mechanisms. Front. Cell. Neurosci. 3, 2 (2009).
    Article  CAS  PubMed  Google Scholar 

    51.
    Shen, W. L. et al. Function of rhodopsin in temperature discrimination in drosophila. Science 331, 1333–1336 (2011).
    ADS  CAS  Article  PubMed  Google Scholar 

    52.
    Wheeler, D. A., Hamblen-Coyle, M. J., Dushay, M. S. & Hall, J. C. Behavior in light–dark cycles of drosophila mutants that are arrhythmic, blind, or both. J. Biol. Rhythms https://doi.org/10.1177/074873049300800106 (2016).
    Article  Google Scholar 

    53.
    Miyasako, Y., Umezaki, Y. & Tomioka, K. Separate sets of cerebral clock neurons are responsible for light and temperature entrainment of drosophila circadian locomotor rhythms. J. Biol. Rhythms 22, 115–126 (2007).
    Article  PubMed  Google Scholar 

    54.
    Verberk, W. C. & Bilton, D. T. Oxygen-limited thermal tolerance is seen in a plastron-breathing insect and can be induced in a bimodal gas exchanger. J. Exp. Biol. 218, 2083–2088 (2015).
    Article  PubMed  Google Scholar 

    55.
    Verberk, W. C., Bilton, D. T., Calosi, P. & Spicer, J. I. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns. Ecology 92, 1565–1572 (2011).
    Article  PubMed  Google Scholar 

    56.
    Verberk, W. C. E. P., Sommer, U., Davidson, R. L. & Viant, M. R. Anaerobic metabolism at thermal extremes: a metabolomic test of the oxygen limitation hypothesis in an aquatic insect. Integr. Comp. Biol. 53, 609–619 (2013).
    CAS  Article  PubMed  Google Scholar 

    57.
    Merzendorfer, H. & Zimoch, L. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J. Exp. Biol. 206, 4393–4412 (2003).
    CAS  Article  PubMed  Google Scholar 

    58.
    White, B. J. et al. Localization of candidate regions maintaining a common polymorphic inversion (2La) in Anopheles gambiae. PLoS Genet. preprint, e217 (2005).

    59.
    Zhao, L., Wit, J., Svetec, N. & Begun, D. J. Parallel gene expression differences between low and high latitude populations of drosophila melanogaster and D. simulans. PLOS Genet. 11, e1005184 (2015).
    Article  CAS  PubMed  Google Scholar 

    60.
    Beament, J. W. L. The waterproofing mechanism of arthropods: I. The effect of temperature on cuticle permeability in terrestrial insects and ticks. J. Exp. Biol. 36, 391–422 (1959).
    CAS  Google Scholar 

    61.
    Dennis, A. B., Dunning, L. T., Sinclair, B. J. & Buckley, T. R. Parallel molecular routes to cold adaptation in eight genera of New Zealand stick insects. Sci. Rep. 5, 13965 (2015).
    ADS  Article  PubMed  Google Scholar 

    62.
    Camp, A. A., Funk, D. H. & Buchwalter, D. B. A sressful shortness of breath: molting disrupts breathing in the mayfly Cloeon dipterum. Freshw. Sci. 33, 695–699 (2014).
    Article  Google Scholar 

    63.
    Butenandt, A. & Karlson, P. Über die Isolierung eines Metamorphose-Hormons der Insekten in kristallisierter Form. Z. Für Naturforschung B 9, 389–391 (1954).
    Article  Google Scholar 

    64.
    Charles, J. P. The regulation of expression of insect cuticle protein genes. Insect. Biochem. Mol. Biol. 40, 205–213 (2010).
    CAS  Article  PubMed  Google Scholar 

    65.
    Rees, H. H. Zooecdysteroids: structure and occurrence. In Ecdysone: From Chemistry to Mode of Action (ed. Koolman, J.) (Thieme, Berlin, 1989).
    Google Scholar 

    66.
    Davenport, A. P. & Evans, P. D. Stress-induced changes in the octopamine levels of insect haemolymph. Insect. Biochem. 14, 135–143 (1984).
    CAS  Article  Google Scholar  More